
On-Demand and Lightweight Knowledge Graph
Generation – a Demonstration with DBpedia

Malte Brockmeier, Yawen Liu, Sunita Pateer,
Sven Hertling[0000−0003−0333−5888], and Heiko Paulheim[0000−0003−4386−8195]

Data and Web Science Group
University of Mannheim, Germany

{mbrockme,yawliu,spateer}@mail.uni-mannheim.de
{sven,heiko}@informatik.uni-mannheim.de
http://dws.informatik.uni-mannheim.de/

Abstract. Modern large-scale knowledge graphs, such as DBpedia, are
datasets which require large computational resources to serve and pro-
cess. Moreover, they often have longer release cycles, which leads to out-
dated information in those graphs. In this paper, we present DBpedia on
Demand – a system which serves DBpedia resources on demand with-
out the need to materialize and store the entire graph, and which even
provides limited querying functionality.

Keywords: Knowledge Graph · On Demand · Live · Lightweight · Knowl-
edge Graph as a Service · DBpedia

1 Introduction

Knowledge graphs on the Web – such as DBpedia [6], YAGO [9], or Wikidata
[11] – are useful building blocks for intelligent applications [3]. While they differ
considerably in coverage and quality [1], in many cases, timeliness of informa-
tion is a crucial property in some use cases as well. Since many public knowledge
graphs have rather long release cycles, sometimes up to a few months or even
years [3], the information served in these knowledge graphs may be easily out-
dated. One approach which has been proposed to close this gap is DBpedia Live,
which provides fresh data extracted from Wikipedia as a knowledge graph [7],
and which, after a longer downtime, is available again since 2019.1

Another challenge related to such knowledge graphs is their sheer size. The
creation of those graphs is often a longer running and computation-intensive
process, and even serving the knowledge graph online requires quite a bit of
computing power. The hosted services for hosting a static DBpedia copy or
running DBpedia live cost around $1 per hour at the time of writing this paper.2

0 Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

1 https://www.dbpedia.org/blog/dbpedia-live-restart-getting-things-done/
2 https://aws.amazon.com/marketplace/seller-profile?id=1b9b499d-15e3-

479d-a644-da16d45c40a7

2 M. Brockmeier et al.

KG on Demand
Engine

Cache

Front end

User

Linked Data Endpoint
 HTTP GET http://dbpedia.org/resource/Mannheim

SPARQL Endpoint
 SELECT ?p WHERE {dbr:Mannheim dbo:population ?p}

Extraction Framework Abstract Extraction

 Request: http://dbpedia.org/resource/Mannheim

 Get
Ingoing Links

 Get Page
Sources

 Generate RDF Extract Abstracts

Fig. 1. Overall System Architecture of DBpedia on Demand

In this paper, we introduce DBpedia on Demand – an installation of DBpedia
which can be run on a local machine as a service. It creates knowledge graph
resources on request without materializing an entire graph, which makes its
computing requirements rather minimal. It provides a Linked Data endpoint as
well as limited SPARQL querying properties.3

2 Prototype

DBpedia is built from Wikipedia by extracting information from infoboxes and
other bits of structured contents, such as categories. To that end, it uses map-
pings from infoboxes to a central ontology, which are also stored in a Wiki. When
creating a release, a dump of Wikipedia is processed, and the page contents are
transformed to knowledge graph instances using the mappings defined in the
Mappings Wiki [6].

The idea of KG on demand is different. Instead of creating a full DBpedia
copy, it creates instances upon request: when a user requests a certain resource,
the corresponding Wikipedia page is downloaded and processed in real time.
Mappings can be downloaded from the mappings Wiki regularly, which allows
for using at least recent, although not up to date mappings. Fig. 1 shows the
overall architecture of the KG on Demand engine. The process runs in five steps:

1. The URI for which to generate the RDF for is obtained, either trough the
user interface, a HTTP request, or by extracting it from a SPARQL query.

2. The ingoing links (i.e., Wikipedia pages pointing to the page which corre-
sponds to the requested resource) to that resource are obtained from the
Wikipedia API.

3 Code available at https://github.com/mbrockmeier/KnowledgeGraphOnDemand

On-Demand and Lightweight Knowledge Graph Generation 3

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

No. of ingoing Wikipedia links

T
im

e
 (

s)

Fig. 2. Performance of Knowledge Graph on Demand

3. The page sources for both the requested resources and the resources of the
pages linking to the resource are obtained via the Wikipedia API.

4. For all those pages, the corresponding RDF representation is generated via
the DBpedia Extraction Framework.

5. Additionally, the abstract for the resource at hand is generated by extracting
the first few sentences from the Wikipedia page.

In the DBpedia knowledge graph, outgoing edges from a resource are generated
from the corresponding Wikipedia page’s infobox. Hence, for generating only the
outgoing edges, processing one single Wikipedia page is sufficient. In contrast,
ingoing edges are outgoing edges of other Wikipedia pages. In order to generate
those, we first query the Wikipedia API for other pages that link to the one at
hand, and then process those as well in order to generate the ingoing edges.

Since the abstract extraction in DBpedia requires the creation and processing
of a local copy of the entire Wikipedia, we developed or own simple abstract
extraction mechanism instead of using the original one.

The number of ingoing Wikipedia links is the key factor that influences the
performance of the proposed approach. Fig. 2 depicts the performance for ex-
tracting resources from Wikipedia pages.4 It can be observed that the systems
scales linearly with the number of ingoing links.5

The approach of generating resources for URIs also determines the kind of
SPARQL queries that our approach can process. Generally, all queries that only
consider simple ingoing and outgoing edges of a fixed resource can be handled,
such as

SELECT ?actor WHERE { ?actor dbo:starring dbr:Lost_Highway .}

SELECT ?director WHERE { dbr:Lost_Highway dbo:director ?director .}

On the other hand, our approach cannot handle queries without a fixed resource,
or queries with a path length greater than one, such as:

4 The tests were run on an Intel Core i7-8700K processor, 32GB of DDR4 RAM, a
1TB NVMe SSD, and an internet connection with a downstream rate of 100MBit/s.
The reported processing times are the averages of 10 runs.

5 Since the number of ingoing links are the main driver of performance, the maximum
number of ingoing links to consider can also be reduced in the configuration of our
implementation. By default, all ingoing links are processed.

4 M. Brockmeier et al.

Table 1. Comparison of DBpedia Live and DBpedia on Demand

DBpedia Live DBpedia on Demand

Storage requirements high low

Online runtime high low

Response time fast slower

Latest mapping version yes approximate

SPARQL interface full limited

SELECT ?actor ?movie WHERE { ?actor dbo:starring ?movie .}

SELECT ?director WHERE { dbr:Tom_Cruise dbo:starring ?movie .

?movie dbo:director ?director .}

In other words, the queries are limited to patterns with at least one resource
fixed, and all query variables being at most one hop away from that resource.

3 DBpedia Live vs. DBpedia on Demand

DBpedia live builds a full copy of DBpedia. This copy is then updated by moni-
toring the update stream of Wikipedia. Whenever a change is made in Wikipedia,
DBpedia live is notified and processes the change by re-computing the corre-
sponding instance representation in the knowledge graph. Likewise, it is notified
on changes in the Mappings wiki (e.g., if the mapping of an infobox to an ontol-
ogy class is changed), and the affected instances can then be changed as well.

By design, DBpedia live always stores a local materialized copy of the full
knowledge graph, which leads to high computational costs of serving the knowl-
edge graph endpoint (i.e., it can be run on commodity hardware). Since all
requests are processed on that local copy, they can be handled faster than in
DBpedia on demand, and also all types of SPARQL queries can be answered.
At the same time, DBpedia Live requires a lot of online runtime to constantly
process the stream of changes from Wikipedia. Table 1 summarizes the main
differences between DBpedia Live and DBpedia on Demand.

4 Conclusion and Outlook

In this paper, we have shown an approach which generates a knowledge graph
like DBpedia in an on-demand and lightweight fashion. The approach is very
resource-efficient and can be run on commodity hardware. Hence, it is an in-
teresting building block for applications which use a knowledge graph, but do
neither want to rely on a public endpoint, nor materialize an entire knowledge
graph. The approach can be seen as a complement to DBpedia Live, in compar-
ison to which it has different advantages and disadvantages.

While the current implementation is a prototype only, there are some short-
comings which we have inherited from the DBpedia Extraction Framework. First,

On-Demand and Lightweight Knowledge Graph Generation 5

that framework is not capable of multithreading, which makes the current im-
plementation suitable for a local service, rather than for setting up a public
endpoint. Second, we have currently encapsulated the entire extraction frame-
work, which, however, comes with a significant ramp-up time. Both issues could
be addressed by branching and refactoring the extraction framework’s codebase.

While this demonstration has been based on DBpedia, it can be transferred
to other approaches as well. With the same mechanism, it would be possible
to use the extraction code of other Wikipedia-based knowledge graphs, such as
YAGO [9] or the Linked Hypernym extraction [5], as well as to transfer the
approach to other Wikis [4]. Also other refinement operators which are local to
a Wikipedia page, such as extracting relations from text [2], would be applicable.

While the SPARQL capabilities in our approach are still basic, the ap-
proach could be extended towards supporting more complex queries. Possible
approaches would be incremental solving of queries, or first using the Wikipedia
link graph for obtaining candidates, and then running the extraction on the can-
didates to narrow down the solution set. For implementing a query endpoint,
it would also be interesting to build a (possibly limited) linked data fragments
endpoint [10] with the approach at hand, since many of the basic building blocks
of those endpoints (e.g., paging) can be directly transferred to our approach.

Apart from adding querying capabilities, the endpoint could also be en-
riched with an on-demand approach of generation of embedding vectors, such
as RDF2vec Light [8]. That way, downstream applications could leverage both
explicit as well as latent representations of the entities in the knowledge graph.

References

1. Färber, M., Bartscherer, F., Menne, C., Rettinger, A.: Linked data quality of db-
pedia, freebase, opencyc, wikidata, and yago. Semantic Web 9(1), 77–129 (2018)

2. Heist, N., Hertling, S., Paulheim, H.: Language-agnostic relation extraction from
abstracts in wikis. Information 9(4), 75 (2018)

3. Heist, N., Hertling, S., Ringler, D., Paulheim, H.: Knowledge graphs on the web-an
overview. (2020)

4. Hertling, S., Paulheim, H.: Dbkwik: extracting and integrating knowledge from
thousands of wikis. Knowledge and Information Systems 62(6), 2169–2190 (2020)

5. Kliegr, T.: Linked hypernyms: Enriching dbpedia with targeted hypernym discov-
ery. Journal of Web Semantics 31, 59–69 (2015)

6. Lehmann, J., et al.: Dbpedia–a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic web 6(2), 167–195 (2015)

7. Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: Dbpedia and the
live extraction of structured data from wikipedia. Program (2012)

8. Portisch, J., Hladik, M., Paulheim, H.: Rdf2vec light–a lightweight approach for
knowledge graph embeddings. arXiv preprint arXiv:2009.07659 (2020)

9. Rebele, T., et al.: Yago: A multilingual knowledge base from wikipedia, wordnet,
and geonames. In: ISWC. pp. 177–185. Springer (2016)

10. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface
for the web. Journal of Web Semantics 37, 184–206 (2016)

11. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Com-
munications of the ACM 57(10), 78–85 (2014)

