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Abstract
This study examines the uneven effects of air pollution from maritime ports on

physical and mental health across racial groups. We exploit quasi-random variation
in vessels in port from weather events far out in the ocean to estimate how port
traffic influences air pollution and human health. We find that one additional
vessel in a port over a year leads to 3.0 hospital visits per thousand Black residents
within 25 miles of the port and only 1.0 per thousand for whites. We assess a
port-related environmental regulation and show that the policy can help alleviate
racial inequalities in health outcomes.
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1 Introduction
Air pollution is well known to negatively affect human health, most notably by con-
tributing to respiratory and cardiovascular illnesses. More perniciously, the health
effects are often unevenly distributed across the population, with some groups facing
higher pollution exposures (e.g., Currie, 2011; Colmer et al., 2020; Currie et al., 2020)
and worse health outcomes (e.g., Chay and Greenstone, 2003b; Currie and Walker,
2011; Deschênes et al., 2017). There are rising concerns about environmental justice
in the United States due to these disproportionate exposures and health outcomes.
Indeed, a key plank of President Joseph Biden’s campaign platform involved improving
environmental and health outcomes for communities of color.1

This paper examines racial inequity in health outcomes due to air pollution around
a major point source of air pollution: maritime ports.2 It also explores the sources of
this inequity, which could include differences in pollution exposure as well as differing
responses to such exposure. Port facilities are especially important to study not only
because they produce substantial pollution but also because they tend to be located
in highly populated and low-income areas. Around 39 million people live within
close proximity to ports in the United States (EPA, 2016), and many are people of color
(Houston et al., 2008). For example, Long Beach, California, has one of the largest
ports in the country and is 70% non-white. In standard port activities, marine ships,
trucks, and cargo-handling equipment often burn highly polluting fossil fuels, such as
bunker fuel anddiesel fuel. Yet emissions fromport activities tend to bepoorly regulated.

In this study, we estimate the contemporaneous effects of port activity-related
air pollution on physical and mental health, focusing on racial disparities in health
outcomes. The analysis consists of three steps. We first leverage quasi-experimental
variation from distant oceanic events several days prior that exogenously shift the vessel
tonnage or counts in port to identify the causal impact of port traffic on air pollution.
The intuition for our identification strategy is that lagged distant storms far out in the
ocean will change the path of ships and delay arrivals into port but do not otherwise
affect the weather or non-port-related economic activity in areas surrounding the ports.

In the second step, we estimate the causal effect of daily pollution concentrations on
hospitalizations in port areas using quasi-random variation from the vessel tonnage
in ports (as predicted by distant oceanic storms several days prior) and local wind
conditions. Our results indicate that the health impact on the Black population is three
times the impact on the white population. We finally use a regression discontinuity
design and dynamic simulation to analyze a regulation that reduces fossil fuel use in
ports to show how policy can substantially reduce inequality in health outcomes.

1See https://joebiden.com/climate-communities-of-color/.
2Throughout the rest of the paper, we use the term “ports” to refer to oceanic maritime port facilities.

We do not consider inland river or lake ports.
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We find several compelling results. First, we show that a one percent increase in
vessel tonnage in port increases pollution concentrations for major air pollutants by
0.3–0.4% within a 25-mile radius of the 27 largest ports in the United States. Second, we
show that air pollution is responsible for hospitalizations related to respiratory, heart,
and psychiatric problems near ports, and the Black population is disproportionately
impacted. We find that one additional average-tonnage vessel in a port over a year leads
to 3.0 hospital visits per thousand Black residents within 25 miles of a major port in
California and only 1.0 hospital visits per thousand whites. We also provide evidence
demonstrating differences in pollution exposure and suggestive evidence of differences
in the response to exposure, indicating that the inequity in hospital admissions likely
comes about from both sources. Our results further show that a policy in California to
reduce fossil fuel use in ports significantly reduces pollutant concentrations, dispropor-
tionately benefiting the Black population. The reduced pollution leads to 9.9 avoided
hospital visits per thousand Black residents per year and 3.4 avoided hospital visits per
thousand white residents.

This paper makes several important contributions to the literature. The paper
contributes to the economic literature on environmental inequalities by demonstrating
how a major point source of pollution leads to unequal health outcomes for minority
populations and how policy can ameliorate this inequality. This relates to the literature
documenting how low-income, minority groups are more likely than other groups to
live adjacent to environmental risks, such as Superfund hazardous waste sites (Currie,
2011) and power plants (Davis, 2011). In addition, an emerging body of economic
literature provides estimates of heterogeneous marginal damages of pollution exposure,
suggesting that disproportionate pollution exposure or differing ability to cope with
pollution damages may translate into inequitable health and well-being (e.g., Chay and
Greenstone, 2003b; Currie and Walker, 2011; Knittel et al., 2016; Schlenker and Walker,
2016; Alexander and Currie, 2017). Our paper is the first to examine inequality due to
emissions from port facilities, enriching our knowledge of the drivers of unequal health
outcomes across racial groups.

Our paper also contributes to the growing literature identifying the relationship
between air pollution and human health using quasi-experimental methods (e.g., Chay
and Greenstone, 2003a,b; Currie and Neidell, 2005; Currie and Walker, 2011; Deryugina
et al., 2019).3 In many respects, our paper is most conceptually related to studies that
estimate the impact of air pollution on health using transportation traffic as the source
of variation in air pollution (Moretti and Neidell, 2011; Schlenker and Walker, 2016;
Knittel et al., 2016). For example, Moretti and Neidell (2011) estimate the effect of air

3Epidemiological studies have also examined the effect of air pollution on human health. This paper
contributes to the literature by providing quasi-experimental evidence on the effect of short-run exposure
to air pollution on health that addresses several key estimation challenges.
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pollution on respiratory-related hospitalizations, using variation in local air pollution
frommoving vessels in the Port of LosAngeles. Our paper differs in several fundamental
ways. Our focus is on racial disparities in health consequences. But equally importantly,
our empirical strategy is quite different in using lagged distant storms far out in the
ocean as an exogenous source of variation. In this sense, our empirical strategy can be
seen as more conceptually similar to how Schlenker and Walker (2016) use congestion
in distant airports (possibly caused by weather) to provide an exogenous source of
variation in air pollution around airports. In addition, our port traffic measure is more
comprehensive in including both moving and docked vessels. Docked vessels are major
emitters of air pollution due to diesel-fired auxiliary electricity generators. We also
study a large set of ports and health outcomes, providing a rich picture of the causal
impacts relevant to policy.

Finally, to the best of our knowledge, we provide the first quasi-experimental ev-
idence that short-term exposure to air pollution influences mental health differently
across racial groups using patient-level hospital records in the United States.4 Related
work examines the effects of air pollution on a variety of measures of human physical
health, including the studies mentioned above, but neglecting mental health impacts
underestimates the overall effect of air pollution in a non-negligible way. By including
mental health, our work contributes to the broader literature suggesting that air pol-
lution affects human behavior and well-being (Graff Zivin and Neidell, 2013), such as
diminished labor productivity (e.g., Graff Zivin and Neidell, 2012; Hanna and Oliva,
2015; Chang et al., 2016; Borgschulte et al., 2018; Chang et al., 2019), reduced cognitive
performance (e.g., Sanders, 2012; Ebenstein et al., 2016; Bishop et al., 2018), increased
criminal activities (e.g., Burkhardt et al., 2019; Bondy et al., 2020; Herrnstadt et al., 2021),
and inflated road accidents (e.g., Sager, 2019). Some of these outcomes, such as criminal
activities and road accidents, may even come about partly due to the impact of air
pollution on mental health.

The paper proceeds as follows. Section 2 provides a brief background on port
pollution and human health. Section 3 describes our data and descriptive statistics.
Section 4 discusses our empirical strategies and identification. Section 5 presents
the main empirical results. Section 6 discusses implications for policy, and Section 7
concludes.

4In concurrent related work, Ordonez (2020) estimates the effects of air pollutants from fossil-fuel
power plants on mental health in Colombia using a quasi-experimental framework and patient-level
records. Zhang et al. (2017) and Chen et al. (2018) find an effect of air pollution on mental health based
on stated evidence (i.e., survey data) in China.
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2 Background

2.1 Air Pollution in Ports
Ports serve as a primary conduit for global trade and play a significant role in the
local economies for many coastal cities (EPA, 2017). The Organisation for Economic
Co-operation and Development (OECD) projects that global marine freight will more
than quadruple by 2050, and this expansion is expected to increase port activities
further.5 Docked vessels in ports can be one of the dirtiest emitters in terms of local air
pollutants, as they often operate auxiliary engines to generate onboard electricity by
burning bunker fuel and diesel (Wan et al., 2016). Other diesel-powered activities in
ports, such as cargo handling equipment, automated guided vehicles, and short-haul
trucks, also emit a substantial amount of air pollution (Agrawal et al., 2009). Hence,
ports can be one of the largest contributors to air pollution in surrounding regions.6 It
is notable that approximately 30% of counties in the United States that are currently out
of compliance or previously failed to meet the National Ambient Air Quality Standards
(NAAQS) either include or are adjacent to major ports (see Figure B.1).7

Most ports are located in urban areas with high population density (e.g., Los Angeles
andNewYork), often surrounded by low-income,minority neighborhoods. For example,
around 40% of zip codes within a 25-mile radius of the major ports in California are
designated as “disadvantaged” communities, with concentrations of people that are of
low income, color, high unemployment, and/or low levels of educational attainment.8
These low-income households and people of color living or working in port areas can
be significantly impacted by air pollution (Houston et al., 2014). Many studies have
consistently documented differences in air pollution exposure across socioeconomic
groups (see recent reviews in Mohai et al., 2009; Banzhaf et al., 2019a,b; Hsiang et al.,
2019), and ports are likely one contributing factor for these differences.

2.2 Air Pollution and Health
Air pollution is well known to be detrimental to human health (Dockery et al., 1993).
Breathing in polluted air can affect lung development and cause respiratory diseases

5See https://www.itf-oecd.org/sites/default/files/docs/2015-01-27-outlook2015.pdf.
6See https://www.latimes.com/california/story/2020-01-03/port-ships-are-becoming-la-worst-

polluters-regulators-plug-in.
7The National Ambient Air Quality Standards are specified under the Clean Air Act in the United

States, which determines maximum allowable concentrations of criteria air pollutants that have been
proved to be harmful to human health.

8Disadvantaged communities in California are often disproportionately impacted by environmental
hazards. They are determined based on Senate Bill 535 (SB 535). The bill requires a proportion of the
revenue from the Cap-and-Trade program auction to be allocated to projects that benefit disadvantaged
communities. The designation of disadvantaged communities uses the CalEnviroScreen tool, a scoring
system with several factors: pollution burden and socioeconomic characteristics.
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(Dockery and Pope III, 1994), such as asthma and chronic obstructive pulmonary
disease (DeVries et al., 2017; Wang et al., 2019). Epidemiologists have also established
an association between air pollution and cardiovascular disease (Seaton et al., 1995),
including impairing blood vessel function (Riggs et al., 2020), speeding up artery
calcification (Keller et al., 2018), and increasing risk of hemorrhagic stroke (Sun et al.,
2019). Moreover, studies have also shown an association between air pollution and
breast and lung cancer (Cheng et al., 2020).

A growing number of economic studies use quasi-experimental methods to estimate
the causal effects of air pollution exposure on human health, using health metrics such
as infant mortality and birth outcomes (e.g., Chay and Greenstone, 2003b; Currie and
Neidell, 2005; Currie et al., 2009; Currie and Walker, 2011; Sanders and Stoecker, 2015;
Arceo et al., 2016; Alexander and Schwandt, 2019), adult mortality (e.g., Deryugina
et al., 2019; Anderson, 2020), respiratory problems (e.g., Moretti and Neidell, 2011;
Schlenker and Walker, 2016), and cardiovascular diseases (e.g., Schlenker and Walker,
2016; Halliday et al., 2019). While the focus of much of the literature has been on
physical health, there is growing epidemiological work showing an association between
air pollution and mental health (e.g., Sass et al., 2017; Kim et al., 2018; Brokamp et al.,
2019).

Air pollution could adversely affect mental health through several channels. Air
pollution can lead to neuroinflammation and oxidative stress linked to anxiety, depres-
sion, and cognitive dysfunction (Sørensen et al., 2003; Salim et al., 2011). In addition,
people tend to reduce outdoor activities due to pollution, which may induce mental
disorders through pathways such as vitaminDdeficiency from limited access to sunlight
(Anglin et al., 2013), reduced exercise (Suĳa et al., 2013), restricted access to green space
(Cohen-Cline et al., 2015), and less social support (George et al., 1989). Moreover, some
studies suggest that worsened physical health caused by air pollution exposure may
also lead to fear and stress, which increases anxiety and other mental illnesses (Scott
et al., 2007).

3 Data and Descriptive Statistics
This paper compiles a comprehensive data set from multiple sources on port traffic, air
pollution, health, local weather, and major oceanic storms.

3.1 Port Traffic
We obtain port data from the U.S. Army Corps of Engineers (USACE) for 2001–2016.
The data contain dates on which ships enter and exit from ports, including container
ships, bulk carriers, tanker ships, and passenger ships. We match the entrance and
clearance records for each vessel visit based on vessel names or identity numbers, from
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which we can approximate the number of days a vessel is at berth in a port.9 For each
date in a port, we then calculate gross vessel tonnage and the number of vessels, which
serve as the core port traffic measures for this study. Since different vessel types have
different sizes and weights, the calculated gross vessel tonnage variable represents
vessel heterogeneity to some extent.

One minor weakness of these data is that USACE mainly tracks waterborne trans-
portation originating from or heading to foreign ports and does not have complete
coverage of ships traveling between domestic ports. According to the Bureau of Trans-
portation Statistics, foreign waterborne freight accounts for 85–90% of total shipping
tonnage in maritime ports in the United States.10 Hence, the USACE data should be a
reasonable representation of total vessel tonnage in the included ports in this study,
even if it misses a small fraction of the tonnage. This minor caveat about our data is
analogous to one in Schlenker andWalker (2016), where the data set they use for airport
traffic only accounts for major domestic airline passenger travel.

Table A.1 contains the summary statistics of daily vessel tonnage and counts. In our
final data set, we focus on the 27 major maritime ports in the United States, six of which
are in California.11

3.2 Air Pollution
We obtain daily air pollution concentration data from U.S. Environmental Protection
Agency (EPA) Air Quality System (AQS) for five local air pollutants, carbon monoxide
(CO), nitrogen dioxide (NO2), ozone (O3), fine particulate matter (PM2.5), and sulfur
dioxide (SO2), for 2001–2016. The data contain daily maxima and means of pollution
concentrations at the pollution monitoring site level.12

3.3 Health
We obtain patient-level administrative data from the California Office of Statewide
Health Planning and Development for 2010–2016. These include three types of data:
Patient Discharge Data (PDD), Emergency Department Data (EDD), and Ambulatory
Surgery Center Data (ASCD). The PDD consists of overnight stays from all California
hospitals. The EDD and ASCD keep track of patients who had single-day emergency
treatment in an Emergency Room or licensed freestanding Ambulatory Surgery Centers.

9The data contain some unmatched vessel entrance or clearance records. We treat these entries as a
single day in port since most vessels in the data sample enter and exit from ports on the same day.

10This estimate is obtained from https://www.bts.gov/content/us-waterborne-freight.
11The six major California ports are the Ports of Long Beach, Los Angeles, Oakland, San Diego,

Hueneme, and San Francisco.
12The EPA AQS reports various daily means with different time windows that air passes through

the monitoring device before it is analyzed. For example, for CO at certain monitoring sites, there are
one-hour and eight-hour run daily averages. We take averages for each monitor and day.
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Any patient initially logged in the EDD/ASCD that is subsequently admitted to a
hospital for overnight stays is dropped in the EDD/ASCD and then added to the PDD
to eliminate double-counting and ensure consistency.

These three data sets provide dates for hospital visits, the zip codes of home
addresses, demographics (age, sex, and race), one principal diagnosis, and up to 24
secondary diagnoses. In our primary specification, we pool the three data sets and
count the daily number of hospital visits at each zip code for patients who had either
a principal or secondary diagnosis related to the health problems examined in this
paper.13 We then merge in population data from the 2010 U.S. Census.14 We next
calculate the daily hospitalization rate at the zip code level, indicating the number
of hospital visits per million residents per day. We focus on hospitalizations of six
categories of illnesses: respiratory (asthma, acute upper respiratory, all respiratory),
mental (anxiety, all psychiatric), and heart-related. We also include three diseases for
placebo checks: arterial embolism (i.e., stuck blood clots), external neck wounds, and
appendicitis.15 Figure B.2 illustrates that our sample includes large sections of the
largest urban areas in California.

3.4 Weather
We acquire weather data from the National Oceanic and Atmospheric Administration
(NOAA) Integrated Surface Database for 2001–2016. We construct daily measures of
weather variables from hourly readings at the weather station level. These variables
include dew point, minimum and maximum temperatures, precipitation, wind speed,
and wind direction. The minimum and maximum temperatures are the lowest and
highest hourly readings in a day, and the daily precipitation is the summation of hourly
records.16 We then calculate daily means for dew point temperature, wind speed, and
wind direction. The wind direction blowing north is normalized to zero, and it increases
up to 360 degrees clockwise.

13We conduct several robustness checks by exploring only principal diagnoses and each of the three
data sets separately.

14U.S. Census data is based on the zip code tabulation area (ZCTA), so we merge in based on the ZCTA.
We exclude the ZCTAs with fewer than 5,000 residents (or those with fewer than 1,000 residents in each
socioeconomic group for heterogeneity analysis), which only accounts for 2% of the total California
population. For the remainder of the paper, we refer to ‘zip codes’ for simplicity.

15The administrative data sets adopt what are called ‘ICD codes’ to record diagnoses. In October 2015,
the codes were upgraded from ICD-9-CM codes to the ICD-10-CM codes. Table A.2 presents the ICD
codes for this study. The codes that fall into the psychiatric categories follow Brokamp et al. (2019) by
excluding those associated with suicides. The table also presents the corresponding Medicare Severity
Diagnosis Related Group (MS-DRG) codes for calculating the medical costs of illnesses from theMedicare
data.

16For missing hourly precipitation readings, we assume they are the same as the most recent available
reading.
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3.5 Tropical Cyclones
Tropical cyclones are rapidly rotating storms that originate in the tropical oceans. Those
occurring in the northeastern Pacific Ocean or the Atlantic Ocean are called hurricanes,
while those in the northwestern Pacific Ocean are called typhoons. We obtained tropical
cyclone data from the NOAA National Hurricane Center for 2001–2016. The data track
dates, times, center locations, maximum wind, central pressure, and wind radii of
historical cyclones every six hours in the Northeast and North-central Pacific Ocean
and the Atlantic Ocean.

Figure 1(a) shows all hurricanes that occurred in 2016 and the locations of the 27
major ports in the United States. The figure shows that cyclones can strike ports, which
may directly impact local weather and air pollution. Our primary results only use data
when cyclones are at least 500 miles away from the 27 major ports to avoid any direct
impacts. We chose 500 miles because cyclones are documented to have a typical radius
in the range of 125–310 miles, so we can be assured that the ports are well outside the
scope of the cyclones included in our study.17 The path of cyclones at least 500 miles
away from ports can be seen in the colored dotted lines in Figure 1(a).

Tropical cyclones are especially useful for our study because they can dramatically
affect the number of ships and gross tonnage in port. For example, StormGeo—a global
weather service provider—observes that “[t]ropical cyclones [raging in the ocean] have
an enormous impact on ships and shipping logistics. Entire supply chains can be
disrupted when ships are delayed due to the presence of a cyclone.”18 To illustrate this
effect, Figure 1(b) shows how two paths of ships headed for U.S. ports were taken off
track by Hurricane Leslie from August 30 to September 12, 2012. Typically, vessels
would take the efficient routes following the shortest distances (the dashed lines) to
travel between ports. In this case, we have ships traveling from the Port of Marseille,
France, to the Port of Houston and the Port of Santos, Brazil, to the Port of New York and
New Jersey. Around September 8, 2012, the vessels took longer alternative routes (the
solid lines) to avoid Hurricane Leslie, which led to additional transit time and delays in
reaching their final destinations. This influence of distant storms on shipping paths
will provide an exogenous source of variation in our study, as will be discussed.

3.6 Data Compilation
We compile two data sets for this study. For the analysis of air pollution, we construct
the data at the paired monitor-port level with the following steps: (1) we map all

17See https://public.wmo.int/en/our-mandate/focus-areas/natural-hazards-and-disaster-risk-
reduction/tropical-cyclones.

18See https://www.stormgeo.com/products/s-suite/s-routing/articles/the-effects-of-tropical-
cyclones-on-shipping/.
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pollution monitors within a 25-mile radius of the 27 major ports;19 (2) we calculate the
Vincenty distance and direction between a monitor and its mapped port based on their
latitudes and longitudes;20 (3) we select all weather stations within a 50-mile radius
of pollution monitors and calculate inverse distance-weighted averages of weather
measures at the monitor level; and (4) we calculate the relative wind direction between
a monitor and a port to determine whether a monitor is downwind or upwind of its
paired port, i.e., the difference in angles between the wind direction observed at a
monitor and a perpendicular ray from the port to the monitor.

For our analysis of health impacts, we construct the data at the paired zip code-port
level with similar steps: (1) we select all zip codes within a 25-mile radius of the six
major ports in California; (2) we calculate the Vincenty distance and the relative direc-
tion between a paired zip code and port; (3) we calculate the zip code-level pollution
measures by taking inverse distance-weighted averages of the monitor-level data within
25 miles of zip code centroids; (4) we calculate zip code-level weather measures by
selecting all weather stations within 50 miles of zip code centroids and take inverse
distance-weighted averages.

Table A.3 contains the summary statistics for the main variables (i.e., port traffic,
pollution, and hospitalization rate) in this study. Tables A.4–A.8 present the summary
statistics of hospitalization rates for various slices of the data.

3.7 Descriptive Statistics on Racial Disparities
Before diving into the empirical modeling, we present descriptive statistics on racial
disparities in pollution exposure and hospitalizations near ports in California. Fol-
lowing Currie et al. (2020), we primarily focus on comparing non-Hispanic white and
Black populations in this paper because the disparities between these two groups have
been well-documented (Boustan, 2012; Boustan et al., 2016). In addition, the Hispanic
ethnic identity is often described as more fluid over time than non-Hispanic white or
Black groups, which may introduce measurement errors in comparing Hispanics and
non-Hispanics (Liebler et al., 2017). However, for the interested reader, we also present
some descriptive statistics for Hispanics in Figure B.3.

Figure 2(a) shows distributions of the Black and white populations residing in
California port areas by distance to their nearest mapped ports. We observe that the
Black population tends to live closer to ports, while the white population is more

19In our data set, a monitor can be mapped to multiple ports, since ports can be close to each other
(e.g., Ports of Los Angeles and Long Beach).

20Vincenty distance is a commonly used distance measure between two points on the surface of a
spheroid developed by Thaddeus Vincenty (for examples of economics papers adopting this distance
measure, see Auffhammer and Kellogg (2011) and Currie et al. (2017)). The distance measure assumes
that the shape of the Earth is an oblate spheroid, which is more accurate than other distance measures,
such as great-circle distance, which assume a spherical Earth.
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uniformly distributed, suggesting that ports may disproportionately impact Blacks
simply due to differences in exposure to air pollution.

Figure 2(b) presents distributions of populations for the two racial groups by decile
of mean PM2.5 exposure at the zip code level over 2010–2016. We see that Blacks live
in areas that are exposed to higher pollution concentrations than whites. As further
evidence, Table A.9 presents the average pollution exposure for Blacks and whites in
port areas, weighted by the population of each race at the zip code level.21 The evidence
indicates that Blacks face substantially higher exposure to air pollution in areas around
ports than whites.

Next, we examine the racial gaps in health outcomes. Figure 3 plots probability
density functions of annual hospitalization rates for the Black and white populations for
zip codes within 0–12.5 miles to ports and zip codes within 12.5–25 miles to ports.22 In
both panels, the distributions for the Black population lie to the right of the distributions
for whites. The gaps in mean hospitalization rates between Blacks and whites become
slightly wider closer to ports. Further, Figure B.4 shows that annual air pollution
exposure for individuals visiting hospitals is notably higher for Blacks than whites.
These figures provide descriptive evidence of racial disparities in pollution exposure
and health outcomes in port areas.

4 Empirical Strategy

4.1 Effect of Vessels in Ports on Air Pollution
We begin our analysis by estimating the effect of port traffic on daily air pollution
concentrations. Our empirical specification is as follows:

%8?C = �+?C + X8C� + �C + �8? + 48?C , (1)

where %8?C is the log of local air pollutant concentrations at monitor 8 that is mapped
to port ? on day C. The variable +?C is either the log of the gross vessel tonnage or the
number of vessels in port. The set of variables X8C includes weather controls consisting
of maximum, minimum, and dew point temperatures; precipitation; wind speed; and
relative wind direction (indicating whether a monitor is downwind or upwind of the
mapped port). X8C also includes quadratic terms for each of the weather controls (except
for the relative wind direction). We incorporate temporal fixed effects �C that consist of

21This analysis focuses on differences in exposure across zip codes and ignores any within-zip code
differences in exposure, so it may slightly underestimate disparities in pollution exposure. That said, this
approach is standard in the literature (see a review of this approach in Banzhaf et al. (2019b)).

22The corresponding boxplots are shown in Figure B.5.
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county-by-year, month, day-of-week, and holiday fixed effects.23 Since there may be
unobserved time-invariant effects, we further include monitor-port fixed effects �8? . 48?C
is the error term. The parameter of interest, �, can be interpreted as the effect of port
traffic on local air pollutant concentrations for a given day.

There are several potential concerns in estimating equation (1) using ordinary least
squares (OLS) that may lead to biased estimates of �. One concern is that there may
be some measurement error in the port traffic measures because we observe vessels
originating from or heading to foreign ports (85-90% of tonnage), so we miss some
vessels in our analysis. A second concern is the possibility of omitted variables, such as
unobserved economic or weather factors that affect port traffic and local air pollution.

To address these concerns, our empirical approach leverages quasi-random varia-
tion from distant tropical cyclones several days prior to the day under consideration.
Specifically, we instrument for+?C using the existence of lagged tropical cyclones far out
in the ocean. As mentioned above, these cyclones often disrupt travel for marine vessels,
delaying their arrival into ports, leading to fewer ships and less tonnage in ports several
days later (recall Figure 1). The first stage relies on this disruptive impact on shipping.

To be precise, the first stage of our instrumental variables approach is:

+?C = )�C−< +W8?C� + &8?C , (2)

where )�C−< is an indicator variable equal to one if there are one or more tropical
cyclones far out in the ocean (i.e., at least 500 miles away from ports) on day C − <.
We use a seven-day lag (< = 7) in our primary specification, but we run robustness
checks with different lags. A cyclone can last anywhere from a few days to weeks. Thus,
to create this lagged variable, we first identify the days when there are one or more
cyclones that are at least 500 miles away from ports, and then take the seven-day lag.24
The variable W8?C includes the exogenous variables defined in equation (1): weather
controls, temporal fixed effects, and monitor-port fixed effects.

To be a valid instrument, )�C−< must satisfy the exclusion restriction, i.e., it is
uncorrelated with the error term 48?C in equation (1).25 A direct threat to the exclusion
restriction would be if the tropical cyclones hit the ports several days later, directly
affecting pollution. We avoid this concern by removing the observations during the
days when cyclones appear within a 300-mile radius of ports. We also remove ob-
servations two days prior and after the cyclones are within a 300-mile radius to be

23The holidays include New Year, Martin Luther King Jr. Day, Presidents Day, Memorial Day,
Independence Day, Labor Day, Columbus Day, Veterans Day, Thanksgiving, and Christmas, as well as
the three-day prior and post the holiday.

24The choice of seven days is motivated both because it is a week after the storm was out at sea and
because we to observe a drop in vessel tonnage in ports seven days later.

25We expect lagged distant tropical cyclones always to reduce the number of vessels and gross tonnage
in ports, so the monotonicity condition should hold.
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even more confident that the direct threat is not an issue. Another concern could
be that lagged distant cyclones not only impact vessel tonnage or counts in ports
but also substantially influence the composition of vessels, which may, in turn, affect
air pollution in ports. Figure B.6 shows that lagged tropical cyclones far out in the
ocean do not appear to have any notable effect on the composition of vessel types in ports.

A more modest threat could be if lagged tropical cyclones far out in the ocean suffi-
ciently impact meteorological patterns that they indirectly affect current-day weather in
the ports. We explore this by dividing the sample into month-days when )�C−7 = 1
and those when it is zero. Figure 4 shows distributions of the six weather variables
across the two subsamples.26 The distributions between the two grouped samples
are almost identical, confirming that the weather in the ports is no different when
there are tropical cyclones in the distant ocean seven days prior thanwhen there are not.27

Thus, for there to be remaining identification concerns, there would have to be some
other localized source of air pollution that happens to be correlated with distant storms
seven days earlier. This seems unlikely to us. But we will also perform a placebo test
and a set of robustness checks to further support the instrument’s validity.

4.2 Effect of Air Pollution on Health
To estimate the relationship between air pollution and health outcomes in port areas,
we specify the following linear regression model:

H8?C = �%8?C + X8C� + �C + �8? + 48?C , (3)

where H8?C is the hospitalization rate (i.e., hospital visits per million residents) associated
with an illness in zip code 8 that is mapped to port ? on day C. The variable %8?C is the air
pollutant concentration. We run the regression separately for each of four pollutants—
CO, NO2, PM2.5, and SO2—that are shown to be detrimental to human health.28 In an
extension in Section 5.3, we also consider including sets of these pollutants that might be
co-emitted. The remaining variables are similar to those specified in equation (1), where
X8C is a set of weather controls; �C is the set of temporal fixed effects; �8? is a zip code-
port fixed effect. The coefficient of interest � indicates the effect of a one-unit increase
in air pollution concentrations on the daily hospitalization rate associatedwith an illness.

26Because the number of observations in the two subsamples is different, we randomly draw a subset
of observations in the second subsample, so the number of observations is the same between the samples,
but statistical tests of differences in means are no different if we use the each of the full subsamples.

27To provide further evidence, Table A.10 presents the standardized mean differences, variance ratio,
and Kolmogorov-Smirnov statistics for the weather variables. We also create boxplots and empirical
quantile-quantile (QQ) plots for the weather variables (see Figures B.7 and B.8). Except for a few outliers,
these supplementary figures confirm that the weather is no different.

28In this choice of pollutants to study, we follow the existing evidence of the health effects of common
air pollutants (e.g., Dominici et al., 2006; Bell et al., 2008; Brokamp et al., 2019).
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Again, estimating equation (3) using OLS may lead to a biased estimate of �. One
potential concern is that exposure to air pollution is not randomly assigned to residents,
and thus sorting of individuals may be present. People with preferences for better
air quality may choose to live in cleaner areas or adjust their daily activities based on
pollution forecasts. Another potential concern is that there may be measurement errors
in pollution exposure. Our pollution measures at the zip code level may deviate from
residents’ actual exposure since we do not observe their exact home addresses. People
are also unlikely to be stationary all the time. In addition, theremay be omitted variables
correlated with both air pollution and health. For example, unobserved macroeconomic
factors may affect air pollution levels and bring about changes in income or health care
access.

To address these concerns, we employ an over-identified instrumental variables
approach (Knittel et al., 2016; Schlenker andWalker, 2016; Deryugina et al., 2019), where
the first-stage regression is specified as:

%8?C =1+̂?C + 2,(8C +
7∑
B=1

3B,�B
8C + 4+̂?C ×,(8C +

7∑
B=1

5B+̂?C ×,�B
8C+

7∑
B=1

6B,(8C ×,�B
8C +

7∑
B=1

7B+̂?C ×,(8C ×,�B
8C +W8?C� + &8?C .

(4)

In this equation, ,(8C represents wind speed. ,�B
8C is an indicator variable for

wind direction, which is equal to one if the daily mean wind direction in zip code 8
falls in each 45-degree interval [45s, 45s+45), where B ∈ {1, ..., 7} is the interval.29 The
variable +̂?C is the fitted vessel tonnage in port ? on day C, which is obtained using the
following regression:

+?C =
∑
?

�?1? × )�C−< + �?C , (5)

where )�C−< is the tropical cyclone indicator variable. The variable 1? is an indicator
for port ?, which allows the effect of the instrument to vary across locations.

The intuition for the identification in this empirical strategy is that we are isolating
and leveraging the variation in vessel tonnage that comes about because of distant
tropical cyclones several days prior.30 This approach avoids using any variation in
vessel tonnage related to localized economic or other factors that may also influence
hospitalization rates. For there to be a remaining identification concern, one must

29We exclude the interval [0, 45) in regressions as the base, and no observations fall in the interval [315,
360) in our data set, so this interval is also excluded. W8?C includes the same weather controls (except for
wind direction and wind speed) and fixed effects as in equation (2)

30Wooldridge (2002, p. 117) discusses the assumptions for using fitted variables as instruments, which
requires the exogenous regressors for generating fitted instruments to be orthogonal with the error term
in the main estimation equation, i.e., equation (3). See Dahl and Lochner (2012) and Schlenker and
Walker (2016) for recent papers using fitted variables as instruments.
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believe that tropical cyclones in the distant ocean several days prior influence hospitaliza-
tions in areas around ports through a channel outside of port traffic. This seems unlikely.

Our specification also includes local wind direction and wind speed in the set
of instruments, which adds statistical power because local wind affects the spatial
distribution of air pollutants. A large body of meteorological literature has shown
that wind direction and speed are strong predictors of local pollutant concentrations
(e.g., Chaloulakou et al., 2003; Kukkonen et al., 2005; Karner et al., 2010). Based on this
scientific evidence, a growing number of studies in the economics literature exploit
variation in local wind as the driver for air pollution (e.g., Moeltner et al., 2013; Schlenker
andWalker, 2016; Keiser et al., 2018; Deryugina et al., 2019; Bondy et al., 2020; Anderson,
2020; Herrnstadt et al., 2021).

5 Results

5.1 Effect of Vessels in Port on Air Pollution
We begin our analysis by demonstrating a causal relationship between port traffic and
air pollution. We estimate the model given in equation (1) using two-stage least squares,
with the existence of distant tropical cyclones seven days prior as the instrument. We
perform this estimation using all 27 major ports in the United States. The standard
errors are two-way clustered by monitor-port and day.31

In the first stage, we estimate equation (2). We find a strong first-stage relationship
(Table A.11), consistent with lagged distant tropical cyclones affecting vessel tonnage
and the number of vessels.32 The point estimates are all significant, suggesting that the
existence of lagged distant tropical cyclones results in 0.4–0.5% less tonnage (or 0.5 fewer
vessels) in ports per day. The first-stage F-statistics range from 31 to 37 in Panel A and
from 13 to 20 in Panel B across columns in Table A.11.33 These are well above standard
thresholds for weak instruments to be a concern (e.g., Andrews et al. (2019) suggest that
instruments areweak below a threshold of ten). We also present two tests forweak instru-
ments, the Anderson-Rubin Wald statistic and the related Stock and Wright (2000) LM
S statistic. The null hypothesis of the two tests is that the coefficient of the endogenous
variable is equal to zero in the structural equation (i.e., we have a weak instrument). The
p-values for these two tests indicate that the null hypothesis is rejected at the 1–5% levels.

31We cluster bymonitor-port because we exploit the relative wind direction between a port andmonitor,
and a monitor can be mapped to multiple ports.

32The specifications are the same across the columns. The number of observations differs across
columns due to the minor differences in data availability for each pollutant.

33All first-stage F statistics reported in this paper are cluster-robust Kleibergen-Paap Wald F statistics
(Kleibergen and Paap, 2006), which are much smaller than the standard Cragg-Donald Wald F statistics
assuming i.i.d. errors (not reported in the paper) (Cragg and Donald, 1993).
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Estimating the second stage shows the effect of port traffic on the concentration of
the four major air pollutants, which are shown in Table 1. Each entry is a separate
estimation. Panel A shows the results using vessel tonnage as the covariate of interest,
while Panel B shows the results using the number of vessels as the covariate of interest.
Using vessel tonnage accounts for the fact that larger ships with greater capacity are
more likely to have greater emissions. In contrast, using the number of vessels allows for
a straightforward interpretation by quantifying the effect of an average ship. Hence, we
show both. All results include county-by-year, day-of-week, holiday, and monitor-port
fixed effects.

The results in Table 1 show a significant effect of both vessel tonnage and the number
of vessels on pollution concentrations for CO, NO2, PM2.5, and SO2. Looking across the
columns, we find that a one percent increase in vessel tonnage in a port in a day results
in 0.25–0.43% increases in pollution concentrations within a 25-mile radius of the port.
The results in Panel B can help to contextualize the results better and indicate that one
additional vessel in a port in a day results in 2–4% increases in pollution concentrations
within a 25-mile radius of the port. This increase in pollution from added port traffic can
be interpreted as the combined effect from the direct emissions from the additional ship
in port and the indirect emissions due to the complementary activities associated with
handling goods from the ship. For example, cargo handling equipment and short-haul
trucks are often powered with diesel fuel and can be expected to add to the emissions
from the ship itself.

In contrast to the pollutants in Table 1, O3 is a secondary pollutant, which is formed
through complex chemical reactions with NOx and volatile organic compounds (VOCs)
in the presence of warm temperatures and sunlight.34 Yet O3 is well-known to nega-
tively affect human health (Auffhammer and Kellogg, 2011). We thus conduct the same
analysis for O3 in Table A.12 to more deeply understand how port traffic influences
important air pollutants. The estimates are significant and have a negative sign. This
negative effect associated with O3 may be driven by increases in NOx from port traffic
(shown in Table 1), which can also interact with existing O3 in the air and in some cases
actually reduce the total O3 concentrations (Sillman, 1999; Seinfeld and Pandis, 2016; He
et al., 2020).35 In the remainder of the paper, we focus on the four criteria air pollutants
(CO, NO2, PM2.5, and SO2), noting that they can all affect human health via channels

34NOx is a generic term for chemical compounds of oxygen and nitrogen (i.e., mainly NO and NO2)
that are related to the formation of smog, acid rain, and ozone. Similarly, SOx are chemical compounds
of oxygen and sulfur, such as SO2.

35This finding is the opposite to Moretti and Neidell (2011), where port traffic results in an increase in
O3 concentrations in the port areas of Los Angeles. This discrepancy may be due to different studied
locations. Auffhammer and Kellogg (2011) show that southern California, including Los Angeles, tends
to be VOC-limited for O3 formation (the opposite is NOx-limited), where the NOx concentrations are
relatively high, and increases in NOx emissions may not change O3 concentrations. Our study covers a
larger set of port locations that likely consists of both NOx-limited and VOC-limited areas.
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separate from O3.
While there are no other estimates like ours in the literature, to our knowledge, the

U.S. Environmental Protection Agency estimates that emissions associated with marine
traffic account for 7–61% of NOx and SOx in certain port areas (EPA, 2003). In a rough
calculation, our estimates suggest that marine shipping in the 27 major ports in the
United States contributes 40%of air pollutionwithin a 25-mile radius (seeAppendixC.1).

We also estimate themodel given in equation (1) using OLS for comparison purposes.
These results using vessel tonnage as the covariate of interest are shown in Table A.13.
The estimated coefficients are much smaller than those in Table 1, and not all are
significant. The smaller values of these coefficients may be the result of attenuation bias
due to measurement errors, which are exacerbated by our fixed effects (see Schlenker
and Walker (2016) and Deryugina et al. (2019) for similar findings).

5.2 Racial Disparities in the Effects of Air Pollution on Health
We now turn to the effects of air pollution on health outcomes—and how they differ
by race. We estimate the model given in equation (3) using two-stage least squares,
where we instrument for air pollution using the fitted vessel tonnage and local wind
conditions.36 We perform this estimation using the data from California to leverage our
hospital admissions data. The standard errors for the health analysis are clustered by
zip code-port and day.

Table 2 presents the results of the second stage of the instrumental variables estima-
tion, showing the effect of increased air pollutant concentrations on hospital visits per
million residents for respiratory, heart, and psychiatric problems. Panel A shows the
results for the overall population within 25 miles of port facilities, while Panels B and
C show the results for Blacks and whites, respectively.37 Each estimate represents an
individual regression.

The results in Panel A show significant effects of all four pollutants we are studying
on hospital visits for the overall population. For example, a one part per billion (ppb)
increase in CO leads to an additional 0.05 visits for all respiratory illnesses, 0.01 visits
for all heart-related diseases, and 0.01 visits related to all psychiatric conditions (per
million residents per day). The effects of a one-unit increase in SO2 are substantial.
There are apparent effects of NO2 and PM2.5 as well, but they are an order of magnitude
smaller than SO2 (of course, the units are different). The results for psychiatric disorders

36We obtain fitted vessel tonnage from equation (5) using the full data sample for the 27 U.S. ports
from 2001 to 2016.

37Tables A.14–A.16 also present more details behind the compiled Table 2, including adjusted R2 and
the numbers of observations. Importantly, they show that we again have a strong first stage. For the
pooled estimation, the first-stage F-statistics range from 28 to 79. The first stage is also strong when we
split the sample by race (Tables A.15 and A.16). In addition, the p-values from the Anderson-Rubin and
Stock-Wright tests help us further rule out the presence of weak instruments.
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are especially notable as there are no similar estimates in the literature. For respiratory
and heart ailments, we find that our results are roughly in line with the literature,
although somewhat smaller than some estimates and larger than others, depending on
the exact health effect and pollutant (see Appendix C.1). This may not be surprising be-
causewe are focusing on the area aroundports, whichmaybedifferent thanother areas.38

The results in Panels B and C of Table 2 show striking differences in hospital visits
between Blacks and whites. The rate of hospital visits per million residents is more than
double for Blacks than for whites in nearly all categories of pollutants we study. For
instance, there are only 18.3 visits related to respiratory illnesses per million residents
due to a one-unit increase in SO2 exposure for whites, and 85.7 for Blacks. The rate
of heart ailments is also higher for Blacks. While we showed an economically and
statistically significant effect of air pollution on psychiatric-related hospital visits for
the overall population nearby ports, the effects are not significant when using only the
Black subsample, possibly due to the smaller sample size. On the white subsample, we
observe significant results (at the 5% level) similar to those in the overall results for the
all psychiatric category.39

While the focus of this paper is the racial gap between Blacks and whites, we also
estimate the effects of air pollution on hospitalizations for Hispanics, which are shown
in Figure A.19. When compared to the results in Table 2, Hispanics have higher hospi-
talization rates associated with respiratory ailments than whites but lower rates than
Blacks. Hispanics have lower hospitalization rates associated with heart diseases than
Blacks and whites. We also see more significant estimates associated with psychiatric
illnesses for Hispanics.40

When interpreting these estimates, it is also important to keep in mind several
crucial points. The estimated health effects may not be entirely attributable to a single
pollutant since some pollutants may be co-emitted with others. In an extension, we
also estimate the joint effects of certain pollutants on hospitalization rates, presented in
the next subsection. Another crucial point is that some people who are ill may choose
not to visit hospitals due to restricted access to medical resources or the opportunity
costs of spending time in a hospital. These are common caveats in the literature using

38Table A.17 presents the OLS estimates for the same specifications. Some OLS estimates are insignifi-
cant, and nearly all OLS estimates have a smaller magnitude than their corresponding instrumented
estimates.

39Table A.18 presents the estimation results using differences in hospitalization rates between Blacks
and whites as the dependent variable. All estimates associated with respiratory ailments are positive and
statistically significant. Most estimates associated with heart and psychiatric illnesses are not significant.
In addition, Figure C.1 presents results using the recentered influence function approach pioneered by
Firpo et al. (2009) and used recently by Currie et al. (2020). Appendix C.2 provides more details on this
approach. We find that most air pollutants have a much larger impact on Blacks than whites at the upper
quantiles of the hospitalization rate distribution, providing deeper insight into our primary results.

40We also explore heterogeneous effects of air pollution by age and sex. Table A.20 shows that there
are larger effects on children for respiratory illnesses and larger effects on the elderly for psychiatric and
heart maladies. Table A.21 shows little difference in the effect between males and females.
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hospitalization data.
Another important point is that these estimates of health effects focus on the con-

temporaneous effects of air pollution on health. There may also be longer-term effects,
including cumulative effects or symptoms that arise a few days later. Thus, we estimate
our model using different time windows up to 28 days following a pollution exposure
for the overall population, Blacks, and whites.41 Figures B.9–B.11 illustrate that the
estimates gradually increase with the length of the timewindow for respiratory illnesses,
suggesting cumulative health effects of air pollution. For psychiatric and heart illnesses,
the effect of air pollution appears to be flat and even decreasing for Blacks and whites
after 21 days.

To provide further context, we calculate the effects of one additional average-tonnage
vessel in a port over a year on air pollution-induced annual hospitalizations and hospital
medical costs, as shown in Table 3.42 Panel A shows the results of annual hospitalizations
for residents living within 25 miles of a major port facility. For Blacks, one additional
vessel in port results in 2,400 respiratory hospital visits, 510 heart-related visits, and
130 psychiatric visits (per million residents in a year in California). This amounts to
3.0 additional hospital visits per thousand Black residents in a year. For whites, one
additional vessel in port results in 520 respiratory hospital visits, 280 heart-related
visits, and 230 psychiatric visits (per million residents in a year). This adds up to 1.0
additional hospital visits per thousand white residents in a year, only one-third of the
visits for Black residents.

Panel B of Table 3 calculates the cost of these additional hospital visits. For this
calculation, we use the 2017 inpatient discharge data from the Centers for Medicare
and Medicaid Services (CMS).43 The results of the calculation show that one more
average-tonnage vessel in port over a year leads to $27 in medical costs per capita for
Black residents and $10 for white residents.44

These findings show clear racial disparities in the health effects of air pollution in
port areas. A natural question that arises is whether these disparities are due to Blacks

41These estimations include the commensurate number of leading weather controls.
42We calculate the results in the following steps: (1) calculate pollution concentration changes for the

studied pollutants due to one more vessel in ports (i.e., a 12.6% increase in vessel tonnage) based on
the estimates in Panel A of Table 1; (2) calculate changes in annual hospital visits due to the changes in
concentrations of CO, NO2, PM2.5, and SO2 based on the estimates in Table 2; (3) select the largest values
across the air pollutants for each illness category.

43The Medicare data provide national average inpatient payments and total discharges for each
diagnosis, which is categorized by the MS-DRG code (see https://www.cms.gov/Research-Statistics-
Data-and-Systems/Statistics-Trends-and-Reports/Medicare-Provider-Charge-Data/Inpatient2017). We
use the web service (http://icd10cmcode.com) based on CMS’s ICD-10 MS-DRG Conversion Project to
convert the ICD-10 diagnosis codes to the MS-DRG codes. The mapped MS-DRG codes for the studied
primary illness groups are presented in Table A.2. We calculate the average medical costs for each of the
illness groups, weighted by the total number of discharges.

44We also calculate the effects of one standard deviation increase in pollution concentrations on annual
hospitalizations and medical costs. The results are presented in Table A.22.
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living in more polluted areas or Blacks having greater vulnerability to air pollution
exposure (Hsiang et al., 2019). The evidence presented in Section 3.7 clearly shows
that the Black population tends to live closer to ports and thus is highly likely to have
greater exposure to pollution than the white population. In the population of hospital
patients, Blacks are from zip codes that also face higher exposure. This underscores
that differences in exposure are at least part of the story.

To explore whether Blacks have higher marginal damages in response to the same
pollutant exposures than whites (i.e., are more vulnerable to exposure), we identify a
set of zip codes that have similar distances to ports and similar pollution levels. Some of
these zip codes are predominantly Black, which we define as at least 50% Black, and oth-
ers are over 50%white. Specifically, we find zip codes that are 11-20miles from ports and
that have 11-12 �g/m3 annual PM2.5 concentrations based on the CalEnviroScreen data.
Thus, we have zip codeswith similar pollution exposure but different racial composition.

We then run the regressions in equations (3)–(5) for each of the two groups of zip
codes. Figure 5 shows the results and illustrates that the four pollutants have larger
significant effects on hospitalization rates related to respiratory, heart, and psychiatric
for Blacks than whites. While we cannot entirely rule out differences of exposure to air
pollution within zip codes, we see these results as highly suggestive that Blacks face
higher marginal damages from air pollution exposure than whites even if exposure is
held constant. This may be due to differences in baseline health, income, avoidance
behavior, defensive investments, or other socioeconomic factors between the racial
groups. We cannot distinguish between these explanations but view assessing these
explanations as an important area for future work.

5.3 Placebo Tests, Extensions, and Robustness Checks
In this section, we conduct two placebo tests and a set of extensions and robustness
checks to support our identification and highlight the channels driving our results.

Placebo Tests. In the first placebo test, we consider the possibility that lagged distant
tropical cyclones might affect air pollution through channels other than port traffic that
still have effects days later. Should this be the case, it would imply that our instrument
directly affects air pollution through a channel outside of port traffic. To test this
possibility, we examine air pollutant concentrations in areas far from ports (e.g., 75–100
miles) but similarly distant from the tropical cyclones as the ports. We regress air
pollution concentrations in these “control” areas far from the ports on the lagged distant
tropical cyclone instrument. Table 4 shows that the coefficients from this estimation
are close to zero and are not significant for any of the pollutants, in clear contrast to
our results in Table 1. This finding supports our argument that lagged distant tropical
cyclones are unlikely to have a lingering effect on weather patterns and air pollution
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through channels other than port traffic.
In our second placebo test, we consider the possibility that some other factor relating

to port traffic may be influencing hospital admissions besides air pollution. If this
were the case, one would expect hospital admissions for other illnesses that are clearly
unrelated to pollution exposure also to increase with port traffic. For example, arterial
embolisms, external neck wounds, and appendicitis are all maladies that are highly
unlikely to relate to air pollution exposure. Table A.23 estimates the same specifications
for the overall population as in Panel A of Table 2 for these prognoses.45 All of the
coefficients are small and not statistically significant. This result supports our contention
that air pollution is actually the cause of the health impacts we estimate.

Extensions and Robustness Checks. Table A.24 presents a set of robustness checks
that use slightly different model specifications of the effect of vessels in port on pollutant
concentrations. Panels A–C show that temporal fixed effects and weather controls are
important for identification. Panel D shows that the results with fewer weather controls
are reasonably close to the primary specification, suggesting that the results are not
very sensitive to the exact specification of weather controls. Panel E presents the results
of pollution monitors within 12.5 miles of the major ports rather than 25 miles. Some
point estimates become insignificant, likely due to the reduced sample size, but the
results for PM2.5 and SO2 are reasonably close to the baseline estimates.

We also run robustness checks relating to the exact definition of our lagged distant
tropical cyclone instrument. In the primary specification presented above, we used a
dummy variable for the existence seven days prior of tropical cyclones that are at least
500 miles away from ports (and we exclude any observations where a cyclone is within
300 miles within a two-day window). Table A.25 presents a variety of the robustness
checks relating to the instrument. These include using an 800-mile threshold to exclude
cyclone observations to further reduce the likelihood of tropical cyclones influencing
air pollution directly, using different numbers of days for the lag instead of seven days,
using multiple lags as instruments, using limited information maximum likelihood
(LIML) to address any chance of a weak instrument, and using the count of cyclones
rather than a dummy for the existence of tropical cyclones. The results are reasonably
close to the primary results in Table 1 for all specifications.46

Another important analysis, which also sheds light on the drivers of our results, is to
examine the joint effects of air pollutants on health outcomes. Our primary specifications
examine each air pollutant separately, following the standard in the literature. However,

45The estimations of Table A.23 use principal diagnoses in the OSHPD data set for the placebo illnesses
to avoid including diagnoses that could be indirectly related to pollution exposure.

46In addition, we run a specification including all of the removed observations due to the tropical
cyclones being close to the ports. Table A.26 shows that the estimates remain significant and are quite
similar to our primary results.
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air pollutants may be co-emitted and co-transported, so some of the coefficients for
individual pollutants may include the effects of multiple pollutants. Identifying joint
effects is often more challenging due to the need to instrument for more than one
variable, but it is possible. Local wind can impact the spatial dispersion of pollutants
differently, and higher wind speeds may even influence the need for ship engine thrust
and the rate of pollutant emissions. Thus, wind direction and wind speed continue to
be useful instruments, providing a sufficient number of instruments. We focus on the
joint effects of CO, NO2, and SO2 that are directly emitted from engine combustion in
ports. Because NO2 and SO2 are precursors to PM2.5 with an conversion rate of several
percent per hour (Luria et al., 2001; Lin and Cheng, 2007), it is difficult to differentiate
the effects between PM2.5, NO2, and SO2 (Deryugina et al., 2019). We use the sample of
zip code-port-days for estimations where measurements for CO, NO2, and SO2 are all
available.

Table A.27 presents the results of the joint estimations.47 For the joint effects of
CO and NO2 on respiratory ailments (column (1)), the estimates associated with CO
are significantly positive, and the estimates associated with NO2 are negative and
insignificant for the overall population. The negative sign is consistent with findings on
near-source atmospheric chemistry, indicating that an increase in NO2 may decrease
O3 concentrations in certain settings (Sillman, 1999; Seinfeld and Pandis, 2016). It is
also consistent with results in Schlenker and Walker (2016). The coefficients for whites
mirror those for the entire population, while for Blacks we find a positive coefficient.

The coefficients on CO in column (2) of Table A.27 are significant for the overall
population and the white subsample. For Blacks, SO2 appears to be the driver for health
outcomes. Blacks tend to live closer to ports and thus are more likely to be exposed to
emissions from fossil fuels with high sulfur content (Wan et al., 2016). We see similar
results when examining the combination of CO, NO2, and SO2 in column (3), with
SO2 having the strongest effect of increasing hospitalizations, and with NO2 having
a negative coefficient for all three groups (at the 1% significance level for the overall
population and 10% significance level for Blacks and whites). The remaining columns
show fewer significant results, but the explanations are likely similar. These results
underscore the complexity of joint estimation of co-pollutants.48

In another robustness check, we explore whether additional road congestion due to
more port activity may be causing some of our health effects findings rather than air
pollution. When there are more vessels in ports and greater tonnage being transferred,

47While some first-stage F statistics (i.e., the cluster-robust Kleibergen-Paap Wald F statistics) are below
the threshold of ten, the Anderson-Rubin and Stock-Wright LM S statistics suggest that weak instruments
should not be a concern. The standard Cragg-Donald Wald F statistics are also larger than ten (not
reported). For joint estimations, we only report the results for the overall categories of respiratory, heart,
and psychiatric illnesses.

48We also jointly estimate the model only using zip codes closer to ports, findingmostly larger estimates
(see columns (1) and (3) in Table A.28).
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one would expect there to be more truck traffic. Our primary findings include the effect
of additional air pollution from increased truck traffic. Still, onemight be concerned that
some of the estimates—such as those relating to mental health—could be influenced by
additional road congestion. Thus, we bring in vehicle detection data from the California
Department of Transportation Performance Measurement System, which contains daily
highway traffic data at the ‘vehicle detection station’ level for 2010–2016.49 For each
hour of the day, these data include average daily delays (measured in vehicle hours
spent to pass a freeway segment) at various threshold speeds (i.e., 35, 40, 45, 50, 55, and
60 miles per hour) for each station.

Our analysis selects all of the stations located within 10 miles of the six major ports
in California, and we include the station-days with at least 40% of observations. We
then regress traffic delay measures at the various threshold speeds on the fitted vessel
tonnage or the fitted vessel count. Table A.29 presents these results, which show no
significant coefficients across panels and columns, despite very large samples. We take
this as suggestive evidence that our instrument—vessels in ports predicted by distant
and lagged cyclones—is unlikely to substantially influence road congestion, indicating
that air pollution is much more likely to be the channel through which our results occur.

We also consider whether wind may affect hospitalizations through factors other
than air pollution. Strong winds may lead to fewer outdoor activities, thus reducing
exposure to air pollutants. We run a robustness check excluding days with wind speeds
greater than 3.3 meters per second, with this threshold chosen because it is the upper
end of the “light breeze” designation under the Beaufort Wind Scale. The results are
reasonably robust to the exclusion of intense windy days (see Table A.30).

Finally, we run a set of further robustness checks. We calculate hospitalization
rates based only on principal diagnoses rather than the combination of principal and
secondary diagnoses. The results (Table A.31) are similar to our baseline results,
although the effects are a bit smaller. We estimate the model separately for each of
the three hospitalization data sets we pool for our health results. Tables A.32–A.34
illustrate that we still find significant health effects (and racial disparities) from air
pollution, and emergency room visits logged in the Emergency Department Data seem
the main driver, although again the effects are smaller, as would be expected. We run
our primary specification using LIML instead of two-stage least squares (Table A.35)
and again find very similar results.

6 Policy Implications
Our results showing racial disparities in the effects of port pollution on health outcomes
raise the question of whether policy can help alleviate the disparities. Policy could

49The data are obtained from http://pems.dot.ca.gov.
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directly reduce exposures by cutting emissions or address the drivers of the racial gap in
the air pollution response functions. However, the latter is more difficult because of our
limited knowledge of the explanations for the different response functions across races.
Thus, policy has largely focused on reducing exposures. One example is a regulation
in California to reduce emissions from port facilities by reducing fossil fuel usage in
ports, perhaps most importantly by electrifying major port activities. We first employ a
regression discontinuity design (RDD) to find the causal effect of the policy. Then we
use dynamic simulation to explore whether generating additional electricity to power
docked ships produces sufficient emissions to offset the health improvements from
reduced ship emissions.

6.1 Brief Background on Port-related Policies
To date, several policies have been implemented to regulate emissions frommarine ships.
Perhaps the most prominent policy, the MARPOL Annex VI Protocol by International
Maritime Organization, adopted in 1997, regulates sulfur content in marine fossil fuels
to limit emissions of NOx, SOx, PM, and VOCs in the ocean.50 More recently, attention
has turned to replace fossil fuels altogether by electrifying port activities. This could
include allowing docked vessels to turn off their auxiliary electricity-generating engines
and instead use onshore electricity from the grid. Other port activities could also be
electrified.51

California has the strongest regulations on port emissions in the United States. The
centerpiece policy is the “Ocean-Going Vessel At-Berth Regulation,” which was adopted
in December 2007. This regulation limited air pollutant emissions from container ships,
passenger ships, and refrigerated cargo ships at the six major California ports.52 There
are two compliance options: use onshore electricity when docked or find an equivalent
emission reduction through alternative fuels or emission control equipment. Beginning
on January 1, 2010, vessel operators were required to reduce at-berth emissions of NOx

and PM by 10%, and since then the policy has been tightened further.53 Our analysis
focuses on the first phase of the regulation beginning on January 1, 2010.

50See http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Pages/
Air-Pollution.aspx.

51At the national level, United States has implemented several programs to reduce emissions from port
facilities, including the Ports Initiative, EPA’s Diesel Emissions Reduction Act (DERA) grant program,
Department of Transportation’s Transportation Investment Generating Economic Recovery (TIGER) and
CongestionMitigation and Air Quality Improvement (CMAQ) programs, and the Department of Energy’s
Clean Cities program (EPA, 2016).

52See https://ww2.arb.ca.gov/resources/documents/berth-faqs.
53For instance, beginning on January 1 2014, at least 50% of a fleet’s visits must use onshore electricity

each quarter of a year and auxiliary engine power generation must be reduced by 50%.
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6.2 Effect of California’s Regulation on Air Pollutant Concentrations
Empirical Strategy. Our empirical strategy relies on the sharp discontinuity in how
port activities were fueled on January 1, 2010. Onshore electricity and cleaner fossil
fuels are more expensive than conventional fuels, and thus there was no incentive for
ship operators and port operators to comply before this date (EPA, 2017). It is likely that
some of the at-berth charging infrastructure was already installed prior to this date, but
it was not being used.

Our regression discontinuity design follows amodel specification similar in principle
to several recent studies (e.g., Davis, 2008; Auffhammer and Kellogg, 2011; Chen and
Whalley, 2012; Anderson, 2014; Bento et al., 2014):

%8?C = �%>;82HC + 5 (�0C4C) + �+?C +W8C� + �C + �8? + 48?C . (6)

The dependent variable %8?C is the log of the concentration of a local air pollutant in
monitor 8 that is mapped to port ? on day C. %>;82HC is a dummy variable that is equal to
one when the policy is in effect on day C and zero otherwise. The expression 5 (�0C4C) is
a flexible function of the date. The dates are normalized to be zero at the first date of the
policy; hence, the coefficient � represents the treatment effect of the policy. The variable
+?C is the log vessel tonnage in port instrumented using our lagged distant tropical
cyclones instrument.54 We include this variable for good measure, as this avoidance
response may be somewhat unlikely given the evidence in Figure B.12, which shows
that the number of vessels visiting the six major California ports exhibits no drastic
changes before and after the policy. We also include the same weather controls (W8C)
and fixed effects (�C and �8?) as in equation (1).

The flexible function of the date is crucial for identification, as it controls for potential
endogeneity from time as the running variable (Imbens and Lemieux, 2008). We specify
5 (�0C4C) with two terms: �0C4C and %>;82HC × �0C4C . Thus, our final specification is a
local linear regression discontinuity design, following Imbens and Lemieux (2008):

%8?C = �%>;82HC + �1�0C4C + �2%>;82HC × �0C4C + �+?C +W8C� + �C + �8? + 48?C . (7)

We estimate this equation using an augmented local linear approach to increase the
power of estimation (Hausman and Rapson, 2018). The approach consists of two steps.
We first use the full data sample to regress log pollution measures on the exogenous
variables (e.g., weather controls, instrumented log vessel tonnage, and fixed effects). We
then regress the residuals obtained from the first step on the regression discontinuity

54We include the instrumented vessel tonnage because it controls for possible abrupt changes in the
number of vessels visiting ports that might occur if there is an avoidance response of vessels to the policy
implementation (Klotz and Berazneva, 2021).
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terms (i.e., %>;82HC , �0C4C , and %>;82HC × �0C4C) within a narrow bandwidth of dates.
We choose a bandwidth of 65 days on each side of the policy threshold in the primary
specification and run robustness checks with different bandwidths.

Results. Following the augmented local linear approach, we first obtain the residuals
by regressing air pollution concentrations on all exogenous regressors specified in
equation (7) using the full data sample (2001–2016) across the six major California ports.
Figure 6 plots daily average residuals for NO2 with a shorter time window around the
first policy date (normalized to be zero). Each point is an average of residuals across all
monitor-port pairs. We see clear downward breaks of linear trends occurring at the
first date of the California at-berth regulation, suggesting that the regulation results in
lower concentrations of NO2 in port areas (we observe similar declines for most other
pollutants but without statistical significance).

Table 5 presents the regression results, where each column reports results from a
separate regression for a pollutant. The estimates in the first row indicate the effect of
the regulation. Consistent with Figure 6, the coefficient for NO2 is significant at the 5%
level, as shown in columns (2). The regulation leads to a decrease in average pollution
concentrations by 20% for NO2. There also appear to be reductions in CO emissions,
but the coefficient is not significant at the 5% level.55

We next calculate the avoided annual hospital visits and hospital-related medical
costs per capita by race due to the California regulation.56 Table 6 shows that the
regulation results in 9.9 avoided hospital visits per thousand Black residents per year
associated with psychiatric, respiratory, and heart-related illnesses. It also leads to 3.4
avoided hospital visits per thousand white residents per year. The avoided medical
costs per capita per year for Black residents come out to $88, which is much larger than
the $31 for whites. These results highlight how the policy alleviated the Black-white
gaps in air pollution-induced hospitalizations around ports.

Simple calculations suggest that the benefits of avoiding adverse health outcomes
from this policy outweigh the costs. The California Air Resources Board estimates
that the annual regulatory costs for affected businesses and port authorities due to the
Ocean-Going Vessel At-Berth Regulation vary from $36 million to $167 million in 2017

55We conduct bootstrap inference to test the estimates associated with the policy variable, following
the fast wild cluster bootstrap algorithm in Roodman et al. (2019). For each regression, we obtain 10,000
bootstrap draws with replacement clustered by monitor-port and day, which is comparable to the primary
specification with clustering by monitor-port and day. Figure B.13 presents the bootstrap 95% confidence
intervals, which are fairly close to the primary specification results.

56We calculate the results with the following steps: (1) calculate absolute pollution concentration
changes based on the estimates in Table 5; (2) calculate changes in annual hospital visits due to the
changes in CO, NO2, PM2.5, and SO2 concentrations based on the estimates in Table 2; (3) for each illness
category, select the largest values across the air pollutants (to avoid double-counting due to the possibility
of joint emissions). Note that these results do not account for any increases in emissions from the power
sector.
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USD.57 Our estimates suggest that the first phase of the regulation leads to a saving of
$558 million in medical costs per year.58

We also run two placebo tests for the RDD analysis. The first test moves the dis-
continuity from the actual date of policy implementation to a different date: either
January 1, 2009, or January 1, 2011. If seasonal effects drive our results, the coefficients
would be similar to our primary results. The second placebo test examines regions
further away from the ports to confirm that something else statewide was not affecting
air pollution on January 1, 2010. We use the data from air pollution monitors 75–100
miles from the California ports. Table A.36 shows the results of these placebo tests.
The coefficients tend to be insignificant and generally close to zero, providing further
evidence supporting our identification.

The results from varying the bandwidth are shown in Figure B.14, and indicate that
the exact choice of bandwidth makes little difference to our estimates. We also specify a
‘donut’ model in which a certain number of days are removed on either side of the policy
threshold (Barreca et al., 2011). This specification addresses a potential concern about
short-term avoidance behaviors by vessels in response to the policy (Hausman and
Rapson, 2018). Figure B.15 presents the results with various donut periods, showing
that the results do not deviate substantially from our primary estimates.

6.3 Dynamic Simulation
If the California regulation reduced fossil fuel use in ports but increased fossil fuel
use from electricity generation, it is possible that the pollution was just shifted from
one place to another. To explore this possibility, we use a dynamic simulation of the
entire energy system in the United States. Specifically, we implement a reference case
scenario based on the U.S. Energy Information Administration (EIA) Annual Energy
Outlook and a scenario that gradually shifts at-berth energy consumption from fossil
fuel-powered auxiliary engines to electricity across all ports in the United States. Then
we examined how electricity generation and emissions change.

To perform this exercise, we use the National Energy Modeling System (NEMS) run
on a Yale server.59 This model is a general equilibrium model that includes all major
energymarkets and explicitly depicts major energy supply sectors (coal, natural gas, oil),
demand sectors (residential, industrial, commercial, and transportation), conversion
sectors (electricity and liquid fuels), macroeconomic activities, and international energy

57See https://ww3.arb.ca.gov/regact/2007/shorepwr07/tsd.pdf.
58Table 6 presents that the California at-berth regulation results in $37 savings per capita for illnesses

related to respiratory, heart, and psychiatric illnesses. There are 15.08 million residents living within 25
miles of the major ports in California. The medical costs of $558 million are the multiplication of $37 and
15.08 million.

59The model we use is identical to EIA’s NEMS with minor configuration adjustments to enable us to
run it on a Yale server.
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markets (EIA, 2009). It has an electricity dispatchmodel with geographic disaggregation
based on the actual fleet of generating plants in the United States. Besides producing
well-respected government forecasts, it has been used for decades by researchers to
analyze energy market transitions and policies (e.g., Palmer et al., 2010; Auffhammer
and Sanstad, 2011; Wilkerson et al., 2013; Gillingham and Huang, 2019, 2020). It is
especially useful for our research question in that it contains a detailed link between
energy consumption in ports and electricity generation. Appendix D contains more
details on the model and the two scenarios.

Figure B.16 presents the simulation modeling results for CO, NOx, PM2.5, and SO2

emissions from vessels and electricity generation in the United States for the reference
case and the policy scenario.60 Notably, the reduction in emissions from marine vessels
is substantial and notable, while the increase in emissions from electricity generation
is extremely small. The reason for this result is simple: the power sector uses much
cleaner energy sources on average (i.e., natural gas and renewables) and is adopting
technologies to mitigate emissions over time. Line losses are modeled and make a
negligible impact. While every simulation model should be viewed as an informed
approximation and should not be taken as a causal estimate, this finding from the
simulation modeling suggests that the localized air pollution benefits from a policy to
reduce emissions from port activities are very likely to outweigh any negative effects of
additional air pollution from increased electricity generation. The result is likely to be
even stronger in California, which has an especially clean electricity grid.

7 Conclusions
This paper establishes a set of causal relationships from port traffic to air pollution and
racial disparities in health outcomes. We use a quasi-experiment, where port traffic is
influenced by lagged distant tropical cyclones, to ascertain the effect of port traffic on
local air pollution and hospitalizations. To the best of our knowledge, we are the first
to investigate how a very highly emitting point source—port facilities—can influence
racial disparities in health and how policy can bring about distributional consequences.

Our results show that adding another vessel or increasing the overall vessel tonnage
in ports will increase air pollution concentrations in the areas surrounding the ports.
This leads to increased hospitalizations for respiratory, heart-related, and psychiatric
ailments that disproportionately affect Black residents. One additional vessel in port
over a year leads to 3.0 additional hospital visits per thousand Black residents per year
and 1.0 visits per thousand whites. We provide evidence that the two racial groups
are receiving different pollution exposures and may have differing response functions.

60Table A.37 presents the associated fossil fuel and electricity consumptions by marine vessels across
the scenarios.
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Policy to reduce emissions from ships at berth may help reduce the disparities, and
we show that a major California regulation disproportionately benefits Black residents.
This California regulation reduces hospital visits by 9.9 per thousand Blacks per year
and 3.4 per thousand whites.

The findings of this study lay the groundwork for further research uncovering
racial disparities in air pollution in a variety of settings with highly polluting point
sources, informing discussions about environmental justice, and providing guidance to
policymakers aiming to improve public health and reduce inequality.
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Tables and Figures

Table 1: Effect of vessels in ports on air pollutant concentrations in the United States,
instrumental variable estimation

Dependent variable: log of pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)

Panel A: Vessel tonnage

Log of Vessel Tonnage 0.37∗∗∗ 0.25∗∗ 0.43∗∗ 0.43∗∗
(0.13) (0.12) (0.17) (0.19)

Adjusted R2 0.50 0.72 0.27 0.47
Observations 502,631 587,833 423,200 431,574

Panel B: Number of vessels

Number of Vessels 0.030∗∗ 0.023∗∗ 0.043∗∗ 0.042∗∗
(0.012) (0.012) (0.019) (0.021)

Adjusted R2 0.54 0.74 0.37 0.48
Observations 502,631 587,833 423,200 431,574

Notes: Panel A presents the instrumental variable estimation of the effect of log vessel tonnage on air pollutant
concentrations within a 25-mile radius of ports in the United States. Panel B presents the same instrumental
variable estimation using the number of vessels in ports as the variable of interest. Each entry presents an
individual regression on a local air pollutant. The endogenous variables, vessel tonnage and the number of
vessels, are instrumented by an indicator of seven-day lagged cyclones at least 500-mile distant from ports.
All regressions include weather controls, such as the quadratics of maximum, minimum, and dew point tem-
perature, precipitation, wind speed, and relative wind direction between a monitor-port pair. All regressions
also include county-by-year, month, day-of-week, holiday, and monitor-port fixed effects. An observation is a
monitor-port-day. Standard errors are clustered by monitor-port pair and day. Significance levels are indicated
by *** 1%, ** 5%, and * 10%.
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Table 2: Effect of air pollution on hospitalizaton rates in California port areas, instru-
mental variable estimation

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: Overall population

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.05∗∗∗ 0.01∗∗∗ 0.003∗∗∗ 0.01∗∗∗
(0.002) (0.003) (0.01) (0.003) (0.001) (0.003)

NO2 (ppb) 0.28∗∗∗ 0.34∗∗∗ 1.04∗∗∗ 0.37∗∗∗ 0.09∗∗∗ 0.23∗∗∗
(0.05) (0.07) (0.19) (0.07) (0.03) (0.07)

PM2.5 (�g/m3) 0.35∗∗∗ 0.42∗∗∗ 1.28∗∗∗ 0.43∗∗∗ 0.10∗∗ 0.26∗∗∗
(0.06) (0.10) (0.26) (0.09) (0.04) (0.09)

SO2 (ppb) 7.36∗∗∗ 9.25∗∗∗ 27.47∗∗∗ 9.99∗∗∗ 2.68∗∗∗ 6.95∗∗∗
(1.36) (2.11) (5.57) (1.98) (0.85) (2.04)

Panel B: Black

CO (ppb) 0.04∗∗∗ 0.03∗∗∗ 0.09∗∗∗ 0.03∗∗∗ 0.004 −0.0001
(0.01) (0.01) (0.02) (0.01) (0.004) (0.01)

NO2 (ppb) 0.83∗∗∗ 1.03∗∗∗ 2.73∗∗∗ 0.71∗∗∗ 0.14 0.08
(0.20) (0.17) (0.50) (0.22) (0.10) (0.23)

PM2.5 (�g/m3) 1.07∗∗∗ 1.22∗∗∗ 3.45∗∗∗ 0.73∗∗∗ 0.07 −0.09
(0.24) (0.22) (0.62) (0.27) (0.12) (0.28)

SO2 (ppb) 23.44∗∗∗ 35.53∗∗∗ 85.74∗∗∗ 17.99∗∗∗ 4.50 4.55
(5.28) (5.13) (14.16) (6.11) (2.80) (6.34)

Panel C: White

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.02∗∗∗ 0.001 0.01∗∗
(0.002) (0.002) (0.01) (0.01) (0.002) (0.01)

NO2 (ppb) 0.21∗∗∗ 0.21∗∗∗ 0.80∗∗∗ 0.42∗∗∗ 0.03 0.29∗∗
(0.05) (0.05) (0.17) (0.12) (0.06) (0.13)

PM2.5 (�g/m3) 0.29∗∗∗ 0.28∗∗∗ 1.04∗∗∗ 0.55∗∗∗ 0.05 0.37∗∗
(0.08) (0.07) (0.24) (0.17) (0.08) (0.19)

SO2 (ppb) 4.68∗∗∗ 5.23∗∗∗ 18.26∗∗∗ 10.01∗∗∗ 1.22 8.12∗∗
(1.47) (1.24) (4.48) (3.17) (1.46) (3.43)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on contemporaneous
hospitalization rate for the overall population, Blacks, and whites. Each entry presents an individual regression of
an air pollutant on an illness category. Pollution concentrations are instrumented by fitted vessel tonnage in ports,
wind direction, wind speed, and their interactions. All regressions include weather controls, such as the quadratics
of maximum, minimum, and dew point temperature, and precipitation. All regressions also include county-by-year,
month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard
errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table 3: Effect of one additional vessel in a port over an entire year on hospitalizations
and medical costs in California

All
Respiratory

All
Heart

All
Psychiatric

(1) (2) (3)

Panel A: Hospital visits per million residents

Black 2,400 510 130
White 520 280 230
Overall Population 780 280 200

Panel B: Medical costs per capita (2017 USD)

Black 21 5 1
White 5 3 2
Overall Population 7 3 2

Notes: Panel A presents the back-of-the-envelope calculations of the effect of one additional vessel in port
on annual hospitalizations, based on the instrumental variable estimates in Tables 1 and 2. Panel B presents
the medical costs associated with the hospitalizations in Panel A based on the payment data from the Centers
for Medicare and Medicaid Services. The average medical costs are $8,917 for psychiatric illnesses, $8,715 for
respiratory illnesses, and $9,679 for heart-related illnesses. Based on the U.S. 2010 Decennial Census, the total
population residing in the zip codes within 25 miles of California’s major ports is 15.08 million, where 1.12 million
are Black, and 5.07 million are white. All numbers are rounded to two significant figures.

Table 4: Placebo test on the effect of the cyclone instrument onair pollutant concentrations
in distant areas

Dependent variable: log of pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)
Tropical Cyclone 0.01 −0.01 −0.01 −0.03

(0.01) (0.01) (0.01) (0.02)
Adjusted R2 0.47 0.77 0.40 0.54
Observations 85,970 141,201 101,324 61,458

Notes: This table presents the placebo test on regressing the instrumental variable of seven-day lagged cyclones
that are at least 500-mile distant from ports on air pollutant concentrations in certain areas that are far from
ports (i.e., 75–100 miles from major U.S. ports). Each column presents an individual regression on a local air
pollutant. All regressions include weather controls, such as quadratics of maximum, minimum, and dew point
temperatures, precipitation, wind speed, and wind direction. All regressions also include county-by-year,
month, day-of-week, holiday, and pollution monitor fixed effects. An observation is a monitor-day. Standard
errors are clustered by pollution monitor and day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table 5: Effect of California Ocean-Going Vessel At-Berth Regulation on air pollution,
RDD estimation

Dependent variable: residual of log pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)
CA Regulation −0.12∗ −0.20∗∗ 0.17 −0.17

(0.07) (0.09) (0.10) (0.21)
Date 0.005∗∗∗ 0.004∗∗ 0.002 0.01∗∗

(0.002) (0.002) (0.002) (0.004)
CA Regulation × Date −0.01∗∗∗ −0.004∗ −0.01∗∗∗ −0.01

(0.003) (0.002) (0.003) (0.01)
Pre-policy Mean 608.01 18.36 14.54 1.83
Observations 4,710 5,288 2,928 3,171

Notes: This table presents the second-stage augmented local linear RDD estimation of the effect of the Cal-
ifornia at-berth regulation on air pollutant concentrations. The second-stage RDD dependent variable is
taken from the residuals by regressing log pollution concentrations on weather controls (i.e., the quadratics of
maximum, minimum, and dew point temperature, precipitation, wind speed, and relative wind direction
between a monitor-port pair), fixed effects (i.e., county-by-year, month, day-of-week, holiday, and port-monitor
pair), and log vessel tonnage (instrumented by seven-day lagged and 500-mile distant cyclones from ports).
The local linear bandwidth is specified as 65 days on both sides of the policy threshold. An observation is a
monitor-port-day. Standard errors are clustered by monitor-port pair and normalized day. Significance levels
are indicated by *** 1%, ** 5%, and * 10%.

Table 6: Effect of California Ocean-Going Vessel At-Berth Regulation on annual hospi-
talizations and medical costs

All
Respiratory

All
Heart

All
Psychiatric

(1) (2) (3)

Panel A: Hospital visits per million residents

Black -7,900 -1,600 -420
White -1,700 -920 -740
Overall Population -2,500 -920 -640

Panel B: Medical costs per capita (2017 USD)

Black -69 -15 -4
White -15 -9 -7
Overall Population -22 -9 -6

Notes: Panel A presents the back-of-the-envelope calculations of the effect of the California at-berth regulation
on annual hospitalizations based on the estimates in Tables 2 and 5. Panel B presents the medical costs associated
with the hospital visits in Panel A based on the payment data from Centers for Medicare and Medicaid Services.
The average medical costs are $8,917 for psychiatric illnesses, $8,715 for respiratory illnesses, and $9,679 for
heart-related illnesses. Based on the US 2010 Decennial Census, total population residing in the zip codes within
25 miles of the major ports in California is 15.08 million, in which 1.12 million are Black and 5.07 million are
white. All numbers are rounded to two significant figures.
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Figure 1: (a) Locations of major ports and tracks of tropical cyclones. (b) Illustrative
shipping routes and a tropical cyclone track.

Notes: Panel (a) plots the locations of major ports (red diamonds) in the United States and the tracks
of tropical cyclones (colored dots) in the Northeast and North Central Pacific Ocean and the Atlantic
Ocean in 2016. The gray × dots indicate the cyclone observations within 500 miles of ports or on land.
Panel (b) plots two shipping routes to U.S. ports and the track of Hurricane Leslie in 2012. The solid lines
indicate the distorted routes in response to the cyclone, while the dashed lines represent the normal
routes. The grey dots and round represent Hurricane Leslie. The hurricane data are obtained from the
NOAA National Hurricane Center, and the shipping routes are approximated based on data from the
online tool: https://www.shipmap.org.
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Figure 2: (a) Distribution of population by distance to major California ports. (b)
Distribution of the population in California port areas by decile of PM2.5 concentration.

Notes: Panel (a) plots population distribution in the California port areas by the distance between census
tract and port, separately for non-Hispanic Black and white populations. We obtain population data
at the census tract level and assign a distance between a census tract to its nearest mapped port to all
race-specific populations within the census tract. Panel (b) plots population distribution in the California
port areas by decile of PM2.5 concentration, separately for non-Hispanic Black and white population.
Larger pollution deciles represent higher pollution exposures. The data are acquired from the U.S. 2010
Decennial Census and U.S. EPA Air Quality System.

0−12.5 Miles to Ports 12.5−25 Miles to Ports

0 300 600 900 0 300 600 900

0.000

0.002

0.004

0.006

Annual Hospitalization Rate (Hospital Visits per 1,000 Residents)

D
en

si
ty

Black

White

Figure 3: Distribution of annual hospitalizations rates in California port areas.

Notes: This figure plots the distribution density of annual hospitalization rates separately for non-
Hispanic Black and white population in the areas within 0–12.5 miles from ports and 12.5–25 miles from
ports in California. The hospitalization rate is calculated as the annual total hospital visits related to
psychiatric, respiratory, and heart-related illnesses in each zip code for 2010–2016. The dashed lines
represent sample means. The gap between the dashed lines in the left panel is 87, while the gap in the
right panel is 81. We exclude the zip codes having less than 1,000 race-specific populations in our analysis.
The data are obtained from the Office of Statewide Health Planning and Development of California.
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Figure 4: Distribution of local weather in port areas.

Notes: This figure presents the density of weather measures in the U.S. port areas, separately for the
month-days when there exist seven-day lagged and 500-mile distant tropical cyclones in the ocean and
the same month-days when there are no such cyclones. The dashed lines represent the means of the
distributions. We do not plot the observations with precipitation greater than 50. The data are obtained
from the NOAA Integrated Surface Database.

44



PM2.5 SO2

CO NO2

Black White Black White

Black White Black White

0

1

2

3

0

50

100

150

0.00

0.05

0.10

0

1

2

3

4

M
ar

gi
na

l e
ffe

ct
 o

f p
ol

lu
tio

n 
on

 h
os

pi
ta

liz
at

io
n 

ra
te

Figure 5: Marginal effects of pollution on hospitalization rates by race in zip codes with
a similar distance to ports and pollution exposures.

Notes: This figure plots marginal effects of pollution on total hospitalization rates related to respiratory,
heart, and psychiatric illnesses by race in zip codes with a similar distance to ports (within 11–20 miles to
ports) and pollution exposures (with 11–12 �g/m3 annual PM2.5 concentrations). Error bars correspond
to 95% confidence intervals, where standard errors from regressions are clustered by port-zip code and
day. An observation is a zip code-port-day.
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Figure 6: Residuals of NO2 concentrations for the RDD analysis.

Notes: This figure plots daily average residuals across all monitor-port pairs for NO2. The grey solid
lines are linear fitted lines of the residuals. The policy date is normalized to be zero, indicated by the
vertical dotted lines. A few extreme values are not shown in the figure.
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A Supplementary Tables (For Online Publication)

Table A.1: Summary statistics of the major ports in United States

Vessel Tonnage (100,000 Mt) Vessel Counts

Mean
Standard
Deviation Min Max Mean

Standard
Deviation Min Max

Houston, TX 12.38 3.39 1.34 36 53.93 12.24 8.00 157
Long Beach, CA 9.77 3.44 0.00 25 18.75 5.78 0.00 55
New York, NY and NJ 8.23 2.81 0.41 49 21.02 7.21 1.00 142
Los Angeles, CA 7.41 2.99 0.00 26 15.25 5.64 0.00 49
South Louisiana, LA, Port of 7.18 2.75 0.98 18 22.77 7.25 4.00 51
New Orleans, LA 4.89 1.55 0.29 12 19.39 5.69 2.00 46
Baltimore, MD 4.87 2.10 0.09 16 12.91 4.24 1.00 50
Savannah, GA 3.94 1.74 0.00 12 10.51 3.49 0.00 29
Oakland, CA 3.71 1.94 0.00 24 6.92 3.50 0.00 53
Seattle, WA 3.53 1.48 0.24 11 24.43 5.05 1.00 46
Miami, FL 3.51 1.88 0.11 11 24.39 7.17 5.00 57
Port Everglades, FL 3.33 2.24 0.04 14 17.75 4.40 4.00 40
Charleston, SC 3.23 1.19 0.00 9 8.40 2.90 0.00 26
Tacoma, WA 2.85 1.49 0.04 14 14.43 4.46 1.00 34
Beaumont, TX 2.70 1.20 0.00 8 7.27 2.93 0.00 20
Mobile, AL 2.68 1.03 0.06 7 12.17 3.95 1.00 31
Jacksonville, FL 2.20 1.00 0.00 8 8.07 3.03 0.00 23
Portland, OR 1.80 1.00 0.00 7 7.66 3.92 0.00 29
Philadelphia, PA 1.61 1.02 0.00 6 3.76 2.07 0.00 21
Tampa, FL 1.61 0.82 0.00 6 7.56 3.30 0.00 25
Baton Rouge, LA 1.47 0.79 0.00 6 5.27 2.48 0.00 17
Galveston, TX 1.46 1.05 0.00 7 10.92 4.69 0.00 31
Lake Charles, LA 1.43 0.72 0.00 4 7.70 3.35 0.00 23
San Diego, CA 0.83 0.67 0.00 6 4.34 2.37 0.00 15
Port Hueneme, CA 0.46 0.40 0.00 2 1.67 1.28 0.00 6
Palm Beach, FL 0.33 0.22 0.00 3 6.16 3.25 0.00 19
San Francisco, CA 0.30 0.48 0.00 4 0.71 1.07 0.00 11

Notes: This table presents the summary statistics of daily vessel tonnage and daily mean vessel counts for the
27 major ports in the United States. The data are obtained from the U.S. Army Corps of Engineers.
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Table A.2: ICD-9-CM, ICD-10-CM, and MS-DRG codes

ICD-9 Code ICD-10 Code MS-DRG Code

Panel A: Respiratory

Asthma 493 J45 202, 203
Upper Respiratory 460-465 J00-J06 011-013, 152, 153

All Respiratory 460-519 J00-J99
011-013, 152-156, 177-182,
186-206, 793, 865, 866,
919-921, 928, 929, 951

Panel B: Heart

All Heart 410-429 I20-I52
175, 176, 222-227, 280-285,
288-293, 296-298, 302, 303,
306-311, 314-316, 793

Panel C: Psychiatric

Anxiety 300.0, 300.2 F40, F41 880, 882

All Psychiatric

300.0, 300.2, 296.0,
296.4-296.9, 309.0,
309.2-309.4, 295, 308.9,
309.8, 314.0, 314.2, 314.9,
312.0-312.2, 312.8, 312.9,
313.8, 299.0, 299.8, 312.3,
307.9, 311, 296.2, 296.3,
296.8, 296.9, 298.0, 300.4,
625.4, 301.10, 301.12,
301.13, 301.0, 301.3,
301.4, 301.6-301.9, 301.50,
301.59

F43.2, F43.8, F43.9, F20,
F22-F25, F28, F29, F43.0,
F43.1, F90, F91, F84.0,
F84.5, F84.8, F63, F32,
F33, F34.0, F34,1, F60

880-886

Panel D: Placebo

Arterial Embolism 444 I74 .
Neck Wound 874 S11 .
Appendicitis 540-543 K35-K38 .

Notes: Table presents the ICD-9-CM, and ICD-10-CM codes for counting hospital visits for the illness
groups examined in the paper and the corresponding MS-DRG code for calculating average medical
costs for each illness group. The codes include the ranges of themselves and any subcategories. We do
not calculate medical costs for the placebo diseases.
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Table A.3: Summary statistics of main variables

Within 25 Miles of US Ports Within 25 Miles of CA Ports

Mean
Standard
Deviation Min Max Mean

Standard
Deviation Min Max

Panel A: Port

Tonnage (100,000 Mt) 3.63 3.47 0.00 49.30 3.75 4.21 0.00 26.07
Vessel Counts 13.11 11.59 0.00 157.00 7.94 7.77 0.00 55.00

Panel B: Pollution

CO Max (ppb) 808.17 661.10 0.00 12950.00 900.77 769.08 0.00 12950.00
COMean (ppb) 485.97 360.64 0.00 4994.11 525.60 394.61 0.00 4994.11
NO2 Max (ppb) 25.17 15.48 0.00 268.00 28.11 16.63 0.00 163.00
NO2 Mean (ppb) 13.27 9.97 0.00 83.43 15.66 10.91 0.00 83.43
O3 Max (ppb) 37.52 14.69 0.00 144.00 37.04 13.19 0.00 114.00
O3 Mean (ppb) 26.98 11.73 0.00 100.71 26.46 11.23 0.00 84.77
PM2.5 Max (�g/m3) 11.58 7.17 0.00 265.90 13.25 7.93 0.00 112.40
PM2.5 Mean (�g/m3) 10.67 6.66 0.00 90.30 11.56 7.47 0.00 90.30
SO2 Max (ppb) 6.01 9.72 0.00 346.65 3.03 3.26 0.00 96.50
SO2 Mean (ppb) 2.32 3.29 0.00 78.61 1.44 1.48 0.00 20.90

Panel C: Health (hospital visits per million residents)

Asthma . . . . 65.92 63.32 0.00 3572.04
Upper Respiratory . . . . 41.46 49.29 0.00 3912.23
All Respiratory . . . . 222.98 145.24 0.00 12791.29
All Heart . . . . 140.10 92.56 0.00 1339.42
Anxiety . . . . 46.08 47.71 0.00 743.83
All Psychiatric . . . . 138.82 108.83 0.00 2231.48
Arterial Embolism . . . . 0.66 5.14 0.00 297.53
Neck Wound . . . . 0.23 3.10 0.00 392.62
Appendicitis . . . . 4.03 12.72 0.00 431.78

Notes: This table presents summary statistics of the main variables, including mean, standard deviation,
minimum, and maximum. The variables are split into three panels, i.e., port, pollution, and health. The data are
obtained from the U.S. Army Corps of Engineers, the U.S. EPA Air Quality System, and the Office of Statewide
Health Planning and Development of California.

Table A.4: Summary statistics of hospitalization rate by race group

Respiratory Heart Psychiatric

Asthma
Upper

Respiratory
All

Respiratory
All

Heart Anxiety
All

Psychiatric

Panel A: Black

Mean 197.97 91.91 513.65 234.94 66.26 272.53
Std. Dev. 291.81 201.14 548.76 318.45 169.37 404.21
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 5771.08 4488.62 16992.63 4664.18 2991.03 6511.63

Panel B: White

Mean 78.47 33.89 286.53 227.15 74.07 243.01
Std. Dev. 133.41 90.76 312.34 235.70 125.22 304.28
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 4248.09 3992.02 9398.50 4436.56 2851.71 8458.65

Notes: This table presents summary statistics of hospitalization rates (i.e., hospital visits per million residents)
by race group, including mean, standard deviation, minimum, and maximum. The data are obtained Office of
Statewide Health Planning and Development of California.
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Table A.5: Summary statistics of hospitalization rate by age group

Respiratory Heart Psychiatric

Asthma
Upper

Respiratory
All

Respiratory
All

Heart Anxiety
All

Psychiatric

Panel A: Ages 5 and under

Mean 72.39 244.92 479.01 8.16 0.70 5.42
Std. Dev. 185.40 360.17 589.39 61.62 17.46 50.16
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 4634.99 5867.56 11973.74 1988.07 983.28 2320.19

Panel B: Ages between 5 and 19

Mean 56.02 49.55 146.44 4.68 13.32 54.33
Std. Dev. 116.40 109.09 220.10 33.52 57.33 132.52
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 4779.84 4490.15 13035.92 1937.98 1937.98 3875.97

Panel C: Ages between 20 and 64

Mean 58.16 23.87 155.89 69.97 50.86 148.31
Std. Dev. 71.24 42.25 141.49 73.55 60.99 134.39
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 3310.12 4280.33 13640.00 1416.43 1045.21 2351.71

Panel D: Ages 65 and above

Mean 120.55 18.44 573.24 780.55 96.32 285.57
Std. Dev. 199.89 76.38 486.90 529.20 175.61 345.58
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 3791.47 2521.01 11764.71 7582.94 3731.34 6529.85

Notes: This table presents summary statistics of hospitalization rates (i.e., hospital visits per million residents)
by age group, including mean, standard deviation, minimum, and maximum. The data are obtained Office of
Statewide Health Planning and Development of California.

Table A.6: Summary statistics of hospitalization rate by sex group

Respiratory Heart Psychiatric

Asthma
Upper

Respiratory
All

Respiratory
All

Heart Anxiety
All

Psychiatric

Panel A: Male

Mean 52.42 39.32 207.14 151.64 33.22 114.51
Std. Dev. 70.79 59.99 166.07 128.72 54.41 126.34
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 3523.27 3252.25 11518.40 2088.62 1135.07 2683.96

Panel B: Female

Mean 79.31 43.74 238.96 129.20 58.69 162.38
Std. Dev. 90.99 64.77 187.83 111.88 72.75 149.32
Min 0.00 0.00 0.00 0.00 0.00 0.00
Max 3621.21 4782.73 14006.56 1642.58 1314.06 2956.64

Notes: This table presents summary statistics of hospitalization rates (i.e., hospital visits per million residents)
by sex group, including mean, standard deviation, minimum, and maximum. The data are obtained Office of
Statewide Health Planning and Development of California.
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TableA.7: Summary statistics of hospitalization rate by timewindow following pollution
exposure

All
Respiratory

All
Heart

All
Psychiatric

Panel A: 3-day Time Window

Mean 668.91 420.41 416.56
Std. Dev. 354.38 199.19 250.32
Min 0.00 0.00 0.00
Max 34903.90 3044.14 4077.47

Panel B: 5-day Time Window

Mean 1114.78 700.86 694.46
Std. Dev. 555.92 294.57 383.89
Min 0.00 0.00 0.00
Max 49124.00 4566.21 5861.37

Panel C: 9-day Time Window

Mean 2006.08 1261.76 1250.37
Std. Dev. 954.46 485.81 649.77
Min 0.00 0.00 0.00
Max 66643.99 7549.47 9599.05

Panel D: 14-day Time Window

Mean 3119.73 1963.07 1945.63
Std. Dev. 1445.75 722.09 979.93
Min 0.00 0.00 0.00
Max 78278.62 10776.26 14186.20

Panel E: 21-day Time Window

Mean 4677.94 2944.93 2919.29
Std. Dev. 2125.54 1053.05 1441.61
Min 0.00 0.00 0.00
Max 86205.14 15220.70 20642.20

Panel F: 28-day Time Window

Mean 6235.21 3926.76 3893.20
Std. Dev. 2798.02 1382.92 1902.21
Min 0.00 0.00 0.00
Max 89607.08 19969.56 26333.67

Notes: This table presents summary statistics of hospitalization rates (i.e., hospital visits per million residents) by
time window following pollution exposure, including mean, standard deviation, minimum, and maximum. The
data are obtained Office of Statewide Health Planning and Development of California.
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Table A.8: Summary statistics of hospitalization rate by data specification

All
Respiratory

All
Heart

All
Psychiatric

Panel A: Principal Diagnosis

Mean 86.86 32.09 29.23
Std. Dev. 76.26 38.47 40.36
Min 0.00 0.00 0.00
Max 6089.47 728.97 999.29

Panel B: Patient Discharge Data (PDD)

Mean 78.88 77.26 60.22
Std. Dev. 67.20 61.90 61.71
Min 0.00 0.00 0.00
Max 2652.14 1231.35 1142.04

Panel C: Emergency Department Data (EDD)

Mean 127.12 46.38 68.94
Std. Dev. 112.51 49.86 72.42
Min 0.00 0.00 0.00
Max 12519.14 791.48 1190.12

Panel D: Ambulatory Surgery Center Data (ASCD)

Mean 16.98 16.47 9.66
Std. Dev. 31.06 29.79 23.76
Min 0.00 0.00 0.00
Max 785.24 691.92 691.92

Notes: Table presents summary statistics of hospitalization rate in various data specifications, including mean,
standard deviation, minimum, and maximum. Panels A–C show statistics for different OSHPD data sets. Panel
D presents the statistics by only counting principal diagnoses (i.e., secondary diagnoses are excluded). The data
are obtained Office of Statewide Health Planning and Development of California.

Table A.9: Average pollution exposure weighted by Black and white population in port
areas

Black White

CO (ppb) 419.19 402.06
NO2 (ppb) 15.25 13.68
PM2.5 (�g/m3) 10.54 10.02
SO2 (ppb) 0.61 0.58

Notes: This table presents average pollution exposure for Blacks and
whites for 2010–2016, weighted by the zip code-level Black and white
population. The population data are obtained from U.S. 2010 Decen-
nial Census. The pollution data are from the U.S. EPA Air Quality
System.
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Table A.10: Balance statistics for weather variables in port areas

Standardized
Mean Differences

Variance
Ratio

Kolmogorov-Smirnov
Statistics

Wind Speed (m/s) -0.012 1.070 0.019
Wind Direction (degree) -0.011 1.041 0.012
Max Temperature (C) 0.006 0.989 0.009
Min Temperature (C) -0.005 0.998 0.010
Precipitation (mm) -0.015 1.016 0.008
Dew Point Temperature (C) -0.015 0.985 0.014

Notes: This table presents the balance statistics of weather variables in the U.S. port areas, separately for the
month-days when there exist seven-day lagged and 500-mile distant tropical cyclones in the ocean and the
same month-days when there are no such cyclones. Balanced sub-samples indicate that standardized mean
differences are close to zero, variance ratios are close to one, and Kolmogorov-Smirnov (KS) statistics are close
to zero. The data are obtained from the NOAA Integrated Surface Database.

Table A.11: First-stage relationship between tropical cyclones and port traffic

Dependent variable: port traffic

(1) (2) (3) (4)

Panel A: Log of vessel tonnage

Tropical Cyclone −0.04∗∗∗ −0.04∗∗∗ −0.05∗∗∗ −0.04∗∗∗
(0.01) (0.01) (0.01) (0.01)

First-Stage F Stat. 32.88 37.42 36.52 30.89
Anderson-Rubin Stat. P-val 0.0021 0.0402 0.0080 0.0268
Stock-Wright S Stat. P-val 0.0012 0.0216 0.0066 0.0154
Observations 502,631 587,833 423,200 431,574

Panel B: Number of vessels

Tropical Cyclone −0.54∗∗∗ −0.48∗∗∗ −0.48∗∗∗ −0.45∗∗∗
(0.13) (0.10) (0.13) (0.12)

First-Stage F Stat. 16.69 20.78 12.96 13.64
Anderson-Rubin Stat. P-val 0.0021 0.0402 0.0080 0.0268
Stock-Wright S Stat. P-val 0.0012 0.0216 0.0066 0.0154
Observations 502,631 587,833 423,200 431,574

Notes: Panel A presents the first-stage results for the instrumental variable estimation in Panel A in Table 1, where
the port traffic is measured as log of daily vessel tonnage. Panel B presents the the first-stage results for the instru-
mental variable estimation Panel B, using the number of vessels as the variable of interest. Each entry orresponds
to an individual regression. The instrument is an indicator of seven-day lagged and 500-mile distant cyclones in
the ocean. All regressions include weather controls, such as the quadratics of maximum temperature, minimum
temperature, dew point temperature, precipitation, wind speed, and relative wind direction between a monitor-port
pair. All regressions also include county-by-year, month, day-of-week, holiday, and monitor-port pair fixed effects.
An observation is a monitor-port-day. Standard errors are clustered by monitor-port pair and day. Significance levels
are indicated by *** 1%, ** 5%, and * 10%.
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Table A.12: 2SLS estimation of the effect of vessels in port on ozone pollution

Dependent variable: log of pollution concentration
O3

Panel A: Vessel tonnage

Log of Vessel Tonnage −0.39∗∗
(0.17)

Adjusted R2 0.19
Observations 827,569

Panel B: Number of vessels

Number of Vessels −0.042∗∗
(0.019)

Adjusted R2 0.27
Observations 827,569

Panel A presents the instrumental variable estimation of the effect of log vessel tonnage on air
pollutant concentrations within a 25-mile radius of ports in the United States. Panel B presents
the same instrumental variable estimation using the number of vessels in ports as the variable
of interest. Each entry presents an individual regression on a local air pollutant. The endoge-
nous variables, vessel tonnage and the number of vessels, are instrumented by an indicator of
seven-day lagged cyclones that are at least 500-mile distant from ports. All regressions include
weather controls, such as the quadratics of maximum, minimum, and dew point temperature,
precipitation, wind speed, and relative wind direction between a monitor-port pair. All regres-
sions also include county-by-year, month, day-of-week, holiday, and monitor-port fixed effects.
An observation is a monitor-port-day. Standard errors are clustered by monitor-port pair and
day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.

Table A.13: OLS estimation of the effect of vessel tonnage in port on air pollution

Dependent variable: log of pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)
Log of Vessel Tonnage 0.001 0.01∗∗∗ 0.01 0.01∗

(0.003) (0.004) (0.003) (0.01)
Adjusted R2 0.57 0.75 0.46 0.50
Observations 502,631 587,833 423,200 431,574

Notes: This table presents the OLS estimation of the effect of vessel tonnage in port on air pollution. Each
column presents an individual regression on a local air pollutant. All regressions include weather controls,
such as the quadratics of maximum temperature, minimum temperature, dew point temperature, precipitation,
wind speed, and relative wind direction between a monitor-port pair. All regressions also include county-by-
year, month, day-of-week, holiday, and monitor-port pair fixed effects. An observation is a monitor-port-day.
Standard errors are clustered by monitor-port pair and day. Significance levels are indicated by *** 1%, ** 5%,
and * 10%.
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Table A.14: Effect of air pollution on hospitalizaton rates for the overall population in
California port areas, instrumental variable estimation

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: CO

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.05∗∗∗ 0.01∗∗∗ 0.003∗∗∗ 0.01∗∗∗
(0.002) (0.003) (0.01) (0.003) (0.001) (0.003)

Adjusted R2 0.39 0.34 0.47 0.35 0.22 0.40
First-stage F Stat. 57.71 57.71 57.71 57.71 57.71 57.71
Anderson-Rubin Stat. P-val 3.35e-10 3.35e-10 3.35e-10 3.35e-10 3.35e-10 3.35e-10
Stock-Wright S Stat. P-val 4.64e-06 4.64e-06 4.64e-06 4.64e-06 4.64e-06 4.64e-06
Observations 1,782,266 1,782,266 1,782,266 1,782,266 1,782,266 1,782,266

Panel B: NO2

NO2 (ppb) 0.28∗∗∗ 0.34∗∗∗ 1.04∗∗∗ 0.37∗∗∗ 0.09∗∗∗ 0.23∗∗∗
(0.05) (0.07) (0.19) (0.07) (0.03) (0.07)

Adjusted R2 0.39 0.33 0.47 0.35 0.22 0.40
First-stage F Stat. 78.53 78.53 78.53 78.53 78.53 78.53
Anderson-Rubin Stat. P-val 2.75e-09 2.75e-09 2.75e-09 2.75e-09 2.75e-09 2.75e-09
Stock-Wright S Stat. P-val 1.50e-05 1.50e-05 1.50e-05 1.50e-05 1.50e-05 1.50e-05
Observations 1,812,210 1,812,210 1,812,210 1,812,210 1,812,210 1,812,210

Panel C: PM2.5

PM2.5 (�g/m3) 0.35∗∗∗ 0.42∗∗∗ 1.28∗∗∗ 0.43∗∗∗ 0.10∗∗ 0.26∗∗∗
(0.06) (0.10) (0.26) (0.09) (0.04) (0.09)

Adjusted R2 0.39 0.34 0.47 0.35 0.22 0.40
First-stage F Stat. 28.42 28.42 28.42 28.42 28.42 28.42
Anderson-Rubin Stat. P-val 5.12e-09 5.12e-09 5.12e-09 5.12e-09 5.12e-09 5.12e-09
Stock-Wright S Stat. P-val 1.99e-05 1.99e-05 1.99e-05 1.99e-05 1.99e-05 1.99e-05
Observations 1,720,810 1,720,810 1,720,810 1,720,810 1,720,810 1,720,810

Panel D: SO2

SO2 (ppb) 7.36∗∗∗ 9.25∗∗∗ 27.47∗∗∗ 9.99∗∗∗ 2.68∗∗∗ 6.95∗∗∗
(1.36) (2.11) (5.57) (1.98) (0.85) (2.04)

Adjusted R2 0.39 0.33 0.47 0.35 0.22 0.40
First-stage F Stat. 29.97 29.97 29.97 29.97 29.97 29.97
Anderson-Rubin Stat. P-val 4.80e-10 4.80e-10 4.80e-10 4.80e-10 4.80e-10 4.80e-10
Stock-Wright S Stat. P-val 6.13e-06 6.13e-06 6.13e-06 6.13e-06 6.13e-06 6.13e-06
Observations 1,749,073 1,749,073 1,749,073 1,749,073 1,749,073 1,749,073

Notes: This table presents the detailed results of Panel A in Table 2. Each entry presents an individual regression of an air pollutant
on an illness category. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed,
and their interactions. All regressions include weather controls, such as the quadratics of maximum, minimum, and dew point
temperature, and precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair
fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.15: Effect of air pollution on hospitalizaton rates for Blacks in California port
areas, instrumental variable estimation

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: CO

CO (ppb) 0.04∗∗∗ 0.03∗∗∗ 0.09∗∗∗ 0.03∗∗∗ 0.004 −0.0001
(0.01) (0.01) (0.02) (0.01) (0.004) (0.01)

Adjusted R2 0.17 0.10 0.23 0.13 0.05 0.19
First-stage F Stat. 46.66 46.66 46.66 46.66 46.66 46.66
Anderson-Rubin Stat. P-val 0 0 0 0 0 0
Stock-Wright S Stat. P-val 0.000400 0.000400 0.000400 0.000400 0.000400 0.000400
Observations 877,508 877,508 877,508 877,508 877,508 877,508

Panel B: NO2

NO2 (ppb) 0.83∗∗∗ 1.03∗∗∗ 2.73∗∗∗ 0.71∗∗∗ 0.14 0.08
(0.20) (0.17) (0.50) (0.22) (0.10) (0.23)

Adjusted R2 0.17 0.10 0.23 0.13 0.05 0.19
First-stage F Stat. 61.27 61.27 61.27 61.27 61.27 61.27
Anderson-Rubin Stat. P-val 5.31e-11 5.31e-11 5.31e-11 5.31e-11 5.31e-11 5.31e-11
Stock-Wright S Stat. P-val 0.000385 0.000385 0.000385 0.000385 0.000385 0.000385
Observations 888,231 888,231 888,231 888,231 888,231 888,231

Panel C: PM2.5

PM2.5 (�g/m3) 1.07∗∗∗ 1.22∗∗∗ 3.45∗∗∗ 0.73∗∗∗ 0.07 −0.09
(0.24) (0.22) (0.62) (0.27) (0.12) (0.28)

Adjusted R2 0.17 0.10 0.23 0.13 0.05 0.19
First-stage F Stat. 24.07 24.07 24.07 24.07 24.07 24.07
Anderson-Rubin Stat. P-val 4.35e-10 4.35e-10 4.35e-10 4.35e-10 4.35e-10 4.35e-10
Stock-Wright S Stat. P-val 0.000605 0.000605 0.000605 0.000605 0.000605 0.000605
Observations 847,682 847,682 847,682 847,682 847,682 847,682

Panel D: SO2

SO2 (ppb) 23.44∗∗∗ 35.53∗∗∗ 85.74∗∗∗ 17.99∗∗∗ 4.50 4.55
(5.28) (5.13) (14.16) (6.11) (2.80) (6.34)

Adjusted R2 0.17 0.10 0.23 0.13 0.05 0.19
First-stage F Stat. 20.99 20.99 20.99 20.99 20.99 20.99
Anderson-Rubin Stat. P-val 0 0 0 0 0 0
Stock-Wright S Stat. P-val 0.000331 0.000331 0.000331 0.000331 0.000331 0.000331
Observations 872,257 872,257 872,257 872,257 872,257 872,257

Notes: This table presents the detailed results of Panel B in Table 2. Each entry presents an individual regression of an air pollutant
on an illness category. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed,
and their interactions. All regressions include weather controls, such as the quadratics of maximum, minimum, and dew point
temperature, and precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair
fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.16: Effect of air pollution on hospitalizaton rates for whites in California port
areas, instrumental variable estimation

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: CO

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.02∗∗∗ 0.001 0.01∗∗
(0.002) (0.002) (0.01) (0.01) (0.002) (0.01)

Adjusted R2 0.17 0.09 0.34 0.28 0.15 0.32
First-stage F Stat. 59.79 59.79 59.79 59.79 59.79 59.79
Anderson-Rubin Stat. P-val 6.28e-10 6.28e-10 6.28e-10 6.28e-10 6.28e-10 6.28e-10
Stock-Wright S Stat. P-val 7.37e-06 7.37e-06 7.37e-06 7.37e-06 7.37e-06 7.37e-06
Observations 1,657,238 1,657,238 1,657,238 1,657,238 1,657,238 1,657,238

Panel B: NO2

NO2 (ppb) 0.21∗∗∗ 0.21∗∗∗ 0.80∗∗∗ 0.42∗∗∗ 0.03 0.29∗∗
(0.05) (0.05) (0.17) (0.12) (0.06) (0.13)

Adjusted R2 0.17 0.09 0.34 0.28 0.15 0.32
First-stage F Stat. 82.91 82.91 82.91 82.91 82.91 82.91
Anderson-Rubin Stat. P-val 1.73e-08 1.73e-08 1.73e-08 1.73e-08 1.73e-08 1.73e-08
Stock-Wright S Stat. P-val 3.15e-05 3.15e-05 3.15e-05 3.15e-05 3.15e-05 3.15e-05
Observations 1,687,158 1,687,158 1,687,158 1,687,158 1,687,158 1,687,158

Panel C: PM2.5

PM2.5 (�g/m3) 0.29∗∗∗ 0.28∗∗∗ 1.04∗∗∗ 0.55∗∗∗ 0.05 0.37∗∗
(0.08) (0.07) (0.24) (0.17) (0.08) (0.19)

Adjusted R2 0.17 0.09 0.34 0.28 0.15 0.32
First-stage F Stat. 27.86 27.86 27.86 27.86 27.86 27.86
Anderson-Rubin Stat. P-val 2.33e-08 2.33e-08 2.33e-08 2.33e-08 2.33e-08 2.33e-08
Stock-Wright S Stat. P-val 3.70e-05 3.70e-05 3.70e-05 3.70e-05 3.70e-05 3.70e-05
Observations 1,605,247 1,605,247 1,605,247 1,605,247 1,605,247 1,605,247

Panel D: SO2

SO2 (ppb) 4.68∗∗∗ 5.23∗∗∗ 18.26∗∗∗ 10.01∗∗∗ 1.22 8.12∗∗
(1.47) (1.24) (4.48) (3.17) (1.46) (3.43)

Adjusted R2 0.17 0.09 0.33 0.28 0.15 0.32
First-stage F Stat. 34.08 34.08 34.08 34.08 34.08 34.08
Anderson-Rubin Stat. P-val 8.89e-10 8.89e-10 8.89e-10 8.89e-10 8.89e-10 8.89e-10
Stock-Wright S Stat. P-val 9.39e-06 9.39e-06 9.39e-06 9.39e-06 9.39e-06 9.39e-06
Observations 1,624,191 1,624,191 1,624,191 1,624,191 1,624,191 1,624,191

Notes: This table presents the detailed results of Panel C in Table 2. Each entry presents an individual regression of an air pollutant
on an illness category. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed,
and their interactions. All regressions include weather controls, such as the quadratics of maximum, minimum, and dew point
temperature, and precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair
fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.17: OLS estimates of the effect of air pollution on hospitalizaton rates in
California port areas

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: Overall population

CO (ppb) 0.005∗∗∗ 0.003 0.02∗∗∗ 0.01∗∗∗ 0.0004 0.002
(0.001) (0.002) (0.004) (0.001) (0.001) (0.002)

NO2 (ppb) 0.15∗∗∗ −0.0003 0.50∗∗∗ 0.38∗∗∗ 0.07∗∗∗ 0.25∗∗∗
(0.03) (0.05) (0.12) (0.05) (0.02) (0.05)

PM2.5 (�g/m3) 0.08∗∗∗ 0.06 0.23∗∗ −0.03 0.004 0.004
(0.02) (0.04) (0.10) (0.04) (0.02) (0.04)

SO2 (ppb) 1.31∗∗∗ −0.94∗∗ −0.66 0.96∗∗ 0.36∗∗ 0.93∗∗
(0.29) (0.38) (1.06) (0.39) (0.18) (0.45)

Panel B: Black

CO (ppb) 0.01∗∗∗ −0.004 0.03∗∗ 0.01∗∗∗ 0.002 0.01∗
(0.004) (0.004) (0.01) (0.004) (0.002) (0.004)

NO2 (ppb) 0.46∗∗∗ 0.02 1.23∗∗∗ 0.58∗∗∗ 0.18∗∗∗ 0.54∗∗∗
(0.13) (0.11) (0.32) (0.14) (0.06) (0.14)

PM2.5 (�g/m3) 0.32∗∗∗ −0.05 0.38 0.01 0.05 0.02
(0.10) (0.09) (0.26) (0.11) (0.05) (0.11)

SO2 (ppb) 6.74∗∗∗ −0.17 6.37∗ 1.29 −0.25 1.48
(1.60) (1.32) (3.82) (1.37) (0.60) (1.56)

Panel C: White

CO (ppb) 0.01∗∗∗ 0.0000 0.02∗∗∗ 0.02∗∗∗ 0.002 0.01∗∗
(0.001) (0.001) (0.004) (0.002) (0.001) (0.003)

NO2 (ppb) 0.24∗∗∗ −0.02 0.84∗∗∗ 0.80∗∗∗ 0.18∗∗∗ 0.59∗∗∗
(0.04) (0.03) (0.11) (0.09) (0.03) (0.09)

PM2.5 (�g/m3) 0.05 0.005 0.10 −0.04 0.002 0.03
(0.03) (0.02) (0.08) (0.07) (0.03) (0.07)

SO2 (ppb) 1.24∗∗∗ −0.60∗∗ 0.31 1.58∗∗ 0.21 1.00
(0.34) (0.23) (0.87) (0.70) (0.33) (0.75)

Notes: This table presents the OLS estimation of the effect of air pollution on hospitalization rates for the overall
population, Blacks, and whites. Each entry presents an individual regression of an air pollutant on an illness
category. All regressions include weather controls, such as the quadratics of maximum temperature, minimum tem-
perature, dew point temperature, precipitation, wind speed, and relative wind direction between a zip code-port
pair. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects.
An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.18: Effect of air pollution on differences of hospitalizaton rates between Blacks
and whites in California port areas, instrumental variable estimation

Dependent variable: hospitalization rate for Blacks – hospitalization rate for whites
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)
CO (ppb) 0.03∗∗ 0.03∗∗∗ 0.05∗∗ −0.004 −0.002 −0.03

(0.01) (0.01) (0.02) (0.01) (0.01) (0.02)
NO2 (ppb) 0.74∗∗∗ 1.08∗∗∗ 2.05∗∗∗ −0.09 −0.07 −0.62

(0.28) (0.20) (0.58) (0.34) (0.20) (0.43)
PM2.5 (�g/m3) 0.95∗∗ 1.29∗∗∗ 2.59∗∗∗ −0.26 −0.13 −0.93

(0.37) (0.28) (0.78) (0.43) (0.26) (0.58)
SO2 (ppb) 21.41∗∗∗ 32.06∗∗∗ 67.07∗∗∗ −0.32 −1.49 −12.08

(6.88) (5.41) (15.07) (8.52) (4.88) (10.15)

Notes: This table presents the effects of pollution on the differences of hospitalizaton rates between Blacks and whites.
Each entry presents an individual regression of an air pollutant on an illness category. Pollution concentrations are
instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All regressions
include weather controls, such as the quadratics of maximum, minimum, and dew point temperature, and precipitation.
All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An
observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted
by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.

Table A.19: Effect of air pollution on hospitalizaton rates for Hispanics in California
port areas

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)
CO (ppb) 0.01∗∗∗ 0.02∗∗∗ 0.05∗∗∗ 0.01∗∗∗ 0.004∗∗∗ 0.01∗∗∗

(0.002) (0.004) (0.01) (0.002) (0.001) (0.002)
NO2 (ppb) 0.30∗∗∗ 0.49∗∗∗ 1.30∗∗∗ 0.21∗∗∗ 0.10∗∗∗ 0.23∗∗∗

(0.05) (0.10) (0.24) (0.05) (0.03) (0.06)
PM2.5 (�g/m3) 0.35∗∗∗ 0.59∗∗∗ 1.53∗∗∗ 0.20∗∗∗ 0.13∗∗∗ 0.26∗∗∗

(0.06) (0.13) (0.31) (0.06) (0.03) (0.07)
SO2 (ppb) 9.76∗∗∗ 17.16∗∗∗ 43.82∗∗∗ 5.88∗∗∗ 3.56∗∗∗ 7.75∗∗∗

(1.74) (3.46) (7.95) (1.63) (0.96) (1.95)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates for the Hispanic population. Each entry presents an individual regression of an air pollutant on an illness
category. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed,
and their interactions. All regressions include weather controls, such as the quadratics of maximum temperature,
minimum temperature, dew point temperature, and precipitation. All regressions also include county-by-year,
month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard
errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.20: Effect of air pollution on hospitalizaton rates in California port areas by age

Dependent variable: hospital visits/million residents in each age group
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: Ages 5 and under

CO (ppb) 0.01∗∗ 0.06∗∗∗ 0.10∗∗∗ 0.002∗ 0.0005 0.004∗∗∗
(0.01) (0.02) (0.04) (0.001) (0.0004) (0.001)

NO2 (ppb) 0.37∗∗∗ 1.67∗∗∗ 2.37∗∗ 0.06∗ 0.01 0.09∗∗∗
(0.14) (0.50) (0.95) (0.03) (0.01) (0.03)

PM2.5 (�g/m3) 0.42∗∗ 1.73∗∗∗ 2.31∗ 0.05 0.01 0.14∗∗∗
(0.18) (0.64) (1.25) (0.04) (0.01) (0.03)

SO2 (ppb) 9.37∗∗ 37.91∗∗ 44.44 1.60∗ 0.33 2.41∗∗∗
(4.43) (14.92) (28.59) (0.93) (0.29) (0.75)

Panel B: Ages between 5 and 19

CO (ppb) 0.01∗∗∗ 0.02∗∗∗ 0.04∗∗∗ 0.001 −0.0004 0.002
(0.003) (0.01) (0.01) (0.001) (0.001) (0.003)

NO2 (ppb) 0.29∗∗∗ 0.41∗∗∗ 0.79∗∗∗ 0.02 −0.003 0.10
(0.08) (0.12) (0.26) (0.01) (0.02) (0.06)

PM2.5 (�g/m3) 0.36∗∗∗ 0.53∗∗∗ 1.02∗∗∗ 0.02 0.01 0.13∗
(0.10) (0.16) (0.34) (0.02) (0.03) (0.08)

SO2 (ppb) 7.92∗∗∗ 13.48∗∗∗ 23.83∗∗∗ 0.39 −0.15 3.01∗
(2.44) (3.61) (7.63) (0.38) (0.65) (1.81)

Panel C: Ages between 20 and 64

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.01∗∗∗ 0.004∗∗∗ 0.01∗∗
(0.002) (0.002) (0.01) (0.002) (0.002) (0.003)

NO2 (ppb) 0.23∗∗∗ 0.26∗∗∗ 0.87∗∗∗ 0.15∗∗∗ 0.11∗∗∗ 0.18∗∗
(0.04) (0.04) (0.13) (0.05) (0.04) (0.08)

PM2.5 (�g/m3) 0.29∗∗∗ 0.34∗∗∗ 1.10∗∗∗ 0.16∗∗∗ 0.13∗∗∗ 0.19∗
(0.06) (0.05) (0.18) (0.06) (0.05) (0.11)

SO2 (ppb) 6.15∗∗∗ 8.22∗∗∗ 25.36∗∗∗ 4.13∗∗∗ 3.25∗∗∗ 5.42∗∗
(1.29) (1.23) (4.04) (1.30) (1.05) (2.31)

Panel D: Ages 65 and above

CO (ppb) 0.02∗∗∗ 0.002 0.07∗∗∗ 0.08∗∗∗ 0.003 0.03∗∗∗
(0.01) (0.002) (0.02) (0.02) (0.004) (0.01)

NO2 (ppb) 0.48∗∗∗ 0.11∗∗ 1.71∗∗∗ 2.02∗∗∗ 0.11 0.71∗∗∗
(0.12) (0.05) (0.42) (0.42) (0.10) (0.22)

PM2.5 (�g/m3) 0.58∗∗∗ 0.11 2.13∗∗∗ 2.46∗∗∗ 0.10 0.81∗∗∗
(0.16) (0.07) (0.59) (0.58) (0.14) (0.30)

SO2 (ppb) 13.16∗∗∗ 3.37∗∗ 44.62∗∗∗ 50.78∗∗∗ 4.78∗ 22.07∗∗∗
(3.32) (1.50) (11.51) (11.72) (2.71) (6.15)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates by age. Each entry presents an individual regression of an air pollutant on an illness category. Pollution
concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions.
All regressions include weather controls, such as the quadratics of maximum temperature, minimum temperature,
dew point temperature, and precipitation. All regressions also include county-by-year, month, day-of-week, holiday,
and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip
code-port pair and day. Estimates are weighted by the zip code-specific population. Significance levels are indicated
by *** 1%, ** 5%, and * 10%.
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Table A.21: Effect of air pollution on hospitalizaton rates in California port areas by sex

Dependent variable: hospital visits/million residents in each sex group
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: Male

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.01∗∗∗ 0.003∗∗∗ 0.01∗∗∗
(0.002) (0.003) (0.01) (0.004) (0.001) (0.003)

NO2 (ppb) 0.22∗∗∗ 0.28∗∗∗ 0.89∗∗∗ 0.33∗∗∗ 0.07∗∗∗ 0.22∗∗∗
(0.04) (0.07) (0.18) (0.08) (0.03) (0.07)

PM2.5 (�g/m3) 0.27∗∗∗ 0.34∗∗∗ 1.10∗∗∗ 0.35∗∗∗ 0.08∗∗ 0.23∗∗∗
(0.06) (0.09) (0.25) (0.11) (0.03) (0.09)

SO2 (ppb) 5.24∗∗∗ 7.17∗∗∗ 22.98∗∗∗ 8.52∗∗∗ 2.16∗∗∗ 6.22∗∗∗
(1.32) (2.02) (5.24) (2.40) (0.73) (1.92)

Panel B: Female

CO (ppb) 0.02∗∗∗ 0.02∗∗∗ 0.05∗∗∗ 0.02∗∗∗ 0.004∗∗ 0.01∗∗
(0.002) (0.003) (0.01) (0.003) (0.002) (0.004)

NO2 (ppb) 0.34∗∗∗ 0.41∗∗∗ 1.18∗∗∗ 0.40∗∗∗ 0.10∗∗ 0.25∗∗∗
(0.06) (0.08) (0.21) (0.07) (0.04) (0.09)

PM2.5 (�g/m3) 0.43∗∗∗ 0.49∗∗∗ 1.46∗∗∗ 0.50∗∗∗ 0.12∗∗ 0.29∗∗
(0.08) (0.11) (0.29) (0.09) (0.06) (0.12)

SO2 (ppb) 9.44∗∗∗ 11.28∗∗∗ 31.83∗∗∗ 11.42∗∗∗ 3.24∗∗∗ 7.72∗∗∗
(1.71) (2.37) (6.25) (2.03) (1.23) (2.67)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates by sex. Each entry presents an individual regression of an air pollutant on an illness category. Pollution
concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions.
All regressions include weather controls, such as the quadratics of maximum temperature, minimum temperature,
dew point temperature, and precipitation. All regressions also include county-by-year, month, day-of-week, holiday,
and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip
code-port pair and day. Estimates are weighted by the zip code-specific population. Significance levels are indicated
by *** 1%, ** 5%, and * 10%.

Table A.22: Effect of one standard deviation increase of air pollution on annual
hospitalizations and medical costs in California port areas

All
Respiratory

All
Heart

All
Psychiatric

(1) (2) (3)

Panel A: Hospital visits per million residents

Black 46,000 9,700 2,500
White 9,900 5,400 4,400
Overall Population 15,000 5,400 3,800

Panel B: Medical costs per capita (2017 USD)

Black 401 94 22
White 86 52 39
Overall Population 131 52 34

Notes: Panel A presents the back-of-the-envelope calculations of the effect of one standard deviation increase of
air pollution on daily hospital visits in the port areas of California, based on the instrumental variable estimates
in Panel A of Table 2. Panel B presents the medical costs associated with the hospital visits in Panel A based on
the payment data from the Centers for Medicare and Medicaid Services. The average medical costs are $8,917 for
psychiatric illnesses, $8,715 for respiratory illnesses, and $9,679 for heart-related illnesses. Based on the U.S. 2010
Decennial Census, the total population residing in the zip codes within 25 miles of California’s major ports is 15.08
million, of which 1.12 million are Black 5.07 million are white. All numbers are rounded to two significant figures.
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Table A.23: Effect of air pollution on hospitalizaton rates of placebo illnesses for the
overall population in California port areas, instrumental variable estimation

Dependent variable: hospital visits/million residents
Arterial Neck

Embolism Wound Appendicitis
(1) (2) (3)

Panel A: CO

CO (ppb) 0.0000 −0.0000 0.0003
(0.0000) (0.0000) (0.0002)

Adjusted R2 0.00 0.00 0.01
Observations 2,215,370 2,215,370 2,215,370

Panel B: NO2

NO2 (ppb) 0.0003 −0.0002 0.01
(0.001) (0.001) (0.01)

Adjusted R2 0.00 0.00 0.01
Observations 2,288,952 2,288,952 2,288,952

Panel C: PM2.5

PM2.5 (�g/m3) 0.001 −0.0002 0.01
(0.001) (0.001) (0.01)

Adjusted R2 0.00 0.00 0.01
Observations 2,184,088 2,184,088 2,184,088

Panel D: SO2

SO2 (ppb) 0.01 −0.02 0.20
(0.04) (0.03) (0.19)

Adjusted R2 0.00 0.00 0.01
Observations 1,938,097 1,938,097 1,938,097

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates for placebo illnesses. Each entry presents an individual regression of an air pollutant on an illness category.
Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and
their interactions. All regressions include weather controls, such as the quadratics of maximum temperature,
minimum temperature, dew point temperature, and precipitation. All regressions also include county-by-year,
month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard
errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.24: Robustness check for the effect of vessel tonnage in port on air pollution,
various model specifications

Dependent variable: log of pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)

Panel A: No weather controls and temporal fixed effects

Log of Vessel Tonnage 10.34 10.66 1.16 19.66
(8.35) (6.94) (0.76) (22.17)

Adjusted R2 -62.20 -64.60 -1.44 -87.77
Observations 502,631 587,833 423,200 431,574

Panel B: No weather controls

Log of Vessel Tonnage 0.35∗∗ 0.12 0.45∗ 0.34
(0.17) (0.18) (0.23) (0.23)

Adjusted R2 0.42 0.62 0.02 0.43
Observations 502,631 587,833 423,200 431,574

Panel C: No temporal fixed effects

Log of Vessel Tonnage 4.65 0.96 3.67∗∗∗ 2.33
(2.83) (0.88) (1.08) (2.09)

Adjusted R2 -12.30 0.11 -15.14 -0.99
Observations 502,631 587,833 423,200 431,574

Panel D: No quadratic weather terms

Log of Vessel Tonnage 0.33∗∗ 0.23∗ 0.34∗ 0.29
(0.13) (0.12) (0.18) (0.19)

Adjusted R2 0.51 0.72 0.28 0.48
Observations 502,631 587,833 423,200 431,574

Panel E: Monitors within 12.5 miles of ports

Log of Vessel Tonnage 0.23 0.16 0.45∗∗ 0.50∗∗
(0.15) (0.13) (0.18) (0.25)

Adjusted R2 0.54 0.73 0.23 0.43
Observations 258,799 278,898 229,503 256,711

Notes: This table presents the robustness check results for Table 1 with various model specifications. Each
panel presents regressions using an alternative model specification. Log vessel tonnage is instrumented by
an indicator of seven-day lagged and 500-mile distant cyclones from ports. All regressions include weather
controls, such as the quadratics of maximum temperature, minimum temperature, dew point temperature,
precipitation, wind speed, and relative wind direction between a monitor-port pair. All regressions also include
county-by-year, month, day-of-week, holiday, and monitor-port pair fixed effects. Standard errors are clustered
by monitor-port pair and day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.25: Robustness check for the effect of vessel tonnage in port on air pollution,
various instrumental variable specifications

Dependent variable: log of pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)

Panel A: Exclude cyclones within 800 miles of ports

Log of Vessel Tonnage 0.41∗∗∗ 0.28∗∗ 0.40∗∗ 0.56∗∗
(0.13) (0.13) (0.18) (0.24)

Adjusted R2 0.48 0.71 0.30 0.44
Observations 502,631 587,833 423,200 431,574

Panel B: Six-day lagged cyclones

Log of Vessel Tonnage 0.33∗∗∗ 0.31∗∗ 0.40∗∗ 0.45∗∗
(0.12) (0.12) (0.18) (0.19)

Adjusted R2 0.51 0.70 0.29 0.46
Observations 502,631 587,833 423,200 431,574

Panel C: Eight-day lagged cyclones

Log of Vessel Tonnage 0.40∗∗ 0.18 0.49∗∗ 0.36
(0.16) (0.14) (0.23) (0.27)

Adjusted R2 0.49 0.74 0.21 0.48
Observations 502,631 587,833 423,200 431,574

Panel D: Six-, seven-, and eight-day lagged cyclones (2SLS)

Log of Vessel Tonnage 0.35∗∗∗ 0.27∗∗ 0.42∗∗ 0.44∗∗
(0.12) (0.12) (0.17) (0.18)

Adjusted R2 0.51 0.72 0.28 0.47
Observations 502,631 587,833 423,200 431,574

Panel E: Six-, seven-, and eight-day lagged cyclones (LIML)

Log of Vessel Tonnage 0.35∗∗∗ 0.28∗∗ 0.42∗∗ 0.45∗∗
(0.12) (0.12) (0.17) (0.18)

Adjusted R2 0.51 0.71 0.28 0.46
Observations 502,631 587,833 423,200 431,574

Panel F: Cyclone counts

Log of Vessel Tonnage 0.34∗∗ 0.29∗∗ 0.39∗∗ 0.35∗
(0.14) (0.13) (0.17) (0.20)

Adjusted R2 0.51 0.71 0.30 0.48
Observations 502,631 587,833 423,200 431,574

Notes: This table presents the results of robustness check for Table 1 with various instrumental variable
specifications. Each panel presents regressions using an alternative instrumental variable specification. All
regressions include weather controls, such as the quadratics of maximum temperature, minimum temperature,
dew point temperature, precipitation, wind speed, and relative wind direction between a monitor-port pair.
All regressions also include county-by-year, month, day-of-week, holiday, and monitor-port pair fixed effects.
Standard errors are clustered by monitor-port pair and day. Significance levels are indicated by *** 1%, ** 5%,
and * 10%.
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Table A.26: Robustness check for the effect of vessel tonnage in port on air pollution,
including the observations where cyclones are close to ports

Dependent variable: log of pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)
Log of Vessel Tonnage 0.34∗∗ 0.23∗ 0.40∗∗ 0.38∗

(0.13) (0.12) (0.17) (0.20)
First-Stage F Stat. 30.88 36.64 34.19 28.69
Adjusted R2 0.51 0.72 0.29 0.47
Observations 513,256 600,681 433,377 442,141

Notes: This table presents the instrumental variable estimation of the effect of vessel tonnage in ports on air
pollution, where we include the dates when there exist tropical cyclones near ports (e.g., within the 300-mile
radius of ports) and two days before and after the events. Each column presents an individual regression on a
local air pollutant. Log of vessel tonnage is instrumented by an indicator of seven-day lagged and 500-mile
distant cyclones from ports. All regressions include weather controls, such as the quadratics of maximum
temperature, minimum temperature, dew point temperature, precipitation, wind speed, and relative wind di-
rection between a monitor-port pair. All regressions also include county-by-year, month, day-of-week, holiday,
and monitor-port pair fixed effects. Standard errors are clustered by monitor-port pair and day. Significance
levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.27: Effect of air pollution on hospitalization rates in California port areas – joint
estimation with zip codes within a 25-mile radius from ports

Dependent variable: hospital visits/million residents
All Respiratory All Heart All Psychiatric

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Overall population

CO (ppb) 0.07∗∗∗ 0.05∗∗∗ 0.10∗∗∗ 0.003 0.01 0.01 −0.003 0.0004 0.002
(0.02) (0.01) (0.03) (0.01) (0.005) (0.01) (0.01) (0.005) (0.01)

NO2 (ppb) −0.63 −2.66∗∗∗ 0.30∗ 0.08 0.30 −0.10
(0.58) (1.00) (0.18) (0.35) (0.20) (0.40)

SO2 (ppb) 1.64 38.20∗∗ 5.96∗∗ 4.89 6.73∗∗ 8.07
(9.84) (16.56) (2.95) (5.68) (3.19) (6.22)

First-stage F Stat. 23.02 10.89 5.61 23.02 10.89 5.61 23.02 10.89 5.61
Anderson-Rubin Stat. P-val 3.33e-10 4.39e-10 4.36e-10 3.33e-10 4.39e-10 4.36e-10 3.33e-10 4.39e-10 4.36e-10
Stock-Wright S Stat. P-val 4.62e-06 5.79e-06 5.75e-06 4.62e-06 5.79e-06 5.75e-06 4.62e-06 5.79e-06 5.75e-06
Observations 1,782,259 1,748,298 1,748,291 1,782,259 1,748,298 1,748,291 1,782,259 1,748,298 1,748,291

Panel B: Black

CO (ppb) −0.03 −0.02 0.10 0.01 0.02 0.02 −0.02 −0.02 −0.01
(0.06) (0.03) (0.07) (0.02) (0.01) (0.03) (0.03) (0.01) (0.03)

NO2 (ppb) 3.59∗∗ −5.52∗ 0.42 −0.27 0.62 −0.51
(1.63) (2.95) (0.61) (1.00) (0.70) (1.33)

SO2 (ppb) 94.67∗∗∗ 166.60∗∗∗ 9.19 12.72 14.71 21.32
(24.72) (43.42) (9.57) (15.59) (10.22) (19.25)

First-stage F Stat. 15.70 11.38 5.43 15.70 11.38 5.43 15.70 11.38 5.43
Anderson-Rubin Stat. P-val 0 0 0 0 0 0 0 0 0
Stock-Wright S Stat. P-val 0.000399 0.000321 0.000321 0.000399 0.000321 0.000321 0.000399 0.000321 0.000321
Observations 877,506 871,732 871,730 877,506 871,732 871,730 877,506 871,732 871,730

Panel C: White

CO (ppb) 0.08∗∗∗ 0.06∗∗∗ 0.09∗∗∗ 0.02 0.02∗ 0.01 0.002 0.002 0.01
(0.02) (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.01) (0.02)

NO2 (ppb) −0.92∗ −1.62∗ 0.09 0.21 0.26 −0.25
(0.48) (0.88) (0.30) (0.65) (0.33) (0.72)

SO2 (ppb) −10.28 9.90 2.59 −0.07 6.92 10.04
(7.32) (13.12) (4.64) (9.66) (4.90) (10.31)

First-stage F Stat. 26.28 11.11 4.42 26.28 11.11 4.42 26.28 11.11 4.42
Anderson-Rubin Stat. P-val 6.18e-10 7.22e-10 7.11e-10 6.18e-10 7.22e-10 7.11e-10 6.18e-10 7.22e-10 7.11e-10
Stock-Wright S Stat. P-val 7.31e-06 7.13e-06 7.06e-06 7.31e-06 7.13e-06 7.06e-06 7.31e-06 7.13e-06 7.06e-06
Observations 1,657,232 1,623,441 1,623,435 1,657,232 1,623,441 1,623,435 1,657,232 1,623,441 1,623,435

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization rate within a 25-mile
radius of CA ports, jointly estimated for multiple air pollutants. Each column in a panel presents an individual regression on a set
of pollutants. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind speed, relative wind direction
between a zip code-port pair, and interaction terms. All regressions include weather controls and their quadratic terms, such
as the quadratics of maximum temperature, minimum temperature, dew point temperature, and precipitation. All regressions
also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-
day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.28: Effect of air pollution on hospitalization rates in California port areas – joint
estimation with zip codes within a 15-mile radius from ports

Dependent variable: hospital visits/million residents
All Respiratory All Heart All Psychiatric

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Panel A: Overall population

CO (ppb) 0.10∗∗∗ 0.07∗∗∗ 0.11∗∗∗ 0.01 0.01∗ 0.01 −0.004 0.002 −0.003
(0.03) (0.02) (0.03) (0.01) (0.005) (0.01) (0.01) (0.01) (0.01)

NO2 (ppb) −1.33∗∗ −1.88∗∗ 0.10 −0.10 0.46∗∗ 0.25
(0.62) (0.92) (0.18) (0.35) (0.20) (0.38)

SO2 (ppb) −12.89 10.60 2.36 3.57 7.34∗∗∗ 4.22
(9.30) (13.82) (2.59) (4.97) (2.82) (5.23)

Observations 869,585 861,925 861,918 869,585 861,925 861,918 869,585 861,925 861,918

Panel B: Black

CO (ppb) 0.05 0.05 0.14∗ 0.01 0.01 0.01 −0.04 −0.02 −0.02
(0.06) (0.03) (0.07) (0.02) (0.01) (0.03) (0.03) (0.02) (0.03)

NO2 (ppb) 1.96 −4.36 0.38 0.02 1.36∗ −0.22
(1.68) (2.90) (0.67) (1.06) (0.70) (1.36)

SO2 (ppb) 53.60∗∗ 106.91∗∗∗ 6.57 6.30 24.63∗∗ 27.36
(22.92) (38.16) (9.49) (14.84) (9.81) (18.90)

Observations 560,978 556,105 556,103 560,978 556,105 556,103 560,978 556,105 556,103

Panel C: White

CO (ppb) 0.11∗∗∗ 0.07∗∗∗ 0.12∗∗∗ 0.03∗∗ 0.02∗∗ 0.02 0.01 0.01 0.01
(0.02) (0.02) (0.03) (0.01) (0.01) (0.02) (0.02) (0.01) (0.02)

NO2 (ppb) −1.82∗∗∗ −2.07∗∗ −0.43 0.16 0.14 0.33
(0.54) (0.90) (0.33) (0.65) (0.37) (0.71)

SO2 (ppb) −19.70∗∗ 5.25 −6.71 −8.62 1.82 −2.20
(7.93) (13.55) (4.71) (9.36) (5.26) (10.03)

Observations 805,806 798,316 798,310 805,806 798,316 798,310 805,806 798,316 798,310

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization rate within a
15-mile radius of CA ports, jointly estimated for multiple air pollutants. Each column in a panel presents an individual regression
on a set of pollutants. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind speed, relative wind
direction between a zip code-port pair, and interaction terms. All regressions include weather controls and their quadratic
terms, such as the quadratics of maximum temperature, minimum temperature, dew point temperature, and precipitation. All
regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a
zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific
population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.29: Effect of fitted vessel tonnage on highway congestion in California port
areas

Dependent variable: traffic delay with respect to threshold speed
35 mph 40 mph 45 mph 50 mph 55 mph 60 mph

(1) (2) (3) (4) (5) (6)

Panel A: Vessel tonnage

Fitted Vessel Tonnage 0.17 0.22 0.24 0.15 −0.10 −0.47
(0.32) (0.36) (0.40) (0.43) (0.48) (0.52)

Adjusted R2 0.33 0.35 0.37 0.39 0.42 0.44
Observations 2,618,707 2,618,707 2,618,707 2,618,707 2,618,707 2,618,707

Panel B: Vessel counts

Fitted Vessel Counts −0.04 −0.03 −0.02 −0.03 −0.07 −0.13
(0.09) (0.10) (0.11) (0.12) (0.13) (0.13)

Adjusted R2 0.33 0.35 0.37 0.39 0.42 0.44
Observations 2,618,707 2,618,707 2,618,707 2,618,707 2,618,707 2,618,707

Notes: This table presents the OLS estimation for the effect of fitted vessel tonnage and counts on highway
congestion in California’s port areas. The fitted values are obtained from regressing log vessel tonnage or vessel
counts on the instrumet of seven-day lagged and 500-mile distant cyclones from ports. The dependent variable is
measured as average delays to a threshold speed. Each column presents a regression of threshold speed. All
regressions include weather controls (i.e., the quadratics of maximum temperature, minimum temperature, dew
point temperature, precipitation, and wind direction) and fixed effects (i.e., county-by-year, month, day-of-week,
holiday, freeway, and VDS-port). An observation is a VDS-port-day. Standard errors are clustered by VDS-port
and day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.30: Effect of air pollution on hospitalization rates in California port areas,
excluding strong windy days

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: Overall population

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.01∗∗∗ 0.003∗∗ 0.01∗∗
(0.002) (0.003) (0.01) (0.003) (0.001) (0.003)

NO2 (ppb) 0.30∗∗∗ 0.30∗∗∗ 1.07∗∗∗ 0.37∗∗∗ 0.09∗∗∗ 0.22∗∗∗
(0.05) (0.08) (0.20) (0.08) (0.03) (0.08)

PM2.5 (�g/m3) 0.34∗∗∗ 0.36∗∗∗ 1.26∗∗∗ 0.39∗∗∗ 0.10∗∗∗ 0.23∗∗
(0.06) (0.09) (0.25) (0.09) (0.04) (0.09)

SO2 (ppb) 7.84∗∗∗ 7.19∗∗∗ 27.48∗∗∗ 10.20∗∗∗ 2.86∗∗∗ 6.72∗∗∗
(1.42) (2.09) (5.61) (2.14) (0.88) (2.13)

Panel B: Black

CO (ppb) 0.03∗∗∗ 0.03∗∗∗ 0.09∗∗∗ 0.03∗∗∗ 0.003 0.0002
(0.01) (0.01) (0.02) (0.01) (0.004) (0.01)

NO2 (ppb) 0.87∗∗∗ 0.85∗∗∗ 2.64∗∗∗ 0.83∗∗∗ 0.15 0.12
(0.22) (0.18) (0.52) (0.23) (0.10) (0.23)

PM2.5 (�g/m3) 1.03∗∗∗ 0.98∗∗∗ 3.20∗∗∗ 0.79∗∗∗ 0.07 −0.04
(0.24) (0.21) (0.59) (0.26) (0.11) (0.25)

SO2 (ppb) 22.96∗∗∗ 26.00∗∗∗ 76.31∗∗∗ 22.42∗∗∗ 5.42∗∗ 6.33
(5.53) (4.87) (13.50) (6.06) (2.71) (5.99)

Panel C: White

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.02∗∗∗ 0.002 0.01∗
(0.003) (0.002) (0.01) (0.01) (0.003) (0.01)

NO2 (ppb) 0.28∗∗∗ 0.15∗∗∗ 0.94∗∗∗ 0.46∗∗∗ 0.05 0.30∗∗
(0.06) (0.05) (0.18) (0.14) (0.06) (0.15)

PM2.5 (�g/m3) 0.34∗∗∗ 0.19∗∗∗ 1.13∗∗∗ 0.55∗∗∗ 0.07 0.37∗∗
(0.08) (0.06) (0.24) (0.18) (0.08) (0.19)

SO2 (ppb) 6.51∗∗∗ 3.11∗∗ 20.45∗∗∗ 11.16∗∗∗ 2.21 9.18∗∗
(1.62) (1.22) (4.66) (3.63) (1.60) (3.80)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization rate,
where the observations with wind speed greater than 3.3 meters per second are excluded. Each entry presents an
individual regression of an air pollutant on an illness category. Pollution concentrations are instrumented by fitted
vessel tonnage in ports, wind direction, wind speed, and their interactions. All regressions include weather controls,
such as the quadratics of maximum temperature, minimum temperature, dew point temperature, and precipitation.
All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An
observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are
weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.31: Effect of air pollution on hospitalizaton rates in California port areas,
principal diagnoses

Dependent variable: hospital visits/million residents
All All All

Respiratory Heart Psychiatric
(1) (2) (3)

Panel A: Overall population

CO (ppb) 0.02∗∗∗ 0.004∗∗∗ 0.002∗
(0.01) (0.001) (0.001)

NO2 (ppb) 0.65∗∗∗ 0.09∗∗∗ 0.06∗∗∗
(0.15) (0.02) (0.02)

PM2.5 (�g/m3) 0.92∗∗∗ 0.10∗∗∗ 0.04
(0.18) (0.03) (0.03)

SO2 (ppb) 17.18∗∗∗ 2.35∗∗∗ 1.61∗∗
(4.78) (0.79) (0.70)

Panel B: Black

CO (ppb) 0.05∗∗∗ 0.005 −0.002
(0.01) (0.003) (0.004)

NO2 (ppb) 1.56∗∗∗ 0.10 −0.02
(0.30) (0.08) (0.10)

PM2.5 (�g/m3) 1.91∗∗∗ 0.17∗ −0.08
(0.37) (0.10) (0.12)

SO2 (ppb) 49.29∗∗∗ 1.83 0.88
(8.62) (2.29) (2.57)

Panel C: White

CO (ppb) 0.02∗∗∗ 0.004∗∗ 0.003∗
(0.005) (0.002) (0.002)

NO2 (ppb) 0.37∗∗∗ 0.09∗ 0.09∗∗
(0.11) (0.05) (0.04)

PM2.5 (�g/m3) 0.45∗∗∗ 0.13∗∗ 0.12∗∗
(0.15) (0.06) (0.05)

SO2 (ppb) 7.85∗∗∗ 1.89 2.30∗∗
(2.79) (1.20) (0.99)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates for the overall population, Blacks, and whites, where hospitalization rates are calculated only using princi-
pal diagnoses. Each entry presents an individual regression of an air pollutant on an illness category. Pollution
concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interac-
tions. All regressions include weather controls, such as the quadratics of maximum temperature, minimum
temperature, dew point temperature, and precipitation. All regressions also include county-by-year, month,
day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard
errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.32: Effect of air pollution on hospitalization rates in California port areas,
Patient Discharge Data

Dependent variable: hospital visits/million residents
All All All

Respiratory Heart Psychiatric
(1) (2) (3)

Panel A: Overall population

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.004∗∗
(0.002) (0.002) (0.002)

NO2 (ppb) 0.23∗∗∗ 0.20∗∗∗ 0.12∗∗∗
(0.05) (0.04) (0.04)

PM2.5 (�g/m3) 0.31∗∗∗ 0.22∗∗∗ 0.13∗∗∗
(0.06) (0.05) (0.04)

SO2 (ppb) 5.58∗∗∗ 5.66∗∗∗ 4.15∗∗∗
(1.61) (1.36) (1.22)

Panel B: Black

CO (ppb) 0.02∗∗ 0.01∗∗ 0.004
(0.01) (0.01) (0.005)

NO2 (ppb) 0.43∗∗ 0.37∗∗ 0.17
(0.17) (0.14) (0.13)

PM2.5 (�g/m3) 0.61∗∗∗ 0.40∗∗ 0.17
(0.22) (0.18) (0.15)

SO2 (ppb) 13.31∗∗∗ 8.48∗∗ 6.69∗
(4.96) (3.95) (3.43)

Panel C: White

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.01∗∗
(0.004) (0.003) (0.003)

NO2 (ppb) 0.26∗∗∗ 0.26∗∗∗ 0.19∗∗
(0.08) (0.07) (0.08)

PM2.5 (�g/m3) 0.39∗∗∗ 0.37∗∗∗ 0.26∗∗
(0.12) (0.11) (0.11)

SO2 (ppb) 4.64∗∗ 4.97∗∗ 4.85∗∗
(2.12) (2.02) (1.99)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates for the overall population, Blacks, and whites, where hospitalization rates are calculated only using the
Patient Discharge Data. Each entry presents an individual regression of an air pollutant on an illness category.
Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and
their interactions. All regressions include weather controls, such as the quadratics of maximum temperature,
minimum temperature, dew point temperature, and precipitation. All regressions also include county-by-
year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day.
Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific
population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.33: Effect of air pollution on hospitalization rates in California port areas,
Emergency Department Data

Dependent variable: hospital visits/million residents
All All All

Respiratory Heart Psychiatric
(1) (2) (3)

Panel A: Overall population

CO (ppb) 0.03∗∗∗ 0.01∗∗∗ 0.01∗∗∗
(0.01) (0.001) (0.002)

NO2 (ppb) 0.87∗∗∗ 0.16∗∗∗ 0.14∗∗∗
(0.18) (0.03) (0.04)

PM2.5 (�g/m3) 1.19∗∗∗ 0.15∗∗∗ 0.11∗∗
(0.22) (0.03) (0.05)

SO2 (ppb) 26.26∗∗∗ 5.15∗∗∗ 3.71∗∗∗
(6.03) (0.91) (1.39)

Panel B: Black

CO (ppb) 0.08∗∗∗ 0.01∗∗ −0.004
(0.02) (0.005) (0.01)

NO2 (ppb) 2.35∗∗∗ 0.29∗∗ −0.11
(0.42) (0.12) (0.16)

PM2.5 (�g/m3) 2.91∗∗∗ 0.28∗ −0.26
(0.51) (0.15) (0.20)

SO2 (ppb) 74.36∗∗∗ 8.43∗∗ −2.21
(11.84) (3.43) (4.63)

Panel C: White

CO (ppb) 0.03∗∗∗ 0.01∗∗∗ 0.01∗
(0.01) (0.002) (0.003)

NO2 (ppb) 0.58∗∗∗ 0.16∗∗∗ 0.14∗
(0.12) (0.05) (0.07)

PM2.5 (�g/m3) 0.70∗∗∗ 0.19∗∗∗ 0.17
(0.17) (0.07) (0.11)

SO2 (ppb) 14.15∗∗∗ 5.00∗∗∗ 4.32∗∗
(3.23) (1.32) (1.93)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates for the overall population, Blacks, and whites, where hospitalization rates are calculated only using the
Emergency Department Data. Each entry presents an individual regression of an air pollutant on an illness
category. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind
speed, and their interactions. All regressions include weather controls, such as the quadratics of maximum
temperature, minimum temperature, dew point temperature, and precipitation. All regressions also include
county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip
code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the zip
code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.34: Effect of air pollution on hospitalization rates in California port areas,
Ambulatory Surgery Center Data

Dependent variable: hospital visits/million residents
All All All

Respiratory Heart Psychiatric
(1) (2) (3)

Panel A: Overall population

CO (ppb) 0.0004 0.001 0.001
(0.001) (0.001) (0.001)

NO2 (ppb) −0.004 0.03 0.01
(0.03) (0.03) (0.02)

PM2.5 (�g/m3) 0.004 0.03 0.03
(0.04) (0.03) (0.03)

SO2 (ppb) −0.71 0.48 0.24
(1.05) (0.90) (0.72)

Panel B: Black

CO (ppb) −0.001 0.002 0.0001
(0.003) (0.002) (0.002)

NO2 (ppb) −0.06 0.04 0.01
(0.07) (0.05) (0.05)

PM2.5 (�g/m3) −0.07 0.06 −0.003
(0.08) (0.06) (0.06)

SO2 (ppb) −1.93 1.08 0.06
(1.80) (1.31) (1.31)

Panel C: White

CO (ppb) −0.001 −0.0005 −0.001
(0.002) (0.002) (0.002)

NO2 (ppb) −0.04 −0.003 −0.04
(0.05) (0.05) (0.04)

PM2.5 (�g/m3) −0.05 −0.02 −0.06
(0.07) (0.07) (0.06)

SO2 (ppb) −0.54 0.04 −1.05
(1.22) (1.32) (1.03)

Notes: This table presents the instrumental variable estimation of the effect of air pollution on hospitalization
rates for the overall population, Blacks, and whites, where hospitalization rates are calculated only using the
Ambulatory Surgery Center Data. Each entry presents an individual regression of an air pollutant on an illness
category. Pollution concentrations are instrumented by fitted vessel tonnage in ports, wind direction, wind
speed, and their interactions. All regressions include weather controls, such as the quadratics of maximum
temperature, minimum temperature, dew point temperature, and precipitation. All regressions also include
county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. An observation is a zip
code-port-day. Standard errors are clustered by zip code-port pair and day. Estimates are weighted by the zip
code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.35: LIML estimation of the effect of air pollution on hospitalizaton rates in
California port areas

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: CO

CO (ppb) 0.01∗∗∗ 0.01∗∗∗ 0.04∗∗∗ 0.01∗∗∗ 0.003∗ 0.01∗∗
(0.002) (0.003) (0.01) (0.003) (0.001) (0.003)

Adjusted R2 0.33 0.29 0.42 0.31 0.17 0.36
Observations 1,782,266 1,782,266 1,782,266 1,782,266 1,782,266 1,782,266

Panel B: NO2

NO2 (ppb) 0.23∗∗∗ 0.30∗∗∗ 0.88∗∗∗ 0.36∗∗∗ 0.07∗∗ 0.23∗∗∗
(0.04) (0.06) (0.18) (0.07) (0.03) (0.08)

Adjusted R2 0.33 0.28 0.42 0.31 0.17 0.36
Observations 1,812,210 1,812,210 1,812,210 1,812,210 1,812,210 1,812,210

Panel C: PM2.5

PM2.5 (�g/m3) 0.28∗∗∗ 0.38∗∗∗ 1.06∗∗∗ 0.42∗∗∗ 0.08∗ 0.26∗∗
(0.06) (0.09) (0.25) (0.10) (0.04) (0.11)

Adjusted R2 0.33 0.29 0.42 0.31 0.18 0.36
Observations 1,720,810 1,720,810 1,720,810 1,720,810 1,720,810 1,720,810

Panel D: SO2

SO2 (ppb) 5.52∗∗∗ 8.20∗∗∗ 22.39∗∗∗ 9.28∗∗∗ 2.28∗∗ 6.55∗∗∗
(1.30) (1.85) (4.99) (2.05) (0.91) (2.18)

Adjusted R2 0.33 0.28 0.42 0.31 0.17 0.36
Observations 1,749,073 1,749,073 1,749,073 1,749,073 1,749,073 1,749,073

Notes: This table presents the LIML instrumental variable estimation of the effect of air pollution on hospitalization
rates. Each entry presents an individual regression of an air pollutant on an illness category. Pollution concentrations
are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and their interactions. All regressions
include weather controls, such as the quadratics of maximum temperature, minimum temperature, dew point tempera-
ture, and precipitation. All regressions also include county-by-year, month, day-of-week, holiday, and zip code-port
pair fixed effects. An observation is a zip code-port-day. Standard errors are clustered by zip code-port pair and day.
Estimates are unweighted. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.36: Placebo tests for the effect of California Ocean-Going Vessel At-Berth
Regulation on air pollution

Dependent variable: residual of log pollution concentration
CO NO2 PM2.5 SO2

(1) (2) (3) (4)

Panel A: One year before the policy

CA Regulation 0.06 0.05 0.04 0.04
(0.08) (0.08) (0.11) (0.13)

Date −0.001 −0.002 0.001 −0.002
(0.001) (0.002) (0.002) (0.002)

CA Regulation × Date 0.003 0.003 −0.01∗∗∗ 0.01∗
(0.002) (0.002) (0.003) (0.003)

Pre-policy Mean 630.35 18.70 14.84 1.89
Observations 4,809 5,303 2,076 3,290

Panel B: One year after the policy

CA Regulation 0.13 0.08 0.07 0.07
(0.10) (0.08) (0.10) (0.25)

Date −0.002 −0.0003 0.002 0.003
(0.001) (0.001) (0.002) (0.004)

CA Regulation × Date 0.001 0.0004 −0.01∗∗ −0.003
(0.002) (0.003) (0.002) (0.01)

Pre-policy Mean 586.64 17.96 13.89 1.74
Observations 4,861 5,368 2,890 3,550

Panel C: Neighboring areas

CA Regulation 0.43 0.13∗ −0.18∗ −0.01
(0.26) (0.07) (0.10) (0.20)

Date −0.0002 −0.001 0.003 0.01
(0.004) (0.001) (0.002) (0.01)

CA Regulation × Date −0.01 −0.0001 −0.01∗ −0.003
(0.01) (0.002) (0.004) (0.02)

Pre-policy Mean 394.78 10.81 12.43 1.17
Observations 1,190 2,500 1,074 538

Notes: This table presents the placebo tests for RDD estimation of the effect of the California at-berth regulation
on local air pollution. The second-stage RDD dependent variable is taken from the residuals by regressing
log pollution concentrations on weather controls (i.e., the quadratics of maximum temperature, minimum
temperature, dew point temperature, precipitation, wind speed, and relative wind direction between a monitor-
port pair), fixed effects (i.e., county-by-year, month, day-of-week, holiday, and port-monitor pair), and log
vessel tonnage (instrumented by seven-day lagged and 500-mile distant cyclones from ports). The local linear
bandwidth is specified as 65 days on both sides of the policy threshold. Panel A shows the results of specifying
placebo policy dates one year before the actual policy date. Panel B shows the results of specifying placebo
policy dates one year after the actual policy date. Panel C shows the results by assigning the policy date to
neighboring areas located 75 to 100 miles from ports. An observation is a monitor-port-day. Standard errors are
clustered by monitor-port pair and normalized day. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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Table A.37: Projected energy consumption by marine vessels in the United States

Fossil Fuel Electricity

Reference Shore Power Reference Shore Power

2017 0.78 0.78 0.00 0.00
2020 0.77 0.72 0.01 0.05
2025 0.81 0.64 0.01 0.18
2030 0.85 0.66 0.01 0.19
2035 0.90 0.70 0.01 0.22
2040 0.93 0.72 0.01 0.22
2045 0.97 0.74 0.01 0.24
2050 1.01 0.77 0.01 0.25

Notes: This table presents projected marine vessel energy consumption simulated in Yale-NEMS. The
unit is quadrillion Btu. The data include electricity and fossil fuel consumption for the reference case
and the shore power scenario.
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B Supplementary Figures (For Online Publication)

0.0

0.1

0.2

2010 2012 2014 2016 2018
Year

C
ou

nt
y 

S
ha

re

Figure B.1: Share of nonattainment counties adjacent to the major ports in the United
States.

Notes: The figure plots the share of nonattainment counties that fail to meet the National Ambient
Air Quality Standards and locate within a 50-mile radius of the major ports in the United States. The
standards include Carbon Monoxide (1971), Nitrogen Dioxide (1971), 8-Hour Ozone (2008, 2015), PM10
(1987), PM2.5 (1997, 2006, 2012), Sulfur Dioxide (1971, 2010). The data are obtained from U.S. EPANAAQS
Greenbook.
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Figure B.2: Locations of zip codes near the major California ports.

Notes: This figure plots the locations of zip codes that are within 25 miles of the major ports in California,
shown in blue areas. According to the U.S. 2010 Decennial Census, around 47 percent of the population
in California resides in the blue areas.
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Figure B.3: (a) Distribution of Hispanic population by distance to major California ports.
(b) Distribution of the Hispanic population in California port areas by decile of PM2.5
concentration.

Notes: Panel (a) plots population distribution in the California port areas by the distance between census
tract and port for the Hispanic population. We obtain the population data at the census tract level and
assign a distance between a census tract to its nearest mapped port to the population within the census
tract. Panel (b) plots population distribution in the California port areas by decile of PM2.5 concentration.
Larger pollution deciles represent higher pollution exposures. The data are obtained from the U.S. 2010
Decennial Census and U.S. EPA Air Quality System.
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Figure B.4: Annual air pollution exposure for individuals visiting hospitals by race.

Notes: This figure plots the annual averages of baseline pollution exposure separately for non-Hispanic
Black and white patients in the areas within 25 miles from ports in California. The patients visit hospitals
due to psychiatric, respiratory, and heart-related illnesses during 2010–2016. The pollution data are
obtained from the U.S. EPAAir Quality System, and the hospital visit data are obtainedOffice of Statewide
Health Planning and Development of California.
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Figure B.5: Boxplots of annual hospitalizations rates in California port areas.

Notes: This figure presents the boxplots of annual hospitalization rates, separately for non-Hispanic
Black and white population in the areas within 0–12.5 miles from ports and 12.5–25 miles from ports in
California. The hospitalization rate is calculated as the annual total hospital visits related to psychiatric,
respiratory, and heart-related illnesses in each zip code for 2010–2016. The grey dots represent outliers.
The dashed lines represent sample means. The gap between the dashed lines in the left panel is 87, while
the gap in the right panel is 81. The data are obtained from the Office of Statewide Health Planning and
Development of California. We exclude the zip codes having less than 1,000 race-specific populations in
our analysis. We also do not plot the observations with annual hospitalization rates greater than 1,000.
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Figure B.6: Average daily share of vessel type in ports.

Notes: This figure presents the average daily share of vessel types in major 27 U.S. ports, separately for
the days when there exist seven-day lagged and 500-mile distant tropical cyclones in the ocean and the
days when there are no such cyclones. The error bars indicate standard deviations. The data are obtained
from the U.S. Army Corps of Engineers.

Figure B.7: Boxplots of local weather in port areas.

Notes: This figure presents the boxplots of weather variables in the U.S. port areas, separately for the
month-days when there exist seven-day lagged and 500-mile distant tropical cyclones in the ocean and
the same month-days when there are no such cyclones. The grey dots represent outliers. The data are
obtained from the NOAA Integrated Surface Database.
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Figure B.8: Empirical quantile-quantile plots of local weather in port areas.

Notes: This figure presents the QQ plots of weather variables in the U.S. port areas. The panels compare
two data samples: one for the month-days when there exist seven-day lagged and 500-mile distant
tropical cyclones in the ocean and the other for the same month-days when there are no such cyclones.
The data are obtained from the NOAA Integrated Surface Database.
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Figure B.9: Effect of air pollution on hospitalization rate for the overall population with
different time windows following pollution exposure in California port areas.

Notes: This figure plots IV estimates of equation (3) with different time windows following pollution
exposure. Estimates are shown for time windows of one day, three days, five days, nine days, 14 days,
21 days, and 28 days. The dependent variable is the sum of hospital visits over the number of time
windows per million residents, indicated on the x-axis. The one-day window estimates are also reported
in columns (3), (4), and (7) in Panel A of Table 2. The pollution measures are instrumented by fitted vessel
tonnage in ports, wind direction, wind speed, and interactions. All regressions include a set of weather
controls, such as the quadratics of maximum, minimum, and dew point temperatures, precipitation, and
their leads up to the time window. All regressions also include county-by-year, month, day-of-week,
holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are
clustered by zip code-port pair and day. Estimates are weighted by zip code-specific population. The
error bars represent 95% confidence intervals.
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Figure B.10: Effect of air pollution on hospitalization rate for Blacks with different time
windows following pollution exposure in California port areas.

Notes: This figure plots IV estimates of equation (3) with different time windows following pollution
exposure. Estimates are shown for time windows of one day, three days, five days, nine days, 14 days,
21 days, and 28 days. The dependent variable is the sum of hospital visits over the number of time
windows per million residents, indicated on the x-axis. The one-day window estimates are also reported
in columns (3), (4), and (7) in Panel B of Table 2. The pollution measures are instrumented by fitted vessel
tonnage in ports, wind direction, wind speed, and interactions. All regressions include a set of weather
controls, such as the quadratics of maximum, minimum, and dew point temperatures, precipitation, and
their leads up to the time window. All regressions also include county-by-year, month, day-of-week,
holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are
clustered by zip code-port pair and day. Estimates are weighted by zip code-specific population. The
error bars represent 95% confidence intervals.
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Figure B.11: Effect of air pollution on hospitalization rate for whites with different time
windows following pollution exposure in California port areas.

Notes: This figure plots IV estimates of equation (3) with different time windows following pollution
exposure. Estimates are shown for time windows of one day, three days, five days, nine days, 14 days,
21 days, and 28 days. The dependent variable is the sum of hospital visits over the number of time
windows per million residents, indicated on the x-axis. The one-day window estimates are also reported
in columns (3), (4), and (7) in Panel C of Table 2. The pollution measures are instrumented by fitted vessel
tonnage in ports, wind direction, wind speed, and interactions. All regressions include a set of weather
controls, such as the quadratics of maximum, minimum, and dew point temperatures, precipitation, and
their leads up to the time window. All regressions also include county-by-year, month, day-of-week,
holiday, and zip code-port pair fixed effects. An observation is a zip code-port-day. Standard errors are
clustered by zip code-port pair and day. Estimates are weighted by zip code-specific population. The
error bars represent 95% confidence intervals.
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Figure B.12: Vessel counts in ports before and after the Californian at-berth regulation.

Notes: This figure plots the number of vessels in ports before and after the first phase of the Californian
at-berth regulation (i.e., January 1, 2010).
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Figure B.13: Cluster bootstrap inference for the effect of California Ocean-Going Vessel
At-Berth Regulation on air pollutant concentrations.

Notes: The figure plots the the local linear RDD point estimates and 95% confidence intervals from the
baseline regression (shown in Table 5) and a wild cluster bootstrap algorithm.
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Figure B.14: Robustness check for the effect of California Ocean-Going Vessel At-Berth
Regulation on air pollutant concentrations with varying RDD bandwidths.

Notes: The figure plots the local linear RDD point estimates and 95% confidence intervals with varying
bandwidths (i.e., 55–75 days on both sides of the policy threshold). The baseline bandwidth is 65 days,
as indicated by the red dots.

86



PM2.5 SO2

CO NO2

0 2 4 6 0 2 4 6

−0.50

−0.25

0.00

0.25

−0.50

−0.25

0.00

0.25

Donut Days

E
st

im
at

ed
 C

oe
ffi

ci
en

ts

Figure B.15: Robustness check for the effect of California Ocean-Going Vessel At-Berth
Regulation on air pollutant concentrations with varying RDD “donut” periods.

Notes: The figure plots the local linear RDD point estimates and 95% confidence intervals with varying
“donut” periods (i.e., removing 0–7 days of observations on both sides of the policy threshold). The
baseline “donut” period is 0 day, as indicated by the red dots.
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Figure B.16: Projected emissions of local air pollutants frommarine vessels and electricity
generation in the United States.

Notes: This figure plots local air pollutant emissions from marine vessels and power plants in the United
States under the reference and shore power scenarios, projected in Yale-NEMS. The projection starts from
2017 indicated by the gray dotted lines.
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C Supplementary Analysis (For Online Publication)

C.1 Results Comparison
This appendix presents supplementary analyses for the main text. We first present
comparisons of our baseline estimates to the existing evidence in the literature. We
then show the estimates of the reduced-form relationship between vessels in ports and
human health.

Effect of vessels in ports on air pollution. We first compare our estimates in Table 1
to the existing evidence on the contributions of seaports to local air pollution. We are
not aware of any other study that explores this question in the literature; however, some
government reports and online articles address the relationship between port and local
air pollution. For example, U.S. EPA estimates that ocean-going vessels contribute to
7% of NOx emissions in Ports of Baton Rouge/New Orleans and up to 61% in the Santa
Barbara areas (EPA, 2003). In addition, another evidence states that marine shipping
in ports accounts for as much as half SOx emissions in major port cities, such as Los
Angeles.1

Our estimates in Table 1 show that one percent increase in vessel tonnage in a port
per day leads to 0.3–0.4% increases in pollution concentrations for NO2 and SO2. This
suggests that marine shipping in ports contributes to 40% of local air pollution in port
areas in the United States, within the range of previously cited sources.

We also compare our estimates to the NAAQS to examine whether pollution from
ports is likely to lead to nonattainment status.2 The current one-hour standard for CO is
that the pollution concentration cannot exceed 35,000 ppb more than once per year. Our
results show that one average-sized vessel in a port (a 7.6% increase of vessel tonnage in
the U.S.) results in a 13.7 ppb increase in CO pollution.3 Combining this increase with
the average daily maximum of CO, the estimated resulting concentration is 822 ppb
(13.7 + 808.2), which is far below the EPA standard. Similarly, the resulting pollution
concentrations for NO2 and SO2 due to average gross vessel tonnage in ports are also
below the EPA’s one-hour standards.4

EPA has established a 24-hour standard for PM2.5 at 35 micrograms per cubic meter
(�g/m3). Adding the increase in PM2.5 concentrations 0.35 �g/m3 (7.6×0.43/100×10.67)
(owing to an average-sized vessel in a port) to the daily 24-hour average (10.67 �g/m3)
results in a concentration of 11 �g/m3, which is around 31% of the EPA standard. Note

1See https://www.ft.com/content/31d0e224-dde8-11e8-9f04-38d397e6661c.
2The details of the standards for pollutants considered harmful to public health and the environment

are available at https://www.epa.gov/criteria-air-pollutants/naaqs-table.
3The 13.7 ppb increase is calculated from 7.6×0.37/100×485.97 based on the estimates in Table 1 and

summary statistics reported in Table A.3.
4The one-hour standards for NO2 and SO2 are 100 parts per billion (ppb) and 75 ppb, respectively.
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that the calculations presented above are based on the summary averages across all
ports. Some areas on certain days may still exceed the EPA standards due to increased
vessel counts in ports.

Effect of air pollution on health. Since there is a large body of economics and epi-
demiological literature examining the effect of air pollution on health, it is natural to
compare our estimates in Panel A of Table 2 to the literature. Compared to Schlenker
and Walker (2016), our estimates associated with the effect of CO on respiratory and
heart hospital visits are relatively larger. For example, we find that a one ppb increase
in CO concentration leads to a 0.02% increase in all respiratory hospital visits, while
Schlenker and Walker (2016) find a 0.037% increase. The discrepancy in results may be
driven by different studied locations. Other epidemiological studies show the effect of a
one ppb increase in CO pollution on respiratory hospital visits in a range of 0.001–0.008%
(e.g., Hwang and Chan, 2002; Peel et al., 2005; Stieb et al., 2009), which are smaller than
our estimates.

For heart-related illness, we find that a one �g/m3 increase in PM2.5 concentration
leads to a 0.31% increase of hospital visits, which is higher than the estimates 0.13–0.15%
in the epidemiology literature (e.g., Dominici et al., 2006; Bell et al., 2008). Two recent
epidemiology studies find evidence that a 0.11% increase in psychiatric hospital visits
is attributed to a one �g/m3 increase in PM2.5 concentration, which is also smaller
than our estimate. We find consistent larger estimates for the effect of air pollution on
hospital visits because we focus on highly polluted areas, or our quasi-experimental
framework corrects the attenuation bias.

C.2 RIF-Quantile Effect of Air Pollution on Health
We provide additional evidence on how pollution affects different unconditional quan-
tiles of the hospitalization distributions for Blacks and whites using the unconditional
quantile regression method introduced by Firpo et al. (2009). This method involves
calculating the re-centered influence function (RIF) for the outcome variable (e.g., hos-
pitalization rates) at a certain quantile and replace the dependent variable in equation
(3) with the calculated RIF. The RIF for hospitalization H at the =th quantile @= is
calculated as RIF(H, @=) = @= + =−1{H≤@=}

5H(@=) , where 5H(@=) is the density function of H at
quantile @= . In practice, we calculate 19 RIF statistics, starting from the 5th quantile to
the 95th quantile of the hospitalization rate distribution for each subsample of Blacks
and whites. In total, we fit 38 RIF-quantile regressions for each of the four studied air
pollutants. Because pollution is endogenous, we adopt a control-function approach,
where we include the residuals from the first-stage regression equation (4) into the
regression equation of interest (3). One caveat of this RIF-quantile analysis using the
control-function approach is that we should interpret the standard errors carefully
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because there may exist sampling error in the first-stage residuals.
The regression estimates illustrate how the effect of pollution on hospitalization rates

directly transforms to the unconditional distribution of hospitalization rates. Figure C.1
presents the RIF-quantile regression estimates by race and pollutant, suggesting that
at the upper quantiles of the hospitalization rate distribution, air pollution has larger
impacts on Blacks compared to whites.
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Figure C.1: RIF-quantile effects of pollution on hospitalization rates by race.

Notes: This figure plots the estimates from 38 individual regressions of equation (3) for each air pollutant,
with 19 regressions for each race. The dependent variable is the RIF statistics of total hospitalization rate
associated with respiratory, heart, and psychiatric ailments for a given quantile. The pollution measures
are instrumented by fitted vessel tonnage in ports, wind direction, wind speed, and interactions. All
regressions include a set of weather controls, such as the quadratics of maximum, minimum, and dew
point temperatures and precipitation. All regressions also include county-by-year, month, day-of-week,
holiday, and zip code-port pair fixed effects. Standard errors are clustered by zip code-port pair and
day. Estimates are weighted by zip code-specific population. The error bars represent 95% confidence
intervals.

C.3 Reduced-form Relationship between Vessels in Ports and Health
This section examines the reduced-form relationship between the number of vessels in
ports and human health. We estimate the regression model in equations (1) and (2) by
specifying the dependent variable as hospitalization rate across illness categories. We
use the ten-day lagged cyclones that are 500 miles distant from ports as the instrumental
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variable in our baseline specification.5 Since the instrumental variable specification is
similar to the one used in the main text, we do not present the results for instrument
validity checks.

Table C.1 presents the first-stage relationship between the cyclone instrument and
vessel tonnage in ports. The point estimate is statistically significant, suggesting the
cyclone instrument leads to a 5% reduction in vessel tonnage in ports.

Table C.1: First-stage results of the effect of tropical cyclones on vessel tonnage

Dependent variable: log of vessel tonnage
Tropical Cyclone −0.05∗∗∗

(0.02)
First-stage F Stat. 10.80
Adjusted R2 0.70
Observations 1,812,225

Notes: This table presents the first-stage results of the instrumental variable esti-
mation in Table C.2. The instrument is a dummy of ten-day lagged and 500-mile
distant cyclones from ports. All regressions include a set of weather controls,
such as the quadratics of maximum, minimum, and dew point temperatures, pre-
cipitation, wind speed, and relative wind direction between a zip code-port pair.
All regressions also include county-by-year, month, day-of-week, holiday, and
zip code-port pair fixed effects. Standard errors are clustered by zip code-port
pair and day. Estimates are weighted by zip code-specific population. Signifi-
cance levels are indicated by *** 1%, ** 5%, and * 10%.

Table C.2 presents the instrumental variable estimation for the effect of vessel tonnage
on hospitalizations across seven illness categories. The t-statistics on the excluded
instrument are 11.39 across the columns above the thresholds suggested in the literature.
Most estimates associated with respiratory illnesses shown in columns (4)–(6) are
statistically significant. They show that a one percent increase in gross vessel tonnage
in a port results in an additional 1.07 hospital visits per million residents related to
all respiratory illnesses. However, the estimates associated with psychiatric and heart
illnesses have surprising signs, and they are either statistically significant at the 10%
level or insignificant. We do not see strong results related to psychiatric and heart
illnesses, probably because the composition of air pollutants co-emitted from vessels
together may not cause mental and heart illnesses.

Tables C.3 shows the OLS estimates for the effect of vessel tonnage on hospitaliza-
tions. The estimates for respiratory illnesses become insignificant or significant at the
10% level. They are also much smaller than the corresponding instrumental variable
estimates, suggesting potential bias. The OLS estimates associated with psychiatric and

5We use the ten-day lagged cyclones here instead of the seven-day lagged ones in the main text
because the ten-day lagged cyclones show a stronger correlation in the first stage.
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Table C.2: Effect of vessel tonnage on contemporaneous hospitalizaton rate in California
port areas, instrumental variable estimation

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)
Log of Vessel Tonnage 13.11∗∗ 38.17∗∗∗ 108.03∗∗∗ −1.93 −7.74∗ −20.99∗

(6.50) (12.59) (35.15) (9.96) (4.54) (11.98)
Adjusted R2 0.36 -0.06 0.08 0.35 0.19 0.36
Observations 1,812,225 1,812,225 1,812,225 1,812,225 1,812,225 1,812,225

Notes: This table presents the instrumental variable estimation of the effect of vessel tonnage on the contem-
poraneous hospitalization rate for the overall population. Each column presents an individual regression on
an illness category. The endogenous variable, log of vessel tonnage, is instrumented by the dummy of ten-day
lagged and 500-mile distant cyclones from ports. All regressions include a set of weather controls, such as the
quadratics of maximum, minimum, and dew point temperatures, precipitation, wind speed, and relative wind
direction between a zip code-port pair. All regressions also include county-by-year, month, day-of-week, holi-
day, and zip code-port pair fixed effects. Standard errors are clustered by zip code-port pair and day. Estimates
are weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.

heart illnesses are positive, but they are with small magnitudes.

Table C.3: Effect of vessel tonnage on contemporaneous hospitalizaton rate in California
port areas, OLS estimation

Dependent variable: hospital visits/million residents
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)
Log of Vessel Tonnage 0.04 0.02 0.41∗ 0.23∗ 0.18∗∗∗ 0.41∗∗∗

(0.07) (0.08) (0.24) (0.12) (0.05) (0.13)
Adjusted R2 0.39 0.34 0.47 0.35 0.22 0.40
Observations 1,812,225 1,812,225 1,812,225 1,812,225 1,812,225 1,812,225

Notes: This table presents the OLS estimation of the effect of vessel tonnage on the contemporaneous hos-
pitalization rate. Each column presents an individual regression on an illness category. All regressions
include a set of weather controls, such as the quadratics of maximum, minimum, and dew point temperatures,
precipitation, wind speed, and relative wind direction between a zip code-port pair. All regressions also
include county-by-year, month, day-of-week, holiday, and zip code-port pair fixed effects. Standard errors
are clustered by zip code-port pair and day. Estimates are weighted by the zip code-specific population.
Significance levels are indicated by *** 1%, ** 5%, and * 10%.

Table C.4 contains the instrumental variable estimates for the effect of vessel tonnage
on hospitalizations by non-Hispanic Black and white populations. Similar to Table
C.2, only the estimates associated with respiratory illnesses are statistically significant
and have expected signs. They provide additional evidence that port congestion can
contribute to racial disparities in respiratory-related health outcomes.
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Table C.4: Effect of vessel tonnage on contemporaneous hospitalizaton rate by race in
port areas of California, instrumental variable estimation

Dependent variable: hospital visits/million residents in each race group
Respiratory Heart Psychiatric

Upper All All All
Asthma Respiratory Respiratory Heart Anxiety Psychiatric

(1) (2) (3) (4) (5) (6)

Panel A: Black

Log of Vessel Tonnage 53.81∗ 72.63∗∗∗ 267.78∗∗∗ −5.42 −16.22 −71.20∗∗
(28.29) (25.36) (93.30) (25.55) (10.94) (33.35)

Adjusted R2 0.14 -0.01 0.04 0.13 0.04 0.16
Observations 888,237 888,237 888,237 888,237 888,237 888,237

Panel B: White

Log of Vessel Tonnage 7.41 13.79∗∗ 61.45∗∗ −3.39 −8.35 −24.83
(7.18) (6.42) (28.23) (16.74) (7.55) (19.68)

Adjusted R2 0.17 0.05 0.26 0.28 0.14 0.31
Observations 1,687,172 1,687,172 1,687,172 1,687,172 1,687,172 1,687,172

Notes: This table presents the instrumental variable estimation of the effect of vessel tonnage on the contempo-
raneous hospitalization rate for the Black and white populations. Each entry presents an individual regression
on an illness category. The endogenous variable, log of vessel tonnage, is instrumented by the dummyof ten-day
lagged and 500-mile distant cyclones from ports. All regressions include a set of weather controls, such as the
quadratics of maximum, minimum, and dew point temperatures, precipitation, wind speed, and relative wind
direction between a zip code-port pair. All regressions also include county-by-year, month, day-of-week, holi-
day, and zip code-port pair fixed effects. Standard errors are clustered by zip code-port pair and day. Estimates
are weighted by the zip code-specific population. Significance levels are indicated by *** 1%, ** 5%, and * 10%.
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D National Energy Modeling System (For Online Publi-
cation)

The National Energy Modeling System (NEMS) is an integrated energy-economy mod-
eling system developed by EIA. A 2017 version of NEMS is currently hosted on a server
at Yale University, and we call it Yale-NEMS at EIA’s request. Yale-NEMS comprises 13
modules comprehensively modeling major energy supply sectors, conversion sectors,
demand markets, macroeconomics, and international energy markets. The model
simulates energy markets out to 2050 subject to a comprehensive set of constraints, such
as economics, technological advancement, demographics, resource availability, and
behavior assumptions. The model also includes current energy and environmental poli-
cies at the state and federal levels, while it does not consider any proposed rule-makings.
Model projections include energy consumption, production, trade, prices, and emissions.

Since we are particularly interested in the effects of shore-side energy consumption
and its interaction with the power sector, this appendix discusses how Yale-NEMS
models marine fuel consumption and electricity generation. The description of other
modules is available at EIA (2009). We first introduce the reference case of Yale-NEMS,
which we use as the baseline for our analysis.

D.1 Annual Energy Outlook
We take Annual Energy Outlook (AEO) 2017 as the reference case. AEO 2017 is a regular
update of the U.S. energy market outlook, released in early 2017 by EIA. The series
of AEOs have been widely referenced for decision makings by government agencies,
academia, and private sectors for decades. AEO 2017 projects a time path of key U.S.
energy market indicators from present to 2050 EIA (2017a). Comparing to previous
annual outlooks, AEO 2017 includes two reference projections, one including the Clean
Power Plan (CPP) and the other excluding it. Because the CPP is much less stringent
than its original form, in this study, we use AEO 2017 without the Clean Power Plan as
the reference case.

While AEO 2017 is a few years old, electricity generation in the United States has
only become cleaner since 2017. Thus, if our simulation results are biased in any
direction, they would be biased towards overestimating the air pollution from electricity
consumption. This suggests that using AEO 2021 would only strengthen our results
that the California port electrification regulation reduced air pollution emissions on net.

D.2 Marine Energy Consumption
In Yale-NEMS, the transportation demand module projects transit and auxiliary fuel
consumption by marine vessels, within the U.S. Emission Control Area—the areas
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within 200 nautical miles of the U.S. coast and outside ECA EIA (2016).
Yale-NEMS models the marine fuel consumption by vessel type (tanker, container,

gas (LPG/LNG), roll-on/roll-off, bulk, and general cargo) within the ECA in three steps,
as is discussed in great detail in EIA (2016). First, the model estimates the total energy
consumption in a base year (2013) based on historical data. From the base year, the
model then determines the projections of energy demand in future years by several
factors: fleet turnover rate—representing the rate of new vessels entering a fleet moving
through ECA, marine fuel efficiency improvement, and industrial output—accounting
for economic growth. Third, the model splits total energy consumption into four fuel
types, including distillate oil, residual oil, CNG, and LNG, based on fuel price changes
using a logit model specification.

EIA’s NEMS does not explicitly model port-side electricity consumption and we add
this feature to Yale-NEMS. First, we obtain historical data on vessel visits connected to
onshore electricity and compare them to the total number of visits, which provides us
the approximate percentage of energy consumption from electricity by year and region.
For future years, we assume the same proportion of using electricity from 2016. We also
incorporate the California Ocean-Going Vessel At-Berth Regulation (see Section 6.1 for
details). Second, since we know the total fossil fuel consumption in ECA, we calculate
the total electricity consumption based on the calculated percentages, constituting the
reference shore-side electricity consumption in the model. Third, we subtract the newly
added marine electricity demand from the total commercial electricity demand. Thus
the total electricity demand across sectors is still comparable to the AEO 2017 base
projections. Fourth, we calculate the reference emissions from vessels by applying
the emission factors by engine type (transit and auxiliary) and fuel type to total fuel
consumption.

D.3 Electricity Generation
The Electricity Market Module (EMM) in Yale-NEMS explicitly models the U.S. elec-
tricity market and its interaction with other energy markets EIA (2017b). The module
is at the North American Electric Reliability Corporation (NERC) region level. In
each modeling year, other interrelated modules pass critical parameters to the EMM,
including electricity demand from the four end-use demand modules (commercial,
industrial, residential, and transportation demand), input fuel prices from the fuel
supply modules (coal, natural gas, and fuel oils), and macroeconomic expectations from
the macroeconomic module. The EMM then makes production decisions by choosing a
fuel mix to generate electricity to meet demand cost-efficiently with perfect foresight.

The outputs from the EMM include electricity quantities and prices, input fuel
consumption, emissions, and capital investment for additional capacity, which are then
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all returned to the related modules. Several factors determine the total emissions from
generating electricity, including emission factors across energy types and mitigation
technologies. The model iterates until market equilibrium achieves. The electricity
consumption from ports is linked to EMM. When there is electricity incurred by vessels,
the demand is received by the EMM, and then the EMM generates electricity to meet
such demand most economically.

Yale-NEMS only reports emissions of SO2 and NOx from the power sector. To
evaluate PM2.5, we use an approximation approach similar to Gillingham and Huang
(2019, 2020). First, we calculate the base year (2014) PM2.5 emissions from power plants
based on the EPA 2014 National Emissions Inventory (NEI) data and obtain the energy
consumption from Yale-NEMS in the same year. Second, we extrapolate the emissions
after 2014 as a constant proportion of energy consumption.

D.4 Shore Power Scenario
We construct a shore power scenario, in which all U.S. ports implement shore power
for auxiliary engines of vessels. Specifically, we allow auxiliary fuels (e.g., distillate oil,
residual oil, and natural gas) consumed by vessels to be gradually replaced by electricity
generated by power plants from 2020 to 2025, and after 2025 all auxiliary engines are
powered by electricity. The fuel switch follows the following linear adjustment:

@ 5 ,C =

(
1 − C − 2019

2025 − 2019

)
@0
5 ,C
,

@4 ,C =
C − 2019

2025 − 2019

∑
5

@0
5 ,C
,

where @0
5 ,C

represents the consumption of auxiliary fuel 5 by vessels in ports in year C
(C < 2025) in the reference case and @ 5 ,C is the adjusted fuel consumption in the Shore
Power scenario. @4 ,C is electricity consumption by vessels in ports switched from fossil
fuels. From the year 2025 onwards, fossil fuels consumed by auxiliary engines are
entirely replaced with electricity, as represented in the following:

@ 5 ,C = 0,

@4 ,C =
∑
5

@0
5 ,C
.

We run the reference case and the Shore Power scenario individually in Yale-NEMS.
We then compare the emissions results between the two cases, and the differences
indicate the effect of implementing shore power in ports.
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