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Abstract

The central topic of this thesis is the influence of stability properties of continuous time Markov
processes on their nonparametric statistical analysis. In particular sup-norm adaptive invariant
density estimation under assumptions on the ergodic behavior of the process is investigated and
consequently applied to jump diffusions with Lévy-driven jump part. Furthermore, the findings
are used to demonstrate how statistical procedures for Markov processes can be implemented
for the development of efficient data-driven strategies for stochastic optimal control problems
associated to both continuous diffusion processes and Lévy processes. As one of the main
theoretical tools in this regard, we give a detailed analysis of stability properties of overshoots
associated to Markov additive processes. This allows incorporating fluctuation theory for Markov
additive processes and Lévy processes into our general statistical framework, which is essential
for the data-driven Lévy control strategy. Moreover, the overshoot analysis guides us naturally
into extending some well-known fluctuation results for Lévy processes to the more general
case of Markov additive processes and—making use of the one-to-one correspondence between
Markov additive processes and real self-similar Markov processes through the Lamperti–Kiu
transform—gives us the right tool to analyze the mixing behavior of self-similar Markov processes
sampled at first hitting times.

Zusammenfassung

Zentrales Thema dieser Arbeit ist der Einfluss von Stabilitätseigenschaften zeitstetiger Markov-
prozesse auf ihre nichtparametrische statistische Analyse. Insbesondere betrachten wir die
adaptive Schätzung der invarianten Verteilung bezüglich des sup-Norm Risikos unter Annahmen
an das ergodische Verhalten des Prozesses und wenden die Resultate auf Diffusionen mit Lévy-
gesteuerter Sprungkomponente an. Wir nutzen unsere Ergebnisse, um datengesteuerte statistis-
che Ansätze für Lösungsstrategien stochastischer optimaler Kontrollprobleme sowohl für stetige
Diffusionen als auch für Lévyprozesse zu entwickeln. Als eine der fundamentalen theoretischen
Entwicklungen in dieser Hinsicht, geben wir eine detaillierte Analyse des Stabilitätsverhaltens
von Overshoots von Markov additiven Prozessen, was uns gestattet Fluktuationstheorie für
Lévyprozesse und Markov additive Prozesse in unseren allgemeinen statistischen Rahmen einzu-
betten. Zudem motiviert uns die Overshoot-Analyse dazu, einige zentrale Fluktuationsresultate
für Lévyprozesse auf den allgemeineren Fall Markov additiver Prozesse zu erweitern. Schließlich
erlauben es unsere Overshoot Resultate ebenso, das Mixingverhalten reeller selbstähnlicher
Markovprozesse, die an Ersteintrittszeiten ausgewertet werden, zu analysieren. Dazu nutzen
wir die bijektive Beziehung zwischen dieser Prozessklasse mit Markov additiven Prozessen, die
durch die Lamperti–Kiu Transformation beschrieben wird.
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Introduction

1Along with semimartingales, Markov processes are certainly the most studied and best under-
stood class of stochastic processes in continuous time. With their flexibility and analytical

tractability this makes them an accessible and frequently used tool for the modeling of random
phenomena in many disciplines whenever the central assumption of memorylessness is consid-
ered adequate. Quite naturally, this raises the interest in efficient statistical estimation of Markov
processes based on different observation schemes, with continuous observations on the one
hand and discrete low- and high-frequency sampling schemes on the other hand being the most
prominent in the literature. Any continuos time Markov process that is sampled at equally spaced
time intervals (low-frequency) is a discrete time Markov chain and in applications the availability
of discrete data is more realistic than a continuous record of the process. Consequently, the
majority of the statistical literature on Markov processes focusses on the discrete perspective and
therefore does not differentiate between estimation of Markov processes and Markov chains.

However, from a purely mathematical point of view it is of fundamental interest to investigate
whether the loss of information imposed by incomplete sampled data also results in a loss of
performance of statistical procedures. In fact, it has been observed in the literature on nonpara-
metric statistics for continuous diffusion processes that under suitable structural assumptions, the
invariant density—quantifying the distributional equilibrium of the process—can be estimated
at a faster rate wrt. different risk measures in any dimension compared to the classical non-
parametric rate known from i.i.d. data in discrete time [59, 106, 158]. This raises the question
whether such phenomena can also be observed for more general classes of stochastic processes.
An essential contribution in this regard was made in [39] and [34], where general criteria
on the transition densities of a Markov process were formulated that guarantee a dimension
independent parametric 𝐿2 rate of convergence of nonparametric invariant density estimators.
Such independence of the dimension, however, cannot be observed for the aforementioned
case of continuous diffusion processes, for which the minimax estimator performance decreases
substantially with increasing dimension of the process, which is generally referred to as the curse
of dimensionality.

One main goal of this thesis is therefore to formulate a general framework for Markovian
statistics that inhibits the nonparametric estimation performance of continuous diffusion pro-
cesses but is applicable to a much wider range of stochastic processes, especially allowing jump
structures. As a central ingredient for this framework we work under assumptions on the ergodic
and mixing behavior of the process. Heuristically, it is clear that a fast convergence of the
stochastic process to equilibrium increases the performance of estimators based on data that
is collected with increasing time horizon. Technically, the notion of speed of convergence to
equilibrium is forged into the frame of convergence of probability measures. Let (𝑃𝑡)𝑡≥0 be the
semigroup associated to a given nice X-valued Markov process 𝑿 that describes the transitional
behavior of the process. Assuming that 𝑿 possesses a unique invariant distribution 𝜇—that is, the
marginal distributions of 𝑿 started in 𝜇 do not change over time—we may express convergence
of 𝑿 to 𝜇 through

𝑑(𝑃𝑡 (𝑥, ·), 𝜇) −→
𝑡→∞

0, 𝑥 ∈ X,

1



2 Chapter 1. Introduction

where 𝑑(·, ·) is a suitable metric on the space of probability distributions. Popular choices for 𝑑
are the Prokhorov metric that metrizes the topology of weak convergence, the metric induced
by the total variation norm ‖·‖TV of signed measures or the Wasserstein distance, which is
associated to an optimal transport problem.

For Markov processes, the most prominent choice is certainly the total variation metric
𝑑TV (𝜇, 𝜈) = ‖𝜇 − 𝜈‖TV (or, alternatively, some metric induced by a generalized operator norm)
since a large branch of literature, commonly referred to as stability theory of Markov processes,
deals with establishing tractable conditions on the characteristics of 𝑿 that allow finding some
rate function Ξ : ℝ+ → ℝ+ decreasing to 0 such that

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV ≤ 𝑉 (𝑥)Ξ(𝑡), 𝑡 ≥ 0, 𝑥 ∈ X,

where 𝑉 is some penalty function allowing non-uniformity of convergence wrt. the initial
distribution of the process. These conditions are stated in terms of nice characterizing objects
of 𝑿 such as its semigroup, its generator or its resolvent and it is a challenging mathematical
task to translate these general results into concrete assumptions for particular Markov models.
Among others, such precise convergence statements can be used to describe the mixing behavior
of the process, where—in general terms—the process is said to be mixing if the 𝜎-algebras
𝜎(𝑋𝑠, 𝑠 ≤ 𝑡) and 𝜎(𝑋𝑠, 𝑠 ≥ 𝑡 + ℎ) encoding the temporal 𝑡-past and 𝑡 + ℎ-future of the process,
respectively, become asymptotically independent as ℎ → ∞. For our purposes, the concrete
notion of 𝛽-mixing (or absolute regularity) will be central throughout the whole thesis thanks to
its direct association to total variation convergence.

For discrete time data it is well-known that certain mixing requirements allow to reproduce
nonparametric rates associated to i.i.d. observations, since coupling results essentially allow to
split the risk of an estimator into an i.i.d. contribution and a part that can be controlled through
the coupling error expressed in terms of the mixing coefficient. We will demonstrate how mixing
and ergodic requirements in continuous time together with an on-diagonal heat kernel estimate
of the transition semigroup—essentially controlling the speed at which the marginal distributions
of the process approach a singular Dirac-distribution as 𝑡 ↓ 0—provide the right mix of long-
and short time control on the transitions of the process to obtain the minimax rates observed
for continuous diffusion processes. In particular, we focus on tight variance bounds as well as
uniform moment bounds and deviation inequalities for additive functionals of 𝛽-mixing Markov
processes as the main ingredient for sup-norm adaptive estimation of the invariant density. As
a consequence, without much additional effort we are able to include jump diffusions with
Lévy-driven jump part in arbtirary dimension into our general modeling approach and obtain
novel results on sup-norm adaptive invariant density estimation of such processes.

Apart from the substantial increase in technical difficulty of proving such (adaptive) estimation
rates wrt. the sup-norm risk compared to the more popular (but certainly not more useful) 𝐿2
risk of estimators, this general approach equips us with the right tools to develop data-driven
substitutes for theoretically known solutions of stochastic optimal control problems in presence
of uncertainty on the dynamics of the underlying stochastic process. This is dealt with as
another main part of the thesis. With the exception of the recent article [50], which deals with
data-driven solutions to impulse control problems for diffusion processes, so far there are no
comparable studies of data-driven controls for continuous time Markov processes, although the
practical consequences of such results are substantial. One type of problem we deal with is a
singular ergodic control problem for continuous scalar diffusion processes, whose theoretical
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solution is given by a two-sided reflection strategy. Another problem we consider is a stochastic
optimal control problem associated to a Lévy process diverging to +∞, which is formulated as an
impulse type control problem, but whose optimal solution is given by a strategy approximating
reflection at a certain boundary, thus being essentially of singular type as well.

For such singular strategies, starting with a continuous observation scheme is inherently
reasonable, since the execution of the optimal strategy requires not only continuously tracking
but also continuously controlling the process. Any practical implementation of the strategy
based on discretely observed data and finitely many interventions on any time interval must
therefore be treated as an approximation to the optimal strategy. Likewise, the performance of
an approximating discrete data-driven strategy should be evaluated relative to the performance
of our continuous data-driven controls, similarly to numerical approximations of analytic objects
or stochastic simulation algorithms.

From a technical point of view, our data-driven approximation of the optimal reflection bound-
aries of the continuous diffusion process—given data (𝑋𝑡)0≤𝑡≤𝑇—can be elegantly included into
our general nonparametric statistical framework since the optimal solution can be expressed in
terms of the invariant density of the diffusion and we work under natural coefficient assumptions
that ensure exponential convergence to equilibrium and a sufficient control on the small-time
transitions either through a heat-kernel bound or, alternatively, through local time arguments.
Thus, our estimator arises directly from nonparametric kernel density estimation techniques.
For this specific control problem however, an additional difficulty arises from the more natural
scenario when we are not given a data set (𝑋𝑡)0≤𝑡≤𝑇 from the beginning but must collect data
simultaneously to estimation and application of the reflection boundaries to minimize the costs
in the ergodic problem formulation. This way, we face an exploration/exploitation type dilemma.
Controlling the process reduces the costs but at the same time we cannot collect data on the
behavior of the diffusion away from the estimated boundaries, which is essential for convergence
of our estimation procedure. Conversely, not controlling the process in favor of data collection
to improve the approximation of the optimal solution results in potentially high costs from the
lack of intervention. Consequently, these effects must be balanced. We propose a splitting into
exploration and exploitation periods separated by random hitting times of the diffusion, where
the time spent in exploration and exploitation periods on average is balanced such that the
algorithm converges at a rate, which includes an additional but unavoidable loss compared to
the optimal rate without exploration/exploitation problem due to the balancing process.

Such exploration/exploitation type problem does not occur for Lévy processes since spatial
homogeneity of the process—or equivalently, translation invariance of the semigroup—allows
the controller to recover the path of a process from the controlled path that has the same law as
the uncontrolled Lévy process. The significant challenge in this scenario comes from the fact that
the optimal reflection boundary is characterized as the maximizer of the generator functional

𝑓 (𝑥) = A𝐻𝛾(𝑥), 𝑥 ∈ ℝ,

where 𝛾 is the reward function underlying the control problem and A𝐻 is the extended generator
of the ascending ladder height process 𝑯, which is one of the central objects of Lévy fluctuation
theory. This process is a subordinator obtained from time changing the Lévy process 𝑿 by inverse
local time at the supremum L. However, in general L cannot be recovered even from observations
(𝑋𝑡)0≤𝑡≤𝑇 and 𝑯 as an increasing Lévy process is not ergodic in time such that estimation of 𝑯
cannot be directly treated within our proposed general statistical framework. At this point the
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third main part of this thesis comes into play, which treats convergence analysis of overshoots of
Lévy processes—and even more generally of Markov additive processes.

Our main idea is to rewrite the generator functional 𝑓 in terms of an integral wrt. the
stationary limiting distribution 𝜇 of the overshoots (O𝑥)𝑥≥0 associated to 𝑿 that are defined by

O𝑥 ≔ 𝑋𝑇𝑥 − 𝑥, 𝑥 ≥ 0,

where 𝑇𝑥 = inf{𝑡 ≥ 0 : 𝑋𝑡 > 𝑥} is the first passage time of 𝑥. This stationarity is not of temporal
but spatial nature since convergence has been observed in [24] in distribution as the level 𝑥
tends to∞. Our goal is therefore to establish conditions on 𝑿 that improve classical distributional
convergence of overshoots to explicit rates of convergence in total variation and the (exponential)
𝛽-mixing property of the Markov process (O𝑥)𝑥≥0, in order to have access to the uniform moment
bounds from the general statistical framework that can provide sup-norm estimation results for
the generator functional 𝑓 . Another challenge that we must address then consists of transforming
the spatial estimator into a temporal one to obtain intepretable convergence rates for given
observations (𝑋𝑡)0≤𝑡≤𝑇 .

As mentioned above, we consider the overshoot convergence problem more generally for
Markov additive processes (MAPs). Loosely speaking, these are Lévy processes living in a
Markovian random environment. Apart from fundamental reasons, our motivation to widen
the view to MAPs is twofold. First, there is a one-to-one relation between self similar Markov
processes—including strictly 𝛼-stable Lévy processes—and MAPs with bivariate background
Markov chain that is captured by the Lamperti–Kiu transformation. Since the overshoot process
is invariant under continuous time changes of the underlying MAP, this establishes a direct
connection between Markov additive overshoots and self-similar Markov processes sampled
at first hitting times. The 𝛽-mixing results that we establish for Markov additive overshoots
therefore translate to mixing rates for self-similar Markov processes sampled at first hitting
times that are of independent interest. Second, the assumptions that we shall impose on the
given MAP to prove our ergodicity results with general techniques obtained from stability theory
of Markov processes, are stated in terms of the ascending ladder height MAP—which in the
special case of Lévy processes is identical to 𝑯 introduced above. To make these assumptions
transparent in terms of assumptions on the observable parent MAP 𝑿, we prove fluctuation
identities that generalize the by now classical équations amicales inversés for Lévy processes
obtained in Vigon [172]. This contributes significantly to the understanding of fluctuations of
MAPs and has potential applications that go beyond overshoot convergence considered in this
thesis.

1.1 Outline

Chapter 2: Stability of Markov processes
We introduce the most important definitions and objects in the general theory of Markov
processes and give a condensed overview of stability theory of Markov processes to establish
the most important notions and results needed for the following chapters. Moreover, we give
a novel criterion for invariant measures in terms of a suitable form of resolvent convergence
and characterize exponential 𝛽-mixing of a Markov process by local uniform transition density
convergence at exponential speed.
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Chapter 3: Markovian statistics under mixing assumptions
In this chapter we introduce a general framework for nonparametric Markovian statistics based
on verifiable assumptions on the short-and long time transitional behavior of a given Borel
right Markov process. We demonstrate how exponential 𝛽-mixing can be considered as the
key ingredient for sup-norm adaptive invariant density estimation through the use of general
moment bounds for empirical processes associated to additive functionals of exponentially 𝛽-
mixing Markov processes. As particular examples, we show that Lévy-driven Ornstein–Uhlenbeck
processes as well as jump diffusions with Lévy driven jump part and bounded Lipschitz coefficients
can be estimated optimally within our framework.

Chapter 4: Stability of overshoots of Markov additive processes
The asymptotic behavior of overshoots of MAPs is analyzed in detail with techniques from
general stability theory of Markov processes. Assumptions on the ascending ladder height
MAP are introduced that yield exponential and polyonmial ergodicity as well as exponential
and polynomial 𝛽-mixing of overshoots. Main ingredient for the proofs is the derivation of an
explicit formula of the overshoot resolvent that allows us to prove a necessary and sufficient
condition for the existence of an (explicit) invariant overshoot measure and to find appropriate
Lyapunov-functions for establishing the ergodicity results. By extending Vigon’s équations
amicales inversés, the conditions on the ascending ladder height MAP are expressed in terms of
the characteristics of the parent MAP and the mixing results are translated into mixing rates for
real self-similar Markov processes.

Chapter 5: Data-driven control strategies for diffusions and Lévy processes
In this chapter the data-driven solution strategies to ergodic stochastic control problems asso-
ciated to continuous diffusion processes and Lévy processes are developed, bringing together
our work from the previous chapters. As a byproduct of independent interest, a nonasymptotic
deviation inequality for Lévy processes with bounded jumps is established.

1.2 Collaborative Work

The results from Section 2.3 and Chapter 3 were obtained in collaboration with Niklas Dexheimer
and Prof. Dr. Claudia Strauch from Aarhus University and are available as a preprint [67]. The
contents of Chapter 4 and partially of Sections 2.1 and 2.2 are based on joint work with Prof.
Dr. Leif Döring from University of Mannheim and can be found in the preprint [71]. Chapter
5 is the result of joint work with Prof. Dr. Sören Christensen from Kiel University and Prof. Dr.
Claudia Strauch and is also available as a preprint [51].





Stability of Markov processes

2The theory of stability of continuous time Markov processes is the common thread running
through the different parts of the thesis. In Section 2.1 we therefore introduce the general

terminology and central results from the literature that we shall frequently fall back to in the
following chapters. We then proceed in Section 2.2 by establishing two technical results of
general character which will be important for our analysis in Chapter 4. In Section 2.3 we
investigate the influence of local uniform transition density convergence on the mixing behavior
of a Markov process. On the one hand, this is a good warm up for the remainder of the thesis
since the discussion demonstrates the power and general techniques of the Meyn and Tweedie
approach. On the other hand, the section serves as direct preparation for Chapters 3 and 5,
where the transition density convergence assumption plays a central role.

2.1 Fundamentals

2.1.1 Basic concepts
Let us start by formally introducing the most important concepts from stability theory of contin-
uous time Markov processes. Let X be a topological space and X𝜗 be its Alexandrov one-point
compactification by some isolated state 𝜗. Denote by B(X𝜗) its associated Borel 𝜎-algebra. We
follow the common and convenient convention to extend any function 𝑓 : X → ℝ to X𝜗 by
setting 𝑓 (𝜗) = 0. In the same vein, we extend measures 𝜇 on (X,B(X)) to (X𝜗,B(X𝜗)) by
setting 𝜇({𝜗}) = 0. We work with the following definition of a Markov process from the standard
textbook [31].

Definition 2.1. A sextuple ((𝑋𝑡)𝑡≥0,Ω,F, (F𝑡)𝑡≥0, (ℙ𝑥)𝑥∈X𝜗
, (𝜃𝑡)𝑡≥0) is called Markov process if

the following conditions are satisfied.

(i) for any 𝑥 ∈ X𝜗, (𝑋𝑡)𝑡≥0 is a stochastic process on the probability space (Ω,F,ℙ𝑥) adapted
to the filtration 𝔽 B (F𝑡)𝑡≥0;

(ii) for any 𝐵 ∈ B(X𝜗) and 𝑡 ≥ 0, 𝑥 ↦→ ℙ𝑥 (𝑋𝑡 ∈ 𝐵) is measurable;

(iii) for any 𝑥 ∈ X𝜗 it holds that ℙ𝑥 (𝑋0 = 𝑥) = 1;

(iv) for any 𝑡 ≥ 0, 𝜃𝑡 : Ω → Ω is a measurable function such that for any 𝑠 ≥ 0, 𝑋𝑡+𝑠 = 𝑋𝑠 ◦ 𝜃𝑡.
The family (𝜃𝑡)𝑡≥0 is called family of shift operators of the Markov process;

(v) for any 𝑓 ∈ B𝑏(X𝜗), 𝑠, 𝑡 ≥ 0 and 𝑥 ∈ X𝜗, it holds that

𝔼𝑥 [ 𝑓 (𝑋𝑡+𝑠) |F𝑡] = 𝔼𝑋𝑡 [ 𝑓 (𝑋𝑠)], ℙ𝑥-a.s.; (Markov property)

(vi) 𝜗 is an absorbing state called cemetery state, i.e., 𝑋𝑡 = 𝜗 implies 𝑋𝑠 = 𝜗 for any 𝑠 ≥ 𝑡 ≥ 0.
The lifetime of the Markov process is defined by 𝜁 B inf{𝑡 ≥ 0 : 𝑋𝑡 = 𝜗} and 𝑿 is called
non-explosive if for any 𝑥 ∈ X, ℙ𝑥 (𝜁 = ∞) = 1.

7



8 Chapter 2. Stability of Markov processes

If there is no room for confusion we will usually abbreviate a Markov process by 𝑿 B (𝑋𝑡)𝑡≥0
or (𝑿, (ℙ𝑥)𝑥∈X𝜗

). Let us also set 𝑋∞ B 𝜗. With standard measure theoretic arguments it can be
shown that the Markov property is equivalent to the apparently stronger condition that for any
𝜎(𝑋𝑠, 𝑠 ≥ 0)-measurable random variable 𝑍 and 𝑡 ≥ 0, we have

𝔼𝑥 [𝑍 ◦ 𝜃𝑡 |F𝑡] = 𝔼𝑋𝑡 [𝑍], ℙ𝑥-a.s.,

and if we let ℙ𝜇 (·) =
∫
X𝜗

ℙ𝑥 (·) 𝜇(d𝑥) be the probability measure induced by some probability
measure 𝜇 on (X𝜗,B(X𝜗)) we also have

𝔼𝜇 [𝑍 ◦ 𝜃𝑡 |F𝑡] = 𝔼𝑋𝑡 [𝑍], ℙ𝜇-a.s.,

and 𝑋0 ∼ 𝜇 underℙ𝜇, i.e., 𝑿 is started with initial distribution 𝜇. We let (𝑃𝑡)𝑡≥0 be the sub-Markov
transition semigroup (or transition function) of 𝑿 defined on B𝑏(X𝜗) ∪ B+(X𝜗) via

𝑃𝑡 𝑓 (𝑥) = 𝔼𝑥 [ 𝑓 (𝑋𝑡); 𝑡 < 𝜁], 𝑡 ≥ 0, 𝑥 ∈ X𝜗, 𝑓 ∈ B𝑏(X𝜗) ∪ B+(X𝜗),

where the semigroup property 𝑃𝑡+𝑠 = 𝑃𝑡 ◦ 𝑃𝑠 is a consequence of the Markov property. Note that
by our convention to set 𝑓 (𝜗) = 0 for 𝑓 ∈ B𝑏(X) ∪B+(X), for such 𝑓 we have 𝑃𝑡 𝑓 (𝑥) = 𝔼𝑥 [ 𝑓 (𝑋𝑡)]
since 𝜗 is absorbing. For a measure 𝜇 on (X𝜗,B(X𝜗)) we write 𝜇𝑃𝑡 =

∫
X𝜗
𝑃𝑡 (𝑥, ·) 𝜇(d𝑥), where

𝑃𝑡 (𝑥, 𝐵) = 𝑃𝑡𝟙𝐵 (𝑥), (𝑥, 𝐵) ∈ X𝜗 × B(X𝜗), is a kernel by definition of a Markov process. If for a
measure 𝜂 on (X𝜗,B(X𝜗)) and 𝑓 ∈ 𝐿1(X𝜗, 𝜂) ∪ B+(X𝜗) we write 𝜂( 𝑓 ) =

∫
X𝜗

𝑓 (𝑥) 𝜂(d𝑥), then
clearly, for any 𝑓 ∈ B𝑏(X𝜗) ∪ B+(X𝜗)

𝜇𝑃𝑡 ( 𝑓 ) = 𝜇(𝑃𝑡 𝑓 ), 𝑡 ≥ 0,

which also equals 𝔼𝜇 [ 𝑓 (𝑋𝑡)] provided that 𝑓 (𝜗) = 0 and that 𝜇 is a probability measure. Finally,
let us introduce the resolvent (𝑈𝜆)𝜆>0 of a Markov process 𝑿, which is a family of operators on
B𝑏(X𝜗) ∪ B+(X𝜗) defined by

𝑈𝜆 𝑓 (𝑥) = 𝔼𝑥
[ ∫ ∞

0
e−𝜆𝑡 𝑓 (𝑋𝑡) d𝑡

]
=

∫ ∞

0
e−𝜆𝑡𝔼𝑥 [ 𝑓 (𝑋𝑡)] d𝑡, 𝜆 > 0, 𝑥 ∈ X𝜗, 𝑓 ∈ B𝑏(X𝜗) ∪ B+(X𝜗),

which for 𝑥 ∈ X and 𝑓 ∈ B𝑏(X) ∪ B+(X) can be rewritten as

𝑈𝜆 𝑓 (𝑥) =
∫ ∞

0
e−𝜆𝑡𝑃𝑡 𝑓 (𝑥) d𝑡.

Similarly, to the transition function of a Markov process, if 𝜇 is a measure on (X𝜗,B(X𝜗)), let us
define the measure 𝜇𝑈𝜆 B

∫
X
𝑈𝜆 (𝑥, ·) 𝜇(d𝑥), where 𝑈𝜆 (𝑥, 𝐵) = 𝑈𝜆𝟙𝐵 (𝑥) for (𝑥, 𝐵) ∈ X𝜗×B(X𝜗).

The 𝜆-resolvent 𝑈𝜆 can be interpreted as the operator induced by the potential of the Markov
process 𝑿 killed at an independent exponential time with rate 1/𝜆, where for 𝑥 ∈ X𝜗, the
potential 𝑈 (𝑥, ·) defined by

𝑈 (𝑥, 𝐵) B 𝔼𝑥
[ ∫ ∞

0
𝟙{𝑋𝑡 ∈𝐵} d𝑡

]
=

∫ ∞

0
ℙ𝑥 (𝑋𝑡 ∈ 𝐵) d𝑡, 𝐵 ∈ B(X𝜗),

is the expected sojourn time of 𝑿 in 𝐵 when started in 𝑥.
Building on this basic terminology let us now come to more specific classes of Markov

processes with useful properties. Arguably the most important property that we shall need is the
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strong Markov property. We say that a Markov process (𝑿, (ℙ𝑥)𝑥∈X𝜗
) with underlying filtration

𝔽 is strong Markov, if for any 𝔽-stopping time 𝑇 and 𝑓 ∈ B𝑏(X𝜗) we have

∀𝑥 ∈ X𝜗 : 𝔼𝑥 [ 𝑓 (𝑋𝑇+𝑡) |F𝑇 ]𝟙{𝑇<∞} = 𝔼𝑋𝑇 [ 𝑓 (𝑋𝑡)]𝟙{𝑇<∞}, ℙ𝑥-a.s.,

which is equivalent to

∀𝑥 ∈ X : 𝔼𝑥 [ 𝑓 (𝑋𝑇+𝑡) |F𝑇 ] = 𝔼𝑋𝑇 [ 𝑓 (𝑋𝑡)], ℙ𝑥-a.s.,

by our conventions 𝑋∞ = 𝜗 and the property that 𝜗 is absorbing. Furthermore, we say that 𝑿 is
quasi-left-continuous on [0, 𝜁), if for a sequence of 𝔽-stopping times (𝑇𝑛)𝑛∈ℕ increasing almost
surely1 to an 𝔽-stopping time 𝑇 , then it holds that

lim
𝑛→∞

𝑋𝑇𝑛𝟙{𝑇<𝜁} = 𝑋𝑇𝟙{𝑇<𝜁}, ℙ∗-a.s..

If the above convergence holds on {𝑇 < ∞} instead of {𝑇 < 𝜁}, we say that 𝑿 is quasi-left-
continuous. A filtration 𝔽 is said to be right-continuous if for any 𝑡 ≥ 0

F𝑡 = F𝑡+ B
⋂
𝜀>0

F𝑡+𝜀.

A set 𝑁 ⊂ Ω is called ℙ∗-negligible for the family of probability measures (ℙ𝑥)𝑥∈X𝜗
on the

measurable space (Ω,F) if there exists some measurable set Λ ∈ F with ℙ𝑥 (Λ) = 0 for all 𝑥 ∈ X𝜗

such that 𝑁 ⊂ Λ. The family of filtered probability spaces (Ω,F, (F𝑡)𝑡≥0,ℙ𝑥)𝑥∈X𝜗
underlying

a Markov process—often referred to as the stochastic base—is said to be complete if any ℙ∗-
negligible set is contained in F0. Assuming completeness of the stochastic base is without loss of
generality for a given Markov process 𝑿, since by enlarging the natural stochastic base associated
to the natural 𝜎-algebra 𝔽0 = (F0

𝑡 )𝑡≥0 by a procedure called augmentation in order to obtain a
complete stochastic base, 𝑿 remains (strong) Markov with respect to the augmented stochastic
base. See [31, Section I.5] and [52, Section 2.3] for details. If the underlying filtration 𝔽 is
right continuous and the stochastic base associated to 𝔽 is complete, we say that 𝑿 satisfies
the usual hypotheses. With this at hand, we can now define the following classes of Markov
processes, which are central to [31].

Definition 2.2. A Markov process 𝑿 satisfying the usual hypotheses is called standard process if

(i) X is a locally compact Hausdorff space with countable base (LCCB);

(ii) the paths 𝑡 ↦→ 𝑋𝑡 are right continuous on [0,∞) and have left limits on [0, 𝜁) almost surely.

(iii) 𝑿 is strong Markov;

(iv) 𝑿 is quasi-left-continuous.

If 𝑿 is even quasi-left-continuous on [0,∞), then we call 𝑿 a Hunt process.
1We say that a property 𝑄 holds almost surely (or ℙ∗-a.s.) for 𝑿 if {𝑿 satisfies 𝑄} ∈ F and there exists a set

𝑁 ∈ F such that ℙ𝑥 (𝑁) = 0 for all 𝑥 ∈ X𝜗 and 𝑁c ⊂ {𝑿 satisfies 𝑄}.
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Note that quasi-left-continuity on [0,∞) implies existence of left limits of 𝑡 ↦→ 𝑋𝑡 on [0,∞)
almost surely. Thus, a Hunt process has càdlàg paths almost surely. We will refer to Markov
processes with almost surely càdlàg paths as càdlàg Markov processes. From here on, we will
always assume that X is LCCB and hence in particular Polish, i.e. separable and complete
metrizable. Standard processes have all the convenient properties that we frequently need when
working with Markov processes. However, given a particular Markov model it is not immediately
clear how to verify the strong Markov property and quasi-left-continuity. Let us therefore
introduce the following convenient class of Markov process. By C0(X) we denote the space of
ℝ-valued continuous functions on X vanishing at infinity, with the latter property meaning that
for any 𝜀 > 0 there exists a compact set 𝐾 ⊂ X such that for any 𝑥 ∈ 𝐾c it holds that | 𝑓 (𝑥) | < 𝜀.
If we endow C0(X) with the the sup-norm ‖·‖∞, then (C0(X), ‖·‖∞) is a Banach space since X is
Polish. By C𝑏(X) we denote the space of bounded, continuous ℝ-valued functions on X.

Definition 2.3. A càdlàg Markov process 𝑿 satisfying the usual hypotheses is called Feller
process if

(i) for any 𝑓 ∈ C0(X), lim𝑡↓0‖𝑃𝑡 𝑓 − 𝑓 ‖∞ = 0; (strong continuity)

(ii) for any 𝑡 ≥ 0, 𝑃𝑡C0(X) ⊂ C0(X). (Feller property)

If (ii) is satisfied for the transition semigroup of a Markov process 𝑿, we say that 𝑿 has the Feller
property and (𝑃𝑡)𝑡≥0 is a Feller semigroup. If the semigroup of 𝑿 fulfills

𝑃𝑡B𝑏(X) ⊂ C𝑏(X), ∀𝑡 ≥ 0, (2.1)

then 𝑿 is said to have the strong Feller property.

Remark 2.4. (a) Since (𝑃𝑡)𝑡≥0 is a semigroup, it is easily shown that (i) is equivalent to con-
tinuity of 𝑡 ↦→ 𝑃𝑡 𝑓 for any 𝑓 ∈ C0(X) as a mapping from ℝ+ to C0(X), cf. [79, Corollary
1.2].

(b) In presence of the Feller property (ii), strong continuity (i) is automatically satisfied
whenever we have pointwise convergence 𝑃𝑡 𝑓 (𝑥) → 𝑓 (𝑥) as 𝑡 ↓ 0 for all 𝑥 ∈ X, see e.g.
Kallenberg [100, Theorem 19.6].

(c) The notion of the strong Feller property is a bit misleading, since it does not necessarily
imply the Feller property. However, the strong Feller property implies the C𝑏-Feller property,
𝑃𝑡C𝑏(X) ⊂ C𝑏(X) for all 𝑡 ≥ 0 and one may define a C𝑏-Feller process as a càdlàg Markov
process, whose semigroup is (i) strongly continuous on the space C𝑏(X) equipped with the
topology of local uniform convergence and (ii) has the C𝑏-Feller property. Some authors
prefer this definition of a Feller process to the one above. For X = ℝ𝑛, it was shown in [149,
Theorem 3.2, Corollary 3.3] that if 𝑥 ↦→ ℙ𝑥 (𝜁 < ∞) is continuous, then the transition
semigroup (𝑃𝑡)𝑡≥0 of a Feller process is strongly continuous wrt. local uniform convergence
on C𝑏(ℝ𝑛) and has the C𝑏-Feller property. Thus, a Feller process onℝ𝑛 with infinite lifetime
is necessarily a C𝑏-Feller process, but the reverse implication is not true in general.

We emphasize that the requirement of càdlàg paths is not a restriction for Feller processes,
since any Markov process with Feller semigroup has a càdlàg version, see [141, Theorem III.2.7].
It is well-known, see e.g. [141, Theorem III.3.1] and [52, Theoerem 2.4] that a Feller process
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is strong Markov and quasi-left-continuous on [0,∞) with respect to its augmented natural
filtration 𝔽. Thus, any Feller process is a Hunt process.

The last general class of Markov processes that we shall encounter in this thesis is given in the
definition below, see [152, Definition I.8.1] for a reference. For a given measurable space (𝐸, E),
we denote by E∗ = ∩𝜇E

𝜇 the 𝜎-algebra of universally measurable sets, where the intersection
is taken over all finite measures on (𝐸, E) and E𝜇 is the 𝜇-completion of E, i.e., the collection
of sets 𝐵 ⊂ 𝐸 such that there exist sets 𝐵1, 𝐵2 ∈ E with the property that 𝐵1 ⊂ 𝐵 ⊂ 𝐵2 and
𝜇(𝐵2 \ 𝐵1) = 0.

Definition 2.5. (i) Let 𝛼 ≥ 0. A non-negative function 𝑓 ∈ B(X)∗ is called 𝛼-excessive for
the semigroup (𝑃𝑡)𝑡≥0 of a Markov process 𝑿 if

(a) e−𝛼𝑡𝑃𝑡 𝑓 ≤ 𝑓 for any 𝑡 ≥ 0;

(b) e−𝛼𝑡𝑃𝑡 𝑓 ↓ 𝑓 , pointwise as 𝑡 ↓ 0.

(ii) A Markov process 𝑿 satisfying the usual hypotheses is called Borel right process if 𝑿 has
right-continuous paths almost surely and if for any 𝛼-excessive function 𝑓 with 𝛼 > 0,
𝑡 ↦→ 𝑓 (𝑋𝑡) is almost surely right-continuous.

While the strong Markov property is satisfied for a Borel right process (cf. [152, Theorem
I.7.4]), there is no reason for a Borel right process to be quasi-left-continuous since we do not
even assume the existence of left limits. On the other hand, any standard process is Borel right,
which follows from [31, Theorem II.2.12]. Thus, Borel right processes can be considered as
generalizations of standard processes, with their definition being rich enough to have deep
probabilistic and potential theoretic consequences, often referred to as the general theory.

In this thesis, we shall not go down this rabbit hole but will only need the basic facts that
working with Borel right processes is the natural way if we do not want to restrict generality
or run into any measurability issues—in particular regarding measurability of hitting times
𝑇𝐴 = inf{𝑡 ≥ 0 : 𝑋𝑡 ∈ 𝐴} for Borel sets 𝐴 ∈ B(X𝜗)—one the one hand, and still have access to
the strong Markov property on the other hand. This is the reason, why the theory of stability
of continuous time Markov processes, which we introduce in the next section, is cast into the
framework of Borel right processes. Explicit examples that we will come across on our journey
will always (turn out to) be Feller processes and can thus be seamlessly integrated into the
general framework. To sum up the introduction of different classes of Markov processes, we
have the following set of inclusions:{

Feller processes
}
⊂

{
Hunt processes

}
⊂

{
standard processes

}
⊂

{
Borel right processes

}
.

2.1.2 Elements of stability theory for Markov processes
The ultimate goal of stability theory of Markov processes is the quantification of large time
asymptotics of the process. It is therefore natural to require the lifetime 𝜁 of a given Markov
process 𝑿 to be infinite almost surely. This of course raises the question why we even bothered
to introduce Markov processes with potentially finite lifetime in Section 2.1. Even though not
needed for stability analysis of Markov processes and associated statistical considerations, the
concept of killed Markov processes naturally appears in Chapter 4 as part of fluctuation theory of



12 Chapter 2. Stability of Markov processes

Markov additive processes. The reader may therefore rest assured that the generality of Section
2.1 will prove to be valuable after all.

Suppose therefore for the remainder of the section that 𝑿 is a non-explosive Borel right
Markov process on an LCCB space X. This is the probabilitstic setting underlying Meyn and
Tweedie’s stability theory for continuous time Markov processes from the 1990s [74, 127, 130,
131]. Among other important contributions, the theory extends classical recurrence concepts and
limit theorems from Markov process theory to explicit rates on the convergence to equilibrium,
which is central for nonparametric statistical techniques. As such, Meyn and Tweedie’s approach
does not only provide the continuous time extension to discrete time Markov chain stability
theory on uncountable state spaces which dates back at least to W. Doeblin in the 1930s (cf. the
collected works [69]) but is deeply rooted in this theory since many proofs work by tracing back
the statement to its discrete time analogue via an appropriate random sampling of the process.
For a comprehensive account of discrete time stability theory we refer to the classical textbook
treatments [128] and [134].

Let us now collect the most important concepts and results that are used throughout the
thesis. We say that a 𝜎-finite measure 𝜒 on (X,B(X)) is an invariant measure for 𝑿, if

∀𝐵 ∈ B(X) : ℙ𝜒(𝑋𝑡 ∈ 𝐵) B
∫
X

ℙ𝑥 (𝑋𝑡 ∈ 𝐵) 𝜒(d𝑥) = 𝜒(𝐵).

Note that an invariant measure is never unique, since any scaling of the measure is again
invariant. We therefore say that an invariant measure 𝜒 is essentially unique if it is unique up
to constant multiples. If 𝜒(X) = 1, we call 𝜒 an invariant distribution (which is unique under
Harris recurrence, which we define below).

A 𝜎-finite measure 𝜓 is called irreducibility measure of 𝑿, if for any Borel set 𝐵, 𝜓(𝐵) > 0
implies 𝑈 (𝑥, 𝐵) > 0 for any 𝑥 ∈ X.Whenever such a measure exists, we say that 𝑿 is 𝜓-irreducible
or simply irreducible when the specific measure does not matter. If 𝑿 is irreducible, there exists a
maximal irreducibility measure 𝜓 in the sense that for any irreducibility measure 𝜈 of 𝑿 it holds
that 𝜈 � 𝜓, see [164, Theorem 2.1]. We define B+(X) ≔ {𝐵 ∈ B(X) : 𝜓(𝐵) > 0} and call sets in
B+(X) accessible. Note that maximal irreducibility measures are clearly non-unique. Moreover, if
𝑿 is 𝜓-irreducible and admits an invariant measure 𝜒, then 𝜒 is a maximal irreducibility measure.
To see this, let 𝜓(𝐵) > 0, then

𝑡𝜒(𝐵) =
∫ 𝑡

0

( ∫
X

ℙ𝑥 (𝑋𝑠 ∈ 𝐵) 𝜒(d𝑥)
)
d𝑠 =

∫
X

( ∫ 𝑡

0
ℙ𝑥 (𝑋𝑠 ∈ 𝐵) d𝑠

)
𝜒(d𝑥)

and by monotone convergence the right hand side converges to 𝜒𝑈 (𝐵) B
∫
X
𝑈 (𝑥, 𝐵) 𝜒(d𝑥) > 0

since 𝑈 (𝑥, 𝐵) > 0 for all 𝑥 ∈ X by our choice of 𝐵. Hence, 𝜒(𝐵) > 0 and 𝜓 � 𝜒 follows. The next
important concept, Harris recurrence, is an even stronger property than irreducibility. We say
that 𝑿 is 𝜇-Harris recurrent if there exists a 𝜎-finite measure 𝜇 on the state space s.t.

∀𝐵 ∈ B(X) : 𝜇(𝐵) > 0 =⇒ ℙ𝑥
( ∫ ∞

0
𝟙𝐵 (𝑋𝑡) d𝑡 = ∞

)
= 1, ∀𝑥 ∈ X, (2.2)

i.e., if 𝜇(𝐵) > 0, the process almost surely spends infinitely much time in the set 𝐵. A powerful
implication of Harris recurrence is that an invariant measure of a Markov process having this
property (we call such processes positive Harris recurrent) is essentially unique, see [17, Théorème
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2.5]. Moreover, by the remark succeding this theorem in [17], an invariant measure 𝜒 of a Harris
recurrent process is a Harris measure. Thus, it is maximal Harris in the sense that it dominates
any other Harris measure, since any Harris measure is in particular an irreducibility measure
and 𝜒 is a maximal irreducibility measure, as discussed above. The defining condition for Harris
recurrence is often hard to check directly, however, Kaspi and Mandelbaum [101, Theorem 1]
provide us with a simpler equivalent criterion for Borel right Markov processes: suppose that
there exists a 𝜎-finite measure 𝜈 such that for any Borel set 𝐵 we have the implication

𝜈(𝐵) > 0 =⇒ ℙ𝑥 (𝑇𝐵 < ∞) = 1, ∀𝑥 ∈ X, (2.3)

where 𝑇𝐵 ≔ inf{𝑡 ≥ 0 : 𝑋𝑡 ∈ 𝐵} is the first hitting time of 𝐵. Then, 𝑿 is Harris recurrent and a
Harris recurrence measure 𝜇 is given by

𝜇(𝐵) = 𝔼𝜈
[ ∫ ∞

0
e−𝑡𝟙𝐵 (𝑋𝑡) d𝑡

]
= 𝜈𝑈1𝟙𝐵, 𝐵 ∈ B(X). (2.4)

Let us now recall the notion of petite and small sets, with the former concept being a generalization
of the latter. We say that a non-empty set 𝐶 ∈ B(X) is petite, if there exists a sampling distribution
𝑎 on ((0,∞),B(0,∞)) and a non-trivial measure 𝜈𝑎 on the state space such that for the sampled
kernel

𝐾𝑎(𝑥, d𝑦) ≔
∫ ∞

0+
𝑃𝑡 (𝑥, d𝑦) 𝑎(d𝑡), 𝑥, 𝑦 ∈ X,

it holds that
𝐾𝑎(𝑥, ·) ≥ 𝜈𝑎(·), 𝑥 ∈ 𝐶.

The sampled kernel corresponds to the transition kernel of the discrete-time Markov chain
obtained from 𝑿 by sampling at renewal times of an independent renewal process with increment
distribution 𝑎. An important special case is the 𝜆-resolvent kernel

𝑅𝜆 (𝑥, d𝑦) ≔
∫ ∞

0+
𝜆e−𝜆𝑡𝑃𝑡 (𝑥, d𝑦) d𝑡 = 𝜆𝑈𝜆 (𝑥, d𝑦), 𝑥, 𝑦 ∈ X,

obtained for the sampling distribution 𝑎 = Exp(𝜆), 𝜆 > 0. If 𝑎 = 𝛿Δ for some Δ > 0, then 𝐶 is
called a small set and we refer to the sampled chain 𝑿Δ ≔ (𝑋𝑛Δ)𝑛∈ℕ0 as the Δ-skeleton of 𝑿.
The importance of petite sets comes from the fact, that petite sets are small for the sampled
chain and small sets in discrete time Markov chain theory allow to construct a related Markov
chain possessing an atom via the technique of Nummelin splitting, which then makes reasoning
well-known for Markov chains on countable state spaces transferrable to the general state space
situation, see [128, Chapter 5]. We emphasize that petite sets are by no means rare. To illustrate
this point, let us introduce the class of 𝑇-processes.

Definition 2.6. 𝑿 is said to be a 𝑇-process, if there exists a non-trivial continuous component
𝑇 for the sampled kernel 𝐾𝑎 associated to some sampling distribution 𝑎, meaning that

(i) 𝑥 ↦→ 𝑇 (𝑥, 𝐵) is lower semicontinuous for all 𝐵 ∈ B(X);

(ii) 𝐾𝑎(𝑥, 𝐵) ≥ 𝑇 (𝑥, 𝐵) for all 𝑥 ∈ X and 𝐵 ∈ B(X).
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If 𝑿 is an irreducible 𝑇-process, then every compact subset of X is petite, see Theorem 5.1 in
[164]. We will discuss some examples of 𝑇-processes in Section 2.3.

Another central concept that we shall need is aperiodicity. We say that 𝑿 is aperiodic, if there
exists a petite set 𝐶 ∈ B+(X) (i.e., 𝐶 must be accessible) and some 𝑇 ≥ 0 s.t.

∀𝑡 ≥ 𝑇, 𝑥 ∈ 𝐶 : 𝑃𝑡 (𝑥, 𝐶) > 0.

Alternatively, 𝑿 is called aperiodic in [128] if there exists some Δ > 0 such that the Δ-skeleton
𝑿Δ is irreducible, i.e. there exists a 𝜎-finite measure 𝜇 on (X,B(X)) such that

𝜇(𝐵) > 0 =⇒ ∀𝑥 ∈ X :
∞∑︁
𝑛=1

ℙ𝑥 (𝑋𝑛Δ ∈ 𝐵) > 0.

We demonstrate in Lemma 2.9 that irreducibility of a skeleton chain implies aperidocity of the
process.

We are now well-suited to discuss ergodicity of a Markov process. Let ‖·‖TV denote the total
variation norm on the space of signed finite measures M𝑠

𝑏
(X,B(X)) on (X,B(X)), defined by

‖𝜈‖TV ≔ sup
|𝑔 | ≤1

|𝜈(𝑔) |, 𝜈 ∈ M𝑠
𝑏(X,B(X)).

We say that 𝑿 having a stationary distribution 𝜇 is ergodic if

∀𝑥 ∈ X : lim
𝑡→∞

‖ℙ𝑥 (𝑋𝑡 ∈ ·) − 𝜇‖TV = 0.

Clearly, ergodicity implies weak convergence of the marginal distributions of 𝑿 to its invariant
distribution. If 𝑿 is positive Harris recurrent, Theorem 6.1 in Meyn and Tweedie [130] provides
us with a necessary and sufficient criterion for ergodicity in terms of skeletons of the process:

X is ergodic ⇐⇒ ∃Δ > 0 s.t. 𝑿Δ is irreducible. (2.5)

Once we know that 𝑿 is ergodic, a natural question is the rate of convergence of the marginals to
the invariant distribution. To this end, [74] investigate convergence in the so called 𝑓 -norm. For
a strictly positive, measurable function 𝑓 ∈ B(X) satisfying 𝑓 ≥ 1, the 𝑓 -norm on M𝑠

𝑏
(X,B(X))

is given by
‖𝜈‖ 𝑓 ≔ sup

|𝑔 | ≤ 𝑓
|𝜈(𝑔) |, 𝜈 ∈ M𝑠

𝑏(X,B(X)),

where the supremum is taken over all measurable functions 𝑔 bounded in absolute value by 𝑓 .
Note that for 𝑓 ≡ 1, the 𝑓 -norm reduces to the total variation norm. We say that the Markov
process 𝑿 with stationary distribution 𝜇 is 𝑉-uniformly ergodic for some measurable function
𝑉 ≥ 1 if there exist constants 𝐷, 𝜅 > 0 such that

‖𝑃𝑡 (𝑥, ·) − 𝜇‖𝑉 ≤ 𝐷𝑉 (𝑥)e−𝜅𝑡, 𝑥 ∈ X, 𝑡 ≥ 0, (2.6)

which in particular implies that the marginal distributions of 𝑿 converge to the stationary
distribution at an exponential rate in total variation. For the latter, we also refer to the process
as being exponentially or geometrically ergodic. Note that the notion 𝑉-uniform convergence is
motivated by the fact that (2.6) implies

|||𝑃𝑡 − 𝟙 ⊗ 𝜇 |||𝑉 ≤ 𝐷e−𝜅𝑡, 𝑡 ≥ 0,
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where for two Markov kernels 𝑃, 𝑄 their 𝑉-norm distance is defined by

|||𝑃 − 𝑄 |||𝑉 B sup
𝑥∈X

‖𝑃(𝑥, ·) − 𝑄(𝑥, ·)‖𝑉
𝑉 (𝑥) ,

and 𝟙 ⊗ 𝜇 is the Markov kernel defined by

𝟙 ⊗ 𝜇(𝑥, 𝐵) = 𝜇(𝐵), (𝑥, 𝐵) ∈ X × B(X),

see also [128, Chapter 16].
[74] give conditions in terms of drift criteria for the generator, semigroup and resolvent

kernel for 𝑉-uniform ergodicity. For our treatment of overshoots in Chapter 4, we will choose
the resolvent drift criterion for determining the convergence speed of overshoots. More precisely,
if 𝑿 is irreducible and aperiodic and for some 𝜆 > 0 there exist constants 𝑏 ∈ ℝ+, 𝛽 ∈ (0, 1), a
petite set 𝐶 and a measurable function 𝑉𝜆 ≥ 1 such that

𝑅𝜆𝑉𝜆 ≤ 𝛽𝑉𝜆 (𝑥) + 𝑏𝟙𝐶 , (2.7)

Theorem 5.2 in [74] tells us that 𝑿 is 𝑅𝜆𝑉𝜆-uniformly ergodic. If 𝑉𝜆 is unbounded off petite sets,
that is {𝑥 ∈ X : 𝑉𝜆 (𝑥) ≤ 𝑧} is petite for any 𝑧 > 0, (2.7) is equivalent to demanding that there
exists 𝛽0 ∈ (0, 1) such that

𝑅𝜆𝑉𝜆 ≤ 𝛽0𝑉𝜆 (𝑥) + 𝑏. (2.8)

To see this, for 𝛼 > 1 define the petite set 𝐶(𝛼) ≔ {𝑥 ∈ X : 𝑉𝜆 (𝑥) ≤ 𝛼𝑏/(1 − 𝛽0)}, then

𝛽0𝑉𝜆 + 𝑏 ≤ 𝛽0𝑉𝜆 + 𝑏𝟙𝐶 +
1
𝛼
(1 − 𝛽0)𝑉𝜆𝟙𝐶c

≤ 1
𝛼
(1 + (𝛼 − 1)𝛽0)𝑉𝜆 + 𝑏𝟙𝐶 ,

(2.9)

showing that for any choice of 𝛼 > 1, (2.8) implies (2.7) with 𝐶 = 𝐶(𝛼) and 𝛽 = (1+ (𝛼−1)𝛽0)/
𝛼 ∈ (0, 1). The converse relation is obvious.

General drift criteria for the speed of convergence to the invariant distribution were extended
in [72] to the case of subgeometric rates. The combined conclusions of Theorem 3.2 and Theorem
4.9 in [72] read that if 𝑿 is ergodic and for some 𝜆 > 0 there exists

» a closed, petite set 𝐶 and a constant 𝑏 < ∞,

» a function 𝑉𝜆 : X → [1,∞),

» an increasing, differentiable and concave function 𝜙 : [1,∞) → (0,∞),

such that
𝑅𝜆𝑉𝜆 ≤ 𝑉𝜆 − 𝜙 ◦ 𝑉𝜆 + 𝑏𝟙𝐶 , (2.10)

then, provided 𝑅𝜆𝑉𝜆 is continuous, there exists some constant 𝑐 > 0 such that

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV ≤ 𝑐𝑅𝜆𝑉𝜆 (𝑥)Ξ(𝑡), 𝑡 ≥ 0, 𝑥 ∈ X, (2.11)

where Ξ(𝑡) = 1/(𝜙 ◦ 𝐻−1
𝜙
) (𝑡) for 𝐻𝜙(𝑡) =

∫ 𝑡
1(1/𝜙(𝑠)) d𝑠. Note that (2.7) can be recovered for

linear 𝜙, in which case Ξ(𝑡) = e−𝜅𝑡 for some 𝜅 > 0, and hence exponential ergodicity can be
regarded as a special case of this general result.
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Alternatively to the resolvent criterion, it is much more common in the literature to construct
a Lyapunov type function for the extended generator A of 𝑿 [61]. We say that a measurable
function 𝑓 belongs to the domainD(A) of the extended generator of 𝑿 if there exists a measurable
function 𝑔 such that the process

𝑓 (𝑋𝑡) − 𝑓 (𝑋0) −
∫ 𝑡

0
𝑔(𝑋𝑠) d𝑠, 𝑡 ≥ 0,

is a ℙ𝑥-local martingale for any 𝑥 ∈ X, in which case we write A 𝑓 B 𝑔. The notion of the
extended generator comes from the fact that it is a natural generalization of the concept of the
infinitesimal generator of a Markov process. For simplicity, suppose for the moment that 𝑿 is a
Feller process. The inifinitesimal generator Ã : C0(X) → C0(X) is the operator with domain

D(Ã) B
{
𝑓 ∈ C0(X) : lim

𝑡↓0
(𝑃𝑡 𝑓 − 𝑓 )/𝑡 exists in (C0(X), ‖·‖∞)

}
,

defined as
Ã 𝑓 = lim

𝑡↓0

𝑃𝑡 𝑓 − 𝑓

𝑡
, 𝑓 ∈ D(Ã),

where the limit is taken in the sense of the topology on C0(X) induced by the ‖·‖∞-norm.
Proposition 1.4 in Chapter 4 of [79] demonstrates that for any 𝑓 ∈ D(Ã) the process

𝑓 (𝑋𝑡) − 𝑓 (𝑋0) −
∫ 𝑡

0
Ã 𝑓 (𝑋𝑠) d𝑠, 𝑡 ≥ 0,

is a (true) ℙ𝑥-martingale and thus D(Ã) ⊂ D(A) and A 𝑓 = Ã 𝑓 for any 𝑓 ∈ D(Ã).
For the purposes of stability theory, the infinitesimal generator is too restrictive since it allows

only bounded functions as test functions. For the extended generator, we have the following
equivalent condition to (2.7) for 𝑉-uniform ergodicity of ergodic processes 𝑿: if there exists
some function 𝑉 ∈ D(A) such that 𝑉 ≥ 1, a petite set 𝐶 and constants 𝑐, 𝑏 > 0 such that

A𝑉 ≤ −𝑐𝑉 + 𝑏𝟙𝐶 , (2.12)

and sup𝑥∈𝐶 𝑉 (𝑥) < ∞, then 𝑿 is 𝑉-uniformly ergodic [74, Theorem 5.2]. As for the resolvent drift
criterion, if 𝑉 is unbounded off petite sets, (2.12) is equivalent to requiring that A𝑉 ≤ −�̃�𝑉 +𝑏 for
some constant �̃� > 0. This criterion will be very convenient in Chapters 3 and 5 where we deal
with exponential ergodicity of (Lévy driven) SDEs, for which Itō’s formula for semimartingales
provides nice expressions for the extended generator. For an extension of the generator drift
criterion to subexponential ergodicity, see [72, Theorem 3.4].

Studying exponential and subgeometric convergence is not only interesting in its own right,
but does have direct implications on the mixing behavior of the Markov process. For two
𝜎-algebras G and H and a given probability measure P, introduce the 𝛽-mixing coefficient

𝛽P(G,H) ≔ sup
𝐶∈G⊗H

��P|G⊗H (𝐶) − P|G ⊗ P|H (𝐶)
��, (2.13)

where P|G⊗H is the restriction to (Ω × Ω, G ⊗ H) of the image measure of P under the canonical
injection 𝜄(𝜔) = (𝜔, 𝜔). Noting that for 𝐴 × 𝐵 ∈ G ⊗ H, it holds that P|G⊗H (𝐴 × 𝐵) = P(𝐴 ∩ 𝐵),
it is clear that the 𝛽-mixing coefficient should be interpreted as a measure of independence of
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the 𝜎-algebras. For the Markov process 𝑿 with natural filtration 𝔽0 = (F0
𝑡 )𝑡≥0 and a given initial

distribution 𝜂 let us now define

𝛽(𝜂, 𝑡) = sup
𝑠≥0

𝛽ℙ𝜂 (F0
𝑠 ,F

0
𝑠+𝑡), 𝑡 > 0, (2.14)

where we denoted by F0
𝑡 = 𝜎(𝑋𝑠, 𝑠 ≥ 𝑡) the 𝜎-algebra of the future after time 𝑡. We then say that

𝑿 is 𝛽-mixing when started in 𝜂, if lim𝑡→∞ 𝛽(𝜂, 𝑡) = 0 Hence, if 𝑿 is 𝛽-mixing we can roughly
state that there is an asymptotic independence between the past and the future of the Markov
process. If there even exist constants 𝐶, 𝜅 > 0 such that 𝛽(𝜂, 𝑡) ≤ 𝐶e−𝜅𝑡, we call 𝑿 exponentially
𝛽-mixing.

[173, Lemma 1.4] gives

𝛽ℙ𝜂 (F0
𝑠 ,F

0
𝑡+𝑠) = 𝔼𝜂

[
sup
𝐵∈F0

𝑡+𝑠

|ℙ𝜂 (𝐵|F0
𝑠 ) − ℙ𝜂 (𝐵) |

]
.

Proposition 1 in [62] therefore demonstrates that

𝛽(𝜂, 𝑡) = sup
𝑠≥0

∫
X

‖ℙ𝑥 (𝑋𝑡 ∈ ·) − ℙ𝜂 (𝑋𝑡+𝑠 ∈ ·)‖TV ℙ𝜂 (𝑋𝑠 ∈ d𝑥), 𝑡 > 0,

which in case 𝜂 = 𝜇 is the stationary distribution, reduces to

𝛽(𝜇, 𝑡) =
∫
X

‖𝑃𝑡 (𝑥) − 𝜇‖TV 𝜇(d𝑥), 𝑡 > 0.

Masuda [123, Lemma 3.9] uses this characterization to establish that if we have (sub)geometric
decay as in (2.11) for 𝑿 and moreover

𝜚(𝜂) ≔ sup
𝑡≥0

𝑐𝔼𝜂 [𝑅𝜆𝑉𝜆 (𝑋𝑡)] < ∞, (2.15)

then 𝑿 started in 𝜂 is 𝛽-mixing at rate Ξ(𝑡) with

𝛽(𝜂, 𝑡) ≤ 2𝜚(𝜂)Ξ(𝑡), 𝑡 > 0.

2.2 Some technical results

We start with two technical contributions to stability theory of Markov processes, which will be
useful for our subsequent developments.

Identifying an invariant measure of a given Markov process is one of the fundamental
challenges from a theoretical perspective and rich in consequences for applications. Although
the definition of the invariant measure is given in terms of the transition function of the Markov
process, many explicit Markov models call for alternative characterizations of invariance in terms
of different charateristics of the process since the transition function may not be known or takes
an inconvenient analytic form. Prominent examples from the existing literature are conditions
on the infinitesimal generator Ã or the resolvent (𝑈𝜆)𝜆>0 of the process.

Suppose that 𝑿 is an unkilled Feller process with LCCB state space X such that an invariant
distribution 𝜇 exists. Then for any 𝑓 ∈ D(Ã) we have∫

X

Ã 𝑓 (𝑥) 𝜇(d𝑥) = lim
𝑡↓0

1
𝑡

∫
X

(𝑃𝑡 𝑓 (𝑥) − 𝑓 (𝑥)) 𝜇(d𝑥) = 0,
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where we used dominated convergence and the definition of the generator for the first equality
and invariance for the second equality. Thus, an invariant distribution 𝜇 necessarily satisfies

𝜇(Ã 𝑓 ) = 0, ∀ 𝑓 ∈ D(Ã). (2.16)

Conversely, by Kolmogorov’s backward equation d
d𝑡 𝑃𝑡 𝑓 = Ã𝑃𝑡 𝑓 for 𝑡 > 0 and 𝑓 ∈ D(Ã), it follows

that
𝑃𝑡 𝑓 (𝑥) = 𝑓 (𝑥) +

∫ 𝑡

0
Ã𝑃𝑠 𝑓 (𝑥) d𝑠, 𝑡 ≥ 0, 𝑥 ∈ X, 𝑓 ∈ D(Ã).

Consequently, an application of Fubini’s theorem yields that for some probability measure 𝜇

𝜇𝑃𝑡 ( 𝑓 ) = 𝜇( 𝑓 ) +
∫ 𝑡

0

∫
X

Ã𝑃𝑠 𝑓 (𝑥) 𝜇(d𝑥) d𝑠 = 𝜇( 𝑓 ) +
∫ 𝑡

0
𝜇(Ã𝑃𝑠 𝑓 ) d𝑠.

Hence, if 𝜇 satisfies (2.16) then 𝜇𝑃𝑡 ( 𝑓 ) = 𝜇( 𝑓 ) for all 𝑓 ∈ D(Ã) and 𝑡 ≥ 0. Since 𝑿 is Feller the
Hille–Yosida theorem tells us that Ã is closed and D(Ã) is dense in C0(X). This together with
𝜎(C0(X)) = B(X) since X is Polish, shows that

𝜇𝑃𝑡 ( 𝑓 ) = 𝜇( 𝑓 ), ∀ 𝑓 ∈ B𝑏(X), 𝑡 ≥ 0 ⇐⇒ 𝜇(Ã 𝑓 ) = 0, ∀ 𝑓 ∈ D(Ã). (2.17)

This is still not a convenient characterization since apart from very few special cases, the
domain D(Ã) is not fully known. However, it is sufficient to require (2.16) restricted to a core
D0 ⊂ D(Ã)—which can be determined for many explicit Markov models—to hold for invariance.
That is, (2.17) can be improved to

𝜇𝑃𝑡 ( 𝑓 ) = 𝜇( 𝑓 ), ∀ 𝑓 ∈ B𝑏(X), 𝑡 ≥ 0 ⇐⇒ 𝜇(Ã 𝑓 ) = 0, ∀ 𝑓 ∈ D0,

for a probability measure 𝜇, see e.g. [118, Theorem 3.37]. Among many other applications, this
statement is particularly convenient to derive the invariant distribution of the solution 𝑿 of a
scalar Itō-SDE of the form

d𝑋𝑡 = 𝑏(𝑋𝑡) d𝑡 + 𝜎(𝑋𝑡) d𝑊𝑡 .

Here, appropriate conditions on the drift coefficient 𝑏 and the diffusion coefficient 𝜎 are needed
to guarantee stationarity and the Feller property of 𝑿, in which case C2

0(ℝ) is known to be a
core of D(Ã) and we have

Ã 𝑓 (𝑥) = 𝑏(𝑥) 𝑓 ′(𝑥) + 1
2
𝜎2(𝑥) 𝑓 ′′(𝑥), 𝑥 ∈ ℝ, 𝑓 ∈ C2

0(ℝ).

We will revisit this case in full detail in Chapter 5, where the explicit form of the stationary
distribution will play a central role for our statistical approach to a data-driven solution of a
singular control problem for ergodic SDEs. For the overshoot process of a MAP considered in
Chapter 4, the infinitesimal generator has an exceptionally simple form away from the boundary,
however it is difficult to determine directly a convenient core of the generator since the essence
of the process is captured in its boundary behavior. Instead of working with the generator in
this case, we will therefore opt for the resolvent instead, which we determine explicitly.

In terms of the resolvent kernel 𝑈1 = 𝑅1 of 𝑿, we have the following classical equivalent
characterization of an invariant measure.
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Proposition 2.7. [17, Proposition 2.1] A measure 𝜇 on (X,B(X)) is invariant for 𝑿 if and only if
𝜇𝑈1 = 𝜇.

This result is still not easily applicable for our specific overshoot application. We therefore
prove the following related criterion in terms of the resolvent of 𝑿, which will be used in Chapter
4 to determine the essentially unique invariant overshoot measure.

Proposition 2.8. Suppose that H ⊂ B𝑏(X) ∩ B+(X) such that 𝑃𝑡H ⊂ H for any 𝑡 ≥ 0 and there
is a non-trivial measure 𝜒 on (X,B(X)) and a family (𝛼𝜆)𝜆>0 of finite measures on (X,B(X))
satisfying lim𝜆↓0 𝛼𝜆 (X) = 0 such that for any 𝑓 ∈ H

lim
𝜆↓0

𝛼𝜆𝑈𝜆 ( 𝑓 ) = 𝜒( 𝑓 ). (2.18)

Then, for any 𝑡 ≥ 0 and 𝑓 ∈ H,
𝜒𝑃𝑡 ( 𝑓 ) = 𝜒( 𝑓 ).

In particular, if H = B𝑏(X) ∩ B+(X) (i.e. 𝛼𝜆𝑈𝜆 converges strongly to 𝜒 as 𝜆 ↓ 0), then 𝜒 is an
invariant measure of 𝑿.
Proof. Let 𝑓 ∈ H such that (2.18) holds and 𝑡 ≥ 0. We have for any 𝜆 > 0 by the semigroup
property of (𝑃𝑡)𝑡≥0

𝛼𝜆𝑈𝜆 (𝑃𝑡 𝑓 ) =
∫
X

∫ ∞

0
e−𝜆𝑠𝑃𝑠𝑃𝑡 𝑓 (𝑥) d𝑠 𝛼𝜆 (d𝑥)

=

∫
X

∫ ∞

0
e−𝜆𝑠𝑃𝑠+𝑡 𝑓 (𝑥) d𝑠 𝛼𝜆 (d𝑥)

= e𝜆𝑡
∫
X

∫ ∞

𝑡

e−𝜆𝑠𝑃𝑠 𝑓 (𝑥) d𝑠 𝛼𝜆 (d𝑥)

= e𝜆𝑡
(
𝛼𝜆𝑈𝜆 ( 𝑓 ) −

∫
X

∫ 𝑡

0
e−𝜆𝑠𝑃𝑠 𝑓 (𝑥) d𝑠 𝛼𝜆 (d𝑥)

)
.

Since |
∫
X

∫ 𝑡
0 e

−𝜆𝑠𝑃𝑠 𝑓 (𝑥) d𝑠 𝛼𝜆 (d𝑥) | ≤ 𝑡‖ 𝑓 ‖∞𝛼𝜆 (X) it therefore follows by our assumption that
𝛼𝜆 (X) → 0 and

𝛼𝜆𝑈𝜆 ( 𝑓 ) → 𝜒( 𝑓 )
as 𝜆 ↓ 0 that

lim
𝜆↓0

𝛼𝜆𝑈𝜆 (𝑃𝑡 𝑓 ) = 𝜒( 𝑓 ).

On the other hand, our assumptions and 𝑃𝑡 𝑓 ∈ H yield that

lim
𝜆↓0

𝛼𝜆𝑈𝜆 (𝑃𝑡 𝑓 ) = 𝜒(𝑃𝑡 𝑓 )

and hence
𝜒𝑃𝑡 ( 𝑓 ) = 𝜒( 𝑓 )

follows. If H = B𝑏(X) ∩ B+(X), then for any 𝐵 ∈ B(X) the choice 𝑓 = 𝟙𝐵 shows that

ℙ𝜒(𝑋𝑡 ∈ 𝐵) = 𝜒(𝐵), ∀𝑡 ≥ 0,

i.e. 𝜒 is an invariant measure. �
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As a next step, let us give some clarifying remarks on the notion of aperiodicity of a continuous-
time Markov process that was introduced in Section 2.1. It seems to be well-known in the
literature that the existence of an irreducible skeleton chain for a Harris recurrent Markov
process implies aperiodicity, but there is no concrete statement to be found. Proposition 6.1
in [130], which [72] refers to, does not quite state that irreducibility of skeletons implies
aperiodicity, but indeed provides the right tool to prove it. For completeness we give the short
proof and make the additional simple observation that if the petite set 𝐶 in the definition of
aperiodicity is a singleton set, then aperiodicity also implies the existence of an irreducible
skeleton chain, which will be useful later on.

Lemma 2.9. Suppose that 𝑿 is positive Harris recurrent, Borel right and its state space is locally com-
pact and separable. Then, if there exists some irreducible skeleton chain, 𝑿 is aperiodic. Conversely,
if 𝑿 is aperiodic and the defining set 𝐶 is a singleton set, then any Δ-skeleton is irreducible.

Proof. Suppose first that there exists some irreducible Δ-skeleton. Then, the assumptions on the
process allow to use Proposition 6.1 from [129], which states that for any petite set 𝐶 there
exists some non-trivial measure 𝜇 and and a 𝑇 > 0 such that for all 𝑡 ≥ 𝑇 we have

ℙ𝑥 (𝑋𝑡 ∈ ·) ≥ 𝜇(·), ∀𝑡 ≥ 𝑇, 𝑥 ∈ 𝐶, (2.19)

which implies in particular that 𝐶 is even a small set. By the Markov property it thus follows for
𝑠 ≥ 0 that

ℙ𝑥 (𝑋𝑡+𝑠 ∈ ·) =
∫
X

ℙ𝑥 (𝑋𝑡 ∈ d𝑦) ℙ𝑦 (𝑋𝑠 ∈ ·) ≥
∫
X

𝜇(d𝑦) ℙ𝑦 (𝑋𝑠 ∈ ·) = ℙ𝜇 (𝑋𝑠 ∈ ·), ∀𝑡 ≥ 𝑇, 𝑥 ∈ 𝐶.
(2.20)

By Proposition 3.4 of Meyn and Tweedie [127] the state space X can be covered by countably
many petite sets (= small sets in our case), hence we may assume that 𝜓(𝐶) > 0, i.e. 𝐶 ∈
B+(X). Note that 𝑈 (𝑥, 𝐶) > 0 for all 𝑥 ∈ X and non-triviality of 𝜇 then yield that 𝜇𝑈 (𝐶) =∫
X
𝑈 (𝑥, 𝐶) 𝜇(d𝑥) > 0 and since with Fubini 𝜇𝑈 (𝐶) =

∫∞
0 ℙ𝜇 (𝑋𝑡 ∈ 𝐶) d𝑡 it follows that there exists

𝑠 > 0 such that ℙ𝜇 (𝑋𝑠 ∈ 𝐶) > 0. From (2.20) it thus follows that for such 𝑠 and all 𝑡 ≥ 𝑇 + 𝑠 and
𝑥 ∈ 𝐶 it holds that

ℙ𝑥 (𝑋𝑡 ∈ 𝐶) ≥ ℙ𝜇 (𝑋𝑠 ∈ 𝐶) > 0,

which proves aperiodicity of 𝑿.
Suppose now that 𝑿 is aperiodic with defining small singleton set 𝐶 = {𝑐} ∈ B+(X) for some

𝑐 ∈ X. Then, there exists 𝑇 > 0 such that

ℙ𝑐 (𝑋𝑡 = 𝑐) > 0, ∀𝑡 ≥ 𝑇,

and 𝛿𝑐 is an irreducibility measure. Then, for given 𝑥 ∈ X, there exist 𝑡𝑥 such that ℙ𝑥 (𝑋𝑡𝑥 = 𝑐) > 0
and the Markov property yields for any 𝑡 ≥ 𝑇

ℙ𝑥 (𝑋𝑡𝑥+𝑡 = 𝑐) ≥ ℙ𝑥 (𝑋𝑡𝑥+𝑡 = 𝑐, 𝑋𝑡𝑥 = 𝑐) = ℙ𝑥 (𝑋𝑡𝑥 = 𝑐)ℙ𝑐 (𝑋𝑡 = 𝑐) > 0.

Hence, for given Δ > 0, if we choose 𝑛 ∈ ℕ such that 𝑛Δ ≥ 𝑡𝑥 +𝑇 , it follows that ℙ𝑥 (𝑋𝑛Δ = 𝑐) > 0
and thus 𝑿Δ is 𝛿𝑐-irreducible. �
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2.3 A transition density criterion for exponential 𝛽-mixing

This section motivates the statistical setting of Section 3.1.1 in Chapter 3, where we are con-
sidering ℝ𝑑-valued Borel right Markov processes having a unique invariant distribution 𝜇 and
possessing transition densities, i.e.,

𝑃𝑡 (𝑥, d𝑦) = 𝑝𝑡 (𝑥, 𝑦) d𝑦, 𝑥, 𝑦 ∈ ℝ𝑑 , 𝑡 > 0,

for some B(ℝ𝑑)-measurable functions (𝑝𝑡)𝑡>0. Then, 𝜇(d𝑦) = 𝜌(𝑦) d𝑦 with some Lebesgue
density 𝜌 and we require that for any compact set S ⊂ ℝ𝑑 there exists some measurable function
𝑟S : (0,∞) → ℝ+ such that

∀𝑡 > 1 : sup
𝑥,𝑦∈S

|𝑝𝑡 (𝑥, 𝑦) − 𝜌(𝑦) | ≤ 𝑟S(𝑡) with
∫ ∞

1
𝑟S(𝑡) d𝑡 = 𝑐S < ∞. (2.21)

This condition together with a heat kernel bound on the short time behavior of the transition
densities will allow us to prove tight variance bounds on integral functionals of 𝑿, which appear
naturally in nonparametric statistical estimation for stochastic processes. This is particularly
noteworthy in dimension 𝑑 = 1. In this case our alternative assumption of exponential 𝛽-mixing
is without further assumptions not quite strong enough to obtain bounds that yield optimal
rates on, say, kernel invariant density estimators. The statistical setting based on the transition
density convergence (2.21) on the other hand can provide such bounds.

Our goal is now to show under which additional hypothesis on the process, (2.21) implies
the exponentially 𝛽-mixing property in order to make the connection to the 𝛽-mixing framework
underlying Section 3.1.2, where our main statistical tool for sup-norm estimation procedures is
developed.

As the following proposition shows, we need nomore than irreducibility as well as the property
that compact sets are small together with exponential decay in (2.21) to infer exponential 𝛽-
mixing of the stationary process.

Proposition 2.10. Suppose that 𝑿 is 𝜓-irreducible with stationary distribution 𝜇 and that every
compact set S ⊂ ℝ𝑑 is small. Moreover, let (2.21) be satisfied for

𝑟S(𝑡) B 𝐶Se−𝜅S𝑡, 𝑡 > 0, (2.22)

with constants 𝐶S, 𝜅S > 0. Then, 𝑿 started in 𝜇 is exponentially 𝛽-mixing.

Proof. Let S ⊂ ℝ𝑑 be compact such that 𝝀(S) > 0. Since ℝ𝑑 can be covered by countably many
compact sets and the irreducibility measure 𝜓 is 𝜎-finite, we can also assume that 𝜓(S) > 0
and 𝜇(S) > 0. Letting (𝑃𝑡)𝑡≥0 denote the semigroup associated to 𝑿, we obtain from (2.21) and
(2.22) that, for any 𝑥 ∈ S and 𝑡 > 0,

|𝑃𝑡 (𝑥, S) − 𝜇(S) | ≤
∫
S

|𝑝𝑡 (𝑥, 𝑦) − 𝜌(𝑦) | d𝑦 ≤ 𝐶Se−𝜅S𝑡𝝀(S) = 𝐶Se−𝜅S𝑡,

with 𝐶S = 𝐶S𝝀(S). Since 𝜇(S) > 0, this implies in particular that there exists 𝑇 (S) > 0 such
that 𝑃𝑡 (𝑥, S) > 0 for all 𝑡 ≥ 𝑇 (S) and 𝑥 ∈ S. Since S is small by assumption, it follows that 𝑿
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is aperiodic. Hence, by Theorem 5.3 in [74] and the remarks thereafter, there exists (a) an
extended real-valued measurable function 𝑉 ≥ 1 such that, for some 𝑇 > 0, we have

𝑃𝑇𝑉 (𝑥) ≤ 𝜆𝑉 (𝑥) + 𝑏1Θ (2.23)

for some 0 < 𝜆 < 1, 𝑏 ≥ 0 and a small set Θ ∈ B(ℝ𝑑) and (b) a set 𝑆𝑉 ⊂ {𝑉 < ∞}, which is full
and absorbing—that is, 𝜇(𝑆𝑉) = 1 and 𝑃𝑇 (𝑥, 𝑆𝑉) = 1 for any 𝑥 ∈ 𝑆𝑉—such that X restricted to
𝑆𝑉 is exponentially ergodic in the sense

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV ≤ 𝐶𝑉 (𝑥)e−𝜅𝑡, 𝑥 ∈ 𝑆𝑉 , (2.24)

for some constants 𝐶, 𝜅 > 0. Noting that (2.23) implies

Δ𝑉 ≤ −𝑉 + 𝑏

1 − 𝜆
1Θ

with 𝑉 = 𝑉/(1− 𝜆) ≥ 0 and Δ B 𝑃𝑇 − 𝕀, it follows from Theorem 14.0.1 in [128] that 𝜇(𝑉) < ∞.

The claim on exponential 𝛽-mixing of the process now follows from (2.24) since

𝛽(𝜇, 𝑡) =
∫
ℝ𝑑

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV 𝜇(d𝑥) =
∫
𝑆𝑉

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV 𝜇(d𝑥)

≤ 𝐶e−𝜅𝑡
∫
𝑆𝑉

𝑉 (𝑥) 𝜇(d𝑥)

= 𝐶e−𝜅𝑡,

for any 𝑡 > 0, where finiteness of 𝐶 = 𝐶𝜇(𝑉) was discussed above and for the first equality we
used that 𝑆𝑉 is full. �

Compactness of small sets can be inferred for a quite general class of Markov processes,
namely 𝑇-processes introduced in Section 2.1. Many processes in applied probability can be
shown to be 𝑇-processes such as price processes driven by Lévy risk and return processes [137],
certain piecewise deterministic Markov processes used for MCMC [29] or queuing networks [73].
Moreover, any open set irreducible weak C𝑏-Feller process is a 𝑇-process (cf. [164, Theorem 7.1]),
which is a convenient criterion whenever transition densities exist. Markov processes having the
strong Feller property are trivially 𝑇-processes, since any operator 𝑃𝑡 is a continuous component
for itself. The strength of Markov processes with the strong Feller property (or 𝑇-processes
as a generalization of these processes) comes from making possible to connect distributional
properties of the Markov process induced by the semigroup and topological properties of the
state space, thus allowing to use knowledge of the topology to infer strong stability results of
the Markov process. Classical examples of Markov processes with the strong Feller property are
Lévy processes with absolutely continuous semigroup with respect to the Lebesgue measure
[91, Theorem 2.2], diffusion processes with hypoelliptic Fisk–Stratonovich-type generator
[93, Lemma 5.1], diffusion processes on Hilbert spaces under appropriate assumptions on the
coefficients [139, Theorem 1.2], or solutions of different classes of parabolic SPDEs [55, 56, 78,
122]. More recently, the strong Feller property was discussed for switching (jump-)diffusions
[174, 176], for jump-diffusions with non-Lipschitz coefficients [175], or Markov semigroups
generated by singular SPDEs such as the KPZ equation in Hairer and Mattingly [90]. For an
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account discussing conditions for which (weak) C𝑏-Feller processes are even strong Feller, we
refer to Schilling and Wang [151].

Let us now infer the exponential 𝛽-mixing property for 𝑇-processes given exponential decay
in (2.21) and, as a natural mixing requirement, ergodicity of the process, i.e.,

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV −→
𝑡→∞

0, ∀𝑥 ∈ ℝ𝑑 .

Indeed, if 𝑿 is ergodic, then dominated convergence shows that 𝛽(𝑡) → 0 as 𝑡 → ∞, i.e.,
stationary, ergodic processes are 𝛽-mixing.

Proposition 2.11. Let 𝑿 be an ergodic 𝑇-process such that (2.21) is satisfied for 𝑟S given as in
(2.22). Then, 𝑿 is positive Harris recurrent, every compact set is small and 𝑿 is exponentially
𝛽-mixing.

Proof. For the exponential 𝛽-mixing property, it suffices to check that every compact set is
small by Proposition 2.10, since ergodicity clearly implies 𝜇-irreducibility of 𝑿. We prove this
property together with positive Harris recurrence at once. To this end, for a given 𝜀 > 0, choose
a compact set 𝐶 ⊂ ℝ𝑑 such that 𝜇(𝐶) ≥ 1 − 𝜀. Then, for fixed 𝑥 ∈ ℝ𝑑, ergodicity guarantees
that lim𝑡→∞ ℙ𝑥 (𝑋𝑡 ∈ 𝐶) ≥ 1 − 𝜀, and hence 𝑿 is bounded in probability on average as defined
on p. 495 of [130]. Since 𝑿 is an irreducible 𝑇-process, Theorem 3.2 and Theorem 4.1 of the
same paper yield Harris recurrence and petiteness of compact sets. It remains to show that
small and petite sets coincide for the given process. The reverse implication of Theorem 6.1 in
[130] guarantees that there exists an irreducible skeleton 𝑿Δ = (𝑋𝑛Δ)𝑛∈ℕ0 for some Δ > 0 thanks
to ergodicity and positive Harris recurrence of 𝑿. Proposition 6.1 in [130] therefore implies
equivalence of small and petite sets, which finishes the proof. �





Markovian statistics under mixing assumptions

3There exist various probabilistic concepts that permit the investigation of quantitative ergodic
properties of Markov processes, providing a number of approaches to analyzing the rate

of convergence of the process to equilibrium. Such results actually present precious tools for
an adequate statistical modeling of complex systems. Markov models, especially of (jump)
diffusion-type, find numerous applications in biology, chemistry, natural resource management,
computer vision, Bayesian inference in machine learning, cloud computing and many more [8,
36, 75, 76, 81, 88, 161, 165], and ergodicity can usually be seen as some kind of minimum
requirement for the development of a fruitful statistical theory. While the probabilistic picture
of quantitative ergodic properties is now quite clear, there are still open questions regarding
the statistical implications. With this chapter, we want to contribute to closing this gap, paying
particular attention to a general Markovian multidimensional setting.

In contrast to the highly-developed statistical theory for scalar diffusion processes, there are
relatively few references for nonparametric or high-dimensional general Markov models. To not
let sampling effects obscure the statistical implications, it is natural to base the statistical analysis
in this context on a continuous observation scheme (i.e., one assumes that a complete trajectory
of the process is available). A substantial point of reference for a thorough statistical analysis of
ergodic multivariate diffusion processes is provided by the article [59] where the fundamental
question of asymptotic statistical equivalence is investigated. Apart from its principal central
statement, the work also nicely demonstrates the implications of probabilistic properties of
processes on quantitative statistical results. Specifically, heat kernel bounds and the spectral gap
inequality are used to prove tight variance bounds for integral functionals which in turn provide
fast convergence rates for the specific problem of invariant density estimation. Similar techniques
can be used for the in-depth analysis of other statistical questions such as (adaptive) estimation
of the drift vector of an ergodic diffusion (cf. [160], [159]). The results in [59, 159, 160] are
developed for diffusion processes with drift of gradient-type and unit diffusion matrix. While in
this specific case the reversibility assumption is directly verified, the condition of symmetry of
the process presents a significant constraint, in particular for solutions of SDEs with jump noise.

More recently, a Bayesian approach to drift estimation of multivariate diffusion processes
is undertaken in [133] and [87]. Whilst [87] work in a reversible setting since their approach
relies on placing a Gaussian prior on the potential 𝐵 of the drift 𝑏 = ∇𝐵 instead of tackling the
drift directly, [133] approach drift estimation for non-reversible diffusions by employing PDE
techniques to a penalized likelihood estimator. This opens up an excitingly different viewpoint
on the statistical handling of multivariate diffusion processes and in case of [133] avoids the
need for reversibility, but both approaches restrict the setting to assumed periodicity of the drift
coefficient. While this assumption (similar to reversibility) can certainly be justified for specific
applications, the approach does not yet provide an answer to the question of how to conduct a
statistical analysis of multidimensional Markov processes without strong structural constraints
on the coefficients. From a different perspective, the current preprint [12] yields the remarkable
observation that quantitatively similar statistical results as in the reversible diffusion case can
also be proven for jump diffusions with Lévy-driven jump part, without the need to rely on a
reversible or periodic setting, by focusing on assumptions on the characteristics of the process

25
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which guarantee exponential ergodicity as the driving force of the statistical approach.
Another branch of the literature that does not consider specific structural assumptions on

the process is based on the so called Castellana–Leadbetter condition or variations thereof [34,
39, 113], which imposes finiteness of the integrated uniform distance between the density of
the bivariate law of (𝑋0, 𝑋𝑡) of a stationary Markov process 𝑿 with stationary density 𝜌 and the
product density 𝜌 ⊗ 𝜌. This assumption yields dimension independent parametric estimation
rates of the invariant density and is thus not suitable for our goal to extend the dimension
dependent minimax optimal estimation rates for continuous diffusion processes to more general
classes of multidimensional Markov processes, introduced below.

Throughout, we suppose that (𝑿, (ℙ𝑥)𝑥∈ℝ𝑑 ) is a non-explosive Borel right Markov process
with state space (ℝ𝑑 ,B(ℝ𝑑)) and semigroup (𝑃𝑡)𝑡≥0 defined by

𝑃𝑡 (𝑥, 𝐵) B ℙ𝑥 (𝑋𝑡 ∈ 𝐵), 𝑥 ∈ ℝ𝑑 , 𝐵 ∈ B(ℝ𝑑).

Under regularity assumptions on the coefficients, the exemplary class of (jump) diffusion
processes that we study in detail later on belongs to the class of Feller processes and hence falls
into our general probabilistic regime. Moreover, as discussed in Section 2.1, Borel right Markov
processes are the object of stability analysis of time-continuous Markov processes pioneered
by Meyn and Tweedie in the 1990s [74, 127, 130, 132], in which the long-time behavior is
quantitatively associated with Lyapunov drift criteria. This approach is central to our probabilistic
modeling. We therefore work, as a minimal requirement for stability, in an ergodic setting for 𝑿
throughout the chapter. That is, the following assumption is in place:

(𝒜0) The marginal laws of 𝑿 are absolutely continuous, i.e., for any 𝑡 > 0 and 𝑥 ∈ ℝ𝑑, there
exists a measurable function 𝑝𝑡 : ℝ𝑑 ×ℝ𝑑 → ℝ+ such that

𝑃𝑡 (𝑥, 𝐵) =
∫
𝐵

𝑝𝑡 (𝑥, 𝑦) d𝑦, 𝐵 ∈ B(ℝ𝑑),

and, moreover, 𝑿 admits a unique absolutely continuous invariant probability measure 𝜇,
i.e., there exists a density 𝜌 : ℝ𝑑 → ℝ+ such that d𝜇 = 𝜌d𝝀 and

ℙ𝜇 (𝑋𝑡 ∈ 𝐵) B
∫
ℝ𝑑

𝑃𝑡 (𝑥, 𝐵) 𝜇(d𝑥) =
∫
ℝ𝑑

∫
𝐵

𝑝𝑡 (𝑥, 𝑦)𝜌(𝑥) d𝑦 d𝑥 =

∫
𝐵

𝜌(𝑥) d𝑥 = 𝜇(𝐵)

for any Borel set 𝐵.

We abbreviate ℙ𝜇 = ℙ, 𝔼𝜇 = 𝔼 and denote 𝜇(𝑔) =
∫
𝑔 d𝜇 for 𝑔 ∈ 𝐿1(𝜇) or 𝑔 ≥ 0. Note that in

(𝒜0) existence of a density 𝜌 of the invariant distribution 𝜇 is not an additional requirement on
𝑿, but is guaranteed by the Radon–Nikodym theorem thanks to the definition of invariance and
the existence of densities for the transition operators.

Turning away from Lyapunov criteria for general ergodic Markov processes, the long-time
behavior of Markovian semigroups is also known to be linked to functional inequalities. The most
familiar setting is the 𝐿2 framework with its equivalence between the corresponding Poincaré
inequalities and exponential decay of the Markovian semigroup. The relation between both
approaches in terms of quantifying ergodic properties of Markov processes is studied in [18].

We want to understand the interaction between the probabilistic concepts and statistical
properties. In order to obtain a clear picture and benchmark results that are not distorted by
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discretization errors, we consider a statistical framework including the standing assumption that
a continuous observation of a trajectory 𝑿𝑇 = (𝑋𝑡)𝑡∈[0,𝑇 ] of 𝑿 is available. For the analysis of
statistical methods (e.g., for estimating the characteristics of 𝑿), variance bounds and deviation
inequalities are of central importance. Section 3.1 focuses on the analysis of the variance of
additive functionals of the form

∫ 𝑡
0 𝑓 (𝑋𝑠) d𝑠 for the ergodic process 𝑿. We introduce sets of

general assumptions on transition and invariant density which allow to prove tight variance
bounds (cf. Propositions 3.1 and 3.6). Here, we consider an on-diagonal heat kernel bound to
regulate the short-time transitional behavior of the process and either local uniform transition
density convergence to the invariant distribution at sufficient speed for any dimension 𝑑 ∈ ℕ or
exponential 𝛽-mixing in dimension 𝑑 ≥ 2 to obtain tight controls on the long-time transitions
of the process. The combination of heat kernel bound and local uniform transition density
convergence can be interpreted as a localized version of the Castellana–Leadbetter condition that
separates the short- and long time effects and considerably weakens the inherent assumptions on
the speed at which the law of 𝑋𝑡 approaches a singular distribution as 𝑡 ↓ 0 in higher dimensions.
We give a detailed analysis of this condition. We demonstrate how total variation convergence at
sufficient speed implies the local uniform transition density assumption and argue that in case of
𝜇-a.s. exponential ergodicity of the process, exponential 𝛽-mixing and local uniform transition
density convergence are essentially equivalent, giving a homogeneous picture of our different
sets of assumptions.

In Section 3.2 we proceed by showing how the 𝛽-mixing property of 𝑿—which is satisfied
for a wide range of Markov processes appearing in applied and theoretical probability theory—is
reflected in uniform moment bounds on empirical processes associated to integral functionals of
𝑿. More precisely, for countable classes G of bounded measurable functions 𝑔, we establish an
upper bound on (

𝔼
[
sup
𝑔∈G

���1
𝑇

∫ 𝑇

0
𝑔(𝑋𝑠) d𝑠 −

∫
𝑔 d𝜇

���𝑝] )1/𝑝, 𝑝 ≥ 1,

(cf. Theorem 3.7) stated in terms of entropy integrals related to G and the variance of the integral
functionals. This result holds for 𝛽-mixing Borel right processes on general state spaces without
any assumptions on the existence of transition densities, i.e., Assumption (𝒜0) is diminished to
stationarity which further increases the applicability of our findings for future investigations.
Such moment bounds and associated uniform deviation inequalities are generally the focal point
for efficient implementation of adaptive estimation procedures, both for the 𝐿2 and the sup-norm
risk. In our concrete estimation context, we use the uniform moment bounds together with the
variance bounds from Section 3.1 to establish oracle-type deviation inequalities for the sup-norm
risk of a kernel invariant density estimator that is essential for the adaptive estimation scheme
considered in Section 3.3 that we describe below. Our motivation to study sup-norm estimation
is not only rooted in the higher degree of intepretability of such statements compared to the
pointwise 𝐿2 risk and the general usefulness of mathematical results obtained along the way,
but also comes from the observation that certain problems from applied probability can only be
handled with statistical tools, when sup-norm estimation bounds of a quantitiy of interest are
available. This point is highlighted in Chapter 5, where the general framework presented in this
chapter is implemented for the development of data-driven stochastic optimal control strategies
for diffusions and Lévy processes.

Making the mixing behavior of the process a cornerstone of the statistical analysis is com-
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pletely natural when comparing to discrete time theory. For discrete observations it is well-
established by in the field of weak dependence that different sets of mixing assumptions (e.g.,
𝛼-mixing or 𝛽-mixing) and relaxations thereof can produce variance bounds and deviation in-
equalities that hold up to analogous results from i.i.d. observations to yield sharp nonparametric
estimation results, see [63, 142] for an overview. Statistically, it is therefore fundamentally inter-
esting whether analysing a continuous time mixing Markov process based on full observations
in our framework yields better estimation rates compared to partial observations corresponding
to a weakly dependent observation sequence.

Indeed, in presence of the additional analytic tool provided by the heat-kernel bound, we
establish in Section 3.3 that the stationary density of exponentially 𝛽-mixing Markov processes
can be estimated in any dimension at optimal rates both wrt. sup-norm risk and pointwise
𝐿2 risk—where optimality is understood relative to the benchmark minimax rates known for
continuous reversible diffusion processes that are faster than the nonparametric rate for well-
behaved discretely sampled data. We go even further by showing that in dimension 𝑑 ≥ 3—where
the optimal bandwidth choice depends on the typically unknown degree of Hölder smoothness
𝛽— a Lepski type adaptive bandwidth selection scheme proposed in [85] for i.i.d. data fitted
to our needs provides optimal estimation rates up to iterated log-factors (see also [115] for an
adaptive scheme for anisotropic sup-norm estimation for i.i.d. observations). More precisely, our
main result Theorem 3.11 shows that given a kernel estimator �̂�ℎ,𝑇 for the unknown invariant
density 𝜌 with bandwidth choice

ℎ ≡ ℎ(𝑇) ∼


log2 𝑇/

√
𝑇, 𝑑 = 1,

log𝑇/𝑇1/4, 𝑑 = 2,
(log𝑇/𝑇)1/(2𝛽+𝑑−2) , 𝑑 ≥ 3,

we have for any 𝑝 ≥ 1 and a bounded open domain 𝐷,

𝔼
[
sup
𝑥∈𝐷

���̂�ℎ,𝑇 (𝑥) − 𝜌(𝑥)
��𝑝]1/𝑝 ∈ 

O
(√︁

log𝑇/𝑇
)
, 𝑑 = 1,

O
(
log𝑇/

√
𝑇
)
, 𝑑 = 2,

O
(
(log𝑇/𝑇)

𝛽
2𝛽+𝑑−2

)
, 𝑑 ≥ 3.

If for 𝑑 ≥ 3 we replace the smoothness-dependent bandwidth choice ℎ(𝑇) by the adaptive
selector ℎ̂𝑇 ≡ ℎ̂

(𝑘)
𝑇 introduced in (3.34) and the order of the kernel is sufficiently large, then for

log(𝑘) 𝑇 denoting the 𝑘-th iterated logarithm,

𝔼
[
sup
𝑥∈𝐷

���̂�
ℎ̂𝑇 ,𝑇

(𝑥) − 𝜌(𝑥)
��] ∈ O

(( log(𝑘) 𝑇 log𝑇
𝑇

) 𝛽
2𝛽+𝑑−2

)
,

where 𝑘 ∈ ℕ can, in principle, be chosen arbitrarily large—which however decreases the size of
the set of candidate bandwidths for the adaptive selection procedure given a finite oberservation
horizon. We emphasize that the logarithmic gap could be avoided if constants appearing in
the uniform deviation inequality from Section 3.2 were explicitely calculated. This, however,
requires exact knowledge of the ergodic and short time behavior of the process, contradicting a
truly adaptive nature of the approach.

Such sup-norm adaptive multivariate estimation results are completely new and complement
adaptive 𝐿2 estimation procedures considered in [54] for discrete time mixing chains based
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on model selection and in [12] for Lévy driven jump-diffusions. We emphasize that [54] also
consider estimation of continuous time mixing processes in terms of their sampled skeletons.
However, our improved adaptive estimation rates in presence of heat kernel bounds demonstrate
that such approach can be considerably improved by not taking a Markov chain viewpoint
under partial observations but by exploiting continuous time probabilistic structures under full
observations.

As a concrete example, we investigate multidimensional SDEs with Lévy-driven jump part,
i.e., Markov processes associated to the solution of

d𝑋𝑡 = 𝑏(𝑋𝑡) d𝑡 + 𝜎(𝑋𝑡) d𝑊𝑡 + 𝛾(𝑋𝑡−) d𝑍𝑡, 𝑋0 = 𝑥 ∈ ℝ𝑑 , (3.1)

where𝑾 is 𝑑-dimensional Brownian motion and 𝒁 is a pure jump Lévy process independent of𝑾.
In Section 3.4.1, we investigate Lévy driven Ornstein–Uhlenbeck processes as the basic class of
Lévy driven jump diffusions with unbounded drift coefficient. In presence of non-trivial Gaussian
part and very mild moment assumptions on the Lévy measure, we infer optimal sup-norm and
pointwise 𝐿2 invariant density estimation results in any dimension. In this case, an adaptive
estimation procedure is not necessary, since the invariant density is a smooth function. In
Section 3.4.2 we allow for more flexible dispersion and jump coefficients 𝜎, 𝛾 with the price to
be paid being boundedness of the drift 𝑏. By considering solutions 𝑿 to (3.1) under appropriate
assumptions on the coefficients 𝑏, 𝜎, 𝛾 and the jump measure associated to 𝒁 we can apply our
general statistical results to invariant density estimation for 𝑿, thus establishing new results on
sup-norm adaptive invariant density estimation for such general jump processes.

In the sequel, we concentrate on guiding the reader through our framework and the accom-
panied mathematical results.

Basic notation. A set 𝐵 ∈ B(ℝ𝑑) is called 𝜇-full if 𝜇(𝐵) = 1. We say that the Borel right
Markov process 𝑿 is 𝜇-a.s. 𝑉-ergodic at speed Ξ if, for some 𝜇-full set Λ,

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV ≤ 𝐶𝑉 (𝑥)Ξ(𝑡), 𝑡 ≥ 0, 𝑥 ∈ Λ, (3.2)

where 𝑉 : ℝ𝑑 → [0,∞] with 𝑉𝟙𝜆 (𝑥) < ∞ and, for a signed measure 𝜈, ‖𝜈‖TV B sup | 𝑓 | ≤1 |𝜈( 𝑓 ) |
denotes its total variation norm. If (3.2) holds with Ξ(𝑡) = (1 + 𝑡)−𝛼 for some 𝛼 > 0, we say that
𝑿 is 𝜇-a.s. 𝑉-polynomially ergodic of degree 𝛼. If Ξ(𝑡) = e−𝜅𝑡 for some 𝜅 > 0, then 𝑿 is called
𝜇-a.s. exponentially ergodic. When Λ = ℝ𝑑 and 𝑉 (𝑥) < ∞ for any 𝑥 ∈ ℝ𝑑 , we just say that 𝑿 is
ergodic at speed Ξ (resp., polynomially ergodic and exponentially ergodic).

For any multi-index 𝛼 ∈ ℕ𝑑 and 𝑥 ∈ ℝ𝑑, set |𝛼| = ∑𝑑
𝑖=1 𝛼𝑖 and 𝑥𝛼 =

∏𝑑
𝑖=1 𝑥

𝛼𝑖
𝑖
. For T𝛽U

denoting the largest integer strictly smaller than 𝛽, introduce the Hölder class on an open
domain 𝐷 ⊂ ℝ𝑑

H𝐷 (𝛽, L) =
{
𝑓 ∈ CT𝛽U(𝐷,ℝ) : max

|𝛼 |=T𝛽U
sup

𝑥,𝑦∈𝐷,𝑥≠𝑦

| 𝑓 (𝛼) (𝑥) − 𝑓 (𝛼) (𝑦) |
|𝑥 − 𝑦 |𝛼−T𝛼U

≤ L, sup
𝑥∈𝐷

| 𝑓 (𝑥) | ≤ L
}
, (3.3)

where 𝑓 (𝛼) B 𝜕|𝛼| 𝑓

𝜕𝑥
𝛼1
1 ...𝜕𝑥

𝛼𝑑
𝑑

. Recall that a kernel function 𝐾 : ℝ𝑑 → ℝ is said to be of order � ∈ ℕ

if, for any 𝛼 ∈ ℕ𝑑 with |𝛼| ≤ �, 𝑥 ↦→ 𝑥𝛼𝐾 (𝑥) is integrable and, moreover,
∫
ℝ𝑑 𝐾 (𝑥) d𝑥 = 1,∫

ℝ𝑑 𝐾 (𝑥)𝑥𝛼 d𝑥 = 0, for 𝛼 ∈ ℕ𝑑 , |𝛼| ∈ {1, . . . , �}.
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3.1 Basic framework and variance analysis

This first section focuses on the analysis of the variance of integral functionals of the form∫ 𝑡
0 𝑓 (𝑋𝑠) d𝑠 for the ergodic process 𝑿 = (𝑋𝑠)0≤𝑠≤𝑡 under different sets of general assumptions on
𝑿 that will carry us through the rest of the chapter. Such variance bounds are indispensable
tools for statistical applications since (as we will see in Section 3.2) the variance of integral
functionals naturally appears in associated deviation inequalities and related moment bounds
and thus requires tight estimates.

3.1.1 Variance analysis under assumptions on transition and invariant density
Recall the definition of Assumption (𝒜0) from the introduction and let us say that a set 𝐵 ∈ B(ℝ𝑑)
is 𝜇-full if 𝜇(𝐵) = 1. We start by working under the following set of additional assumptions:

(𝒜1) In case 𝑑 = 1, there exists a non-negative, measurable function 𝛼 : (0, 1] → ℝ+ such that,
for any 𝑡 ∈ (0, 1],

sup
𝑥,𝑦∈ℝ

𝑝𝑡 (𝑥, 𝑦) ≤ 𝛼(𝑡) and
∫ 1

0+
𝛼(𝑡) d𝑡 = 𝑐1 < ∞,

and, in case 𝑑 ≥ 2, there exists 𝑐2 > 0 such that the following on-diagonal heat kernel
estimate holds true:

∀𝑡 ∈ (0, 1] : sup
𝑥,𝑦∈ℝ𝑑

𝑝𝑡 (𝑥, 𝑦) ≤ 𝑐2𝑡
−𝑑/2. (3.4)

(𝒜2) There exists a 𝜇-full set Λ such that for any compact set S ⊂ ℝ𝑑 , there exists a non-negative,
measurable function 𝑟S : (0,∞) → ℝ+ such that

∀𝑡 > 1 : sup
𝑥∈S∩Λ,𝑦∈S

|𝑝𝑡 (𝑥, 𝑦) − 𝜌(𝑦) | ≤ 𝑟S(𝑡) with
∫ ∞

1
𝑟S(𝑡) d𝑡 C 𝑐S < ∞. (3.5)

An essential aspect of the statistical analysis of stochastic processes is the influence of the di-
mension of the underlying process. It is known that certain phenomena (as compared, e.g.,
to estimation based on i.i.d. observations) occur in the one-dimensional case. However, these
phenomena can usually only be detected by means of specific techniques that take advantage of
the unique probabilistic characteristics of scalar processes such as local time for one-dimensional
diffusion processes. A “standardized” statistical framework which covers all dimensions with
similar conditions cannot capture these phenomena. Our assumptions may therefore be under-
stood as an attempt to find general conditions that make no reference to dimension or process
specific phenomena, yet yield variance bounds which are tight enough to allow proving optimal
convergence rates for nonparametric procedures.

In this regard, they should be compared to the Castellana–Leadbetter condition [39] requiring
that ∫

(0,∞)
sup
𝑥,𝑦∈ℝ𝑑

|𝜌(𝑥)𝑝𝑡 (𝑥, 𝑦) − 𝜌(𝑥)𝜌(𝑦) | d𝑡 < ∞, (3.6)

and which allows 𝐿2 estimation of the invariant density via a kernel estimator at parametric (or
superoptimal [33]) rate 1/𝑇 in any dimension 𝑑 ≥ 1. Since (𝒜1) implies that 𝜌 is bounded, (𝒜2)
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can be understood as a localized, unweighted alternative to (3.6) away from 0, which captures
the mixing behavior of the process as we discuss below. Our assumption (𝒜1) corresponds to
the integral part of (3.6) close to 0 and guarantees that the distribution of 𝑋𝑡 is not too close to
a singular distribution. However, in dimension 𝑑 ≥ 2 this assumption is much milder than (3.6)
since heat-kernel bounds on the transition density are quite common for many multdimensional
Markov processes such as strong solutions of (jump) SDEs. On the other hand, (3.6) is too strong
for such Markov processes, since, e.g., the minimax optimal 𝐿2 rate for multivariate diffusions
processes is known to be worse than 1/𝑇 and hence the variance bound implied by (3.6) cannot
be achieved.

Also note that the transition density bounds formulated in (𝒜1) are exceptionally weak
compared to related literature dealing with statistical estimation of jump processes. E.g., [12]
construct their assumptions on the coefficients and the jump measure of a 𝑑-dimensional Lévy-
driven jump diffusion to guarantee a heat kernel-type estimate of the form

𝑝𝑡 (𝑥, 𝑦) . 𝑡−𝑑/2e−𝜆
‖𝑦−𝑥‖2

𝑡 + 𝑡

|
√
𝑡 + ‖𝑦 − 𝑥‖|𝑑+𝛼

, 𝑥, 𝑦 ∈ ℝ𝑑 , 𝑡 ∈ (0, 𝑇],

for the estimation horizon 𝑇 > 0, where 𝛼 ∈ (0, 2) is the self-similarity index of a strictly 𝛼-stable
Lévy process whose Lévy measure is assumed to dominate the Lévy measure governing the jumps
of the SDE. Clearly, this condition is stronger than what we require and is fitted to the concrete
probabilistic setting. The reason for this specific choice becomes apparent from Corollary 3.16 in
Section 3.4.2, but our approach reveals that (𝒜1) is sufficient to obtain tight variance bounds in
a general multivariate setting. Let us now give the variance bounds implied in our framework.

Proposition 3.1. Suppose that (𝒜1) and (𝒜2) are satisfied, and let 𝑓 be a bounded function with
compact support S fulfilling 𝝀(S) < 1. Then, there exists a constant 𝐶 > 0, such that, for any 𝑇 > 0,

Var
(∫ 𝑇

0
𝑓 (𝑋𝑡) d𝑡

)
≤ 𝐶(1∨𝑐S)𝑇 ‖ 𝑓 ‖2∞𝝀(S)𝜇(S)𝜓2

𝑑 (𝝀(S)), with 𝜓𝑑 (𝑥) B


1, 𝑑 = 1,√︁
1 + log(1/𝑥), 𝑑 = 2,

𝑥
1
𝑑
− 1

2 , 𝑑 ≥ 3,
(3.7)

where the variance is taken with respect to ℙ.
Proof. Without loss of generality, let 𝑇 ≥ 1 be fixed. Then, using the Markov property and the
invariance of 𝜇, for any 𝛿 ∈ [0, 1],

Var
(∫ 𝑇

0
𝑓 (𝑋𝑠) d𝑠

)
= 𝔼

[(∫ 𝑇

0
( 𝑓 (𝑋𝑠) − 𝔼 𝑓 (𝑋0)) d𝑠

)2]
= 2𝔼

[∫ 𝑇

0

∫ 𝑢

0
( 𝑓 (𝑋0) − 𝔼 𝑓 (𝑋0)) ( 𝑓 (𝑋𝑢−𝑠) − 𝔼 𝑓 (𝑋0)) d𝑠 d𝑢

]
= 2

∫ 𝑇

0

∫ 𝑢

0

(
𝔼[ 𝑓 (𝑋0) 𝑓 (𝑋𝑢−𝑠)] − (𝔼 𝑓 (𝑋0))2

)
d𝑠 d𝑢

= 2
∫ 𝑇

0

∫ 𝑢

0

[∬
ℝ𝑑×𝑑

𝑓 (𝑥) 𝑓 (𝑦)𝑝𝑢−𝑠 (𝑥, 𝑦) d𝑦𝜇(d𝑥) −
∫
𝑓 (𝑥) 𝜇(d𝑥)

∫
𝑓 (𝑦)𝜌(𝑦) d𝑦

]
d𝑠 d𝑢

= 2
∫ 𝑇

0

∫ 𝑢

0

∫
Λ

∫
ℝ𝑑

𝑓 (𝑥) 𝑓 (𝑦) (𝑝𝑢−𝑠 (𝑥, 𝑦) − 𝜌(𝑦)) d𝑦 𝜇(d𝑥) d𝑠 d𝑢
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= 2(I(0, 𝛿) + I(𝛿, 1) + I(1, 𝑇)),

with (substituting 𝑣 = 𝑢 − 𝑠)

I(𝑎, 𝑏) B
∫ 𝑏

𝑎

(𝑇 − 𝑣)
∫
ℝ𝑑

∫
Λ
𝑓 (𝑥) 𝑓 (𝑦) (𝑝𝑣(𝑥, 𝑦) − 𝜌(𝑦)) 𝜇(d𝑥) d𝑦 d𝑣, 0 ≤ 𝑎 < 𝑏 ≤ 𝑇.

It follows from the assumption on the convergence of the transition density in (3.5) that

I(1, 𝑇) ≤
∫ 𝑇

1
(𝑇 − 𝑣) sup

𝑥∈S∩Λ,𝑦∈S
|𝑝𝑣(𝑥, 𝑦) − 𝜌(𝑦) | d𝑣

∬
ℝ𝑑×ℝ𝑑

𝑓 (𝑥) 𝑓 (𝑦) 𝜇(d𝑥) d𝑦

≤ 𝑇 ‖ 𝑓 ‖2∞𝝀(S)𝜇(S)
∫ 𝑇

1
𝑟S(𝑣) d𝑣 ≤ 𝑐S𝑇 ‖ 𝑓 ‖2∞𝝀(S)𝜇(S).

It remains to consider the first parts of the integral. We now restrict to dimension 𝑑 ≥ 3; the
remaining cases are handled with analogous arguments. Note first that

I(0, 𝛿) ≤ 𝑇 ‖ 𝑓 ‖2∞
∫ 𝛿

0

∬
S×ℝ𝑑

𝑝𝑣(𝑥, 𝑦) 𝜇(d𝑥) d𝑦 d𝑣 = 𝑇 ‖ 𝑓 ‖2∞𝜇(S)𝛿. (3.8)

On the other hand, the heat kernel bound (3.4) gives for any 𝑥, 𝑦 ∈ ℝ𝑑 ,∫ 1

𝛿

𝑝𝑣(𝑥, 𝑦) d𝑣 ≤ 𝑐2

∫ 1

𝛿

𝑣−𝑑/2 d𝑣 = 𝑐′2𝛿
1−𝑑/2,

where 𝑐′2 = 2/(𝑑 − 2)𝑐2. Letting 𝛿 = (𝝀(𝑆))2/𝑑 and exploiting that 𝝀(S) < 1, it follows

I(𝛿, 1) ≤ 𝑇 ‖ 𝑓 ‖2∞
∫ 1

𝛿

∬
S2
𝑝𝑣(𝑥, 𝑦) 𝜇(d𝑥) d𝑦 d𝑣 ≤ 𝑐′2𝑇 ‖ 𝑓 ‖2∞𝜇(S) (𝝀(S))

2
𝑑 .

�

Remark 3.2 (comparison to spectral gap approach). Let 𝑓 be a bounded function with compact
support S of Lebesgue measure 𝝀(S) < 1, and denote by 𝑓𝑐 B 𝑓 −

∫
𝑓 d𝜇 its centered version.

Assuming stationarity and symmetry of the process 𝑿, the proof of Proposition 1 in [59] starts
from the representation

Var
(∫ 𝑇

0
𝑓 (𝑋𝑠) d𝑠

)
= 2

∫ 𝑇

0
(𝑇 − 𝑢)𝔼[ 𝑓𝑐 (𝑋0) 𝑓𝑐 (𝑋𝑢)] d𝑢 ≤ 2𝑇

∫ 𝑇

0
〈 𝑓𝑐, 𝑃𝑢 𝑓𝑐〉 d𝑢.

Fix 𝐷 ∈ (0, 𝑇]. Heat kernel bounds of the form (3.4) yield an upper bound on the integral from
0 to 𝐷, in dimension 𝑑 = 1 specified as∫ 𝐷

0
〈 𝑓𝑐, 𝑃𝑢 𝑓𝑐〉 d𝑢 . 𝜇(S)𝝀(S)‖ 𝑓 ‖2∞

(
2𝐷 + 2

3 − 𝛼
𝐷

3−𝛼
2

)
. (3.9)

For controlling the remaining part of the integral, [59] use the spectral gap inequality,

∃𝜛 > 0 s.t.
𝑃𝑡 𝑓 − ∫

𝑓 d𝜇

𝐿2 (𝜇)

≤ e−𝑡𝜛‖ 𝑓 ‖𝐿2 (𝜇) . (3.10)
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Consequently, one obtains∫ 𝑇

𝐷

〈 𝑓𝑐, 𝑃𝑢 𝑓𝑐〉 𝑢 ≤
∫ 𝑇

𝐷

‖ 𝑓𝑐‖𝐿2 (𝜇) ‖𝑃𝑢 𝑓𝑐‖𝐿2 (𝜇) d𝑢 ≤ ‖ 𝑓 ‖2
𝐿2 (𝜇)

∫ 𝑇

𝐷

e−𝑢𝜛 d𝑢 ≤ 1
𝜛
e−𝜛𝐷𝜇(S)‖ 𝑓 ‖2∞.

(3.11)
In order to derive variance bounds of order 𝑇𝝀(S)𝜇(S), one needs to balance the upper bounds
(3.9) and (3.11) by choosing 𝐷 in a suitable way. Precisely, for 𝐷 B −𝜛−1 log(𝝀(S)) ∨ 1, (3.9)
and (3.11) then imply that

Var
(∫ 𝑇

0
𝑓 (𝑋𝑠) d𝑠

)
. 𝜇(S)𝝀(S)

(
log(𝝀(S)) + (log(𝝀(S))) 3−𝛼

2 + 1
)
‖ 𝑓 ‖2∞.

Note that the uniform control of the supremum in (3.5) immediately allows to derive bounds of
the required order. Consequently, it is not necessary to balance both error estimates carefully
and to introduce a bound of integration depending on the support. Such an approach, however,
is crucial for utilizing the exponential decay in (3.10).

To get an impression of the usefulness of the above result, let us discuss the relation of
the local uniform transition density convergence assumption (𝒜2) to more general and often
conveniently verifiable stability conditions on 𝑿. In [166], conditions on the characteristic
function 𝜑𝑥

𝑋𝑡
(𝜆) B 𝔼𝑥 [exp(i〈𝑋𝑡, 𝜆)] of 𝑋𝑡 and the Fourier transform {ℱ𝜇}(𝜆) =

∫
ℝ𝑑 ei〈𝑥,𝜆 〉 𝜇(d𝑥)

were formulated in the scalar setting 𝑑 = 1 that imply finiteness of the integral part away from 0
in the Castellana–Leadbetter condition (3.6). A straightforward adaption to our multivariate
localized setting yields the following result, with the proof being omitted.

Lemma 3.3. Suppose that 𝑿 is 𝑉-polynomially ergodic of degree 𝛾1 > 𝑞/(𝑞 − 1) for some locally
bounded function 𝑉 and 𝑞 > 1. If there exists 𝛾2 > 𝑞𝑑 and a locally bounded function 𝑉 such that

(𝒱1) |𝜑𝑥
𝑋𝑡
(𝜆) − {ℱ𝜇}(𝜆) | ≤ 𝑉 (𝑥) (1 + 𝑡)−𝛾1 , 𝑡 ≥ 1, 𝑥, 𝜆 ∈ ℝ𝑑 ,

(𝒱2) |𝜑𝑥
𝑋𝑡
(𝜆) | ∨ |{ℱ𝜇}(𝜆) | . (1 + ‖𝜆‖)−𝛾2 , 𝑥, 𝜆 ∈ ℝ𝑑 , 𝑡 ≥ 1,

then (𝒜2) is satisfied with Λ = ℝ𝑑 , 𝑟S(𝑡) ∼ sup𝑥∈S 𝑉 (𝑥) (1 + 𝑡)−𝛾1 for compacts S.

Note that (𝒱2) implies that the Fourier transforms of 𝑃𝑡 (𝑥, ·) and 𝜇 are integrable and hence
the Fourier inversion theorem guarantees that continuous bounded transition and invariant
densities exist. Moreover, as remarked in [166], (𝒱1) is fulfilled whenever 𝑿 is 𝑉-polynomially
ergodic with rate 𝛾1 > 1.

Condition (𝒱2) is quite natural in a statistical estimation context since it essentially encodes
a certain amount of smoothness of the transition and stationary density. However, the following
simple observation demonstrates that the additional growth conditions on the characteristic
function are not needed in presence of sufficiently fast total variation convergence.

Lemma 3.4. Suppose that ‖𝑝1‖∞ < ∞ and that 𝑿 is 𝜇-a.s. 𝑉-ergodic at speed Ξ such that 𝑉𝟙Λ is
locally bounded and

∫∞
0 Ξ(𝑡) < ∞. Then, (𝒜2) holds with

𝑟S(𝑡) = 2𝐶‖𝑝1‖∞ sup
𝑥∈S∩Λ

𝑉 (𝑥)Ξ(𝑡 − 1), 𝑡 > 1.
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Proof. By the semigroup property of (𝑃𝑡)𝑡≥0 and invariance of 𝜇 we have for any 𝑡 > 1 and
𝑦 ∈ ℝ𝑑 and 𝜇-a.e. 𝑥 ∈ ℝ𝑑 ,

|𝑝𝑡 (𝑥, 𝑦) − 𝜌(𝑦) | ≤
∫
ℝ𝑑

𝑝1(𝑧, 𝑦) |𝑝𝑡−1(𝑥, 𝑧) − 𝜌(𝑧) | d𝑧

≤ ‖𝑝1‖∞
∫
ℝ𝑑

|𝑝𝑡−1(𝑥, 𝑧) − 𝜌(𝑧) | d𝑧

= 2‖𝑝1‖∞‖𝑃𝑡−1(𝑥, ·) − 𝜇‖TV ≤ 2‖𝑝1‖∞𝐶𝑉 (𝑥)Ξ(𝑡 − 1),

where the equality follows from Scheffé’s theorem, see [163, Lemma 2.1]. Thus for any compact
set S and 𝑟S(𝑡) = 2𝐶‖𝑝1‖∞‖∞) sup𝑥∈S∩Λ 𝑉 (𝑥)Ξ(𝑡 − 1) it follows that∫ ∞

1
sup

𝑥∈S∩Λ,𝑦∈S
|𝑝𝑡 (𝑥, 𝑦) − 𝜌(𝑦) | d𝑡 ≤

∫ ∞

1
𝑟S(𝑡) d𝑡 . sup

𝑥∈S∩Λ
𝑉 (𝑥)

∫ ∞

0
Ξ(𝑡) < ∞,

by local boundedness of 𝑉𝟙Λ and the convergence assumption on Ξ, which yields (𝒜2). �

Concerning the specific set of assumptions (𝒜0)–(𝒜2), it is established with this result in
Section 3.4.1 that they are satisfied, e.g., for a large class of multivariate Lévy-driven Ornstein–
Uhlenbeck processess.

Recall that the stationary Markov process 𝑿 is said to be 𝛽-mixing if

𝛽(𝑡) B
∫
ℝ𝑑

‖𝑃𝑡 (𝑥, ·) − 𝜇(·)‖TV 𝜇(d𝑥) −→
𝑡→∞

0.

If there exist constants 𝜅, 𝑐𝜅 > 0 such that 𝛽(𝑡) ≤ 𝑐𝜅e−𝜅𝑡 for any 𝑡 > 0, then 𝑿 is said to be
exponentially 𝛽-mixing, which is always the case for 𝜇-a.s. 𝑉-exponentially ergodic Markov
processes provided 𝜇(𝑉) < ∞. Here, 𝜇(𝑉) < ∞ is not a restriction since 𝑉 and 𝜅 > 0 can always
be chosen such that 𝜇(𝑉) < ∞, which follows from a straightforward extension of [134, Theorem
6.14.(iii)] to the continuous time case. By the same theorem, the converse is also true, i.e., if 𝑿
is exponentially 𝛽-mixing, then 𝑿 is 𝜇-a.s. 𝑉-exponentially ergodic. See also [46, Lemma 8.9]
for these statements. Exponential 𝛽-mixing is formulated as assumption (𝒜𝛽) in the next section
and will be one of the pillars of our statistical analysis for the sup-norm risk. It is therefore
critical for us to understand the exact relationship between exponential 𝛽-mixing and (𝒜2).
To this end, as a partial converse to Lemma 3.4, we explored in Section 3.1.1 under which
additional (quite natural) conditions, (𝒜2) implies the exponential 𝛽-mixing property of 𝑿. Our
main findings, taking account of Lemma 3.4, Section 3.1.1 and the developments in Section
3.1.2, are summarized in Figure 3.1.

A clear picture is drawn, demonstrating that local uniform transition density convergence
at exponential speed is intimately connected with exponential 𝛽-mixing of the process—both
concepts having exponential ergodicity as the driving force behind them in most concrete
applications. Both conditions (𝒜2) and (𝒜𝛽) gain substantial additional statistical power via the
smoothing assumption (𝒜1), which allows obtaining tight variance bounds that yield superior
estimation properties under continuous observations compared to incomplete information via
sampling procedures, as will be demonstrated in Section 3.3. Moreover, the slightly more specific
localized Castellana–Leadbetter condition provides the advantage of optimal estimation also
in the scalar case 𝑑 = 1 and wrt. the 𝐿2 risk under less restrictive assumptions on the speed
of convergence of the process (polynomial is sufficient) in any dimension, which justifies us
studying this concept separately from exponential 𝛽-mixing.
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𝑿 fulf. (𝒜2) w.
𝑟S(𝑡) = 𝐶Se−𝜅S𝑡

𝑿 is 𝜇-a.s.
𝑉-exp. ergodic

𝑿 is exp.
𝛽-mixing

Variance bound
(3.7) holds

Variance bound
(3.12) holds

‖𝑝1 ‖∞ < ∞,
𝑉 loc. bound.

(𝒜1)

(𝒜1),𝑑 ≥ 2

‖𝜌‖∞ < ∞

𝑿 is an
ergodic
𝑇-process,
Λ = ℝ𝑑

Figure 3.1: Overview of interplay between variance bound results, assumptions and stability
concepts

3.1.2 Variance analysis under exponential 𝛽-mixing
In this subsection, we specify our study to multidimensional stochastic processes by restricting
the analysis to dimension 𝑑 ≥ 2. While we further assume that the on-diagonal heat kernel
bound on the transition density (3.4) from (𝒜1) still holds, we drop the transition density rate
assumption (𝒜2) and instead impose exponential 𝛽-mixing of 𝑿. Note that this is implied by
(𝒜2) under suitable technical conditions on 𝑿 (see Figure 3.1 and Propositions 2.10 and 2.11 in
Section 2.3).

(𝒜𝛽) The process 𝑿 started in the invariant measure 𝜇 is exponentially 𝛽-mixing, i.e., there
exist constants 𝑐𝜅, 𝜅 > 0, such that∫

‖𝑃𝑡 (𝑥, ·) − 𝜇(·)‖TV 𝜇(d𝑥) ≤ 𝑐𝜅e−𝜅𝑡, 𝑡 ≥ 0.

Let us emphasize that in presence of the heat kernel bound (𝒜1), Lemma 3.5 below shows
that Assumption (𝒜0) is strengthened to the existence of a bounded invariant density since
the transition density of any skeleton chain is uniformly bounded for fixed 𝑡 > 0. That is, the
following assumption is in place.

(𝒜0+) Assumption (𝒜0) holds and the invariant density has a bounded version 𝜌, i.e., ‖𝜌‖∞ < ∞.

Lemma 3.5. Assume that 𝑿 has an invariant distribution 𝜇 and that there is some Δ > 0 such that
the transition density 𝑝Δ exists and sup𝑥,𝑦∈ℝ𝑑 𝑝Δ (𝑥, 𝑦) ≤ 𝑐 for some constant 𝑐 > 0. Then, 𝜇 admits
a bounded density.

Proof. Let 𝐵 ∈ B(ℝ𝑑) such that 𝝀(𝐵) = 0. Then, it holds that

𝜇(𝐵) =
∫
ℝ𝑑

∫
𝐵

𝑝Δ (𝑥, 𝑦) d𝑦 𝜇(d𝑥) = 0,
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which yields the existence of a Lebesgue density 𝜌 of 𝜇 by the Radon–Nikodym theorem. Now,
let 𝐵 ∈ B(ℝ𝑑) such that 𝝀(𝐵) > 0. Arguing as above and using boundedness of 𝑝Δ, we get∫

𝐵
𝜌(𝑥) 𝝀(d𝑥)
𝝀(𝐵) ≤ 𝑐.

Now the Lebesgue differentiation theorem yields ess sup 𝜌 ≤ 𝑐, and defining

𝜌𝑏(𝑥) = 𝜌(𝑥)1[0,𝑐] (𝜌(𝑥)), 𝑥 ∈ ℝ𝑑 ,

we have 𝜌 = 𝜌𝑏 almost everywhere and 𝜌𝑏 ≤ 𝑐. �

The next result gives a tight variance bound on the integral
∫𝑇
0 𝑓 (𝑋𝑡) d𝑡 under 𝛽-mixing.

Its effectiveness for sup-norm estimation of general Markov processes will be demonstrated in
Section 3.3. Note in particular that, using boundedness of 𝜌 under (𝒜0) and (𝒜1), the same
rate can be obtained under (𝒜2) from Proposition 3.1. Recall the definition of 𝜓𝑑 : (0, e) → ℝ+
in (3.7).

Proposition 3.6. Grant assumptions (𝒜1) and (𝒜𝛽), and let 𝑓 be a bounded function with compact
support S fulfilling 𝝀(S) < 1. Then, for any 𝑑 ≥ 2, there exists a constant 𝐶 > 0 not depending on
𝑓 such that, for any 𝑇 > 0,

Var
(∫ 𝑇

0
𝑓 (𝑋𝑡) d𝑡

)
≤ 𝐶𝑇 ‖ 𝑓 ‖2∞‖𝜌‖∞𝝀2(S)𝜓2

𝑑 (𝝀(S)). (3.12)

Proof. Let 0 < 𝛿 < 1 ≤ 𝐷. Analogously to the proof of Proposition 3.1, one can compute that

Var
(∫ 𝑇

0
𝑓 (𝑋𝑡) d𝑡

)
= 2

∫ 𝑇

0
(𝑇 − 𝑣)

∬
ℝ𝑑×𝑑

𝑓 (𝑥) 𝑓 (𝑦) (𝑝𝑣(𝑥, 𝑦) − 𝜌(𝑦)) 𝜇(d𝑥) d𝑦 d𝑣

≤ 2𝑇 ‖ 𝑓 ‖2∞
( ∫ 𝐷

0

∬
S2
𝑝𝑣(𝑥, 𝑦) 𝜇(d𝑥) d𝑦 d𝑣 +

∫ 𝑇

𝐷

∬
S2
(𝑝𝑣(𝑥, 𝑦) − 𝜌(𝑦)) 𝜇(d𝑥) d𝑦 d𝑣

)
= 2𝑇 ‖ 𝑓 ‖2∞(I𝛿 + I𝐷 + I𝑇 ),

where I𝛿 B
∫ 𝛿
0

∬
S2
𝑝𝑣(𝑥, 𝑦)𝜇(d𝑥) d𝑦 d𝑣, I𝐷 B

∫ 𝐷
𝛿

∬
S2
𝑝𝑣(𝑥, 𝑦)𝜇(d𝑥) d𝑦 d𝑣 and

I𝑇 B

∫ 𝑇

𝐷

∫
S

(𝑃𝑣(𝑥, S) − 𝜇(S)) 𝜇(d𝑥) d𝑣.

As before (see (3.8)) and under our additional assumption that 𝜌 is bounded, it holds

I𝛿 ≤ 𝜇(S)𝛿 ≤ ‖𝜌‖∞𝝀(S)𝛿. (3.13)

Furthermore, exploiting the mixing property of 𝑿,

I𝑇 ≤
∫ 𝑇

𝐷

∫
‖𝑃𝑣(𝑥, ·) − 𝜇(·)‖TV𝜇(d𝑥) d𝑣 ≤ 𝑐𝜅

∫ 𝑇

𝐷

e−𝜅𝑣 d𝑣 ≤ 𝑐𝜅

𝜅
e−𝜅𝐷𝟙(𝐷,∞) (𝑇). (3.14)
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By assumption (𝒜1), 𝑝𝑣(𝑥, 𝑦) ≤ 𝑐2𝑣
−𝑑/2, for 0 < 𝑡 ≤ 1. Hence, we have 𝑝1/2(𝑥, 𝑦) ≤ 𝑐22𝑑/2 C 𝑐𝑝

which implies

𝑝𝑡 (𝑥, 𝑦) =
∫
𝑝𝑡−1/2(𝑥, 𝑧)𝑝1/2(𝑧, 𝑦) d𝑧 ≤ 𝑐𝑝,

for all 𝑡 > 1/2. Since 𝛿 < 1 ≤ 𝐷, it follows∫ 𝐷

𝛿

𝑝𝑣(𝑥, 𝑦) d𝑣 ≤ 𝑐2

∫ 1

𝛿

𝑣−𝑑/2 d𝑣 + 𝑐𝑝𝐷1(1,∞) (𝐷) ≤ 𝑐𝛿,𝐷

( ∫ 1

𝛿

𝑣−𝑑/2 d𝑣 + 𝐷1(1,∞) (𝐷)
)

for 𝑐𝛿,𝐷 B 𝑐2 + 𝑐𝑝. For 𝑑 ≥ 3, this implies∫ 𝐷

𝛿

𝑝𝑣(𝑥, 𝑦) d𝑣 ≤ 𝑐𝛿,𝐷

( ∫ 1

𝛿

𝑣−𝑑/2 d𝑣 + 𝐷1(1,∞) (𝐷)
)

≤ 𝑐𝛿,𝐷

(
(𝑑/2 − 1)−1𝛿1−𝑑/2 + 𝐷1(1,∞) (𝐷)

)
≤ 𝑐′𝛿,𝐷

(
𝛿1−𝑑/2 + 𝐷1(1,∞) (𝐷)

)
,

(3.15)

where 𝑐′
𝛿,𝐷
B 2𝑐𝛿,𝐷. Letting 𝛿 = 𝝀(S)2/𝑑 , 𝐷 = (1∨−2

𝜅
log(𝝀(S))) ∧ 𝑇 , (3.15) and 𝝀(S) < 1 imply∫ 𝐷

𝛿

𝑝𝑣(𝑥, 𝑦) d𝑣 ≤ 𝑐′𝛿,𝐷

(
𝝀(S)2/𝑑−1 + 2

𝜅
log(𝝀(S)−1)

)
≤ 𝑐′𝛿,𝐷

(
𝝀(S)2/𝑑−1 + 2

𝜅(1−2/𝑑) 𝝀(S)
2/𝑑−1

)
≤ 𝑐′′𝛿,𝐷𝝀(S)

2/𝑑−1, for 𝑐′′𝛿,𝐷 B 𝑐′𝛿,𝐷 (1 + 2
𝜅(1−2/𝑑) ),

where we have used the well-known inequality log(𝑥) ≤ 𝑛𝑥1/𝑛, 𝑥, 𝑛 > 0. Using Fubini’s theorem,
this directly implies

I𝐷 =

∫ 𝐷

𝛿

∬
S2
𝑝𝑣(𝑥, 𝑦)𝜇(d𝑥) d𝑦 d𝑣 ≤ 𝑐′′𝛿,𝐷𝜇(S)𝝀(S)

2/𝑑 ≤ 𝑐′′𝛿,𝐷‖𝜌‖∞𝝀(S)2/𝑑+1 (3.16)

for 𝑑 ≥ 3. Noting that our choice of 𝛿 and 𝐷 implies by (3.13) and (3.14) that

I𝛿 ≤ ‖𝜌‖∞𝝀(S)2/𝑑+1 and I𝑇 ≤ 𝑐𝜅

𝜅
𝝀(S)2 ≤ 𝑐𝜅

𝜅
𝝀(S)2/𝑑+1,

(3.12) follows for any 𝑑 ≥ 3 by combining these estimates with (3.16). The case 𝑑 = 2 is treated
by similar arguments. �

Notation. Throughout the sequel, we denote by 𝚺 the class of non-explosive, exponentially
𝛽-mixing Borel right Markov processes 𝑿 such that assumptions (𝒜0) and (𝒜1) hold (and hence
(𝒜0+) is in place, i.e., the invariant density 𝜌 is bounded). Moreover, in dimension 𝑑 = 1 we
assume that (𝒜2) is in place with a rate function 𝑟S which is monotone wrt the compact sets S
in the sense that

S1 ⊂ S2 =⇒ 𝑐S1 =

∫ ∞

1
𝑟S1 (𝑡) d𝑡 ≤

∫ ∞

1
𝑟S2 (𝑡) d𝑡 = 𝑐S2 < ∞. (3.17)

Alternatively, if we do not want to restrict to exponentially 𝛽-mixing processes, consider the
class of processes 𝚯 consisting of 𝑑-dimensional non-explosive Borel right processes such that
(𝒜0)–(𝒜2) hold, where again the constants 𝑐S appearing in (𝒜2) satisfy (3.17). Note that if �̃� is
the restriction of 𝚯 containing the class of processes 𝑿 satisfying the assumptions of Proposition
2.10 or Proposition 2.11, then �̃� ⊂ 𝚺.
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3.2 Uniform moment bounds and deviation inequalities

Uniform moment bounds for integral functionals of 𝑿 are the subject of this section. These are
intimately connected with Bernstein-type tail inequalities, which due to their crucial importance
for many probabilistic and statistical applications—such as the derivation of limit theorems or
upper bound statements for nonparametric estimation procedures—have been excessively studied
in the literature (see Section 1.1 of [82] for an overview). Both a Lyapunov function method
and a functional inequalities approach can be used for deriving results on the concentration
behavior of additive functionals of 𝑿. [40] establish non-asymptotic deviation bounds for

ℙ

(��� ∫ 𝑡

0
𝑓 (𝑋𝑠) d𝑠 −

∫
𝑓 d𝜇

��� ≥ 𝑟

)
, 𝑓 ∈ 𝐿1(𝜇),

using different moment assumptions for 𝑓 and regularity conditions for 𝜇, “regularity” referring
to the condition that 𝜇 may satisfy various functional inequalities (F-Sobolev, generalized
Poincaré, etc.). In a symmetric Markovian setting and assuming a spectral gap, [116] uses
Kato’s perturbation theory for proving Bernstein-type concentration inequalities for empirical
means of the form

∫ 𝑡
0 𝑓 (𝑋𝑠) d𝑠, the upper bound depending on the asymptotic variance of

𝑓 . Amongst other methods, [82] exploit both a Lyapunov function method and a functional
inequalities approach for extending Lezaud’s result to inequalities for possibly unbounded 𝑓 .
Going beyond the symmetric case, Lyapunov-type conditions can also be used for verifying
exponential mixing properties, paving the way to generalizing concentration results based on
independent observations to the dependent case. For corresponding results for discrete random
(Markov) sequences under different mixing or ergodicity assumptions, we refer to [1, 2, 23, 53,
64, 114, 126, 145]

3.2.1 General framework
Our main focus in this subsection is on deriving corresponding uniform moment inequalities
of empirical processes and (in Section 3.3) proving their efficiency in a concrete statistical
application, using merely the previously introduced assumptions (in particular, the 𝛽-mixing
property), and without introducing any additional conditions on the process. We emphasize that
for this section no assumption on the existence of transition or invariant densities is needed, but
that we only work within an ergodic 𝛽-mixing framework. Moreover, the results are established
for 𝛽-mixing Markov processes with arbitrary topological state space X, not necessarily equal to
ℝ𝑑 , and general mixing rate. That is, we suppose in this section that

𝛽(𝑡) =
∫
X

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV 𝜇(d𝑥) ≤ Ξ(𝑡),

for some rate function Ξ(𝑡) decreasing to 0 as 𝑡 → ∞.
We aim to prove moment bounds for suprema of the form

sup
𝑔∈G

|𝔾𝑡 (𝑔) | C ‖𝔾𝑡‖G, for 𝔾𝑡 (𝑔) B
1
√
𝑡

∫ 𝑡

0
𝑔(𝑋𝑠) d𝑠,

where the supremum is taken over entire (possibly infinite-dimensional) function classes G ⊂
B𝑏(X) of 𝜇-centered measurable bounded functions on X. Such results are indispensable tools,
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e.g., for the analysis of nonparametric adaptive estimation procedures and for applications in
statistical learning theory. Similarly to [20] and [68], we apply the generic chaining device for
the derivation of our result. The basic strategy of the proof is splitting the integral into blocks
of length 𝑚𝑡, construct an independent Berbee coupling based on the 𝛽-mixing property as
described in Viennet [170], and then use the classical Bernstein inequality for i.i.d. random
variables for the coupled integral blocks to drive the chaining procedure from [68]. The use
of Berbee’s coupling lemma is a well-established method for studying empirical processes of
discrete 𝛽-mixing sequences, see [143, Chapter 8], and has recently been employed in [12]
for establishing 𝐿2 oracle bounds for an adaptive estimator of the invariant density of a class
of exponentially 𝛽-mixing Lévy driven SDEs. Our final moment bound on the supremum of
the process 𝔾𝑡 is stated in terms of entropy integrals of the indexing function class G. In many
applications, the corresponding assumption is straightforward to verify. For any given 𝜀 > 0,
denote by N(𝜀, G, 𝑑) the covering number of G, i.e., the smallest number of balls of 𝑑-radius 𝜀
needed to cover G. Furthermore, given 𝑓 , 𝑔 ∈ G, let 𝑑∞( 𝑓 , 𝑔) B ‖ 𝑓 − 𝑔‖∞ and

𝑑2𝔾,𝑡 ( 𝑓 , 𝑔) B 𝜎2𝑡 ( 𝑓 − 𝑔), where 𝜎2𝑡 ( 𝑓 ) B Var
(
1
√
𝑡

∫ 𝑡

0
𝑓 (𝑋𝑠) d𝑠

)
.

Theorem 3.7. Suppose that 𝑿 is 𝛽-mixing with rate function Ξ(𝑡). Let G be a countable class of
bounded real-valued functions with 𝜇(𝑔) = 0 and let 𝑚𝑡 ∈ (0, 𝑡/4]. Then, there exist 𝜏 ∈ [𝑚𝑡, 2𝑚𝑡]
and constants 𝐶1, 𝐶2 > 0 such that, for any 1 ≤ 𝑝 < ∞,(

𝔼
[
‖𝔾𝑡‖ 𝑝G

] )1/𝑝
≤ 𝐶1

∫ ∞

0
logN

(
𝑢, G,

2𝑚𝑡√
𝑡
𝑑∞

)
d𝑢 + 𝐶2

∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝜏) d𝑢

+ 4 sup
𝑔∈G

(2𝑚𝑡√
𝑡
‖𝑔‖∞ �̃�1𝑝 + ‖𝑔‖𝔾,𝜏 �̃�2

√
𝑝 + 1

2
‖𝑔‖∞

√
𝑡Ξ(𝑚𝑡)1/𝑝

)
,

(3.18)

for positive constants �̃�1, �̃�2 defined in (3.21).
Proof. We start by splitting the process (𝑋𝑠)0≤𝑠≤𝑡 with Borel state space X into 2𝑛𝑡 parts of length
𝑚𝑡, where 𝑡 = 2𝑛𝑡𝑚𝑡, 𝑛𝑡 ∈ ℕ, 𝑚𝑡 ∈ ℝ+. More precisely, for 𝑗 ∈ {1, . . . , 𝑛𝑡}, define the processes

𝑋 𝑗,1 B (𝑋𝑠)𝑠∈[2( 𝑗−1)𝑚𝑡 ,(2 𝑗−1)𝑚𝑡 ] , 𝑋 𝑗,2 B (𝑋𝑠)𝑠∈[(2 𝑗−1)𝑚𝑡 ,2 𝑗𝑚𝑡 ] .

Since 𝑿 is a stationary Markov process, the 𝛽-mixing assumption is equivalent to

Ξ(𝑠) ≥
∫
ℝ𝑑

‖𝑃𝑠 (𝑥, ·) − 𝜇‖TV 𝜇(d𝑥) = 𝔼
[
‖ℙ(·|F0) − ℙ‖TV |F𝑠

]
= 𝔼

[
‖ℙ(·|F𝑡) − ℙ‖TV |F𝑡+𝑠

]
,

for any 𝑠, 𝑡 > 0, see Proposition 1 in [62]. Here, (F𝑡 = 𝜎(𝑋𝑠, 𝑠 ≤ 𝑡))𝑡≥0 denotes the natural
filtration of 𝑿, (F𝑡 = 𝜎(𝑋𝑠, 𝑠 ≥ 𝑡))𝑡≥0 the filtration of the future of 𝑿 and, for a signed measure 𝜇
and a sub-𝜎-algebra A on a measure space (Ω,F), ‖𝜇‖TV |A denotes the total variation norm of
𝜇 restricted to A. As demonstrated in [173, Lemma 1.4],

𝔼
[
‖ℙ(·|F𝑡) − ℙ‖TV |F𝑡+𝑠

]
= 𝛽(F𝑡,F𝑡+𝑠),

where for two sub-𝜎-algebras A,B ⊂ G and a probability measure ℙ on (Ω, G), the classical
𝛽-mixing coefficient 𝛽(A,B) is given by

𝛽(A,B) = sup
𝐶∈A⊗B

��ℙ|A⊗B(𝐶) − ℙ|A ⊗ ℙ|B(𝐶)
��.
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Here, ℙ|A⊗B is the restriction to (Ω × Ω,A ⊗ B) of the image measure of ℙ under the canonical
injection 𝜄(𝜔) = (𝜔, 𝜔). Clearly, if A1 ⊂ A2, we have 𝛽(A1,B) ≤ 𝛽(A2,B). Observe that 𝑋 𝑗,1, as
a mapping from Ω to X[2( 𝑗−1)𝑚𝑡 ,(2 𝑗−1)𝑚𝑡 ] , is both F(2 𝑗−1)𝑚𝑡

-measurable and F2( 𝑗−1)𝑚𝑡
-measurable.

It now follows from the above discussion for 𝑗, 𝑘 ∈ {1, . . . , 𝑛𝑡}, 𝑗 < 𝑘, that

𝛽(𝑋 𝑗,1, 𝑋𝑘,1) B 𝛽(𝜎(𝑋 𝑗,1), 𝜎(𝑋𝑘,1)) ≤ 𝛽(F(2 𝑗−1)𝑚𝑡
,F2(𝑘−1)𝑚𝑡

)
≤ Ξ((2(𝑘 − 𝑗) − 1)𝑚𝑡) ≤ Ξ((𝑘 − 𝑗)𝑚𝑡).

In the same way, we obtain 𝛽(𝑋 𝑗,2, 𝑋𝑘,2) ≤ Ξ((𝑘 − 𝑗)𝑚𝑡). Arguing as in the proof of Proposition
5.1 of [170], we can then construct a process ( �̂�𝑠)0≤𝑠≤𝑡 by Berbee’s coupling method, such that
for 𝑘 = 1, 2,

1. 𝑋 𝑗,𝑘 (d)
= �̂� 𝑗,𝑘, for all 𝑗 ∈ {1, . . . , 𝑛𝑡},

2. ℙ(𝑋 𝑗,𝑘 ≠ �̂� 𝑗,𝑘) ≤ Ξ(𝑚𝑡) for all 𝑗 ∈ {1, . . . , 𝑛𝑡},

3. �̂�1,𝑘, . . . , �̂�𝑛𝑡 ,𝑘 are independent,

where �̂� 𝑗,𝑘 is defined analogously to 𝑋 𝑗,𝑘 for 𝑗 ∈ {1, . . . , 𝑛𝑡} and 𝑘 = 1, 2. In order to ease the
notation, define for 𝑗 ∈ {1, . . . , 𝑛𝑡}

𝐼𝑔 (𝑋 𝑗,1) B
∫ (2 𝑗−1)𝑚𝑡

2( 𝑗−1)𝑚𝑡

𝑔(𝑋𝑠) d𝑠, 𝐼𝑔 (𝑋 𝑗,2) B
∫ 2 𝑗𝑚𝑡

(2 𝑗−1)𝑚𝑡

𝑔(𝑋𝑠) d𝑠,

and, analogously, define 𝐼𝑔 ( �̂� 𝑗,𝑘) for 𝑘 = 1, 2, 𝑗 ∈ {1, . . . , 𝑛𝑡}. Fix 𝑝 ≥ 1. Then,(
𝔼
[
‖𝔾𝑡‖ 𝑝G

] )1/𝑝
≤

(
𝔼

[
sup
𝑔∈G

��� 1√
𝑡

∫ 𝑡

0
𝑔( �̂�𝑠) d𝑠

���𝑝])1/𝑝 + (
𝔼

[
sup
𝑔∈G

��� 1√
𝑡

∫ 𝑡

0
(𝑔(𝑋𝑠) − 𝑔( �̂�𝑠)) d𝑠

���𝑝])1/𝑝
=

(
𝔼

[
sup
𝑔∈G

��� 1√
𝑡

2∑︁
𝑘=1

𝑛𝑡∑︁
𝑗=1

𝐼𝑔 ( �̂� 𝑗,𝑘)
���𝑝])1/𝑝 + (

𝔼

[
sup
𝑔∈G

��� 1√
𝑡

2∑︁
𝑘=1

𝑛𝑡∑︁
𝑗=1

(𝐼𝑔 (𝑋 𝑗,𝑘) − 𝐼𝑔 ( �̂� 𝑗,𝑘))
���𝑝])1/𝑝.

(3.19)

The classical Bernstein inequality implies for 𝑢 > 0 that

ℙ

©«
��� 1√
𝑡

𝑛𝑡∑︁
𝑗=1

𝐼𝑔 ( �̂� 𝑗,𝑘)
��� >

√√
2𝑛𝑡Var

(∫𝑚𝑡

0 𝑔(𝑋𝑠) d𝑠
)
𝑢

𝑡
+ 𝑚𝑡‖𝑔‖∞𝑢√

𝑡

ª®®®¬ ≤ 2e−𝑢,

which in combination with 2𝑛𝑡/𝑡 = 1/𝑚𝑡 yields

ℙ

(��� 1√
𝑡

𝑛𝑡∑︁
𝑗=1

𝐼𝑔 ( �̂� 𝑗,𝑘)
��� > 𝑢

)
≤ 2 exp

©«−
𝑢2

2
(
Var

( 1√
𝑚𝑡

∫𝑚𝑡

0 𝑔(𝑋𝑠) d𝑠
)
+ 𝑚𝑡√

𝑡
‖𝑔‖∞𝑢

) ª®®¬, 𝑢 > 0, (3.20)
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see Theorem 2.10 and Corollary 2.11 in [35]. Consequently, denoting

�̃�1 B 2e1/(2e)
√
2𝜋e−11/12, �̃�2 B 2(2e)−1/2e1/(2e)

√
𝜋e1/6, (3.21)

Lemma A.2 in [68] gives, for 𝑘 ∈ {1, 2},(
𝔼

[��� 1√
𝑡

𝑛𝑡∑︁
𝑗=1

𝐼𝑔 ( �̂� 𝑗,𝑘)
���𝑝])1/𝑝 ≤ ‖𝑔‖∞

𝑚𝑡√
𝑡
�̃�1𝑝 +

√︄
Var

(
1

√
𝑚𝑡

∫ 𝑚𝑡

0
𝑔(𝑋𝑠) d𝑠

)
�̃�2
√
𝑝, (3.22)

where we used again 2𝑛𝑡/𝑡 = 1/𝑚𝑡. In addition, Theorem 3.5 in [68] implies that there exist
positive constants 𝐶1, 𝐶2 such that(

𝔼

[
sup
𝑔∈G

��� 1√
𝑡

𝑛𝑡∑︁
𝑗=1

𝐼𝑔 ( �̂� 𝑗,𝑘)
���𝑝])1/𝑝 ≤ 𝐶1

2

∫ ∞

0
logN

(
𝑢, G,

𝑚𝑡√
𝑡
𝑑∞

)
d𝑢 + 𝐶2

2

∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝑚𝑡

) d𝑢

+ 2 sup
𝑔∈G

(
𝔼

[��� 1√
𝑡

𝑛𝑡∑︁
𝑗=1

𝐼𝑔 ( �̂� 𝑗,𝑘)
���𝑝])1/𝑝.

(3.23)

Here, we bounded the 𝛾𝛼-functionals appearing in the original statement of the theorem by the
corresponding entropy integrals. Note further that the last term on the rhs of (3.19) is upper
bounded by(
𝔼

[
sup
𝑔∈G

��� 1√
𝑡

2∑︁
𝑘=1

𝑛𝑡∑︁
𝑗=1

(
𝐼𝑔 (𝑋 𝑗,𝑘) − 𝐼𝑔 ( �̂� 𝑗,𝑘)

)
· 1𝑋 𝑗,𝑘≠�̂� 𝑗,𝑘

���𝑝])1/𝑝 ≤ 4𝑛𝑡𝑚𝑡√
𝑡

sup
𝑔∈G

‖𝑔‖∞
(
ℙ
(
𝑋 𝑗,𝑘 ≠ �̂� 𝑗,𝑘

) )1/𝑝
≤ 2 sup

𝑔∈G
‖𝑔‖∞

√
𝑡Ξ(𝑚𝑡)1/𝑝.

(3.24)

Plugging the upper bounds (3.22), (3.23) and (3.24) into (3.19) yields(
𝔼

[
sup
𝑔∈G

|𝔾𝑡 (𝑔) |𝑝
])1/𝑝

≤ 𝐶1

∫ ∞

0
logN

(
𝑢, G,

𝑚𝑡√
𝑡
𝑑∞

)
d𝑢 + 𝐶2

∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝑚𝑡

) d𝑢

+ 4 sup
𝑔∈G

(𝑚𝑡√
𝑡
‖𝑔‖∞ �̃�1𝑝 + ‖𝑔‖𝔾,𝑚𝑡

�̃�2
√
𝑝 + 1

2
‖𝑔‖∞

√
𝑡Ξ(𝑚𝑡)1/𝑝

)
.

(3.25)

For general 𝑚𝑡 ∈ (0, 𝑡4 ], let �̃�𝑡 = b 𝑡
2𝑚𝑡

c, where b𝑥c denotes the largest integer smaller or equal to
𝑥 ≥ 1. Then, for �̃�𝑡 B

𝑡
2�̃�𝑡 , we have 𝑚𝑡 ≤ �̃�𝑡, and from �̃�𝑡 ≥ 𝑡

2𝑚𝑡
− 1 =

𝑡−2𝑚𝑡

2𝑚𝑡
and 𝑚𝑡 ≤ 𝑡

4 , we get

�̃�𝑡 =
𝑡

2�̃�𝑡
≤ 𝑡𝑚𝑡

𝑡 − 2𝑚𝑡

≤ 2𝑚𝑡 .

Since �̃�𝑡 ∈ ℕ, (3.25) holds with 𝜏 = �̃�𝑡 ∈ [𝑚𝑡, 2𝑚𝑡] and 𝑚𝑡 being replaced by �̃�𝑡, and combining
this with the computations above yields(

𝔼

[
sup
𝑔∈G

|𝔾𝑡 (𝑔) |𝑝
])1/𝑝

≤ 𝐶1

∫ ∞

0
logN

(
𝑢, G, 𝜏√

𝑡
𝑑∞

)
d𝑢 + 𝐶2

∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝜏) d𝑢
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+ 4 sup
𝑔∈G

( 𝜏
√
𝑡
‖𝑔‖∞ �̃�1𝑝 + ‖𝑔‖𝔾,𝜏 �̃�2

√
𝑝 + 1

2
‖𝑔‖∞

√
𝑡Ξ(𝜏)1/𝑝

)
≤ 𝐶1

∫ ∞

0
logN

(
𝑢, G,

2𝑚𝑡√
𝑡
𝑑∞

)
d𝑢 + 𝐶2

∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝜏) d𝑢

+ 4 sup
𝑔∈G

(2𝑚𝑡√
𝑡
‖𝑔‖∞ �̃�1𝑝 + ‖𝑔‖𝔾,𝜏 �̃�2

√
𝑝 + 1

2
‖𝑔‖∞

√
𝑡Ξ(𝑚𝑡)1/𝑝

)
,

which completes the proof. �

Consider 𝑝 = 1 and the specific choice of 𝑚𝑡 = 𝜅−1 log 𝑡 in case of exponential 𝛽-mixing rate
Ξ(𝑡) = 𝑐𝜅 exp(−𝜅𝑡). Then, the above result implies that

𝔼[‖𝔾𝑡‖G] .
∫ ∞

0
logN

(
𝑢, G,

log 𝑡√
𝑡
𝑑∞

)
d𝑢 +

∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝜏) d𝑢 + sup

𝑔∈G

( log 𝑡
√
𝑡
‖𝑔‖∞ + ‖𝑔‖𝔾,𝜏

)
.

(3.26)
If we considered the related discrete time problem of finding uniformmoment bounds for additive
functionals 1√

𝑛

∑𝑛
𝑘=0 𝑔(𝑋𝑘) of a Markov chain (𝑋𝑛)𝑛∈ℕ0 and assumed exponential ergodicity of

the chain, using the state of the art Bernstein inequality given in [1, Theorem 6] (see also [114])
for the generic chaining procedure would yield an analogous result with an asymptotic version
of the variance norm. In particular, the log-scaling of the sup-norm is also present in the discrete
time case as a consequence of exponential ergodicity, whereas in the i.i.d. case this factor would
disappear. Our direct coupling approach therefore yields optimal uniform moment bounds and
makes the contribution of the mixing term transparent, which also naturally paves the way for
studying nonparametric implications of sub-exponential mixing rates for sup-norm estimation
problems in continuous time in future work.

To get a first taste of the consequences of Theorem 3.7 consider the trivial situation where
G is a singleton set to study rates for the 𝐿𝑝-version of von Neumann’s ergodic theorem1 for
continuous time ergodic Markov processes which states that for 𝑔 ∈ 𝐿𝑝(𝜇),

1
𝑇

∫ 𝑇

0
𝑔(𝑋𝑠) d𝑠 −→

𝑡→∞
𝜇(𝑔), in 𝐿𝑝(ℙ).

Note that indeed, 𝛽-mixing implies strong mixing and hence ergodicity of 𝑿.

Corollary 3.8. Suppose that 𝑿 is exponentially 𝛽-mixing. Then, there exists a constant 𝐶 > 0
such that, for any 𝑇 > 0, 1 ≤ 𝑝 < ∞ and any bounded, measurable function 𝑔,1

𝑇

∫ 𝑇

0
𝑔(𝑋𝑡) d𝑡 − 𝜇(𝑔)


𝐿𝑝 (ℙ)

≤ 𝐶𝑝‖𝑔‖∞
1
√
𝑇
.

If 𝑿 is polynomially mixing of degree 𝛼 > 1, i.e., Ξ(𝑡) . 𝑡−𝛼, then for any 𝑝 ≥ 1 and 𝑇 ≥ 4(𝛼+𝑝)/𝛼

we have 1
𝑇

∫ 𝑇

0
𝑔(𝑋𝑡) d𝑡 − 𝜇(𝑔)


𝐿𝑝 (ℙ)

. ‖𝑔‖∞𝑇
−
( 1
2∧

𝛼
𝛼+𝑝

)
.

1Not referring to the 𝐿𝑝-statement as Birkhoff’s ergodic theorem is not without reason, see [177].
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Proof. In case of exponential 𝛽-mixing we obtain, similarly to the proof of Proposition 3.6, for
any 𝑡 > 0,

‖𝑔‖2𝔾,𝑡 =
1
𝑡
Var

( ∫ 𝑡

0
𝑔(𝑋𝑠) d𝑠

)
≤ 2‖𝑔‖2∞

∫ 𝑡

0

∫
‖𝑃𝑠 (𝑥, ·) − 𝜇‖TV 𝜇(d𝑥) d𝑠 ≤ 2‖𝑔‖2∞

𝑐𝜅

𝜅
.

Choosing𝑚𝑇 =
√
𝑇 and plugging this into (3.18) therefore yields the assertion for the exponential

mixing case. For the 𝛼-polynomial case we obtain the assertion similarly by the minimizing
choice 𝑚𝑇 = 𝑇 𝑝/(𝛼+𝑝) , where 𝑇 ≥ 4(𝛼+𝑝)/𝛼 guarantees that 𝑚𝑇 ≤ 𝑇/4 and the assumption 𝛼 > 1
is needed for uniform boundedness of ‖𝑔‖2

𝔾,𝑡
in 𝑡. �

3.2.2 Deviation inequalities for suprema of empirical Markov processes
Theorem 3.7 provides a foundation for the derivation of deviation inequalities, as they are
needed, for example, for bounding the sup-norm risk of estimators and for the convergence
analysis of adaptive estimation procedures. We will focus on the question of invariant density
estimation for Borel right Markov processes, introduced and discussed in Section 3.1. Recall the
definition of 𝚺 and 𝚯 at the end of that section. Given the observation (𝑋𝑠)0≤𝑠≤𝑇 , a natural kernel
estimator for the invariant density 𝜌 on a domain 𝐷 of a Markov process 𝑿 ∈ 𝚺 ∪ 𝚯 is given by

�̂�ℎ,𝑇 (𝑥) =
1
𝑇

∫ 𝑇

0
𝐾ℎ(𝑥 − 𝑋𝑠) d𝑠, 𝑥 ∈ ℝ𝑑 , where 𝐾ℎ(·) B ℎ−𝑑𝐾 (·/ℎ), ℎ > 0, (3.27)

for some smooth, Lipschitz continuous kernel function 𝐾 : ℝ𝑑 → ℝ with compact support
[−1/2, 1/2]𝑑 . The knowledge of the invariant density is not only a question of its own interest,
but is also needed, among other things, for the implementation of drift estimation procedures
or data-driven methods of stochastic control. Furthermore, this specific estimation problem
can be regarded as an acid test for the quality of the statistical analysis: It is known that the
invariant density of (possibly multidimensional) diffusion processes can be estimated with a
faster convergence rate than is feasible in the classical discrete i.i.d. or weak dependency context.
However, these superior convergence rates can only be verified with sufficiently tight estimates
in the proof of the upper bound, more precisely, for the stochastic error part. Indeed, denoting
ℍℎ,𝑇 (𝑥) B �̂�ℎ,𝑇 (𝑥) − 𝔼[�̂�ℎ,𝑇 (𝑥)], we have the decomposition

�̂�ℎ,𝑇 (𝑥) − 𝜌(𝑥) = ℍℎ,𝑇 (𝑥) + (𝜌 ∗ 𝐾ℎ − 𝜌) (𝑥). (3.28)

While the bias part is bounded using standard arguments, tight upper bounds on (the supremum
of) the stochastic error require specific probabilistic tools. For bounding 𝔼[sup𝑥∈𝐷 |ℍℎ,𝑇 (𝑥) |𝑝],
we want to apply Theorem 3.7 to the function class

G B
{
𝐾 ((𝑥−·)/ℎ) : 𝑥 ∈ 𝐷∩ℚ𝑑

}
, where 𝐾 ((𝑥−·)/ℎ) = 𝐾 ((𝑥−·)/ℎ)−𝜇(𝐾 ((𝑥−·)/ℎ)), (3.29)

for some kernel function 𝐾 with Lipschitz constant 𝐿wrt to the sup-norm ‖·‖∞, and the bandwidth
ℎ chosen in (0, 1). The following uniform deviation result is central for this purpose. The proof is
given in Appendix 3.A along with useful bounds on the entropy integrals for processes from the
class 𝚺 ∪ 𝚯. Recall that if 𝑿 ∈ 𝚺, then by definition, 𝑿 is exponentially 𝛽-mixing, i.e., 𝛽-mixing
with rate function Ξ(𝑡) = 𝑐𝜅e−𝜅𝑡 for some constants 𝑐𝜅, 𝜅 > 0.
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Lemma 3.9. Suppose that 𝑿 ∈ 𝚯 ∪ 𝚺 and additionally assume in case 𝑿 ∈ 𝚯 that 𝑿 is 𝛽-mixing
with strictly decreasing rate function Ξ(𝑡). Then, for any 𝑢𝑇 ≥ 1 such that Ξ−1(𝑇−𝑢𝑇 ) ∈ o(𝑇) and
𝑇−2 ≤ ℎ = ℎ𝑇 ∈ o(1), there exists a constant 𝑐∗ > 0 such that for large enough 𝑇

ℙ

(�̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇

𝐿∞ (𝐷) ≥ 𝑐∗

(
𝑢𝑇 + log𝑇

𝑇ℎ𝑑
Ξ−1(𝑇−𝑢𝑇 ) + 𝑇− 1

2𝜓𝑑 (ℎ𝑑)
√︁
𝑢𝑇 ∨ log(ℎ−1)

))
≤ e−𝑢𝑇 .

In particular, when 𝑿 ∈ 𝚺, for any 𝛾 > 0 and 𝑢𝑇 ∈ [1, 𝛾 log𝑇] there exists a constant 𝑐𝛾 > 0 such
that for large enough 𝑇

ℙ
(�̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇


𝐿∞ (𝐷) ≥ 𝑐𝛾Υℎ,𝑇 (𝑢𝑇 )

)
≤ e−𝑢𝑇 ,

where
Υℎ,𝑇 (𝑢) B

𝑢(log𝑇)2
𝑇ℎ𝑑

+ 𝑇− 1
2𝜓𝑑 (ℎ𝑑)

√︁
𝑢 ∨ log(ℎ−1), 𝑢 ≥ 1. (3.30)

3.3 Sup-norm adaptive estimation of the stationary density for general
Markov processes

In this section, we demonstrate the effectiveness of our previous results and probabilistic tools in
a concrete statistical application. We already introduced the general form of the kernel invariant
density estimator in (3.27). In order to quantify the speed of convergence, we will now analyse
its convergence behavior under standard Hölder smoothness assumptions, i.e., we focus on the
problem of estimating the invariant density 𝜌 on a domain 𝐷 of a Markov process 𝑿 ∈ 𝚺 ∪ 𝚯
with 𝜌|𝐷 ∈ H𝐷 (𝛽, L) (as introduced in (3.3)). For stating our statistical results, we define

Φ𝑑,𝛽 (𝑇) B


1/
√
𝑇, 𝑑 = 1,√︃

log𝑇
𝑇
, 𝑑 = 2,

𝑇
− 𝛽

2𝛽+𝑑−2 , 𝑑 ≥ 3,

and Ψ𝑑,𝛽 (𝑇) B


√︃

log𝑇
𝑇
, 𝑑 = 1,

log𝑇√
𝑇
, 𝑑 = 2,(

log𝑇
𝑇

) 𝛽
2𝛽+𝑑−2

, 𝑑 ≥ 3.

(3.31)

Throughout, 𝐾 denotes a ‖·‖∞-Lipschitz kernel of order � and with Lipschitz constant 𝐿 that is
supported on [−1/2, 1/2]𝑑 .

3.3.1 General framework
Depending on the concrete application, one might be interested in quantifying the accuracy of
estimators in terms of different risk measures. Our findings from Section 3.1 immediately imply
an upper bound on the classical mean squared error at some fixed point 𝑥 ∈ ℝ𝑑 .

Corollary 3.10. Suppose that 𝑿 ∈ 𝚺∪𝚯. For 𝑥 ∈ ℝ𝑑 such that there exists an open neighbourhood
𝐷 ⊂ ℝ𝑑 of 𝑥 such that 𝜌|𝐷 ∈ H𝐷 (𝛽, L), 𝛽 ∈ (0, � + 1], it holds for the kernel estimator

𝔼
[ (
�̂�ℎ,𝑇 (𝑥) − 𝜌(𝑥)

)2] ∈ O
(
Φ2
𝑑,𝛽 (𝑇)

)
, if ℎ = ℎ(𝑇) ∼

{
𝑇−1/𝛾, 𝑑 ≤ 2, 𝛾 ∈ (0, 𝛽],
𝑇−1/(2𝛽+𝑑−2) , 𝑑 ≥ 3.
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Proof. Fix 𝑥 such that there exists an open neighbourhood 𝐷 of 𝑥 such that 𝜌|𝐷 ∈ H𝐷 (𝛽, L). The
usual bias-variance decomposition gives

𝔼
[ (
�̂�ℎ,𝑇 (𝑥) − 𝜌(𝑥)

)2]
= (𝜌 ∗ 𝐾ℎ(𝑥) − 𝜌(𝑥))2 + Var

(
�̂�ℎ,𝑇 (𝑥)

)
. (3.32)

For the bias term, since T𝛽U ≤ �, there exists a universal constant 𝑀 > 0 such that

| (𝜌 ∗ 𝐾ℎ − 𝜌) (𝑥) | =
����ℎ−𝑑 ∫

𝐾
( 𝑥 − 𝑦

ℎ

)
(𝜌(𝑦) − 𝜌(𝑥)) d𝑦

���� ≤ 𝑀ℎ𝛽, (3.33)

see Proposition 1.2 in [163] for the case 𝑑 = 1 and the analogous estimator for discrete observa-
tions, which can be extended to the general multivariate case under continuous observations
without much effort. Moreover, for any dimension 𝑑 and 𝑿 ∈ 𝚺 ∪ 𝚯, it follows from (3.47) that
for any ℎ ∈ (0, 1)

Var
(
1
𝑇

∫ 𝑇

0
𝐾ℎ(𝑥 − 𝑋𝑡) d𝑡

)
. 𝑇−1‖𝐾‖2∞‖𝜌‖∞𝜓2

𝑑 (ℎ
𝑑).

The claim follows by plugging the specific choice of ℎ into (3.33) and (3.47) and using (3.32). �

We now turn our focus to the technically significantly more involved problem of sup-norm
adaptive invariant density estimation for processes from the class 𝚺 having Hölder continuous
invariant densities. We demonstrate that optimal estimation rates in any dimension are achieved
by the kernel estimator for a suitable bandwidth choice. While in dimension 𝑑 = 1, 2 the optimal
bandwidth has the remarkable property of being independent of the (typically unknown) order
𝛽 of Hölder smoothness, this is not the case in higher dimensions 𝑑 ≥ 3. In order to remove 𝛽
from the bandwidth choice, we need to find a data-driven substitute for the upper bound on
the bias in the balancing process. Heuristically, this is the idea behind the Lepski-type selection
procedure suggested now:

1. Specify the discrete set of candidate bandwidths

ℋ𝑇 ≡ ℋ (𝑘)
𝑇 B

ℎ𝑙 = 𝜂−𝑙 : 𝑙 ∈ ℕ0, 𝜂
−𝑙 >

(
log(𝑘) 𝑇 (log𝑇)5

𝑇

) 1
𝑑+2 , 𝜂 > 1 arbitrary,

for arbitrarily chosen 𝑘 ∈ ℕ, and denote by ℎmin the smallest element in the grid ℋ𝑇 . Here,
log(𝑘) 𝑇 denotes the 𝑘-th iterated logarithm, iteratively specified by log(𝑘) 𝑇 B log log(𝑘−1) 𝑇
and log(0) 𝑇 = 𝑇 , which is well-defined for 𝑇 large enough.

2. Define ℎ̂𝑇 ≡ ℎ̂
(𝑘)
𝑇 by letting

ℎ̂𝑇 B max
{
ℎ ∈ ℋ𝑇 :

�̂�ℎ,𝑇 − �̂�𝑔,𝑇

𝐿∞ (𝐷) ≤

√︃
‖ �̂�ℎmin,𝑇 ‖𝐿∞ (𝐷)𝜎(𝑔, 𝑇) ∀𝑔 ≤ ℎ, 𝑔 ∈ ℋ𝑇

}
,

(3.34)
where

𝜎(ℎ, 𝑇) B
log(𝑘) 𝑇 (log𝑇)2

𝑇ℎ𝑑
log(ℎ−1) + 𝜓𝑑 (ℎ𝑑)

√︄
log(𝑘) 𝑇 log(ℎ−1)

𝑇
, ℎ ∈ ℋ𝑇 . (3.35)
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Letting ‖·‖𝐿∞ (𝐷) denote the restriction of the sup-norm to a domain 𝐷 ⊂ ℝ𝑑, we obtain the
following result.

Theorem 3.11. Suppose that 𝑿 ∈ 𝚺. Let 𝐷 ⊂ ℝ𝑑 be open and bounded. Suppose that 𝜌|𝐷 ∈
H𝐷 (𝛽, L) with 𝛽 ∈ (1, � + 1] for 𝑑 = 1 and 𝛽 ∈ (2, � + 1] for 𝑑 ≥ 2. Then, for any 𝑝 ≥ 1,

(
𝔼
[�̂�ℎ,𝑇 − 𝜌

𝑝
𝐿∞ (𝐷)

] )1/𝑝
∈ O

(
Ψ𝑑,𝛽 (𝑇)

)
, if ℎ = ℎ(𝑇) ∼


log2 𝑇/

√
𝑇, 𝑑 = 1,

log𝑇/𝑇1/4, 𝑑 = 2,
(log𝑇/𝑇)1/(2𝛽+𝑑−2) , 𝑑 ≥ 3.

For the adaptive bandwidth scheme, let ℎ̂𝑇 = ℎ̂
(𝑘)
𝑇 be selected according to (3.34) for some 𝑘 ∈ ℕ.

Then, if 𝜌|𝐷 ∈ H𝐷 (𝛽, L) with 𝛽 ∈ (2, � + 1], we have in any dimension 𝑑 ≥ 3,

𝔼
[�̂�

ℎ̂𝑇 ,𝑇
− 𝜌


𝐿∞ (𝐷)

]
∈ O

(( log(𝑘) 𝑇 log𝑇
𝑇

) 𝛽
2𝛽+𝑑−2

)
. (3.36)

Proof. Fix 𝑝 ≥ 1, and recall the decomposition (3.28). By the assumption on the order of the
kernel 𝐾, the bias term 𝜌 ∗ 𝐾ℎ − 𝜌 is bounded by 𝐵(ℎ) B 𝑀ℎ𝛽 for some universal constant 𝑀 > 0
as in the pointwise case (see (3.33)), while the upper bound on the stochastic error ℍℎ,𝑇 relies
on a suitable specification on the upper bound in (3.50). For 𝑑 ≥ 3, set ℎ = ℎ(𝑇) = (log𝑇/
𝑇)1/(2𝛽+𝑑−2) and 𝑚𝑇 = 𝑝 log𝑇/𝜅 such that

1
√
𝑇
𝜓𝑑 (ℎ𝑑) ∈ O

(
𝑇−𝛽/(2𝛽+𝑑−2) ) and

𝑚𝑇

𝑇ℎ𝑑
=

(
log𝑇
𝑇

) 2(𝛽−1)
2(𝛽−1)+𝑑

.

Upon noting that 𝛽 > 2 implies 2(𝛽 − 1) > 𝛽, it follows from (3.50) that(
𝔼
[
sup
𝑥∈𝐷

|ℍℎ,𝑇 (𝑥) |𝑝
] )1/𝑝

∈ O
((

log𝑇
𝑇

) 𝛽/(2𝛽+𝑑−2) )
. (3.37)

Since ℎ𝛽 = (log𝑇/𝑇)𝛽/(2𝛽+𝑑−2) , (3.28), (3.33) and (3.37) finally give 𝔼[‖ �̂�ℎ,𝑇 − 𝜌‖ 𝑝
𝐿∞ (𝐷) ]

1/𝑝 ∈
O

(
Ψ𝑑,𝛽 (𝑇)

)
for 𝑑 ≥ 3. For 𝑑 = 1 and 𝑑 = 2, the assertion follows by analogous arguments.

We now proceed with the proof of the convergence rate of the adaptive scheme for 𝑑 ≥ 3.
For the variance, we obtain from (3.50) that, for 𝑚𝑇 B 2 log(𝑘) 𝑇 (log𝑇)2/𝜅 and whenever
ℎ ≤ e−2𝐿diam(𝐷)/‖𝐾‖∞, there exists some constant C > 0 such that

𝔼
[�̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇

2
𝐿∞ (𝐷)

]
= 𝔼

[
sup
𝑥∈𝐷

|ℍℎ,𝑇 (𝑥) |2
]
≤ C2𝜎2(ℎ, 𝑇),

where 𝜎2(·, ·) is defined according to (3.35). Define ℎ𝜌 by the balance equation

ℎ𝜌 B max
{
ℎ ∈ ℋ𝑇 : 𝐵(ℎ) ≤ 1

4
√
0.8M𝜎(ℎ, 𝑇)

}
, where M B ‖𝜌‖𝐿∞ (𝐷) .

This definition implies that 𝐵(ℎ𝜌) '
√
0.8M𝜎(ℎ𝜌, 𝑇)/4 and, since ℋ𝑇 3 ℎ𝜌 >

( log(𝑘) 𝑇 (log𝑇)5
𝑇

) 1
𝑑+2

,

ℎ
2𝛽+𝑑−2
𝜌 '

log(𝑘) 𝑇 log𝑇
𝑇

and 𝜎(ℎ𝜌, 𝑇) '
( log(𝑘) 𝑇 log𝑇

𝑇

) 𝛽
2𝛽+𝑑−2

.
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To justify this, define ℎ0 B (log(𝑘) 𝑇 log𝑇/𝑇)1/(2𝛽+𝑑−2) . For large enough 𝑇 , we have the estimate
log(log(𝑘) 𝑇 log𝑇) ≤ (log𝑇)/2 and hence

𝜎(ℎ0, 𝑇) =
log(𝑘) 𝑇 (log𝑇)2

𝑇ℎ𝑑0
log(ℎ−10 ) + 𝜓𝑑 (ℎ𝑑0)

√︄
log(𝑘) 𝑇 log(ℎ−10 )

𝑇

≥

√︄
log(𝑘) 𝑇 log𝑇
2(2𝛽 + 𝑑 − 2)𝑇 𝜓𝑑 (ℎ𝑑0) =

√︄
1

2(2𝛽 + 𝑑 − 2)

( log(𝑘) 𝑇 log𝑇
𝑇

) 𝛽
2𝛽+𝑑−2

= L−1𝐵(ℎ0),

for L =
√︁
2(2𝛽 + 𝑑 − 2)𝑀2. Additionally, we get, since 𝛽 > 2,

𝜎(ℎ0, 𝑇) =
log(𝑘) 𝑇 (log𝑇)2

𝑇ℎ𝑑0
log(ℎ−10 ) + 𝜓𝑑 (ℎ𝑑0)

√︄
log(𝑘) 𝑇 log(ℎ−10 )

𝑇
'

( log(𝑘) 𝑇 log𝑇
𝑇

) 𝛽
2𝛽+𝑑−2

.

In particular, it holds that ℎ0 . ℎ𝜌, which is clear if L ≤ 1
4
√
0.8M, and else follows by the fact

that, for any 0 < 𝜆 < 1,

𝐵(𝜆ℎ0) = 𝜆𝛽𝐵(ℎ0) ≤ 𝜆𝛽L𝜎(ℎ0, 𝑇) ≤ 𝜆𝛽L𝜎(𝜆ℎ0, 𝑇).

Lastly, we show ℎ𝜌 . ℎ0 by proving ℎ2𝛽+𝑑−2𝜌 ℎ
−(2𝛽+𝑑−2)
0 ∈ O(1). Indeed, by the definition of ℎ𝜌,

ℎ
2𝛽+𝑑−2
𝜌 . ℎ𝑑−2𝜌 𝜎2(ℎ𝜌, 𝑇)

. ℎ𝑑−2𝜌

©«
log(𝑘) 𝑇 (log𝑇)3

𝑇
ℎ−𝑑𝜌 + 𝜓𝑑 (ℎ𝑑𝜌)

√︄
log(𝑘) 𝑇 log𝑇

𝑇

ª®¬
2

.
(log(𝑘) 𝑇)2(log𝑇)6

𝑇2 ℎ
−(2+𝑑)
𝜌 + ℎ𝑑−2𝜌 𝜓2

𝑑 (ℎ
𝑑
𝜌)
log(𝑘) 𝑇 log𝑇

𝑇
,

and thus it holds that

ℎ
2𝛽+𝑑−2
𝜌 ℎ

−(2𝛽+𝑑−2)
0 .

log(𝑘) 𝑇 (log𝑇)5

𝑇
ℎ
−(2+𝑑)
𝜌 + ℎ𝑑−2𝜌 𝜓2

𝑑 (ℎ
𝑑
𝜌) ∈ O(1),

thanks to ℎ𝜌 > (log(𝑘) 𝑇 (log𝑇)5/𝑇)1/(𝑑+2) .

Case 1: We first consider the case where ℎ̂𝑇 ≥ ℎ𝜌. To shorten notation, denote M̃ B

‖ �̂�ℎmin,𝑇 ‖𝐿∞ (𝐷) . Then, exploiting the definition of ℎ̂𝑇 according to (3.34) and the bias and
variance bounds,

𝔼
[
‖ �̂�

ℎ̂𝑇 ,𝑇
− 𝜌‖𝐿∞ (𝐷) · 1{ℎ̂𝑇 ≥ℎ𝜌 }∩{M̃≤1.2M}

]
≤ 𝔼

[(
‖ �̂�

ℎ̂𝑇 ,𝑇
− �̂�ℎ𝜌,𝑇 ‖𝐿∞ (𝐷) + ‖ �̂�ℎ𝜌,𝑇 − 𝔼�̂�ℎ𝜌,𝑇 ‖𝐿∞ (𝐷) + 𝐵(ℎ𝜌)

)
1{ℎ̂𝑇 ≥ℎ𝜌 }∩{M̃≤1.2M}

]
≤
√
1.2M𝜎(ℎ𝜌, 𝑇) + C𝜎(ℎ𝜌, 𝑇) +

1
4
√
0.8M𝜎(ℎ𝜌, 𝑇) ∈ O(𝜎(ℎ𝜌, 𝑇)).
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Similarly,

𝔼
[
‖ �̂�

ℎ̂𝑇 ,𝑇
− 𝜌‖𝐿∞ (𝐷) · 1{ℎ̂𝑇 ≥ℎ𝜌 }∩{M̃>1.2M}

]
≤

∑︁
ℎ∈ℋ𝑇 :ℎ≥ℎ𝜌

𝔼
[ (
‖ �̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇 ‖𝐿∞ (𝐷) + 𝐵(ℎ)

)
· 1{ℎ̂𝑇=ℎ}∩{M̃>1.2M}

]
. log𝑇

(
C𝜎(ℎ𝜌, 𝑇) + 𝐵(1)

)√︃
ℙ(M̃ > 1.2M).

Now, for any 𝑇 large enough,

ℙ
(��M̃ −M

�� > 0.2‖𝜌‖𝐿∞ (𝐷)
)
= ℙ

(��‖ �̂�ℎmin,𝑇 ‖𝐿∞ (𝐷) − ‖𝜌‖𝐿∞ (𝐷)
�� > 0.2M

)
≤ ℙ

(�̂�ℎmin,𝑇 − 𝜌

𝐿∞ (𝐷) > 0.2‖𝜌‖𝐿∞ (𝐷)

)
≤ ℙ

(�̂�ℎmin,𝑇 − 𝔼�̂�ℎmin,𝑇


𝐿∞ (𝐷) > 0.2‖𝜌‖𝐿∞ (𝐷) − 𝐵(ℎmin)

)
≤ ℙ

(�̂�ℎmin,𝑇 − 𝔼�̂�ℎmin,𝑇


𝐿∞ (𝐷) > 0.1‖𝜌‖𝐿∞ (𝐷)

)
≤ ℙ

(�̂�ℎmin,𝑇 − 𝔼�̂�ℎmin,𝑇


𝐿∞ (𝐷) > Υℎmin,𝑇 (log𝑇)

)
≤ 𝑇−1,

(3.38)

where, for the function Υℎmin,𝑇 (·) defined according to (3.30), the last inequality follows from
Lemma 3.9 and the last but one inequality holds since there exists some constant 𝐶 such that

Υℎmin,𝑇 (log𝑇) ≤ 𝐶𝑇− 2
𝑑+2

(
(log𝑇) 6−2𝑑

𝑑+2 (log(𝑘) 𝑇)−
𝑑
𝑑+2 + (log𝑇) 6−3𝑑

𝑑+2 (log(𝑘) 𝑇)
2−𝑑

2(𝑑+2)
)

≤ 0.2‖𝜌‖𝐿∞ (𝐷) ,

for 𝑇 sufficiently large. Thus, we can conclude that 𝔼
[
‖ �̂�

ℎ̂𝑇 ,𝑇
− 𝜌‖𝐿∞ (𝐷) · 1{ℎ̂𝑇 ≥ℎ𝜌 }

]
∈ O(𝜎(ℎ𝜌, 𝑇)).

Case 2: For the case ℎ̂𝑇 < ℎ𝜌, note first that the previous bias and variance bounds together
with (3.38) imply that

𝔼
[
‖ �̂�

ℎ̂𝑇 ,𝑇
− 𝜌‖𝐿∞ (𝐷) · 1{ℎ̂𝑇<ℎ𝜌 }∩{M̃<0.8M}

]
≤

∑︁
ℎ∈ℋ𝑇 :ℎ<ℎ𝜌

𝔼
[ (
‖ �̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇 ‖𝐿∞ (𝐷) + 𝐵(ℎ)

)
· 1{ℎ̂𝑇=ℎ}∩{M̃<0.8M}

]
. log𝑇

(
C𝜎(ℎmin, 𝑇) + 𝐵(ℎ𝜌)

)√︃
ℙ(M̃ < 0.8M) = 𝑂(𝜎(ℎ𝜌, 𝑇)).

On the other hand,

𝔼
[
‖ �̂�

ℎ̂𝑇 ,𝑇
− 𝜌‖𝐿∞ (𝐷) · 1{ℎ̂𝑇<ℎ𝜌 }∩{0.8M≤M̃}

]
≤

∑︁
ℎ∈ℋ𝑇 :ℎ<ℎ𝜌

𝔼
[ (
‖ �̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇 ‖𝐿∞ (𝐷) + 𝐵(ℎ)

)
· 1{ℎ̂𝑇=ℎ}∩{0.8M≤M̃}

]
≤

∑︁
ℎ∈ℋ𝑇 :ℎ<ℎ𝜌

√︂
𝔼
[
‖ �̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇 ‖2𝐿∞ (𝐷)

]√︂
𝔼
[
1{ℎ̂𝑇 ≥ℎ𝜌 }∩{0.8M≤M̃}

]
+ 𝐵(ℎ𝜌)
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≤
∑︁

ℎ∈ℋ𝑇 :ℎ<ℎ𝜌

C𝜎(ℎ, 𝑇)
√︂
ℙ
(
{ℎ̂𝑇 ≥ ℎ𝜌} ∩ {0.8M ≤ M̃}

)
+ O(𝜎(ℎ𝜌, 𝑇)).

Pick any ℎ ∈ ℋ𝑇 such that ℎ < ℎ𝜌 and denote ℎ+ B min{𝑔 ∈ ℋ𝑇 : 𝑔 > ℎ} = 𝜂ℎ. It is then shown
as in the proof of Theorem 2 in [85] that the verification of the fact that the first sum on the rhs
of the last display is of order O(𝜎(ℎ𝜌, 𝑇)) boils down to proving that∑︁

ℎ∈ℋ𝑇 :ℎ<ℎ𝜌

𝜎(ℎ, 𝑇)©«
∑︁

𝑔∈ℋ𝑇 :𝑔≤ℎ
ℙ
(�̂�ℎ+,𝑇 − �̂�𝑔,𝑇


𝐿∞ (𝐷) >

√
0.8M𝜎(𝑔, 𝑇)

)ª®¬
1/2

∈ O(𝜎(ℎ𝜌, 𝑇)).

Following again the lines of [85], we obtain

ℙ
(�̂�ℎ+,𝑇 − �̂�𝑔,𝑇


𝐿∞ (𝐷) >

√
0.8M𝜎(𝑔, 𝑇)

)
≤ ℙ

(�̂�ℎ+,𝑇 − 𝔼�̂�ℎ+,𝑇

𝐿∞ (𝐷) >

1
4
√
0.8M𝜎(ℎ+, 𝑇)

)
+ ℙ

(�̂�𝑔,𝑇 − 𝔼�̂�𝑔,𝑇

𝐿∞ (𝐷) >

1
4
√
0.8M𝜎(𝑔, 𝑇)

)
.

Let 𝛾 ≥ 1. Clearly, by definition of 𝜎(𝑔, 𝑇), there exists 𝑇 (𝛾) > 0 such that, for any 𝑇 ≥ 𝑇 (𝛾) and
any 𝑔 ≤ ℎ𝜌, 𝑔 ∈ ℋ𝑇 , we have

1
4
√
0.8M𝜎(𝑔, 𝑇) ≥ 𝑐𝛾Υ𝑔,𝑇 (𝛾 log(𝑔−1)) = 𝑐𝛾

𝛾 log(𝑔−1) (log𝑇)2
𝑇𝑔𝑑

+ 𝜓𝑑 (𝑔𝑑)
√︂
𝛾 log(𝑔−1)

𝑇
,

where 𝑐𝛾 is the constant appearing in Lemma 3.9. Thus, using Lemma 3.9, we obtain for
𝑇 ≥ 𝑇 (𝛾) that

ℙ

(�̂�𝑔,𝑇 − 𝔼[�̂�𝑔,𝑇 ]

𝐿∞ (𝐷) >

1
4
√
0.8M𝜎(𝑔, 𝑇)

)
≤ e−𝛾 log(𝑔

−1) = 𝑔𝛾 C 𝜄𝛾 (𝑔)

and hence∑︁
𝑔∈ℋ𝑇 :𝑔≤ℎ

ℙ
(�̂�ℎ+,𝑇 − �̂�𝑔,𝑇


𝐿∞ (𝐷) >

√
0.8M𝜎(𝑔, 𝑇)

)
≤

∑︁
𝑔∈ℋ𝑇 :𝑔≤ℎ

(𝜄𝛾 (𝑔) + 𝜄𝛾 (ℎ+)) ≤ 2𝜄𝛾 (ℎ) log𝑇.

Thus, choosing 𝛾 large enough demonstrates that∑︁
ℎ∈ℋ𝑇 :ℎ<ℎ𝜌

𝜎(ℎ, 𝑇)©«
∑︁

𝑔∈ℋ𝑇 :𝑔≤ℎ
ℙ
(�̂�ℎ+,𝑇 − �̂�𝑔,𝑇


𝐿∞ (𝐷) >

√
0.8M𝜎(𝑔, 𝑇)

)ª®¬
1/2

≤
∑︁

ℎ∈ℋ𝑇 :ℎ<ℎ𝜌

𝜎(ℎ, 𝑇)
√︃
2𝜄𝛾 (ℎ) log𝑇 ≤

√︃
2ℎ𝛾𝜌(log𝑇)3𝜎(ℎmin, 𝑇) ∈ O(𝜎(ℎ𝜌, 𝑇)),

as desired. �

The convergence rates introduced in (3.31) clearly reflect the fact that the invariant density
of stochastic processes can be estimated faster than in the classical context of nonparametric
density estimation based on i.i.d. observations. While this is well-known for ergodic continuous
diffusion processes (see [59, 158]), we will show in the following section that the result is
fulfilled for a much larger class of stochastic processes. The additional log-factor occurring in the
definition of Ψ𝑑,𝛽 (·) represents the common price to be paid when switching from the pointwise
error control (described by Φ𝑑,𝛽 (·)) to bounding the sup-norm risk.
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Remark 3.12. (a) The conditions on the Hölder index 𝛽 stated in Theorem 3.11 are due to
two different reasons: On the one hand, in dimension 𝑑 ≤ 2, we chose a bandwidth not
depending on 𝛽 which still achieves the optimal balance between bias and stochastic error.
By choosing a bandwidth dependent on 𝛽 (as in Corollary 3.10), restrictions on 𝛽 could
be avoided. However, for the implementation of estimators it is advantageous to be able to
choose a bandwidth independent of the typically unknown smoothness 𝛽. On the other
hand, in dimension 𝑑 ≥ 3, the assumption on 𝛽 is an unavoidable effect. The coupling error
leaves us no other choice but to select the interval block length 𝑚𝑇 in the decomposition
of (3.27) of order log𝑇 , which forces 𝛽 > 2 to balance out bias and stochastic sensitivity
of the estimator. We emphasize that this is not an artifact of our proof strategy since the
additional log-factor also appears in the optimal Bernstein inequalities for geometrically
ergodic Markov chains in [1, 114]. The restriction on 𝛽 can therefore be considered as a
price that must be paid for the generality of our exponential 𝛽-mixing assumption.

(b) The logarithmic gap (of arbitrary iterative order 𝑘) between the adaptive rate (see (3.36))
and the optimal rate Ψ𝑑,𝛽 in dimension 𝑑 ≥ 3 (see (3.31)) is not a consequence of
suboptimality of arguments used in the proof. Rather, it is a deliberate choice motivated
by our desire to introduce a truly adaptive selection procedure that does not rely on the
specification of obscure constants. To be more precise, a key step in the proof of the upper
bound for the adaptive approach requires quantifying the concentration of the estimator
�̂�ℎ,𝑇 around the variance proxy 𝜎(ℎ, 𝑇) from (3.35), which is handled with the deviation
inequality from Lemma 3.9 involving the term Υℎ,𝑇 (𝛾 log𝑇) (see (3.30)). If we remove the
factor log(𝑘) 𝑇 in the variance proxy 𝜎(ℎ, 𝑇), we obtain

(log𝑇)2
𝑇ℎ𝑑

log(ℎ−1) + 𝜓𝑑 (ℎ𝑑)
√︂

log(ℎ−1)
𝑇

' Υℎ,𝑇 (𝛾 log𝑇).

In this case, an exact quantification of the constant 𝑐𝛾 from Lemma 3.9 is mandatory,
which would then be included as an additional factor in the specification of ℎ̂𝑇 in (3.34).
Together with an adjustment of the candidate bandwidths ℋ𝑇 , this would allow us to close
the logarithmic gap and hence obtain optimal rates for the adaptive procedure.
However, 𝑐𝛾 is of the form 𝛾 × 𝐶(𝐷, 𝐿, 𝜅, 𝑐𝜅, 𝑐2)—where we recall that 𝑐𝜅, 𝜅 determine the
mixing coefficient and 𝑐2 is a constant appearing in the heat kernel bound from Assumption
(𝒜1)—and therefore can only be bounded with explicit knowledge/assumptions on the
process. We avoid this fundamental problem in our procedure to not shift the problem
from unknown exact smoothness to unknown exact ergodic and small time behavior, with
the price to be paid being a logarithmic loss. In this regard, our approach differs from
the bandwidth selection procedure for the 𝐿2 risk in [12], which relies on the choice of
a “sufficiently large” constant 𝑘 that cannot be exactly specified or efficiently chosen in a
data-driven way.

3.4 Examples

Our previous results rely on the very general conditions (𝒜0) and (𝒜1) as well as assumptions
related to the speed of convergence to the invariant distribution, (𝒜2) and (𝒜𝛽). For statistical
purposes, however, it is essential to derive results under conditions on the coefficients of the
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underlying process as easily verifiable as possible. For this reason, this section is devoted
to investigating specific classes of jump diffusion processes and explicit conditions on their
underlying characteristics such that the above assumptions are satisfied and hence statistical
conclusions can be drawn from our general theory.

3.4.1 Lévy-driven Ornstein–Uhlenbeck processes
As a first example we discuss estimation rates of 𝑑-dimensional Lévy-driven Ornstein–Uhlenbeck
processes as representatives of Lévy-driven jump diffusions with unbounded drift coefficient by
establishing assumptions on the characteristics of the Lévy process that guarantee 𝑿 ∈ 𝚺 ∪ 𝚯.
Let 𝒁 be a 𝑑-dimensional Lévy process with generating triplet (𝑎, 𝑄, 𝜈), where 𝑎 ∈ ℝ𝑑 , 𝑄 ∈ ℝ𝑑×𝑑

is a symmetric positive semidefinite matrix and 𝜈 is a measure on ℝ𝑑 satisfying 𝜈({0}) = 0 and∫
ℝ𝑑 (1 ∧ ‖𝑥‖2) 𝜈(d𝑥) < ∞ such that 𝔼0 [exp(i〈𝑍1, 𝜃〉)] = exp(𝜓(𝜃)) with

𝜓(𝜃) = i〈𝑎, 𝜃〉 − 1
2
〈𝑄𝜃, 𝜃〉 +

∫
ℝ𝑑\{0}

(
ei〈𝑥,𝜃〉 − 1 − i〈𝑥, 𝜃〉𝟙𝐵(0,1) (𝑥)

)
𝜈(d𝑥), 𝜃 ∈ ℝ𝑑 ,

where 𝐵(0, 1) = {𝑥 ∈ ℝ𝑑 : ‖𝑥‖ < 1}. Then, given some matrix 𝐵 ∈ ℝ𝑑×𝑑, a Lévy driven
Ornstein–Uhlenbeck process 𝑿 is a solution to the SDE

d𝑋𝑡 = −𝐵𝑋𝑡 d𝑡 + d𝑍𝑡,

given by

𝑋𝑡 = e−𝑡𝐵𝑋0 +
∫ 𝑡

0
e−(𝑡−𝑠)𝐵 d𝑍𝑠, 𝑡 ≥ 0.

We suppose that the real parts of all eigenvalues of 𝐵 are positive, implying that e−𝑡𝐵 → 𝟘𝑑×𝑑 as
𝑡 → ∞, and assume the following moment condition∫

‖𝑧 ‖>2
log‖𝑧‖ 𝜈(d𝑧) < ∞. (3.39)

Then, 𝑿 is a Markov process on ℝ𝑑 with invariant distribution 𝜇 such that

{ℱ𝜇}(𝑢) = exp
( ∫ ∞

0
𝜓
(
e−𝑠𝐵

>
𝑢
)
d𝑠

)
, 𝑢 ∈ ℝ𝑑 ,

and 𝜑𝑥
𝑋𝑡
(𝑢) = exp

(
i〈𝑥, e−𝑡𝐵>𝑢〉 +

∫ 𝑡

0
𝜓
(
e−𝑠𝐵

>
𝑢
)
d𝑠

)
, 𝑢, 𝑥 ∈ ℝ𝑑 , 𝑡 > 0,

see [148, Theorem 3.1, Theorem 4.1]. Let us now introduce the following conditions.

(𝒪1) rank(𝑄) = 𝑑;

(𝒪2)
∫
{ ‖𝑥 ‖>1}‖𝑥‖

𝑝 𝜈(d𝑥) < ∞ for some 𝑝 > 0.

(𝒪3)
∫
{ ‖𝑥 ‖>1} (log‖𝑥‖)

𝛼 𝜈(d𝑥) < ∞ for some 𝛼 > 2;

These assumptions are borrowed from [125], [123] and [103], where (sub-)exponential ergod-
icity and exponential 𝛽-mixing of OU-processes are investigated. (𝒪1) guarantees the strong
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Feller property of 𝑿 and the existence of a C∞
𝑏
-density for 𝑃𝑡 (𝑥, ·), 𝑥 ∈ ℝ𝑑 ([125, Theorem 3.1]).

Similar arguments to the ones in [125, Theorem 3.2] also show that under (𝒪1), 𝜇 admits a
C∞
𝑏
-density 𝜌. (𝒪2) and (𝒪3) are moment assumptions on 𝒁, where (𝒪3) in absence of (𝒪2)

corresponds to an extremely heavy tailed distribution and represents a minor strengthening of
the necessary and sufficient criterion (3.39) for stationarity of 𝑿.

Based on the results from [103, 123, 125] together with our investigations in Sections 3.1
and 3.3, we can obtain the following result.

Theorem 3.13. Suppose that (𝒪1) holds. Then, in any dimension 𝑑 ∈ ℕ, (𝒜1) holds with
sup
𝑥,𝑦∈ℝ𝑑

𝑝𝑡 (𝑥, 𝑦) . 𝑡−𝑑/2, 𝑡 ∈ (0, 1]. (3.40)

If additionally,
(i) (𝒪2) holds for some 𝑝 > 0, then for any 𝑑 ≥ 1, 𝑿 ∈ 𝚺 ∩ 𝚯;
(ii) (𝒪3) holds, then for 𝑑 = 1, 𝑿 ∈ 𝚯.

Let 𝑑 ≥ 1 in scenario (i) and 𝑑 = 1 in scenario (ii). Then, for arbitrary 𝛽 > 0 we obtain for any
𝑥 ∈ ℝ𝑑 , that

𝔼
[ (
�̂�ℎ,𝑇 (𝑥) − 𝜌(𝑥)

)2] ∈ O
(
Φ2
𝑑,𝛽 (𝑇)

)
, if ℎ = ℎ(𝑇) ∼

{
𝑇−1, 𝑑 ≤ 2,
𝑇−1/(2𝛽+𝑑−2) , 𝑑 ≥ 3.

and for any bounded, open domain 𝐷 ⊂ ℝ𝑑 and 𝑝 ≥ 1 that in scenario (i)

𝔼
[�̂�ℎ,𝑇 − 𝜌

𝑝
𝐿∞ (𝐷)

]1/𝑝
∈ O

(
Ψ𝑑,𝛽 (𝑇)

)
, if ℎ = ℎ(𝑇) ∼


log2 𝑇/

√
𝑇, 𝑑 = 1,

log𝑇/𝑇1/4, 𝑑 = 2,
(log𝑇/𝑇)1/(2𝛽+𝑑−2) , 𝑑 ≥ 3.

Remark 3.14. (i) Since we can choose 𝛽 > 0 arbitrarily large, we make the remarkable
observation that in the scenarios described above, for any 𝜀 > 0 we can obtain the almost
superoptimal rates 𝑇−(1+𝜀) and (log𝑇/𝑇)1/(2(1+𝜀)) in any dimension 𝑑 ≥ 3 for the pointwise
𝐿2 and sup-norm risk, respectively. Moreover, in any dimension, an adaptive choice of the
bandwidth is not necessary.

(ii) We emphasize that this result demonstrates that even under much less stringent assump-
tions (logarithmic moments and unbounded drift) compared to the class of processes
studied in the next section, there are examples of Lévy driven jump diffusions for which
optimal estimation results are feasible. It is therefore an interesting question for future
research to determine more general coefficient assumptions based on a linear growth
condition on the drift that yield optimal estimation properties.

Proof of Theorem 3.13. Let us first verify that under (𝒪1) the heat kernel bound (𝒜1) holds.
Arguing as in the proof of Theorem 3.2 of Masuda [125], we see that ℱ𝜇 and 𝜑𝑥

𝑋𝑡
are integrable

for any 𝑥 ∈ ℝ and 𝑡 > 0 and hence we can obtain the invariant density 𝜌 and the transition
density 𝑝𝑡 of 𝑿 via inverse Fourier transformation through

𝜌(𝑦) = 1
(2𝜋)𝑑

∫
ℝ𝑑

e−i〈𝑦,𝜆 〉{ℱ𝜇}(𝜆) d𝜆, 𝑦 ∈ ℝ𝑑 ,
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and
𝑝𝑡 (𝑥, 𝑦) =

1
(2𝜋)𝑑

∫
ℝ

e−i〈𝑦,𝜆 〉𝜑𝑥
𝑋𝑡
(𝜆) d𝜆, 𝑥, 𝑦 ∈ ℝ𝑑 , 𝑡 > 0.

Again, as in the proof of Theorem 3.2 in [125], it follows that under (𝒪1),��𝜑𝑥
𝑋𝑡
(𝜆)

�� ≤ exp
(
− 1

2
𝜆>

( ∫ 𝑡

0
e−𝑠𝐵𝑄e−𝑠𝐵

>
d𝑠

)
𝜆
)
, 𝑥, 𝜆 ∈ ℝ𝑑 , 𝑡 > 0. (3.41)

Thus, using the characterization of the multivariate normal distribution, we obtain

𝑝𝑡 (𝑥, 𝑦) ≤
1

(2𝜋)𝑑

∫
ℝ𝑑

exp
(
− 1

2
𝜆>

( ∫ 𝑡

0
e−𝑠𝐵𝑄e−𝑠𝐵

>
d𝑠

)
𝜆
)
d𝜆

=
1

(2𝜋)𝑑/2
(
det

( ∫ 𝑡

0
e−𝑠𝐵𝑄e−𝑠𝐵

>
d𝑠

))−1/2
.

Observing that

lim
𝑡↓0

𝑡𝑑/2
(
det

( ∫ 𝑡

0
e−𝑠𝐵𝑄e−𝑠𝐵

>
d𝑠

))−1/2
=

(
det

(
lim
𝑡↓0

1
𝑡

∫ 𝑡

0
e−𝑠𝐵𝑄e−𝑠𝐵

>
d𝑠

))−1/2
= det(𝑄)−1/2 < ∞,

where finiteness is a consequence of invertibility of 𝑄 by (𝒪1), it follows that for any 𝑑 ≥ 1,
there exists a constant 𝑐 > 0 such that

sup
𝑥,𝑦∈ℝ𝑑

𝑝𝑡 (𝑥, 𝑦) ≤ 𝑐𝑡−𝑑/2, 𝑡 ∈ (0, 1].

Thus indeed, for any dimension 𝑑 ∈ ℕ, (𝒜1) holds. Next, in scenario (i), [125, Theorem 4.3]
gives the exponential 𝛽-mixing property and the proof of Theorem 2.6 in [123] along with [123,
Proposition 3.8] yields 𝑉-exponential ergodicity with 𝑉 (𝑥) ∼ (1 + ‖𝑥‖ 𝑝). This together with
(3.40) entails that in scenario (i), we have 𝑿 ∈ 𝚺∩𝚯. Finally, 𝑿 ∈ 𝚯 in scenario (ii) follows from
the considerations above and Lemma 3.4 due to the fact that the combination of (𝒪1) and the
logarithmic moment condition imply that every compact set is small and hence petite since 𝑿 is
strong Feller and by [99, Theorem 3.1] ergodic (see Proposition 2.11) and hence (𝒪3) implies
𝑉-polynomial ergodicity of degree 𝛼 − 1 > 1 with 𝑉 (𝑥) = 𝐶(log|𝑥 |)𝛼 in dimension 𝑑 = 1 by [103,
Corollary 1]. The statements on the estimation rates are now an immediate consequence of
Corollary 3.10 and Theorem 3.11 and the fact that 𝜌 ∈ C∞

𝑏
has arbitrary Hölder smoothness. �

3.4.2 Non-reversible Lévy-driven jump diffusion processes
The goal of this section is to show that solutions of the 𝑑-dimensional SDE, 𝑑 ∈ ℕ,

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏(𝑋𝑠) d𝑠 +

∫ 𝑡

0
𝜎(𝑋𝑠) d𝑊𝑠 +

∫ 𝑡

0

∫
ℝ𝑑

𝛾(𝑋𝑠−)𝑧 𝑁 (d𝑠, d𝑧) (3.42)

satisfy assumptions (𝒜0), (𝒜1) and (𝒜𝛽) which then allows using Theorem 3.11 to bound
the sup-norm risk of the kernel invariant density estimator. Here, 𝜎 : ℝ𝑑 → ℝ𝑑×𝑑 , 𝛾 : ℝ𝑑 →
ℝ𝑑×𝑑 , 𝑏 : ℝ𝑑 → ℝ𝑑 ,𝑊 denotes an ℝ𝑑-valued Brownian motion, 𝑁 is a Poisson random measure
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on [0,∞) × ℝ𝑑\{0} with intensity measure 𝜇(d𝑠, d𝑧) = d𝑠 ⊗ 𝜈(d𝑧), and 𝑁 denotes the com-
pensated Poisson random measure. Moreover, 𝜈 is a Lévy measure and we assume that 𝑁,𝑊
and 𝑋0 are independent. Note that, if 𝑧 ↦→ 𝛾(𝑥)𝑧 is in 𝐿1(ℝ𝑑\{𝐵1}, 𝜈) for all 𝑥 ∈ ℝ𝑑 , (3.42) is
equivalent to

𝑋𝑡 = 𝑋0 +
∫ 𝑡

0
𝑏∗(𝑋𝑠) d𝑠 +

∫ 𝑡

0
𝜎(𝑋𝑠) d𝑊𝑠

+
∫ 𝑡

0

∫
‖𝑧 ‖≤1

𝛾(𝑋𝑠−)𝑧 𝑁 (d𝑠, d𝑧) +
∫ 𝑡

0

∫
|𝑧 |>1

𝛾(𝑋𝑠−)𝑧 𝑁 (d𝑠, d𝑧),
(3.43)

with 𝑏∗(𝑥) B 𝑏(𝑥) −
∫
‖𝑧 ‖>1 𝛾(𝑥)𝑧 𝜈(𝑑𝑧) and 𝐵1 B {𝑧 ∈ ℝ𝑑 : ‖𝑧‖ ≤ 1}. We assume the following.

(𝒥1) The functions 𝑏, 𝛾, 𝜎 are globally Lipschitz continuous, 𝑏 and 𝛾 are bounded, and, for 𝕀𝑑×𝑑
denoting the 𝑑 × 𝑑-identity matrix, there exists a constant 𝑐 ≥ 1 such that

𝑐−1𝕀𝑑×𝑑 ≤ 𝜎𝜎> ≤ 𝑐𝕀𝑑×𝑑 ,

where the ordering is in the sense of Loewner for positive semi-definite matrices.

(𝒥2) 𝜈 is absolutely continuous wrt. the Lebesgue measure and, for an 𝛼 ∈ (0, 2),

(𝑥, 𝑧) ↦→ ‖𝛾(𝑥)𝑧‖𝑑+𝛼𝜈(𝑧)

is bounded and measurable, where, by abuse of notation, we denoted the density of 𝜈 also
by 𝜈. Furthermore, if 𝛼 = 1,∫

𝑟< ‖𝛾 (𝑥)𝑧 ‖≤𝑅
𝛾(𝑥)𝑧 𝜈(d𝑧) = 0, for any 0 < 𝑟 < 𝑅 < ∞, 𝑥 ∈ ℝ𝑑 .

(𝒥3) There exist 𝑐1, 𝑐2 > 0 and 𝜂0 > 0 such that

〈𝑥, 𝑏(𝑥)〉 ≤ −𝑐1‖𝑥‖, ∀𝑥 : ‖𝑥‖ ≥ 𝑐2, and
∫
ℝ𝑑

‖𝑧‖2e𝜂0 ‖𝑧 ‖𝜈(d𝑧) < ∞.

In [12], the authors also investigate 𝐿2 invariant density estimation for jump diffusions and
use a similar approach for formulating requirements on the diffusion coefficients which imply
their respective heat kernel bound and mixture assumptions. The conditions however are more
restrictive and, in particular, the case of continuous diffusions cannot be handled within their
framework since it requires supp(𝜈) = ℝ𝑑 and det(𝛾(𝑥)) > 𝑐 for some constant 𝑐 > 0 and all
𝑥 ∈ ℝ𝑑 . In [13], the authors improve the 𝐿2 rate for dimension 𝑑 = 1 from [12] to the parametric
rate 1/𝑇 by imposing an additional smoothness restriction on the jump measure. Our main
contribution in this section is to show that under the less stringent assumptions above, optimal
convergence rates can be achieved not only wrt. the 𝐿2 risk but even wrt. sup-norm risk in any
dimension.

Note that (𝒥1) and (𝒥3) directly imply 𝛾(𝑥)𝑧 ∈ 𝐿1(ℝ𝑑\{𝐵1}, 𝜈), so (3.42) and (3.43) are
equivalent. The subsequent lemma shows that, under the given assumptions, there exists a
pathwise unique strong solution for (3.42) and that the conditions of Corollary 1.5 of [47] hold,
implying the heat kernel bound (3.44). All proofs can be found in Appendix 3.B.
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Lemma 3.15. Let (𝒥1)–(𝒥3) hold. Then, (3.42) admits a càdlàg, non-explosive, pathwise unique,
strong solution possessing the strong Markov property, and the assumptions (H𝛼) and (H𝜅) of [47]
hold.

Let 𝑿 be the unique solution of (3.42) described in Lemma 3.15.

Corollary 3.16. Let (𝒥1)–(𝒥3) hold. Then, transition densities (𝑝𝑡)𝑡>0 exist and there are
constants 𝐶, 𝜆 > 1 such that the solution 𝑿 of (3.42) satisfies the following heat kernel estimate for
all 𝑥, 𝑦 ∈ ℝ𝑑 , 0 < 𝑡 ≤ 1,

𝐶−1(𝑡−𝑑/2 exp(−𝜆‖𝑥 − 𝑦‖2/𝑡) + (inf𝑥∈ℝ𝑑 ess inf𝑧∈ℝ𝑑 𝜅𝛼(𝑥, 𝑧))𝑡(‖𝑥 − 𝑦‖ + 𝑡1/2)−𝑑−𝛼)
≤ 𝑝𝑡 (𝑥, 𝑦) ≤ 𝐶(𝑡−𝑑/2 exp(−‖𝑥 − 𝑦‖2/(𝜆𝑡)) + ‖𝜅𝛼‖∞𝑡(‖𝑥 − 𝑦‖ + 𝑡1/2)−𝑑−𝛼),

(3.44)

where 𝜅𝛼(𝑥, 𝑧) = ‖𝛾(𝑥)𝑧‖𝑑+𝛼𝜈(𝑧). In particular, assumption (𝒜1) is satisfied.

Now our goal is to show that the solution 𝑿 of (3.42) fulfills the fundamental assumption
(𝒜0+) and exponential ergodicity along with the mixing property (𝒜𝛽). First, observe that
(𝒥1) implies that 𝑏 ∈ C𝑏(ℝ𝑑;ℝ𝑑) and 𝜎, 𝛾 ∈ C𝑏(ℝ𝑑;ℝ𝑑×𝑑) and hence Theorem 6.7.4 in [14]
guarantees that the unique càdlàg Markov process 𝑿 solving (3.42) is Feller and therefore Borel
right. Further, Corollary 3.16 in particular implies the existence of bounded transition densities
and thus, by Lemma 3.5, it suffices to show the existence of an invariant distribution. This will be
done as a byproduct while proving exponential ergodicity and the exponential mixing property
(𝒜𝛽). For this, we will employ results of Masuda [123] which are again based on the theory of
stability of continuous-time Markov processes of Meyn and Tweedie [132]. These lead us to the
following proposition.

Proposition 3.17. Grant assumptions (𝒥1)–(𝒥3). Then, an invariant distribution exists, 𝑿 is 𝑉-
exponentially ergodic with locally bounded 𝑉 and the process 𝑿 started in the invariant distribution
𝜇 is exponentially 𝛽-mixing.

Gathering the results of Corollary 3.16 and Proposition 3.17 and employing Lemma 3.4 now
yields that (𝒜0)–(𝒜2) and (𝒜𝛽) are fulfilled for the solution 𝑿 of (3.42), i.e., 𝑿 ∈ 𝚺 ∩ 𝚯. In
particular, the results from Section 3.3 can be applied.

Theorem 3.18. Let 𝐷 ⊂ ℝ𝑑 be open and bounded and assume (𝒥1)–(𝒥3). If 𝜌|𝐷 ∈ H𝐷 (𝛽, L) with
𝛽 ∈ (1, �+1] for 𝑑 = 1 and 𝛽 ∈ (2, �+1] for 𝑑 ≥ 2, then, the sup-norm risk of the kernel estimator
defined in (3.27) is of order

𝔼
[
‖ �̂�ℎ,𝑇−𝜌‖ 𝑝𝐿∞ (𝐷)

]1/𝑝
∈


O(

√︁
log𝑇/𝑇), 𝑑 = 1,

O(log𝑇/
√
𝑇), 𝑑 = 2,

O
(
(log𝑇/𝑇)𝛽/(2𝛽+𝑑−2)

)
, 𝑑 ≥ 3,

if ℎ ∼


log2 𝑇/

√
𝑇, 𝑑 = 1,

log𝑇/𝑇1/4, 𝑑 = 2,
(log𝑇/𝑇)−1/(2𝛽+𝑑−2) , 𝑑 ≥ 3.

for any 𝑝 ≥ 1. If ℎ̂𝑇 ≡ ℎ̂
(𝑘)
𝑇 is chosen adaptively according to (3.34) for some 𝑘 ∈ ℕ, then for any

𝑑 ≥ 3,

𝔼
[�̂�

ℎ̂𝑇
− 𝜌


𝐿∞ (𝐷)

]
∈ O

(( log(𝑘) 𝑇 log𝑇
𝑇

) 𝛽/(2𝛽+𝑑−2) )
.
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Moreover, for any 𝑥 ∈ ℝ𝑑 such that 𝜌|𝐷 ∈ H𝐷 (𝛽, L) for some 𝛽 ∈ (0, � + 1] and a neighborhood 𝐷
of 𝑥, we have the pointwise 𝐿2 risk estimate

𝔼
[ (
�̂�ℎ,𝑇 (𝑥) − 𝜌(𝑥)

)2] ∈


O(1/𝑇), 𝑑 = 1,
O(log𝑇/𝑇), 𝑑 = 2,
O

(
𝑇−2𝛽/(2𝛽+𝑑−2) ) , 𝑑 ≥ 3,

if ℎ ∼
{
𝑇−1/𝛾, 𝑑 ≤ 2, 𝛾 ≤ 𝛽,

𝑇−1/(2𝛽+𝑑−2) , 𝑑 ≥ 3.

3.A Proof of Lemma 3.9

For the proof of the bounds on the stochastic error, we start with the following preparatory
lemma that provides bounds of the covering numbers of the function class G introduced in (3.29)
with respect to the norms appearing in Theorem 3.7. By a slight abuse of notation, we do not
distinguish notationally between the sup-norm on ℝ𝑑 and the function space B𝑏(ℝ𝑑).

Lemma 3.19. Let 𝐷 ⊂ ℝ𝑑 be a bounded set and, given some Lipschitz continuous kernel 𝐾 with
Lipschitz constant 𝐿 and compact support [−1/2, 1/2]𝑑, define the function class G according to
(3.29). Then, for any 𝜀 > 0,

N(𝜀, G, ‖·‖𝑑∞) ≤
(4𝐿diam(𝐷)

𝜀ℎ

)𝑑
,

and if moreover 𝑿 ∈ 𝚺 ∪ 𝚯, then there exists a constant 𝔸 > 0 such that, for any 𝜀 > 0 and 𝑡 > 0,

N(𝜀, G, ‖·‖𝔾,𝑡) ≤
(2𝐿diam(𝐷)

√︁
𝔸‖𝜌‖∞ℎ𝑑−1𝜓𝑑 (ℎ𝑑)
𝜀

)𝑑
.

Proof. For 𝑥 ∈ ℝ𝑑 , we obtain by Lipschitz continuity of 𝐾 that

𝐵𝑑∞
(
𝐾
(
(𝑥 − ·)/ℎ

)
, 𝜀

)
=

{
𝐾
(
(𝑦 − ·)/ℎ

)
: 𝑦 ∈ ℝ𝑑 ,

𝐾 (
(𝑥 − ·)/ℎ

)
− 𝐾

(
(𝑦 − ·)/ℎ

)
∞ ≤ 𝜀

}
⊃

{
𝐾
(
(𝑦 − ·)/ℎ

)
: 𝑦 ∈ ℝ𝑑 , ‖𝑥 − 𝑦‖∞ ≤ 𝜀ℎ/(2𝐿)

}
.

(3.45)

Let 𝑄 ⊃ 𝐷 be a cube of side length diam(𝐷) < ∞ and choose for

𝑛 B
( ⌊2𝐿diam(𝐷)

𝜀ℎ

⌋ )𝑑
points 𝑥1, . . . , 𝑥𝑛 ∈ 𝑄 such that

{
𝐵𝑑∞ (𝑥𝑖, 𝜀ℎ/(2𝐿)) : 𝑖 = 1, . . . 𝑛

}
covers 𝑄 and therefore 𝐷. From

(3.45), it follows that
{
𝐵𝑑∞

(
𝐾
(
(𝑥𝑖 − ·)/ℎ

)
, 𝜀

)
: 𝑖 = 1, . . . 𝑛

}
is an external covering of G. The

external covering number Next(𝜀, G, 𝑑∞) is thus bounded by (2𝐿diam(𝐷)/(𝜀ℎ))𝑑 . Hence,

N(𝜀, G, 𝑑∞) ≤ Next(𝜀/2, G, 𝑑∞) ≤
(4𝐿diam(𝐷)

𝜀ℎ

)𝑑
.

Similarly, for
G̃ = {𝐾 (𝑥 − ·)/ℎ) : 𝑥 ∈ 𝐷 ∩ℚ𝑑}, (3.46)

we obtain
N(𝜀, G̃, 𝑑∞) ≤

(2𝐿diam(𝐷)
𝜀ℎ

)𝑑
.
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The variance term is bounded by means of Propositions 3.1 and 3.6, respectively. In case 𝑑 = 1
for 𝑿 ∈ 𝚺 or any dimension for 𝑿 ∈ 𝚯, boundedness of 𝜌, Proposition 3.1 and (3.17) yield that,
for ℎ ∈ (0, 1) and some constant 𝐶 independent of 𝝀(supp(𝐾 ((𝑥 − ·)/ℎ))) = ℎ𝑑 ,

Var
(∫ 𝑇

0
𝐾

(
𝑥 − 𝑋𝑡

ℎ

)
d𝑡

)
≤ 𝐶(1 ∨ 𝑐�̃�)𝑇 ‖𝐾‖

2
∞‖𝜌‖∞ℎ2𝑑𝜓2

𝑑 (ℎ
𝑑),

where �̃� is a compact set containing 𝐷+ [−1/2, 1/2]𝑑 . Hence, for any dimension 𝑑 and 𝑿 ∈ 𝚺∪𝚯,
we obtain together with Proposition 3.6 that there exists some global constant 𝔸 independent
of ℎ such that for any ℎ ∈ (0, 1), 𝑡 > 0 and 𝑔 ∈ G̃,

Var
( 1
√
𝑡

∫ 𝑡

0
𝑔(𝑋𝑠) d𝑠

)
≤ 𝔸‖𝑔‖2∞‖𝜌‖∞ℎ2𝑑𝜓2

𝑑 (ℎ
𝑑), (3.47)

and hence
‖𝑔‖𝔾,𝑡 ≤

√︁
𝔸‖𝜌‖∞ℎ𝑑𝜓𝑑 (ℎ𝑑)‖𝑔‖∞. (3.48)

Consequently, with the first part of the proof we obtain

N(𝜀, G, ‖·‖𝔾,𝑡) = N(𝜀, G̃, ‖·‖𝔾,𝑡) ≤ N(𝜀(
√︁
𝔸‖𝜌‖∞ℎ𝑑𝜓𝑑 (ℎ𝑑))−1, G̃, ‖·‖∞)

≤
(2𝐿diam(𝐷)

√︁
𝔸‖𝜌‖∞ℎ𝑑−1𝜓𝑑 (ℎ𝑑)
𝜀

)𝑑
.

�

Proof of Lemma 3.9. Let 𝑿 ∈ 𝚯 ∪ 𝚺. We start with bounding 𝔼[sup𝑥∈𝐷 |ℍℎ,𝑇 (𝑥) |𝑝]. Let 𝑚𝑇 ∈
(0, 𝑇/4] and 𝜏 ∈ [𝑚𝑇 , 2𝑚𝑇 ] as in Theorem 3.7. Using (3.48) and sup

𝑓 ,𝑔∈G̃ ‖ 𝑓 − 𝑔‖∞ ≤ 2‖𝐾‖∞
for G̃ defined in (3.46), we obtain

sup
𝑓 ,𝑔∈G̃

‖ 𝑓 − 𝑔‖𝔾,𝜏 ≤
√︁
𝔸‖𝜌‖∞ sup

𝑓 ,𝑔∈G̃
‖ 𝑓 − 𝑔‖∞ℎ𝑑𝜓𝑑 (ℎ𝑑) ≤ 2

√︁
𝔸‖𝜌‖∞‖𝐾‖∞ℎ𝑑𝜓𝑑 (ℎ𝑑) C 𝕍 (ℎ),

(3.49)
such that N(𝑢, G̃, ‖ · ‖𝔾,𝜏) = 1 for 𝑢 ≥ 𝕍 (ℎ). Consequently, using the estimate

∫ 𝐶
0

√︁
log(𝑀/𝑢) d𝑢 ≤

4𝐶
√︁
log(𝑀/𝐶) provided log(𝑀/𝐶) ≥ 2, see e.g. p. 592 of Giné and Nickl [85], and the covering

number bound from Lemma 3.19, it follows for ℎ ≤ e−2𝐿diam(𝐷)/‖𝐾‖∞ that∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝜏) d𝑢 =

∫ ∞

0

√︃
logN(𝑢, G̃, 𝑑𝔾,𝜏) d𝑢 ≤

∫ 𝕍 (ℎ)

0

√︄
𝑑 log

(
𝐿diam(𝐷)𝕍 (ℎ)

𝑢ℎ‖𝐾‖∞

)
d𝑢

≤ 2𝕍 (ℎ)

√︄
𝑑 log

(
𝐿diam(𝐷)
‖𝐾‖∞ℎ

)
.

Moreover, since sup 𝑓 ,𝑔∈G‖ 𝑓 − 𝑔‖∞ ≤ 4‖𝐾‖∞, it follows that N(𝑢, G, 𝑑∞) = 1 for all 𝑢 ≥ 4‖𝐾‖∞
and hence we obtain by the covering number bound with respect to the sup-norm from Lemma
3.19 and elementary calculations∫ ∞

0
logN

(
𝑢, G, 2𝑚𝑇√

𝑇
𝑑∞

)
d𝑢 = 2𝑚𝑇√

𝑇

∫ 4‖𝐾 ‖∞

0
logN(𝑢, G, 𝑑∞) d𝑢 ≤ 8𝑚𝑇√

𝑇
𝑑‖𝐾‖∞

(
1+ log

( 𝐿diam(𝐷)
‖𝐾‖∞ℎ

))
.



58 Chapter 3. Markovian statistics under mixing assumptions

Denseness of ℚ𝑑 in ℝ𝑑, continuity of 𝑥 ↦→ ℍℎ,𝑇 (𝑥) and Theorem 3.7 thus imply for ℎ ≤
e−2𝐿diam(𝐷)/‖𝐾‖∞(

𝔼
[
sup
𝑥∈𝐷

|ℍℎ,𝑇 (𝑥) |𝑝
] )1/𝑝

=

(
𝔼
[

sup
𝑥∈𝐷∩ℚ𝑑

|ℍℎ,𝑇 (𝑥) |𝑝
] )1/𝑝

≤ 1
√
𝑇ℎ𝑑

(
8𝐶1

𝑚𝑇√
𝑇
𝑑‖𝐾‖∞

(
1 + log

(
𝐿diam(𝐷)
‖𝐾‖∞ℎ

))
+ 2𝐶2𝕍 (ℎ)

√︄
𝑑 log

(
𝐿diam(𝐷)
‖𝐾‖∞ℎ

)
+ 16

𝑚𝑇√
𝑇
‖𝐾‖∞ �̃�1𝑝 + 2𝕍 (ℎ) �̃�2

√
𝑝 + 4‖𝐾‖∞

√
𝑇Ξ(𝑚𝑇 )1/𝑝

)
,

(3.50)

for 𝕍 (ℎ) introduced in (3.49). Now, let 𝑝 = 𝑢𝑇 ≥ 1 be such that Ξ−1(𝑇−𝑢𝑇 ) ∈ o(𝑇). Then, for 𝑇
large enough, (3.50), ℎ ≥ 𝑇−2 and ℎ ∈ o(1) imply for the choice 𝑚𝑇 = Ξ−1(𝑇−𝑢𝑇 ) that

𝔼
[�̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇

𝑢𝑇
𝐿∞ (𝐷)

]
≤ 𝑐𝑢𝑇

(
log𝑇
𝑇ℎ𝑑

Ξ−1(𝑇−𝑢𝑇 ) + 𝑇− 1
2𝜓𝑑 (ℎ𝑑)

√︁
log(ℎ−1) + 𝑢𝑇

𝑇ℎ𝑑
Ξ−1(𝑇−𝑢𝑇 ) + 𝑇− 1

2𝜓𝑑 (ℎ𝑑)
√
𝑢𝑇 + ℎ−𝑑𝑇−1

)𝑢𝑇
≤ 𝑐𝑢𝑇

(
log𝑇 + 𝑢𝑇

𝑇ℎ𝑑
Ξ−1(𝑇−𝑢𝑇 ) + 𝑇− 1

2𝜓𝑑 (ℎ𝑑)
(√︁

log(ℎ−1) + √
𝑢𝑇

) )𝑢𝑇
,

where the value of the constant 𝑐 changes from line to line. Hence Markov’s inequality implies
that there exists some constant 𝑐∗ > 0 such that

ℙ

(�̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇

𝐿∞ (𝐷) ≥ 𝑐∗

(
𝑢𝑇 + log𝑇

𝑇ℎ𝑑
Ξ−1(𝑇−𝑢𝑇 ) + 𝑇− 1

2𝜓𝑑 (ℎ𝑑)
√︁
𝑢𝑇 ∨ log(ℎ−1)

))
≤ e−𝑢𝑇 .

(3.51)

Suppose now that 𝑿 ∈ 𝚺. Then, 𝑿 is exponentially 𝛽-mixing, i.e., Ξ(𝑡) = 𝑐𝜅e−𝜅𝑡, where without
loss of generality we may assume that 𝑐𝜅 ≥ 1. Then, for any 𝛾 > 0 and 1 ≤ 𝑢𝑇 ≤ 𝛾 log𝑇 , it
follows from Ξ−1(𝑇−𝑢𝑇 ) ≤ 𝑢𝑇 log𝑇/𝜅 and (3.51) that there exists some constant 𝑐𝛾 > 0 such that

ℙ

(�̂�ℎ,𝑇 − 𝔼�̂�ℎ,𝑇

𝐿∞ (𝐷) ≥ 𝑐𝛾

(
𝑢𝑇 (log𝑇)2

𝑇ℎ𝑑
+ 𝑇− 1

2𝜓𝑑 (ℎ𝑑)
√︁
𝑢𝑇 ∨ log(ℎ−1)

))
≤ e−𝑢𝑇 .

�

3.B Proofs for Section 3.4.2

Proof of Lemma 3.15. We will employ Theorem 6.2.9 and Exercise 6.4.7 of [14] to show the
first assertion. So first we must verify that condition (C1) on page 365 of [14] holds. Since (𝒥1)
holds, we only have to show that there exists a constant 𝐾1 > 0 such that, for all 𝑥, 𝑦 ∈ ℝ𝑑 ,

𝑑∑︁
𝑖, 𝑗=1

(𝜎𝑖, 𝑗 (𝑥) − 𝜎𝑖, 𝑗 (𝑦))2 +
∫
ℝ𝑑

‖𝛾(𝑥)𝑧 − 𝛾(𝑦)𝑧‖2 𝜈(d𝑧) ≤ 𝐾1‖𝑥 − 𝑦‖2,
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where 𝜎𝑖, 𝑗 (𝑥) denotes the components of 𝜎(𝑥) ∈ ℝ𝑑×𝑑 for any 𝑥 ∈ ℝ𝑑. (𝒥1) implies that there
exists a finite constant 𝐿𝑖, 𝑗 > 0 for any 𝑖, 𝑗 ∈ {1, . . . , 𝑑}, such that 𝜎𝑖, 𝑗 : ℝ𝑑 → ℝ is Lipschitz
continuous with Lipschitz constant 𝐿𝑖, 𝑗 > 0 and hence we have for 𝑥, 𝑦 ∈ ℝ𝑑

𝑑∑︁
𝑖, 𝑗=1

(𝜎𝑖, 𝑗 (𝑥) − 𝜎𝑖, 𝑗 (𝑦))2 ≤ 2𝑑 max
𝑖, 𝑗∈{1,...,𝑑 }

𝐿2𝑖, 𝑗‖𝑥 − 𝑦‖2.

Furthermore, we have for 𝑥, 𝑦 ∈ ℝ𝑑 by the Lipschitz continuity of 𝛾∫
ℝ𝑑

‖𝛾(𝑥)𝑧 − 𝛾(𝑦)𝑧‖2 𝜈(d𝑧) ≤ 𝐿2𝛾 ‖𝑥 − 𝑦‖2
∫
ℝ𝑑

‖𝑧‖2 𝜈(d𝑧),

where we denote the Lipschitz constant of 𝛾 by 𝐿𝛾. By (𝒥3),
∫
ℝ𝑑 ‖𝑧‖2 𝜈(d𝑧) is finite and hence

(C1) holds. To verify the growth condition (C2) on page 366 of [14], we have to show that there
exists a constant 𝐾2 such that, for all 𝑥 ∈ ℝ𝑑 ,∫

ℝ𝑑

‖𝛾(𝑥)𝑧‖2 𝜈(d𝑧) ≤ 𝐾2(1 + ‖𝑥‖2).

Since 𝛾 is Lipschitz continuous by (𝒥1), there exists a constant 𝐾 > 0 such that the linear growth
condition ‖𝛾(𝑥)‖ ≤ 𝐾 (1 + ‖𝑥‖) holds for all 𝑥 ∈ ℝ𝑑 , and thus we have, for 𝑥 ∈ ℝ𝑑 ,∫

ℝ𝑑

‖𝛾(𝑥)𝑧‖2 𝜈(d𝑧) ≤ 2𝐾2(1 + ‖𝑥‖2)
∫
ℝ𝑑

‖𝑧‖2 𝜈(d𝑧).

Again by (𝒥3),
∫
ℝ𝑑 ‖𝑧‖2 𝜈(d𝑧) is finite and hence (C2) holds for 𝐾2 = 2𝐾2

∫
ℝ𝑑 ‖𝑧‖2 𝜈(d𝑧). Since

Assumption 6.2.8 in [14] is trivially fulfilled, the first assertion follows by Theorem 6.2.9 and
Exercise 6.4.7 of [14].
We proceed by showing the second assertion. Equation (1.21) of [47] is in the setting of (3.42)
equivalent to 𝜅𝛼(𝑥, 𝑧) = ‖𝛾(𝑥)𝑧‖𝑑+𝛼𝜈(𝑧) ≥ 0 for all 𝑥 ∈ ℝ𝑑 and almost every 𝑧 ∈ ℝ𝑑. Since 𝜈 is
a density, this assumption is fulfilled.
For assumption (H𝑎) of [47] to hold, we only need to show that there exists a 𝛽 ∈ (0, 1) such
that the function 𝑎(𝑥) B 𝜎(𝑥)𝜎>(𝑥) is 𝛽-Hölder continuous. However this follows directly from
the Lipschitz continuity and the boundedness of 𝜎 imposed in (𝒥1), as can be seen in the proof
of Lemma 1 of [12]. Now we note that assumption (H𝜅) of [47] follows by (𝒥2). �

Proof of Corollary 3.16. Since (𝒥1) and (𝒥3) imply that 𝑏∗ is bounded, arguing as in the proof
of Lemma 1 of [12] and using Lemma 3.15 entails that 𝑏∗ belongs to the Kato class 𝕂2 for
𝑑 ≥ 2. For the definition of 𝕂2, see (2.28) in [47]. Existence of transition densities and the heat
kernel estimate now follow directly from Corollary 1.5 of [47] and Lemma 3.15 for 𝑑 ≥ 2 and
as described in Lemma 1 of [12], the same conclusions may be drawn for dimension 𝑑 = 1 by
adapting the arguments in [47]. Now note that (3.44), 𝑡 ≤ 1 and 𝛼 ∈ (0, 2) imply

𝑝𝑡 (𝑥, 𝑦) ≤ 𝐶(𝑡−𝑑/2 exp(−‖𝑥 − 𝑦‖2/(𝜆𝑡)) + ‖𝜅𝛼‖∞𝑡(‖𝑥 − 𝑦‖ + 𝑡1/2)−𝑑−𝛼)
≤ 𝐶(𝑡−𝑑/2 + 𝑡1−(𝑑+𝛼)/2) ≤ 𝐶𝑡−𝑑/2,

where the value of 𝐶 changes from line to line. This completes the proof. �
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Proof of Proposition 3.17. To verify the assertion, we show that the solution of (3.42) 𝑿 satisfies
the assumptions of Theorem 2.2 (ii) of [123] which are Assumption 1, 2(a)’ and 3* of [123]
and [124], respectively. Assumption 1 follows directly from (𝒥1). Now, define 𝑏∗𝑢(𝑥) B 𝑏∗(𝑥) −∫
𝑢< ‖𝑧 ‖≤1 𝛾(𝑥)𝑧 𝜈(d𝑧) = 𝑏(𝑥) −

∫
‖𝑧 ‖>𝑢 𝛾(𝑥)𝑧 𝜈(d𝑧), and let the diffusion process 𝑌𝑢 = (𝑌𝑢𝑡 )𝑡≥0 be

given by

𝑌𝑢𝑡 = 𝑥 +
∫ 𝑡

0
𝑏∗𝑢(𝑥) (𝑌𝑢𝑠 ) d𝑠 +

∫ 𝑡

0
𝜎(𝑌𝑢𝑠 ) d𝑊𝑠.

For Assumption 2(a)’ to be fulfilled, we first have to show that, for any 𝑢 ∈ (0, 1), there exists
Δ > 0 such that ℙ𝑥 (𝑌𝑢Δ ∈ 𝐵) > 0 for any 𝑥 ∈ ℝ𝑑 and any nonempty open set 𝐵 ⊂ ℝ𝑑. Since
𝑌𝑢 is a continuous diffusion process with bounded and Lipschitz coeffcients 𝑏∗𝑢, 𝜎 and 𝑎 = 𝜎𝜎𝑇

is uniformly elliptic, it follows from classical results, see e.g. [153, Theorem A], that for any
𝑥 ∈ ℝ𝑑 and 𝑡 > 0, the transition function 𝑃𝑢𝑡 (𝑥, ·) of 𝑌𝑢 has a transition density with full support
and hence any Δ-skeleton of 𝑌𝑢 is open set irreducible, showing that Assumtpion 2(a)’ is in place.
It remains to show that Assumption 3* of [123] is satisfied which is, that there exists a function
𝑉 ∈ 𝑄∗, where

𝑄∗ B
{
𝑓 : ℝ𝑑 → ℝ+ : 𝑓 ∈ C2, 𝑓 (𝑥) → ∞ as ‖𝑥‖ → ∞, and there exists a locally bounded,

measurable function 𝑓 , such that
∫
‖𝑧 ‖>1

𝑓 (𝑥 + 𝛾(𝑥)𝑧) 𝜈(d𝑧) ≤ 𝑓 (𝑥), ∀𝑥 ∈ ℝ𝑑
}
,

such that there are constants 𝑐1, 𝑐2 > 0, for which the Lyapunov drift criterion

A𝑉 ≤ −𝑐1𝑉 + 𝑐2 (3.52)

holds, where A denotes the extended generator of 𝑿 acting on 𝑄∗ by

A 𝑓 (𝑥) =〈∇ 𝑓 (𝑥), 𝑏∗(𝑥)〉 + 1
2 tr(∇

2 𝑓 (𝑥)𝜎(𝑥)𝜎𝑇 (𝑥))+∫
ℝ𝑑

𝑓 (𝑥 + 𝛾(𝑥)𝑧) − 𝑓 (𝑥) − 𝟙‖𝑧 ‖≤1〈∇ 𝑓 (𝑥), 𝛾(𝑥)𝑧〉𝜈(d𝑧), 𝑥 ∈ ℝ𝑑 , 𝑓 ∈ 𝑄∗.

Now, for 𝜂 ∈ (0, 𝜂0𝑐−1𝛾 ∧ 1), where 𝑐𝛾 B ‖𝛾‖∞, let 𝑉𝜂 be a positive and increasing function
in C2(ℝ𝑑 ,ℝ) such that 𝑉𝜂 = e𝜂 ‖𝑥 ‖ for all ‖𝑥‖ > 𝑐𝑉 , where 𝑐𝑉 > 0. Then, it holds for 𝑖 ≠ 𝑗 ∈
{1, . . . , 𝑑} and ‖𝑥‖ > 𝑐𝑉 ,

∂𝑖𝑉
𝜂 (𝑥) = 𝜂e𝜂 ‖𝑥 ‖

𝑥𝑖

‖𝑥‖ ,

∂2𝑖 𝑗𝑉
𝜂 (𝑥) = 𝜂2e𝜂 ‖𝑥 ‖

𝑥𝑖𝑥 𝑗

‖𝑥‖2
− 𝜂e𝜂 ‖𝑥 ‖

𝑥𝑖𝑥 𝑗

‖𝑥‖3
+ 𝜂e𝜂 ‖𝑥 ‖ ‖𝑥‖−1𝛿𝑖 𝑗,

(3.53)

where 𝛿𝑖 𝑗 denotes the Kronecker delta. Furthermore, since 𝑉𝜂 ∈ C2(ℝ𝑑;ℝ), for 𝑖, 𝑗 ∈ {1, . . . , 𝑑}
the functions 𝑉𝜂, ∂𝑖𝑉𝜂, ∂2𝑖 𝑗𝑉

𝜂 are bounded by a constant 𝑐𝐷 > 0 for ‖𝑥‖ ≤ 𝑐𝑉 and hence∫
‖𝑧 ‖>1

𝑉𝜂 (𝑥 + 𝛾(𝑥)𝑧) 𝜈(d𝑧) ≤
∫
‖𝑧 ‖>1

(
e𝜂 ‖𝑥+𝛾 (𝑥)𝑧 ‖ + 𝑐𝐷

)
𝜈(d𝑧)

≤ e𝜂 ‖𝑥 ‖
∫
‖𝑧 ‖>1

e𝑐𝛾𝜂 ‖𝑧 ‖𝜈(d𝑧) + 𝑐𝐷𝜈(ℝ𝑑 \ 𝐵1),
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implying that 𝑉𝜂
S
∈ 𝑄∗ for all 𝜂 ≤ 𝜂0

𝑐𝛾
. This last condition is satisfied by our choice of 𝜂. To

conclude the proof, the only thing left to show is that there exists 0 < 𝜂 ≤ 𝜂0
𝑐𝛾

such that (3.52)
holds for 𝑉𝜂. Note that, by the mean value theorem, the definition of 𝑏∗ and the Cauchy–Schwarz
inequality, we have for any 𝑓 ∈ 𝑄∗

A 𝑓 (𝑥)

= 〈∇ 𝑓 (𝑥), 𝑏(𝑥)〉 + 1
2 tr(∇

2 𝑓 (𝑥)𝜎(𝑥)𝜎>(𝑥)) +
∫
ℝ𝑑

𝑓 (𝑥 + 𝛾(𝑥)𝑧) − 𝑓 (𝑥) − 〈∇ 𝑓 (𝑥), 𝛾(𝑥)𝑧〉𝜈(d𝑧)

≤ 〈∇ 𝑓 (𝑥), 𝑏(𝑥)〉 + 1
2 tr(∇

2 𝑓 (𝑥)𝜎(𝑥)𝜎>(𝑥))

+
∫
ℝ𝑑

sup
𝑡∈[0,1]

‖∇ 𝑓 (𝑥 + 𝑡𝛾(𝑥)𝑧) − ∇ 𝑓 (𝑥)‖‖𝛾(𝑥)𝑧‖𝜈(d𝑧)

≤ A𝑐 𝑓 (𝑥) + A𝑑 𝑓 (𝑥),

where, for H2 𝑓 (𝑥) denoting the Hessian of 𝑓 evaluated at 𝑥,

A𝑐 𝑓 (𝑥) B 〈∇ 𝑓 (𝑥), 𝑏(𝑥)〉 + 1
2 tr(∇

2 𝑓 (𝑥)𝜎(𝑥)𝜎𝑇 (𝑥)),

A𝑑 𝑓 (𝑥) B 𝑐2𝛾

∫
ℝ𝑑

sup
𝑡∈[0,1]

‖H2 𝑓 (𝑥 + 𝑡𝛾(𝑥)𝑧)‖‖𝑧‖2 𝜈(d𝑧).

We start by investigating the jump part. By (3.53) and the fact that the operator norm can be
bounded by the Frobenius norm ‖ · ‖𝐹, we get for ‖𝑥‖ > 𝑐𝑉

‖H2𝑉𝜂 (𝑥)‖ ≤ ‖H2e𝜂 ‖𝑥 ‖ ‖𝐹 =
(

𝑑∑︁
𝑖, 𝑗=1

(
𝜂2e𝜂 ‖𝑥 ‖

𝑥𝑖𝑥 𝑗

‖𝑥‖2
− 𝜂e𝜂 ‖𝑥 ‖

𝑥𝑖𝑥 𝑗

‖𝑥‖3
+ 𝜂e𝜂 ‖𝑥 ‖ ‖𝑥‖−1𝛿𝑖 𝑗

)2) 1
2

≤ 2𝜂e𝜂 ‖𝑥 ‖
(

𝑑∑︁
𝑖, 𝑗=1

(
𝜂2
𝑥2
𝑖
𝑥2
𝑗

‖𝑥‖4 +
𝑥2
𝑖
𝑥2
𝑗

‖𝑥‖6
+ ‖𝑥‖−2𝛿𝑖 𝑗

)) 1
2

≤ 23/2
√
𝑑𝜂e𝜂 ‖𝑥 ‖

(
𝜂2 + 2‖𝑥‖−2

) 1
2
.

Since we can choose 𝑐𝑉 to be large, we can without loss of generality assume 𝑐𝑉 ≥
√
2𝜂−1 and,

additionally, 𝑉𝜂 ∈ C2 implies that there exists a real-valued function 𝑐H(𝜂) > 0 on (0,∞) such
that ‖H2𝑉𝜂 (𝑥)‖ < 𝑐H(𝜂) for all ‖𝑥‖ ≤ 𝑐𝑉 . Thus, we have ‖H2𝑉𝜂 (𝑥)‖ ≤ 4

√
𝑑𝜂2e𝜂 ‖𝑥 ‖ + 𝑐H(𝜂),

𝑥 ∈ ℝ𝑑 , and we can conclude

A𝑑𝑉
𝜂 (𝑥) ≤ 4𝑐2𝛾

√
𝑑𝜂2

∫
ℝ𝑑

sup
𝑡∈[0,1]

e𝜂 ‖𝑥+𝑡𝛾 (𝑥)𝑧 ‖ ‖𝑧‖2𝜈(d𝑧) + 𝑐2𝛾 𝑐H(𝜂)
∫
ℝ𝑑

‖𝑧‖2𝜈(d𝑧)

≤ 𝜂2e𝜂 ‖𝑥 ‖4𝑐2𝛾
√
𝑑

∫
ℝ𝑑

e𝜂0 ‖𝑧 ‖ ‖𝑧‖2𝜈(d𝑧) + 𝑐2𝛾 𝑐H(𝜂)
∫
ℝ𝑑

‖𝑧‖2𝜈(d𝑧) C 𝑐𝑑,1𝜂
2e𝜂 ‖𝑥 ‖ + 𝑐𝑑,2(𝜂),

(3.54)

where 𝑐𝑑,1, 𝑐𝑑,2(𝜂) are positive and finite because of (𝒥3) and 𝜂 < 𝜂0𝑐
−1
𝛾 . Now we turn our

attention to the continuous part. From now on, without loss of generality, we assume that 𝑐𝑉 ≥ 𝑐1
in (𝒥3). Then, for ‖𝑥‖ > 𝑐𝑉 ≥ 𝜂−1, we have by (𝒥1), (𝒥3) and (3.53)

A𝑐𝑉
𝜂 (𝑥) ≤ −𝑐1𝜂e𝜂 ‖𝑥 ‖ +

𝑐2

2

𝑑∑︁
𝑘=1

���𝜂2e𝜂 ‖𝑥 ‖ 𝑥2
𝑖

‖𝑥‖2
+ 𝜂e𝜂 ‖𝑥 ‖ ‖𝑥‖−1 − 𝜂e𝜂 ‖𝑥 ‖

𝑥2
𝑖

‖𝑥‖3
���
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≤ 𝜂e𝜂 ‖𝑥 ‖
(
−𝑐1 +

3𝑐2𝑑
2

𝜂

)
,

and since 𝑉𝜂 ∈ C2(ℝ𝑑;ℝ), there exists a real-valued function 𝑐𝑐 (𝜂) on (0,∞) such thatA𝑐𝑉
𝜂 (𝑥) ≤

𝑐𝑐 (𝜂) for all ‖𝑥‖ ≤ 𝑐𝑉 . Hence, we have

A𝑐𝑉
𝜂 (𝑥) ≤ 𝜂e𝜂 ‖𝑥 ‖

(
−𝑐1 +

3𝑐2𝑑
2

𝜂

)
+ 𝑐𝐶 (𝜂) + 𝑐1e𝑐𝑉 C 𝜂e𝜂 ‖𝑥 ‖

(
−𝑐1 +

3𝑐2𝑑
2

𝜂

)
+ 𝑐𝑐,1(𝜂), (3.55)

where we used that 𝜂 < 1, by assumption. Combining (3.54) and (3.55) yields

A𝑉𝜂 (𝑥) ≤ 𝜂e𝜂 ‖𝑥 ‖
(
−𝑐1 + 𝜂

(
3𝑐2𝑑
2

+ 𝑐𝑑,1
))

+ 𝑐𝑑,2(𝜂) + 𝑐𝑐,1(𝜂).

Choosing 𝜂∗ = 1 ∧ 𝜂0𝑐
−1
𝛾 ∧ 𝑐1

3𝑐2𝑑+2𝑐𝑑,1 implies

A𝑉𝜂
∗ (𝑥) ≤ − 𝑐1𝜂

∗

2
e𝜂 ‖𝑥 ‖ + 𝑐𝑑,2(𝜂∗) + 𝑐𝑐,1(𝜂∗),

and thus (3.52) holds for 𝑉𝜂∗ ∈ 𝑄∗. Now, Theorem 2.2 (ii) and Proposition 3.8 of [123] show
the required assertion. �



Stability of overshoots of Markov additive processes

4In this chapter we prove precise stability results for overshoots of Markov additive processes,
MAPs in the following, with finite modulating space. Our approach is based on the Markovian

nature of overshoots of MAPs whose mixing and ergodic properties are investigated in terms of
the characteristics of the MAP. On our way we extend fluctuation theory of MAPs, contributing
among others to the understanding of the Wiener–Hopf factorization for MAPs by generalizing
Vigon’s équations amicales inversés known for Lévy processes. Using the Lamperti transformation
the results can be applied to self-similar Markov processes. Among many possible applications,
we study the mixing behavior of stable processes sampled at first hitting times as a concrete
example.

4.1 Introduction

4.1.1 Background and motivation
Overshoots of a Lévy process 𝝃, defined by

O𝑥 = 𝜉𝑇𝑥 − 𝑥, 𝑥 ≥ 0,

on {𝑇𝑥 < ∞}, where 𝑇𝑥 B inf{𝑡 ≥ 0 : 𝜉𝑡 > 𝑥}, are classical objects in the study of Lévy processes.
Their asymptotic analysis is essentially rooted in renewal theory for random walks and has
gained a lot of interest in the past two decades starting with the observation in [24] that classical
limit theorems for the residual time chain of renewal processes have a natural analogue in
weak convergence of overshoots of subordinators to a non-trivial limiting distribution. Besides
applications and extensions in ruin theory for insurance risk processes driven by Lévy processes
(see [89, 105, 136]), this observation was used to explain the entrance behavior of positive
self-similar Markov processes (pssMps) at the origin. Using the Lamperti transformation for
transient pssMps one can show that a pssMp can be started from the origin if and only if the
overshoots of the underlying Lévy process converge weakly as the overshoot level 𝑥 diverges to
+∞ (see [28, 44]). This was generalized in [66] to the question of how to start real self-similar
Markov processes (rssMps) from the origin. Methods for rssMps are similar to those for pssMps
replacing the Lévy processes 𝝃 in the Lamperti transformation by Markov additive processes
(𝝃, 𝑱) with finite modulating space {−1, 1}. The corresponding transformation is usually called
Lamperti–Kiu transform. MAPs (𝝃, 𝑱) are also called Markov modulated Lévy processes, due to
the ordinator 𝝃 behaving as a Lévy process in between jumps of a modulating chain 𝑱, with the
Lévy triplet of 𝝃 being determined by the current state of 𝑱. The limiting behavior of overshoots
of MAPs, defined by

(O𝑥 , J𝑥) =
(
𝜉𝑇𝑥 − 𝑥, 𝐽𝑇𝑥

)
, 𝑥 ≥ 0,

on {𝑇𝑥 < ∞}, where 𝑇𝑥 := inf{𝑡 ≥ 0 : 𝜉𝑡 > 𝑥}, then plays the same role for the entrance law at 0
of rssMps, as do overshoots of Lévy processes for pssMps.

The aim of this chapter is to explore in detail mixing and ergodicity of overshoots of MAPs.
We study the convergence in total variation norm, including conditions for polynomial and
exponential rates of convergence. Based on fluctuation theory of MAPs developed in [66] we
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will use the Meyn and Tweedie approach to stability of continuous time Markov processes (see
for instance [127, 130, 132, 164]) to demonstrate that overshoot convergence can be much
more finely analyzed once we take the perspective on overshoots as a Markov process, where the
subsequent spatial levels that are passed by the ordinator 𝝃 serve as time index for the overshoot
process (O, J) = (O𝑡, J𝑡)𝑡≥0. This idea is inspired by the observation that for the overshoot
process of a Lévy subordinator 𝝈, inverse local time at 0 is given by 𝝈 itself [26]. For this special
case, this opens the door to powerful results of excursion theory for general Markov processes
and allows, among others, to derive explicit formulas for the invariant measure and resolvent
of the overshoot process of a Lévy subordinator in terms of its triplet [32, 83]. We generalize
these findings to the MAP situation and consequently make use of the analytical tractability
of overshoots to analyze their ergodic behavior. For the particular case of Lévy processes, the
results can be interpreted as a natural continuous time generalization of results on ergodicity
and exponential convergence of the residual time chain belonging to a renewal process, which
can be found in the standard references on stability of discrete time Markov chains, Meyn and
Tweedie [128] and Nummelin [134]. Extensions of renewal theory for random walks to discrete
time MAPs (often called Markov random walks) were treated in [6, 43, 97, 102, 111] among
others.

Our fine analysis of overshoot stability of MAPs is not only inspired by a theoretical desire to
understand their asymptotics, but also by a practical need to develop statistical and numerical
procedures to get hold of the ascending ladder height process (𝑯+, 𝑱+) of a given MAP (𝝃, 𝑱). This
process is one of the cornerstones of fluctuation theory of MAPs and is theoretically accessible
by means of the Wiener–Hopf factorization. However, its explicit analytical characteristics are
in general unknown, with a notable exception being the factorization of the MAP associated
to an 𝛼-stable Lévy process via the Lamperti–Kiu transform, which was found in [108]. Due to
its intimate connection with the running supremum of the MAP, observing (𝝃, 𝑱) at first hitting
times offers all information needed to determine (𝑯+, 𝑱+) in numerical or statistical procedures.
For a recent account of fluctuation theory of Markov random walks we refer to [7].

The results of this chapter have applications in optimal control problems based on MAPs, see
e.g. the recent article [49] for the more particular case of a Lévy driven impulse control problem.
There, the generator of the ascending ladder height process is decisive for determining optimal
threshold boundaries of a desired reflection strategy. Thus, under uncertainty concerning the
underlying Lévy process, efficient statistical estimation of the ascending ladder height process is
needed. This problem will be addressed in detail in Chapter 5.

Moreover, parametric estimation becomes feasible for the Lévy system of MAPs—which
encodes the jumps of a MAP in analogy to the Lévy measure of a Lévy process—with explicit
overshoot distributions based on the MAP observed at first hitting times (𝑇𝑛Δ)𝑛∈ℕ0 for some step
size Δ > 0. Such observation scheme can be described as stochastic low frequency scheme as
opposed to deterministic low and high frequency schemes usually encountered in parametric
inference of stochastic processes (see [22] for an overview in the context of Lévy processes)
or the stochastic high-frequency scheme analyzed in [144] for Lévy processes. Furthermore,
nonparametric statistical estimation procedures for the ascending ladder height characteristics
can be developed based on our observation that under some natural conditions, the overshoot
process is exponentially 𝛽-mixing. As demonstrated in Chapter 3, this property can serve as a
central building block to nonparametric statistical analysis of non-reversible ergodic Markov
processes. Hence, our results indicate how to include MAPs (which are non-ergodic) in an ergodic
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statistical setting by considering the space-time transform introduced in form of overshoots.
Due to recent applications of MAPs we also expect applications of our mixing estimates in

other fields of probability theory such as planar maps (see for instance [27]). We highlight this
point by making use of the the Lamperti–Kiu transform to translate the mixing behavior of MAPs
into mixing bounds for self-similar Markov processes sampled at first hitting times. Further
applications to nonparametric statistical estimation for MAPs, Lévy processes and equivalently
self-similar Markov processes will be subject to future research.

4.1.2 Overview and main result
We start in Section 4.2 with formally introducing Markov additive processes and summarizing
some results belonging to their fluctuation theory as given in [66]. We then proceed in Section
4.3 with the stability analysis of MAP overshoots, starting with the rigorous description of their
Markovian nature and then studying important concepts from the theory of stability for Markov
processes such as Harris recurrence, invariant measures and petite sets, which were introduced
in Chapter 2. With this setup we come to our primary goal, the ergodicity analysis of overshoots.
Our main results in this respect, taking also account of the developments in Section 4.4 described
below, can be informally summarized as follows.

Theorem. Suppose that the MAP (𝝃, 𝑱) is upward regular, 𝑱 is irreducible and the ascending ladder
height MAP (H+, 𝑱+) has a finite first moment. Under mild assumptions on the Lévy system of
(𝝃, 𝑱), (O𝑡, J𝑡)𝑡≥0 converges in total variation to a unique stationary distribution, which encodes
the characteristics of the ascending ladder height MAP. If moreover the jump measures associated to
the MAP’s Lévy system possess a common (exponential) moment, then the convergence takes place
at (exponential) polynomial speed and overshoots are (exponentially) polynomially 𝛽-mixing.

This will be made precise in a sequence of theorems in Section 4.3. In Theorem 4.19 we
establish conditions on either the creeping probabilities of the subordinators associated to the
ascending ladder height MAP or its Lévy system that guarantee total variation convergence of
overshoots. Theorem 4.22 and Theorem 4.25 build on this result, giving exponential/polynomial
ergodicity and the exponential/polynomial 𝛽-mixing property, respectively.

Section 4.4 is devoted to finding conditions on the Lévy system of the parent MAP, which
imply the required assumptions on (𝑯+, 𝑱+) for the ergodic results of the previous section, thus
enhancing significantly our understanding of asymptotics of MAP overshoots. The tool we
develop for this purpose is an extension of Vigon‘s équations amicales inversés for Lévy processes
given in [172] to MAPs. These equations analytically relate the Lévy systems of (𝝃, 𝑱) and
(𝑯+, 𝑱+), which makes inference of distributional properties of the ascending ladder height
process based on the characteristics of the parent MAP possible.

In Section 4.5 we apply our 𝛽-mixing result for MAPs to real self-similar Markov processes
sampled at first hitting times by exploiting the Lamperti–Kiu transform, which bridges these two
classes of processes. As an even more specific application, we then consider the mixing behavior
of 𝛼-stable Lévy processes and ergodicity of overshoots of the associated Lamperti-stable MAP.

Finally, for the convenience of the reader who is only interested in our results for Lévy
processes and to provide an accessible source of reference for this case, we have devoted
Appendix 4.B to a short summary of the main implications of our findings for overshoots of Lévy
processes. This part can be studied independently of the rest of the chapter since we also briefly
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recall the main concepts needed from the theory of Lévy processes. Reading Chapter 3 and
Appendix 4.B is therefore sufficient if the reader wants to move on directly to Chapter 5, which
synthesizes our general statistical 𝛽-mixing framework with our contributions to stability theory
of overshoots.

4.2 Markov additive processes and their fluctuation theory

We start with introducing Markov additive processes with finite modulating space. For the
general theory of Markov additive processes the reader may consult the landmark papers of
Cinlar [41, 42], a good start for the particular case of finite modulating space is [15, Chapter
XI], and a focus on fluctuation theory is given in [66]. Let Θ = {1, . . . , 𝑛} be a finite set and
(ℝ × Θ)𝜗 be the Alexandrov one-point compactification of ℝ × Θ with some isolated state
𝜗 = (∞, 𝜛). As usual, we extend a function 𝑓 ∈ B(ℝ × Θ) to a function in B((ℝ × Θ)𝜗) by
setting 𝑓 (𝜗) = 0, which will make notation more convenient. A (killed) Markov additive process
(MAP) (𝝃, 𝑱) with finite modulating space Θ is defined as a Feller process with state space
ℝ × Θ and cemetery state 𝜗, having a possibly finite lifetime 𝜁 and underlying stochastic base
(Ω,F, 𝔽 = (F𝑡)𝑡≥0, (ℙ𝑥,𝑖) (𝑥,𝑖) ∈(ℝ×Θ)𝜗) and which moreover has the characteristic property that
given 𝑠, 𝑡 ≥ 0, (𝑥, 𝑖) ∈ ℝ × Θ and 𝑓 ∈ B𝑏((ℝ × Θ)𝜗) it holds that

𝔼𝑥,𝑖
[
𝑓 (𝜉𝑡+𝑠 − 𝜉𝑡, 𝐽𝑡+𝑠)𝟙{𝑡<𝜁 } |F𝑡

]
= 𝔼0,𝐽𝑡 [ 𝑓 (𝜉𝑠, 𝐽𝑠)]𝟙{𝑡<𝜁}, ℙ𝑥,𝑖-a.s.

In other words, conditionally on {𝐽𝑡 = 𝑖} and no killing before time 𝑡 ≥ 0, the pair (𝜉𝑡+𝑠 −
𝜉𝑡, 𝐽𝑡+𝑠)𝑠≥0 is independent of the past and has the same distribution as (𝜉𝑠, 𝐽𝑠)𝑠≥0 under ℙ0,𝑖,
which is an equivalent definition for MAPs with finite modulating space often encountered in
the literature such as [66]. A straightforward consequence of this property is conditional spatial
homogeneity of the process, i.e.

𝔼𝑥,𝑖 [ 𝑓 (𝝃, 𝑱)] = 𝔼0,𝑖 [ 𝑓 (𝝃 + 𝑥, 𝑱)]

holds for any measurable 𝑓 on the Skorokhod space D(ℝ ×Θ) of càdlàg functions mapping from
ℝ+ = [0,∞) to ℝ × Θ equipped with its Borel 𝜎-algebra (here and for the rest of the chapter
we implicitly assume that (𝝃, 𝑱) has exclusively càdlàg paths, which can be easily achieved by
either constructing the process as the canonical coordinate process on the Skorokhod space or
by a reduction of the probability space and the facts that, by definition, Feller processes have
càdlàg paths almost surely and F is complete). Moreover, (𝐽𝑡)𝑡≥0 is a continuous time Markov
chain, whose transition function is independent of the initial distribution of 𝝃. Conditional
independence of increments and spatial homogeneity of the ordinator 𝝃 already teases an
intimate relation of MAPs and Lévy processes. In fact, any MAP can be decomposed into an
independent sequence of Lévy processes, whose characteristic triplet depends on the current
state of the modulating Markov chain 𝑱.

More precisely, we suppose that the measurable space (Ω,F) is rich enough to support a
probability measure ℙ such that ℙ𝑥,𝑖 = ℙ(·|𝜉0 = 𝑥, 𝐽0 = 𝑖), i.e. the probabilities underlying the
Markov process (𝝃, 𝑱) are given as regular conditional probabilites of ℙ. Then, Proposition 2 in
[66] (see also [95, Proposition 2.5] or [42, Theorem 2.23]) gives the following characterization
of a MAP, showing that in between jumps of 𝑱, 𝝃 behaves as a Lévy process with characteristic
triplet determined by the current state of 𝑱 and every jump of 𝑱 potentially triggers an additional
jump of 𝝃.
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Proposition 4.1. A process (𝝃, 𝑱) is an unkilled MAP if and only if there exist sequences of
• (killed) Lévy processes (𝜉𝑛,𝑖)𝑛∈ℕ0 , i.i.d. under ℙ for fixed 𝑖 ∈ Θ,
• real random variables (Δ𝑛

𝑖, 𝑗
)𝑛∈ℕ, i.i.d. under ℙ for fixed and distinct 𝑖, 𝑗 ∈ Θ,

independent of 𝑱 and of each other under ℙ, such that if 𝜎𝑛 is the 𝑛-th jump time of 𝑱, then under
ℙ𝑥,𝑖, 𝝃 can be written almost surely as

𝜉𝑡 =


𝑥 + 𝜉0,𝑖𝑡 , 𝑡 ∈ [0, 𝜎1),
𝜉𝜎𝑛− + Δ𝑛𝐽𝜎𝑛−,𝐽𝜎𝑛

+ 𝜉𝑛,𝐽𝜎𝑛𝑡−𝜎𝑛 , 𝑡 ∈ [𝜎𝑛, 𝜎𝑛+1), 𝑡 < 𝜁,

𝜉𝑡 = ∞, 𝑡 ≥ 𝜁,

where the lifetime 𝜁 is the first time one of the appearing Lévy processes is killed:

𝜁 = inf
{
𝑡 > 0 : ∃𝑛 ∈ ℕ0, 𝜎𝑛 ≤ 𝑡 such that 𝜉𝑛,𝐽𝜎𝑛 is killed at time 𝑡 − 𝜎𝑛

}
.

In this chapter, we will only deal with MAPs (𝝃, 𝑱) with infinite lifetime, i.e. 𝜁 = ∞, ℙ𝑥,𝑖-a.s. for
all (𝑥, 𝑖) ∈ ℝ × Θ. However, killing is relevant for fluctuation theory of MAPs as described below.
Let us define (𝜉(𝑖) )𝑖∈Θ as Lévy processes with characteristic triplets (𝑎𝑖, 𝑏𝑖,Π𝑖) that have the same
law as (𝜉0,𝑖)𝑖∈Θ and (Δ𝑖, 𝑗)𝑖, 𝑗∈Θ as random variables sharing the same law as the corresponding
(Δ1

𝑖, 𝑗
)𝑖, 𝑗∈Θ, with Δ𝑖,𝑖 ≔ 0 for all 𝑖 ∈ Θ. Moreover, let 𝐹𝑖, 𝑗 be the law of Δ𝑖, 𝑗. Then, (𝝃, 𝑱) can be

uniquely characterized by the Lévy–Khintchine exponents Ψ𝑖 (𝜃) = log𝔼[exp(i𝜃𝜉(𝑖)1 )], 𝑖 ∈ Θ,
the transition rate matrix 𝑸 = (𝑞𝑖, 𝑗)𝑖, 𝑗∈Θ of 𝑱 and the Fourier transforms of Δ𝑖, 𝑗 denoted by
𝐺𝑖, 𝑗 (𝜃) = 𝔼[exp(iΔ𝑖, 𝑗)], 𝑖, 𝑗 ∈ Θ. For convenience we assume Δ𝑖, 𝑗 = 0 whenever 𝑞𝑖, 𝑗 = 0, which
is without loss of generality because Proposition 4.1 shows that these transitional jumps never
occur. If we now define the characteristic matrix exponent

𝚿(𝜃) ≔ diag(Ψ1(𝜃), . . . ,Ψ𝑛(𝜃)) + 𝑸 � 𝑮(𝜃),

as an analogue to the Lévy–Khintchine exponent of a Lévy process, then

𝔼0,𝑖
[
ei𝜃𝜉𝑡 ; 𝐽𝑡 = 𝑗

]
=

(
e𝑡𝚿(𝜃) )

𝑖, 𝑗
, 𝑖, 𝑗 ∈ Θ, 𝜃 ∈ ℝ.

Here, 𝑮(𝜃) = (𝐺𝑖, 𝑗 (𝜃))𝑖, 𝑗∈Θ and � denotes the Hadamard product, i.e. pointwise multiplication
of matrices of the same dimension. Note that since Δ𝑖,𝑖 = 0 we have 𝐺𝑖,𝑖 (𝜃) = 1 for all 𝑖 ∈ Θ and
hence (𝑸 � 𝑮(𝜃))𝑖,𝑖 = −𝑞𝑖,𝑖. Let us also define the family of potential measures (𝑈𝑖, 𝑗)𝑖, 𝑗∈Θ given
by

𝑈𝑖, 𝑗 (d𝑥) = 𝔼0,𝑖
[ ∫ ∞

0
𝟙{𝜉𝑡 ∈d𝑥,𝐽𝑡= 𝑗} d𝑡

]
=

∫ ∞

0
ℙ0,𝑖 (𝜉𝑡 ∈ d𝑥, 𝐽𝑡 = 𝑗) d𝑡, 𝑥 ∈ ℝ, 𝑖, 𝑗 ∈ Θ,

i.e., 𝑈𝑖, 𝑗 (𝐴) measures the time 𝝃 spends in 𝐴 when started in 𝑖, while the modulator 𝑱 is in state
𝑗. Another important concept in the theory of (general state space) Markov additive processes is
the existence of a Lévy system, see Cinlar [41], which generalizes the notion of a Lévy measure
and becomes explicit for MAPs with finite modulating space thanks to the path decomposition
given in Proposition 4.1. We say that (𝚷, 𝐴), where 𝚷 is a kernel on (Θ,B(ℝ × Θ)) satisfying

𝚷(𝑖, {(0, 𝑖)}) = 0,
∫
ℝ

(
1 ∧ |𝑦 |2

)
𝚷(𝑖, d𝑦 × {𝑖}) < ∞, 𝑖 ∈ Θ,
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and 𝐴 is an increasing continuous additive functional of (𝝃, 𝑱) such that for any 𝑓 ∈ B+(Θ×ℝ×Θ)
and (𝑥, 𝑖) ∈ ℝ × Θ,

𝔼0,𝑖
[∑︁
𝑠≤𝑡

𝑓 (𝐽𝑠−, Δ𝜉𝑠, 𝐽𝑠)𝟙{Δ𝜉𝑠≠0 or 𝐽𝑠−≠𝐽𝑠 }
]
= 𝔼0,𝑖

[ ∫ 𝑡

0
𝐴𝑠

∫
ℝ×Θ

𝚷(𝐽𝑠, d𝑥, d𝑦) 𝑓 (𝐽𝑠, 𝑥, 𝑦)
]
, (4.1)

is a Lévy system for (𝝃, 𝑱). Using Proposition 4.1 and results on expectations of functionals of
Poisson random measures, see e.g. Theorem 2.7 in [109], one can demonstrate that 𝐴𝑡 = 𝑡 ∧ 𝜁

and
𝚷(𝑖, d𝑦 × { 𝑗}) = 𝟙{𝑖= 𝑗}Π𝑖 (d𝑦) + 𝟙{𝑖≠ 𝑗}𝑞𝑖, 𝑗𝐹𝑖, 𝑗 (d𝑦), 𝑖, 𝑗 ∈ Θ,

and thus for any 𝑖 ∈ Θ,

𝔼0,𝑖
[∑︁
𝑠≤𝑡

𝑓 (𝐽𝑠−, Δ𝜉𝑠, 𝐽𝑠)𝟙{Δ𝜉𝑠≠0 or 𝐽𝑠−≠𝐽𝑠 }
]
=

𝑛∑︁
𝑘=1

(
𝔼0,𝑖

[ ∫ 𝑡

0

∫
ℝ\{0}

𝑓 (𝑘, 𝑥, 𝑘)𝟙{𝐽𝑠=𝑘} Π𝑘 (d𝑥) d𝑠
]

+
∑︁
𝑗≠𝑘

𝑞𝑘, 𝑗𝔼
0,𝑖

[ ∫ 𝑡

0

∫
ℝ

𝑓 (𝑘, 𝑥, 𝑗)𝟙{𝐽𝑠=𝑘} 𝐹𝑘, 𝑗(d𝑥) d𝑠
] )

=

𝑛∑︁
𝑘=1

∫ 𝑡

0
ℙ0,𝑖 (𝐽𝑠 = 𝑘) d𝑠

( ∫
ℝ\{0}

𝑓 (𝑘, 𝑥, 𝑘) Π𝑘 (d𝑥)

+
∑︁
𝑗≠𝑘

𝑞𝑘, 𝑗

∫
ℝ

𝑓 (𝑘, 𝑥, 𝑗) 𝐹𝑘, 𝑗(d𝑥)
)
.

(4.2)

Since 𝐴 is simply the uniform motion, we will also refer to just 𝚷 as the Lévy system for the
remainder of this chapter. As remarked in [110], this can be generalized to the following identity
for any predictable process (𝑍𝑡)𝑡≥0 and 𝑔 ∈ B+(Θ ×ℝ ×ℝ × Θ):

𝔼0,𝑖
[∑︁
𝑠≤𝑡

𝑍𝑠𝑔(𝐽𝑠−, 𝜉𝑠−, 𝜉𝑠, 𝐽𝑠)𝟙{Δ𝜉𝑠≠0 or 𝐽𝑠−≠𝐽𝑠 }
]

=

𝑛∑︁
𝑘=1

(
𝔼0,𝑖

[ ∫ 𝑡

0
d𝑠 𝑍𝑠𝟙{𝐽𝑠=𝑘}

∫
ℝ\{0}

Π𝑘 (d𝑥) 𝑔(𝑘, 𝜉𝑠, 𝜉𝑠 + 𝑥, 𝑘)
]

+
∑︁
𝑗≠𝑘

𝑞𝑘, 𝑗𝔼
0,𝑖

[ ∫ 𝑡

0
d𝑠 𝑍𝑠𝟙{𝐽𝑠=𝑘}

∫
ℝ

𝐹𝑘, 𝑗(d𝑥) 𝑔(𝑘, 𝜉𝑠, 𝜉𝑠 + 𝑥, 𝑗)
] )
.

(4.3)

Let us now dive into fluctuation theory of MAPs, which in the form suited to our needs
was developed in [66]. An essential tool for our upcoming analysis of the overshoots is the
ascending ladder MAP (𝐻+

𝑡 , 𝐽
+
𝑡 )𝑡≥0, which is defined as follows (see the appendix of [66] for more

details). Let (L(𝑖)𝑡 )𝑡≥0 be a version of local time at the point (0, 𝑖) for the strong Markov process
(𝜉𝑡 − 𝜉𝑡, 𝐽𝑡)𝑡≥0, where 𝜉𝑡 ≔ sup𝑠≤𝑡 𝜉𝑠. Define then L𝑡 ≔

∑𝑛
𝑖=1 L

(𝑖)
𝑡 , which is a continuous additive

functional of (𝜉𝑡 − 𝜉𝑡, 𝐽𝑡)𝑡≥0, increasing almost surely on the set of times when 𝝃 attains a new
maximum.

With this at hand we define the ladder height process (𝑯+, 𝑱+) by the time change(
𝐻+
𝑡 , 𝐽

+
𝑡

)
=

{ (
𝜉L−1𝑡

, 𝐽L−1𝑡

)
, 0 ≤ 𝑡 < L∞,

𝜗 = (∞, 𝜛), 𝑡 ≥ L∞,
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where L−1𝑡 ≔ inf{𝑠 ≥ 0 : L𝑠 > 𝑡} is the right-continuous inverse of L. It can be shown that
(𝑯+, 𝑱+) is a Markov additive subordinator with lifetime L∞, i.e. a Markov additive process such
that the ordinator 𝑯+ has increasing paths almost surely before killing. Moreover, (L−1𝑡 )0≤𝑡<∞
almost surely equals the ordered set of times, when 𝝃 reaches a maximum and hence the closure
of the range of 𝑯+ up to its lifetime is identical to that of the supremum process 𝜉 almost surely.
Denote by 𝑯+,(𝑖) the Lévy subordinators appearing in the decomposition of (𝑯+, 𝑱+) in the spirit
of Proposition 4.1. The respective drifts and Lévy measures are denoted by 𝑑+

𝑖
and Π+

𝑖
, the

intensity matrix of 𝑱+ by Q+ = (𝑞+
𝑖, 𝑗
)𝑖, 𝑗∈Θ and the killing rates of 𝑯+,(𝑖) by †+

𝑖
, i.e., when †+

𝑖
> 0,

the lifetime 𝜁+
𝑖
of 𝑯+,(𝑖) is exponentially distributed with mean 1/†+

𝑖
and otherwise, for †+

𝑖
= 0,

𝜁+
𝑖
= ∞ almost surely. Note that the MAP subordinator (𝑯+, 𝑱+) is then uniquely characterized

by its Laplace exponent, given as follows:

𝚽+(𝜃) ≔ diag
(
Φ+
1 (𝜃), . . . ,Φ+

𝑛 (𝜃)
)
− 𝑸+ � 𝑮+(𝜃), 𝜃 ≥ 0, (4.4)

where Φ+
𝑖
is the Laplace exponent of 𝑯+,(𝑖) and 𝑮+(𝜃) = (𝐺+

𝑖, 𝑗
(𝜃))𝑖, 𝑗∈Θ = (𝔼[exp(−𝜃Δ+

𝑖, 𝑗
)])𝑖, 𝑗∈Θ.

It then holds that

𝔼0,𝑖 [ exp(−𝜃𝐻+
𝑡 ); 𝐽+𝑡 = 𝑗

]
=

(
e−𝚽

+ (𝜃)𝑡)
𝑖, 𝑗
, 𝑡 ≥ 0, 𝜃 ≥ 0, 𝑖, 𝑗 ∈ Θ.

Let us also denote the family of potential measures of (𝑯+, 𝑱+) by (𝑈+
𝑖, 𝑗
)𝑖, 𝑗∈Θ.

In analogy to the case for Lévy processes we also need the ascending ladder height process of
the dual of the MAP (𝝃, 𝑱), i.e. a MAP which has the same law as the time reversed MAP (𝝃, 𝑱).
As remarked in [66] the construction of the dual MAP is slightly more elaborate compared to the
Lévy case, where the dual process is simply the negative of the original Lévy process, because we
have to take care of time reversion of the ordinator 𝑱. Suppose that 𝑱 is irreducible–and hence
ergodic thanks to its finite state space—and denote its invariant distribution by 𝝅 = (𝜋(𝑖))𝑖∈Θ.
Moreover, let

�̂�𝑖, 𝑗 =
𝜋( 𝑗)
𝜋(𝑖) 𝑞 𝑗,𝑖, 𝑖, 𝑗 ∈ Θ,

which are the intensities of the time reversed modulating Markov chain 𝑱 and let 𝑸 = (�̂�𝑖, 𝑗)𝑖, 𝑗∈Θ.
Now let (ℙ̂𝑥,𝑖) (𝑥,𝑖) ∈ℝ×Θ be a family of probability measures such that (𝝃, 𝑱) has characteristic
matrix exponent given by

�̂�(𝜃) =
(
�̂�0,𝑖 [ exp(i𝜃𝜉1); 𝐽1 = 𝑗

] )
𝑖, 𝑗∈Θ = diag(𝜓1(−𝜃), . . . , 𝜓𝑛(−𝜃)) + 𝑸 � 𝑮(−𝜃)>, 𝜃 ∈ ℝ.

Then indeed, under ℙ0,𝝅 ≔
∑𝑛
𝑖=1 𝜋(𝑖)ℙ0,𝑖, it holds that the time reversed process (𝜉(𝑡−𝑠)− −

𝜉𝑡, 𝐽(𝑡−𝑠)−)0≤𝑠≤𝑡 is equal in law to (𝜉𝑠, 𝐽𝑠)𝑠≤𝑡 under ℙ̂0,𝝅, see Lemma 21 in [66]. Let 𝚫𝝅 ≔ diag(𝝅)
and denote the matrix Laplace exponent of the ascending ladder height process of the dual
process of (𝝃, 𝑱), (𝑯−, 𝑱−) by 𝚽− and also the objects belonging to its Lévy system in the obvious
way.1 The key result for fluctuation theory of MAPs is the (spatial) Wiener–Hopf factorization
given in Theorem 26 of [66], which states that up to pre-multiplication by a positive diagonal
matrix corresponding to the scaling of local time at the supremum,

−𝚿(𝜃) = 𝚫−1
𝝅 𝚽−(i𝜃)>𝚫𝝅𝚽

+(−i𝜃) = 𝚫−1
𝝅 𝚿−(−𝜃)>𝚫𝝅𝚿

+(𝜃), 𝜃 ∈ ℝ, (4.5)
1A word of caution at this point: 𝚽− is not the matrix exponent of the dual of the ascending ladder height MAP

(𝑯+, 𝑱+). To not confuse the reader we will therefore withhold the temptation to denote the ascending ladder height
process of the dual of (𝝃, 𝑱) by (𝐻+, �̂�+).
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and thus gives a factorization of the characteristic matrix exponent 𝚿 of (𝝃, 𝑱) in terms of the
characteristic exponents 𝚿+ and 𝚿− of the ascending ladder height processes of (𝝃, 𝑱) and its
dual, respectively. This identity is the key for understanding the interplay between the parent
MAP 𝝃 and the ladder height processes, which we will further explore in Section 4.4.

4.3 Stability analysis of overshoots of MAPs

In this section, we assume that the lifetime 𝜁 of (𝝃, 𝑱) is equal to ∞ on all of Ω. For 𝑡 ≥ 0 define
the ordinator‘s 𝝃 first hitting time 𝑇𝑡 of the set (𝑡,∞) by

𝑇𝑡 ≔ inf{𝑠 ≥ 0 : 𝜉𝑠 > 𝑡}.

Note that by right-continuous paths of the process and right-continuity of the filtration (F𝑡)𝑡≥0
underlying (𝝃, 𝑱) this is a stopping time for the MAP. Set also

𝜉∞ ≔ sup
0≤𝑡<∞

𝜉𝑡 .

We now define the process (O𝑡, J𝑡)𝑡≥0 by

(O𝑡, J𝑡) =
{ (

𝜉𝑇𝑡 − 𝑡, 𝐽𝑇𝑡 ), if 𝑡 < 𝜉∞,

𝜗, if 𝑡 ≥ 𝜉∞,
𝑡 ≥ 0,

i.e. if the level 𝑡 is smaller than the supremum of the process over its entire lifetime, then O𝑡

corresponds to the overshoot of 𝝃 over 𝑡 and J𝑡 is equal to the state of the modulator at first
passage of 𝑡, whereas for 𝑡 ≥ 𝜉∞ the process is sent to the cemetery state 𝜗. An essential
observation for our analysis is that (O𝑡, J𝑡)𝑡≥0 is indistinguishable with respect to the family
of probability measures (ℙ𝑥,𝑖) (𝑥,𝑖) ∈(ℝ+×Θ)𝜗 from the process (O+

𝑡 , J
+
𝑡 )𝑡≥0 corresponding to the

ascending ladder MAP (𝑯+, 𝑱+), and hence is given by

(O+
𝑡 , J

+
𝑡 ) =

{ (
𝐻+
𝑇+𝑡

− 𝑡, 𝐽+
𝑇+𝑡
), if 𝑡 < 𝐻+

∞,

𝜗, if 𝑡 ≥ 𝐻+
∞,

𝑡 ≥ 0,

where (𝑇+
𝑡 )𝑡≥0 is the first passage process of 𝑯+, which by increasing paths of 𝑯+ is equal to its

right-continuous inverse. Indistinguishability of the processes follows immediately from the fact
that on [0, L∞), the range of the increasing process (L−1𝑡 )𝑡≥0 almost surely equals the set of times
when 𝝃 reaches a maximum. Using this relationship, (4.3) and arguing as in the classical proof
for the law of the undershoot/overshoot distribution for Lévy processes (see [109, Theorem
5.6]), we obtain the following formula for the marginal distribution of the overshoot process

ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) = ℙ0,𝑖 (O+
𝑡−𝑥 ∈ d𝑦, J+𝑡 = 𝑗)

=

∫
[0,𝑡−𝑥)

Π+
𝑗 (𝑢 + d𝑦) 𝑈+

𝑖, 𝑗 (𝑡 − 𝑥 − d𝑢)

+
∑︁
𝑘≠ 𝑗

𝑞+𝑘, 𝑗

∫
[0,𝑡−𝑥)

𝐹+𝑘, 𝑗(𝑢 + d𝑦) 𝑈+
𝑖,𝑘 (𝑡 − 𝑥 − d𝑢), 𝑖, 𝑗 ∈ Θ, 𝑥 ∈ [0, 𝑡), 𝑦 ≥ 0,

(4.6)
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and
𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)] = 𝑓 (𝑥 − 𝑡, 𝑖), 𝑥 ∈ [𝑡,∞), 𝑖 ∈ Θ, 𝑦 ≥ 0, (4.7)

provided that ℙ0,𝑖 (𝑇+
0 = 0) = 1. Assumption (𝒜0) introduced below will ensure this property.

Equation (4.7) describes the characteristic behavior of the overshoot process away from 0 in
the sense that if O𝑡 (𝜔) = 𝑦 > 0 we have O𝑠 (𝜔) = 𝑦 − (𝑠 − 𝑡) for 𝑠 ∈ [𝑡, 𝑡 + 𝑦], i.e. the origin is
approached at unit speed. This characteristic path structure of the overshoot process is visualized
in Figure 4.1 for the case of a compound Poisson subordinator 𝝈 with positive drift, and is the
reason why for such Lévy subordinators the overshoot process is also known as sawtooth process,
cf. Chapter II.3 in [32]. We will therefore also refer to it as the sawtooth structure for MAP
overshoots.

𝑠, O𝜎
𝑡

𝜎𝑠, 𝑡

𝑇𝜎𝑡1

O𝜎
𝑡1
= Δ𝜎𝑇𝜎𝑡1

𝑇𝜎𝑡2

O𝜎
𝑡2
= Δ𝜎𝑇𝜎𝑡2

𝑇𝜎𝑡3

O𝜎
𝑡3
= Δ𝜎𝑇𝜎𝑡3

(𝜎𝑠)𝑠≥0

𝑇𝜎𝑡4

O𝜎
𝑡4
= Δ𝜎𝑇𝜎𝑡4

𝜎𝑇𝜎𝑡1−
= 𝑡1

𝜎𝑇𝜎𝑡2−
= 𝑡2

𝜎𝑇𝜎𝑡3−
= 𝑡3

𝜎𝑇𝜎𝑡4− = 𝑡4

(O𝜎
𝑡 = 𝜎𝑇𝜎𝑡 − 𝑡)𝑡≥0

Figure 4.1: Path of a compound Poisson subordinator with drift, 𝝈, and associated overshoot
process O𝜎

Let G𝑡 ≔ F𝑇𝑡 for 𝑡 ≥ 0 and define the filtration 𝔾 ≔ (G𝑡)𝑡≥0. The following technical results
hold.

Lemma 4.2. 𝔾 is right-continuous.

Proof. First note that F𝑇𝑡 = F𝑇𝑡+, with

F𝑇𝑡+ ≔
{
Λ ∈ F : Λ ∩ {𝑇𝑡 < 𝑠} ∈ F𝑠 for all 𝑠 ≥ 0

}
since the latter can be shown to be equal to{

Λ ∈ F : Λ ∩ {𝑇𝑡 ≤ 𝑠} ∈ F𝑠+ for all 𝑠 ≥ 0
}
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which in turn equals F𝑇𝑡 thanks to right-continuity of 𝔽. Letting Λ ∈ G𝑡+ =
⋂

𝑛∈ℕ F𝑇𝑡+1/𝑛 we obtain
by right-continuity of 𝑡 ↦→ 𝑇𝑡 that for any 𝑠 ≥ 0

Λ ∩ {𝑇𝑡 < 𝑠} =
⋃
𝑛∈ℕ

Λ ∩
{
𝑇𝑡+ 1

𝑛
< 𝑠

}
∈ G𝑠,

since any set in the right-hand union belongs to G𝑠 thanks to F𝑇𝑡+1/𝑛 = F𝑇(𝑡+1/𝑛)+. It follows that
Λ ∈ F𝑇𝑡+ = F𝑇𝑡 = G𝑡, which proves right-continuity of 𝔾. �

Corollary 4.3. For any 0 ≤ 𝑠 ≤ ∞ the running supremum 𝜉𝑠 is a stopping time with respect to 𝔾.
In particular, the lifetime 𝜉∞ of (O𝑡, J𝑡)𝑡≥0 is a 𝔾-stopping time.

Proof. Let 𝑠 ∈ [0,∞]. For any 𝑡 ≥ 0

{𝜉𝑠 < 𝑡} = {𝑇𝑡 > 𝑠} ∈ F𝑇𝑡 = G𝑡,

which implies {𝜉𝑠 ≤ 𝑡} ∈ G𝑡+ and since G𝑡+ = G𝑡 by Lemma 4.2 we conclude {𝜉𝑠 ≤ 𝑡} ∈ G𝑡. �

We now show that under a technical assumption, the overshoot process given by the quintuple
(Ω,F,𝔾, (O𝑡, J𝑡)𝑡≥0, (ℙ𝑥,𝑖) (𝑥,𝑖) ∈(ℝ+×Θ)𝜗) determines a Feller process and therefore also a Borel
right process. The technical assumption under which we will be working throughout the rest of
the chapter without further mention, is the following.

(𝒜0) The MAP (𝝃, 𝑱) is upward regular, i.e. for any 𝑖 ∈ Θ it holds that ℙ0,𝑖 (𝑇0 = 0) = 1.

By definition, (𝝃, 𝑱) is upward regular if, independently of the starting point of the modulator
𝑱, 𝝃 started from 0 immediately hits the upper half line. By the path decomposition given in
Proposition 4.1, this is the case if and only if the underlying Lévy processes 𝝃(𝑖) are regular
upward for any 𝑖 ∈ Θ. Upward regularity for Lévy processes is completely understood, see the
full characterization given in Theorem 6.5 of [109], and hence upward regularity of the MAP
can be characterized by properties of its underlying Lévy processes. Moreover, by the general
theory on local times of Markov processes, see e.g. Chapter 4 in Bertoin [25] or the landmark
paper Blumenthal and Getoor [30], it follows that upward regularity implies that for each 𝑖 ∈ Θ,
the local time L(𝑖) of (𝜉 − 𝜉, 𝐽) at (0, 𝑖) is almost surely continuous and hence L =

∑𝑛
𝑖=1 L

(𝑖) is
almost surely continuous as well. Hence, the right-continuous inverse (L−1𝑡 )𝑡≥0, corresponding
to the set of times when a new maximum of 𝝃 is reached, is strictly increasing on [0, L∞) almost
surely and it follows that 𝑯+ is strictly increasing up to its lifetime. This property is essential for
(O, J) being a Feller process, as the proof of the following proposition shows.

Proposition 4.4. (O, J) is a càdlàg Feller process with lifetime 𝜉∞.

Proof. Càdlàg paths of the process are a direct consequence of càdlàg paths of (𝝃, 𝑱) and the fact
that 𝑡 ↦→ 𝑇𝑡 is right-continuous on [0,∞) and increasing on [0, 𝜉∞). Let now 𝑓 ∈ B𝑏((ℝ+ × Θ)𝜗)
and (𝑥, 𝑖) ∈ (ℝ+ × Θ)𝜗. Recalling that 𝜉∞ is a 𝔾-stopping time and using 𝑇𝑡+𝑠 = 𝑇𝑡 + 𝑇𝑡+𝑠 ◦ 𝜃𝑇𝑡 , on
{𝑇𝑡 < ∞}, where (𝜃𝑡)𝑡≥0 are the transition opertors of (𝝃, 𝑱), it follows that ℙ𝑥,𝑖-a.s.

𝔼𝑥,𝑖 [ 𝑓 (O𝑡+𝑠, J𝑡+𝑠) |G𝑡] = 𝔼𝑥,𝑖
[
𝑓
(
𝜉𝑇𝑡+𝑠 − (𝑡 + 𝑠), 𝐽𝑇𝑡+𝑠

)
◦ 𝜃𝑇𝑡 |F𝑇𝑡

]
𝟙{𝑡<𝜉∞ } + 𝑓 (𝜗)𝟙{𝑡≥𝜉∞ }

= 𝔼𝜉𝑇𝑡 ,𝐽𝑇𝑡
[
𝑓
(
𝜉𝑇𝑡+𝑠 − (𝑡 + 𝑠), 𝐽𝑇𝑡+𝑠

) ]
𝟙{𝑡<𝜉∞ } + 𝑓 (𝜗)𝟙{𝑡≥𝜉∞ }

= 𝔼𝜉𝑇𝑡−𝑡,𝐽𝑇𝑡
[
𝑓
(
𝜉𝑇𝑠 − 𝑠, 𝐽𝑇𝑠

) ]
𝟙{𝑡<𝜉∞ } + 𝑓 (𝜗)𝟙{𝑡≥𝜉∞ }



4.3. Stability analysis of overshoots of MAPs 73

= 𝔼O𝑡 ,J𝑡
[
𝑓
(
O𝑠, J𝑠

) ]
.

Here, we used the strong Markov property of (𝝃, 𝑱) for the second and spatial homogeneity of 𝝃
for the third equality. This proves the Markov property of (O, J). Moreover, for 𝑥 > 0 and 𝑖 ∈ Θ
we have ℙ𝑥,𝑖 (𝑇0 = 0) = 1 and by upward regularity of 𝝃 we also have ℙ0,𝑖 (𝑇0 = 0) = 1. Thus,
ℙ𝑥,𝑖 (O0, J0) = (𝑥, 𝑖) for any (𝑥, 𝑖) ∈ (ℝ+ × Θ)𝜗, i.e. the process is a normal Markov process and
its lifetime is given by 𝜉∞ by construction. Let (P𝑡)𝑡≥0 be its sub-Markov transition semigroup,
i.e.

P𝑡 𝑓 (𝑥, 𝑖) = 𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡); 𝑡 < 𝜉∞], (𝑥, 𝑖) ∈ (ℝ+ × Θ)𝜗, 𝑓 ∈ B𝑏((ℝ+ × Θ)𝜗).
Let us check the Feller property. Let 𝑓 ∈ C0(ℝ+×Θ). Since Θ is finite and recalling our convention
that 𝑓 (𝜗) = 0, it suffices to show for fixed 𝑖 ∈ Θ that 𝑥 ↦→ P𝑡 𝑓 (𝑥, 𝑖) = 𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)] is continuous
to prove that (𝑥, 𝑖) ↦→ 𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)] is continuous. If 𝑥 > 𝑡 this is obvious. For 𝑥 ≤ 𝑡 let first 𝑦 ↑ 𝑥.
By right-continuity of 𝑡 ↦→ (O𝑡, J𝑡), continuity and boundedness of 𝑓 , dominated convergence
and conditional spatial homogeneity of (𝝃, 𝑱), it follows that

lim
𝑦↑𝑥

𝔼𝑦,𝑖 [ 𝑓 (O𝑡, J𝑡)] = lim
𝑦↑𝑥

𝔼0,𝑖 [ 𝑓 (O𝑡−𝑦, J𝑡−𝑦)] = 𝔼0,𝑖 [ 𝑓 (O𝑡−𝑥 , J𝑡−𝑥)] = 𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)],

showing left-continuity of 𝑥 ↦→ 𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)]. To show right-continuity, note that for 𝑦 ↓ 𝑥

it holds that 𝑇+
𝑡−𝑦 increases to inf{𝑠 ≥ 0 : 𝐻+

𝑠 ≥ 𝑡 − 𝑥} on {𝑇+
𝑡−𝑥 < ∞} and since 𝑯+ is strictly

increasing up to its lifetime by upward regularity of 𝝃, it follows that the latter hitting time is
almost surely equal to 𝑇+

𝑡−𝑥 . Since (𝑯+, 𝑱+) as a Feller process is quasi-left-continuous, it therefore
follows that on {𝑇+

𝑡−𝑥 < ∞},

lim
𝑦↓𝑥

(
𝐻+
𝑇+𝑡−𝑦

, 𝐽+
𝑇+𝑡−𝑦

)
=

(
𝐻+
𝑇+𝑡−𝑥

, 𝐽+
𝑇+𝑡−𝑥

)
, ℙ0,𝑖-a.s.

By indistinguishability of (O+, J+) and (O, J) we therefore obtain

lim
𝑦↓𝑥

𝔼𝑦,𝑖 [ 𝑓 (O𝑡, J𝑡)] = lim
𝑦↓𝑥

𝔼0,𝑖 [ 𝑓 (O+
𝑡−𝑦, J

+
𝑡−𝑦)] = 𝔼0,𝑖 [ 𝑓 (O+

𝑡−𝑥 , J
+
𝑡−𝑥)] = 𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)],

proving also right-continuity of (𝑥, 𝑖) ↦→ P𝑡 𝑓 (𝑥, 𝑖). Since moreover Θ is compact and for fixed
𝑖 ∈ Θ,

lim
𝑥→∞

P𝑡 𝑓 (𝑥, 𝑖) = lim
𝑥→∞

𝑓 (𝑥 − 𝑡, 𝑖) = 0

thanks to 𝑓 ∈ C0(ℝ+ × Θ), we conclude that P𝑡C0(ℝ+ × Θ) ⊂ C0(ℝ+ × Θ). Finally, for fixed
(𝑥, 𝑖) ∈ ℝ+ ×Θ (again applying to upward regularity in case 𝑥 = 0) it follows from 𝑇𝑡 → 0 a.s. as
𝑡 ↓ 0 and dominated convergence, that P𝑡 𝑓 (𝑥, 𝑖) → P0 𝑓 (𝑥, 𝑖) = 𝑓 (𝑥, 𝑖). This is enough to show
that (P𝑡)𝑡≥0 is a Feller semigroup, as discussed in Appendix 2.

It remains to check right-continuity and completeness of 𝔾. Right-continuity was shown
in Lemma 4.2. Moreover, it can be easily seen that the ℙ𝑥,𝑖-augmentation of F𝑇𝑡 is equal to F𝑇𝑡
itself, since 𝔽 is ℙ𝑥,𝑖-augmented already, see also p.36 of [31]. This finishes the proof. �

Having established the Markovian nature of the overshoot process, we now proceed by
investigating its stability properties and long-time behavior. We must therefore restrict to the
case, when the overshoot process is almost surely unkilled, which is the case if and only if
sup0≤𝑠<∞ 𝜉𝑠 = ∞, ℙ0,𝑖-a.s. for all 𝑖 ∈ Θ. As for Lévy processes, there is a dichotomy concerning
the long-time behavior of the ordinator 𝝃, namely that exactly one of the following cases can
occur:
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(a) for any (𝑥, 𝑖) ∈ ℝ × Θ, lim sup𝑡→∞ 𝜉𝑡 = ∞, ℙ𝑥,𝑖-almost surely, and in this case either
lim inf𝑡→∞ 𝜉𝑡 = −∞ or lim𝑡→∞ 𝜉𝑡 = ∞, ℙ𝑥,𝑖-a.s.;

(b) for any (𝑥, 𝑖) ∈ ℝ × Θ, lim𝑡→∞ 𝜉𝑡 = −∞, ℙ𝑥,𝑖-almost surely.

When 𝑱 is irreducible and the MAP’s ordinator possesses an exponential moment, which of these
cases occurs for a given MAP is determined by a Perron–Frobenius type eigenvalue of the MAP’s
Laplace exponent, see Asmussen [15, Proposition XII.2.10]. We will therefore henceforth work
under the following additional assumption, which guarantees that (O, J) is an unkilled Borel
right Markov process and therefore gives us access to the theory of stability for Markov processes
from Chapter 2.

(𝒜1) For any (𝑥, 𝑖) ∈ (ℝ × Θ) it ℙ𝑥,𝑖-almost surely holds lim sup𝑡→∞ 𝜉𝑡 = ∞.

Let us give the following definition.

Definition 4.5. Let 𝑨 = (𝑎𝑖, 𝑗)𝑖, 𝑗=1,...,𝑛 ∈ ℝ𝑛×𝑛 be a matrix with 𝑎𝑖, 𝑗 ≥ 0 for any 𝑖 ≠ 𝑗. We say that
𝑨 is irreducible, if for any 𝑖 ≠ 𝑗 there exists (𝑎𝑖𝑘,𝑖𝑘+1)𝑘=0,...,𝑚−1 for some 𝑚 ∈ ℕ with 𝑖0 = 𝑖, 𝑖𝑚 = 𝑗

such that
∏𝑚−1

𝑘=0 𝑎𝑖𝑘,𝑖𝑘+1 > 0. An irreducible matrix �̃� = (�̃�𝑖, 𝑗)𝑖, 𝑗=1,...,𝑛 such that diag(𝑨) = diag( �̃�)
and �̃�𝑖, 𝑗 ∈ {𝑎𝑖, 𝑗, 0} for any 𝑖 ≠ 𝑗 is said to be a minimal irreducible version of an irreducible matrix
𝑨, if any matrix obtained from �̃� by setting some off-diagonal element to 0 is not irreducible
anymore.

If we visualize a matrix 𝑨 as in the definition above as a directed graph with vertices
𝑉 = {1, . . . , 𝑛} representing the on-diagonal elements of 𝑨 and edges 𝐸 = {(𝑖, 𝑗) : 𝑎𝑖, 𝑗 >
0} representing the non-zero off-diagonal elements of 𝑨, irreducibility of 𝑨 is equivalent to
connectedness of the graph of 𝑨. The graph of a minimal irreducible version �̃� of an irreducible
matrix 𝑨 is therefore a minimal connected subgraph of the graph of 𝑨 with 𝑉 = 𝑉 and �̃� ⊂ 𝐸. Also
note that a continuous time Markov chain is irreducible if and only if its Q-matrix is irreducible.

As a minimal requirement for stability we need to ensure irreducibility of the Markov process
(O, J). We therefore introduce the following assumption.

(𝒜2) The modulator 𝑱+ of the ascending ladder MAP is irreducible, i.e., 𝑸+ is an irreducible
matrix.

For general MAPs irreducibility of 𝑱 does not necessarily entail irreducibility of 𝑱+, with the
latter property implying that 𝝃 can reach a maximum in any phase of 𝑱. E.g., if one of the Lévy
components 𝝃(𝑖) is a negative subordinator and Δ 𝑗,𝑖 < 0 for any 𝑗 ∈ Θ, 𝑱+ is not irreducible since
𝝃 never reaches a new maximum when its phase is 𝑖. However, the following result shows that
irreducibility of 𝑱+ is given for a wide range of MAPs with irreducible modulator 𝑱. To give
one particular example covered by Proposition 4.6 below, suppose that for any 𝑗 ∈ Θ the Lévy
component 𝝃( 𝑗) is neither a negative subordinator nor spectrally negative with bounded variation,
or, when this fails for some 𝑗 ∈ Θ this is compensated for by some unbounded transitional jump
of 𝝃 when 𝑱 switches to 𝑗. Then, 𝑱+ is irreducible whenever 𝑱 is irreducible and Assumption
(𝒜1) is in place. We emphasize that upward regularity (𝒜0) is not needed for the statement of
Proposition 4.6. Recall that for any measure 𝜈 on (ℝ,B(ℝ)), the support supp(𝜈) is defined as
the set of points 𝑥 ∈ ℝ such that for any open neighborhood 𝑈𝑥 of 𝑥 it holds 𝜈(𝑈𝑥) > 0.

Proposition 4.6. Suppose that 𝑱 is irreducible and (𝒜1) holds.
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(i) Introduce the following conditions for 𝑗 ∈ Θ:

(ℋ( 𝑗)) 𝝃( 𝑗) is of unbounded variation or supp(Π 𝑗) ∩ (0,∞) ≠ ∅;
(ℐ( 𝑗)) there exists 𝑘 ≠ 𝑗 such that supp(𝑞𝑘, 𝑗𝐹𝑘, 𝑗) is unbounded from above.

Let Λ1 B { 𝑗 ∈ Θ : (ℋ( 𝑗)) or (ℐ( 𝑗)) holds} and

Λ2 B { 𝑗 ∈ Θ \ Λ1 : ∃𝑘 ∈ Λ1 s.t. supp(𝑞𝑘, 𝑗𝐹𝑘, 𝑗) ∩ (0,∞) ≠ ∅}.

Then, 𝑱+ is irreducible if Λ1 ∪ Λ2 = Θ.

(ii) Let 𝑸 be a minimal irreducible version of 𝑸. If

{(𝑖, 𝑗) ∈ Θ2 \ {(𝑖, 𝑖) : 𝑖 ∈ Θ} : �̃�𝑖, 𝑗 > 0}
⊂ {(𝑖, 𝑗) ∈ Θ2 \ {(𝑖, 𝑖) : 𝑖 ∈ Θ} : (ℋ( 𝑗)) holds or supp(𝑞𝑖, 𝑗𝐹𝑖, 𝑗) ∩ (0,∞) ≠ ∅},

then 𝑱+ is irreducible.

Proof. (i) Fix 𝑖, 𝑗 ∈ Θ with 𝑖 ≠ 𝑗. We have to show that ℙ0,𝑖 (𝜏+( 𝑗) < ∞) > 0, where
𝜏+( 𝑗) B inf{𝑡 ≥ 0 : 𝐽+𝑡 = 𝑗}. Recall that (𝜎𝑛)𝑛∈ℕ denote the jump times of the modulating
chain 𝑱. Let 𝑛 ∈ ℕ such that ℙ0,𝑖 (𝐽𝜎𝑛 = 𝑗) > 0, which exists by irreducibility of 𝑱. Let
𝐺𝑡 ≔ sup{0 ≤ 𝑠 < 𝑡 : 𝜉𝑠 = 𝜉𝑠} be the last time before 𝑡 > 0 at which 𝝃 attains its
supremum. By construction of local time at the supremum L, the range of (L−1𝑡 )𝑡≥0 almost
surely equals the set of times, when 𝝃 reaches a maximum. Thus, we have

ℙ0,𝑖 (𝜏+( 𝑗) < ∞) ≥ ℙ0,𝑖 (𝐺𝜎𝑛+1 ≥ 𝜎𝑛, 𝐽𝜎𝑛 = 𝑗)
≥ max

{
ℙ0,𝑖 (𝜉𝜎𝑛 ≥ 𝜉𝜎𝑛−, 𝐽𝜎𝑛 = 𝑗),ℙ0,𝑖 (𝐺𝜎𝑛+1 > 𝜎𝑛, 𝐽𝜎𝑛 = 𝑗)

}
.

(4.8)

Suppose first that (ℋ( 𝑗)) holds. By the path decomposition of (𝝃, 𝑱) from Proposition 4.1,
we obtain

ℙ0,𝑖 (𝐺𝜎𝑛+1 > 𝜎𝑛, 𝐽𝜎𝑛 = 𝑗)
= ℙ0,𝑖 ({𝐽𝜎𝑛 = 𝑗} ∩ {∃𝑡 ∈ (0, 𝜎𝑛+1 − 𝜎𝑛) : 𝜉𝑡+𝜎𝑛 − 𝜉𝜎𝑛 ≥ 𝜉𝜎𝑛 − 𝜉𝜎𝑛}

)
= 𝔼0,𝑖 [ℙ0, 𝑗(∃𝑡 ∈ (0, 𝜎1) : 𝜉𝑡 ≥ 𝑥) |

𝑥=𝜉𝜎𝑛−𝜉𝜎𝑛
; 𝐽𝜎𝑛 = 𝑗

]
≥ 𝔼0,𝑖 [ℙ0, 𝑗(𝜉𝜎1/2 ≥ 𝑥) |

𝑥=𝜉𝜎𝑛−𝜉𝜎𝑛
; 𝐽𝜎𝑛 = 𝑗

]
= 𝔼0,𝑖

[( ∫ ∞

0
−2𝑞 𝑗, 𝑗e2𝑞 𝑗, 𝑗𝑡ℙ(𝜉( 𝑗)𝑡 ≥ 𝑥) d𝑡

)���
𝑥=𝜉𝜎𝑛−𝜉𝜎𝑛

; 𝐽𝜎𝑛 = 𝑗
]

> 0.

(4.9)

To argue that the last inequality holds, note that since (ℋ( 𝑗)) was assumed, Theorem 24.7
in [147] yields that for any 𝑡 > 0, supp(ℙ(𝜉( 𝑗)𝑡 ∈ ·)) is not bounded from above. Thus,
ℙ(𝜉( 𝑗)𝑡 ≥ 𝑥) > 0 for any 𝑥 ∈ ℝ and hence( ∫ ∞

0
−2𝑞 𝑗, 𝑗e2𝑞 𝑗, 𝑗𝑡ℙ(𝜉( 𝑗)𝑡 ≥ 𝑥) d𝑡

)���
𝑥=𝜉𝜎1−𝜉𝜎1

> 0, ℙ0,𝑖-a.s..

Combining this with ℙ0,𝑖 (𝐽𝜎𝑛 = 𝑗) > 0 by our choice of 𝑛 ∈ ℕ, the inequality follows.
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Suppose now that (ℐ( 𝑗)) holds, i.e., supp(𝐹𝑘, 𝑗) is unbounded from above for some 𝑘 ≠ 𝑗

s.t. 𝑞𝑘, 𝑗 > 0. Let 𝑚 ∈ ℕ such that ℙ0,𝑖 (𝐽𝜎𝑚−1 = 𝑘, 𝐽𝜎𝑚 = 𝑗) > 0, which exists by irreducibility
of 𝑱 and 𝑞𝑘, 𝑗 > 0. Then, again by Proposition 4.1,

ℙ0,𝑖 (𝜉𝜎𝑚 ≥ 𝜉𝜎𝑚− , 𝐽𝜎𝑚 = 𝑗) =
∑︁
𝑘≠ 𝑗

𝔼0,𝑖 [ℙ(Δ𝑘, 𝑗 ≥ 𝑥)] |
𝑥=𝜉𝜎𝑚−−𝜉𝜎𝑚−

; 𝐽𝜎𝑚−1 = 𝑘, 𝐽𝜎𝑚 = 𝑗
]
> 0,

where the inequality follows from

ℙ(Δ𝑘, 𝑗 ≥ 𝑥) |
𝑥=𝜉𝜎𝑚−−𝜉𝜎𝑚−

> 0, ℙ0,𝑖-a.s.,

thanks to assumed unboundedness of the support of 𝐹𝑘, 𝑗. We therefore conclude with
(4.8) that ℙ0,𝑖 (𝜏+( 𝑗) < ∞) > 0 for 𝑗 ∈ Λ1. Suppose now that 𝑗 ∈ Λ2, i.e., there exists
𝑘 ∈ Λ1 s.t. supp(𝑞𝑘, 𝑗𝐹𝑘, 𝑗) ∩ (0,∞) ≠ ∅. Then, by Lemma 4.32, 𝑞+

𝑘, 𝑗
> 0 and since 𝑘 ∈ Λ1, it

follows from above that ℙ0,𝑖 (𝜏+(𝑘) < ∞) > 0. Combining these observations yields again
ℙ0,𝑖 (𝜏+( 𝑗) < ∞) > 0. Thus, the assumption Λ1 ∪ Λ2 = Θ implies ℙ0,𝑖 (𝜏+( 𝑗) < ∞) > 0 for
any 𝑗 ≠ 𝑖, as desired.

(ii) Let (𝑖, 𝑗) ∈ Θ2 with 𝑖 ≠ 𝑗 s.t. �̃�𝑖, 𝑗 > 0. Suppose first that (ℋ( 𝑗)) holds. Then, 𝑞+
𝑖, 𝑗
> 0 holds

if we can show that ℙ0,𝑖 (𝐺𝜎2 > 𝜎1, 𝐽𝜎1 = 𝑗) > 0. This is an immediate consequence of
(4.9) with 𝑛 = 1 since 𝑞𝑖, 𝑗 = �̃�𝑖, 𝑗 > 0 implies ℙ0,𝑖 (𝐽𝜎1 = 𝑗) = −𝑞𝑖, 𝑗/𝑞𝑖,𝑖 > 0. Suppose now
that supp(𝑞𝑖, 𝑗𝐹𝑖, 𝑗) ∩ (0,∞) ≠ ∅. Then, again by Lemma 4.32, 𝑞+

𝑖, 𝑗
> 0 as well. Thus, the

assumption yields

{(𝑖, 𝑗) ∈ Θ2 \ {(𝑖, 𝑖) : 𝑖 ∈ Θ} : �̃�𝑖, 𝑗 > 0} ⊂ {(𝑖, 𝑗) ∈ Θ2 \ {(𝑖, 𝑖) : 𝑖 ∈ Θ} : 𝑞+𝑖, 𝑗 > 0},

and irreducibility of 𝑸+ follows from irreducibility of 𝑸.
�

Assume for the rest of this section that (𝒜2) is satisfied and denote by𝝅+ = (𝜋+(1), . . . , 𝜋+(𝑛))
the invariant distribution of 𝑱+. Moreover, for a measure 𝜂 on ℝ+, denote by 𝜂(𝑥) = 𝜂((𝑥,∞)),
𝑥 ≥ 0, the tail measure of 𝜂. Our main goal is to understand the asymptotic behavior of over-
shoots. As a natural extension of the well-known limiting distributional behavior of overshoots
of Lévy processes, cf. [24], it is shown in Theorem 28 of [66] that under assumptions (𝒜1) and
(𝒜2) the overshoot process converges weakly to the limiting distribution

𝜇(d𝑦, {𝑖}) B 1
𝔼0,𝝅+ [𝐻+

1 ]

(
𝜋+(𝑖)𝑑+𝑖 𝛿0(d𝑦) + 𝟙(0,∞) (𝑦)

(
𝜋+(𝑖)Π+

𝑖 (𝑦) +
∑︁
𝑗≠𝑖

𝜋+( 𝑗)𝑞+𝑗,𝑖𝐹+𝑗,𝑖 (𝑦)
)
d𝑦

)
,

(𝑦, 𝑖) ∈ ℝ+ × Θ, if and only if 𝔼0,𝝅+ [𝐻+
1 ] < ∞.2 The Feller property of the overshoot process

guarantees that in this case 𝜇 is also an invariant measure. We will show that deleting the scaling
factor 𝔼0,𝝅+ [𝐻+

1 ]−1 yields the essentially unique invariant measure of the overshoot process and
2Here we made a correction to [66], since in the authors’ statement the limiting distribution of the parents

modulator 𝑱, 𝝅, appears instead of 𝝅+. As argued before, irreducibility of 𝑱 does not necessarily imply irreducibility
of 𝑱+ and even when 𝑱+ is irreducible, 𝝅 and 𝝅+ are not the same, see [110, Proposition 2.19]. Our analysis will
show however that stationarity of the ascending ladder height’s modulator and its stationary distribution are decisive
for tight overshoots.
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hence a stationary distribution coinciding with 𝜇 exists iff overshoots are tight. Moreover, we
will dig deeper into the mode of convergence, establishing conditions ensuring convergence in
the total variation norm and exponential or polynomial speed of convergence, which also gives
new results for the special case of Lévy process overshoots.

An analytical tool of central importance to us is the resolvent of the overshoot process.
Let (P𝑡)𝑡≥0 be the transition function of (O, J) defined by P𝑡 𝑓 (𝑥, 𝑖) = 𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)] for any
𝑓 ∈ B𝑏(ℝ+ × Θ) ∪ B+(ℝ+ × Θ) and (U𝜆)𝜆>0 be the associated resolvent given by

U𝜆 𝑓 (𝑥, 𝑖) =
∫ ∞

0
e−𝜆𝑡P𝑡 𝑓 (𝑥, 𝑖) d𝑡,

for any 𝜆 > 0. Our proof for the explicit formula of the resolvent is close in spirit to the proof
for the overshoot process of a Lévy subordinator in Blumenthal [32], which in turn is a special
case of a general result by Itō for Markov processes possessing a local time at a specific point of
the state space, see [94, Theorem 2.5.5]. The detailed proof is quite long and can be found in
Appendix 4.A.

Theorem 4.7. For any 𝑓 ∈ B+(ℝ+ × Θ) ∪ B𝑏(ℝ+ × Θ) and 𝑥 ∈ ℝ+ it holds that

(U𝜆 𝑓 (𝑥, 𝑖))>𝑖=1,...,𝑛 = (𝑄𝜆 𝑓 (𝑥, 𝑖))>𝑖=1,...𝑛 + e−𝜆𝑥𝚽+(𝜆)−1 · 𝝍( 𝑓 , 𝜆), (4.10)

where

𝝍( 𝑓 , 𝜆) =
(
𝑑+𝑖 𝑓 (0, 𝑖) +

∫ ∞

0
𝑄𝜆 𝑓 (𝑥, 𝑖) Π+

𝑖 (d𝑥) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝔼[𝑄𝜆 𝑓 (Δ+
𝑖, 𝑗, 𝑗)]

)>
𝑖=1,...,𝑛

and
𝑄𝜆 𝑓 (𝑥, 𝑖) =

∫ 𝑥

0
e−𝜆𝑡 𝑓 (𝑥 − 𝑡, 𝑖) d𝑡, (𝑥, 𝑖) ∈ ℝ+ × Θ.

The resolvent formula has far reaching consequences for understanding the behavior of
the MAP at first passage. A first neat observation is the strong Feller property of the resolvent
operator, which implies that (O, J) is a 𝑇-process.

Corollary 4.8. For any 𝜆 > 0 the resolvent U𝜆 has the strong Feller property. In particular the
overshoot process (O, J) is a 𝑇-process.

Proof. Let 𝜆 > 0 and let 𝑓 ∈ B𝑏(ℝ+ × Θ). Since we can write 𝑄𝜆 𝑓 (𝑥, 𝑖) = e−𝜆𝑥
∫ 𝑥
0 e𝜆𝑡 𝑓 (𝑡, 𝑖) d𝑡, it

follows that (𝑥, 𝑖) ↦→ 𝑄𝜆 𝑓 (𝑥, 𝑖) is continuous and hence (𝑥, 𝑖) ↦→ U𝜆 𝑓 (𝑥, 𝑖) is clearly continuous.
Moreover, U𝜆 𝑓 is bounded and thus, U𝜆B𝑏(ℝ+ × Θ) ⊂ C𝑏(ℝ+ × Θ) follows, i.e. U𝜆 has the strong
Feller property. Hence, the resolvent kernel R𝜆 ≔ 𝜆U𝜆 is a continuous component for itself,
implying that (O, J) is a 𝑇-process. �

We will also use the resolvent formula combined with Proposition 2.8 to determine an
invariant measure for the overshoot process. To show its essential uniqueness, we need to
establish Harris recurrence first, which is taken care of in the following proposition.

Proposition 4.9. The overshoot process (O, J) is Harris recurrent.
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Proof. Let 𝑗 ∈ Θ be arbitrarily chosen and let 𝜈 B 𝛿0⊗𝛿 𝑗. Fix (𝑥, 𝑖) ∈ ℝ+×Θ and let 𝐵 ∈ B(ℝ+×Θ)
such that 𝜈(𝐵) > 0, i.e. {0} × { 𝑗} ∈ 𝐵. Since 𝑱+ is irreducible and 𝑡 ↦→ 𝑇+

𝑡 is continuous and
increases to ∞ as 𝑡 → ∞, it follows that ℙ𝑥,𝑖 (t+( 𝑗) < ∞) > 0, where t+( 𝑗) ≔ inf{𝑡 > 0 : J+𝑡 = 𝑗}
is the first hitting time of { 𝑗} of J+. Let 𝑇Λ = inf{𝑡 ≥ 0 : (O𝑡, J𝑡) ∈ Λ} be the first hitting time of
a set Λ ∈ ℝ+ × Θ by (O, J) and denote by 𝑇+

Λ the first hitting time of (O+, J+). By the sawtooth
structure of O+ we have 𝑇+

{0}×{ 𝑗} = 𝑥, ℙ𝑥, 𝑗-a.s.. Since t+( 𝑗) ≤ 𝑇+
{0}×{ 𝑗} it therefore follows by the

strong Markov property of (O+, J+) that

ℙ𝑥,𝑖 (𝑇𝐵 < ∞) ≥ ℙ𝑥,𝑖
(
𝑇{0}×{ 𝑗} < ∞

)
= ℙ𝑥,𝑖

(
𝑇+
{0}×{ 𝑗} < ∞

)
= 𝔼𝑥,𝑖

[
ℙ
O+
t+ ( 𝑗) ,J

+
t+ ( 𝑗)

(
𝑇+
{0}×{ 𝑗} < ∞

)
𝟙{t+ ( 𝑗)<∞}

]
= ℙ𝑥,𝑖 (t+( 𝑗) < ∞) > 0,

where we used for the last equality that J+
t+ ( 𝑗) = 𝑗 and O+

t+ ( 𝑗) < ∞ almost surely. It now follows
from Proposition 2.1 in [130] that (O, J) is irreducible with irreducibility measure

R𝜈
1(d𝑦) ≔

∫
ℝ+×Θ

R1(𝑥, d𝑦) 𝜈(d𝑥) = R1((0, 𝑗), d𝑦), 𝑦 ∈ ℝ+ × Θ.

Moreover, (O, J) is a 𝑇-process by Corollary 4.8. Hence, if we can argue that the process is
non-evanescent, i.e. that there exists a compact set 𝐾 such that (O, J) returns to 𝐾 at arbitrarily
large times, it will follow from Theorem 3.2 in [130] that (O, J) is Harris recurrent. But non-
evanescence is a direct consequence of the sawtooth structure of the overshoot process, since for
the compact set 𝐾 ≔ {0} × Θ we have for any (𝑥, 𝑖) ∈ ℝ+ × Θ and 𝑡 > 0

ℙ𝑥,𝑖 (inf{𝑠 ≥ 𝑡 : (O𝑠, J𝑠) ∈ {0} × Θ} < ∞) = 𝔼𝑥,𝑖 [ℙO𝑡 ,J𝑡 (𝑇{0}×Θ < ∞)] = 1,

where we used that 𝑇{0}×Θ = 𝑦, ℙ𝑦, 𝑗-a.s. for any (𝑦, 𝑗) ∈ ℝ+×Θ and O𝑡 < ∞ almost surely. Hence,
(O, J) is non-evanescent and the assertion follows. �

As a consequence of irreducibility implied by Harris recurrence and (O, J) being a 𝑇-process,
we obtain that every compact set is petite, which will be useful for our proof of exponential
convergence of the overshoot process later on.

Corollary 4.10. Every compact set is petite for the overshoot process.

Proof. This is an immediate consequence of Theorem 5.1 in [164] since (O, J) is a Harris
recurrent 𝑇-process under the given assumptions and Harris recurrence implies irreducibility. �

Let us now determine the essential unique invariant measure of (O, J) and also derive a
necessary and sufficient condition for the existence of a unique stationary distribution, which is
the same condition needed for weak convergence of overshoots.

Theorem 4.11. The overshoot process (O, J) has an essentially unique invariant measure given by

𝜒(d𝑦, {𝑖}) = 𝜋+(𝑖)𝑑+𝑖 𝛿0(d𝑦) + 𝟙(0,∞) (𝑦)
(
𝜋+(𝑖)Π+

𝑖 (𝑦) +
∑︁
𝑗≠𝑖

𝜋+( 𝑗)𝑞+𝑗,𝑖𝐹+𝑗,𝑖 (𝑦)
)
d𝑦, (𝑦, 𝑖) ∈ ℝ+ × Θ.

(4.11)
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In particular, a stationary distribution for (O, J) exists if and only if

𝔼0,𝝅+ [𝐻+
1 ] ≔

𝑛∑︁
𝑖=1

𝜋+(𝑖)𝔼0,𝑖 [𝐻+
1 ] < ∞.

Proof. Define 𝜶(𝜆) ≔ 𝝅+ · 𝚽+(𝜆) and

𝛼𝜆 ≔

𝑛∑︁
𝑖=1

𝜋+(𝑖)Φ+
𝑖 (𝜆) 𝛿{0}×{𝑖},

then lim𝜆↓0 diag(Φ+
1 (𝜆), . . . ,Φ+

𝑛 (𝜆)) = 𝟘𝑛×𝑛 implies that 𝛼𝜆 (ℝ+ × Θ) → 0 as 𝜆 ↓ 0. Moreover,
since 𝝅+ is the stationary distribution of 𝑱+ and 𝑮+(0) = 𝕀𝑛, we have

lim
𝜆↓0

𝝅+ · (𝑸+ � 𝑮+(𝜆)) = 𝝅+ · 𝑸+ = 𝟘1×𝑛.

Recall from Chapter 2 the notation 𝛼𝜆U𝜆 (d𝑥) B
∫
ℝ+×Θ

U𝜆 (𝑦, d𝑥) 𝛼𝜆 (d𝑦). Plugging into the
resolvent formula from Theorem 4.7 yields for any 𝑓 ∈ B𝑏(ℝ+ × Θ) ∩ B+(ℝ+ × Θ) that

lim
𝜆↓0

𝛼𝜆U𝜆 ( 𝑓 ) = lim
𝜆↓0

𝑛∑︁
𝑖=1

𝜋+
𝑖 Φ

+
𝑖 (𝜆)U𝜆 𝑓 (0, 𝑖)

= lim
𝜆↓0

𝜶(𝜆) · (U𝜆 𝑓 (0, 𝑖))>𝑖=1,...,𝑛

= lim
𝜆↓0

𝝅+ ·
(
𝑑+𝑖 𝑓 (0, 𝑖) +

∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑖) Π+

𝑖 (d𝑦) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝑄𝜆 𝑓 (𝑦, 𝑗) 𝐹+𝑖, 𝑗 (d𝑦)
)
𝑖=1,...𝑛

.

(4.12)

By monotone convergence and an integration by parts it follows that for any measure 𝜈 on ℝ+

lim
𝜆↓0

∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑖) 𝜈(d𝑦) =

∫ ∞

0

∫ 𝑦

0
𝑓 (𝑦 − 𝑡, 𝑖) d𝑡 𝜈(d𝑦)

=

∫ ∞

0

∫ 𝑦

0
𝑓 (𝑡, 𝑖) d𝑡 𝜈(d𝑦)

=

∫ ∞

0
𝜈(𝑦) 𝑓 (𝑦, 𝑖) d𝑦,

where 𝜈(𝑦) B 𝜈(𝑦,∞). Thus, we obtain from (4.12) that

lim
𝜆↓0

𝛼𝜆U𝜆 ( 𝑓 ) = 𝝅+ ·
(
𝑑+𝑖 𝑓 (0, 𝑖) +

∫ ∞

0
𝑓 (𝑦, 𝑖)Π+

𝑖 (𝑦) d𝑦 +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗 𝑓 (𝑦, 𝑗)𝐹+𝑖, 𝑗 (𝑦) d𝑦
)>
𝑖=1,...,𝑛

=

𝑛∑︁
𝑖=1

𝜋+(𝑖)
(
𝑑+𝑖 𝑓 (0, 𝑖) +

∫ ∞

0
𝑓 (𝑦, 𝑖)Π+

𝑖 (𝑦) d𝑦 +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗

∫ ∞

0
𝑓 (𝑦, 𝑖)𝐹+𝑖, 𝑗 (𝑦) d𝑦

)
=

𝑛∑︁
𝑖=1

(
𝜋+(𝑖)

(
𝑑+𝑖 𝑓 (0, 𝑖) +

∫ ∞

0
𝑓 (𝑦, 𝑖)Π+

𝑖 (𝑦) d𝑦
)
+

∑︁
𝑗≠𝑖

𝜋+( 𝑗)𝑞+𝑗,𝑖
∫ ∞

0
𝑓 (𝑦, 𝑖)𝐹+𝑗,𝑖 (𝑦) d𝑦

)
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=

∫
ℝ+×Θ

𝑓 (𝑦, 𝑧) 𝜒(d𝑦 × d𝑧),

where for the second to last equality we used that
𝑛∑︁
𝑖=1

𝜋+(𝑖)
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗

∫ ∞

0
𝑓 (𝑦, 𝑗)𝐹+𝑖, 𝑗 d𝑦 =

𝑛∑︁
𝑗=1

∑︁
𝑖≠ 𝑗

𝑞+𝑖, 𝑗𝜋
+(𝑖)

∫ ∞

0
𝑓 (𝑦, 𝑗)𝐹+𝑖, 𝑗 (𝑦) d𝑦

=

𝑛∑︁
𝑖=1

∑︁
𝑗≠𝑖

𝑞+𝑗,𝑖𝜋
+( 𝑗)

∫ ∞

0
𝑓 (𝑦, 𝑖)𝐹+𝑗,𝑖 (𝑦) d𝑦.

From Proposition 2.8 it now follows that 𝜒 is indeed an invariant measure for (O, J). By
irreducibility of 𝑱+, (O, J) is a Harris recurrent Feller process according to Propositions 4.4 and
4.9 and hence Theorem 2.5 in [17] yields that 𝜒 is essentially unique.

Finally, using the Laplace exponent of (𝑯+, 𝑱+) we obtain(
𝔼0,𝑖 [𝐻+

1𝟙{𝐽+1= 𝑗}]
)
𝑖, 𝑗=1,...,𝑛 =

∂

∂𝜆
𝚽+(𝜆)

��
𝜆=0

= diag
( (
𝔼[𝐻+,(𝑖)

1 ]
) )
𝑖∈Θ + 𝑸+ �

(
𝔼[Δ+

𝑖, 𝑗]
)
𝑖, 𝑗=1,...,𝑛

= diag
((
𝑑+𝑖 +

∫ ∞

0
Π+
𝑖 (𝑥) d𝑥

))
𝑖∈Θ

+ 𝑸+ �
( ∫ ∞

0
𝐹+𝑖, 𝑗 (𝑥) d𝑥

)
𝑖, 𝑗=1,...,𝑛

,

and hence
𝔼0,𝑖 [𝐻+

1
]
= 𝑑+𝑖 +

∫ ∞

0
Π+
𝑖 (𝑥) d𝑥 +

∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗

∫ ∞

0
𝐹+𝑖, 𝑗 (𝑥) d𝑥, 𝑖 ∈ Θ,

which shows that
𝜒(ℝ+ × Θ) = 𝔼0,𝝅+ [

𝐻+
1
]
.

Thus, 𝜒 can be normalized to an invariant distribution if and only if 𝔼0,𝝅+ [𝐻+
1 ] < ∞. �

Remark 4.12. The finite mean condition for the ascending ladder height process is exactly the
same condition, which is necessary and sufficient for stationary overshoots of MAPs in the sense
of weak convergence. As shown in Theorem 35 of [66] as an extension of Theorem 8 in [70] for
Lévy processes, this condition is equivalent to 𝔼0,𝑖 [|𝜉1 |] < ∞ and either lim𝑡→∞ 𝜉𝑡 = ∞, ℙ0,𝑖-a.s.,
or lim sup𝑡→∞ 𝜉𝑡 = − lim inf𝑡→∞ 𝜉𝑡 = ∞, ℙ0,𝑖-a.s., together with∫ ∞

𝜅

𝑥
∑𝑛
𝑖=1 𝚷(𝑖, [𝑥,∞) × Θ)

1 +
∫ 𝑥
0

∫∞
𝑦

∑𝑛
𝑖=1 𝚷(𝑖, (−∞,−𝑧] × Θ) d𝑧 d𝑦

d𝑥 < ∞, (4.13)

for some 𝜅 > 0.
Our discussion of the interplay between Harris recurrence and invariant measures for Markov

process in Appendix 2 now also yields that 𝜒 is a maximal Harris meaure.

Corollary 4.13. The invariant measure 𝜒 given in (4.11) is a maximal Harris measure.
Remark 4.14. This could have also been shown directly by an alternative proof of Proposition 4.9
based on Kaspi and Mandelbaum’s characterization of Harris recurrence in terms of almost sure
finiteness of first hitting times (2.3) and the characteristic property (4.2) of the Lévy system
belonging to (𝑯+, 𝑱+).
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Having established the existence of a unique invariant distribution, we now proceed to
investigate ergodicity of overshoots. To this end, we need to find criteria ensuring the existence
of an irreducible skeleton chain. One of these criteria will be a strictly positive creeping probability
of the MAP and we lift a sufficient criterion for this to happen from the well-known Lévy process
situation.

Lemma 4.15. Suppose that 𝑑+
𝑖
> 0 for some 𝑖 ∈ Θ. Then, for any 𝑡 > 0 we have

ℙ0,𝑖 (𝜉𝑇𝑡 = 𝑡, 𝐽𝑇𝑡 = 𝑖
)
> 0.

Proof. Let 𝜎+1 be the first jump time of 𝑱+. If 𝑞+
𝑖,𝑖
= 0, then under ℙ0,𝑖, 𝑯+ is a Lévy subordinator

with positive drift and therefore has positive creeping probability by Theorem 5.9 in [109],
implying the claim. Suppose now −𝑞+

𝑖,𝑖
> 0. Then, using the representation from Proposition 4.1

we have

ℙ0,𝑖 (O𝑡 = 0, J𝑡 = 𝑖) = ℙ0,𝑖 (O+
𝑡 = 0, J+𝑡 = 𝑖)

≥ ℙ0,𝑖
(
𝐻
+,0,𝑖
𝑇
+,0,𝑖
𝑡

= 𝑡, 𝑇
+,0,𝑖
𝑡 < 𝜎+1

)
=

∫ ∞

0
ℙ
(
𝐻
+,(𝑖)
𝑇
+,(𝑖)
𝑡

= 𝑡, 𝑇
+,(𝑖)
𝑡 < 𝑦

)
ℙ0,𝑖 (𝜎+1 ∈ d𝑦)

= −𝑞+𝑖,𝑖
∫ ∞

0
e𝑞

+
𝑖,𝑖
𝑦
ℙ
(
𝐻
+,(𝑖)
𝑇
+,(𝑖)
𝑡

= 𝑡, 𝑇
+,(𝑖)
𝑡 < 𝑦

)
d𝑦,

where we used independence of 𝐻+,0,𝑖 and 𝑱+ for the third equality. Since again by Theorem 5.9
in [109], 𝑑+

𝑖
> 0 gives that ℙ(𝐻+,(𝑖)

𝑇
+,(𝑖)
𝑡

= 𝑡) > 0 for all 𝑡 ≥ 0 and

lim
𝑦→∞

ℙ
(
𝐻
+,(𝑖)
𝑇
+,(𝑖)
𝑡

= 𝑡, 𝑇
+,(𝑖)
𝑡 < 𝑦

)
= ℙ

(
𝐻
+,(𝑖)
𝑇
+,(𝑖)
𝑡

= 𝑡
)
,

it follows that there is 𝑧 > 0 such that ℙ
(
𝐻
+,(𝑖)
𝑇
+,(𝑖)
𝑡

= 𝑡, 𝑇
+,(𝑖)
𝑡 < 𝑦

)
> 0 for all 𝑦 ≥ 𝑧 and hence, from

above it follows that

ℙ0,𝑖 (O𝑡 = 0, J𝑡 = 𝑖) ≥ −𝑞+𝑖,𝑖
∫ ∞

𝑧

e𝑞
+
𝑖,𝑖
𝑦ℙ

(
𝐻
+,(𝑖)
𝑇
+,(𝑖)
𝑡

= 𝑡, 𝑇
+,(𝑖)
𝑡 < 𝑦

)
d𝑦 > 0.

�

Remark 4.16. The irreducibility assumption (𝒜2) is not required for this statement.

Let us now state properties of the ascending ladder height process that imply existence of an
irreducible skeleton of (O, J).

Proposition 4.17. If

(i) 𝑑+
𝑖
> 0 for some 𝑖 ∈ Θ, then (O, J) is aperiodic and any Δ-skeleton is irreducible.

(ii) for some 𝑗 ∈ Θ it holds 𝝀| (0,∞) � Π+
𝑗
| (0,∞) , then any Δ-skeleton (OΔ, JΔ) is 𝝀+⊗𝛿 𝑗-irreducible.
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(iii) for some 𝑗 ∈ Θ there exists an interval (𝑎, 𝑏) ⊂ ℝ+ such that 𝝀| (𝑎,𝑏) � Π+
𝑗
| (𝑎,𝑏) and for any

𝑖 ∈ Θ and 𝑥 > 0 it holds that 𝑈+
𝑖, 𝑗
( [0, 𝑥)) > 0, then for any Δ ∈ (0, (𝑎 + 𝑏)/2), the Δ-skeleton

(OΔ, JΔ) is 𝝀+(· ∩ (𝑎, (𝑎 + 𝑏)/2)) ⊗ 𝛿 𝑗-irreducible.
(iv) for some ( 𝑗, 𝑘) ∈ Θ2 with 𝑘 ≠ 𝑗 it holds 𝝀| (0,∞) � 𝐹+

𝑘, 𝑗
| (0,∞) and 𝑞+𝑘, 𝑗 > 0, then any Δ-skeleton

(OΔ, JΔ) is 𝝀+ ⊗ 𝛿 𝑗-irreducible.
(v) for some ( 𝑗, 𝑘) ∈ Θ2 with 𝑘 ≠ 𝑗 it holds 𝑞+

𝑘, 𝑗
> 0, there exists an interval (𝑎, 𝑏) ⊂ ℝ+ such

that 𝝀| (𝑎,𝑏) � 𝐹+
𝑘, 𝑗
| (𝑎,𝑏) and for any 𝑖 ∈ Θ and 𝑥 > 0 it holds that 𝑈+

𝑖,𝑘
( [0, 𝑥)) > 0, then for

any Δ ∈ (0, (𝑎 + 𝑏)/2), the Δ-skeleton (OΔ, JΔ) is 𝝀+(· ∩ (𝑎, (𝑎 + 𝑏)/2)) ⊗ 𝛿 𝑗-irreducible.
Proof.
(i) The singleton set 𝐶 = {0} × {𝑖} is trivially small (just choose 𝜈𝑎 = 𝑃𝑡 ((0, 𝑖), ·) for 𝑎 = 𝛿𝑡

and some 𝑡 > 0.). Further, 𝐶 ∈ B+(ℝ+ × Θ) since Corollary 4.13 tells us that the invariant
measure 𝜒 is an irreducibility measure for (O, J) and thanks to 𝑑+

𝑖
> 0, we have 𝜒(𝐶) > 0.

Lemma 4.15 gives that

ℙ0,𝑖 ((O𝑡, J𝑡) ∈ 𝐶) = ℙ0,𝑖 (O𝑡 = 0, J𝑡 = 𝑖) > 0

for all 𝑡 ≥ 0, which implies that (O, J) is aperiodic with defining singleton set 𝐶 = {0}×{𝑖},
which by Lemma 2.9 also implies that any Δ-skeleton is irreducible.

(ii) Let 𝐵 = 𝐵1 × 𝐵2 ∈ B(ℝ+ × Θ) such that 𝝀+ ⊗ 𝛿 𝑗 (𝐵) > 0. Without loss of generality we may
assume that 0 ∉ 𝐵1. Since 𝑱+ is irreducible it holds ℙ0,𝑖 (𝐽+𝑡 = 𝑗) > 0 for any 𝑡 > 0 and
𝑖 ∈ Θ and hence by monotone convergence,

lim
𝑥→∞

𝑈+
𝑖, 𝑗 ( [0, 𝑥)) =

∫ ∞

0
ℙ0,𝑖 (𝐽+𝑡 = 𝑗) d𝑡 > 0,

which yields that there exists 𝑥 > 0 such that 𝑈+
𝑖, 𝑗
( [0, 𝑥)) > 0 for all 𝑥 ≥ 𝑥 and 𝑖 ∈ Θ. For

given 𝑥 ≥ 0 let 𝑡 > 𝑥 + 𝑥. Then, by the overshoot formula and Fubini it follows that for any
𝑖 ∈ Θ we have

ℙ𝑥,𝑖 (O𝑡 ∈ 𝐵1, J𝑡 ∈ 𝐵2) ≥
∫
[0,𝑡−𝑥)

∫
𝐵1

Π+
𝑗 (𝑦 + d𝑢) 𝑈+

𝑖, 𝑗 (𝑡 − 𝑥 − d𝑦)

=

∫
[0,𝑡−𝑥)

Π+
𝑗 (𝐵1 + 𝑡 − 𝑥 − 𝑦) 𝑈+

𝑖, 𝑗 (d𝑦).
(4.14)

Since by translation invariance of the Lebesgue measure it holds 𝝀(𝐵1 + 𝑧) > 0 for any
𝑧 ≥ 0 and 𝝀| (0,∞) � Π+

𝑗
| (0,∞) by assumption, it follows that for any 𝑦 ∈ [0, 𝑡 − 𝑥) we have

Π+
𝑗
(𝐵1 + 𝑡 − 𝑥 − 𝑦) > 0. By our choice of 𝑡 it also holds that 𝑈+

𝑖, 𝑗
( [0, 𝑡 − 𝑥)) > 0, thus (4.14)

yields that ℙ𝑥,𝑖 (O𝑡 ∈ 𝐵1, J𝑡 ∈ 𝐵2) > 0. Hence, given Δ > 0, choosing 𝑛𝑥 ∈ ℕ large enough
such that 𝑛𝑥Δ > 𝑥 + 𝑥, it follows that ℙ𝑥,𝑖 ((O𝑛𝑥Δ, J𝑛𝑥Δ) ∈ 𝐵) > 0 for any 𝑖 ∈ Θ, which shows
that any Δ-skeleton is 𝝀+ ⊗ 𝛿 𝑗-irreducible.

(iii) Choose 𝐵 = 𝐵1 × 𝐵2 ∈ B(ℝ+ × Θ) such that 𝝀(· ∩ (𝑎, (𝑎 + 𝑏)/2)) ⊗ 𝛿 𝑗 (𝐵) > 0. Again we
may assume that 0 ∉ 𝐵1. Let (𝑥, 𝑖) ∈ ℝ+ ×Θ and 𝑡 ∈ (𝑥, 𝑥 + (𝑏− 𝑎)/2). Since for any 𝑧 ≥ 0
it holds that

(𝐵1 + 𝑧) ∩ (𝑎, 𝑏) = (𝐵1 ∩ (𝑎 − 𝑧, 𝑏 − 𝑧)) + 𝑧
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it follows for 𝑧 ∈ (0, (𝑏 − 𝑎)/2) by translation invariance of the Lebesgue measure that

𝝀((𝐵1 + 𝑧) ∩ (𝑎, 𝑏)) = 𝝀(𝐵1 ∩ (𝑎 − 𝑧, 𝑏 − 𝑧)) ≥ 𝝀(𝐵1 ∩ (𝑎, (𝑎 + 𝑏)/2)) > 0.

By our choice of 𝑡 ∈ (𝑥, 𝑥+(𝑏−𝑎)/2) it holds that 0 < 𝑡−𝑥−𝑦 < (𝑏−𝑎)/2 for all 𝑦 ∈ (0, 𝑡−𝑥)
and therefore 𝝀((𝐵1 + 𝑡 − 𝑥 − 𝑦) ∩ (𝑎, 𝑏)) > 0, which by our assumption 𝝀| (𝑎,𝑏) � Π+

𝑗
| (𝑎,𝑏)

implies that Π+
𝑗
(𝐵1 + 𝑡 − 𝑥 − 𝑦) > 0. Since 𝑈+

𝑖, 𝑗
( [0, 𝑡 − 𝑥)) > 0 by assumption it now follows

from (4.14) that ℙ𝑥,𝑖 ((O𝑡, J𝑡) ∈ 𝐵) > 0. Hence, given Δ ∈ (0, (𝑏−𝑎)/2), if we choose 𝑘 ∈ ℕ

such that 𝑘Δ ∈ (𝑥, 𝑥 + (𝑏 − 𝑎)/2) it follows that ℙ𝑥,𝑖 ((O𝑘Δ, J𝑘Δ) ∈ 𝐵) > 0 and therefore∑∞
𝑘=1 ℙ

𝑥,𝑖 ((O𝑘Δ, J𝑘Δ) ∈ 𝐵) > 0. Since (𝑥, 𝑖) ∈ ℝ+ × Θ was chosen arbitrarily we conclude
that the Δ-skeleton is irreducible with irreducibility measure 𝝀+(· ∩ (𝑎, (𝑎 + 𝑏)/2)) ⊗ 𝛿 𝑗.

Parts (iv) and (v) can be demonstrated exactly as parts (ii) and (iii) when instead of (4.14) we
use that for 𝐵 = 𝐵1 × 𝐵2 ∈ B(ℝ+ × Θ) with 𝑗 ∈ 𝐵2, (𝑥, 𝑖) ∈ ℝ+ × Θ and 𝑡 > 𝑥 it holds

ℙ𝑥,𝑖 (O𝑡 ∈ 𝐵1, J𝑡 ∈ 𝐵2) ≥ 𝑞+𝑘, 𝑗

∫
[0,𝑡−𝑥)

𝐹+𝑘, 𝑗(𝐵1 + 𝑡 − 𝑥 − 𝑦) 𝑈+
𝑖,𝑘 (d𝑦).

�

Remark 4.18. The condition in part (iii) and (v) that 𝑈+
𝑖, 𝑗
( [0, 𝑥)) > 0 for all 𝑖 ≠ 𝑗 is non-redundant

in general. If, e.g., 𝐹+
𝑖, 𝑗
( [0, 𝑥)) = 0 for some 𝑖 ≠ 𝑗, then 𝑈+

𝑖, 𝑗
( [0, 𝑥)) = 0.

These conditions in combination with Harris recurrence now allow us to determine when
(O, J) is ergodic.

Theorem 4.19. Suppose that 𝔼0,𝝅+ [𝐻+
1 ] < ∞. Then, under any of the conditions of Proposition

4.17, it holds that (O, J) is ergodic, i.e.

∀(𝑥, 𝑖) ∈ ℝ+ × Θ : lim
𝑡→∞

‖ℙ𝑥,𝑖 ((O𝑡, J𝑡) ∈ ·) − 𝜇‖TV = 0,

where for (𝑥, 𝑖) ∈ ℝ+ × Θ,

𝜇(d𝑦, {𝑖}) ≔ 1
𝔼0,𝝅+ [𝐻+

1 ]

(
𝜋+(𝑖)𝑑+𝑖 𝛿0(d𝑦) + 𝟙(0,∞) (𝑦)

(
𝜋+(𝑖)Π+

𝑖 (𝑦) +
∑︁
𝑗≠𝑖

𝜋+( 𝑗)𝑞+𝑗,𝑖𝐹+𝑗,𝑖 (𝑦)
)
d𝑦

)
,

(4.15)
is the stationary distribution of (O, J).
Proof. As a consequence of Proposition 4.4, Proposition 4.9 and Theorem 4.11, it follows that
under any of the conditions of Proposition 4.17, (O, J) is a positive Harris recurrent Borel right
Markov process with unique stationary distribution given in (4.15) such that some Δ-skeleton is
irreducible. Thus, Theorem 6.1 in [130] yields the assertion. �

A direct implication of ergodicity is that a continuous time version of the von Neumann–
Birkhoff ergodic theorem holds, see the discussion in [146].

Corollary 4.20. Given the assumptions from Theorem 4.19, it holds for any 𝑓 ∈ 𝐿𝑝(ℝ+ × Θ, 𝜇)
and (𝑥, 𝑖) ∈ ℝ+ × Θ that

lim
𝑇→∞

1
𝑇

∫ 𝑇

0
𝑓 (O𝑡, J𝑡) d𝑡 = 𝜇( 𝑓 ), ℙ𝑥,𝑖-a.s. and in 𝐿𝑝(ℙ𝜇).
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Once we have derived an analogue of Vigon’s équations amicales inversés in Section 4.4,
we will be able to express conditions on the Lévy system 𝚷 of (𝝃, 𝑱) that guarantee one of the
conditions on the Lévy system 𝚷+ of (𝑯+, 𝑱+) required for ergodicity. For the moment we content
ourselves with studying the drifts 𝑑+

𝑖
of the subordinators associated to the ascending ladder

height process.

Lemma 4.21. If 𝑱 is irreducible, then for any 𝑖 ∈ Θ and an appropriate scaling of local time, the
diffusion parameter 𝑏𝑖 of 𝝃(𝑖) is given by

𝑏2𝑖 = 2𝑑+𝑖 𝑑
−
𝑖 .

Proof. Let 𝑖 ∈ Θ. Considering the diagonal of 𝚿, the spatial Wiener–Hopf factorization (4.5)
yields for every 𝜃 ∈ ℝ

i𝑎𝑖𝜃 −
𝑏2
𝑖

2
𝜃2 +

∫
ℝ

(
ei𝜃𝑥 − 1 − i𝜃𝑥𝟙[−1,1] (𝑥)

)
Π𝑖 (d𝑥) + 𝑞𝑖,𝑖

=

(
𝑞−𝑖,𝑖 − †−𝑖 − i𝑑−𝑖 𝜃 +

∫ ∞

0

(
e−i𝜃𝑥 − 1

)
Π−
𝑖 (d𝑥)

)
·
(
𝑞+𝑖,𝑖 − †+𝑖 + i𝑑+𝑖 𝜃 +

∫ ∞

0

(
ei𝜃𝑥 − 1

)
Π+
𝑖 (d𝑥)

)
+

∑︁
𝑘≠𝑖

𝜋(𝑘)
𝜋(𝑖) 𝑞

−
𝑘,𝑖𝑞

+
𝑘,𝑖𝐺

−
𝑘,𝑖 (−𝜃)𝐺

+
𝑘,𝑖 (𝜃).

Since
lim

|𝜃 |→∞

1
𝜃2

∫
ℝ

(
ei𝜃𝑥 − 1 − i𝜃𝑥𝟙[−1,1] (𝑥)

)
Π𝑖 (d𝑥) = 0,

and
lim

|𝜃 |→∞

1
|𝜃|

∫ ∞

0
(ei𝜃𝑥 − 1) Π+

𝑖 (d𝑥) = 0, lim
|𝜃 |→∞

1
|𝜃|

∫ ∞

0
(e−i𝜃𝑥 − 1) Π−

𝑖 (d𝑥) = 0,

and moreover |𝐺−
𝑘,𝑖
(−𝜃)𝐺+

𝑘,𝑖
(𝜃) | ≤ 1, comparing coefficients yields 𝑏2

𝑖
= 2𝑑+

𝑖
𝑑−
𝑖
. �

Thus, 𝑏𝑖 > 0 if and only if 𝑑+
𝑖
∧ 𝑑−

𝑖
> 0 and therefore Theorem 4.19 shows that for any

MAP with tight overshoots and some Lévy component 𝝃(𝑖) with non-zero diffusion component,
convergence to the stationary overshoot distribution takes place in total variation.

As a next step we show that under appropriate moment conditions on the Lévy processes
and transitional jumps underlying the ascending ladder height MAP, overshoots converge with
polynomial rate and in case of existence of exponential moments even exponentially fast. Thus,
the speed of convergence is reflected in the tail behavior of the jump measures associated to the
Lévy system 𝚷+, with light tails giving exponential decay and moderately heavy tails resulting
in polynomial decay. For the proof we yet again make use of the resolvent formula (4.10) to
find Lyapunov functions needed for the resolvent drift criteria (2.8) and (2.10).

Theorem 4.22. Suppose that one of the conditions of Proposition 4.17 is satisfied.
(i) Suppose there exists 𝜆 > 0 such that the exponential 𝜆-moment exists for all 𝑯+,(𝑖) , 𝑖 ∈ Θ, and

for all Δ+
𝑖, 𝑗
, 𝑖 ≠ 𝑗, such that 𝑞+

𝑖, 𝑗
≠ 0. Then, for the choice 𝑉𝜆 (𝑥, 𝑖) = exp(𝜆𝑥), (𝑥, 𝑖) ∈ ℝ+ × Θ,

(O, J) is R𝜆𝑉𝜆-uniformly ergodic, i.e.

sup
| 𝑓 | ≤R𝜆𝑉𝜆

��𝔼𝑥,𝑖 [ 𝑓 (O𝑡, J𝑡)] − 𝜇( 𝑓 )
�� ≤ 𝐶R𝜆𝑉𝜆 (𝑥, 𝑖)e−𝜅𝑡, (𝑥, 𝑖) ∈ ℝ+ × Θ,
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for some universal constants 𝐶, 𝜅 > 0. Moreover for any 𝛿 ∈ (0, 1), it holds that

‖ℙ𝑥,𝑖 ((O𝑡, J𝑡) ∈ ·) − 𝜇‖TV ≤ C(𝛿)R𝜆𝑉𝜆 (𝑥, 𝑖)e−𝑡/(2+𝛿) , (𝑥, 𝑖) ∈ ℝ+ × Θ, (4.16)

for some constant C(𝛿) > 0.

(ii) Suppose that for some 𝜆 > 1 the 𝜆-moment exists for all 𝑯+,(𝑖) , 𝑖 ∈ Θ, and for all Δ+
𝑖, 𝑗
, 𝑖 ≠ 𝑗,

such that 𝑞+
𝑖, 𝑗
≠ 0. Then, there exists 𝐶 > 0 such that

‖ℙ𝑥,𝑖 ((O𝑡, J𝑡) ∈ ·) − 𝜇‖TV ≤ 𝐶R𝜆𝑉𝜆 (𝑥, 𝑖)𝑡1−𝜆 , (𝑥, 𝑖) ∈ ℝ+ × Θ,

where 𝑉𝜆 (𝑥, 𝑖) = e𝜆𝑥𝟙[0,1) (𝑥) + 𝑥𝜆𝟙[1,∞) (𝑥).
Proof. (i) For a matrix 𝐴 ∈ ℝ𝑛×𝑛, let ‖𝐴‖∞ ≔ max𝑖=1,...𝑛

∑𝑛
𝑗=1 |𝑎𝑖 𝑗 | be its matrix norm induced

by the sup-norm. Let 𝑄𝜆 be the operator from the statement of Theorem 4.7. Then,

𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) = 𝜆

∫ 𝑥

0
e−𝜆𝑡𝑉𝜆 (𝑥 − 𝑡, 𝑖) d𝑡 = 1

2
(
e𝜆𝑥 − e−𝜆𝑥

)
, (𝑥, 𝑖) ∈ ℝ+ × Θ.

Since by Taylor expansion there exists 𝑎 > 0 such that e𝜆𝑥 − e−𝜆𝑥 ≤ 𝑎𝑥 for any 𝑥 ∈ (0, 1)
and Π+

𝑖
are Lévy subordinator measures, it follows that∫ 1

0
𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) Π+

𝑖 (d𝑥) < ∞.

Moreover, by assumption 𝑯+,(𝑖) has an exponential 𝜆-moment, which according to Theorem
3.6 of [109] is equivalent to

∫∞
1 exp(𝜆𝑥) Π+

𝑖
(d𝑥) < ∞, implying that∫ ∞

1
𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) Π+

𝑖 (d𝑥) < ∞

as well and thus ∫ ∞

0
𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) Π+

𝑖 (d𝑥) < ∞

for all 𝑖 ∈ Θ. Since additionally 𝔼[exp(𝜆Δ+
𝑖, 𝑗
)] < ∞ for any 𝑖, 𝑗 ∈ Θ such that 𝑖 ≠ 𝑗 and

𝑞+
𝑖, 𝑗
> 0, it follows that if we define

𝑏 ≔ 𝜆‖𝚽+(𝜆)−1‖∞
𝑛∑︁
𝑖=1

(
𝑑+𝑖 +

∫ ∞

0
𝑄𝜆𝑉𝜆 (𝑥, 𝑖) Π+

𝑖 (d𝑥) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝔼[𝑄𝜆𝑉𝜆 (Δ+
𝑖, 𝑗, 𝑗)]

)
≤ ‖𝚽+(𝜆)−1‖∞

𝑛∑︁
𝑖=1

(
𝜆𝑑+𝑖 +

1
2

∫ ∞

0

(
e𝜆𝑥 − e−𝜆𝑥

)
Π+
𝑖 (d𝑥) +

∑︁
𝑗≠𝑖

𝑞+
𝑖, 𝑗

2
𝔼
[
exp

(
𝜆Δ+

𝑖, 𝑗

) ] )
,

we have 𝑏 < ∞. Using (4.10) it therefore follows for any 𝑖 ∈ Θ that

R𝜆𝑉𝜆 (𝑥, 𝑖) = 𝜆U𝜆𝑉𝜆 (𝑥, 𝑖) ≤
1
2
(
e𝜆𝑥 − e−𝜆𝑥

)
+ 𝑏 < 1

2
𝑉𝜆 (𝑥, 𝑖) + 𝑏, (𝑥, 𝑖) ∈ ℝ+ × Θ, (4.17)

which shows that (2.8) holds for 𝛽0 = 1/2 and 𝑏 < ∞ as above. Under the given as-
sumptions, (O, J) is Harris recurrent and there exists an irreducible skeleton chain by
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Proposition 4.9 and Proposition 4.17, hence (O, J) is irreducible and aperiodic. Moreover,
𝑉𝜆 is unbounded off petite sets since 𝑉𝜆 is increasing and continuous and hence for any
𝑧 > 0, the set {(𝑥, 𝑖) ∈ ℝ+ × Θ : 𝑉𝜆 (𝑥, 𝑖) ≤ 𝑧} is compact and hence petite, according
to Corollary 4.10. Thus, (2.8) being satisfied for our choice of 𝑉𝜆 , Theorem 5.2 in [74]
implies that (O, J) is R𝜆𝑉𝜆-uniformly ergodic.
To establish the more explicit rate of convergence for the total variation norm in (4.16),
note that (4.17) combined with (2.9) shows that for the petite set 𝐶(𝜀) = {𝑉𝜆 ≤ 2𝑏/𝜀},
𝜀 ∈ (0, 1) and 𝜙(𝑧) = (1 − 𝜀)𝑧/2 we have

R𝜆𝑉𝜆 (𝑥, 𝑖) ≤
1 + 𝜀
2

𝑉𝜆 (𝑥, 𝑖) + 𝑏𝟙𝐶 (𝜀) = 𝑉𝜆 (𝑥, 𝑖) − 𝜙 ◦ 𝑉𝜆 (𝑥, 𝑖) + 𝑏𝟙𝐶 (𝜀) , (𝑥, 𝑖) ∈ ℝ+ × Θ,

and thus, the claim follows easily from (2.11).

(ii) Since 𝑉𝜆 (𝑥, 𝑖) = 𝑉𝜆 (𝑥, 𝑖) for 𝑥 ∈ [0, 1), 𝑖 ∈ Θ, it follows from above that∫ 1

0
𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) Π+

𝑖 (d𝑥) < ∞.

Moreover, for 𝑥 ≥ 1 we have 𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) ≤ 𝑥𝜆 and thus by our moment assumptions on
𝑯+,(𝑖) and Δ+

𝑖, 𝑗 ∫ ∞

1
𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) Π+

𝑖 (d𝑥) < ∞, 𝔼[𝜆𝑄𝜆𝑉𝜆 (Δ+
𝑖, 𝑗, 𝑗)] < ∞.

This shows that

�̃� ≔ 𝜆‖𝚽+(𝜆)−1‖∞
𝑛∑︁
𝑖=1

(
𝑑+𝑖 +

∫ ∞

0
𝑄𝜆𝑉𝜆 (𝑥, 𝑖) Π+

𝑖 (d𝑥) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝔼[𝑄𝜆𝑉𝜆 (Δ+
𝑖, 𝑗, 𝑗)]

)
< ∞.

Observe now that integrating by parts twice yields that for 𝑥 ≥ 1 and 𝑖 ∈ Θ,

𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) ≤ 𝑉𝜆 (𝑥, 𝑖) − 𝑥𝜆−1 + e−𝜆𝑥
(
e𝜆 +

∫ 𝑥

1
(𝜆 − 1)e𝜆𝑡𝑡𝜆−2 d𝑡

)
and for 𝑥 ∈ [0, 1),

𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) ≤ e𝜆𝑥 .

Thus, for all (𝑥, 𝑖) ∈ ℝ+ × Θ, we have

𝜆𝑄𝜆𝑉𝜆 (𝑥, 𝑖) ≤ 𝑉𝜆 (𝑥, 𝑖) − (𝑉𝜆 (𝑥, 𝑖))
𝜆−1
𝜆 + e−𝜆𝑥

(
e𝜆 +

∫ 𝑥

1
(𝜆 − 1)e𝜆𝑡𝑡𝜆−2 d𝑡

)
+ e𝜆−1𝟙[0,1] (𝑥)

and hence by the resolvent formula and the definiton of �̃�,

R𝜆𝑉𝜆 (𝑥, 𝑖) ≤ 𝑉𝜆 (𝑥, 𝑖) − (𝑉𝜆 (𝑥, 𝑖))
𝜆−1
𝜆 + e−𝜆𝑥

(
�̃� + e𝜆 +

∫ 𝑥

1
(𝜆 − 1)e𝜆𝑡𝑡𝜆−2 d𝑡

)
+ e𝜆−1𝟙[0,1] (𝑥).

(4.18)
Let 𝑥∗ > 1 be large enough such that for all 𝑥 > 𝑥∗

𝜓𝜆 (𝑥) ≔ e−𝜆𝑥
(
�̃� + e𝜆 +

∫ 𝑥

1
(𝜆 − 1)e𝜆𝑡𝑡𝜆−2 d𝑡

)
≤ 1

2
𝑥𝜆−1.
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By the same arguments as in the previous part, the compact set 𝐶 ≔ [0, 𝑥∗] × Θ is petite
and it follows from (4.18) that

R𝜆𝑉𝜆 ≤ 𝑉𝜆 − 𝜙 ◦ 𝑉𝜆 + �̃�𝟙𝐶 , (4.19)

where �̃� ≔ e𝜆−1 +max𝑥∈[0,𝑥∗ ] 𝜓𝜆 (𝑥) < ∞ and 𝜙(𝑧) = 1
2 𝑧

1−1/𝜆 , 𝑧 ≥ 1, is concave, differen-
tiable and increasing. Hence, (2.10) is satisfied. The assertion now follows from (2.11)
upon noting that

𝐻𝜙(𝑡) =
∫ 𝑡

1
(1/𝜙(𝑠)) d𝑠 = 2𝜆 (𝑡1/𝜆 − 1), 𝐻−1

𝜙 (𝑡) =
(
1 + 𝑡

2𝜆

) 𝜆
,

and therefore the rate of convergence Ξ(𝑡) defined in Appendix 2 is given by

Ξ(𝑡) = 1/(𝜙 ◦ 𝐻−1
𝜙 ) (𝑡) = 2

(
1 + 𝑡

2𝜆

)1−𝜆
≤ 2(2𝜆)𝜆−1𝑡1−𝜆 .

�

Remark 4.23. Let us emphasize that the parameter 𝜆 in the exponential 𝜆-moment assumption
from part (i) is only reflected in a multiplicative constant and hence negligible for the speed of
convergence. This is particularly nice for statistical considerations, where exact control over the
speed of convergence is decisive for making a minimax approach over entire classes of MAPs
feasible. Moreover, our analysis of the mixing behavior of self-similar Markov processes later on
profits immensly from this exact rate in terms of expliciteness, since the Lamperti–Kiu transform
turns the exponential rate into a polynomial one. On the other hand, if the MAP components
only have some finite 𝜆-moment, then the maximal size of 𝜆 is highly relevant for the polynomial
speed of convergence.

Finally, we will establish polynomial 𝛽-mixing of stationary overshoots provided that the
process converges at polynomial rate and make use of Masuda’s criterion for exponential 𝛽-
mixing given exponential ergodicity of a Markov process stated in (2.15) to establish exponential
𝛽-mixing of overshoots for any initial distribution with exponential moments. To this end, we
need one more technical result, which is the natural generalization of a result well known for
renewal functions of Lévy subordinators to the MAP situation.

Lemma 4.24. For any 𝑥, 𝑦 > 0 and 𝑖, 𝑗 ∈ Θ it holds

𝑈+
𝑖, 𝑗 (𝑥 + 𝑦) − 𝑈+

𝑖, 𝑗 (𝑥) ≤ 𝑈+
𝑗, 𝑗 (𝑦).

Proof. Let (𝜃+𝑡 )𝑡≥0 be the family of transition operators for the Markov process (𝐻+, 𝐽+). Then,
with a change of variables and an application of the strong Markov property it follows

𝑈+
𝑖, 𝑗 (𝑥 + 𝑦) − 𝑈+

𝑖, 𝑗 (𝑥) = 𝔼0,𝑖

[ ∫ 𝑇+𝑥+𝑦

𝑇+𝑥

𝟙{𝐽+𝑡 = 𝑗} d𝑡

]
= 𝔼0,𝑖

[ ∫ 𝑇+𝑥+𝑦◦𝜃+𝑇+𝑥
+𝑇+𝑥

0
𝟙{𝐽+

𝑡+𝑇+𝑥
= 𝑗} d𝑡

]
= 𝔼0,𝑖

[ ∫ 𝑇+𝑥+𝑦

0
𝟙{𝐽+𝑡 = 𝑗} d𝑡 ◦ 𝜃+

𝑇+𝑥

]
= 𝔼0,𝑖

[
𝔼
𝐻+
𝑇+𝑥
,𝐽+
𝑇+𝑥

[ ∫ 𝑇+𝑥+𝑦

0
𝟙{𝐽+𝑡 = 𝑗} d𝑡

] ]
≤ 𝔼0,𝑖

[
𝑈+
𝐽+
𝑇+𝑥
, 𝑗
(𝑦)

]
≤ 𝑈+

𝑗, 𝑗 (𝑦).
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Here, we used for the first inequality, that by spatial homogeneity of a MAP, {𝑇+
𝑥+𝑦,ℙ

𝑧,𝑘} d
=

{𝑇+
𝑥+𝑦−𝑧,ℙ

0,𝑘} for any 𝑧 ≥ 0 and combinded this observation with the fact that 𝑧 ↦→ 𝑇+
𝑧 is

increasing and that 𝐻+
𝑇+𝑥

≥ 𝑥 by definition. The second inequality follows from 𝑈+
𝑖, 𝑗
(𝑦) ≤ 𝑈+

𝑗, 𝑗
(𝑦)

thanks to increasing paths of 𝑯+. �

Recall the definition of the 𝛽-mixing coefficient from (2.14).

Theorem 4.25. Suppose that one of the conditions of Proposition 4.17 is satisfied.

(i) Suppose that the exponential moment assumption from Theorem 4.22.(i) is satisfied and let
𝜂 be a probability measure on (ℝ+ × Θ,B(ℝ+ × Θ)) such that 𝜂(·,Θ) has an exponential
𝜆-moment. Then, (O, J) started in 𝜂 is exponentially 𝛽-mixing with the 𝛽-mixing coefficient
𝛽(𝜂, ·) satisfying

𝛽(𝜂, 𝑡) ≤ 2𝜚(𝜂, 𝜆, 𝛿)e−𝑡/(2+𝛿) ,

for
𝜚(𝜂, 𝜆) B C(𝛿) sup

𝑡≥0

∫
ℝ+×Θ

R𝜆𝑉𝜆 (𝑦, 𝑧) ℙ𝜂 (O𝑡 ∈ d𝑦, J𝑡 ∈ d𝑧) < ∞,

for some constant C(𝛿) > 0 and 𝑉𝜆 (𝑥, 𝑖) = exp(𝜆𝑥), (𝑥, 𝑖) ∈ ℝ+ × Θ.

(ii) Suppose that the 𝜆-moment assumption from Theorem 4.22.(ii) is satisfied for some 𝜆 > 2.
Then, (O𝑡, J𝑡)𝑡≥0 started in its invariant distribution is 𝛽-mixing with rate

𝛽(𝜇, 𝑡) . 𝑡2−𝜆 , 𝑡 ≥ 0.

Proof. (i) By Theorem 4.22, for any 𝛿 ∈ (0, 1) there exists C(𝛿) > 0 s.t.

‖ℙ𝑥,𝑖 (O𝑡 ∈ ·) − 𝜇‖TV ≤ C(𝛿)R𝜆𝑉𝜆 (𝑥, 𝑖)e−𝑡/(2+𝛿) , (𝑥, 𝑖) ∈ ℝ+ × Θ.

Hence, the assertion will follow from Lemma 3.9 in Masuda [123] if we can establish that
𝜚(𝜂, 𝜆, 𝛿) < ∞. To this end, observe that by the explicit form of the 𝜆-resolvent U𝜆 of the
overshoot process and with the constants 𝑎, 𝑏 appearing in the proof of Theorem 4.22 we have∫

ℝ+×Θ
R𝜆𝑉𝜆 (𝑦, 𝑢) ℙ𝜂 (O𝑡 ∈ d𝑦, J𝑡 ∈ d𝑢)

≤ 𝑏 +
𝑛∑︁

𝑖, 𝑗=1

1
2

∫
ℝ+

∫
ℝ+

(e𝜆𝑦 − e−𝜆𝑦) ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖})

≤ 𝑏 +
𝑛∑︁

𝑖, 𝑗=1

(
1
2

∫
ℝ+

∫ ∞

1
e𝜆𝑦 ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖})

+ 𝑎

2

∫
ℝ+

∫ 1

0
𝑦ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖})

)
≤ 𝑏 +

𝑛∑︁
𝑖, 𝑗=1

(
1
2

∫
ℝ+

∫ ∞

1
e𝜆𝑦 ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖}) + 𝑎

2

)
.
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Hence, to prove the assertion it suffices to show that for any (𝑖, 𝑗) ∈ Θ2,

sup
𝑡≥0

∫
ℝ+

∫ ∞

1
e𝜆𝑦 ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖}) < ∞.

With the sawtooth structure, the overshoot formula and multiple uses of Fubini’s theorem we
obtain for fixed 𝑡 ≥ 0,∫

ℝ+

∫ ∞

1
e𝜆𝑦 ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖})

≤
∫ 𝑡

0

∫ ∞

1
e𝜆𝑦 ℙ0,𝑖 (O𝑡−𝑥 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖}) +

∫ ∞

𝑡

e𝜆 (𝑥−𝑡) 𝜂(d𝑥, {𝑖})

≤
∫ 𝑡

0
𝜂(d𝑥, {𝑖})

( ∫ 𝑡−𝑥

0
𝑈+
𝑖, 𝑗 (d𝑦)

∫ ∞

1
Π+
𝑖 (𝑡 − 𝑥 − 𝑦 + d𝑢) e𝜆𝑢

+
∑︁
𝑘≠ 𝑗

𝑞+𝑘, 𝑗

∫ 𝑡−𝑥

0
𝑈+
𝑖,𝑘 (d𝑦)

∫ ∞

1
𝐹+𝑘, 𝑗(𝑡 − 𝑥 − 𝑦 + d𝑢) e𝜆𝑢

)
+

∫ ∞

0
e𝜆𝑥 𝜂(d𝑥, {𝑖})

=

∫ 𝑡

0
𝜂(d𝑥, {𝑖})

( ∫ 𝑡−𝑥

0
𝑈+
𝑖, 𝑗 (d𝑦)

∫ ∞

1
Π+
𝑖 (d𝑢) e𝜆 (𝑢+𝑦+𝑥−𝑡)

+
∑︁
𝑘≠ 𝑗

𝑞+𝑘, 𝑗

∫ 𝑡−𝑥

0
𝑈+
𝑖,𝑘 (d𝑦)

∫ ∞

1
𝐹+𝑘, 𝑗(d𝑢) e

𝜆 (𝑢+𝑦+𝑥−𝑡)

)
+

∫ ∞

0
e𝜆𝑥 𝜂(d𝑥, {𝑖})

=

∫ ∞

1
e𝜆𝑢 Π+

𝑖 (d𝑢)
∫ 𝑡

0
𝜂(d𝑥, {𝑖}) e𝜆𝑥

∫ 𝑡−𝑥

0
e𝜆 (𝑦−𝑡) 𝑈+

𝑖, 𝑗 (d𝑦)

+
∑︁
𝑘≠ 𝑗

𝑞+𝑘, 𝑗

∫ ∞

1
e𝜆𝑢 𝐹+𝑘, 𝑗(d𝑢)

∫ 𝑡

0
𝜂(d𝑥, {𝑖}) e𝜆𝑥

∫ 𝑡−𝑥

0
e𝜆 (𝑦−𝑡) 𝑈+

𝑖,𝑘 (d𝑦)

+
∫ ∞

0
e𝜆𝑥 𝜂(d𝑥, {𝑖})

From Lemma 4.24 we know that for 𝑡 > 𝑥 and 𝑖, 𝑗 ∈ Θ

𝑈+
𝑖, 𝑗 ((𝑥, 𝑡]) = 𝑈+

𝑖, 𝑗 (𝑡) − 𝑈+
𝑖, 𝑗 (𝑥) ≤

𝑛∑︁
𝑘=1

𝑈+
𝑘, 𝑗(𝑡 − 𝑥)

and thus∫ 𝑡−𝑥

0
e𝜆 (𝑦−𝑡)𝑈+

𝑖, 𝑗 (d𝑦) ≤
∫ 𝑡

0
e𝜆 (𝑦−𝑡)𝑈+

𝑖, 𝑗 (d𝑦) = 𝜆

∫ 𝑡

0

∫ 𝑦

−∞
e𝜆 (𝑥−𝑡) d𝑥 𝑈+

𝑖, 𝑗 (d𝑦)

= 𝜆

∫ 𝑡

−∞
e𝜆 (𝑥−𝑡)𝑈+

𝑖, 𝑗 ((0 ∨ 𝑥, 𝑡]) d𝑥 = e−𝜆𝑡𝑈+
𝑖, 𝑗 (𝑡) + 𝜆

∫ 𝑡

0
e𝜆 (𝑥−𝑡)𝑈+

𝑖, 𝑗 ((𝑥, 𝑡]) d𝑥

≤ e−𝜆𝑡𝑈+
𝑗, 𝑗 (𝑡) + 𝜆

∫ 𝑡

0
e𝜆 (𝑥−𝑡)𝑈+

𝑗, 𝑗 (𝑡 − 𝑥) d𝑥

≤ e−𝜆𝑡𝑈+
𝑗, 𝑗 (𝑡) + 𝜆

∫ ∞

0
e−𝜆𝑧𝑈+

𝑗, 𝑗 (𝑧) d𝑧.
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Theorem 28 in [66] tells us that 𝑈+
𝑗, 𝑗
(𝑧) ∼ 𝔼0,𝝅+ [𝐻+

1 ]−1𝑧𝜋+( 𝑗) as 𝑧 → ∞ and since 𝑈+
𝑗, 𝑗
(𝑧) is

moreover non-negative and increasing, we conclude that

sup
𝑡≥0

∫ 𝑡

0
e𝜆 (𝑦−𝑡)𝑈+

𝑖, 𝑗 (d𝑦) < ∞.

Plugging in now yields

sup
𝑡≥0

∫
ℝ+

∫ ∞

1
e𝜆𝑦 ℙ𝑥,𝑖 (O𝑡 ∈ d𝑦, J𝑡 = 𝑗) 𝜂(d𝑥, {𝑖})

≤
∫ ∞

1
e𝜆𝑢 Π+

𝑖 (d𝑢)
∫ ∞

0
e𝜆𝑥 𝜂(d𝑥, {𝑖}) sup

𝑡≥0

∫ 𝑡

0
e𝜆 (𝑦−𝑡) 𝑈+

𝑖, 𝑗 (d𝑦)

+
∑︁
𝑘≠ 𝑗

𝑞+𝑘, 𝑗

∫ ∞

1
e𝜆𝑢 𝐹+𝑘, 𝑗(d𝑢)

∫ ∞

0
e𝜆𝑥 𝜂(d𝑥, {𝑖}) sup

𝑡≥0

∫ 𝑡

0
e𝜆 (𝑦−𝑡) 𝑈+

𝑖,𝑘 (d𝑦)

+
∫ ∞

0
e𝜆𝑥 𝜂(d𝑥,Θ)

< ∞,

where finiteness is a consequence of the above discussion and our assumptions that 𝐻+,(𝑖)
1 , 𝜂(·,Θ)

and Δ+
𝑖, 𝑗

for 𝑖 ≠ 𝑗 with 𝑞+
𝑖, 𝑗
≠ 0 all have an exponential 𝜆-moment. This finishes the proof.

(ii) By stationarity, it holds that

𝛽(𝜇, 𝑡) =
∫
ℝ+×Θ

‖P𝑡 ((𝑥, 𝑧), ·) − 𝜇‖TV 𝜇(d𝑥 × d𝑧) =
𝑛∑︁
𝑖=1

∫
ℝ+

‖P𝑡 ((𝑥, 𝑖), ·) − 𝜇‖TV 𝜇(d𝑥, {𝑖}).

Since the (𝜆 − 1)th moments of 𝐻+,(𝑖)
1 for all 𝑖 ∈ Θ and Δ+

𝑖, 𝑗
for all 𝑖, 𝑗 ∈ Θ such that 𝑞+

𝑖, 𝑗
≠ 0 exist,

it follows from Theorem 4.22.(ii) that

𝛽(𝜇, 𝑡) ≤ 𝐶𝑡2−𝜆
𝑛∑︁
𝑖=1

∫
ℝ+

R𝜆−1𝑉𝜆−1(𝑥, 𝑖) 𝜇(d𝑥, {𝑖}),

and hence, to prove the assertion it is enough to show that the integrals on the right-hand side
are finite. From the drift inequality (4.19) established in the proof of Theorem 4.22.(ii) we
obtain that for any 𝑖 ∈ Θ,∫

ℝ+×Θ
R𝜆−1𝑉𝜆−1(𝑥, 𝑖) 𝜇(d𝑥, {𝑖}) ≤

∫ 1

0
e(𝜆−1)𝑥𝜇(d𝑥, 𝑖) + �̃�𝜇(𝐶) +

∫ ∞

1
𝑥𝜆−1 𝜇(d𝑥, {𝑖}).

Since by our moment assumptions∫ ∞

1
𝑥𝜆−1 𝜇(d𝑥, {𝑖}) = 1

𝔼0,𝝅+ [𝐻+
1 ]

∫ ∞

1
𝑥𝜆−1

(
𝜋+(𝑖)Π+

𝑖 (𝑥) +
∑︁
𝑗≠𝑖

𝜋+( 𝑗)𝑞+𝑗,𝑖𝐹+𝑗,𝑖 (𝑥)
)
d𝑥,

≤ 1
𝔼0,𝝅+ [𝐻+

1 ]

(
𝜋+(𝑖)

∫ ∞

1
𝑥𝜆 Π+

𝑖 (d𝑥) +
∑︁
𝑗≠𝑖

𝜋+( 𝑗)𝑞+𝑗,𝑖
∫ ∞

1
𝑥𝜆 𝐹+𝑗,𝑖 (d𝑥)

)
< ∞,

(4.20)

the assertion follows.
�
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Remark 4.26. As in (4.20), it is easily established that when the jump measures associated to
𝚷+ have exponential decay, 𝜇(·,Θ) possesses an exponential moment and hence for part (i), the
stationary overshoot process is exponentially 𝛽-mixing as well.

As a direct corollary we obtain the exponential resp. polynomial 𝛽-mixing behavior of MAPs
sampled at first hitting times provided that creeping is possible or the Lévy system has some
minor regularity and moreover the respective moment conditions on the MAP are satisfied. Let

K𝑡 ≔ 𝜎
( (
𝜉𝑇𝑠 , 𝐽𝑇𝑠

)
, 𝑠 ≤ 𝑡

)
, K𝑡 ≔ 𝜎

( (
𝜉𝑇𝑠 , 𝐽𝑇𝑠

)
, 𝑠 ≥ 𝑡

)
, 𝑡 ≥ 0

be the 𝜎-algebras generated by the MAP sampled at first hitting times up to level 𝑡 and from
level 𝑡 onwards, respectively.

Corollary 4.27. Suppose that the assumptions of Theorem 4.22.(i) are satisfied and let 𝜂 be a
probability measure on (ℝ+ ×Θ,B(ℝ+ ×Θ)) such that 𝜂(·,Θ) has an exponential 𝜆-moment. Then,
for any 𝛿 ∈ (0, 1),

sup
𝑡>0

𝛽ℙ𝜂

(
K𝑡,K𝑡+𝑠

)
≤ 2𝜚(𝜂, 𝜆, 𝛿)e−𝑠/(2+𝛿) , 𝑠 > 0,

where 𝜚(𝜂, 𝜆, 𝛿) > 0 is the constant from Theorem 4.25. If instead the assumptions from 4.22.(ii)
are satisfied with 𝜆 > 2, then

sup
𝑡>0

𝛽ℙ𝜇

(
K𝑡,K𝑡+𝑠

)
. 𝑠2−𝜆 , 𝑠 > 0.

4.4 Équations amicales inversés for MAPs

With the help of the spatial Wiener–Hopf factorization for MAPs we can generalize Vigon’s
équation amicale inversé for Lévy processes to a characterization of the Lévy system of the
ascending ladder height MAP in terms of the Lévy system of the parent MAP and the potential
measures of the ascending ladder height process of the dual MAP. This is crucial for our results
since this relation will allow to impose conditions on the parent MAP instead of the ascending
ladder height MAP that imply the overshoot convergence results from the previous section. To
this end, we first need to recall some concepts from distribution theory and introduce more
notation.

Let S(ℝ) be the Schwartz space of rapidly decreasing smooth functions on ℝ and consider
its dual space S′(ℝ), the space of tempered distributions. For 𝜇 ∈ S′(ℝ) the 𝑘-th derivative
𝜇 (𝑘) ∈ S′(ℝ) is defined by〈

𝜇 (𝑘) , 𝜙
〉
= (−1)𝑘

〈
𝜇, 𝜙(𝑘) 〉, 𝜙 ∈ S(ℝ), 𝑘 ∈ ℕ.

If 𝜇 is induced by a function 𝜓 ∈ B(ℝ) via

〈𝜇, 𝜙〉 =
∫
ℝ

𝜓(𝑥)𝜙(𝑥) d𝑥, 𝜙 ∈ S(ℝ),

we just write 𝜇 = 𝜓, provided that the above integrals are well defined. Similarly, if 𝜇 is a measure
on (ℝ,B(ℝ)) such that

∫
𝜙 d𝜇 is well-defined for any 𝜙 ∈ S(ℝ), we identify the distribution

induced by 𝜙 ↦→
∫
𝜙 d𝜇 with 𝜇.



92 Chapter 4. Stability of overshoots of Markov additive processes

For a Lévy measure 𝜈 integrating 𝑥 ↦→ |𝑥 | on [−1, 1], let L𝜈 be the tempered distribution
defined via 〈L

𝜈, 𝜙
〉
≔

∫
ℝ

(𝜙(𝑥) − 𝜙(0)) 𝜈(d𝑥), 𝜙 ∈ S(ℝ),

and for a general Lévy measure 𝜈 let
L2𝜈 be the tempered distribution defined via〈L2𝜈, 𝜙

〉
≔

∫
ℝ

(𝜙(𝑥) − 𝜙(0) − 𝜙′(0)𝑥𝟙[−1,1] (𝑥)) 𝜈(d𝑥), 𝜙 ∈ S(ℝ).

Recall that for a tempered distribution 𝜇 ∈ S′(ℝ) the Fourier transform ℱ𝜇 is defined by

〈ℱ𝜇, 𝜙〉 ≔ 〈𝜇,ℱ𝜙〉 =
〈
𝜇,

∫
ℝ

ei𝑥 ·𝜙(𝑥) d𝑥
〉
, 𝜙 ∈ S(ℝ),

and that the Fourier transform is a bijective, continuous mapping on S′(ℝ). If 𝛿 is the Dirac
delta distribution and letting 𝜓2(𝑥) = 𝑥2, 𝑥 ∈ ℝ, it is immediate that

ℱ𝛿 = id, ℱ𝛿′ = −i · id, ℱ𝛿′′ = −𝜓2.

Hence, for a Lévy subordinator with characteristic Fourier exponent 𝜅 , Lévy measure 𝜈, drift
𝑑 ≥ 0 and killing rate 𝑞 ≥ 0 we obtain〈

ℱ
(
− 𝑞𝛿 − 𝑑𝛿′ + L𝜈

)
, 𝜙

〉
=

∫
ℝ

(
− 𝑞 + i𝑑𝜃 +

∫
ℝ

(
ei𝜃𝑥 − 1

)
𝜈(d𝑥)

)
𝜙(𝜃) d𝜃 =

∫
ℝ

𝜅(𝜃)𝜙(𝜃) d𝜃,

and therefore it holds that
ℱ−1𝜅 = −𝑞𝛿 − 𝑑𝛿′ + L𝜈.

Thus, if A∗ denotes the infinitesimal generator of the subordinator’s dual, then

A∗ 𝑓 = (ℱ−1𝜅) ∗ 𝑓 , 𝑓 ∈ S(ℝ).

Similarly, we get for the characteristic exponent Ψ of a Lévy process with generating triplet
(𝑎, 𝜎2, 𝜈) and killing rate 𝑞 that

ℱ−1Ψ = −𝑞𝛿 − 𝑎𝛿′ + 1
2
𝜎2𝛿′′ + L2𝜈.

We start with a simple lemma. Let

𝜎(𝐴) ≔ sup{Re(𝜆) : 𝜆 eigenvalue of 𝐴},

be the spectral bound of a quadratic complex matrix 𝐴.

Lemma 4.28. For any (non-trivial) MAP with characteristic matrix exponent 𝚿 and 𝜃 ∈ ℝ, it holds
that 𝜎(𝚿(𝜃)) ≤ 0 and for any 𝜆 > 0, 𝜆𝕀𝑛 −𝚿(𝜃) is invertible.

Proof. Let 𝜆 > 0 be arbitrary and e𝜆 be an independent exponential time with mean 1/𝜆 and
define for 𝑥 ∈ ℝ, 𝑖, 𝑗 ∈ Θ,

𝜆𝑈𝑖, 𝑗 (d𝑥) = 𝔼0,𝑖
[ ∫ e𝜆

0
𝟙{𝜉𝑡 ∈d𝑥,𝐽𝑡= 𝑗} d𝑡

]
=

∫ ∞

0
ℙ0,𝑖 (𝜉𝑡 ∈ d𝑥, 𝐽𝑡 = 𝑗, 𝑡 < e𝜆) d𝑡
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=

∫ ∞

0
e−𝜆𝑡ℙ0,𝑖 (𝜉𝑡 ∈ d𝑥, 𝐽𝑡 = 𝑗) d𝑡,

i.e. 𝜆𝑈𝑖, 𝑗 is the (finite) occupation measure of the MAP started in (0, 𝑖), while the modulator 𝑱 is
in state 𝑗, killed at an independent exponential time. Clearly,{

ℱ𝜆𝑈 𝑖, 𝑗

}
(𝜃) =

( ∫ ∞

0
e𝑡 (𝚿(𝜃)−𝜆𝕀𝑛) d𝑡

)
𝑖, 𝑗
,

where for a matrix valued function 𝑓 : ℝ → ℝ𝑛×𝑛, such that 𝑓𝑖, 𝑗 is integrable,
∫
ℝ
𝑓 (𝑡) d𝑡 B

(
∫
ℝ
𝑓𝑖, 𝑗 (𝑡) d𝑡)𝑖, 𝑗=1,...,𝑛. Hence, if we let 𝜆𝑈 ≔ (𝜆𝑈𝑖, 𝑗)𝑖, 𝑗∈Θ, it follows that{

ℱ 𝜆𝑈
}
(𝜃) =

∫ ∞

0
e𝑡 (𝚿(𝜃)−𝜆𝕀𝑛) d𝑡.

Noting that

(𝜆𝕀𝑛 −𝚿(𝜃))
∫ 𝑇

0
e𝑡 (𝚿(𝜃)−𝜆𝕀𝑛) d𝑡 = 𝕀𝑛 − e𝑇 (𝚿(𝜃)−𝜆𝕀𝑛) , (4.21)

and that the left-hand side converges to

(𝜆𝕀𝑛 −𝚿(𝜃)) ·
{
ℱ 𝜆𝑈

}
(𝜃),

as 𝑇 → ∞, it follows that the matrix exponential e𝑇 (𝚿(𝜃)−𝜆𝕀𝑛) must converge as well as 𝑇 → ∞.
E.g. from Theorem 4.12 of [21], this can only be the case if 𝜎(𝚿(𝜃) − 𝜆𝕀𝑛) ≤ 0. But since
𝜆 > 0 was chosen arbitrarily, it follows that for any 𝜆 > 0, actually 𝜎(𝚿(𝜃) − 𝜆𝕀𝑛) < 0, implying
𝜎(𝚿(𝜃)) ≤ 0. Again by Theorem 4.12 of [21], this implies that

lim
𝑇→∞

e𝑇 (𝚿(𝜃)−𝜆𝕀𝑛) = 𝟘𝑛×𝑛.

Thus, (4.21) yields that 𝜆𝕀𝑛 −𝚿(𝜃) is invertible with inverse

(𝜆𝕀𝑛 −𝚿(𝜃))−1 =
{
ℱ 𝜆𝑈

}
(𝜃). (4.22)

�

Remark 4.29. This result generalizes part of Theorem 1 in [96] in the sense that, if we let
Υ(𝑧) = (𝔼0,𝑖 [exp(𝑧𝜉1); 𝐽1 = 𝑗])𝑖, 𝑗∈Θ for 𝑧 ∈ ℂ whenever it is defined, 𝑧 ↦→ det(Υ(𝑧) − 𝜆𝕀𝑛) has
no zeros on the imaginary axis, without having to assume anything on the jump structure of
(𝝃, 𝑱) or irreducibility of 𝑱.

Let us assume for the rest of this section that

(𝒜3) the modulator 𝑱 of the MAP (𝝃, 𝑱) is irreducible, i.e. 𝑸 is an irreducible matrix.

Theorem 4.30 (Équations amicales inversés for MAPs). For an appropriate scaling of local time
at the supremum it holds for any 𝑖, 𝑗 ∈ Θ, 𝑖 ≠ 𝑗 and 𝑥 > 0 that

Π+
𝑖 (d𝑥) =

∫ ∞

0
Π𝑖 (𝑦 + d𝑥) 𝑈−

𝑖,𝑖 (d𝑦) +
∑︁
𝑘≠𝑖

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘,𝑖

∫ ∞

0
𝐹𝑘,𝑖 (𝑦 + d𝑥) 𝑈−

𝑘,𝑖 (d𝑦), (4.23)
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𝑞+𝑖, 𝑗𝐹
+
𝑖, 𝑗 (d𝑥) =

𝜋( 𝑗)
𝜋(𝑖)

∫ ∞

0
Π 𝑗 (𝑦 + d𝑥) 𝑈−

𝑗,𝑖 (d𝑦) +
∑︁
𝑘≠ 𝑗

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘, 𝑗

∫ ∞

0
𝐹𝑘, 𝑗(𝑦 + d𝑥) 𝑈−

𝑘,𝑖 (d𝑦). (4.24)

and

Π−
𝑖 (d𝑥) =

∫ ∞

0
Π𝑖 (−𝑦 − d𝑥) 𝑈+

𝑖,𝑖 (d𝑦) +
∑︁
𝑘≠𝑖

𝑞𝑖,𝑘

∫ ∞

0
𝐹𝑖,𝑘 (−𝑦 − d𝑥) 𝑈+

𝑘,𝑖 (d𝑦), (4.25)

𝑞−𝑖, 𝑗𝐹
−
𝑖, 𝑗 (d𝑥) =

𝜋( 𝑗)
𝜋(𝑖)

( ∫ ∞

0
Π 𝑗 (−𝑦 − d𝑥) 𝑈+

𝑗,𝑖 (d𝑦) +
∑︁
𝑘≠ 𝑗

𝑞 𝑗,𝑘

∫ ∞

0
𝐹 𝑗,𝑘 (−𝑦 − d𝑥) 𝑈+

𝑘,𝑖 (d𝑦)
)
. (4.26)

Remark 4.31. If we let 𝚷(d𝑥) B (𝚷(𝑖, d𝑥 × { 𝑗}))𝑖, 𝑗=1,...,𝑛, 𝚷+(d𝑥) B (𝚷+(𝑖, d𝑥 × { 𝑗}))𝑖, 𝑗=1,...,𝑛
and 𝑼+(d𝑥) B (𝑈+

𝑖, 𝑗
(d𝑥))𝑖, 𝑗=1,...,𝑛 (with the analogous definitions for the ascending ladder height

process of the dual MAP), then we may compactly express the équations amicales inversés (up
to premultiplication of some diagonal matrix corresponding to the scaling of local time at the
supremum) for 𝑥 > 0 as

𝚷+(d𝑥) =
∫ ∞

0
𝚫−1
𝝅 𝑼−(d𝑦)>𝚫𝝅𝚷(𝑦 + d𝑥),

𝚷−(d𝑥) =
∫ ∞

0
𝚫−1
𝝅

(
𝚷(−𝑦 − d𝑥)𝑼+(d𝑦)

)>
𝚫𝝅,

where
∫∞
0 (𝑔𝑖, 𝑗 (𝑦) 𝜈𝑖, 𝑗 (d𝑦))𝑖, 𝑗=1,...,𝑛 B (

∫∞
0 𝑔𝑖, 𝑗 (𝑦) 𝜈𝑖, 𝑗 (d𝑦))𝑖, 𝑗=1,...,𝑛 for integrable functions 𝑔𝑖, 𝑗 on

(ℝ+,B(ℝ+), 𝜈𝑖, 𝑗).

Proof of Theorem 4.30. Analogously to Vigon’s [172] idea, we use inverse Fourier transforma-
tions of the quantities involved in the spatial Wiener–Hopf factorization for MAPs to prove the
desired equalitites. To this end, recall from (4.5) that for an appropriate scaling of local time at
the supremum, it holds that

𝚿(𝜃) = −𝚫−1
𝝅 𝚿−(−𝜃)>𝚫𝝅𝚿

+(𝜃), 𝜃 ∈ ℝ. (4.27)

Rearranging yields for any 𝜆 > 0,

𝚿+(𝜃) = −𝚫−1
𝝅

((
𝚿−(−𝜃) − 𝜆𝕀𝑛

)−1)>
𝚫𝝅

(
𝚿(𝜃) + 𝜆𝚿+(𝜃)

)
, 𝜃 ∈ ℝ, (4.28)

where invertibility of 𝚿−(−𝜃) − 𝜆𝕀𝑛 is shown in Lemma 4.28. By the form of the characteristic
matrix exponent of a MAP it follows by taking inverse Fourier transformation of the distribution
induced by the left-hand side that

ℱ−1𝚿+
𝑖, 𝑗 = 𝟙{𝑖= 𝑗}

(
(𝑞+𝑖,𝑖 − †+𝑖 )𝛿 − 𝑑+𝑖 𝛿

′ + LΠ+
𝑖

)
+ 𝟙{𝑖≠ 𝑗}𝑞

+
𝑖, 𝑗𝐹

+
𝑖, 𝑗.

Note that by (4.22) (
𝜆𝕀𝑛 −𝚿−(−·)

)−1
𝑖, 𝑗

= ℱ 𝜆𝑈−
𝑖, 𝑗,

where for an independent exponentially distributed random variable e𝜆 with mean 1/𝜆 we
define

𝜆𝑈−
𝑖, 𝑗 (d𝑥) B �̂�0,𝑖

[ ∫ e𝜆

0
𝟙{−𝐻+

𝑡 ∈d𝑥,𝐽+𝑡 = 𝑗} d𝑡
]
, 𝑥 ∈ ℝ.
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With this observation, our previous discussion of inverse Fourier transforms of Lévy character-
istic exponents and the property that if we regard two tempered distributions whose Fourier
transforms are induced by some measurable functions, the Fourier transform of the convolution
of those distributions becomes the tempered distribution induced by the product of the functions,
it follows that the inverse Fourier transformation of the distribution induced by the right-hand
side of (4.28) may be written as

−ℱ−1
(
𝚫−1
𝝅

((
𝚿−(−·) − 𝜆𝕀𝑛

)−1)>
𝚫𝝅

(
𝚿 + 𝜆𝚿+) )

𝑖, 𝑗

= −
𝑛∑︁
𝑘=1

𝜋(𝑘)
𝜋(𝑖) ℱ−1

((
𝚿 + 𝜆𝚿+

)
𝑘, 𝑗

(
𝚿−(−·) − 𝜆𝕀𝑛

)−1
𝑘,𝑖

)
=
𝜋( 𝑗)
𝜋(𝑖)

(
L2Π 𝑗 + 𝜆

L
Π+
𝑗 − (𝑎 𝑗 + 𝜆𝑑+𝑗 )𝛿′ + 1

2𝜎
2𝛿′′ + (𝑞 𝑗, 𝑗 + 𝜆 (𝑞+𝑗, 𝑗 − †+𝑗 ))𝛿

)
∗ 𝜆𝑈−

𝑗,𝑖

+
∑︁
𝑘≠ 𝑗

𝜋(𝑘)
𝜋(𝑖)

(
𝑞𝑘, 𝑗𝐹𝑘, 𝑗 + 𝜆𝑞+𝑘, 𝑗𝐹

+
𝑘, 𝑗

)
∗ 𝜆𝑈−

𝑘,𝑖.

Observe that the restriction of
L
Π+
𝑗
and

L2Π 𝑗 to the space D+ of smooth functions on ℝ with
compact support in (0,∞) is equal to the distributions induced by Π+

𝑗
and Π 𝑗 on this space, see

also Propriété 3.9 in [172]. Restricting to (0,∞) and equating both sides therefore yields the
equality of distributions on D′

+,

𝟙{𝑖= 𝑗}Π
+
𝑖 + 𝟙{𝑖≠ 𝑗}𝑞

+
𝑖, 𝑗𝐹

+
𝑖, 𝑗 =

𝜋( 𝑗)
𝜋(𝑖)

(
Π 𝑗 + 𝜆Π+

𝑗

)
∗ 𝜆𝑈−

𝑗,𝑖 +
∑︁
𝑘≠ 𝑗

𝜋(𝑘)
𝜋(𝑖)

(
𝑞𝑘, 𝑗𝐹𝑘 𝑗 + 𝜆𝑞+𝑘, 𝑗𝐹

+
𝑘, 𝑗

)
∗ 𝜆𝑈−

𝑘,𝑖. (4.29)

Here, we used that for a measure 𝜇 on ℝ such that the distribution 𝜇 ∗ 𝜆𝑈−
𝑘,𝑖
, is well-defined it

holds that (
𝜇 ∗ 𝜆𝑈−

𝑘,𝑖

) ��
(0,∞) =

(
𝜇
��
(0,∞) ∗

𝜆𝑈−
𝑘,𝑖

) ��
(0,∞) ,

since 𝜆𝑈−
𝑘,𝑖

has support ℝ−, see also Propriété 3.8 in [172]. Denote

𝑈−
𝑘,𝑖 (d𝑥) B �̂�0,𝑘

[ ∫ ∞

0
𝟙{−𝐻+

𝑡 ∈d𝑥,𝐽+𝑡 =𝑖} d𝑡
]
, 𝑥 ∈ ℝ,

and let 𝜙 ∈ B𝑏((0,∞)) be non-negative with support supp(𝜙) ⊂ (𝑎, 𝑏), where 0 < 𝑎 < 𝑏 < ∞.
Utilizing the strong Markov property and conditional spatial homogeneity of (𝑯−, 𝑱−) we can
calculate as follows:∫ ∞

0
𝜙(𝑧) Π+

𝑗 ∗ 𝑈−
𝑗,𝑖 (d𝑧) =

∫ 0

−∞

∫
(𝑎,𝑏)

𝜙(𝑧) Π+
𝑗 (d𝑧 − 𝑦) 𝑈−

𝑗,𝑖 (d𝑦)

≤ �̂�0, 𝑗
[ ∫ ∞

0

∫
(𝑎+𝐻+

𝑡 ,𝑏+𝐻+
𝑡 )
𝜙(𝑧 − 𝐻+

𝑡 ) Π+
𝑗 (d𝑧)𝟙{𝐽+𝑡 =𝑖} d𝑡

]
≤ ‖𝜙‖∞

∫
(𝑎,∞)

�̂�0, 𝑗
[ ∫

(𝑇+
𝑧−𝑏,𝑇

+
𝑧−𝑎)

𝟙{𝐽+𝑡 =𝑖} d𝑡
]
Π+
𝑗 (d𝑧)

= ‖𝜙‖∞
∫
(𝑎,∞)

�̂�0, 𝑗
[
�̂�
𝐻+
𝑇+
𝑧−𝑏

,𝐽+
𝑇+
𝑧−𝑏

[ ∫
(0,𝑇+𝑧−𝑎)

𝟙{𝐽+𝑡 =𝑖} d𝑡
] ]

Π+
𝑗 (d𝑧)



96 Chapter 4. Stability of overshoots of Markov additive processes

≤ ‖𝜙‖∞
∫
(𝑎,∞)

�̂�0, 𝑗
[
�̂�
0,𝐽+

𝑇+
𝑧−𝑏

[ ∫
(0,𝑇+

𝑏−𝑎)
𝟙{𝐽+𝑡 =𝑖} d𝑡

] ]
Π+
𝑗 (d𝑧)

≤ ‖𝜙‖∞Π+
𝑗 ((𝑎,∞))

𝑛∑︁
𝑘=1

𝑈−
𝑘,𝑖 (𝑏 − 𝑎)

< ∞,

and similarly,
∫∞
0 𝜙(𝑧) Π 𝑗 ∗ 𝑈−

𝑗,𝑖
(d𝑧) < ∞. Thus, using monotone convergence for the cor-

responding integrals wrt. the positive and negative part of a function 𝜙 ∈ D+, we have
〈Π+

𝑗
∗ 𝜆𝑈−

𝑗,𝑖
, 𝜙〉 → 〈Π+

𝑗
∗ 𝑈−

𝑗,𝑖
, 𝜙〉 and 〈Π 𝑗 ∗ 𝜆𝑈−

𝑗,𝑖
, 𝜙〉 → 〈Π 𝑗 ∗ 𝑈−

𝑗,𝑖
, 𝜙〉 as 𝜆 ↓ 0. Consequently,

𝜆Π+
𝑗
∗𝜆𝑈−

𝑗,𝑖
→ 0 andΠ 𝑗∗𝜆𝑈−

𝑗,𝑖
→ Π 𝑗∗𝑈−

𝑗,𝑖
onD′

+ as 𝜆 ↓ 0. Similarly, we obtain 𝐹+
𝑘, 𝑗
∗𝜆𝑈−

𝑘,𝑖
→ 𝐹+

𝑘, 𝑗
∗𝑈−

𝑘,𝑖

as 𝜆 ↓ 0. Thus, letting 𝜆 ↓ 0 in (4.29) implies that restricted to D+ we have

𝟙{𝑖= 𝑗}Π
+
𝑖 + 𝟙{𝑖≠ 𝑗}𝑞

+
𝑖, 𝑗𝐹

+
𝑖, 𝑗 =

𝜋( 𝑗)
𝜋(𝑖) Π 𝑗 ∗ 𝑈−

𝑗,𝑖 +
∑︁
𝑘≠ 𝑗

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘, 𝑗 𝐹𝑘, 𝑗 ∗ 𝑈

−
𝑘,𝑖.

The relations (4.23) and (4.24) follow upon noting that by a monotone class argument 𝜎-finite
measures with support on (0,∞) are uniquely characterized by their action onD+ and observing
that 𝑈−

𝑖, 𝑗
(d𝑦) = 𝑈−

𝑖, 𝑗
(− d𝑦) for 𝑦 ≥ 0. Relations (4.25) and (4.26) are proved similarly by taking

inverse Fourier transforms on both sides of of

𝚿− = −𝚫−1
𝝅

( (
𝚿+(−·) − 𝜆𝕀𝑛

)−1)> (
𝚿(−·)> + 𝜆𝚫𝝅𝚿

−𝚫−1
𝝅

)
𝚫𝝅, 𝜆 > 0,

which is a rearranged version of (4.27). �

Without loss of generality, for the remainder of this section we fix a scaling of local time
at the supremum such that (4.5) is satisfied and hence the formulas given in Theorem 4.30
hold without further multiplicative constants. As a first consequence of the équations amicales
inversés, we obtain a characterization of 𝑸+ in terms of the transitional jumps of (𝝃, 𝑱), which
we made use of in Proposition 4.6.

Lemma 4.32. Suppose that for 𝑖, 𝑗 ∈ Θ with 𝑖 ≠ 𝑗, we have supp(𝑞𝑖, 𝑗𝐹𝑖, 𝑗) ∩ (0,∞) ≠ ∅. Then,
𝑞+
𝑖, 𝑗
> 0.

Proof. By assumption, there exists 𝜀 > 0 such that 𝑞𝑖, 𝑗𝐹 𝑖, 𝑗 (𝑧) > 0 for all 𝑧 ∈ (0, 𝜀). Note also that
𝑈−
𝑖,𝑖
( [0, 𝜀)) > 0 by increasing and right-continuous paths of (𝑯+, 𝑱+) under ℙ̂0,𝑖. Plugging (0,∞)

into (4.24) therefore yields

𝑞+𝑖, 𝑗 ≥
∫ ∞

0
𝑞𝑖, 𝑗𝐹 𝑖, 𝑗 (𝑧) 𝑈−

𝑖,𝑖 (d𝑧) ≥
∫ 𝜀

0
𝑞𝑖, 𝑗𝐹 𝑖, 𝑗 (𝑧) 𝑈−

𝑖,𝑖 (d𝑧) > 0.

�

Another simple consequence is the following.

Lemma 4.33. If for some 𝑗 ∈ Θ, 𝝃( 𝑗) has infinite jump activity on ℝ+, i.e. Π 𝑗 (ℝ+) = ∞, then 𝑈−
𝑗,𝑖

does not have an atom at 0 for all 𝑖 ≠ 𝑗.
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Proof. Suppose that there exists 𝑖 ≠ 𝑗 s.t. 𝑈−
𝑗,𝑖
({0}) = 𝛼 > 0. Then, again plugging (0,∞) into

(4.24), implies

𝑞+𝑖, 𝑗 ≥
𝜋( 𝑗)
𝜋(𝑖) 𝛼Π 𝑗 (ℝ+) = ∞,

which is impossible. �

We can also use the équations amicales inversés to express our assumptions from Section 4.3
on the ascending ladder height process (𝑯+, 𝑱+) needed for ergodicity. That is, we can verify the
conditions on the smoothness of the Lévy system required in Proposition 4.17 and the moment
assumptions on the underlying Lévy processes and the transitional jumps required in Theorem
4.22 for exponential or polynomial ergodicity of overshoots, in terms of related conditions on
the parent MAP (𝝃, 𝑱).

Lemma 4.34. (i) If there exists 𝑖 ∈ Θ and 0 ≤ 𝑎 < 𝑏 ≤ ∞ such that 𝝀| (𝑎,𝑏) � Π𝑖 | (𝑎,𝑏) , then also
𝝀| (𝑎,𝑏) � Π+

𝑖
| (𝑎,𝑏) .

(ii) If there exists 𝑖, 𝑗 ∈ Θ with 𝑖 ≠ 𝑗 and 0 ≤ 𝑎 < 𝑏 ≤ ∞ such that 𝝀| (𝑎,𝑏) � 𝑞𝑖, 𝑗𝐹𝑖, 𝑗 | (𝑎,𝑏) , then
also 𝝀| (𝑎,𝑏) � 𝑞+

𝑖, 𝑗
𝐹+
𝑖, 𝑗
| (𝑎,𝑏) .

(iii) For fixed 𝑖 ∈ Θ, 𝔼[exp(𝜆𝐻1
+,(𝑖) )] < ∞ if∫ ∞

1
e𝜆𝑥 Π𝑖 (d𝑥) +

∑︁
𝑘≠𝑖

𝑞𝑘,𝑖

∫ ∞

1
e𝜆𝑥 𝐹𝑘,𝑖 (d𝑥) < ∞. (4.30)

(iv) For fixed 𝑖, 𝑗 ∈ Θ such that 𝑞+
𝑗,𝑖
≠ 0 and 𝜆 > 0, 𝔼[exp(𝜆Δ+

𝑗,𝑖
)] < ∞ if (4.30) holds.

(v) If lim𝑡→∞ 𝜉𝑡 = ∞ a.s., then for 𝜆 > 0 and 𝑖 ∈ Θ, 𝔼[(𝐻+,(𝑖)
1 )𝜆] < ∞ if∫ ∞

1
𝑥𝜆 Π𝑖 (d𝑥) +

∑︁
𝑘≠𝑖

𝑞𝑘,𝑖

∫ ∞

1
𝑥𝜆 𝐹𝑘,𝑖 (d𝑥) < ∞,

and for 𝑖, 𝑗 ∈ Θ such that 𝑞+
𝑖, 𝑗
≠ 0, 𝔼[(Δ+

𝑖, 𝑗
)𝜆] < ∞ if∫ ∞

1
𝑥𝜆 Π 𝑗 (d𝑥) +

∑︁
𝑘≠𝑖

𝑞𝑘, 𝑗

∫ ∞

1
𝑥𝜆 𝐹𝑘, 𝑗(d𝑥) < ∞.

Proof.
(i) Let 𝐵 ⊂ (𝑎, 𝑏) be a Borel set s.t. 𝝀(𝐵) > 0. We may assume that sup 𝐵 < 𝑏 and hence

𝐵 + 𝑧 ⊂ (𝑎, 𝑏) for all 𝑧 ∈ (0, 𝑏 − sup 𝐵). By translation invariance of the Lebesgue measure,
we have 𝝀(𝐵 + 𝑧) > 0 and therefore by assumption Π𝑖 (𝐵 + 𝑧) > 0 for all 𝑧 ∈ (0, 𝑏 − sup 𝐵).
From (4.23) it follows

Π+
𝑖 (𝐵) ≥

∫ ∞

0
𝑈−
𝑖,𝑖 (d𝑧) Π𝑖 (𝐵 + 𝑧) ≥

∫ 𝑏−sup 𝐵

0
𝑈−
𝑖,𝑖 (d𝑧) Π𝑖 (𝐵 + 𝑧)

and since 𝑈−
𝑖,𝑖
( [0, 𝑏− sup 𝐵)) > 0 by increasing and right-continuous paths of 𝑯−, it follows

Π+
𝑖
(𝐵) > 0, implying 𝝀| (𝑎,𝑏) � Π+

𝑖
| (𝑎,𝑏) .
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(ii) This is immediate from (4.24) in Theorem 4.30 and the same arguments as in part (i).

(iii) Since 𝑱 is irreducible, it follows from the proof of the Wiener–Hopf factorization in Theorem
26 of [66] that 𝚽− is invertible and hence, for any 𝑖, 𝑗 ∈ Θ we have∫ ∞

0
e−𝜆𝑦 𝑈−

𝑖, 𝑗 (d𝑦) =
(
𝚽−(𝜆)−1

)
𝑖, 𝑗
.

Thus, with Fubini and (4.23)∫ ∞

1
e𝜆𝑥 Π+

𝑖 (d𝑥)

=

∫ ∞

0

∫ ∞

1
e𝜆𝑥 Π𝑖 (𝑦 + d𝑥) 𝑈−

𝑖,𝑖 (d𝑦) +
∑︁
𝑘≠𝑖

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘,𝑖

∫ ∞

0

∫ ∞

1
e𝜆𝑥 𝐹𝑘,𝑖 (𝑦 + d𝑥) 𝑈−

𝑘,𝑖 (d𝑦)

=

∫ ∞

0

∫ ∞

1+𝑦
e𝜆𝑥 Π𝑖 (d𝑥) e−𝜆𝑦𝑈−

𝑖,𝑖 (d𝑦) +
∑︁
𝑘≠𝑖

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘,𝑖

∫ ∞

0

∫ ∞

1+𝑦
e𝜆𝑥 𝐹𝑘,𝑖 (d𝑥) e−𝜆𝑦𝑈−

𝑘,𝑖 (d𝑦),

≤
∫ ∞

1
e𝜆𝑥 Π𝑖 (d𝑥)

∫ ∞

0
e−𝜆𝑦𝑈−

𝑖,𝑖 (d𝑦) +
∑︁
𝑘≠𝑖

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘,𝑖

∫ ∞

1
e𝜆𝑥 𝐹𝑘,𝑖 (d𝑥)

∫ ∞

0
e−𝜆𝑦𝑈−

𝑘,𝑖 (d𝑦)

=

∫ ∞

1
e𝜆𝑥 Π𝑖 (d𝑥)

(
𝚽−(𝜆)−1

)
𝑖,𝑖
+

∑︁
𝑘≠𝑖

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘,𝑖

∫ ∞

1
e𝜆𝑥𝐹𝑘,𝑖 (d𝑥)

(
𝚽−(𝜆)−1

)
𝑘,𝑖
,

which is finite given the assumption.

(iv) Analogously to (iii).

(v) Under the assumption lim𝑡→∞ 𝜉𝑡 = ∞ a.s., the ascending ladder height process (𝑯−, 𝑱−)
of the dual of (𝝃, 𝑱) is killed a.s. and hence for any 𝑖, 𝑗 ∈ Θ, 𝑈−

𝑖, 𝑗
is a finite measure. Thus,

again by (4.23), (4.24) and a change of variables,∫ ∞

1
𝑥𝜆Π+

𝑖 (d𝑥) ≤ 𝑈−
𝑖,𝑖 (ℝ+)

∫ ∞

1
𝑥𝜆 Π𝑖 (d𝑥) +

∑︁
𝑘≠𝑖

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘,𝑖𝑈

−
𝑘,𝑖 (ℝ+)

∫ ∞

1
𝑥𝜆𝐹𝑘,𝑖 (d𝑥) < ∞

and

𝑞+𝑖, 𝑗

∫ ∞

1
𝑥𝜆𝐹+𝑖, 𝑗 (d𝑥) ≤ 𝑈−

𝑗,𝑖 (ℝ+)
𝜋( 𝑗)
𝜋(𝑖)

∫ ∞

1
𝑥𝜆 Π 𝑗 (d𝑥) +

∑︁
𝑘≠ 𝑗

𝜋(𝑘)
𝜋(𝑖) 𝑞𝑘, 𝑗𝑈

−
𝑘,𝑖 (ℝ+)

∫ ∞

1
𝑥𝜆𝐹𝑘, 𝑗(d𝑥)

< ∞.

�

Remark 4.35. (i) Conditions (4.30) are sufficient but not necessary conditions for exponential
moments of the components of the Lévy system 𝚷+, since 𝑈−

𝑘,𝑖
is trivial for some 𝑘 ≠ 𝑖

whenever 𝑱+ is not irreducible under (ℙ̂0,𝑖)𝑖∈Θ. It is however true that if 𝔼[exp(𝜆𝐻+,(𝑖)
1 )] <

∞, we must necessarily have
∫∞
1 e𝜆𝑥 Π𝑖 (d𝑥) < ∞ and if 𝔼[exp(𝜆Δ+

𝑖, 𝑗
)] < ∞, it must hold∫∞

1 e𝜆𝑥 𝐹𝑖, 𝑗 (d𝑥) < ∞, since the on-diagonal potential measures 𝑈−
𝑖,𝑖
are non-trivial.
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(ii) We restrict to the case lim𝑡→∞ 𝜉𝑡 = ∞ a.s. in (v). The oscillatory case lim sup𝑡→∞ 𝜉𝑡 =

− lim inf𝑡→∞ 𝜉𝑡 = ∞ a.s. is more difficult to handle since in this case (𝑯+, 𝑱+) is unkilled
under the dual measures ℙ̂0,𝑖 and we have no control over 𝑼− solely in terms of the
characteristics of (𝝃, 𝑱). In [66] the authors establish the necessary and sufficient integral
criterion given in (4.13) for finiteness of the first moment of 𝐻+

1 in the oscillatory regime by
taking a detour via random walk theory, building on the strategy for the related problem
for Lévy processes in [70]. Taking into account Theorem 1 of [48], such an ansatz, even
though out of scope of this chapter, is a possible strategy to tackle the problem at hand in
our case as well.

4.5 Application to real self-similar Markov processes

In this section we show how to apply our results on the exponential mixing behavior of Markov
additive processes sampled at first hitting times to the class of 𝛼-self-similar Markov processes
and in particular strictly 𝛼-stable Lévy processes. Even in the case of 𝛼-stable processes the
application is non-trivial since such Lévy processes do not satisfy the fundamental assumption of
finite mean of the associated ascending ladder height Lévy process, since in fact the ascending
ladder height process is an 𝛼-stable subordinator with 𝛼 ∈ (0, 1) and thus does not have a finite
first moment. Because of non-ergodicity of the associated overshoots, we can therefore not
expect a strong mixing behavior of the stable process sampled at first hitting times. However,
making use of the Lamperti–Kiu transform for real self-similar Markov processes, we can give
bounds on the 𝛽-mixing coefficient of the 𝜎-algebras generated by the past and the future of
𝛼-self-similar process sampled at first hitting times given appropriate properties of the associated
MAP. By considering the Lamperti-stable MAP and its explicit characterization found in [45],
we are thus able to bound the 𝛽-mixing coefficient of the above 𝜎-algebras for transient 𝛼-stable
processes. To this end, let us first recall the precise definitions of real 𝛼-self-similar Markov
processes and 𝛼-stable Lévy processes and give a brief overview on the Lamperti–Kiu transform
and its implications.

We say that a real-valued Feller process (Ω, G, (G𝑡)𝑡≥0, (𝑍𝑡)𝑡≥0, (P𝑥)𝑥∈ℝ) is an 𝛼-self-similar
Markov process, if it satisfies the scaling property that for any 𝑐 > 0,

{𝒁, P𝑐𝑥} d
=

{(
𝑐𝑍𝑐−𝛼𝑡

)
𝑡≥0, P

𝑥
)
, 𝑥 ∈ ℝ. (4.31)

An (unkilled) Lévy process 𝑿 = (𝑋𝑡)𝑡≥0 with associated family of probability measures (P𝑥)𝑥∈ℝ
is a strictly 𝛼-stable Lévy process (or simply stable Lévy process for short if there is no room for
confusion) for 𝛼 ∈ (0, 2] if it satisfies (4.31). The case 𝛼 = 2 boils down to Brownian motion,
which we exclude from here-on. Since Lévy processes are Feller, 𝛼-stable Lévy processes are
therefore particular representatives of 𝛼-self-similar Markov processes.

Taking the perspective commonly encountered in the literature to parametrize the stable
process through its index of self-similarity 𝛼 and the positivity parameter 𝜌 ≔ P0(𝑋𝑡 ≥ 0), the
Lévy measure Π of 𝑿 is absolutely continuous with density 𝜋 satisfying

𝜋(𝑥) = 𝑐+𝑥
−(𝛼+1)𝟙(0,∞) (𝑥) + 𝑐− |𝑥 |−(𝛼+1)𝟙(−∞,0) (𝑥), 𝑥 ∈ ℝ,

where
𝑐+ = Γ(𝛼 + 1) sin(𝜋𝛼𝜌)

𝜋
, and 𝑐− = Γ(𝛼 + 1) sin(𝜋𝛼(1 − 𝜌))

𝜋
.
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The Lévy–Khintchine exponent Ψ is given by

Ψ(𝜃) = 𝑐|𝜃|𝛼
(
1 − i𝛽 tan 𝜋𝛼

2 sgn(𝜃)
)
, 𝜃 ∈ ℝ,

where 𝛽 = (𝑐+ − 𝑐−)/(𝑐+ + 𝑐−) and our specific parametrization forces 𝑐 = cos(𝜋𝛼(𝜌 − 1/2)). For
all of the above statements we refer to Kyprianou [108].

We now come to the one-to-one correspondence between self-similar Markov processes on ℝ

and Markov additive processes on ℝ × {−1, 1} expressed through the Lamperti–Kiu transform,
which is investigated in [104] and [45] for the real valued setting, and, more generally for
arbitrary state spaces, in [5]. If we let 𝒁 be an 𝛼-self-similar Markov process on ℝ absorbed
at 0 with lifetime 𝜏0 = inf{𝑡 > 0 : 𝑋𝑡 = 0} and define ℙ𝑥,𝑖 = P𝑖e𝑥 for (𝑥, 𝑖) ∈ ℝ × {−1, 1} and
ℙ−∞,𝜛 = P0, then the process (𝝃, 𝑱) defined by{

𝜉𝑡 = log|𝑍𝜏(𝑡) | and 𝐽𝑡 = sgn(𝑍𝜏(𝑡) ), if 𝑡 <
∫ 𝜏0
0 |𝑍𝑠 |−𝛼 d𝑠,

(𝜉𝑡, 𝐽𝑡) = 𝜗 ≕ (−∞, 𝜛), if 𝑡 ≥
∫ 𝜏0
0 |𝑍𝑠 |−𝛼 d𝑠,

where 𝑡 ↦→ 𝜏(𝑡) is the time change given by the right-continuous inverse

𝜏(𝑡) ≔ inf{𝑠 ≥ 0 :
∫ 𝑠

0
|𝑍𝑢 |−𝛼 d𝑢 > 𝑡},

of the continuous additive functional (𝐴𝑡)𝑡≥0 of 𝒁, given by

𝐴𝑡 ≔

∫ 𝑡∧𝜏0

0
|𝑍𝑠 |−𝛼 d𝑠, 𝑡 ≥ 0,

and 𝜛 is some isolated state, then ((𝝃, 𝑱), (ℙ𝑥)𝑥∈(ℝ×{−1,1})𝜗) is a MAP on ℝ × {−1, 1} with
lifetime 𝜁 =

∫ 𝜏0
0 |𝑍𝑠 |−𝛼 d𝑠 and underlying filtration (F𝑡 = G𝜏(𝑡) )𝑡≥0. Moreover, we have the

following trichotomy characterizing the long-time behavior of the MAPs ordinator in terms of
the hitting properties of 𝒁 at 0 (one can indeed verify that self-similarity of 𝒁 guarantees that
these are the only possible cases):

(a) if P𝑥 (𝜏0 < ∞) = 0 for any 𝑥 ≠ 0, then lim𝑡→∞ 𝜉𝑡 = ∞ almost surely;

(b) if P𝑥 (𝜏0 < ∞, 𝑍𝜏0− = 0) = 1 for any 𝑥 ≠ 0, then lim𝑡→∞ 𝜉𝑡 = −∞ almost surely;

(c) if P𝑥 (𝜏0 < ∞, 𝑍𝜏0− ≠ 0) = 1 for any 𝑥 ≠ 0, then the MAP is almost surely killed and its
lifetime 𝜁 is exponentially distributed with a rate not depending on its initial distribution.

Conversely, for a given MAP (𝝃, 𝑱) with lifetime 𝜁,

𝑍𝑡 = 𝐽𝜎(𝑡)e𝜉𝜎(𝑡)𝟙{
𝑡<

∫ 𝜁
0 e𝛼𝜉𝑠 d𝑠

} , 𝑡 ≥ 0,

where
𝜎(𝑡) = inf

{
𝑠 ≥ 0 :

∫ 𝑠

0
e𝛼𝜉𝑢 d𝑢 > 𝑡

}
, 𝑡 ≥ 0,

defines an 𝛼-self-similar Markov process absorbed in 0 with lifetime 𝜏0 =
∫ 𝜁
0 e𝛼𝜉𝑠 d𝑠. This is

however not the direction we are interested in and we refer the reader to the relevant literature
cited above for details. Note also that in case of 𝒁 being strictly positive almost surely up
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to its lifetime, the Lamperti–Kiu transform boils down to the Lamperti transform for positive
self-similar Markov processes and the associated MAP can be projected onto a killed Lévy process.

With the help of the Lamperti–Kiu transform we obtain the following result on the 𝛽-mixing
coefficient of the 𝜎-algebras generated by 𝛼-self-similar Markov processes sampled at past and
future hitting times. While the Lamperti-stable MAP is exponentially 𝛽-mixing under the given
assumptions, the 𝛽-mixing coefficient for the 𝛼-self similar Markov process sampled at first
hitting times shows non-homogeneous decay with almost square root rate as a result of the
logarithm present in the Lamperti–Kiu transform.

Proposition 4.36. Suppose that 𝒁 is 𝛼-self-similar such that P𝑥 (𝜏0 < ∞) = 0 for all 𝑥 ≠ 0 and
moreover its associated Lamperti–Kiu MAP satisfies the assumptions from Theorem 4.22.(i). If 𝜂 is
some distribution on (ℝ,B(ℝ)) without atom at 0 such that∫

ℝ

|𝑥 |𝜆 𝜂(d𝑥) < ∞,

for some 𝜆 > 0, then for any 𝛿 ∈ (0, 1) there exists a constant 𝐶(𝜆, 𝜂, 𝛿) > 0 such that for any
𝑡 ≥ 1 we have

𝛽P𝜂 (N𝑡,N𝑡+𝑠) ≤ 𝐶(𝜆, 𝜂)
( 𝑡 + 𝑠

𝑡

)−1/(2+𝛿)
, 𝑠 > 0,

where we denoted
N𝑡 = 𝜎

(
𝑍𝑇𝑍𝑠 , 𝑠 ≤ 𝑡

)
, N𝑡 = 𝜎

(
𝑍𝑇𝑍𝑠 , 𝑠 ≥ 𝑡

)
.

Proof. First, observe that 𝒁 not hitting 0 almost surely when started away from the origin implies
that the time change (𝜏(𝑡))𝑡≥0 is strictly increasing and continuous almost surely. Thus, the
overshoot process of (log|𝑍𝑡 |, sgn(𝑍𝑡))𝑡≥0 is indistinguishable from the overshoot process of the
associated Lamperti-MAP (𝝃, 𝑱). Moreover, the mapping

𝜙 : ℝ × {−1, 1} → ℝ \ {0}, (𝑥, 𝑖) ↦→ 𝑖e𝑥 ,

is a homeomorphism and 𝑍𝑡 = 𝜙(log|𝑍𝑡 |, sgn(𝑍𝑡)) for all 𝑡 ≥ 0 on the set Λ = {𝜔 ∈ Ω : 𝑍𝑡 (𝜔) ≠
0 for all 𝑡 ≥ 0}, which is of P𝜇-measure 1 for any distribution 𝜇 on (ℝ,B(ℝ)) not having an
atom at 0. It follows for any 𝑡 ≥ 1 with the notation from Corollary 4.27 that there exists some
P𝜇-nullset 𝑁𝜇

𝑡 such that

N𝑡 ∨ 𝑁
𝜇
𝑡 =

( (
𝜉𝑇𝑠 , 𝐽𝑇𝑠

)
, 𝑠 ≤ log 𝑡

)
∨ 𝑁

𝜇
𝑡 = Klog(𝑡) ∨ 𝑁

𝜇
𝑡 ,

and
N𝑡 ∨ 𝑁

𝜇
𝑡 =

( (
𝜉𝑇𝑠 , 𝐽𝑇𝑠

)
, 𝑠 ≥ log 𝑡

)
∨ 𝑁

𝜇
𝑡 = Klog(𝑡) ∨ 𝑁

𝜇
𝑡 ,

where for two 𝜎-algebras A,B we write A ∨ B = 𝜎(A ∪ B). Here we used the definition of the
Lamperti–Kiu transform and the fact that for any 𝑡 ≥ 1 we have 𝑇 |𝑍 |

𝑡 = 𝑇log 𝑡 . Since moreover
P𝜂 = ℙ𝜂◦𝜙 and by assumption∫

ℝ×{−1,1}
e𝜆𝑥 𝜂 ◦ 𝜙(d𝑥, d𝑖) =

∫
ℝ\{0}

e𝜆 log |𝑧 | 𝜂(d𝑧) =
∫
ℝ\{0}

|𝑧 |𝜆 𝜂(d𝑧) < ∞,

it follows from Corollary 4.27 and the assumptions on the Lamperti-MAP (𝝃, 𝑱) that for any
𝛿 ∈ (0, 1) there exists 𝐶(𝜆, 𝜂, 𝛿) > 0 such that for any 𝑡 ≥ 1 and 𝑠 > 0

𝛽P𝜂 (N𝑡,N𝑡+𝑠) = 𝛽ℙ𝜂◦𝜙 (Klog 𝑡,Klog(𝑡+𝑠) ) ≤ 𝐶(𝜆, 𝜂, 𝛿)e−(log(𝑡+𝑠)−log 𝑡)/(2+𝛿)
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= 𝐶(𝜆, 𝜂, 𝛿)
( 𝑡 + 𝑠

𝑡

)−1/(2+𝛿)
,

as claimed. Note here that the nullsets 𝑁𝜂
𝑡 and 𝑁𝜂

𝑡+𝑠 from above have no influence on the 𝛽-mixing
coefficient by its definition. �

Consider now a scalar 𝛼-stable process (𝑋0
𝑡 )𝑡≥0 absorbed upon hitting of the origin, i.e. for

𝜏0 = inf{𝑠 ≥ 0 : 𝑋𝑠 = 0},
𝑋0
𝑡 = 𝑋𝑡𝟙[0,𝜏0) (𝑡), 𝑡 ≥ 0.

We show that 𝑋0 satisfies the assumptions from Proposition 4.36 that yield 𝛽-mixing of overshoots
of the corresponding MAP (𝝃, 𝑱) obtained through the Lamperti–Kiu transform, which we
henceforth will refer to as the Lamperti-stable MAP.

Since the assumptions are couched in form of the ascending ladder height process (𝑯+, 𝑱+),
one direct approach would be to make use of the deep factorization of 𝑿0 given in [108], where
the MAP exponents 𝚽+ and 𝚽− of the ascending ladder height processes of (𝝃, 𝑱) and its dual
were explicitly calculated. However, for the sake of exposition, we go another route by making use
of the results based on Vigon’s équations amicales inversés from Section 4.4 to infer the needed
properties of (𝑯+, 𝑱+) from those of (𝝃, 𝑱). The characteristics of the latter were calculated in
Theorem 10 and Corollary 11 of Chaumont et al. [45], giving 𝜎±1 = 0, i.e. the underlying Lévy
processes have no Gaussian component,

Π±1(d𝑥) = e𝑥𝜋(±(e𝑥 − 1)) d𝑥, 𝑥 ∈ ℝ,

𝐹±1,∓1(d𝑥) =
𝛼e𝑥

(1 + e𝑥)𝛼+1
d𝑥, 𝑥 ∈ ℝ,

and
𝑞±1,∓1 =

𝑐∓
𝛼
.

If we assume that 𝑿 does not have one-sided jumps, then 𝑐± > 0 and hence 𝑱 is irreducible.
Since Π±1 has a strictly positive Lebesgue density on (0,∞) it follows by Lemma 4.34 that
𝝀| (0,∞) � Π+

±1 | (0,∞) as well. Further, we have for 𝜆 > 0∫ ∞

1
e𝜆𝑥 Π1(d𝑥) = 𝑐+

∫ ∞

1
e(𝜆+1)𝑥 (e𝑥 − 1)−(𝛼+1) d𝑥,

and hence ∫ ∞

1
e𝜆𝑥 Π1(d𝑥) < ∞ ⇐⇒ 𝜆 ∈ (0, 𝛼).

Similarly, we obtain ∫ ∞

1
e𝜆𝑥 Π−1(d𝑥) < ∞ ⇐⇒ 𝜆 ∈ (0, 𝛼),

and hence 𝔼[exp(𝜆𝜉(±1)1 )] < ∞ iff 𝜆 ∈ (0, 𝛼). Moreover,∫
ℝ

e𝜆𝑥 𝐹±1(d𝑥) = 𝛼

∫
ℝ

e(𝜆+1)𝑥 (1 + e𝑥)−(𝛼+1) d𝑥 < ∞ ⇐⇒ 𝜆 ∈ (0, 𝛼).

Again by Lemma 4.34 we conclude that 𝐻+,(±1)
1 and Δ+

±1,∓1 all possess an exponential 𝜆-moment
whenever 𝜆 ∈ (0, 𝛼).
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Recall now that 𝑿 does not hit 0 if and only if 𝛼 ∈ (0, 1) and hence the ordinator 𝝃 of the
Lamperti-stable MAP satisfies lim sup𝑡→∞ 𝜉𝑡 = ∞ almost surely if and only if 𝛼 ∈ (0, 1). Since our
asymptotic approach on overshoots of MAPs requires this property, we will restrict to this case and
can therefore identify 𝑿 = 𝑿0 almost surely. All that remains to show for exponential 𝛽-mixing
of the Lamperti-stable MAP is now upward regularity and irreducibility of 𝑱+. Irreducibility
of 𝑱+ is a direct consequence of Proposition 4.6 since 𝑱 is irreducible and the support of Π± is
unbounded. To verify upward regularity, we observe that by Theorem 1 in Kuznetsov and Pardo
[107], 𝝃(1) killed at an independent exponential time with rate 𝑐−/𝛼 belongs to the class of
hypergeometric Lévy processes with parameters (1 − 𝛼(1 − 𝜌), 𝛼𝜌, (1 − 𝛼) (1 − 𝜌), 𝛼(1 − 𝜌)). The
ascending ladder height process 𝑯 of such a hypergeometric Lévy process is a 𝛽-subordinator
with parameters (𝛼(1 − 𝜌), 𝛼(1 − 𝜌), 1 − 𝛼𝜌), whose Lévy measure is given by

Π𝐻 (d𝑥) =
1 − 𝛼𝜌

Γ(𝛼𝜌) (1 − e−𝑥)𝛼𝜌−2e−(1+𝛼(1−2𝜌))𝑥 d𝑥, 𝑥 > 0.

Clearly, Π𝐻 ((0, 1)) = ∞ and hence 𝑯 is not compound Poisson, which shows that the associated
hypergeometric Lévy process is upward regular. Since killing has no influence on upward
regularity, this now shows that 𝝃(1) is indeed upward regular. Upward regularity of 𝝃(−1) can be
argued analogously once we observe that 𝝃(−1) killed at rate 𝑐+/𝛼 is the hypergeometric process
obtained from killing the dual process �̂� of 𝑿 upon entering (−∞, 0]. Hence, with the ergodic
analysis of overshoots from Section 4.3 and Proposition 4.36, we have proved the following.

Proposition 4.37. Let 𝛼 ∈ (0, 1) and 𝑿 be strictly 𝛼-stable. Then the overshoot process of the
Lamperti-stable MAP associated to 𝑿 is R𝜆𝑉𝜆-uniformly ergodic and for any starting distribution 𝜇
such that 𝜇(·, {−1, 1}) has an exponential 𝜆-moment for some 𝜆 ∈ (0, 𝛼), the overshoot process
is exponentially 𝛽-mixing. Moreover, for any distribution 𝜂 on (ℝ,B(ℝ)) without atom at 0 such
that for some 𝜆 ∈ (0, 𝛼), ∫

ℝ

|𝑥 |𝜆 𝜂(d𝑥) < ∞,

there exists a constant 𝐶(𝜆, 𝜂, 𝛿) > 0 for any 𝛿 ∈ (0, 1) such that for any 𝑡 ≥ 1 we have

𝛽P𝜂 (N𝑡,N𝑡+𝑠) ≤ 𝐶(𝜆, 𝜂, 𝛿)
( 𝑡 + 𝑠

𝑡

)−1/(2+𝛿)
, 𝑠 > 0,

where we denoted
N𝑡 = 𝜎

(
𝑋𝑇𝑋𝑠 , 𝑠 ≤ 𝑡

)
, N𝑡 = 𝜎

(
𝑋𝑇𝑋𝑠 , 𝑠 ≥ 𝑡

)
.

Corollary 4.38. Let 𝛼 ∈ (0, 1) and 𝑿 be strictly 𝛼-stable. Then, for any 𝑥 > 0 and 𝛿 ∈ (0, 1)
there exists a constant 𝐶(𝑥, 𝛿) sich that for any 𝑡 ≥ 1,

𝛽P0 (N𝑡,N𝑡+𝑠) ≤ 𝐶(𝑥, 𝛿)
( 𝑡 + 𝑥 + 𝑠

𝑡 + 𝑥

)−1/(2+𝛿)
, 𝑠 > 0.

Proof. Fix 𝑥 > 0 and choose some 𝜆 ∈ (0, 𝛼). By spatial homogeneity of 𝑿 we have{(
𝑋𝑇𝑋𝑡+𝑥

, 𝑡 ≥ 0
)
, P𝑥

}
d
=

{(
𝑋𝑇𝑋𝑡

+ 𝑥, 𝑡 ≥ 0
)
, P0

}
and therefore, using Proposition 4.37

𝛽P0 (N𝑡,N𝑡+𝑠) = 𝛽P𝑥 (N𝑡+𝑥 ,N𝑡+𝑥+𝑠) ≤ 𝐶(𝑥, 𝛿)
( 𝑡 + 𝑥 + 𝑠

𝑡 + 𝑥

)−1/(2+𝛿)
,

where 𝐶(𝑥) ≔ 𝐶(𝜆, 𝛿𝑥 , 𝛿). �
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4.A Proof of the resolvent formula

Proof of Theorem 4.7. Note first that by assumed irreducibility of 𝑱+, it follows as a consequence
of the Perron–Frobenius theorem that 𝚽+(𝜆) is invertible for any 𝜆 > 0, see Corollary 2.4 in
Stephenson [157] or Remark 2.2 in Ivanovs et al. [96], and hence the statement of the theorem
makes formally sense. Fix (𝑥, 𝑖) ∈ ℝ+ × Θ. Let 𝜏0 ≔ inf{𝑡 ≥ 0 : O𝑡 = 0}, which is clearly finite
and a stopping time for (O𝑡, J𝑡) since the process is Feller by Proposition 4.4. By the sawtooth
structure of (O, J), see also Figure 4.1 for an illustration, we have 𝜏0 = 𝑥 and (O𝑡, J𝑡) = (𝑥 − 𝑡, 𝑖)
for 𝑡 ∈ [0, 𝑥], ℙ𝑥,𝑖-a.s.. Together with the strong Markov property of (O, J), we therefore obtain
for 𝑓 ∈ B𝑏(ℝ+ × Θ)

U𝜆 𝑓 (𝑥, 𝑖) = 𝑄𝜆 𝑓 (𝑥, 𝑖) + e−𝜆𝑥U𝜆 𝑓 (0, 𝑖).
Hence, we only need to calculate U𝜆 𝑓 (0, 𝑖).

We start with the case that the Lévy measures Π+
𝑖
, 𝑖 ∈ Θ are finite and then proceed by an

approximation argument to the general case. Our assumption of upward regularity of (𝝃, 𝑱)
then forces 𝑑+

𝑖
> 0 for all 𝑖 ∈ Θ, that is the processes 𝑯+,(𝑖) are compound Poisson processes

with drift. Denote for 𝑖 ∈ Θ by 𝑌 (𝑖) random variables independent of (𝝃, 𝑱) corresponding
to the jumps of 𝑯+,(𝑖) , whose distribution is given by Π+

𝑖
(d𝑥)/Π+

𝑖
(ℝ+). Moreover, denote by

𝜎 ≔ inf{𝑡 ≥ 0 : 𝐽+𝑡 ≠ 𝐽+0 } the first jump time of 𝑱+ and by 𝜏 = inf{𝑡 ≥ 0 : Δ𝐻+,0,𝐽+0
𝑡 > 0} the first

jump time of the Lévy process driving the ascending ladder height process before the first phase
transition. Then, from Proposition 4.1 and indistinguishability of (O+, J+) and (O, J) we can
infer that under ℙ0,𝑖, it holds that 𝑇 ≔ inf{𝑡 ≥ 0 : Δ(O𝑡, J𝑡) ≠ 0} = 𝐻

+,0,𝑖
(𝜎∧𝜏)− = 𝑑+

𝑖
(𝜎 ∧ 𝜏) almost

surely (consult again Figure 4.1 for an illustration).

U𝜆 𝑓 (0, 𝑖) = 𝔼0,𝑖
[ ∫ 𝑇

0
+
∫ 𝑇+𝜏0◦𝜃𝑇

𝑇

+
∫ ∞

𝑇+𝜏0◦𝜃𝑇
e−𝜆𝑡 𝑓 (O𝑡, J𝑡) d𝑡

]
≕ 𝐼1 + 𝐼2 + 𝐼3, (4.32)

where (𝜃𝑡)𝑡≥0 denotes the transition operator of (O, J). Since under ℙ0,𝑖, 𝜏 d
= Exp(Π+

𝑖
(ℝ+)) is

independent of 𝜎 d
= Exp(−𝑞+

𝑖,𝑖
) by Proposition 4.1, it follows that 𝑇 d

= Exp((Π+
𝑖
(ℝ+) − 𝑞+

𝑖,𝑖
)/𝑑+

𝑖
)

and hence

𝐼1 = 𝔼0,𝑖
[ ∫ 𝑇

0
e−𝜆𝑡 𝑓 (0, 𝑖) d𝑡

]
= 𝑓 (0, 𝑖) 1

𝜆

(
1 − 𝔼0,𝑖 [e−𝜆𝑇 ]

)
= 𝑓 (0, 𝑖) 1

𝜆

(
1 −

Π+
𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

𝑑+
𝑖
𝜆 + Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

)
= 𝑓 (0, 𝑖)

𝑑+
𝑖

𝑑+
𝑖
𝜆 + Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

.

For the second integral, we use that ℙ0,𝑖 (𝐽+𝜎 = 𝑗) = −𝑞+
𝑖, 𝑗
/𝑞+

𝑖,𝑖
, independence of 𝜎, 𝐽+𝜎 and 𝑌 (𝑖) in

combination with Proposition 4.1 and the strong Markov property to obtain

𝐼2 = 𝔼0,𝑖
[
e−𝜆𝑇𝔼0,𝑖

[ ∫ 𝜏0

0
e−𝜆𝑡 𝑓 (O𝑡, J𝑡) d𝑡 ◦ 𝜃𝑇

���G𝑇 ] ]
= 𝔼0,𝑖

[
e−𝜆𝑇𝔼O𝑇 ,J𝑇

[ ∫ 𝜏0

0
e−𝜆𝑡 𝑓 (O𝑡, J𝑡) d𝑡

] ]
= 𝔼0,𝑖 [e−𝜆𝑑+𝑖 𝜏𝑄𝜆 (𝑌 (𝑖) , 𝑖) ; 𝜏 < 𝜎

]
+ 𝔼0,𝑖 [e−𝜆𝑑+𝑖 𝜎𝑄𝜆

(
Δ+,1
𝑖,𝐽+𝜎

, 𝐽+𝜎
)
; 𝜎 < 𝜏

]
= 𝔼0,𝑖 [e−𝜆𝑑+𝑖 𝜏 ; 𝜏 < 𝜎] 𝔼0,𝑖 [𝑄𝜆 (𝑌 (𝑖) , 𝑖)] + 𝔼0,𝑖 [e−𝜆𝑑+𝑖 𝜎 ; 𝜎 < 𝜏] 𝔼0,𝑖 [𝑄𝜆

(
Δ+,1
𝑖,𝐽+𝜎

, 𝐽+𝜎
) ]
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=
Π+
𝑖
(ℝ+)

𝜆𝑑+
𝑖
+ Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑖) Π+

𝑖 (d𝑦)/Π+
𝑖 (ℝ+)

+
−𝑞+

𝑖,𝑖

𝜆𝑑+
𝑖
+ Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

∑︁
𝑗≠𝑖

𝑞+
𝑖, 𝑗

−𝑞+
𝑖,𝑖

∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑗) 𝐹+𝑖, 𝑗 (d𝑦)

=
1

𝜆𝑑+
𝑖
+ Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

( ∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑖) Π+

𝑖 (d𝑦) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗

∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑗) 𝐹+𝑖, 𝑗 (d𝑦)

)
With the same arguments as above we also obtain

𝐼3 = 𝔼0,𝑖
[
e−𝜆𝑇𝔼0,𝑖

[ ∫ ∞

𝜏0

e−𝜆𝑡 𝑓 (O𝑡, J𝑡) d𝑡
���G𝑇 ] ]

= 𝔼0,𝑖
[
e−𝜆𝑇𝔼O𝑇 ,J𝑇

[ ∫ ∞

𝜏0

e−𝜆𝑡 𝑓 (O𝑡, J𝑡) d𝑡
] ]

= 𝔼0,𝑖 [e−𝜆𝑑+𝑖 𝜏 ; 𝜏 < 𝜎] 𝔼0,𝑖
[
𝔼𝑦,𝑖

[
e−𝜆𝜏0𝔼𝑦,𝑖

[ ∫ ∞

0
e−𝜆𝑡 𝑓 (O𝑡, J𝑡) d𝑡 ◦ 𝜃𝜏0

���G𝜏0 ] ] ���
𝑦=𝑌 (𝑖)

]
+ 𝔼0,𝑖 [e−𝜆𝑑+𝑖 𝜎 ; 𝜎 < 𝜏]

∑︁
𝑗≠𝑖

𝑞+
𝑖, 𝑗

−𝑞+
𝑖,𝑖

𝔼0,𝑖
[
𝔼𝑦, 𝑗

[
e−𝜆𝜏0𝔼𝑦, 𝑗

[ ∫ ∞

0
e−𝜆𝑡 𝑓 (O𝑡, J𝑡) d𝑡 ◦ 𝜃𝜏0

���G𝜏0 ] ] ���
𝑦=Δ+,1

𝑖, 𝑗

]
=

Π+
𝑖
(ℝ+)

𝜆𝑑+
𝑖
+ Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

U𝜆 𝑓 (0, 𝑖)𝔼0,𝑖 [e−𝜆𝑌 (𝑖) ]
+ 1
𝜆𝑑+

𝑖
+ Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗U𝜆 𝑓 (0, 𝑗)𝔼0,𝑖 [e−𝜆Δ+,1
𝑖, 𝑗

]
=

1
𝜆𝑑+

𝑖
+ Π+

𝑖
(ℝ+) − 𝑞+

𝑖,𝑖

(
U𝜆 𝑓 (0, 𝑖)

∫ ∞

0
e−𝜆𝑦 Π+

𝑖 (d𝑦) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗U𝜆 𝑓 (0, 𝑗)
∫ ∞

0
e−𝜆𝑦 𝐹+𝑖, 𝑗 (d𝑦)

)
.

Plugging into (4.32), using 𝐺+
𝑖 𝑗
(𝜆) =

∫∞
0 exp(−𝜆𝑦) 𝐹+

𝑖 𝑗
(d𝑦) and rearranging now yields

U𝜆 𝑓 (0, 𝑖)
(
𝑑+𝑖 𝜆 +

∫ ∞

0
(1 − e−𝜆𝑦) Π+

𝑖 (d𝑦) − 𝑞+𝑖,𝑖

)
−

∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝐺
+
𝑖 𝑗 (𝜆)U𝜆 𝑓 (0, 𝑗)

= 𝑑+𝑖 𝑓 (0, 𝑖) +
∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑖) Π+

𝑖 (d𝑦) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗

∫ ∞

0
𝑄𝜆 𝑓 (𝑦, 𝑖) 𝐹+𝑖, 𝑗 (d𝑦).

By (4.4) the left hand side is equal to

U𝜆 𝑓 (0, 𝑖) (Φ+
𝑖 (𝜆) − 𝑞+𝑖,𝑖) −

∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝐺
+
𝑖 𝑗 (𝜆)U𝜆 𝑓 (0, 𝑗) =

(
𝚽+(𝜆) · (U𝜆 𝑓 (0, 𝑗))>𝑗=1,...,𝑛

)
𝑖

and hence we conclude that

(U𝜆 𝑓 (0, 𝑖))>𝑖=1,...,𝑛 = 𝚽+(𝜆)−1 ·
(
𝑑+𝑖 𝑓 (0, 𝑖) +

∫ ∞

0
𝑄𝜆 𝑓 (𝑥, 𝑖) Π+

𝑖 (d𝑥) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝔼[𝑄𝜆 𝑓 (Δ+
𝑖, 𝑗, 𝑗)]

)>
𝑖=1,...,𝑛

,

(4.33)
which proves the assertion in case that (𝑯+, 𝑱+) is a compound Poisson Markov additive subor-
dinator. For the general case, suppose that (𝝃, 𝑱) is an upward regular MAP and let for 𝜀 > 0,
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(𝜀𝑯+, 𝑱+) be the ascending ladder height process corresponding to the ordinator constructed
from the Lévy subordinators 𝜀𝐻+,(𝑖) defined by

𝜀𝐻
+,(𝑖)
𝑡 ≔ (𝑑+𝑖 + 𝜀)𝑡 +

∑︁
𝑠≤𝑡

Δ𝐻+,(𝑖)
𝑠 𝟙(𝜀,∞) (Δ𝐻+,(𝑖)

𝑠 ), 𝑡 ≥ 0,

i.e. 𝜀𝑯+,(𝑖) is obtained from 𝑯+,(𝑖) by deleting jumps smaller than 𝜀 and adding an additional
drift 𝜀. This ensures that 𝜀𝑯+,(𝑖) is a compound Poisson subordinator with drift 𝑑+

𝑖
+ 𝜀 and

Lévy measure Π+,𝜀
𝑖

= Π+
𝑖
(· ∩ (𝜀,∞)) and hence we may apply (4.33) for the 𝜆 resolvent of the

overshoot process
(𝜀O+

𝑡 ,
𝜀J+𝑡 )𝑡≥0 ≔ (𝜀𝐻+

𝑇
+,𝜀
𝑡

− 𝑡, 𝐽+
𝑇
+,𝜀
𝑡

)𝑡≥0,

where 𝑇+,𝜀
𝑡 ≔ inf{𝑠 ≥ 0 : 𝜀𝐻+

𝑠 > 𝑡}, 𝑡 ≥ 0. We first observe that for any 𝑡 > 0 we obtain from
Proposition 4.1

sup
𝑠≤𝑡

|𝜀𝐻+
𝑠 − 𝐻+

𝑠 | ≤ 𝜀𝑡 +
∑︁
𝑠≤𝑡

Δ𝐻+
𝑠 𝟙{Δ𝐻+

𝑠 <𝜀},

and since
∑
𝑠≤𝑡 Δ𝐻

+
𝑠 converges we obtain by dominated convergence that almost surely

sup
𝑠≤𝑡

|𝜀𝐻+
𝑠 − 𝐻+

𝑠 | → 0, as 𝜀 ↓ 0

i.e. 𝜀𝐻+ converges to 𝑯+ uniformly on compact sets almost surely as 𝜀 ↓ 0. Let Ξ be the set of
ℙ-measure 1 on which 𝜀𝑯+ and (𝑯+, 𝑱+) have càdlàg paths and on which the above convergence
holds. Let 𝜔 ∈ Ξ. Then 𝜀𝐻+

· (𝜔), 𝐻+
· (𝜔) ∈ D(ℝ+), the space of càdlàg functions mapping from

ℝ+ to ℝ+, which we endow with Skorokhods 𝐽1-topology. Since 𝜀𝐻+
· (𝜔) converges uniformly

on compact time sets to 𝐻+
· (𝜔), Proposition VI.1.17 in [98] tells us that 𝜀𝐻+

· (𝜔) also converges
with respect to the metric inducing the Skorokhod topology to 𝐻+

· (𝜔). For 𝑡 ≥ 0 let

𝑆𝑡 : D(ℝ+) → [0,∞], 𝛼 ↦→ inf{𝑠 ≥ 0 : |𝛼(𝑠) | ≥ 𝑡 or |𝛼(𝑠−)| ≥ 𝑡}.

Since 𝜀𝐻+
· (𝜔) and 𝐻+

· (𝜔) are strictly increasing it follows that 𝑇+,𝜀
𝑡 (𝜔) = 𝑆𝑡 (𝜀𝐻+

· (𝜔)) and 𝑇+
𝑡 (𝜔) =

𝑆𝑡 (𝐻+
· (𝜔)). Moreover, the set {𝑡 > 0 : 𝑆𝑡 (𝐻+

· (𝜔)) ≠ 𝑆𝑡+(𝐻+
· (𝜔))} is empty by strictly increasing

paths of 𝐻+
· (𝜔). Hence, we obtain from Proposition 2.11 and the proof of part c) of Proposition

VI.2.12 in [98] that

𝑇
+,𝜀
𝑡 (𝜔) = 𝑆𝑡 (𝜀𝐻+

· (𝜔)) → 𝑆𝑡 (𝐻+
· (𝜔)) = 𝑇+

𝑡 (𝜔), as 𝜀 ↓ 0, (4.34)

and that for 𝑡 ∉ Λ(𝜔) = {𝑡 > 0 : Δ𝐻+
𝑇+𝑡
(𝜔) > 0 and 𝐻+

𝑇+𝑡 −
(𝜔) = 𝑡} we have

𝜀𝐻+
𝑇
+,𝜀
𝑡

(𝜔) → 𝐻+
𝑇+𝑡
(𝜔), as 𝜀 ↓ 0. (4.35)

But from the sawtooth structure of the paths ofO it is easy to see that Λ(𝜔) = {𝑡 > 0 : ΔO+
𝑡 (𝜔) >

0}, which is countable (alternatively, see Lemma VI.2.10.(d) in [98] for the same conclusion),
hence non-convergence of 𝜀O+

𝑡 (𝜔) to O+
𝑡 (𝜔) only takes place on a set of Lebesgue measure 0.

Furthermore, from (4.34) it follows that 𝜀J+𝑡 (𝜔) converges to J+𝑡 (𝜔) as 𝜀 ↓ 0 except possibly on
the set

Λ′(𝜔) ≔ {𝑡 > 0 : 𝐽+
𝑇+𝑡
(𝜔) ≠ 𝐽+

𝑇+𝑡 −
(𝜔)}
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= {𝑡 > 0 : Δ𝐽+
𝑇+𝑡
(𝜔) ≠ 0, Δ𝐻+

𝑇+𝑡
(𝜔) > 0} ∪ {𝑡 > 0 : Δ𝐽+

𝑇+𝑡
(𝜔) ≠ 0, Δ𝐻+

𝑇+𝑡
(𝜔) = 0}

≕ Λ′
1(𝜔) ∪ Λ′

2(𝜔).

For 𝑡 ∈ Λ′
1(𝜔) we have that in case 𝐻+

𝑇+𝑡 −
(𝜔) < 𝑡 ≤ 𝐻+

𝑇+𝑡
(𝜔) it holds that 𝑇+

𝑠 (𝜔) = 𝑇+
𝑡 (𝜔) for

𝑠 ∈ [𝐻𝑇+𝑡 −(𝜔), 𝑡]. Right-continuity of 𝑠 ↦→ 𝑇+
𝑠 (𝜔) and 𝑠 ↦→ 𝐽+𝑠 (𝜔) therefore imply that for

such 𝑡 we also have 𝜀J+𝑡 (𝜔) → J+𝑡 (𝜔) as 𝜀 ↓ 0. Further, since 𝑡 ↦→ 𝐻+
𝑡 (𝜔) is continuous in

𝑇+
𝑡 (𝜔) if Δ𝐻+

𝑇+𝑡
(𝜔) = 0, it follows from strictly increasing paths that for 𝑠, 𝑡 ∈ Λ′

2(𝜔) we have
𝑇+
𝑠 (𝜔) ≠ 𝑇+

𝑡 (𝜔). Hence, 𝑡 ↦→ 𝑇+
𝑡 (𝜔) is injective on Λ′

2(𝜔). Since

𝑇+
· (𝜔) (Λ′

2(𝜔)) = {𝑡 > 0 : Δ𝐽+𝑡 (𝜔) ≠ 0, Δ𝐻+
𝑡 (𝜔) = 0} ⊂ {𝑡 > 0 : Δ𝐽+𝑡 (𝜔) ≠ 0},

and the set on the right-hand side is countable thanks to 𝐽+· (𝜔) being càdlàg, it follows that
Λ′
2(𝜔) is countable as well. The above discussion therefore yields that the set of times 𝑡 > 0 for

which 𝐽+
𝑇
+,𝜀
𝑡

(𝜔) does not converge to J+𝑡 (𝜔) is given by

Λ′′(𝜔) ≔ {𝑡 > 0 : Δ𝐽+
𝑇+𝑡
(𝜔) ≠ 0, 𝐻+

𝑇+𝑡 −
(𝜔) = 𝑡 < 𝐻+

𝑇+𝑡
(𝜔)} ∪ Λ′

2(𝜔)
⊂ {𝑡 > 0 : ΔO+

𝑡 (𝜔) > 0} ∪ Λ′
2(𝜔),

which is countable and therefore has Lebesgue measure 0 as well. It follows that for any 𝜔 ∈ Ξ
we have for 𝑓 ∈ C𝑏(ℝ+ × Θ) by dominated convergence

lim
𝜀↓0

∫ ∞

0
𝑓 (𝜀O+

𝑡 (𝜔), 𝜀J+𝑡 (𝜔)) d𝑡 =
∫
(Λ (𝜔)∪Λ′′ (𝜔))c

lim
𝜀↓0

𝑓 (𝜀O+
𝑡 (𝜔),𝜀J+𝑡 (𝜔)) d𝑡

=

∫
(Λ (𝜔)∪Λ′′ (𝜔))c

𝑓 (O+
𝑡 (𝜔), J+𝑡 (𝜔)) d𝑡

=

∫ ∞

0
𝑓 (O+

𝑡 (𝜔), J+𝑡 (𝜔)) d𝑡.

Consequently, if we denote by U𝜀
𝜆
the 𝜆-resolvent for (𝜀O+,𝜀J+), the set Ξ having ℙ-measure 1

implies that for any 𝑓 ∈ C𝑏(ℝ+ × Θ)

(U𝜆 𝑓 (0, 𝑖))𝑖=1,...,𝑛

=

( ∫
Ξ
lim
𝜀↓0

∫ ∞

0
𝑓 (𝜀O+

𝑡 (𝜔), 𝜀J+𝑡 (𝜔)) d𝑡ℙ0,𝑖 (d𝜔)
)
𝑖=1,...,𝑛

= lim
𝜀↓0

( ∫
Ξ

∫ ∞

0
𝑓 (𝜀O+

𝑡 (𝜔), 𝜀J+𝑡 (𝜔)) d𝑡ℙ0,𝑖 (d𝜔)
)
𝑖=1,...,𝑛

= lim
𝜀↓0

(U𝜀
𝜆 𝑓 (0, 𝑖))𝑖=1,...,𝑛

= lim
𝜀↓0

𝜀𝚽+(𝜆)−1 ·
(
(𝑑+𝑖 + 𝜀) 𝑓 (0, 𝑖) +

∫ ∞

𝜀

𝑄𝜆 𝑓 (𝑥, 𝑖) Π+
𝑖 (d𝑥) +

∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝔼[𝑄𝜆 𝑓 (Δ+
𝑖, 𝑗, 𝑗)]

)>
𝑖=1,...,𝑛

= 𝚽+(𝜆)−1 ·
(
𝑑+𝑖 𝑓 (0, 𝑖) +

∫ ∞

0
𝑄𝜆 𝑓 (𝑥, 𝑖) Π+

𝑖 (d𝑥) +
∑︁
𝑗≠𝑖

𝑞+𝑖, 𝑗𝔼[𝑄𝜆 𝑓 (Δ+
𝑖, 𝑗, 𝑗)]

)>
𝑖=1,...,𝑛

≕ 𝚼(𝜆),
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where we used dominated convergence for the second and (4.33) for the fourth equality. It
remains to extend this result to any 𝑓 ∈ B+(ℝ+ × Θ) ∪ B𝑏(ℝ+ × Θ). To this end, let

M ≔
{
𝑓 ∈ B𝑏(ℝ+ × Θ) : (U𝜆 𝑓 (0, 𝑖))𝑖=1,...,𝑛 = 𝚼(𝜆)

}
.

Clearly, M is a vector space over ℝ+ by linearity of the Lebesgue integral and since C𝑏(ℝ+ ×Θ) ⊂
M, the constant function 𝟙ℝ+×Θ is contained in M. Moreover, dominated convergence shows
that M is closed under convergence of an increasing family of functions 𝑓𝑛 converging to some
𝑓 ∈ B𝑏(ℝ+ × Θ). Hence, M is a monotone vector space and since C𝑏(ℝ+ × Θ) is closed under
multiplication and contained in M, the functional Monotone Class Theorem A.0.6 from [152]
implies that all bounded 𝜎(C𝑏(ℝ+ × Θ))-measurable functions are contained in M. But since
ℝ+×Θ is a locally compact metric space with countable base, C𝑏(ℝ+×Θ) generatesB(ℝ+×Θ) and
hence M = B𝑏(ℝ+ × Θ) follows. For general 𝑓 ∈ B+(ℝ+ × Θ) let 𝑓𝑛 ≔ 𝑓𝟙{ 𝑓 ∈[0,𝑛] } ∈ B𝑏(ℝ+ × Θ)
and apply monotone convergence to deduce that (4.33) also holds for 𝑓 ∈ B+(ℝ+ × Θ). This
finishes the proof. �

4.B Summary of results for the special case of Lévy processes

This section is devoted to giving a (very) brief summary of Lévy processes and their overshoots
that contains the main contributions of this chapter for the particular case of Lévy processes
but can be read independently without any prior knowledge on MAPs. Moreover, this section
prepares the reader for the developments in Chapter 5 by sketching how our convergence and
mixing results on overshoots will be useful for developing data-driven ergodic control strategies
for Lévy processes.

As seen before, talking about overshoots quite naturally guides us into fluctuation theory of
Lévy processes, which is based on a rigorous treatment of excursions of Lévy processes from its
extrema. For an extensive textbook treatment of fluctuation theory, we refer to [109] with basic
properties of overshoots being discussed in Chapter 5. A general account on Lévy processes is
given in the monographs [25] and [147].

We consider a Lévy process 𝑿 with underlying natural filtration 𝔽 = (F𝑡)𝑡≥0 augmented
in the usual way, which is equipped with a family of probability measures (ℙ𝑥)𝑥∈ℝ such that
(𝑿, 𝔽, (ℙ𝑥)𝑥∈ℝ) is a Markov process. Thus, 𝑿 has càdlàg paths, almost surely starts in 𝑥 under
ℙ𝑥 , has stationary and independent increments under ℙ0 and its semigroup (𝑃𝑡)𝑡≥0 is given by

𝑃𝑡 (𝑥, 𝐵) = ℙ𝑥 (𝑋𝑡 ∈ 𝐵) = ℙ0(𝑋𝑡 + 𝑥 ∈ 𝐵), 𝑥 ∈ ℝ, 𝐵 ∈ B(ℝ).

From the last equality, it follows that 𝑿 is spatially homogeneous, i.e. {𝑿 + 𝑥,ℙ0} d
= {𝑿,ℙ𝑥}, and

one easily derives that 𝑿 is a Feller process, that is 𝑃𝑡C0(ℝ) ⊂ C0(ℝ) for any 𝑡 ≥ 0 and for any
𝑓 ∈ C0(ℝ), 𝑃𝑡 𝑓 → 𝑓 strongly as 𝑡 → 0.

While the Fellerian nature of Lévy processes is still fairly general from aMarkovian perspective,
it is the spatial homogeneity which gives rise to a quite unique and powerful theory. The
fundamental starting point to the analysis of Lévy processes is the Lévy–Khintchine formula,
which identifies the characteristic function of the marginals of the process and hence uniquely
describes the complete process in terms of a characteristic triplet (𝑎, 𝜎,Π), where 𝑎 ∈ ℝ, 𝜎 ≥ 0
and Π is a measure on ℝ (called Lévy measure) having no atom at 0 and being such that
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∫
ℝ
1∧𝑥2 Π(d𝑥) < ∞. The Lévy–Khintchine formula then states that 𝔼0 [exp(i𝜃𝑋𝑡)] = exp(𝑡Ψ(𝜃)),

𝜃 ∈ ℝ, 𝑡 ≥ 0, with the characteristic exponent Ψ satisfying

Ψ(𝜃) = i𝑎𝜃 − 𝜎2𝜃2

2
+

∫
ℝ

(
ei𝜃𝑥 − 1 − i𝜃𝑥𝟙[−1,1] (𝑥)

)
Π(d𝑥).

On the level of processes, the Lévy–Khintchine representation can be translated into a partition
of the process into a linear Brownian motion (𝑎𝑡+𝜎𝐵𝑡)𝑡≥0 and an independent pure jump process
characterized by Π, which itself decomposes into an independent compound Poisson process
and a zero mean 𝐿2 martingale with infinitely many jumps bounded by 1 on any finite time
interval. If

∫∞
1 𝑥 Π(d𝑥) < ∞, it follows from the Lévy–Khintchine representation that the first

moment of 𝑋𝑡 is finite for any 𝑡 ≥ 0 and 𝔼0 [𝑋𝑡] = 𝑡𝜂 with

𝜂 = 𝔼0 [𝑋1] = 𝑎 +
∫
ℝ\[−1,1]

𝑥 Π(d𝑥)

determining the long-time behaviour of 𝑿 in the sense that

(i) 𝜂 > 0 =⇒ lim𝑡→∞ 𝑋𝑡 = ∞, ℙ0-a.s.;

(ii) 𝜂 < 0 =⇒ lim𝑡→∞ 𝑋𝑡 = −∞, ℙ0-a.s.;

(iii) 𝜂 = 0 =⇒ lim sup𝑡→∞ 𝑋𝑡 = − lim inf𝑡→∞ 𝑋𝑡 = ∞, ℙ0-a.s..

and
lim
𝑡→∞

𝑋𝑡

𝑡
= 𝜂, ℙ0-a.s..

With this basic preparation on the characteristics of Lévy processes, let us now come to their
fluctuation theory, with a certain emphasis on the so called Wiener–Hopf factorization. This
commands a discussion of the ascending ladder height process, which will be central to our
analysis of data-driven solutions to ergodic control problems associated to Lévy processes in
Chapter 5. This process is derived from the local time at the supremum L = (L𝑡)𝑡≥0, which is a
stochastic process measuring the time that 𝑿 spends at its running supremum 𝑋 𝑡 = sup0≤𝑠≤𝑡 𝑋𝑠,
𝑡 ≥ 0. Its construction is based on the observation that Y = (𝑋 𝑡− 𝑋𝑡)𝑡≥0, which can be interpreted
as the process obtained from reflecting 𝑿 at its supremum, is a strong Markov process and hence
one can define L as the local time at 0 for Y, which means that L is an additive functional of
Y which almost surely increases on the closure of {𝑡 ≥ 0 : 𝑌𝑡 = 0} = {𝑡 ≥ 0 : 𝑋𝑡 = 𝑋 𝑡}. In
case that 𝑿 is upward regular, i.e., for 𝑇0 B inf{𝑡 ≥ 0 : 𝑋𝑡 > 0} we have ℙ0(𝑇0 = 0) = 1,
L can be constructed as a process with almost surely continuous paths, which entails that its
right-continuous inverse L−1𝑡 = inf{𝑠 ≥ 0 : 𝐿𝑠 > 𝑡}, 𝑡 ≥ 0, is almost surely strictly increasing. In
this case, the ascending ladder height process H = (𝐻𝑡)𝑡≥0, defined by

𝐻𝑡 =

{
𝑋L−1𝑡

, if 0 ≤ 𝑡 < L∞

∞, if 𝑡 ≥ L∞,

is a killed subordinator, strictly increasing up to its lifetime L∞, i.e., 𝑯 is equal in law to a
strictly increasing Lévy process, which is sent to the cemetery state ∞ after an independent
exponentially distributed random time with expectation 𝔼0 [L∞]. If lim sup𝑡→∞ 𝑋𝑡 = ∞, which
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as seen before is guaranteed if 𝔼0 [|𝑋1 |] < ∞ and 𝜂 = 𝔼0 [𝑋1] ≥ 0, it follows that L∞ = ∞ almost
surely and hence 𝑯 is unkilled. Moreover, when 𝜂 > 0, which is the setting that we will be
working with in Chapter 5, it holds that 0 < 𝔼0 [𝐻1] < ∞ as well, which can be deduced from
(4.37) below. It is important to note that L is only characterized uniquely up to a multiplicative
constant and hence the definition of 𝑯 depends on the chosen scaling of local time. For our
purposes, it will be convenient to choose a scaling of local time such that 𝔼0 [L−11 ] = 1 and hence,
by Wald’s equality, 𝔼0 [𝐻1] = 𝔼0 [𝑋1]𝔼0 [L−11 ] = 𝔼0 [𝑋1].

When upward regularity does not hold, (L−1𝑡 )𝑡≥0 will not be strictly increasing and con-
sequently, the ascending ladder height process 𝑯 is a (possibly killed) compound Poisson
subordinator. In any scenario, the Laplace exponent Φ𝐻 (𝜆), given by

Φ𝐻 (𝜆) = 𝑞 + 𝑑𝐻𝜆 +
∫ ∞

0
(1 − e−𝜆𝑥) Π𝐻 (d𝑥), 𝜆 ≥ 0,

satisfies 𝔼0 [exp(−𝜆𝐻𝑡)] = exp(−𝑡Φ𝐻 (𝜆)) and we refer to 𝑑𝐻 as the drift and Π𝐻 as the Lévy
measure of 𝑯.

In the same vein, we can construct the ascending ladder height process �̂� = (𝐻𝑡)𝑡≥0 for the
dual Lévy process �̂� = −𝑿, which corresponds to time changing 𝑿 by the right continuous inverse
of local time L̂ at the infimum of 𝑿. Therefore, �̂� is referred to as the descending ladder height
process. If we denote by Φ̂𝐻 the Laplace exponent of �̂�, then the Wiener–Hopf factorization
tells us that 𝑿 is fully characterized by means of the ascending and descending ladder height
processes since the Lévy–Khintchine exponent of 𝑿 can be expressed as a factorization of the
Laplace exponents of 𝑯 and �̂�,

Ψ(𝜃) = −cΦ𝐻 (−i𝜃)Φ̂𝐻 (i𝜃), 𝜃 ∈ ℝ, (4.36)

where the constant c depends on the scaling of local time at the supremum and infimum. Among
others, this factorization allows to express the characteristics of 𝑯 in terms of the characteristics
of 𝑿 and �̂�. A particularly useful identity for understanding the ascending ladder height Lévy
measure, usually referred to as Vigon’s équation amicale inversé, was demonstrated in [172]
and generalized in Theorem 4.30 for MAPs:

Π𝐻 (d𝑥) =
∫ ∞

0
Π(𝑦 + d𝑥) 𝑈𝐻 (d𝑦), 𝑥 > 0. (4.37)

Here, 𝑈𝐻 (d𝑥) = 𝔼0 [
∫∞
0 𝟙{𝐻𝑡 ∈d𝑥 } d𝑡], 𝑥 ≥ 0, denotes the potential measure of �̂� and without loss

of generality, the constant c in (4.36) is set to unity.
While the theoretical solution strategy of the Lévy driven impulse control problem from

Chapter 4 will be driven by the generator functional 𝑓 = A𝐻𝛾 with A𝐻 denoting the generator of
the ascending ladder height process 𝑯, the data-driven reflection strategy that we shall develop
makes use of the link between 𝑯 and overshoots O = (O𝑡)𝑡≥0 of 𝑿 to find an estimator �̂�𝑇 , from
which the optimal reflection boundary will be approximated by a greedy strategy. Let us first
discuss classical properties of overshoots and then make the transition to the results from the
main part of this chapter, which will be fundamental for the approximation properties of the
statistical procedure.

Let 𝑡 ≥ 0 be a given level and consider the overshoot O𝑡 over 𝑡, given by

O𝑡 = 𝑋𝑇𝑡 − 𝑡

on {𝑇𝑡 < ∞}, where 𝑇𝑡 B inf{𝑠 ≥ 0 : 𝑋𝑠 > 𝑡}. Let us assume from here on that
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(ℒ0) 𝑿 is upward regular, i.e.,

ℙ0(inf{𝑡 ≥ 0 : 𝑋𝑡 > 0} = 0) = 1,

and moreover 0 < 𝔼0 [𝑋1] C 𝜂 < ∞.

is in place, which in particular implies 𝑇𝑡 < ∞ almost surely, 0 < 𝔼0 [𝐻1] < ∞ and that 𝑯 is an
unkilled, strictly increasing subordinator. The fundamental link between O and 𝑯 now stems
from the observation that, due to its construction, the range of 𝑯 almost surely coincides with
the range of the running supremum process (𝑋 𝑡)𝑡≥0. As a consequence, the overshoot process
O𝐻 associated to 𝑯 is indistinguishable from the overshoot process O associated to 𝑿. Hence, if
we want to estimate the characteristics of 𝑯 (which cannot be observed based on a sample of
𝑿 due to a lack of explicitness of the local time L), one could hope for utilizing the overshoot
link to get hold of 𝑯 based on observations of 𝑿, provided that O has some kind of regularity
structures. Indeed, making use of the compensation formula (cf. [109, Theorem 4.4]), it can be
shown that the law of O𝑡 = O𝐻

𝑡 is given by

ℙ𝑥 (O𝑡 ∈ d𝑦) = 𝛿𝑥−𝑡 (d𝑦)𝟙[0,𝑥 ] (𝑡) +
∫
[0,𝑡−𝑥 ]

Π𝐻 (𝑢 + d𝑦) 𝑈𝐻 (𝑡 − 𝑥 − d𝑢)𝟙(𝑥,∞) (𝑡), 𝑦 > 0,

(see [109, Theorem 5.6]) and resorting to classical renewal arguments it can be deduced from
this formula that (cf. [109, Theorem 5.7])

ℙ𝑥 (O𝑡 ∈ d𝑦) w−→
𝑡→∞

1
𝔼0 [𝐻1]

(
𝑑𝐻𝛿0(d𝑦) + 𝟙(0,∞) (𝑦)Π𝐻 ((𝑦,∞)) d𝑦

)
C 𝜇(d𝑦), 𝑦 ≥ 0. (4.38)

As discussed before, similar results can be obtained for overshoots associated to MAPs, as a
natural regime switching generalization of Lévy processes. By considering a MAP with a trivial
underlying Markov chain, we obtain a Lévy process by projection and hence results on overshoots
of MAPs have direct analogues for overshoots of Lévy processes and thus, our results from this
chapter can be directly translated to the Lévy case. Let

(ℒ1) either, 𝑑𝐻 > 0, or there exists (𝑎, 𝑏) ⊂ (0,∞) such that 𝝀| (𝑎,𝑏) � Π𝐻 | (𝑎,𝑏) .

Then Theorem 4.19 shows that under assumptions (ℒ0) and (ℒ1), weak convergence in (4.38)
can be improved to total variation convergence—or said differently to ergodicity of the Markov
process O.

Proposition 4.39 (Theorem 4.19, Lemma 4.34 and Theorem 7.11 in [109]). Given (ℒ1), it
holds that, for any 𝑥 ≥ 0,

ℙ𝑥 (O𝑡 ∈ ·) TV−→
𝑡→∞

𝜇. (4.39)

Moreover, (ℒ1) is fulfilled if one of the following conditions hold:
(i) ∃(𝑎, 𝑏) ⊂ ℝ+ s.t. 𝝀| (𝑎,𝑏) � Π | (𝑎,𝑏) ;
(ii) 𝑿 has bounded variation with Lévy–Khintchine exponent

Ψ(𝜃) = i𝛿𝜃 +
∫
ℝ

(
ei𝜃𝑥 − 1

)
Π(d𝑥),

and 𝛿 > 0;
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(iii) 𝑿 has a Gaussian component;

(iv) 𝑿 has positive jumps, unbounded variation, no Gaussian component and its Lévy measure Π
satisfies ∫ 1

0

𝑥Π((𝑥,∞))∫ 𝑥
0

∫ 1
𝑦
Π((−1,−𝑢)) d𝑢 d𝑦

d𝑥 < ∞.

Remark 4.40. The mutually exclusive conditions (ii)-(iv) are necessary and sufficient criteria for
𝑑𝐻 > 0, which implies total variation convergence.

To establish exponential rates of convergence in (4.39) under the natural assumption that
𝐻1 possesses an exponential moment, a Lyapunov-type drift criterion given in [74, Theorem
5.2] is combined with an explicit calculation of the resolvent kernel

R𝜆 (𝑥, ·) B
∫ ∞

0
𝜆e−𝜆𝑡ℙ𝑥 (O𝑡 ∈ ·) d𝑡,

in Theorem 4.7. Building on exponential ergodicity it is then shown that under

(ℒ2) there is 𝜆 > 0 such that 𝔼0 [exp(𝜆𝐻1)] < ∞,

O is exponentially 𝛽-mixing for any initial distribution possessing an exponential moment, which
in particular includes the stationary distribution 𝜇.

Proposition 4.41 (Theorem 4.22, Theorem 4.25 and Lemma 4.34/Théorème 6.2.3 in [171]).
Grant (ℒ1) and (ℒ2). Then, convergence in (4.39) takes place at exponential rate. More precisely,
for any 𝛿 ∈ (0, 1) there exists a constant 𝑐(𝛿) > 0 such thatℙ𝑥 (O𝑡 ∈ ·) − 𝜇


TV ≤ 𝑐(𝛿)R𝜆 exp(𝜆·) (𝑥)e−𝑡/(2+𝛿) , 𝑡 ≥ 0.

Moreover, if 𝜂 is some distribution on (ℝ+,B(ℝ+)) such that 𝜂(exp(𝜆·)) < ∞, then, if 𝑿 is started
in 𝜂, O is exponentially 𝛽-mixing with rate

𝛽ℙ𝜂 (𝑡) ≤ 2𝜚(𝜂, 𝜆, 𝛿)e−𝑡/(2+𝛿) ,

where
𝜚(𝜂, 𝜆, 𝛿) = 𝑐(𝛿) sup

𝑡≥0
𝔼𝜂

[
R𝜆 exp(𝜆·) (O𝑡)

]
< ∞.

Finally, (ℒ2) is satisfied if and only if ∫ ∞

1
e𝜆𝑥 Π(d𝑥) < ∞.



Data-driven control strategies for diffusions and Lévy
processes

5From a purely mathematical point of view, the field of statistics of stochastic processes is
very appealing as it lives from the combination of different techniques and findings from

diverse mathematical areas, in particular statistics, probability theory or functional analysis. The
fundamental motivation of this branch of statistics, however, results from concrete applications.
Thus, besides mathematical elegance and completeness, the developments and results in this
area should always be tested in terms of their applicability.

An important area in which stochastic processes (especially of diffusion-type) are used by
default to account for random impacts is stochastic control theory. Whereas the theory itself is
very well developed and offers concrete decision strategies for a variety of problems, these are
usually based on the assumption that the decision maker has full knowledge of the dynamics of
the underlying random process. In [50], the authors already presented an approach to overcome
this constraint by means of nonparametric estimation methods and proposed a fully data-driven
approach to solving a concrete impulse control problem. In this chapter, we are expanding
the view and approaching the problem from a general perspective. Basic components for the
data-based solution of a large class of stochastic control problems are

» the control of the sup-norm risk for the estimation of certain (functionals of) characteristics
of the random process, in particular

» the derivation of upper bounds on the convergence rate.

In Section 5.1.1, we describe the nature of the control problems and how they naturally lead
to associated nonparametric estimation problems. Based on this, in Section 5.1.2, we briefly
formulate our general statistical modelling framework.

5.1 Introduction

5.1.1 The motivating control problems
The stochastic control problems we consider in this chapter are—under the assumption that the
decision maker has access to the underlying dynamics—classical, and variants are well-studied.
They have in common that a decision maker controls a continuous-time process 𝑿 on the real
line, but the controls do not change continuously over time, but are of a singular type. More
precisely, it turns out that the optimal strategies call for reflecting the underlying process at
certain boundaries. These optimal boundaries can be found (semi-) explicitly as optimizers of
certain (deterministic) auxiliary functions, based on the dynamics of the underlying uncontrolled
process. In this chapter, we consider the more realistic situation that the decision maker has
to estimate the underlying dynamics while controlling the process. The main key for such a
statistical treatment is that, for an underlying ergodic scalar diffusion 𝑿, the corresponding
auxiliary function can be described explicitly in terms of the invariant density, as detailed in
Section 5.2. For estimating the optimizer in this case, the sup-norm risk of invariant density

113
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estimators has to be studied. In Section 5.3, we then turn our attention to a control problem
for underlying Lévy processes. In this case, the auxiliary function is identified as a generator
functional A𝐻𝛾 of the ascending ladder height process 𝑯 belonging to a Lévy process 𝑿, which
we encountered in Chapter 4. Again, a sup-norm estimation procedure for such functionals has
to be found.

A data-driven solution method for the control problems therefore naturally leads to the
challenging statistical problem of setting set up a framework such that the seemingly different
issues of sup-norm estimation of the invariant density of an ergodic diffusion on the real axis
and sup-norm estimation of ladder height generator functionals A𝐻𝛾 for a Lévy process 𝑿 can
be integrated into.

5.1.2 Nonparametric analysis: Controlling the sup-norm risk of Markovian functionals
The identification of an appropriate technical framework is a crucial issue for the statistical
analysis of stochastic processes. Specific model choices such as scalar diffusion processes or
multivariate reversible processes with continuous trajectories permit the application of particular
technical tools (e.g., associated to diffusion local time or to the symmetry of the semigroup), but
generally do not provide any information about the robustness of the used statistical methods
beyond the chosen framework. In contrast, exponential 𝛽-mixing of general continuous-time
Markov processes 𝑿 = (𝑋𝑡)𝑡≥0 has been identified in Chapter 3 as a criterion which, on the one
hand, is strong enough to serve as a central building block of a robust statistical analysis while,
on the other hand, providing sufficient generality to allow to include an exhaustive list of Markov
processes in the framework. Statistical properties of such processes can thus be studied based on
fairly general results rooted in stability theory of Markov processes. Our technical main result in
this regard was Theorem 3.7, which gives nonasymptotic bounds on the moments of suprema
of empricial processes associated to Markovian integral functionals. More precisely, if 𝑿 is a
stationary non-explosive Borel right process with invariant distribution 𝜇 having the exponential
𝛽-mixing property, i.e., there exist constants 𝜅, 𝑐𝜅 > 0 such that

𝛽(𝑡) =
∫
X

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV 𝜇(d𝑥) ≤ 𝑐𝜅e−𝜅𝑡, 𝑡 ≥ 0, (5.1)

and G is a countable class of bounded real-valued functions 𝑔 satisfying 𝜇(𝑔) = 0, then if we
define

𝔾𝑇 (𝑔) =
1
√
𝑇

∫ 𝑇

0
𝑔(𝑋𝑡) d𝑡, 𝑇 > 0, 𝑔 ∈ G,

and let 𝑚𝑡 ∈ (0, 𝑡/4], there exist 𝜏 ∈ [𝑚𝑡, 2𝑚𝑡] and universal constants 𝐶1, 𝐶2, 𝑐1, 𝑐2 > 0 such
that, for any 1 ≤ 𝑝 < ∞,(

𝔼

[
sup
𝑔∈G

|𝔾𝑡 (𝑔) |𝑝
])1/𝑝

≤ 𝐶1

∫ ∞

0
logN

(
𝑢, G,

2𝑚𝑡√
𝑡
𝑑∞

)
d𝑢 + 𝐶2

∫ ∞

0

√︁
logN(𝑢, G, 𝑑𝔾,𝜏) d𝑢

+ 4 sup
𝑔∈G

(2𝑚𝑡√
𝑡
‖𝑔‖∞𝑐1𝑝 + ‖𝑔‖𝔾,𝜏𝑐2

√
𝑝 + 1

2
‖𝑔‖∞𝑐𝜅

√
𝑡e−

𝜅𝑚𝑡
𝑝

)
,

(5.2)

where

𝑑2𝔾,𝑇 ( 𝑓 , 𝑔) B Var
( 1
√
𝑇

∫ 𝑇

0
( 𝑓 − 𝑔) (𝑋𝑡) d𝑡

)
, 𝑇 > 0, 𝑓 , 𝑔 ∈ G
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is the semidistance associated to the variance of the integral functionals wrt.ℙ𝜇. As demonstrated
in Chapter 3, this result covers a wide range of potential applications. For example, it can be
used to find optimal upper bounds (regarding the sup-norm risk over bounded domains) for
nonparametric estimation of the invariant density forℝ𝑑-valued Markov processes with transition
densities (cf. Sections 3.3 and 3.4.) Recall that such results are derived from Theorem 3.7 by
bounding the (pseudo-) norms and thus the associated entropy integrals for the function class G
related to the chosen estimation procedure. For 𝑑∞, this can be achieved by using the analytical
properties of G, while bounds on the pseudo-metric 𝑑𝔾,𝜏 are based on suitable bounds for the
variance of integral functionals of 𝑿. As shown in Section 3.1.2, for 𝑑 ≥ 2 this is taken care of
using the exponential 𝛽-mixing property of 𝑿 once we assume that, additionally, an on-diagonal
heat kernel estimate is in place for the densities (𝑝𝑡)𝑡≥0 of the Markov semigroup, i.e., there
exists some constant 𝐶 > 0 such that

∀𝑡 ∈ (0, 1] : sup
𝑥,𝑦∈ℝ𝑑

𝑝𝑡 (𝑥, 𝑦) ≤ 𝐶𝑡−𝑑/2.

Application in the scalar setting
In Section 3.1.1 we introduced a related condition on local uniform convergence, which is
satisfied whenever the process has bounded transition densities and is exponentially ergodic.
Together with heat-kernel bounds on the short time transitional behavior of the process, this
allowed us to prove optimal convergence rates for sup-norm estimation of the invariant density
in any dimension. In the following two types of scalar estimation problems will be of central
importance: one which fits perfectly into the above frame, and another, which must be tackled
differently because the ergodic process under consideration does not necessarily have transition
densities and even when this is the case they are not bounded in general.

In Section 5.2.1, we study kernel invariant density estimation (for scalar ergodic diffusions)
which requires a careful balancing of bias and stochastic error of the estimator (in case of
pointwise risk, the well-known bias–variance tradeoff) by choosing an appropriate bandwidth
ℎ. In dimension 𝑑 = 1, the exponential 𝛽-mixing property is not quite sufficient per se, but
exponential ergodicity with locally bounded penalty function together with (a relaxation of) the
on-diagonal heat kernel estimate of the semigroup guarantee variance bounds that are tight
enough for proving optimal upper bounds on the convergence rates. Both of these properties
hold under classical coefficient assumptions that we will impose on the diffusion process. This
is of considerable independent interest since, in contrast to the local time arguments usually
employed for the statistical analysis of scalar diffusions, the techniques generalize without
much effort to the multivariate diffusion case. Our framework therefore arguably closes the gap
between the relatively distinct approaches to statistical estimation of scalar and multivariate
diffusions (see, e.g., [60] vs. [59] or [57, 58] vs. [159, 160]). Moreover, it potentially extends
results obtained exclusively for symmetric diffusions to the general case since it is not reliant
on functional inequalities, which are not well-suited to the non-reversible setup, see also the
discussion in Chapter 3.

Suppose that we can find an unbiased estimator of the characteristic we are interested in. In
this situation, a fine analysis of the variance of Markovian integral functionals is not necessarily
needed. This is, e.g., the case if we can express the quantity of interest as an integral wrt. the
stationary distribution of some stationary Markov process 𝑿, since then the continuous-time
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mean estimator
1
𝑇

∫ 𝑇

0
𝑓 (𝑋𝑡) d𝑡

is unbiased. If 𝑿 is moreover 𝛽-mixing, we can make use of Theorem 3.7 based on purely
analytical arguments. This will become clear in Section 5.3.1, where we are investigating
sup-norm estimation of generator functionals A𝐻𝛾 of the ascending ladder height process 𝑯
belonging to a Lévy process 𝑿 via an unbiased mean estimator based on overshoots of 𝑿. The
thereby established sup-norm bounds will be of central importance for the procedure in Section
5.3.2.

5.1.3 Overview
In Section 5.2 we develop a data-driven strategy for a singular control problem associated to a
scalar diffusion process. The construction and error anaylsis is given in Section 5.2.2 based on a
minimax optimal estimation procedure for the stationary density under exponential ergodicity
assumptions, which is carried out in Section 5.2.1. In Section 5.3 a data driven strategy for
an impulse control problem with an underlying Lévy process is constructed. The statistical
foundations for the estimation strategy of Section 5.3.2 is presented in Section 5.3.1.

5.2 Data-driven singular controls for diffusions on the real line

We now introduce the singular control problem for underlying scalar diffusion processes, given
as a solution of the Itō-type SDE

d𝑋𝑡 = 𝑏(𝑋𝑡) d𝑡 + 𝜎(𝑋𝑡) d𝑊𝑡, (5.3)

𝑏, 𝜎 : ℝ → ℝ some measurable functions and (𝑊𝑡)𝑡≥0 a standard Brownian motion on a proba-
bility space (Ω,F,ℙ𝑏). One motivation for considering such problems comes from investigating
optimal dividend distributions [10, 16, 38]. Another stream of literature deals with determining
a policy that optimizes the expected cumulative present value of the harvesting [9, 92, 112]. In
particular for the latter application, it is natural to study an ergodic formulation, as it reflects
the idea of considering sustainable harvesting guidelines, which we will also use here.

Assume that for some constants 𝜈, 𝜈 ∈ (0,∞), 𝜎 is continuously differentiable with bounded
derivative (thus globally Lipschitz) and satisfies 𝜈 ≤ |𝜎(𝑥) | ≤ 𝜈 for all 𝑥 ∈ ℝ. For fixed constants
𝐴, 𝛾 > 0 and C ≥ 1, define the set 𝚺 = 𝚺(C, 𝐴, 𝛾, 𝜎) as

𝚺 B
{
𝑏 ∈ Lip(ℝ) : |𝑏(𝑥) | ≤ C(1 + |𝑥 |), ∀|𝑥 | > 𝐴 :

𝑏(𝑥)
𝜎2(𝑥)

sgn(𝑥) ≤ −𝛾
}
.

Note that a linear growth condition for Lipschitz drift 𝑏 is always satisfied, but the class 𝚺 specifies
a global magnitude of this maximal growth in terms of the constant C. Moreover, given 𝜎 as
above and any 𝑏 ∈ 𝚺, an immediate consequence is that there exists a strong solution 𝑿 of
the SDE (5.3) for given initial value 𝑋0 independent of 𝑾. If we let ℙ𝑥

𝑏
= ℙ𝑏(·|𝑋0 = 𝑥), then

(𝑿, (ℙ𝑥
𝑏
)𝑥∈ℝ) defines a non-explosive Feller Markov process [150, Theorem 19.9] and thus in

particular a Borel right process. Moreover, 𝑿 has a unique stationary distribution 𝜇 = 𝜇𝑏 having
invariant density

𝜌(𝑥) = 𝜌𝑏(𝑥) B
1

𝐶𝑏,𝜎𝜎2(𝑥)
exp

(∫ 𝑥

0

2𝑏(𝑦)
𝜎2(𝑦)

d𝑦
)
, 𝑥 ∈ ℝ, (5.4)
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with normalizing constant 𝐶𝑏,𝜎 B
∫
ℝ

1
𝜎2 (𝑢) exp

(∫ 𝑢
0

2𝑏(𝑦)
𝜎2 (𝑦) d𝑦

)
d𝑢. This follows from [84, §18,

Lemma 3], but can also readily be deduced from the generator characterization of stationary
distributions given in Section 2.2, see also [4, Section 3.2]. In the following, we will abbreviate
ℙ
𝜇𝑏
𝑏

= ℙ𝑏 and, if there is no room for confusion, also just write ℙ instead. For any 𝑏 ∈ 𝚺, 𝜎2𝜌𝑏 is
continuously differentiable and there exists a constant 𝜌∗ > 0 (depending only on C, 𝐴, 𝛾, 𝜈, 𝜈)
such that

sup
𝑏∈𝚺(C,𝐴,𝛾,𝜎)

max
{
‖𝜌𝑏‖∞, ‖(𝜎2𝜌𝑏) ′‖∞

}
< 𝜌∗. (5.5)

Furthermore, for any fixed bounded set 𝐷 ⊂ ℝ, there exists some 𝜌∗ > 0 (depending again only
on 𝚺) such that

∀𝑥 ∈ 𝐷, inf
𝑏∈𝚺(C,𝐴,𝛾,𝜎)

𝜌𝑏(𝑥) ≥ 𝜌∗. (5.6)

The controls used to formulate the problem are of the form 𝒁 = (𝑈𝑡, 𝐷𝑡)𝑡≥0 for non-decreasing,
right-continuous and adapted processes𝑼 and 𝑫. Here, 𝑈𝑡 and 𝐷𝑡 denote the cumulative upwards
and downwards controls, resp. These processes can be decomposed into singular and jump part
as

𝑈𝑡 = 𝑈
𝑐
𝑡 +

∑︁
0≤𝑠≤𝑡

(𝑈𝑠 − 𝑈𝑠−), 𝐷𝑡 = 𝐷𝑐𝑡 +
∑︁
0≤𝑠≤𝑡

(𝐷𝑠 − 𝐷𝑠−),

where 𝑼𝑐 and 𝑫𝑐 are continuous. In the following, we will mostly deal with a special class of
controls for which the jump part is absent (with a possible exception at 𝑡 = 0): 𝑼 and 𝑫 are
associated to the local times at certain fixed points 𝜉, 𝜃.

We denote the set of all controls by 𝚲 and, for each 𝒁 ∈ 𝚲, we define the controlled process
𝑿𝑍 as the solution to

d𝑋𝑍𝑡 = 𝑏(𝑋𝑍𝑡 ) d𝑡 + 𝜎(𝑋𝑍𝑡 ) d𝑊𝑡 + d𝑈𝑡 − d𝐷𝑡,

where we work under the assumption that 𝑏 ∈ 𝚺, implying in particular that the uncontrolled
process 𝑿 = 𝑿0 has a stationary distribution 𝜌 = 𝜌𝑏.

The problem to be studied is now to determine the minimal value and the minimizer of

lim sup
𝑇→∞

1
𝑇

(∫ 𝑇

0
𝑐(𝑋𝑍𝑠 ) d𝑠 + 𝑞𝑢𝑈𝑇 + 𝑞𝑑𝐷𝑇

)
, (5.7)

where 𝑐 is a continuous, nonnegative function with

sup
𝑏∈𝚺

∫
𝑐(𝑥)𝜌𝑏(𝑥) d𝑥 < ∞

modelling the running costs and 𝑞𝑢, 𝑞𝑑 are positive constants describing the (proportional) costs
associated with applying a control. We can interpret our goal as keeping 𝑿 close to the target
state 0, say, and therefore assume that 𝑐 has a minimum in 0. The goal in the sequel is to find a
data-driven strategy for problem (5.7) when the drift 𝑏 of the underlying process is unknown.
While parts of the following analysis are similar to the one in [50], it here turns out to be
essential to control the sup-norm risk of estimators of the characteristics (precisely, the invariant
density 𝜌𝑏) of 𝑿 solving (5.3).
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5.2.1 Estimating the stationary density of ergodic diffusion processes
We first show how the underlying statistical problem for the uncontrolled process can be inte-
grated into our general framework recalled in Section 5.1.2. For a large class of ergodic scalar
diffusion processes 𝑿 solving (5.3) it is known that, given continuous observations (𝑋𝑡)0≤𝑡≤𝑇 , the
invariant density can be estimated with a parametric rate of convergence. For an overview, we
refer to Sections 1.3.2 and 4.2 in [106]. It is however not straightforward to extend bounds on
the pointwise or 𝐿2 risk to the sup-norm bounds required for our application. A corresponding
result is given in Corollary 13 in [3] whose proof, however, is deeply rooted in continuous
martingale techniques. We show how this behaviour can also be deduced from mixing properties
of the diffusion.

Given some fixed domain 𝐷 ⊂ ℝ, constants 𝛽,𝝑, 𝝔, 𝝌 > 0, L > 0 and a measurable function
𝑉 ≥ 1, introduce the set �̃�𝐷 (𝛽) = �̃�𝐷 (𝛽, L,𝝑, 𝝔, 𝝌)

�̃�𝐷 (𝛽) B
{
𝑏 ∈ 𝚺 : ‖𝑃𝑡 (𝑥, ·) − 𝜇𝑏‖TV ≤ 𝝔𝑉 (𝑥)e−𝝑𝑡 with 𝜇𝑏(𝑉) ≤ 𝝌 and 𝜌𝑏 ∈ H𝐷 (𝛽, L)

}
. (5.8)

Note that for diffusions 𝑿 with drift 𝑏 ∈ �̃�𝐷 (𝛽) it holds that 𝑿 is exponentially ergodic, i.e., the
total variation distance between the marginal laws of 𝑿 and the invariant distribution decreases
exponentially fast in time, and 𝑿 is exponentially 𝛽-mixing with mixing coefficient 𝛽(𝑡) ≤ 𝝔𝝌e−𝝑𝑡,
which is independent of 𝑏. As demonstrated in Proposition 5.2 below, exponential ergodicity and
the exponential 𝛽-mixing property are satisfied for any 𝑿 such that the coefficients 𝑏 ∈ 𝚺 and
𝜎 are globally Lipschitz. Apart from the assumption on the Hölder continuity of 𝜌𝑏, restricting
the class 𝚺 to �̃�𝐷 should therefore be understood as a technical device to obtain uniform control
on the coefficients in the exponential 𝛽-mixing bound, which is needed for the upper bound
in the minimax sense provided in Theorem 5.3. Let us briefly demonstrate that our coefficient
assumptions guarantee that 𝑿 fits into the setting of Chapter 3 by verifying that 𝑿 is exponentially
𝛽-mixing and that assumptions (𝒜1) and (𝒜2) are satisfied. To this end, let us first remark that
in our model, every point 𝑥 ∈ ℝ is reachable in finite time almost surely (cf. [106, Proposition
1.15]), i.e., for any initial distribution 𝜂, ℙ𝜂 (𝜏𝑥 < ∞) = 1, where 𝜏𝑥 = inf{𝑡 ≥ 0 : 𝑋𝑡 = 𝑥}. Thus,
it is clear that 𝑿 is Harris recurrent wrt. the Lebesgue measure 𝝀.

Lemma 5.1. Suppose that 𝑏 ∈ 𝚺. Then, 𝑿 possesses transition densities (𝑝𝑡)𝑡≥0 such that 𝑝𝑡 (𝑥, 𝑦) > 0
for any 𝑥, 𝑦 ∈ ℝ𝑑 and there exists some constant 𝑐 > 0 such that for any 𝑡 ∈ (0, 1], we have

sup
𝑥,𝑦∈ℝ

𝑝𝑡 (𝑥, 𝑦) ≤ 𝑐𝑡−1/2.

In particular, (𝒜1) holds.

Proof. Let 𝑓 (𝑥) =
∫ 𝑥
0 1/𝜎(𝑦) d𝑦, 𝑥 ∈ ℝ. Our assumptions on 𝜎 guarantee that 𝑓 is strictly

monotone and finite at any fixed point 𝑥 ∈ ℝ and thus has a continuous, strictly monotone
inverse 𝑓−1. Moreover, since 𝜎 ∈ C1

𝑏
, 𝑓 ∈ C2(ℝ) and thus Itō’s formula yields that �̃�𝑡 = 𝑓 (𝑋𝑡),

𝑡 ≥ 0, is a strong solution to the SDE

d�̃�𝑡 =
( 𝑏
𝜎
− 1

2
𝜎′

)
◦ 𝑓−1( �̃�𝑡) d𝑡 + d𝑊𝑡, 𝑡 ≥ 0.
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By the linear growth condition on 𝑏, boundedness of 𝜎′ and uniform ellipticity of 𝜎—which also
implies that | 𝑓−1(𝑥) | ≤ |𝑥 |/𝜈—it follows for the drift �̃� = (𝑏/𝜎 − 𝜎′/2) ◦ 𝑓−1 of the SDE that

|�̃�(𝑥) | . 1 + | 𝑓−1(𝑥) | . 1 + |𝑥 |,

that is, �̃� satisfies a linear growth condition. Since additionally the SDE corresponding to �̃�
has unit diffusion coefficient, Theorem 3.1 and Theorem 3.2 in [140] yield that �̃� possesses
transition densities ( �̃�𝑡)𝑡≥0 such that �̃�𝑡 (𝑥, 𝑦) > 0 for any 𝑥, 𝑦 ∈ ℝ and

sup
𝑥,𝑦∈ℝ

�̃�𝑡 (𝑥, 𝑦) ≤ 𝑐𝑡−1/2, 𝑡 ∈ (0, 1],

for some constant 𝑐 > 0. Consequently, the assertion follows from the representation 𝑝𝑡 (𝑥, 𝑦) =
1

𝜎(𝑦) �̃�𝑡 ( 𝑓 (𝑥), 𝑓 (𝑦)), 𝑥, 𝑦 ∈ ℝ, and boundedness of 1/𝜎 by uniform ellipticity. �

Next, we turn to exponential ergodicty/mixing of the diffusion process when the drift
condition from 𝚺 is satisfied. This is a classical result obtained in [167] in any dimension, which
was refined in [169] and [121, 168] to polynomial and subexponential ergodicity, resp., by a
relaxation of the drift condition. For the sake of completeness we give a full and more compact
proof embedded into the general Meyn and Tweedie theory for stability of Markov processes
presented in Chapter 2.

Proposition 5.2. Suppose that 𝑏 ∈ 𝚺. Then, 𝑿 is exponentially ergodic, i.e., there exist constants
𝜚, 𝜗 > 0 such that

‖𝑃𝑡 (𝑥, ·) − 𝜇‖TV ≤ 𝜚𝑉 (𝑥)e−𝜗𝑡, 𝑡 ≥ 0, 𝑥 ∈ ℝ, (5.9)

where 𝑉 ≥ 1 is a C2-function, which is equal to exp(𝛾 |𝑥 |) for |𝑥 | > 𝐴. Moreover, 𝑿 is exponentially
𝛽-mixing and (𝒜2) holds true with

𝑟S(𝑡) B 𝜚‖𝑝1‖∞ sup
𝑥∈S

𝑉 (𝑥)e−𝜗(𝑡−1) , 𝑡 > 1. (5.10)

Proof. Denote by A the extended generator of 𝑿 with domain D(A). By Itō’s formula, C2(ℝ) ⊂
D(A) and for any 𝑓 ∈ C2(ℝ),

A 𝑓 = 𝑏 𝑓 ′ + 1
2
𝜎2 𝑓 ′′ =

1
2𝜌

(𝜎2𝜌 𝑓 ′) ′. (5.11)

Let 𝑉 ≥ 1 be a function as in the statement of the proposition. Using the definition of 𝚺, it follows
for |𝑥 | > 𝐴 that

A𝑉 (𝑥) = 𝛾𝜎2(𝑥)𝑉 (𝑥)
(
sgn(𝑥) 𝑏(𝑥)

𝜎2(𝑥)
+ 𝛾

2

)
≤ −𝛾

2𝜈2

2
𝑉 (𝑥).

Thus, 𝑉 satisfies the Lyapunov-type inequality

A𝑉 (𝑥) ≤ −𝛾
2𝜈2

2
𝑉 (𝑥) + 𝜁, 𝑥 ∈ ℝ, (5.12)

where 𝜁 = sup𝑥∈[−𝐴,𝐴]
(
|𝑏(𝑥)𝑉 ′(𝑥) | + 1

2 |𝜎
2(𝑥)𝑉 ′′(𝑥) |

)
< ∞. Since 𝑿 is irreducible by existence of

a stationary distribution and also a 𝑇-process by open set irreducibility implied by Lemma 5.1
it follows from [164, Theorem 5.1]that any compact set is petite and, hence, 𝑉 is unbounded
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off petite sets. Moreover, for any Δ > 0, the skeleton chain 𝑿Δ = (𝑋𝑛Δ)𝑛∈ℕ0 is irreducible, which
follows again from 𝑝𝑡 (𝑥, 𝑦) > 0 for all 𝑡 ≥ 0 and 𝑥, 𝑦 ∈ ℝ by Lemma 5.1, implying that any
skeleton is 𝝀-irreducible. Existence of an irreducible skeleton chain and Harris recurrence give
aperiodicity of 𝑿 as defined in [74] and, hence, we conclude from [74, Theorem 5.2] that (5.12)
indeed implies exponential ergodicity in the sense of (5.9). This also gives that the stationary
process 𝑿 is exponentially 𝛽-mixing (recall from Chapter 3 that 𝑉 can always be chosen such
that this is implied by exponential ergodicity, or alternatively, use Proposition 2.11) and (𝒜2)
with the representation (5.10) follows from Lemma 3.4. �

With the above results, it follows from Theorem 3.11 that for fixed 𝑏 ∈ 𝚺 the invariant density
𝜌𝑏 can be estimated with parametric rate 1/

√
𝑇 wrt. sup-norm risk ‖ 𝑓 ‖∞ = ‖ 𝑓 ‖𝐿∞ (𝐷) on bounded,

open sets 𝐷 since we have access to the optimal variance bounds from Proposition 3.1. In the
following, we aim to obtain the related uniform result over the whole class �̃�(𝛽 + 1). To this
end, it is advantageous to estimate the variance of the kernel estimator with the help of a local
time technique taken from [60].

Theorem 5.3 (concentration of invariant density estimators). Fix some open and bounded set
𝐷 ⊂ ℝ, assume that 𝑏 ∈ �̃�𝐷 (𝛽 + 1), for some 𝛽 > 0, and let 𝑄 be a Lipschitz-continuous kernel
function of order T𝛽 + 1U with support [−1/2, 1/2]. Define the estimator

�̂�𝑇 (𝑥) B
1

√
𝑇 (log𝑇)2

∫ 𝑇

0
𝑄

(√
𝑇 (𝑥 − 𝑋𝑢)
(log𝑇)2

)
d𝑢, 𝑥 ∈ 𝐷. (5.13)

Then, for any 𝑝 ≥ 1,

sup
𝑏∈�̃�𝐷 (𝛽+1)

(
𝔼
𝜇𝑏
𝑏

[
‖ �̂�𝑇 − 𝜌𝑏‖ 𝑝∞

] )1/𝑝
∈ O

(√︃
log𝑇
𝑇

)
. (5.14)

Proof. Fix 𝑝 ∈ [1,∞) and 𝑏 ∈ �̃�(𝛽 + 1), and denote ℎ = ℎ𝑇 B (log𝑇)2/
√
𝑇 , 𝑚𝑇 B 𝑝 log𝑇/𝝑,

𝔼𝑏 = 𝔼, 𝜌𝑏 = 𝜌

G B

{
𝑄

( 𝑥 − ·
ℎ

)
− 𝔼

[
𝑄

( 𝑥 − 𝑋0

ℎ

)]
: 𝑥 ∈ 𝐷 ∩ℚ

}
,

ℍ𝑇 (𝑥) B �̂�𝑇 (𝑥) − 𝔼
[
�̂�𝑇 (𝑥)

]
=

1
√
𝑇ℎ

𝔾𝑇

(
𝑄

( 𝑥 − ·
ℎ

)
− 𝔼

[
𝑄

( 𝑥 − 𝑋0

ℎ

)] )
.

Given any 𝑏 ∈ �̃�𝐷 (𝛽 + 1), Proposition 5.2 shows that the associated diffusion process solving
(5.3) is exponentially 𝛽-mixing. Thus, we may apply Theorem 3.7 for bounding(

𝔼

[
sup
𝑥∈𝐷

|ℍ𝑇 (𝑥) |𝑝
] )1/𝑝

=

(
𝔼

[
sup

𝑥∈𝐷∩ℚ
|ℍ𝑇 (𝑥) |𝑝

] )1/𝑝
. (5.15)

Let 𝜏 be as in Theorem 3.7, and denote by 𝐿𝑇 (𝑦) the local time of 𝑿 at the point 𝑦 ∈ ℝ up to
time 𝑇 ≥ 0, fulfilling in particular 𝔼[𝐿𝑇 (𝑦)] = 𝑇𝜌(𝑦)𝜎2(𝑦). Using the occupation times formula
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and Minkowski’s integral inequality, one obtains

Var
(∫ 𝜏

0
𝑄

(
𝑥 − 𝑋𝑢

ℎ

)
d𝑢

)
= 𝔼

[(∫
ℝ

𝑄
( 𝑥 − 𝑦

ℎ

) ( 𝐿𝜏(𝑦)
𝜎2(𝑦)

− 𝜏𝜌(𝑦)
)
d𝑦

)2]
= ℎ2 𝔼

[(∫
ℝ

𝑄(𝑣)
(
𝐿𝜏(𝑥 − ℎ𝑣)
𝜎2(𝑥 − ℎ𝑣)

− 𝜏𝜌(𝑥 − ℎ𝑣)
)
d𝑣

)2]
≤ ℎ2

∫
ℝ

𝑄(𝑣) 𝔼
[(
𝐿𝜏(𝑥 − ℎ𝑣)
𝜎2(𝑥 − ℎ𝑣)

− 𝜏𝜌(𝑥 − ℎ𝑣)
)2]

d𝑣

≤ ℎ2 sup
𝑣∈supp(𝑄)

Var(𝐿𝜏(𝑥 − ℎ𝑣))
𝜎4(𝑥 − ℎ𝑣)

≤ ℎ2𝜈−4𝐶0𝜏 sup
𝑣∈supp(𝑄)

𝜌(𝑥 − ℎ𝑣),

(5.16)

where the last estimate follows from Proposition 5.1 in [60] and 𝐶0 > 0 is a constant depending
only on the class 𝚺. Thus,

sup
𝑓 ,𝑔∈G

𝑑𝔾,𝜏( 𝑓 , 𝑔) = sup
𝑓 ,𝑔∈G

√︄
Var

(
1
√
𝜏

∫ 𝜏

0
( 𝑓 − 𝑔) (𝑋𝑠) d𝑠

)
≤ ℎD, for D B 𝜈−2

√︁
𝐶0𝜌∗,

such that N(𝜀, G, 𝑑𝔾,𝜏) = 1 for 𝜀 ≥ ℎD. Similarly, for any 𝑔 ∈ G,

Var
(
1
√
𝜏

∫ 𝜏

0
𝑔(𝑋𝑢) d𝑢

)
≤ sup

𝑥∈supp(𝑔)

Var(𝐿𝜏(𝑥))
𝜏𝜎4(𝑥)𝜌(𝑥) ‖𝑔‖2

𝐿2 (𝜇) ≤ D2𝜌−1∗ ‖𝑔‖2
𝐿2 (𝜇) ,

and hence
N(𝜀, G, ‖ · ‖𝔾,𝜏) ≤ N(𝜀

√︁
𝜌∗D−1, G, ‖ · ‖𝐿2 (𝜇) ). (5.17)

Under the given assumptions on 𝐾, G is a countable class of real-valued functions fulfilling the
entropy bound

N(𝜀, G, ‖·‖𝐿2 (Q) ) ≤ (A/𝜀)𝜐,

for some constants A ∈ (e2,∞), 𝜐 > 0 and any probability measure Q, cf. Proposition 3.6.12 in
[86]. With (5.17) it follows that

N(𝜀, G, ‖·‖𝔾,𝜏) ≤
(
AD
√
𝜌∗𝜀

)
.

Consequently, as in the proof of Theorem 3.11, we obtain for ℎ ≤ e−2A/
√
𝜌∗ that∫ ∞

0

√︁
logN(𝜀, G, 𝑑𝔾,𝜏) d𝜀 ≤

∫ ℎD

0

√︄
𝜐 log

(
AD
√
𝜌∗𝜀

)
d𝜀 ≤ 4Dℎ

√︄
𝜐 log

(
A

ℎ
√
𝜌∗

)
,

and Lemma 3.19 implies that∫ ∞

0
logN

(
𝜀, G, 2𝑚𝑇√

𝑇
𝑑∞

)
d𝜀 ≤ 8𝑚𝑇√

𝑇
‖𝑄‖∞

(
1 + log

( 𝐿diam(𝐷)
‖𝑄‖∞ℎ

))
.
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Thus, Theorem 3.7 gives that (5.15) is upper-bounded by

1
√
𝑇ℎ

(
8𝐶1

𝑚𝑇√
𝑇
‖𝑄‖∞

(
1 + log

( 𝐿diam(𝐷)
‖𝑄‖∞ℎ

))
+ 4𝐶2Dℎ

√︄
𝜐 log

(
A

ℎ
√
𝜌∗

)
+ 16𝑚𝑇√

𝑇
‖𝑄‖∞𝑐1𝑝 + 2ℎD𝑐2

√
𝑝 + 4‖𝑄‖∞𝝔𝝌

√
𝑇e−

𝝑𝑚𝑇
𝑝

)
∈ O

(√︃
log𝑇
𝑇

)
,

(5.18)

where the last implication follows from the choice of ℎ = ℎ𝑇 and 𝑚𝑇 . The conditions on the order
of the kernel function 𝑄 and the fact that 𝛽 > 0 further imply that, for any 𝑥 ∈ 𝐷,

|𝔼[�̂�𝑇 (𝑥)] − 𝜌(𝑥) | = | (𝜌 ∗ 𝑄ℎ − 𝜌) (𝑥) | . ℎ𝛽+1 ∈ O
(√︃

log𝑇
𝑇

)
.

In combination with the upper bound on the stochastic error stated in (5.18), we thus obtain
(5.14). �

Although assuming stationarity of the process is standard in the statistical literature, this
assumption can be slightly problematic for practical purposes. In the present scenario this will
become evident for our proof technique of the data-driven control strategy, where we require
sup-norm bounds under ℙ0

𝑏
instead of ℙ𝜇𝑏

𝑏
. To extend the rate result (5.14) from the stationary

regime to the non-stationary case, we use the following auxiliary result, which shows that
exponential convergence allows to exactly quantify the loss imposed by non-stationarity for
nonparametric estimation. We focus on the case 𝑝 = 1 as the relevant result for our purposes.

Lemma 5.4. Let X be a topological space and (𝒀 , (ℙ𝑥)𝑥∈X) an X-valued exponentially ergodic
Markov process, i.e., there exist a function 𝑉 : X → [1,∞) and constants 𝑐, 𝜅 > 0 such that, for
any 𝑥 ∈ X, ℙ𝑥 (𝑌𝑡 ∈ ·) − 𝜇


TV ≤ 𝑐𝑉 (𝑥)e−𝜅𝑡, 𝑡 ≥ 0,

where 𝜇 is the invariant distribution of 𝒀 . Then, for any bounded 𝑔 ∈ B(X2), 𝑥 ∈ X and 𝑇 large
enough such that 𝑇 > 𝜅−1 log𝑇 , it holds that���𝔼𝑥 [ sup

𝑦∈X

���1
𝑇

∫ 𝑇

0
𝑔(𝑦, 𝑌𝑠) d𝑠

���] − 𝔼𝜇
[
sup
𝑦∈X

���1
𝑇

∫ 𝑇

0
𝑔(𝑦, 𝑌𝑠) d𝑠

���] ���
≤ ‖𝑔‖∞

(2 log𝑇
𝜅𝑇

+ 𝑐𝑉 (𝑥) 1
𝑇

)
.

Proof. Let

𝜃(𝑦, 𝑢, 𝑣) =
∫ 𝑣

𝑢

𝑔(𝑦, 𝑋𝑠) d𝑠, 0 ≤ 𝑢 ≤ 𝑣, 𝑦 ∈ X,

and
𝜑(𝑥) B 𝔼𝑥

[
‖𝜃(·, 0, 𝑇 − 𝜅−1 log𝑇)‖∞

]
, 𝑥 ∈ X.

Then,���𝔼𝑥 [ sup
𝑦∈X

���1
𝑇

∫ 𝑇

0
𝑔(𝑦, 𝑌𝑠) d𝑠

���] − 𝔼𝜇
[
sup
𝑦∈X

���1
𝑇

∫ 𝑇

0
𝑔(𝑦, 𝑌𝑠) d𝑠

���] ���
≤ 1
𝑇

(
𝔼𝑥

[��‖𝜃(·, 0, 𝑇)‖∞ − ‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞
��] + 𝔼𝜇

[��‖𝜃(·, 0, 𝑇)‖∞ − ‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞
��] )
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+ 1
𝑇

���𝔼𝑥 [‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞]
− 𝔼𝜇

[
‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞

] ���
≤ 1
𝑇

(
𝔼𝑥

[
‖𝜃(·, 0, 𝜅−1 log𝑇)‖∞

]
+ 𝔼𝜇

[
‖𝜃(·, 0, 𝜅−1 log𝑇)‖∞

] )
+ 1
𝑇

���𝔼𝑥 [‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞]
− 𝔼𝜇

[
‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞

] ���
≤ 2‖𝑔‖∞

log𝑇
𝜅𝑇

+ 1
𝑇

���𝔼𝑥 [‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞]
− 𝔼𝜇

[
‖𝜃(·, 𝜅−1 log𝑇, 𝑇)‖∞

] ���
= 2‖𝑔‖∞

log𝑇
𝜅𝑇

+ 1
𝑇

��𝔼𝑥 [𝜑(𝑌𝜅−1 log𝑇 )
]
− 𝜇(𝜑)

��,
where for the second inequality we used reverse triangle inequality for the first two summands
and the last equality is a consequence of the Markov property of 𝒀 and stationarity of 𝒀 under
ℙ𝜇. Using that ‖𝜑‖∞ ≤ ‖𝑔‖∞𝑇 , exponential ergodicity of 𝒀 yields���𝔼𝑥 [ sup

𝑦∈X

���1
𝑇

∫ 𝑇

0
𝑔(𝑦, 𝑌𝑠) d𝑠

���] − 𝔼𝜇
[
sup
𝑦∈X

���1
𝑇

∫ 𝑇

0
𝑔(𝑦, 𝑌𝑠) d𝑠

���] ���
≤ 2‖𝑔‖∞

log𝑇
𝜅𝑇

+ 𝑐𝑉 (𝑥)‖𝑔‖∞e−𝜅(𝜅
−1 log𝑇)

= 2‖𝑔‖∞
log𝑇
𝜅𝑇

+ 𝑐𝑉 (𝑥)‖𝑔‖∞
1
𝑇
,

as claimed. �

With this at hand, we obtain a non-stationary version of Theorem 5.3.

Corollary 5.5. Given the assumptions from Theorem 5.3, it holds for any 𝑥 ∈ ℝ that

sup
𝑏∈�̃�𝐷 (𝛽+1)

𝔼𝑥𝑏 [‖ �̂�𝑇 − 𝜌𝑏‖∞] ∈ O
(√︃

log𝑇
𝑇

)
. (5.19)

Proof. Let

𝑔(𝑥, 𝑦) B
√
𝑇

(log𝑇)2
𝑄

(√𝑇 (𝑥 − 𝑦)
(log𝑇)2

)
− 𝜌𝑏(𝑥), 𝑥, 𝑦 ∈ ℝ.

Then, for 𝑇 large enough such that
√
𝑇/(log𝑇)2‖𝑄‖∞ ≥ 𝜌∗, we have

‖𝑔‖∞ ≤ 2
√
𝑇/(log𝑇)2‖𝑄‖∞.

Applying Lemma 5.4 to 𝑔 and 𝑿, which is exponentially ergodic by construction of �̃�𝐷 (𝛽 + 1),
we obtain, for any 𝑥 ∈ ℝ and 𝑇 large enough such that 𝑇 > 𝝑−1 log𝑇 , that��𝔼𝑥𝑏 [‖ �̂�𝑇 − 𝜌𝑏‖∞] − 𝔼

𝜇𝑏
𝑏
[‖ �̂�𝑇 − 𝜌𝑏‖∞]

�� ≤ 2‖𝑄‖∞
( 2
𝝑
√
𝑇 log𝑇

+ 𝝔𝑉 (𝑥)
√
𝑇 (log𝑇)2

)
.

Combining this with (5.14), we obtain (5.19) by triangle inequality. �
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5.2.2 Application
We now turn to analyzing the singular control problem. Given the literature on related problems,
it is natural to expect reflecting barrier strategies, i.e., strategies which maintain the process
between two constant thresholds 𝜉 and 𝜃 and just grow at these points, to be optimal. We
denote such strategies for upper and lower, resp., boundaries 𝜉, 𝜃 ∈ ℝ, 𝜉 < 𝜃, by 𝑼𝜉 and 𝑫𝜃 and
refer to [84, §23] for an explicit characterization, which underlines the interpretation of these
processes as local times at the boundaries 𝜉 and 𝜃, resp., of the process 𝑿𝑍.

Solution for known drift
Using classical ergodic results for one-dimensional linear diffusions, it is straightforward to
show the following analytic expression for the expected costs when applying reflecting barrier
strategies. We refer to [11, Proposition 2.1] for a detailed proof.

Lemma 5.6. Let 𝜉, 𝜃 ∈ ℝ, 𝜉 < 𝜃 and 𝑥 ∈ [𝜉, 𝜃]. Then, for 𝒁 = (𝑼𝜉, 𝑫𝜃),

lim
𝑇→∞

1
𝑇
𝔼𝑥

[∫ 𝑇

0
𝑐(𝑋𝑍𝑠 ) d𝑠 + 𝑞𝑢𝑈

𝜉

𝑇 + 𝑞𝑑𝐷
𝜃
𝑇

]
= 𝐶(𝜉, 𝜃),

with
𝐶(𝜉, 𝜃) = 1∫ 𝜃

𝜉
𝑚(𝑥) d𝑥

(∫ 𝜃

𝜉

𝑐(𝑥)𝑚(𝑥) d𝑥 + 𝑞𝑢

𝑆′(𝜉) +
𝑞𝑑

𝑆′(𝜃)

)
,

where 𝑚 denotes the speed density and 𝑆 the scale function of the underlying diffusion.
For our later purposes, the main observation is that—given the volatility 𝜎—the expected

cost function 𝐶 can completely be described in terms of the invariant density 𝜌 of the underlying
diffusion. Indeed:

𝐶(𝜉, 𝜃) = 1∫ 𝜃
𝜉
𝜌(𝑥) d𝑥

(∫ 𝜃

𝜉

𝑐(𝑥)𝜌(𝑥) d𝑥 + 𝑞𝑢𝜎
2(𝜉)
2

𝜌(𝜉) + 𝑞𝑑𝜎
2(𝜃)
2

𝜌(𝜃)
)
.

Therefore, minimizers of 𝐶 correspond to optimizers of (5.7) in the class of reflecting barrier
strategies. The next natural question is whether such minimizers are indeed optimal within the
class of all admissible strategies, i.e., whether the minimal value in (5.7) is equal to

𝐶∗ B min
(𝜉,𝜃)

𝐶(𝜉, 𝜃).

This also holds under natural assumptions as can be proven, e.g., adapting the lines of argument
in [49, 117] to the two-sided case. We, however, do not go into detail here, but restrict our
attention to the class of reflecting barrier strategies in the following.

As 0 is our target state, it is furthermore natural that 0 is contained in the no-action-region
which is assumed to be bounded. More precisely, we assume that there exists 𝐵 > 0 such that
the minimizer (𝜉∗, 𝜃∗) of 𝐶 fulfill

(𝜉∗, 𝜃∗) ∈ 𝐾𝐵 B {(𝜉, 𝜃) : −𝐵 ≤ 𝜉 ≤ −1/𝐵, 1/𝐵 ≤ 𝜃 ≤ 𝐵}.

In [11], a natural set of assumptions is introduced to guarantee that (𝜉∗, 𝜃∗) is characterized
as the unique critical point of the function 𝐶. We, however, do not need uniqueness for our
purposes.
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Construction of the estimators
We proceed by constructing estimators 𝜉𝑇 and �̂�𝑇 for the optimal thresholds 𝜉∗ and 𝜃∗ which
are based on the estimator �̂�𝑇 of the invariant density 𝜌 = 𝜌𝑏 (see (5.13)). To this end, we fix
some 𝛽 > 0, set 𝐷 = 𝐾𝐵, and write �̃� B �̃�𝐷 (𝛽 + 1). In principle, we just use the plug-in estimator,
taking however into account that (cf. (5.6))

𝑎 B inf
𝑏∈�̃�

min
𝑥∈𝐾𝐵

𝜌𝑏(𝑥) > 0.

This leads to the estimator

𝐶𝑇 (𝜉, 𝜃) B
1∫ 𝜃

𝜉
�̂�𝑇 (𝑥) ∨ 𝑎 d𝑥

(∫ 𝜃

𝜉

𝑐(𝑥) �̂�𝑇 (𝑥) d𝑥 +
𝑞𝑢𝜎

2(𝜉)
2

�̂�𝑇 (𝜉) +
𝑞𝑑𝜎

2(𝜃)
2

�̂�𝑇 (𝜃)
)

for the expected value 𝐶(𝜉, 𝜃) of a reflection strategy with barriers 𝜉, 𝜃, yielding

(𝜉𝑇 , �̂�𝑇 ) ∈ arg min
(𝜉,𝜃) ∈𝐾𝐵

𝐶𝑇 (𝜉, 𝜃)

as our estimator for the optimal thresholds. Using this, we obtain that the expected costs, when
using the strategy based on the estimator after having observed the uncontrolled process for 𝑇
time units, converge to the optimal value with rate

√︁
log𝑇/𝑇 .

Proposition 5.7. For any 𝑥 ∈ ℝ, there exists 𝐶1 > 0 such that

sup
𝑏∈�̃�

𝔼𝑥𝑏

[
𝐶(𝜉𝑇 , �̂�𝑇 ) − 𝐶∗

]
≤ 𝐶1

√︂
log𝑇
𝑇

.

Proof. It holds that

𝐶(𝜉𝑇 , �̂�𝑇 ) − 𝐶∗ = 𝐶(𝜉𝑇 , �̂�𝑇 ) − 𝐶𝑇 (𝜉𝑇 , �̂�𝑇 ) + 𝐶𝑇 (𝜉𝑇 , �̂�𝑇 ) − min
(𝜉,𝜃) ∈𝐾𝐵

𝐶(𝜉, 𝜃)

= 𝐶(𝜉𝑇 , �̂�𝑇 ) − 𝐶𝑇 (𝜉𝑇 , �̂�𝑇 ) + min
(𝜉,𝜃) ∈𝐾𝐵

𝐶𝑇 (𝜉, 𝜃) − min
(𝜉,𝜃) ∈𝐾𝐵

𝐶(𝜉, 𝜃)

≤ 2 max
(𝜉,𝜃) ∈𝐾𝐵

���𝐶(𝜉, 𝜃) − 𝐶𝑇 (𝜉, 𝜃)
���.

To analyze this quantity, we denote numerator and denominator of 𝐶 and 𝐶𝑇 by 𝐴𝜌, 𝐵𝜌 and
𝐴�̂�𝑇 , 𝐵�̂�𝑇 , resp., and obtain for all (𝜉, 𝜃) ∈ 𝐾𝐵���𝐶(𝜉, 𝜃) − 𝐶𝑇 (𝜉, 𝜃)

��� ≤ ���� 𝐴𝜌(𝜉, 𝜃) − 𝐴�̂�𝑇 (𝜉, 𝜃)
𝐵𝜌(𝜉, 𝜃)

���� + ���� 𝐴�̂�𝑇 (𝜉, 𝜃)𝐵𝜌(𝜉, 𝜃)
−
𝐴�̂�𝑇 (𝜉, 𝜃)
𝐵�̂�𝑇 (𝜉, 𝜃)

����
≤ 𝐵

2𝑎
��𝐴𝜌(𝜉, 𝜃) − 𝐴�̂�𝑇 (𝜉, 𝜃)

�� + |𝐴�̂�𝑇 (𝜉, 𝜃) |
���� 1
𝐵𝜌(𝜉, 𝜃)

− 1
𝐵�̂�𝑇 (𝜉, 𝜃)

����
Now, (5.5) yields that we find an absolute constant M such that

sup
𝑏∈�̃�

𝔼𝑥𝑏

[
𝐶(𝜉𝑇 , �̂�𝑇 ) − 𝐶∗

]
≤ M sup

𝑏∈�̃�
𝔼𝑥𝑏 [‖ �̂�𝑇 − 𝜌𝑏‖∞],

proving the claim by Corollary 5.5. �
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Data-driven singular controls
In most real world applications, the decision maker is faced with the problem of collecting data
about the underlying dynamics and finding the optimal strategy at the same time. Here, however,
a classical trade-off between exploration and exploitation occurs. On the one hand, the decision
maker wants to minimize her expected costs and therefore uses singular control strategies with
an optimal estimated threshold. On the other hand, using such a greedy strategy all the time,
the decision maker can’t learn about the drift 𝑏 of the underlying process outside the estimated
control interval and therefore this procedure cannot even be expected to converge.

Our solution is to separate exploration and exploitation periods as follows (see Figure 5.1):
At the beginning of every period except the first, the process is in the target state 0. In the
exploration periods, we then let the process run uncontrolled and the period ends when the
process again reaches 0 after having visited two predefined boundaries 𝜉0, 𝜃0, 𝜉0 < 0 < 𝜃0.

In the exploitation periods, we use an estimator for 𝜌 as defined in the previous section in
order to choose suitable thresholds based on the observations. The exact specification for this
estimator (𝜉𝑇 , �̂�𝑇 ) is given below. An exploitation period ends after the process has been reflected
at both the upper and lower estimated boundary and has returned to 0. In the following, we
will always set 𝜉0 = −𝐵 = −𝜃0.

We combine exploration and exploitation periods using a (deterministic) sequence (𝑐𝑛)𝑛∈ℕ ∈
{0, 1}ℕ, where 𝑐𝑛 = 0 (and 𝑐𝑛 = 1) means that the 𝑛-th period is of exploration-type (and
exploitation-type, resp.) and denote the corresponding strategy by �̂� = (𝑼, �̂�). By 𝜏0 = 0 < 𝜏1 <

𝜏2 < . . . we denote the stopping times separating the periods defining �̂�. The question now is
how to balance the time spent for exploration and exploitation. A suitable choice can be made
by taking into account the estimation error bounds from the previous section and balancing the
errors from misspecifying (𝜉𝑇 , �̂�𝑇 ) due to the estimation error and the losses due to the lack of
control in the exploration periods. As we will see below, a suitable choice are sequences (𝑐𝑛)𝑛∈ℕ
such that there exists d > 0 with

𝑛2/3 ≤ #{𝑖 ≤ 𝑛 : 𝑐𝑖 = 0} ≤ 𝑛2/3 + d. (5.20)

Observe that for such a sequence there exists 𝑀 > 0 such that

#{𝑖 ≤ 𝑛 : 𝑐𝑖 = 0} ≤ 𝑀𝑛2/3. (5.21)

Note that 𝑾 is a Brownian motion for the filtration generated by 𝑾 and the independent
random variable 𝑋0. With respect to this filtration, the times separating the different periods are
stopping times. Therefore, the process �̃� which is constructed by putting together the paths of
𝑾 in the exploration periods, is again a Brownian motion. As the process �̃� which is constructed
by joining the paths of 𝑿 in the exploration periods fulfills �̃�0 = 𝑋0 and solves the SDE

d�̃�𝑠 = 𝑏( �̃�𝑠) d𝑠 + 𝜎( �̃�𝑠) d�̃�𝑠, 𝑠 ≥ 0,

it has the same dynamics as the uncontrolled process 𝑿.
We denote the estimator for the optimal threshold from Section 5.2.2 for the uncontrolled

process �̃� until time 𝑠 by (𝜉𝑠, �̃�𝑠) and define (𝜉𝑇 , �̂�𝑇 ) B (𝜉𝑆𝑇∧𝑚𝑇2/3 , �̃�𝑆𝑇∧𝑚𝑇2/3), where 𝑆𝑇 denotes
the time that the controlled process 𝑿 �̂� has spent in the exploration periods until 𝑇 , and 𝑚 is a
constant specified in the following lemma. In other words, we base the estimator (𝜉𝑇 , �̂�𝑇 ) for
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τ1 τ2 τ3 τ4 τ5

ξ0

0

θ0

Figure 5.1: A path controlled using a data-driven reflection strategy with exploration (blue)
and exploitation (turquoise) periods using (𝑐𝑛)𝑛 = (0, 1, 1, 0, 1, . . . ). The predefined boundaries
𝜉0, 𝜃0 determining the length of the exploration periods are represented by red lines and the
estimated optimal reflection boundaries by purple lines.

the threshold used in the exploitation periods just on the observations in the exploration periods
and, in addition, just for technical reasons, ignore all observations after time 𝑠 = 𝑚𝑇2/3.

We first observe that condition (5.20) implies that the time 𝑆𝑇 spent in the exploration
periods until time 𝑇 is of order 𝑇2/3. In particular, 𝑆𝑇 → ∞ and 𝑆𝑇/𝑇 → 0. More precisely:

Lemma 5.8. Let (𝑐𝑛)𝑛∈ℕ ∈ {0, 1}ℕ satisfy (5.20) with corresponding data-driven strategy �̂� as
specified above. Then, there exist 𝑚, 𝑀 > 0 such that

ℙ0
𝑏 (𝑇

−2/3𝑆𝑇 ≤ 𝑚) . 𝑇−1/3 and lim sup
𝑇→∞

𝑇−2/3𝔼0
𝑏 [𝑁

0
𝑇 ] ≤ 𝑀,

where 𝑁0
𝑇 denotes the number of exploration periods until time 𝑇 .

The proof, which is quite technical and based on renewal theoretic arguments, is deferred to
Appendix 5.A. The main result of this section given below shows that, by employing the strategy
�̂�, we can guarantee that the expected regret per time unit vanishes with rate

√︁
log𝑇/𝑇1/3.

Theorem 5.9. Let (𝑐𝑛)𝑛∈ℕ ∈ {0, 1}ℕ satisfy (5.20) with corresponding data-driven strategy �̂� as
specified above. Then, the expected regret per time unit is of order O

(√
log𝑇
𝑇1/3

)
. That is, for any 𝑏 ∈ �̃�,
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we have
lim sup
𝑇→∞

𝑇1/3√︁
log𝑇

(
1
𝑇
𝔼0
𝑏

[∫ 𝑇

0
𝑐(𝑋 �̂�𝑠 ) d𝑠 + 𝑞𝑢𝑈𝑇 + 𝑞𝑑 �̂�𝑇

]
− 𝐶∗

𝑏

)
< ∞.

Proof. We first consider the costs in the exploration periods. Using [15, Chapter VI, Theorem
1.2], we first see that in one exploration cycle starting and ending in 0, the expected costs are

𝔼0
𝑏 [𝜏1]

∫
𝑐(𝑥)𝜌𝑏(𝑥) d𝑥,

with finiteness of (arbitrary) moments of 𝜏1 under ℙ0
𝑏
being demonstrated in Appendix 5.A.

Hence, the expected costs per time unit in full exploration cycles are
∫
𝑐(𝑥)𝜌𝑏(𝑥) d𝑥 and the

time spent in such cycles until 𝑇 is bounded by 𝑆𝑇 . If we consider the cumulative costs until time
𝑇 , we have to take into account that the last exploration cycle may be cut off at the deterministic
time 𝑇 . Putting pieces together, we can bound the expected costs in the exploration period as
follows:

𝔼0
𝑏

[∫ 𝑇

0
𝑐(𝑋 �̂�𝑡 ) d𝑆𝑡

]
≤ 𝔼0

𝑏


∑︁

𝑛:𝜏𝑛≤𝑇
exploration period

∫ 𝜏𝑛+1

𝜏𝑛

𝑐(𝑋 �̂�𝑡 ) d𝑡


=

∑︁
𝑛∈ℕ0

𝔼0
𝑏

[
𝔼0
𝑏

[ ∫ 𝜏𝑛+1

𝜏𝑛

𝑐(𝑋 �̂�𝑡 ) d𝑡
���F�̂�

𝜏𝑛

]
𝟙{𝜏𝑛≤𝑇, exploration starts at 𝜏𝑛 }

]
= 𝔼0

𝑏 [𝑁
0
𝑇 ]𝔼0

𝑏 [𝜏1]
∫
𝑐(𝑥)𝜌𝑏(𝑥) d𝑥

. 𝑇2/3,

where we applied Lemma 5.8 with 𝑁0
𝑇 denoting the number of exploration periods until time

𝑇 and (F�̂�
𝑡 )𝑡≥0 is the filtration generated by the controlled process 𝑿 �̂�. To analyze the costs in

the exploitation periods, we write 𝑅𝑡 B 𝑡 − 𝑆𝑡 for the time spent in the exploitation periods
and—again using [15, Chapter VI, Theorem 1.2]—similarly get

𝔼0
𝑏

[∫ 𝑇

0
𝑐(𝑋 �̂�𝑡 ) d𝑅𝑡 + 𝑞𝑢𝑈𝑇 + 𝑞𝑑 �̂�𝑇

]
≤ 𝔼0

𝑏


∑︁

𝑛:𝜏𝑛≤𝑇
exploitation period

(∫ 𝜏𝑛+1

𝜏𝑛

𝑐(𝑋 �̂�𝑡 ) d𝑡 + 𝑞𝑢(𝑈𝜏𝑛+1 − 𝑈𝜏𝑛) + 𝑞𝑑 (�̂�𝜏𝑛+1 − �̂�𝜏𝑛)
)

≤
∑︁
𝑛∈ℕ0

𝔼0
𝑏

[
𝔼0
𝑏

[ ∫ 𝜏𝑛+1

𝜏𝑛

𝑐(𝑋 �̂�𝑡 ) d𝑡 + 𝑞𝑢(𝑈𝜏𝑛+1 − 𝑈𝜏𝑛) + 𝑞𝑑 (�̂�𝜏𝑛+1 − �̂�𝜏𝑛)
���F�̂�

𝜏𝑛

]
𝟙{𝜏𝑛≤𝑇, exploit. starts at 𝜏𝑛 }

]
≤ 𝔼0

𝑏

[ ∑︁
𝑛∈ℕ0

𝐶(𝜉𝜏𝑛 , �̂�𝜏𝑛)𝔼0
𝑏 [𝜏𝑛+1 − 𝜏𝑛 |F�̂�

𝜏𝑛
]𝟙{𝜏𝑛≤𝑇, exploitation starts at 𝜏𝑛 }

]
= 𝔼0

𝑏

[ ∑︁
𝑛∈ℕ0

𝐶(𝜉𝜏𝑛 , �̂�𝜏𝑛) (𝜏𝑛+1 − 𝜏𝑛)𝟙{𝜏𝑛≤𝑇, exploitation starts at 𝜏𝑛 }

]
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= 𝔼0
𝑏

[ ∑︁
𝑛∈ℕ0

∫ 𝜏𝑛+1

𝜏𝑛

𝐶(𝜉𝑡, �̂�𝑡) d𝑡𝟙{𝜏𝑛≤𝑇, exploitation starts at 𝜏𝑛 }

]
≤

∫ 𝑇

0
𝔼0
𝑏 [𝐶(𝜉𝑡, �̂�𝑡)] d𝑡 + max

(𝜉,𝜃) ∈𝐾𝐵
𝐶(𝜉, 𝜃)𝔼0

𝑏 [𝜂
1],

where 𝜂1 denotes the length of an exploitation period with maximal length (i.e., a period with
reflection in ±𝐵). On the event {𝑆𝑡 ≥ 𝑚𝑡2/3}, we have that (𝜉𝑡, �̂�𝑡) = (𝜉𝑚𝑡2/3 , �̃�𝑚𝑡2/3), so that by
Lemma 5.8 and Proposition 5.7, we have

𝔼0
𝑏 [𝐶(𝜉𝑡, �̂�𝑡)] ≤ max

(𝜉,𝜃) ∈𝐾𝐵
𝐶(𝜉, 𝜃)ℙ0

𝑏 (𝑆𝑡 < 𝑚𝑡2/3) + 𝔼0
𝑏 [𝐶(𝜉𝑡, �̂�𝑡)𝟙{𝑆𝑡≥𝑚𝑡2/3 }]

≤ 𝑐1𝑡
−1/3 + 𝔼0

𝑏 [𝐶(𝜉𝑚𝑡2/3 , �̃�𝑚𝑡2/3)]

≤ 𝑐1𝑡
−1/3 + 𝐶∗

𝑏 + 𝑐2

√︄
log(𝑚𝑡2/3)
𝑚𝑡2/3

≤ 𝐶∗
𝑏 + 𝑐3

√︁
log 𝑡
𝑡1/3

for certain constants 𝑐1, 𝑐2, 𝑐3, hence

𝔼0
𝑏

[∫ 𝑇

0
𝑐(𝑋 �̂�𝑡 ) d𝑅𝑡 + 𝑞𝑢𝑈𝑇 + 𝑞𝑑 �̂�𝑇

]
≤

∫ 𝑇

0
𝔼0
𝑏 [𝐶(𝜉𝑡, �̂�𝑡)] d𝑡 + max

(𝜉,𝜃) ∈𝐾𝐵
𝐶(𝜉, 𝜃)𝔼0

𝑏 [𝜂
1]

≤ 𝐶∗
𝑏𝑇 + 𝑐4

∫ 𝑇

0

√︁
log 𝑡
𝑡1/3

d𝑡

≤ 𝐶∗
𝑏𝑇 + 𝑐4

√︁
log(𝑇)

∫ 𝑇

0
𝑡−1/3 d𝑡

≤ 𝐶∗
𝑏𝑇 + 𝑐5𝑇2/3√︁log(𝑇)

for certain constants 𝑐4, 𝑐5. Putting pieces together , we obtain

1
𝑇
𝔼0
𝑏

[∫ 𝑇

0
𝑐(𝑋 �̂�𝑠 ) d𝑠 + 𝑞𝑢𝑈𝑇 + 𝑞𝑑 �̂�𝑇

]
− 𝐶∗

𝑏

=
1
𝑇
𝔼0
𝑏

[∫ 𝑇

0
𝑐(𝑋 �̂�𝑡 ) d𝑆𝑡

]
+ 1
𝑇
𝔼0
𝑏

[∫ 𝑇

0
𝑐(𝑋 �̂�𝑡 ) d𝑅𝑡 + 𝑞𝑢𝑈𝑇 + 𝑞𝑑 �̂�𝑇

]
− 𝐶∗

𝑏

. 𝑇−1/3 +
√︁
log(𝑇)
𝑇1/3 .

�

5.3 Data-driven controls for Lévy processes

We now turn our attention to another class of non-continuous control problems. The first main
difference is that we consider a one-sided class of problems, that is, we just consider downward
controls. Second, we assume the underlying processes to have jumps. More precisely, as our
driving process, we take a Lévy process 𝑿 = (𝑋𝑡)𝑡≥0, started in 𝑥 ∈ ℝ under ℙ𝑥 , satisfying the
basic assumption
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(ℒ0) 𝑿 is upward regular, i.e.,

ℙ0(inf{𝑡 ≥ 0 : 𝑋𝑡 > 0} = 0) = 1,

and moreover 0 < 𝔼0 [𝑋1] C 𝜂 < ∞.

Let us note that any Lévy process with unbounded variation (i.e., either 𝑿 has a non-trivial
Gaussian part or

∫ 1
−1 |𝑥 | Π(d𝑥) = ∞) satisfies the upward regularity assumption. For a full

description of upward regularity in terms of necessary and sufficient conditions, also covering a
subset of Lévy processes with bounded variation, see [109, Theorem 6.5].

Control problems with underlying jump processes are known to be much harder to analyze
than their counterparts without jumps, see [135] for discussions and many examples. To
formulate our problem, we fix a non-decreasing function 𝛾 ∈ C2(ℝ). In contrast to the singular
controls discussed in Section 5.2.2, we now consider controls of impulse-type. These are
sequences 𝑆 = (𝜏𝑛, 𝜁𝑛)𝑛∈ℕ of stopping times 𝜏1 < 𝜏2 < . . . ↗ ∞ and F𝜏𝑛-measurable random
variables 𝜁𝑛 describing the times of the interventions and the state after exercising the control,
respectively. The corresponding controlled process is given as

𝑋𝑆𝑡 = 𝑋𝑡 −
∑︁

𝑛∈ℕ:𝜏𝑛≤𝑡
(𝑋𝑆𝜏𝑛,− − 𝜁𝑛), 𝑡 ≥ 0.

Here, the value at time 𝜏𝑛, but with the control not having taken place yet, is denoted by

𝑋𝑆𝜏𝑛,− = 𝑋𝜏𝑛 −
∑︁

𝑚∈ℕ:𝑚<𝑛
(𝑋𝑆𝜏𝑚− − 𝜁𝑚).

In general, for processes with jumps, this quantity may deviate from both the value 𝑋𝑆𝜏𝑛 = 𝜁𝑛 at
time 𝜏𝑛 after the control has taken place and the left limit 𝑋𝑆𝜏𝑛−. We can interpret 𝛾(𝑿𝑆) as the
value of a natural resource we are managing. In most examples of interest, 𝛾 has a sigmoidal
form, so that (without interventions) the value is expected to grow fast whenever 𝑿𝑆 takes
moderate values, while the value grows slowly whenever 𝑿𝑆 has either large or small values.
The stopping times 𝜏𝑛 describe the times of intervention. From the motivating problem, it is
clear that we only assume downward controls to be admissible, i.e., we assume that 𝑋𝑆𝜏𝑛,− ≥ 𝜁𝑛
for all 𝑛.

Our aim is to find a maximizer and the corresponding value 𝑣 of the expected rewards
without fixed transaction costs, defined by

lim inf
𝑇→∞

1
𝑇
𝔼𝑥

[ ∑︁
𝑛∈ℕ:𝜏𝑛≤𝑇

(
𝛾
(
𝑋𝑆𝜏𝑛,−

)
− 𝛾(𝜁𝑛)

) ]
, (5.22)

in the class of all admissible impulse control strategies 𝑆 = (𝜏𝑛, 𝜁𝑛).
We will argue in Section 5.3.2 below that the main tool for solving (5.22) is the ascending

ladder height process. We remind the reader that the underlying concepts and main results
from fluctuation theory for Lévy processes needed in the following are summarized in Appendix
4.B. Note that (ℒ0) implies lim𝑡→∞ 𝑋𝑡 = ∞ almost surely. Let 𝐻𝑡 = 𝑋L−1𝑡

, 𝑡 ≥ 0, be the ascending
ladder height subordinator of 𝑿, where L = (L𝑡)𝑡≥0 is a version of local time at the supremum
and L−1 = (L−1𝑡 )𝑡≥0 is its right-continuous inverse. Note that L can be chosen to be continuous by
upward regularity of 𝑿, which entails that 𝑡 ↦→ L−1𝑡 is strictly increasing and thus 𝑯 is a strictly
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increasing subordinator (or, put differently, is not compound Poisson). Moreover, for any 𝑡 ≥ 0,
L−1𝑡 is an 𝔽-stopping time, where 𝔽 = (F𝑡)𝑡≥0 denotes the usual completed natural filtration of 𝑿.
Motivated by the solution technique for the associated control problem, we choose a scaling of L
such that 𝔼0 [L−11 ] = 1 and hence, by Wald’s equality (cf. [138, Corollary 2.5.2]),

𝔼0 [𝐻1] = 𝔼0 [𝑋1].

Moreover, for 𝑇𝑥 B inf{𝑡 ≥ 0 : 𝑋𝑡 > 𝑥} and 𝑇𝐻𝑥 B inf{𝑡 ≥ 0 : 𝐻𝑡 > 𝑥}, under (ℒ0) we have

𝑇𝑥 = L−1
(
L𝑇𝑥

)
= L−1

𝑇𝐻𝑥

almost surely for any 𝑥 ≥ 0 (see Proposition IV.7 and the proof of Theorem VI.19 in [25]). Since
(L−1𝑡 )𝑡≥0 is a subordinator and 𝑇𝐻𝑥 is a (FL−1𝑡

)𝑡≥0-stopping time, Wald’s equality also yields that

𝔼0 [𝑇𝑥] = 𝔼0 [𝐿−11 ]𝔼0 [𝑇𝐻𝑥 ] = 𝔼0 [𝑇𝐻𝑥 ]. (5.23)

Let (𝑑𝐻 ,Π𝐻) denote drift and Lévy measure of 𝑯 and D(A𝐻) be the domain of the extended
generator A𝐻 of 𝑯. By Itō’s formula for semimartingales applied to 𝑯, see e.g. Theorem I.4.57
in [98], it follows that for 𝑓 ∈ C2(ℝ) such that

𝑔 𝑓 (𝑥) = 𝑑𝐻 𝑓
′(𝑥) +

∫ ∞

0+
( 𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥)) Π𝐻 (d𝑦), 𝑥 ∈ ℝ, (5.24)

is well-defined that ( 𝑓 (𝐻𝑡) − 𝑓 (𝐻0) −
∫ 𝑡
0 𝑔 𝑓 (𝐻𝑠) d𝑠)𝑡≥0 is a local martingale. For such functions

𝑓 ∈ C2(ℝ) we set A𝐻 𝑓 = 𝑔 𝑓 . We will see in Section 5.3.2 below that the auxiliary function
𝑓 (𝑥) = A𝐻𝛾(𝑥) is the key for the solution to (5.22). More precisely, A𝐻𝛾 yields a maximum
representation of the payoff that is needed to guarantee optimality of a threshold time, which
can be derived from A𝐻𝛾.

5.3.1 Estimating generator functionals for the ascending ladder height Lévy process
Motivated by this observation, to implement a data-driven strategy our goal is to find an estimator
of 𝑓 (𝑥) = A𝐻𝛾(𝑥) for an appropriate 𝛾 ∈ C2(ℝ), based on a continuously observed trajectory
(𝑋𝑡)0≤𝑡≤𝑇 of 𝑿 up to some fixed time horizon 𝑇 , with good approximation properties wrt. the
sup-norm risk. Estimating A𝐻𝛾 is therefore of significant applied interest and, as it will turn
out, establishing bounds for the sup-norm risk provides the right tool to infer estimates for the
expected regret of data-driven control strategies. For our purposes, we will need to assume that
𝛾′ is bounded, which is clearly in line with a typically sigmoidal form of 𝛾.

In order to construct an estimator for A𝐻𝛾, a first intuitive approach would be to assume
that Π𝐻 is absolutely continuous with Lebesgue density 𝜋𝐻 and reconstruct a path (𝐻𝑡)0≤L−1𝑡 ≤𝑇
from the full observations (𝑋𝑡)0≤𝑡≤𝑇 to develop a nonparametric estimator (�̂�𝐻 , 𝜋𝐻) of (𝑑𝐻 , 𝜋𝐻)
and then analyze the plug-in estimator

Â𝐻𝛾(𝑥) = �̂�𝐻𝛾(𝑥) +
∫ ∞

0+
(𝛾(𝑥 + 𝑦) − 𝛾(𝑥))𝜋𝐻 (𝑦) d𝑦, 𝑥 ∈ ℝ, (5.25)

based on convergence rates of (�̂�𝐻 , 𝜋𝐻) as 𝑇 → ∞. An appropriate estimator for 𝜋𝐻 in this
scenario is given by

𝜋𝐻 (𝑥) =
1
L𝑇

∑︁
0≤𝑡≤L𝑇

𝐾ℎ(𝑥 − Δ𝐻𝑡)𝟙{Δ𝐻𝑡>0}, 𝑥 > 0,
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for 𝐾ℎ B ℎ−1𝐾 (·/ℎ), where ℎ = ℎ(𝑇) > 0 is some bandwidth and 𝐾 a high-order kernel function,
see [154, 155].

However, under (ℒ0)—even with a full record of 𝑿—local time L cannot be observed in
general since its construction is not purely path dependent, see [25, Chapter 4]. Hence, in our
framework such ansatz is hopeless, unless 𝑿 is assumed to have a one sided jump structure,
i.e., 𝑿 is either a subordinator (increasing paths), spectrally negative (only negative jumps but
non-monotone paths) or spectrally positive (only positive jumps but non-monotone paths). In the
subordinator case we can simply choose L𝑡 = 𝑡 and hence 𝑯 = 𝑿, i.e., the problem of estimating
the generator functional via the plug-in estimator reduces to estimation of the Lévy measure
and drift of 𝑿. When 𝑿 is spectrally negative, we can choose L𝑡 = 𝑐𝑋 𝑡, where 𝑋 𝑡 = sup0≤𝑠≤𝑡 𝑋𝑠
and 𝑐 is some scaling factor. Then, L−1𝑡 = 𝑇𝑡/𝑐, where 𝑇𝑥 B inf{𝑡 ≥ 0 : 𝑋𝑡 > 𝑥} is the first passage
time of the level 𝑥. By exclusively negative jumps, 𝑿 reaches its maxima continuously, hence
𝐻𝑡 = 𝑋𝑇𝑡/𝑐 = 𝑡/𝑐, where 𝑐 must be chosen such that

1 = 𝔼0 [L−11 ] = 𝔼0 [𝑇1/𝑐], (5.26)

by our required scaling of local time. Thus, estimation of the generator functional in this case
boils down to estimating the drift 𝑑𝐻 = 1/𝑐, which would require estimation of expected first
passage times for different levels 𝑥 > 0 and solving (5.26) for 𝑐 with the expectation on the
right hand side replaced by the constructed estimators. This is a non-trivial procedure and it
is not clear how such issue should be efficiently attacked with a given dataset. For the case of
spectrally positive processes, a similar issue would arise for the correct scaling of local time at
the infimum.

Thus, the only direct estimation approach other than the one we introduce below, demands
restricting to a subordinator. If its Lévy measure is finite (i.e., 𝑿 must be a compound Poisson
subordinator with positive drift since we require (ℒ0)), it follows from Theorem 3.1 in [155]
that (ignoring the drift part) the 𝐿2 risk of the estimator (5.25) is of order 1/

√
𝑇 . At the end of

this section, we will argue that even in this much more restricted setting, our estimator—which
can be applied for arbitrary jump structures—matches this performance.

Let us therefore now show how to go a more sophisticated route, exploiting the probabilistic
structure of the generator functional by making use of the stability results on overshoots of Lévy
processes established in Chapter 4. This is in general a very natural approach for statistical
inference of objects related to 𝑯 due to its intimate connections with overshoots of 𝑿, that we
briefly recall in the sequel. Let O𝑥 be the overshoot of 𝑿 over the level 𝑥 ≥ 0, defined by

O𝑥 B 𝑋𝑇𝑥 − 𝑥, 𝑥 ≥ 0,

where 𝑇𝑥 B inf{𝑡 ≥ 0 : 𝑋𝑡 > 𝑥} is again the first hitting time of (𝑥,∞). If we consider the spatial
levels that 𝑿 surpasses along its lifetime as time index, it can be shown that under (ℒ0) the
overshoot process O B (O𝑡)𝑡≥0 is a Feller Markov process.

Its role in revealing the characteristics of the ascending ladder height process stems from the
simple observation that the closure of the range of 𝑯 almost surely is identical to the range of
the running supremum process 𝑋 𝑡 B sup0≤𝑠≤𝑡 𝑋𝑠, 𝑡 ≥ 0, and hence the overshoot process O𝐻 of
𝑯 is indistinguishable from O. As seen in Chapter 4 the unique invariant distribution of O is
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given by

𝜇(d𝑦) = 1
𝔼0 [𝐻1]

(
𝑑𝐻𝛿0(d𝑦) + 𝟙(0,∞) (𝑦)Π𝐻 (𝑦,∞) d𝑦

)
=

1
𝜂

(
𝑑𝐻𝛿0(d𝑦) + 𝟙(0,∞) (𝑦)Π𝐻 (𝑦,∞) d𝑦

)
, 𝑦 ≥ 0,

with the second equality being a consequence of our particular scaling of local time. If we assume
additionally that

(ℒ1) either, 𝑑𝐻 > 0, or there exists (𝑎, 𝑏) ⊂ (0,∞) such that 𝝀| (𝑎,𝑏) � Π𝐻 | (𝑎,𝑏) ,

it follows from Proposition 4.39 that, for any 𝑥 ∈ ℝ+,

lim
𝑡→∞

‖ℙ𝑥 (O𝑡 ∈ ·) − 𝜇‖TV = 0, (5.27)

where ‖·‖TV (as before) denotes the total variation distance. In Proposition 4.39, conditions
on the characteristics of the parent process 𝑿 implying (ℒ1) are given. These underline that
most explicit Lévy models fall into the total variation convergence scheme provided that upward
regularity is satisfied, since these usually either possess a non-trivial Gaussian component or the
Lévy measure is constructed from a Lebesgue density. Finally, assuming

(ℒ2) there is 𝜆 > 0 such that 𝔼0 [exp(𝜆𝐻1)] < ∞,

which is true iff Π | [1,∞) integrates 𝑥 ↦→ exp(𝜆𝑥), Proposition 4.41 states that total variation
convergence in (5.27) takes place at exponential rate and that O is exponentially 𝛽-mixing
whenever the initial distribution integrates exp(𝜆·). In particular, the stationary overshoot
process is exponentially 𝛽-mixing, with 𝛽-mixing coefficient

𝛽(𝑡) =
∫
ℝ+

‖ℙ𝑥 (O𝑡 ∈ ·) − 𝜇‖TV 𝜇(d𝑥) ≤ 𝐶(𝜆, 𝛿, 𝜇)e−𝑡/(2+𝛿) , 𝑡 ≥ 0, (5.28)

for some constant 𝐶(𝜆, 𝛿, 𝜇) ∈ (0,∞) and arbitrary 𝛿 ∈ (0, 1). Starting from this general setup,
the fundamental observation for our purposes is that, for 𝛾 ∈ C2(ℝ), we can rewrite (5.24) in
terms of an integral wrt. the invariant overshoot distribution 𝜇.

Lemma 5.10. For any 𝛾 ∈ C2(ℝ) with bounded derivative we have

A𝐻𝛾(𝑥) =
∫
ℝ+

𝜂𝛾′(𝑥 + 𝑦) 𝜇(d𝑦), 𝑥 ∈ ℝ.

Proof. Note first that 𝔼0 [𝐻1] < ∞ and boundedness of 𝛾′ guarantee that both sides of the
equation are well defined. Plugging in and using Fubini we obtain for 𝑥 ∈ ℝ,∫

ℝ+

𝜂𝛾′(𝑥 + 𝑦) 𝜇(d𝑦) = 𝑑𝐻𝛾
′(𝑥) +

∫ ∞

0+
𝛾′(𝑥 + 𝑦)

∫ ∞

𝑦+
Π𝐻 (d𝑧) d𝑦

= 𝑑𝐻𝛾
′(𝑥) +

∫ ∞

0+

∫
(0,𝑧)

𝛾′(𝑥 + 𝑦) d𝑦Π𝐻 (d𝑧)

= 𝑑𝐻𝛾
′(𝑥) +

∫ ∞

0+
(𝛾(𝑥 + 𝑧) − 𝛾(𝑥)) Π𝐻 (d𝑧)

= A𝐻𝛾(𝑥).

�
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Remark 5.11. This formula is valid for any subordinator with finite mean.

It follows from von Neumann’s ergodic theorem that, for any 𝑥 ≥ 0 and 𝑝 ≥ 1,

lim
𝑆→∞

1
𝑆

∫ 𝑆

0
𝜂𝛾′(𝑥 + O𝑡) d𝑡 = A𝐻𝛾(𝑥), in 𝐿𝑝(ℙ𝜇).

It is therefore natural to consider as an estimator of 𝑓 (𝑥) = A𝐻𝛾(𝑥), based on overshoot
observations (O𝑡)0≤𝑡≤𝑆 up to some spatial level 𝑆 > 0, the unbiased (under ℙ𝜇) estimator

�̃�𝑆 (𝑥) =
1
𝑆

∫ 𝑆

0
𝜂𝛾′(𝑥 + O𝑡) d𝑡, 𝑥 ∈ ℝ,

with 𝜂 = 𝔼0 [𝑋1] > 0 assumed to be known (which is not a strict assumption in light of i.i.d.
increments of 𝑿). To establish convergence bounds wrt. to the sup-norm risk, we make use of
Theorem 3.7. We apply this result to the function class

G B {𝜂𝛾′(𝑥 + ·) − A𝐻𝛾(𝑥) : 𝑥 ∈ ℚ ∩ 𝐷},

to find a convergence rate of 1/
√
𝑆 for the sup-norm risk

R𝐷
∞
(
�̃�𝑆, 𝑓

)
B 𝔼0 [ �̃�𝑆 − 𝑓


𝐿∞ (𝐷)

]
,

for some bounded open set 𝐷 ⊂ ℝ. The choice of evaluating the sup-norm risk wrt. ℙ0 is
somewhat arbitrary and can be replaced by ℙ𝑥 for any 𝑥 ≥ 0 by spatial homogeneity of the Lévy
process. We stress however that, although we make heavily use of ergodic arguments, we do not
need the process to be started in the stationary overshoot distribution for our results. Similar
to the proof of Corollary 5.5, the key for this is Lemma 5.4 in conjunction with exponential
ergodicity of O.

Let us assume for the rest of the section that (ℒ0) – (ℒ2) are satisfied, if not mentioned
otherwise.

Proposition 5.12. Let 𝛾 ∈ C2(ℝ) such that 𝛾′ is bounded. Then there exists a constant 𝐶1 > 0
such that

R𝐷
∞
(
�̃�𝑆, 𝑓

)
≤ 𝐶1

1
√
𝑆
.

Proof. By stationarity of O under ℙ𝜇 and its exponential 𝛽-mixing property (5.28), which is
guaranteed given our assumptions, it follows easily (see, e.g., the proof of Proposition 2.4 in
[67]) for any bounded 𝑔 and 𝑡 > 0 that

‖𝑔‖2𝔾,𝑡 =
1
𝑡
Var

( ∫ 𝑡

0
𝑔(O𝑠) d𝑠

)
≤ 2‖𝑔‖2∞

∫ 𝑡

0

∫ ∞

0
‖ℙ𝑥 (O𝑠 ∈ ·) − 𝜇‖TV 𝜇(d𝑥) d𝑠

≤ 2‖𝑔‖2∞𝜚(𝜆, 𝛿, 𝜇) (2 + 𝛿),

for some 𝛿 ∈ (0, 1). Hence, there exists a constant 𝐶 > 0 such that, independently of 𝑡 > 0, for
any bounded 𝑓 , 𝑔

𝑑𝔾,𝑡 ( 𝑓 , 𝑔) ≤ 𝐶𝑑∞( 𝑓 , 𝑔). (5.29)
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Letting G B {𝜂𝛾′(𝑥 + ·) − A𝐻𝛾(𝑥) : 𝑥 ∈ ℚ ∩ 𝐷} and using the fact that 𝛾′ is Lipschitz on the
bounded set 𝐷 thanks to 𝛾 ∈ C2(ℝ), it follows with Lemma 3.19 that

N(𝜀, G, 𝑑∞) ≤
4𝜂𝐿diam(𝐷)

𝜀
, 𝜀 > 0,

where 𝐿 denotes the Lipschitz constant of 𝛾′ on 𝐷. It therefore follows that the associated entropy
integral is finite, i.e., ∫ ∞

0
logN

(
𝑢, G, 𝑑∞

)
d𝑢 < ∞,

and by (5.29) the same is true for the entropy integral∫ ∞

0

√︃
logN

(
𝑢, G, 𝑑𝔾,𝑡

)
d𝑢 < 𝐶,

with a constant 𝐶 independent of 𝑡. Since 𝑓 (𝑥) = A𝐻𝛾(𝑥) = 𝜂𝜇(𝛾′(𝑥 + ·)), choosing 𝑚𝑆 =
√
𝑆

and plugging into (5.2) therefore reveals that there exists a constant 𝐶0 > 0 such that

𝔼𝜇
[
sup
𝑥∈𝐷

| �̃�𝑆 (𝑥) − 𝑓 (𝑥) |
]
= 𝔼𝜇

[
sup

𝑥∈𝐷∩ℚ+

| �̃�𝑆 (𝑥) − 𝑓 (𝑥) |
]

=
1
√
𝑆
𝔼𝜇

[
sup
𝑔∈G

|𝔾𝑆 (𝑔) |
]

≤ 𝐶0
1
√
𝑆
.

(5.30)

As in the proof of Corollary 5.5, we transfer the sup-norm risk bound from the stationary regime
to the case when 𝑿 is started in 0. This can again be achieved utilizing exponential ergodicity of
O. Let

𝑔(𝑥, 𝑦) = 𝜂𝛾′(𝑥 + 𝑦) − A𝐻𝛾(𝑥), 𝑥, 𝑦 ≥ 0.

Then,
‖𝑔‖∞ ≤ B B ‖𝜂𝛾′‖∞ + ‖A𝐻𝛾‖∞,

which is finite by boundedness of 𝛾′. Using exponential ergodicity of O as stated in Proposition
4.41 and applying Lemma 5.4 shows that for 𝛿 ∈ (0, 1) and 𝑆 large enough such that 𝑆 ≥
(2 + 𝛿) log 𝑆 ���𝔼0

[
sup
𝑥∈𝐷

| �̃�𝑆 (𝑥) − 𝑓 (𝑥) |
]
− 𝔼𝜇

[
sup
𝑥∈𝐷

| �̃�𝑆 (𝑥) − 𝑓 (𝑥) |
] ���

≤
���𝔼0

[
sup
𝑥∈𝐷

���1
𝑇

∫ 𝑇

0
𝑔(𝑥,O𝑠)

���] − ���𝔼𝜇 [ sup
𝑥∈𝐷

���1
𝑇

∫ 𝑇

0
𝑔(𝑥,O𝑠)

���] ���
≤ 2(2 + 𝛿)B log 𝑆

𝑆
+ 𝑐(𝛿)BR𝜆 exp(𝜆·) (0)

1
𝑆

.
log 𝑆
𝑆

+ 𝑆−1.

Together with (5.30), this implies that

R𝐷
∞
(
�̃�𝑆, 𝑓

)
≤ 𝐶1𝑆

−1/2

for some constant 𝐶1 > 0, by triangle inequality. �
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Proposition 5.12 shows that �̃�𝑆 is not only an elegant but also efficient estimator for 𝑓 = A𝐻𝛾,
provided that we have an overshoot sample (O𝑡)0≤𝑡≤𝑆 available up to a fixed level 𝑆. However, we
observe the Lévy process up to a fixed time 𝑇 and not up to the random first passage time 𝑇𝑆. Our
agenda therefore must be to build an estimator �̂�𝑇 which is F𝑇 -measurable and whose sup-norm
convergence properties can be inferred from Proposition 5.12. To this end, we aim to make use
of the law of large numbers for Lévy processes. Recalling that lim𝑇→∞ 𝑋𝑇/𝑇 = 𝔼0 [𝑋1] = 𝜂 almost
surely for any starting distribution of 𝑿, it follows that, for any 𝜀 > 0,

ℙ0
(���𝑋𝑇
𝑇

− 𝜂

��� > 𝜀
)
−→
𝑇→∞

0. (5.31)

Define

�̂�𝑇 (𝑥) B
1
𝑋𝑇

∫ 𝑋𝑇

0
𝜂𝛾′(𝑥 + O𝑡) d𝑡𝟙(0,∞) (𝑋𝑇 ), 𝑥 ∈ ℝ, (5.32)

and note that, since {𝑋𝑇 > 𝑡} ⊂ {𝑇𝑡 ≤ 𝑇} for any 𝑡 ≥ 0, we have

𝛾′(𝑥 + O𝑡)𝟙{𝑡<𝑋𝑇 } = 𝛾′(𝑥 + O𝑡)𝟙{𝑇𝑡≤𝑇 }∩{𝑡<𝑋𝑇 } ∈ F𝑇 ,

as a consequence of 𝛾′(𝑥 + O𝑡)𝟙{𝑇𝑡≤𝑇 } ∈ F𝑇 thanks to 𝑇𝑡 being an 𝔽-stopping time. Therefore,
�̂�𝑇 (𝑥) ∈ F𝑇 for any 𝑥 ∈ ℝ as desired. As a key result, the following preparatory lemma shows
that the two essential components involved in an upper bound of the sup-norm risk of �̂�𝑇 are
indeed the rate of �̃�𝜂𝑇 = �̃�𝔼0 [𝑋𝑇 ] and the speed of convergence in (5.31).

Lemma 5.13. Let 𝛾 ∈ C2(ℝ) such that 𝛾′ is bounded. Then, there exists a constant 𝐶 > 0 such that,
for any 𝜀 ∈ (0, 𝜂 ∧ 1/2) and 𝑇 > 0, we have

R𝐷
∞
(
�̂�𝑇 , 𝑓

)
≤ 𝐶

( 1
√
𝜂𝑇

+ 𝜀

𝜂
+ ℙ0

(���𝑋𝑇
𝑇

− 𝜂

��� > 𝜀
))
. (5.33)

Proof. Let again B B 𝜂‖𝛾′‖∞ + ‖A𝐻𝛾‖∞ < ∞. Then, for 𝐶 = 2max{1, 𝐶1,B}, it follows by the
triangle inequality and Proposition 5.12 that

𝔼0
[
sup
𝑥∈𝐷

��� 1
𝑋𝑇

∫ 𝑋𝑇

0
𝜂𝛾′(𝑥 + O𝑡) d𝑡 − A𝐻𝛾(𝑥)

���]
≤ 𝔼0

[
𝜂𝑇

𝑋𝑇
sup

𝑥∈𝐷∩ℚ

��� 1
𝜂𝑇

∫ 𝜂𝑇
𝑋𝑇
𝜂𝑇

0
𝜂𝛾′(𝑥 + O𝑡) d𝑡 − A𝐻𝛾(𝑥)

��� ; {���𝑋𝑇
𝑇

− 𝜂

��� ≤ 𝜀
}]

+Bℙ0
(���𝑋𝑇
𝑇

− 𝜂

��� > 𝜀
)

≤ 2𝔼0

[
sup

𝑥∈𝐷∩ℚ
sup

|𝛼 | ≤𝜀/𝜂

��� 1
𝜂𝑇

∫ 𝜂𝑇 (1+𝛼)

0
𝜂𝛾′(𝑥 + O𝑡) d𝑡 − A𝐻𝛾(𝑥)

���] +Bℙ0
(���𝑋𝑇
𝑇

− 𝜂

��� > 𝜀
)

≤ 2

(
R𝐷
∞( �̃�𝜂𝑇 , 𝑓 ) + 𝔼0

[
sup

𝑥∈𝐷∩ℚ
sup

|𝛼 | ≤𝜀/𝜂

��� 1
𝜂𝑇

∫ 𝜂𝑇 (1+𝛼)

𝜂𝑇

𝜂𝛾′(𝑥 + O𝑡) d𝑡
���] ) +Bℙ0

(���𝑋𝑇
𝑇

− 𝜂

��� > 𝜀
)

≤ 𝐶
( 1
√
𝜂𝑇

+ 𝜀

𝜂
+ ℙ0

(���𝑋𝑇
𝑇

− 𝜂

��� > 𝜀
))
,

where for the second inequality we used that, by our choice of 𝜀 ∈ (0, 𝜂 ∧ 1/2), we have 𝜂𝑇/
𝑋𝑇 ≤ (1 − 𝜀)−1 ≤ 2 on {|𝑋𝑇/𝑇 − 𝜂 | ≤ 𝜀}. �
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The following result complements results on tail asymptotics of the marginal 𝑋𝑇 for fixed
𝑇 > 0 of a Lévy process 𝑿 with bounded jumps, which can be found in Theorem 26.1 of [147],
and non-asymptotic tail bounds of a Lévy process for small times 𝑇 > 0, recently discussed in
[77]. It is a slight digression from the remainder of this section in the sense that the assumptions
(ℒ0)-(ℒ2) are dropped in favour of bounded jumps and zero mean of 𝑿. The statement is of
independent interest since it gives nonasymptotic bounds on the speed of convergence of the
law of large numbers for Lévy processes with bounded jumps and allows establishing optimal
rates for our concrete estimation problem.

Theorem 5.14. Suppose that 𝑿 is a non trivial zero mean Lévy process with bounded jumps and
Lévy triplet (𝑎, 𝜎2,Π). Then, there exists 𝛽 > 0 and 𝑇 (𝑝) > 0 for 𝑝 > 0 such that for any 𝑇 ≥ 𝑇 (𝑝),

ℙ0
(
|𝑋𝑇 | >

√︁
𝛽𝑇 log(𝑇 𝑝)

)
≤ 2𝑇−𝑝/2.

Proof. Let 𝛼 B inf{𝑧 > 0 : supp(Π) ⊂ {𝑥 ∈ ℝ : |𝑥 | ≤ 𝑧}} be the maximal jump size of 𝑿. If
𝛼 = 0, 𝑿 is a scaled Brownian motion since 𝔼0 [𝑋1] = 0 and 𝑿 was assumed non-trivial. In this
case, the result follows directly from the exponential decay of tails of Brownian motion. Suppose
therefore that 𝛼 > 0. We only show ℙ0(𝑋𝑇 >

√︁
𝛽𝑇 log𝑇) ≤ 𝑇−𝑝/2. The statement then follows by

performing the same calculations for the dual process �̂� = −𝑿, which also is a zero mean Lévy
process with jumps bounded in absolute value by 𝛼. Since 𝑿 has bounded jumps and zero mean,
its Laplace exponent 𝜓 is well-defined on (0,∞) and given by

𝜓(𝑧) B log𝔼0 [exp(𝑧𝑋1)] =
𝜎2𝑧2

2
+

∫ 𝛼

−𝛼
(e𝑧𝑥 − 1 − 𝑧𝑥) Π(d𝑥), 𝑧 > 0.

Furthermore, observe that 𝜓 is smooth with derivative

𝜓′(𝑧) = 𝜎2𝑧 +
∫ 𝛼

−𝛼
(𝑥 (e𝑧𝑥 − 1)) Π(d𝑥), 𝑧 > 0.

By [147, Lemma 26.4], 𝜓′ is invertible on (0,∞) with strictly increasing inverse denoted by 𝜃.
As in the proof of [147, Lemma 26.5] it follows from

𝑧 = 𝜎2𝜃(𝑧) +
∫ 𝛼

−𝛼
𝑥 (e𝜃(𝑧)𝑥 − 1) Π(d𝑥), 𝑧 > 0,

that
𝑧

𝜃(𝑧) ≤ 𝜎2 + e𝜃(𝑧)𝛼
∫ 𝛼

−𝛼
𝑥2 Π(d𝑥), 𝑧 > 0.

Since 𝜃(0+) = 0, this yields

lim sup
𝑧↓0

𝑧

𝜃(𝑧) ≤ 𝜎2 +
∫ 𝛼

−𝛼
𝑥2 Π(d𝑥).

This implies that there exists some 𝜀 > 0 and 𝛿 ≥ 1 such that for all 𝑧 ∈ (0, 𝜀),

𝜃(𝑧) ≥ 𝑧

𝛿
(
𝜎2 +

∫ 𝛼
−𝛼 𝑥

2 Π(d𝑥)
) . (5.34)
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Moreover, it follows from [147, Lemma 26.4] that for any 𝑥 > 0,

ℙ0(𝑋𝑇 > 𝑥) ≤ exp
(
−

∫ 𝑥

0
𝜃(𝑧/𝑇) d𝑧

)
= exp

(
− 𝑇

∫ 𝑥/𝑇

0
𝜃(𝑧) d𝑧

)
. (5.35)

Defining 𝛽 B 𝛿(𝜎2 +
∫ 𝛼
−𝛼 𝑥

2 Π(d𝑥)) and letting 𝑇 (𝑝) > 0 be large enough so that
√︁
𝛽 log𝑇 𝑝/𝑇 ∈

(0, 𝜀) for all 𝑡 ≥ 𝑇 (𝑝), it follows from (5.34) and (5.35) that indeed

ℙ0 (𝑋𝑇 > √︁
𝛽𝑇 log(𝑇 𝑝)

)
≤ exp

(
− 𝑇

∫ √
𝛽 log(𝑇 𝑝)/𝑇

0
𝜃(𝑧) d𝑧

)
≤ exp

(
− 𝑇

𝛽

∫ √
𝛽 log(𝑇 𝑝)/𝑇

0
𝑧 d𝑧

)
= 𝑇−𝑝/2.

�

With this preparation we can now investigate convergence rates of �̂�𝑇 .

Theorem 5.15. Let 𝛾 ∈ C2(ℝ) such that 𝛾′ is bounded.
(i) Suppose that 𝔼0 [|𝑋1 |𝑝] < ∞ for some 𝑝 ≥ 2. Then,

R𝐷
∞
(
�̂�𝑇 , 𝑓

)
∈ O

(
𝑇
− 1

2(1+1/𝑝)
)
.

In particular, if all moments of 𝑋1 exist, then, for any 𝜀 > 0,

R𝐷
∞
(
�̂�𝑇 , 𝑓

)
∈ O

(
𝑇− 1

2+𝜀
)
.

(ii) Suppose that 𝑿 has bounded jumps. Then, for 𝑇 large enough, it holds that

R𝐷
∞( �̂�𝑇 , 𝑓 ) .

√︂
log𝑇
𝑇

.

Proof. (i) Since 𝔼0 [|𝑋1 |𝑝] < ∞, it follows from the Burkholder–Davis–Gundy inequality for
the càdlàg martingale �̃� B (𝑋𝑡 − 𝜂𝑡)𝑡≥0 (cf. [65, Theorem VII.92]), that there exists
𝐶𝑝 ∈ (0,∞) such that

𝔼0
[���𝑋𝑇
𝑇

− 𝜂

���𝑝] = 1
𝑇 𝑝

𝔼0 [|𝑋𝑇 − 𝜂𝑇 |𝑝] ≤ 𝐶𝑝
1
𝑇 𝑝

𝔼0 [[�̃�] 𝑝/2𝑇

]
= 𝐶𝑝Var(𝑋1) 𝑝/2𝑇−𝑝/2,

Here, ( [�̃�]𝑡)𝑡≥0 denotes the quadratic variation of �̃�. Hence, by Markov’s inequality, it
follows that

ℙ0
(���𝑋𝑇
𝑇

− 𝜂

��� > 𝑇−1/(2(1+𝑝−1))
)
≤ 𝐶𝑝Var(𝑋1) 𝑝/2𝑇 𝑝/(2(1+𝑝

−1))𝑇−𝑝/2

= 𝐶𝑝Var(𝑋1) 𝑝/2𝑇−1/(2(1+𝑝−1)) .
(5.36)

Plugging 𝜀 = 𝑇−1/(2(1+𝑝−1)) into (5.33) and using (5.36), we conclude that

R𝐷
∞
(
�̂�𝑇 , 𝑓

)
∈ O(𝑇−1/(2(1+𝑝−1)) ).
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(ii) Since (𝑋𝑡 − 𝜂𝑡)𝑡≥0 is a zero mean Lévy process with bounded jumps, it follows from
Theorem 5.14 that there exists some constant 𝛽 > 0 such that for 𝑇 large enough

ℙ0
(���𝑋𝑇
𝑇

− 𝜂

��� > √︂
𝛽 log𝑇
𝑇

)
= ℙ0 ( |𝑋𝑇 − 𝜂𝑇 | >

√︁
𝛽𝑇 log𝑇

)
) ≤ 2

√
𝑇
. (5.37)

Thus, plugging in 𝜀 =
√︁
log𝑇/𝑇 into (5.33) gives the result.

�

Remark 5.16. (i) Since our exponential 𝛽-mixing assumption requires flat tails of Π at +∞
and moreover 𝔼0 [𝑋1] > 0, the assumption of exponential moments is quite natural in our
modelling framework. When jumps are bounded, (ℒ2) is always satisfied. Hence, for most
Lévy processes falling into our estimation regime, we can expect a convergence rate of
approximately 1/

√
𝑇 .

(ii) One may wonder whether there was anything to gain, if in the definition of �̂�𝑇 , we replaced
𝑋𝑇 by the running supremum 𝑋𝑇 . In practice, this would be more natural since otherwise—
at least intuitively—data (O𝑡)𝑋𝑇<𝑡≤𝑋𝑇 was wasted and moreover the estimator becomes
meaningless whenever 𝑋𝑇 ≤ 0 (which, as time progresses becomes increasingly unlikely).
The construction of our estimator on the other hand is driven by analytical tractability.
However, in terms of the convergence rate of the estimator we cannot expect to gain
much by working with the running supremum. This is evident from observing that Doob’s
maximal inequality for the submartingale 𝑿 yields that for any 𝑝 > 1 s.t. 𝑋1 ∈ 𝐿𝑝(ℙ0) and
𝑇 ≥ 1,

‖𝑋𝑇 ‖𝐿𝑝 (ℙ0) ≤ ‖𝑋𝑇 ‖𝐿𝑝 (ℙ0) ≤
𝑝

𝑝 − 1
‖𝑋𝑇 ‖𝐿𝑝 (ℙ0) .

Let us interpret this result in detail from a nonparametric angle and, as announced at the
beginning of this section, compare our estimator �̂�𝑇 to the plug-in estimator given in (5.25)
for the restricted setting of subordinators 𝑿 with strictly positive drift 𝑑𝑋 > 0 and absolutely
continuous Lévy measure Π with bounded density 𝜋, for which the latter can be applied.

For the subordinator case, the plug-in estimator has an 𝐿2 convergence rate of 1/
√
𝑇 . As

shown in Theorem 5.15, the overshoot estimator converges at rate
√︁
log𝑇/𝑇 with respect to the

‖·‖∞-norm for any given Lévy process with bounded jumps satisfying (ℒ0) and (ℒ1) and hence in
particular for any subordinator with Lévy measure having bounded support (but not necessarily
bounded density since infinite jump activity is allowed). It is well-known from nonparametric
invariant density estimation of well-behaved scalar stochastic processes that, within a continuous
observation scheme, the invariant density can be estimated with the parametric rate 1/

√
𝑇 wrt.

the 𝐿2 norm. Estimation wrt. the sup-norm on the other hand introduces an additional log-factor,
increasing the optimal rate to

√︁
log𝑇/𝑇 , as, e.g., in the previously discussed case of scalar ergodic

diffusions, see Theorem 5.3.
Thus, in the current nonparametric estimation context we observe the same phenomenon

that the common price to be paid is an additional log-factor for optimal estimation with respect to
the sup-norm compared to the optimal 𝐿2 rate. This also indicates that in principle, our approach
to find an upper bound on the convergence rate of the overshoot estimator via Proposition 5.12
and Lemma 5.13 for a time-dependent observation scheme is tight enough to establish the
optimal convergence rate

√︁
log𝑇/𝑇 for more general Lévy processes with unbounded jumps.
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This is evident from observing that the key result for the proof of Theorem 5.14 is Lemma 26.4
from [147], which relies on a Chernoff bound for the upper tail of a Lévy process at some fixed
time 𝑇 . However, interpreting this bound rigorously requires being able to tightly control the
asymptotic behaviour of the inverse of the Laplace exponent’s derivative, which for general Lévy
processes is not possible. This is why we made use of Markov’s inequality with power functions
in the proof of part (i) of Theorem 5.15 instead of the generic Chernoff bound. However, for
more particular classes of Lévy processes with explicit Laplace exponent, an ansatz similar to
Theorem 5.14 may also provide the optimal convergence rate.

5.3.2 Application
We now return to the control problem described at the beginning of this section. In the following,
we still assume (ℒ0) – (ℒ2) and now present the main tool for our analysis, an auxiliary function
𝑓 defined via

𝑓 (𝑥) B A𝐻𝛾(𝑥),

where A𝐻 denotes the extended generator of the ladder height process 𝑯 of 𝑿 as discussed in
Section 5.3.1. Noting that when 𝛾 ∈ C2

0(ℝ), Dynkin’s formula and the fact that the values of 𝑿
and 𝑯 coincide at first hitting times almost surely together with our scaling of local time yielding
(5.23), imply that

𝑓 (𝑥) = lim
𝜀↓0

𝔼𝑥 [𝛾(𝑋𝑇𝑥+𝜀)] − 𝛾(𝑥)
𝔼𝑥 [𝑇𝑥+𝜀]

,

this generates an intuition why this function is suitable for the analysis of problem (5.22): using
the theory of regenerative processes, see [15], the value 𝔼𝑥 [𝛾 (𝑋𝑇𝑥+𝜀 ) ]−𝛾 (𝑥)

𝔼𝑥 [𝑇𝑥+𝜀] coincides with the value
of the (𝑠, 𝑆) impulse strategy which shifts the process back to 𝑥 = 𝑠 whenever the process is above
𝑆 = 𝑥 + 𝜀, so that—at least intuitively— 𝑓 (𝑥) corresponds to the value of the reflection strategy
in 𝑥. The usefulness of this approach for ergodic impulse control problems is demonstrated in
[49], where most of the following results can be found. Some further complementing analysis is
carried out in [156]. The main observation is that properties of the function 𝑓 determine the
form of the optimal solution. For our considerations, we assume the following:

(ℒ3) The function 𝑓 has a unique maximum 𝜃∗ ∈ ℝ, is strictly increasing on (−∞, 𝜃∗] and
strictly decreasing on [𝜃∗,∞).

Solution for known processes using an auxiliary impulse control problem
In [49], different classes of functions 𝛾 are discussed that make (ℒ3) hold for all Lévy processes
𝑿. The main idea for analysing the problem (5.22) is to introduce artificial fixed costs 𝐾 for each
interaction, so that we are faced with a problem where we expect stationary impulse control
strategies of (𝑠, 𝑆)-type to be optimal. By considering the solutions for 𝐾 ↘ 0, we then obtain
the value and an optimal strategy for the problem without costs. More precisely, for each 𝐾 ≥ 0,
we define

𝑣(𝐾) B sup
𝑆

lim inf
𝑇→∞

1
𝑇
𝔼𝑥

[ ∑︁
𝑛:𝜏𝑛≤𝑇

(
𝛾
(
𝑋𝑆𝜏𝑛,−

)
− 𝛾(𝜁𝑛) − 𝐾

) ]
,
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where the supremum is taken over all admissible impulse control strategies 𝑆 = (𝜏𝑛, 𝜁𝑛). By
elementary arguments, it is immediately seen that 𝑣(𝐾) is independent of the initial state 𝑥. To
study the dependence on the fixed costs 𝐾 ≥ 0, let us shortly review the key results on long-term
average impulse control problems.

Lemma 5.17 ( [156], Theorem 4.3.6). (i) For all 𝐾 ≥ 0

𝑣(𝐾) = sup
𝑥∗,𝑥∈ℝ, 𝑥∗<𝑥

𝔼𝑥
∗ [
𝛾
(
𝑋𝑇𝑥

) ]
− 𝛾(𝑥∗) − 𝐾

𝔼𝑥
∗ [𝑇𝑥]

.

(ii) If 𝐾 > 0, then an (𝑠, 𝑆) strategy of the form

𝜏𝑛 = inf{𝑡 ≥ 𝜏𝑛−1 : 𝑋𝑡 ≥ 𝑥𝐾}, 𝜁𝑛 = 𝑥∗𝐾 ,

is optimal. The values 𝑥𝐾 and 𝑥∗𝐾 are given as follows: 𝑥𝐾 is the larger of the two roots of the
equation

𝑓 (𝑥) = 𝑣(𝐾).

If we denote the lower one by 𝑥𝐾 , then 𝑥∗𝐾 is given as the maximizer 𝑥∗𝐾 = 𝑦 ∈ [𝑥𝐾 , 𝑥𝐾] of

𝔼𝑦
[
𝛾
(
𝑋𝑇𝑥𝐾

) ]
− 𝛾(𝑦) − 𝐾

𝔼𝑦 [𝑇𝑥𝐾 ]
.

Under additional assumptions on the Lévy process, it turns out that 𝑥∗𝐾 = 𝑥𝐾 which simplifies
the solution of the impulse control problems, but is not needed for our purposes. We now study
the dependence of 𝑣(𝐾) on 𝐾.

Theorem 5.18 ([156], Theorem 4.3.6, 5.3.3, 5.3.4, and 5.3.5.). In the singular control problem
(5.22), the following holds true:

(i) 𝑣 = 𝑓 (𝜃∗) (= max𝑥∈ℝ 𝑓 (𝑥));

(ii) 𝑣(𝐾) ↗ 𝑣 as 𝐾 ↘ 0;

(iii) The (𝑠, 𝑆) strategies with upper threshold 𝑥𝐾 and restarting point 𝑥∗𝐾 , 𝐾 > 0, are 𝜀-optimal
for (5.22) as 𝐾 ↘ 0;

(iv) 𝑥𝐾 ↗ 𝜃∗ and 𝑥𝐾 ↘ 𝜃∗ as 𝐾 ↘ 0.

The previous results suggest that the reflection strategy at level 𝜃∗ is optimal in problem
(5.22). However, this strategy does not directly fall into the class of impulse control strategies we
consider here, but is of (strictly) singular type. In order not to overburden the presentation with
technicalities, we leave out the discussion of extending the strategy space here. Note however
that, due to our ergodic problem formulation, extending the control space is even not needed
to obtain optimizers for (5.22): the (non-stationary) threshold strategy with time dependent
thresholds 𝑥∗𝐾𝑇 and 𝑥𝐾𝑇 (with 𝐾𝑇 ↘ 0 as 𝑇 ↗ ∞) is optimal in the class of impulse strategies and
converges with arbitrary speed in 𝑇 by choosing sufficiently small costs 𝐾𝑇 , 𝑇 ≥ 0. Therefore, the
term ‘reflection strategy’ refers to a suitably fast approximating impulse strategy in the following.
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Data-driven singular controls
The results in Section 5.3.1 now directly lead to a method for estimating the optimal reflection
boundary 𝜃∗: after having observed the underlying Lévy process for 𝑇 time units, we define the
estimator for the auxiliary function 𝑓 , using the estimator �̂�𝑇 defined in (5.32), and then choose

�̂�𝑇 ∈ argmax
𝜃∈𝐷

�̂�𝑇 (𝜃), (5.38)

where 𝐷 is some arbitrary bounded, open neighborhood of 𝜃∗. The results from Section 5.3.1
now yield that the estimated optimizer gives the optimal value 𝑣 = 𝑓 (𝜃∗) up to a regret of order
𝑇−1/(2(1+1/𝑝)) when the 𝑝-th moment of 𝑿 exists and of order

√︁
log𝑇/𝑇 when jumps of 𝑿 are

bounded. Indeed:

Theorem 5.19. Let 𝐷 be a bounded open neighborhood of 𝜃∗. Suppose that 𝔼0 [|𝑋1 |𝑝] < ∞ for
some 𝑝 ≥ 2. Then, it holds that

𝔼0
[
𝑣 − 𝑓 (�̂�𝑇 )

]
∈ O

(
𝑇
− 1

2(1+1/𝑝)
)
.

If 𝑿 has bounded jumps, then
𝔼0

[
𝑣 − 𝑓 (�̂�𝑇 )

]
∈ O

(√︃
log𝑇
𝑇

)
.

Proof. As in the proof of Proposition 5.7, we obtain

𝑣 − 𝑓 (�̂�𝑇 ) ≤ 2 sup
𝑥∈𝐷

��� 𝑓 (𝑥) − �̂�𝑇 (𝑥)
���,

hence
𝔼0

[
𝑣 − 𝑓 (�̂�𝑇 )

]
≤ 2R𝐷

∞( �̂�𝑇 , 𝑓 ),

yielding the result by Theorem 5.15. �

5.4 Discussion

The statistical questions discussed in this chapter have a clear motivation coming from the
analysis of data-driven strategies for natural classes of stochastic control problems. For underlying
diffusion processes, the solutions to ergodic singular control problems from Section 5.2.2 can be
written in terms of the invariant density, such that the key to developing data-driven strategies
consists in replacing this quantity by a sample-based analogue. From a statistical perspective,
this is advantageous because rate-optimal estimation in this case (as opposed to, e.g., estimation
of the drift coefficient) does not require an adaptive choice of the bandwidth. Due to the
costs for reflection, the error measure to be used is the sup-norm risk studied in Section 5.2.1.
This is an interesting observation as for the—from the stochastic control perspective highly
related—impulse control problem investigated in [50], the 𝐿1 risk had to be analysed. The
substantially more involved issue of bounding the sup-norm risk of estimators is tackled by
means of Theorem 3.7, exploiting mixture properties of the diffusion process. Since the focus
of this chapter is on the development of concrete control strategies, we have restricted the
presentation in Section 5.2.1 to a concise proof of the required upper bound (see Theorem 5.3).
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We have reduced our explicit statistical investigation to the one-dimensional case solely because
of the intended application to the stochastic control problem, but optimal convergence rates can
be obtained in higher dimensions without much additional effort since exponential ergodicity
and heat kernel bounds for the transition density generalize to higher dimensions. Compared to
the 𝐿1 risk, the evaluation of the sup-norm risk produces a well-known unavoidable logarithmic
factor, which is also reflected in the expected regret per time unit (Theorem 5.9).

While the underlying diffusion processes in Section 5.2 were assumed to have an ergodic
behaviour allowing for a statistical analysis, this is not the case for the Lévy-driven problem
introduced in 5.3.2. By considering a space-time transformation of the Lévy process 𝑿 in form
of the overshoot process O, we obtained an ergodic Markov process fitting right into our general
modeling framework, which allows to express the quantity of interest for the singular control
problem, 𝑓 = A𝐻𝛾, as an integral w.r.t. its invariant distribution. Combining a simple mean
estimator based on an overshoot sample with classical results on the long-time behaviour of
Lévy processes then allowed us to construct an estimator whose performance depends on the
tail-behaviour of 𝑿 and yields an almost parametric sup-norm estimation rate in case of light
tails and the optimal nonparametric rate

√︁
log𝑇/𝑇 when jumps are bounded.

Based on this estimation procedure, we were then able to identify a data-driven singular
control strategy, such that the estimated optimal reflection boundary yields an expected regret
of the same order as the nonparametric estimation of the auxiliary function 𝑓 .

In contrast to the diffusion case, in the Lévy process framework we are not faced with
an exploration vs. exploitation problem: due to the spatial homogeneity of Lévy processes,
each controlled process carries the same information as the uncontrolled one (if we assume
that the decision maker has access to the values 𝑋𝑆𝜏𝑛,−) as the decision maker can reconstruct
an uncontrolled path by just undoing the controls. Therefore, the following greedy strategy
can be applied without additional losses: we use the (approximate) reflection controls with
time-dependent boundary

�̂�𝑇 ∈ argmax
𝜃∈𝐷

�̂�𝑇 (𝜃)

for each time point 𝑇 .
Finally, let us briefly outline the connection to related research fields. The exploration

vs. exploitation trade-off encountered in Section 5.2 is also well-known from the famous multi-
armed bandit problem. In this regard, it is interesting to observe that the number of boundaries
to be estimated in the control problems in our context does not influence the rate of convergence.
Up to the logarithmic factor coming from the sup-norm vs. 𝐿1 risk discussed above, the rates of
convergence indeed turn out to be the same for the two-sided problem studied here and the
one-sided problem from [50]. This is in strong contrast to the related results for X-armed bandit
problems, see [37, 119].

From a more applied point of view, it is furthermore of interest to compare the data-driven
procedure proposed here to results obtained by using established methods from (deep) rein-
forcement learning. These algorithms are very generally applicable, as they usually only require
the presence of a Markovian decision process setting. For classical methods such as the regular
Q-learning algorithm, very robust convergence results exist; however, the latter is not practicable
for problems in which the state space is too large. In the stochastic control setting considered
here, a very large state space cannot be avoided, and a natural approach for circumventing this
obstacle is to treat the problem based on the Q-learning algorithm with function approximation.
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In this respect, the fusion with neural networks has proven to be particularly powerful. A
mathematical theory of convergence for the resulting deep reinforcement learning procedures
however is still under development. Results from recent contributions such as [80] are very
interesting, but there remains a large gap between their theoretical assumptions and the Markov
decision process framework that emerges for our concrete control problems. It seems practically
impossible to apply their general convergence statements for deep Q-learning to our concrete
setting such that one is forced to fall back on purely empirical tests of the algorithms. By way of
contrast, our statistically driven method allows for a thorough theoretical analysis and yields
rules that are both interpretable and explainable.

Regarding the practical implementation, we do not give a detailed numerical comparison
here as this strongly depends on the exact framework, but just mention that in our scenarios
both approaches learn the optimal rule reasonably well, where the statistical approach is (not
surprisingly) faster and for a longer time horizon very accurate.

5.A Proof of Lemma 5.8

Before we start with the proof we need some preparatory remarks. The length of the first
exploration period is given by

𝜏1 = inf{𝑡 ≥ 𝜎1 : 𝑋𝑡 = 0} = 𝜎1 + 𝑇0 ◦ 𝜃𝜎1 ,

with 𝜎1 = inf{𝑡 ≥ 0 : 𝑋𝑡 = −𝐵} ∨ inf{𝑡 ≥ 0 : 𝑋𝑡 = 𝐵}, 𝑇𝑎 = inf{𝑡 ≥ 0 : 𝑋𝑡 = 𝑎} for 𝑎 ∈ ℝ and
(𝜃𝑡)𝑡≥0 denote the transition operators of the Markov process 𝑿. We will need that 𝔼0

𝑏
[𝜏31] < ∞.

By the strong Markov property and the fact that ℙ0
𝑏
(𝜎1 < ∞) by point recurrence of the ergodic

diffusion 𝑿 we obtain

𝔼0
𝑏 [𝜏

3
1] ≤ 4

(
𝔼0
𝑏 [𝑇

3
𝐵 ] + 𝔼0

𝑏 [𝑇
3
−𝐵]

)
+ 4

(
𝔼𝐵
𝑏 [𝑇

3
0 ] + 𝔼−𝐵

𝑏 [𝑇3
0 ]

)
,

and thus finiteness of the third moment of 𝜏1 boils down to finiteness of the third moment of
first hitting times of the diffusion. From [120, Section 5], see also [19], it is known that if the
diffusion coefficient 𝜎 is bounded and there exist 𝑟, 𝑀0 > 0 such that

− 𝑥𝑏(𝑥)
𝜎2(𝑥)

≥ 𝑟, ∀|𝑥 | > 𝑀0, (5.39)

then 𝔼𝑥 [𝑇𝑛𝑎 ] < ∞ for all 𝑛 < 𝑟 + 1/2. In our setting boundedness of 𝜎 is satisfied with 0 < 𝜈 ≤
𝜎(𝑥) ≤ 𝜈 < ∞ and we have

sgn(𝑥) 𝑏(𝑥)
𝜎2(𝑥)

≤ −𝛾, ∀|𝑥 | > 𝐴,

for some constants 𝛾, 𝐴 > 0. Thus, for |𝑥 | > 𝐴 ∨ 𝑟/𝛾 = 𝑀0, (5.39) is fulfilled, which implies
that for any 𝑛 ∈ ℕ and 𝑎, 𝑥 ∈ ℝ, 𝔼𝑥 [𝑇𝑛𝑎 ] < ∞. It is worth noting that [120] demonstrate how
the existence of moments of hitting times is initimately connected to polynomial ergodicity of
a diffusion and hence the existence of arbitrarily large hitting time moments can be regarded
as a consequence of exponential ergodicity of 𝑿 under the given assumptions. In particular
𝔼0
𝑏
[𝜏31] < ∞ as desired.
We will also make use of the following simple observation.
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Lemma 5.20. Let 𝑋 be a random variable taking values in [1,∞) almost surely and suppose that

(0, 2) 3 𝛽 ↦→ 𝔼[𝑋 𝛽]

is differentiable with ∂
∂𝛽𝔼[𝑋

𝛽] = 𝔼[ ∂
∂𝛽 𝑋

𝛽]. Then, the function

[0, 1] 3 𝛼 ↦→ Var(𝑋𝛼)

is increasing.

Proof. By the smoothness assumptions we have

∂

∂𝛼
Var(𝑋𝛼) = 2𝛼𝔼[𝑋𝛼 log 𝑋] − 2𝛼𝔼[𝑋𝛼]𝔼[𝑋2𝛼 log 𝑋] = 2𝛼Cov(𝑋𝛼, 𝑓 (𝑋𝛼)),

with [1,∞) 3 𝑥 ↦→ 𝑓 (𝑥) = 𝛼−1𝑥 log 𝑥. Since 𝑓 is increasing it follows that Cov(𝑋𝛼, 𝑓 (𝑋𝛼)) ≥ 0,
proving the assertion. �

We are now ready to carry out the proof of Lemma 5.8.

Proof of Lemma 5.8. We start with some necessary notation. Let 𝜂 𝑗𝑛, 𝑛 ∈ ℕ, be the length of the
𝑛-th exploration period for 𝑗 = 0 and the length of the 𝑛-th exploitation period for 𝑗 = 1. In
particular, 𝜂01 = 𝜏1 and (𝜂0𝑛)𝑛=2,3,... is an i.i.d. family of random variables under ℙ0

𝑏
. Define also

𝜏
𝑗
𝑛 B

∑𝑛
𝑖=1 𝜂

𝑗

𝑖
as the length of the first 𝑛 exploration/exploitation periods, thus

𝜏𝑛 = 𝜏0
𝑛−∑𝑛

𝑖=1 𝑐𝑖
+ 𝜏1∑𝑛

𝑖=1 𝑐𝑖
,

where 𝜏00 = 𝜏10 = 0. Finally, denote 𝑁𝑡 B inf{𝑛 ∈ ℕ : 𝜏𝑛 > 𝑡} and the number of explo-
ration/exploitation periods starting before time 𝑡 ≥ 0, 𝑁 𝑗

𝑡 = 𝐾
𝑗

𝑁𝑡
, where

𝐾
𝑗
𝑛 B #{𝑖 ≤ 𝑛 : 𝑐𝑖 = 𝑗}, 𝑛 ∈ ℕ, 𝑗 ∈ {0, 1}.

Clearly, 𝜏0
𝑁0
𝑡 −1

≤ 𝑆𝑡 ≤ 𝜏0
𝑁0
𝑡

for any 𝑡 ≥ 0, and thus

𝜏0
𝑁0
𝑡 −1

𝑁0
𝑡

≤ 𝑆𝑡

𝑁0
𝑡

≤
𝜏0
𝑁0
𝑡

𝑁0
𝑡

.

By construction and the strong law of large numbers, both the left-hand and the right-hand side
ℙ0
𝑏
-a.s. converge to 𝔼0

𝑏
[𝜂02] and hence

𝑆𝑇

𝑁0
𝑇

−→
𝑇→∞

𝔼0
𝑏 [𝜂

0
2], ℙ0

𝑏-a.s.. (5.40)

Let now 𝜂 𝑗, 𝜂 𝑗 be such that

𝜂 𝑗 ≤st 𝜂
𝑗
𝑛 ≤st 𝜂

𝑗, 𝑛 ∈ ℕ, 𝑗 ∈ {1, 2},
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where ≤st denotes stochastic ordering. Existence of such random variables is clear in case 𝑗 = 0
and for 𝑗 = 1 we can take 𝜂1 to be a cycle length when reflecting in ±1/𝐵 and 𝜂1 be a cycle
length when reflecting in ±𝐵. Choosing 𝜂 = 𝜂0 ∧ 𝜂1 and 𝜂 = 𝜂0 ∨ 𝜂1 we have

𝜂 ≤st 𝜂
𝑗
𝑛 ≤st 𝜂, 𝑛 ∈ ℕ, 𝑗 ∈ {1, 2},

Let now (𝜂𝑛)𝑛∈ℕ and (𝜂𝑛)𝑛∈ℕ be i.i.d. copies of 𝜂 and 𝜂, resp., where by resorting to a coupling
argument if needed, we may assume wlog that 𝜂𝑛 ≤ 𝜂

𝑗
𝑛 ≤ 𝜂𝑛, ℙ0

𝑏
-a.s. for all 𝑛 ∈ ℕ, 𝑗 ∈ {0, 1}

(see, e.g., [162, Section 3]). Defining

𝑁 𝑡 = inf
{
𝑛 ∈ ℕ :

𝑛∑︁
𝑖=1

𝜂𝑖 > 𝑡
}
, 𝑁 𝑡 = inf

{
𝑛 ∈ ℕ :

𝑛∑︁
𝑖=1

𝜂𝑖 > 𝑡
}
,

it follows that
𝑁 𝑡 ≤ 𝑁𝑡 ≤ 𝑁 𝑡, ℙ0

𝑏-a.s.,

With the standard renewal theorem we have

lim
𝑡→∞

𝑁 𝑡

𝑡
=

1
𝔼0
𝑏

[
𝜂
] , and lim

𝑡→∞
𝑁 𝑡

𝑡
=

1
𝔼0
𝑏

[
𝜂
] , ℙ0

𝑏-a.s. and in 𝐿1(ℙ0
𝑏).

By construction, we have
𝑁0
𝑡

𝑡2/3
≤ 𝑀

(𝑁𝑡
𝑡

)2/3
≤ 𝑀

(𝑁 𝑡

𝑡

)2/3
and since by Jensen’s inequality and the above

𝔼0
𝑏

[(𝑁 𝑡

𝑡

)2/3]
≤ 𝔼0

𝑏

[𝑁 𝑡

𝑡

]2/3
−→
𝑡→∞

𝔼0
𝑏

[
𝜂
]−2/3

,

it follows that
lim sup
𝑇→∞

𝑇−2/3𝔼0
𝑏 [𝑁

0
𝑇 ] ≤ 𝑀𝔼0

𝑏

[
𝜂
]−2/3

C 𝑀,

which establishes the second part of the assertion. For the first part, consider the uncontrolled
diffusion process 𝑿 and let

�̆�𝑛 =

{
0, if 𝑛 = 0
inf{𝑡 ≥ 𝜎𝑛 : 𝑋𝑡 = 0}, if 𝑛 ∈ ℕ,

where
𝜎𝑛 = inf{𝑡 ≥ �̆�𝑛−1 : 𝑋𝑡 = 𝐵} ∨ inf{𝑡 ≥ �̆�𝑛−1 : 𝑋𝑡 = −𝐵}, 𝑛 ∈ ℕ.

By the strong Markov property, (�̆�𝑛)𝑛∈ℕ are i.i.d. and if we denote �̆�𝑡 = inf{𝑛 ∈ ℕ : �̆�𝑛 > 𝑡} for
𝑡 ≥ 0, then (�̆�𝑡)𝑡≥0 is a renewal process with increment distribution �̆�1. Furthermore, we define
in analogy to the controlled case above 𝜂𝑖𝑛 B �̆�𝐶 𝑖𝑛 − �̆�𝐶 𝑖𝑛−1 for 𝑖 = 0, 1, where 𝐶0

𝑛 B min{𝑚 ∈ ℕ :∑𝑚
𝑖=1(1 − 𝑐𝑖) ≥ 𝑛} and 𝐶1

𝑛 B min{𝑚 ∈ ℕ :
∑𝑚
𝑖=1 𝑐𝑖 ≥ 𝑛}, and �̆� 𝑗𝑛 B

∑𝑛
𝑖=1 𝜂

𝑗

𝑖
for 𝑗 = 0, 1. Finally,

let �̆� 𝑖
𝑡 = 𝐾 𝑖

�̆�𝑡
for 𝑡 ≥ 0. Clearly,

𝜂0𝑛
d
= 𝜂0𝑛 and 𝜂1𝑛 ≥st 𝜂

1
𝑛
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for any 𝑛 ∈ ℕ, which yields
𝑆𝑡 ≤st 𝑆𝑡, 𝑡 ≥ 0, (5.41)

where

𝑆𝑡 =

∫ 𝑡

0

�̆�0
𝑡∑︁

𝑛=1
𝟙[�̆�

𝐶0𝑛−1
,�̆�
𝐶0𝑛

] (𝑠) d𝑠 ∈
[
�̆�0
�̆�0
𝑡 −1

, �̆�0
�̆�0
𝑡

]
, 𝑡 ≥ 0. (5.42)

By the standard renewal theorem and the properties of (𝑐𝑛)𝑛∈ℕ we have

�̆�0
𝑡

𝑡2/3
≥

( �̆�𝑡
𝑡

)2/3
−→
𝑡→∞

𝔼0
𝑏 [�̆�1]

−2/3, ℙ0
𝑏-a.s.

which, on account of the fact that by combining the strong law of large numbers and (5.42) we
have

𝑆𝑇

�̆�0
𝑇

−→
𝑇→∞

𝔼0
𝑏 [�̆�1], ℙ0

𝑏-a.s.,

shows that
lim inf
𝑡→∞

𝑆𝑡

𝑡2/3
≥ 𝔼0

𝑏 [�̆�1]
1/3 C �̃�, ℙ0

𝑏-a.s..

Consequently, an application of Fatou’s lemma provides

lim inf
𝑡→∞

𝔼0
𝑏

[ 𝑆𝑡

𝑡2/3

]
≥ �̃�.

Thus, choosing 𝑚 = �̃�/2 there exists 𝜀 ∈ (0, �̃�/2) such that for any 𝑇 > 0 large enough we have

𝔼0
𝑏 [𝑆𝑇 ] ≥ 𝑇2/3(𝑚 + 𝜀),

which, together with Markov’s inequality and (5.41), yields

ℙ0
𝑏 (𝑆𝑇 ≤ 𝑚𝑇2/3) ≤ ℙ0

𝑏 (𝑆𝑇 ≤ 𝑚𝑇2/3) ≤ ℙ0
𝑏 (𝔼

0
𝑏 [𝑆𝑇 ] − 𝑆𝑇 ≥ 𝜀𝑇2/3)

≤ ℙ0
𝑏

(
𝔼0
𝑏

[
�̆�0
�̆�0
𝑇
−1

]
− �̆�0

�̆�0
𝑇

≥ 𝜀𝑇2/3)
≤ 𝜀−2𝑇−4/3𝔼0

𝑏

[ (
�̆�0
�̆�0
𝑇

− 𝔼0
𝑏 [�̆�

0
�̆�0
𝑇
−1

] )2]
≤ 2𝜀−2𝑇−4/3 (Varℙ0

𝑏

(
�̆�0
�̆�0
𝑇

)
+ 𝔼0

𝑏

[ (
�̆�1)2

] )
.

Thus, to show that ℙ0
𝑏
(𝑆𝑇 ≤ 𝑚𝑇2/3) . 𝑇−1/3 it is enough to establish that

Varℙ0
𝑏

(
�̆�0
�̆�0
𝑇

)
. 𝑇. (5.43)

To this end, note first that for any 𝑛 ≥ 2 and 𝑇 ≥ 0 we have

{�̆�0
𝑇 ≤ 𝑛} =

𝑛⋃
𝑘=1

⋃
𝑙≥𝑘

(
{�̆�0

𝑇 = 𝑘} ∩ {�̆�𝑇 = 𝑙}
)

=

𝑛⋃
𝑘=1

⋃
𝑙≥𝑘

{
�̆�0𝑘 + �̆�

1
𝑙−𝑘 > 𝑇, �̆�𝑙−1 ≤ 𝑇,

𝑙−1∑︁
𝑖=1

(1 − 𝑐𝑖) ∈ {𝑘 − 1, 𝑘}
}
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C
𝑛⋃
𝑘=1

⋃
𝑙≥𝑘

𝐴𝑘,𝑙 .

By construction, (𝜂0𝑛)𝑘≥𝑛+1 ⊥⊥ G𝑛, where

G𝑛 B 𝜎
(
{𝜂01, . . . , 𝜂

0
𝑛} ∪ {𝜂1𝑖 : 𝑖 < 𝐶0

𝑛}
)

is the 𝜎-algebra generated by the lengths of the first “exploration/exploitation” periods up to the
𝑛-th “exploration” period of the uncontrolled process 𝑿. Clearly, 𝐴𝑘,𝑙 ∈ G𝑛 for any 𝑘 = 1, . . . , 𝑛
and 𝑙 ≥ 𝑘, which shows that �̆�0

𝑇 is a (G𝑛)𝑛∈ℕ stopping time. Hence, we can use Wald’s second
moment identity, see [15, Propostion A10.2], to obtain

Varℙ0
𝑏

(
�̆�0
�̆�0
𝑇

)
= Varℙ0

𝑏

( �̆�0
𝑇∑︁

𝑖=1
𝜂0𝑖

)
= 𝔼0

𝑏 [�̆�1]
2 · Varℙ0

𝑏
(�̆�0

𝑇 ) + Varℙ0
𝑏
(�̆�1) · 𝔼0

𝑏 [�̆�
0
𝑇 ].

Since by Jensen’s inequality and the renewal theorem

lim sup
𝑇→∞

𝑇−2/3𝔼0
𝑏 [�̆�

0
𝑇 ] ≤ lim sup

𝑇→∞
𝑀𝑇−2/3𝔼0 [�̆�2/3

𝑇 ] ≤ 𝑀 lim sup
𝑇→∞

(
𝔼0 [�̆�𝑇 ]/𝑇

)2/3
< ∞,

(5.43) will follow if we can prove that Varℙ0
𝑏
(�̆�0

𝑇 ) . 𝑇 . By classical renewal arguments, cf. [15,
Proposition 6.3] we have

lim
𝑇→∞

Varℙ0
𝑏
(�̆�𝑇 )
𝑇

=
Varℙ0

𝑏
(�̆�1)

𝔼0
𝑏
[�̆�1]3

, (5.44)

and by construction it follows that

Varℙ0
𝑏
(�̆�0

𝑇 ) = 𝔼0 [(�̆�0
𝑇 )2] − 𝔼0 [�̆�0

𝑇 ]2

≤ 𝔼0 [ ((�̆�𝑇 )2/3 + d
)2] − 𝔼0 [(�̆�𝑇 )2/3]2

. Varℙ0
𝑏

(
(�̆�𝑇 )2/3

)
+ 𝔼0

𝑏

[
(�̆�𝑇 )2/3

]
.

By Jensen’s inequality we have 𝔼0
𝑏

[
(�̆�𝑇 )2/3

]
. 𝑇 and (5.44) combined with Lemma 5.20 yields

Varℙ0
𝑏

(
(�̆�𝑇 )2/3

)
. 𝑇 (note here that 𝔼0

𝑏
[ ∂
∂𝛽 (�̆�𝑇 )

𝛽] ≤ 2𝔼0
𝑏
[(�̆�𝑇 )3] < ∞ for 𝛽 ∈ (0, 2) and thus we

may differentiate under the integral to obtain ∂
∂𝛽𝔼

0
𝑏
[(�̆�𝑇 )𝛽] = 𝔼0

𝑏
[ ∂
∂𝛽 (�̆�𝑇 )

𝛽] as needed). Thus,
Varℙ0

𝑏
(�̆�0

𝑇 ) . 𝑇 , which shows that indeed ℙ0
𝑏
(𝑇−2/3𝑆𝑇 ≤ 𝑚) . 𝑇−1/3. �
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Index of Notation

ℝ+ [0,∞)
𝝀 Lebesgue measure on ℝ𝑑

𝝀+ Lebesgue measure on ℝ+
〈𝑥, 𝑦〉 scalar product of elements 𝑥, 𝑦 from a Hilbert space H

H′ dual space of a Hilbert space H

(X,B(X)) topological space X with Borel 𝜎-algebra B(X)
𝑓 ∈ B(X) function 𝑓 : X → ℝ is B(X)-measurable
B𝑏(X) space of bounded, B(X)-measurable functions 𝑓 : X → ℝ

B+(X) space of non-negative, B(X)-measurable functions
𝑓 : X → ℝ

B+(X) family of accessible sets for a 𝜓-irreducible Markov process
𝑿 with state space X

C(X) space of continuous functions 𝑓 : X → ℝ

C𝑏(X) space of bounded, continuous functions 𝑓 : X → ℝ

C0(X) space of continuous functions 𝑓 : X → ℝ vanishing at
infinity

C𝑘 (ℝ𝑑) space of 𝑘-times continuously differentiable functions
𝑓 : ℝ𝑑 → ℝ

C𝑘
𝑏
(ℝ𝑑) space of 𝑘-times continuously differentiable functions

𝑓 : ℝ𝑑 → ℝ such that ‖ 𝑓 (𝑙) ‖∞ < ∞ for all 𝑙 = 0, . . . , 𝑘
S(ℝ) Schwartz space of rapidly decreasing functions 𝑓 : ℝ → ℂ

S′(ℝ) space of tempered distributions
𝐿𝑝(X, 𝜇) 𝐿𝑝-space of functions 𝑓 ∈ B(X) s.t.

∫
X
| 𝑓 (𝑥) |𝑝 𝜇(d𝑥) <

∞ for some measure 𝜇 on a given measurable space
(X,B(X)) and 𝑝 ≥ 1

𝜇( 𝑓 )
∫
X
𝑓 (𝑥) 𝜇(d𝑥) for 𝑓 ∈ 𝐿1(X, 𝜇) ∪ B+(X)

𝜇 positive tail of a measure 𝜇 on (ℝ,B(ℝ)), defined by
𝜇(𝑥) = 𝜇((𝑥,∞)) for 𝑥 ≥ 0

(A,D(A)) extended generator A with domain D(A) for Borel right
process 𝑿

(Ã,D(Ã)) infinitesimal generator Ã with domain D(Ã) for Feller
process 𝑿

(𝑈𝜆)𝜆>0 resolvent of a Markov process∫ 𝑡
0 𝐻𝑠 d𝑋𝑠 stochastic integral up to time 𝑡 ≥ 0 wrt. semimartingale

(𝑋𝑠)𝑠≥0 for appropriate predictable process (𝐻𝑠)𝑠≥0
‖𝜈‖TV total variation norm of a signed measure 𝜈
‖ 𝑓 ‖∞ sup-norm of a function 𝑓 : X → ℝ on normed space X

𝑓 (𝑇) ∈ O(𝑔(𝑇)) lim sup𝑡→∞
�� 𝑓 (𝑇)
𝑔 (𝑇)

�� < ∞ for functions 𝑓 , 𝑔 : ℝ+ → ℝ

𝑓 (𝑇) ∈ o(𝑔(𝑇)) lim sup𝑡→∞
�� 𝑓 (𝑇)
𝑔 (𝑇)

�� = 0 for functions 𝑓 , 𝑔 : ℝ+ → ℝ

𝑥 . 𝑦 ∃𝐶 > 0: 𝑥 ≤ 𝐶𝑦
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