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ABSTRACT
Instance type information is particularly relevant to perform rea-
soning and obtain further information about entities in knowledge
graphs (KGs). However, during automated or pay-as-you-go KG
construction processes, instance types might be incomplete or miss-
ing in some entities. Previous work focused mostly on representing
entities and relations as embeddings based on the statements in the
KG. While the computed embeddings encode semantic descriptions
and preserve the relationship between the entities, the focus of
these methods is often not on predicting schema knowledge, but on
predicting missing statements between instances for completing
the KG. To fill this gap, we propose an approach that first learns a
KG representation suitable for predicting instance type assertions.
Then, our solution implements a neural network architecture to
predict instance types based on the learned representation. Results
show that our representations of entities are much more separable
with respect to their associations with classes in the KG, compared
to existing methods. For this reason, the performance of predicting
instance types on a large number of KGs, in particular on cross-
domain KGs with a high variety of classes, is significantly better in
terms of F1-score than previous work.
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1 INTRODUCTION
Knowledge graphs (KGs) use schema assertions or axioms to model
concepts and relations that serve as the foundation for describing
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Figure 1:Motivating example. Entities from the same classes
use the same predicates in their descriptions. We leverage
this to predict missing type information for Donald Knuth.

entities and their connections in the KG. These schema assertions
typically define the meaning and associations between classes, re-
lations, and class memberships. Furthermore, reasoners can use
schema axioms to logically deduce additional facts from the KG or
to detect inconsistencies between statements encoded in the KG.
Therefore, having complete schema assertions in KGs is key to fully
exploit the power of semantics in graphs, yet, these assertions may
be incomplete due to several reasons. For example, KGs created in a
pay-as-you-go fashion can suffer from this kind of incompleteness
since new instances, classes, and properties are sometimes added
to the KG with partial information that is available at the time of
insertion. Similar situation may occur when building KGs from
unstructured or incomplete sources. Furthermore, some schema
assertions require domain-specific knowledge provided by experts,
but manually completing them is not a feasible solution for KGs
with a large number of classes.

Despite the relevance of schema assertions, recent advances in
KG embeddings that have been proposed are tailored to completing
instance-level statements [5, 23, 32], i.e., enhancing the descriptions
of entities or instances in the KG. To address the incompleteness of
schema assertions, other solutions have been proposed that focus
on the problem of instance type prediction. For this, either specific
approaches [24] have been devised or some of the aforementioned
solutions [21] have also been applied. Nonetheless, the recent work
by Jain et al. [12] shows that state-of-the-art approaches are not
effective for predicting instance types, in particular, when consid-
ering specialized classes in class hierarchies.
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In this paper, we introduce an approach called Ridle that learns
representations of entities, tailored to predict instance type asser-
tions. The hypothesis of this work is that instances from the same
class are described with the same predicates in the KG which, in
turn, allows for predicting the types of similar instances. To illus-
trate this, consider the KG from Figure 1, where the entity Donald
Knuth is not associated with any class. Yet, the description of Don-
ald Knuth has some relations in common with the entity Tom Barret
of type Person, e.g., birthDate, birthPlace and almaMater. In contrast,
Donald Knuth does not have relations in common with the en-
tity Milwaukee of type Country. Based on this information, Donald
Knuth might also belong to the class Person. Note that the objects
of the predicates are different for Donald Knuth and Tom Barret,
still, by just looking at the relations used in their descriptions we
can predict the class affiliation for Donald Knuth. This example
shows that the occurrences of instances and relations can be an
effective predictor for instance types. The underlying idea of Ridle
is to exploit these characteristics and compute a target distribution
over the occurrence of relations to learn a compressed representa-
tion of the KG, in which this distribution is latently encoded. We
use a stochastic factorization model, namely Restricted Boltzmann
Machine (RBM), to learn this target distribution. In a downstream
stage, we use these representations combined with information
about existing schema statements to predict missing instance type
assertions using a supervised neural network architecture. While
most methods are inherently transductive and therefore do not
efficiently generalize to unseen entities, our method is inductive,
allowing it to generate representations and predictions for schema
assertions, even in the presence of unknown entities.

We conducted an extensive evaluation on 20 KGs, including
4 cross-domain and 16 category-specific KGs, allowing for a de-
tailed analysis of the features of the proposed approach. We com-
pare Ridle with state-of-the-art methods with different learning
paradigms [5, 23, 24, 28, 32]. We report on F1-score, as similar stud-
ies have done before [24, 28]. The results show that Ridle achieves
on average a better performance in predicting instance type asser-
tions, particularly in cross-domain knowledge graphs, than current
state-of-the-art methods, thus providing a new baseline for predict-
ing schema assertions.

2 RELATEDWORK
Our work focuses on learning a representation for entities in knowl-
edge graphs for predicting instance type assertions. SDType [24]
is a heuristic link-based type inference mechanism focusing on
instance type prediction. As pointed out in related works [13, 26]
traditional reasoningmethods tend to struggle with noisy data, false
or unforeseen schemas. The heuristic method SDType uses a statis-
tical distribution of the actually used scheme in the computation
and thus making it more robust. This characteristic of robustness of
statistical distributions is used in this paper as well, in order to deal
with noise in the data. In contrast to SDType, we use a stochastic
factorization model to learn representations of entities on the use
of relations of instances. Based on the representations, we learn a
model for predicting instance types assertions. RDF2Vec [28] is an
adaptation of the language model Word2Vec [19, 20] by using ran-
dom walks and Weisfeiler-Lehman Subtree RDF Graph Kernels to

create sequences of nodes that are passed to Word2Vec for learning
low-dimensional numerical representations of entities and rela-
tions. Despite the promising results of previous studies on instance
type prediction using RDF2Vec [4, 14, 31], we consider RDF2Vec
especially suitable for measuring the semantic similarity of enti-
ties [6, 28, 29], as well as the entity alignment between knowledge
graphs [1], due to the use of Word2Vec and thus the ability to repre-
sent relationships between entities accurately. Yet, using a random
walk approach, the performance of RDF2Vec varies significantly
depending on the topology of the knowledge graphs and the ran-
dom walk strategy. In contrast, we learn features based on a target
distribution and, thus, it is not negatively affected by the topology
of the knowledge graph or the chosen random walk strategy. We
prefer the low-dimensional representation of entities as learned by
RDF2Vec, but consider that the complete triple is not relevant for
the prediction of schema assertions and, thus, consider RDF2Vec to
be too complex for this task. In a further related work on instance
type prediction, entities were classified exclusively on the basis of
the relations used [18]. For the sole use of the relation of entities,
the results are very promising. However, this approach neglects
the semantic relationship, as well as latent features expressed in
the correlations between the graph relations. In contrast, we want
to provide representations of entities by using a target distribution
over the usage of relations of entities and thus the identification of
latent features based on relation usage of entities.

In this work, we use Restricted Boltzman Machines (RBMs) to
learn a target distribution over the usage of relations of entities
allowing to use the hidden layer as latent features for representa-
tion of entities. RBMs have been applied in the past especially for
dimensionality reduction [11], learning and reconstructing sparse
representations of the input [27], collaborative filtering [2, 30] and
link prediction [16, 33]. Although first attempts were made to apply
RBMs for feature learning [15, 22], it has not been yet applied for
learning features in knowledge graphs. In addition, we want to
mention that in this context, RBMs share a similar idea as auto-
encoders, but use stochastic units. Instead of reconstructing the
exact input as done with auto-encoders, we are trying to identify
the distribution of the used relations to determine latent features,
which we will use as representation of entities.

3 PROPOSED APPROACH: RIDLE
For the downstream task of predicting instance type assertions, we
need a semantically meaningful representation of entities. Our hy-
pothesis is that the relations used by the instances are most relevant
for their classification. For example, considering the knowledge
graph in Figure 1, we notice that Donald Knuth has among others
the relations birthplace and birthdate. Knowing only these relations,
already gives a hint, that this instance is most likely of type person,
as both relations are in general used only by entities of the class
Person. The complete statements, i.e., in which place exactly Donald
Knuth was born or at which date, is less relevant to predict the
instance type. Likewise, we notice in this example, that certain
relations are more likely to co-occur in the context of certain types
of instances than others and, thus, the distribution of used relations
can be used to predict class memberships.
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(a) Vector representation of the entity Donald Knuth.
Learning representation for target distribution of the
used relations using a RBM.

(b) Using latent features to perform instance type predictionwith a supervised
neural network.

Figure 2: Overview of Ridle: proposed solution for instance type prediction. Entities are first encoded as a binary vector, repre-
senting the usage of relations. AnRBM is used to learn a target distribution over the used relations. Afterwards, the compressed
vector representations of the RBM hidden layer 𝑃 (h0 |v0) are used as the representation of the entities to train a supervised
2-layer neural network for instance type prediction. Labels for training are obtained from the knowledge graph.

We devise an approach to exploit the aforementioned two char-
acteristics about associations between instances and relations in
knowledge graphs. Our proposed approach, Ridle (Relation-Instance
Distribution Learning), is able to learn the distribution of relations
in the knowledge graph which, in turns, allow for predicting in-
stance types. Figure 2 depicts the two components of Ridle: (a) a
representation model based on instance-relation occurrences in
the knowledge graph, (b) a neural network for predicting instance
types based on the learned entity representations. In the following,
we describe each of the two components.

3.1 Learning Instance-Relation Representation
The goal of the first component of Ridle is to learn a representa-
tion of a given knowledge graph (KG). We define a KG as G =

(E,R,L,T), where the pair-wise disjoint sets E, R, L, and T cor-
respond to the set of entities, relations, literals, and types or classes,
respectively. A statement in G is modelled as a triple (𝑠, 𝑝, 𝑜), with
𝑠 ∈ E ∪ R ∪ T , 𝑝 ∈ R, and 𝑜 ∈ E ∪ R ∪ L ∪ T . We denote the
predicate rdf:type, defined in the RDF [34] and RDFS [9] specifica-
tions, as the relations 𝑡𝑦𝑝𝑒 ∈ R. In addition, we denote R− ⊂ R the
set of domain-specific relations, which excludes 𝑡𝑦𝑝𝑒 , and further
predicates from meta-models or general-purpose ontologies.

To learn an effective instance-relation representation, our ap-
proach encodes each entity of the knowledge graph G based on its
properties. Ridle focuses on domain-specific properties R−, which
allows for uncovering entities with similar semantic descriptions.
General-purpose predicates are left out from the entity representa-
tion as they might hinder the learning process for two reasons: (i)
these predicates alone do not provide information that allow for

distinguishing entities from different classes,1 and (ii) these pred-
icates typically occur in the majority of entities. Therefore, Ridle
models an entity 𝑠 ∈ E as a binary |R− |-vector v, where:

v[𝑖] =
{
1 if (𝑠, 𝑟𝑖 , 𝑜) ∈ G, for some 𝑜 ∈ E ∪ R− ∪ L ∪ T
0 otherwise

Note that we choose a binary representation as the frequency of
the used relations is irrelevant for the downstream classification of
instance types. Figure 2a shows an example of this representation
of the instance Donald Knuth encoded as the vector v.

Then, the binary vector v serves as input for a Restricted Boltz-
mannMachine (RBM), forwhich the relation distribution in a knowl-
edge graph G is learned. An RBM is a generative model to simulate
input distributions of binary data, consisting of one visible layer,
denoted as v, and one hidden layer h with size ℎ. In RBMs, there
is no explicit output layer, since the unsupervised model tries to
approximate the distribution of the input data. The distribution is
used to compute latent features in the hidden layer, which can be
seen as a compressed representation of the input data.

In RBMs, the weights or parameters between the layers represent
the impact of the individual input nodes on the latent features in
the hidden layer. The learning of the parameters in our approach
is done by means of Gibbs-sampling. Therefore, in the following
notations, the indexing is used to indicate the step of the Gibb-
sampling process. The input v0 is multipliedwith aweightmatrixW
and added with a bias a. Similar to a feed-forward neural network, a
sigmoid activation function 𝜎 is used to compute the hidden values,
denoted as 𝑃 (h0 |v0).

1Note that the object of triples are not considered in our representation. Therefore,
encoding that e.g. the predicate type occurs in an entity is not informative to predict
the class to which the entity belongs to.
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𝑃 (h0 |v0) = 𝜎 (Wv0 + a) (1)
Afterwards, samples based on the computation of the hidden

layer 𝑃 (h0 |v0) are taken from a Bernoulli distribution to compute
the hidden state h0.

h0 ∼ Bernoulli(𝑃 (h0 |v0)) (2)
Introducing a stochastic distribution function extends the neu-

rons to stochastic neurons. While a high 𝑃 (h0 |v0) results in a high
probability of having a positive hidden state h0, a low probability
results in zero output. Based on the hidden state h0, the input data
v0 will be reconstructed by using the hidden state h0 as input and
backwarded in the neural network. Hereby, the hidden state h0
is multiplied with the same weight matrixW as it was computed,
but transposed, and a bias value b added. Afterwards, the sigmoid
activation function is applied to this weighted sum. The resulting
vector, denoted as 𝑃 (v1 |h0), in the visible layer can be seen as an
approximation of the original input.

𝑃 (v1 |h0) = 𝜎 (W𝑇h0 + b) (3)
RBMs are energy-based probabilistic models, using a probability

distribution through an energy function to measure the quality,
similar to cost functions of machine learning models. The hidden
layer serves as latent variable to increase the expressiveness of the
model, therefore the following energy-based probabilistic function
(Gibbs distribution) specifies that a certain state v can be observed:

𝑃 (v) = 1
𝑍

∑
h

𝑒−𝐸 (v,h) (4)

where 𝑍 is the sum from all possible states and called the normaliz-
ing factor:

𝑍 =
∑
v,h

𝑒−𝐸 (v,h) (5)

With Eq. 4, we can conclude that a low energy 𝐸 (v,h) leads to a
high probability 𝑃 (v), while a high energy leads to a low probability
𝑃 (v). In order to increase the probability 𝑃 (v) we, therefore, have to
minimize the energy function 𝐸 (v,h). The energy function 𝐸 (v,h)
for an RBM with its input v and hidden state h is the following:

𝐸 (v,h) = −v𝑇Wh − a𝑇 v − b𝑇h (6)
The aim is to approximate the distribution, therefore the differ-

ence in the distribution of the input data v0 and the reconstructed
input data 𝑃 (v1 |h0) should be minimized. Thus, the energy func-
tions described in Eq. 6 of these two distributions are to be aligned.
In previouswork it has been shown that contrastive divergencewith
Gibbs-sampling, as an approximation of the log-likelihood gradient,
is a very efficient method to learn the parameters of the RBM to com-
pute the target distribution [8]. The number how often the Gibbs
chain is applied for a single sample is denoted by the parameter 𝑘 .
In related studies as well as in preliminary conducted experiments,
it has been shown that 𝑘 = 1 already achieves sufficient results
in the approximation of the target distribution. Therefore, similar
to related work, we use k-step contrastive divergence to learn the
parameters of the RBM. The gradient w.r.t. log-likelihood for one
sample v0 is then approximated by the following formula [3]:

𝐶𝐷 (𝜃, v0) = −
∑
h

𝑃 (h0 |v0)
𝜕𝐸 (v0,h0)

𝜕𝜃

+
∑
h

𝑃 (h0 |v1)
𝜕𝐸 (v1,h0)

𝜕𝜃

(7)

Based on Eq. 7, we get the following updates of the parameters:

ΔW = 𝑃 (h0 = 1|v0) · v0 − 𝑃 (h0 = 1|v1) · v1 (8)

Δa = v0 − v1 (9)

Δb = 𝑃 (h0 = 1|v0) − 𝑃 (h0 = 1|v1) (10)

Using the update rules the parameters converge so that the dis-
tribution of the reconstructions v1 corresponds to the distribution
of the input v0.

3.2 Predicting Instance Types
We model the problem of instance type prediction as a multi-label
classification problem, since entities can belong to several classes
in G. To perform the predictions, Ridle exploits the latent features
of entities learned with the RBM, which are fed into a supervised
learning algorithm. For every entity 𝑠 ∈ E modelled as v0 in the
RBM, Ridle obtains the learned representation e𝑠 = 𝑃 (v0 |h0) (c.f.
Figure 2b). I.e., instances in Ridle are represented as the learned prob-
abilities of activating a hidden state. This representation was chosen
over the binary vector h0 obtained after the Bernoulli sampling,
as 𝑃 (v0 |h0) ∈ [0, 1]ℎ corresponds to the likelihood of membership
to the latent features that encode classes in the KG and, therefore,
carries more in information than binary values. Then, Ridle con-
structs a vector with the classes to which the entity 𝑠 belongs to, i.e.,
t𝑠 [𝑖] = 1 if (𝑠, type, 𝑡𝑖 ) ∈ G for some 𝑡𝑖 ∈ T , t𝑠 [𝑖] = 0 otherwise.
The vector t𝑠 is used as labels in the classification problem.

For the supervised learning algorithm, Ridle implements a 2-
layer neural network,2 with input layer size ℎ and output layer
size |T |. In the hidden layer, Ridle uses an approximation of the
GELU activation function. We select the GELU activation function
due to its excellent performance in related machine learning tasks,
as shown in BERT [7]. For an input 𝑥 in the network, the used
approximation of the GELU function, as described in more detail in
the corresponding paper [10], is defined as follows:

GELU(𝑥) = 1
2
𝑥

(
1 + tanh

[√ 2
𝜋
(𝑥 + 0.044715𝑥3)

] )
(11)

In the output layer Ridle applies a sigmoid function, thus the
results can be interpreted as the probability that an instance belongs
to a certain class or type.

2We conducted a preliminary evaluation using neural networks with varying number
of layers. However, the 2-layer setting exhibited the best F1 performance.
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Table 1: Characteristics of the studied KGs. For each KG G,
|G|=number of triples, |E |=number of subjects, |R |=number
of relations, |T |=number of classes

KG |G| |E | |R| |T |
DBp_3.8 3,246,924 31,952 10,200 294
DBp_2016-04 2,457,561 49,004 11,070 354
WD_2017-03-13 3,141,087 49,884 1,763 1,939
YAGO4 2,230,760 147,464 109 823

UMLS 6,029 135 45 46
DBLP 2,712,914 136,485 26 11
Pers(DBp) 333,296 64,423 2,239 126
Pers(WD) 249,059 8,400 1,509 53
Books(DBp) 242,989 13,361 619 17
Books(WD) 285,757 59,819 519 461
Chem(DBp) 58,952 9,674 265 5
Chem(WD) 268,534 16,872 339 1,008
Comp(DBp) 162,887 9,531 1,274 40
Comp(WD) 14,943 6,456 330 217
Movies(DBp) 416,834 69,761 959 13
Movies(WD) 410,295 8,807 382 74
Songs(DBp) 115,833 6,200 332 9
Songs(WD) 204,542 41,990 321 230
Uni(DBp) 183,700 9,029 2,021 13
Uni(WD) 66,182 12,133 472 274

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. Following related work [17, 24], we use well-known pub-
lic KGs such as the English DBpedia (3.8 and 2016-04) , Wikidata
(WD_2017-03-13), YAGO4, UMLS and DBLP. In the DBpedia graphs,
we removed common relations including prov:wasDerivedFrom,
dbo:wikiPageRevisionID, and dbo:wikiPageID. All those relations
occur in most instances and, therefore, do not provide class-specific
information. Furthermore we have removed schema assertions, i.e.
rdf:type, to not bias the downstream prediction tasks. All KGs ex-
cept Wikidata use the property rdf:type to specify instance type
assertions. Wikidata uses wd:P31 as class membership property.
Given the size of the KGs and limited computational resources, we
performed a data pre-processing step on DBpedia, Wikidata and
YAGO4, where only a subset of entities that occur in at least 10
triples and at most in 1, 000 triples are considered.3 In addition, we
extracted category-based subgraphs from DBp_2016-04 (DBp) and
WD_2017-03-13 (WD) to study the performance of approaches in
KGs limited to specific topics: persons (Pers), books (Books), chem-
ical compounds (Chem), companies (Comp), movies (Mov), songs
(Songs), and universities (Uni). Table 1 summarizes the datasets.

Metrics. We use the F1-score for measuring the effectiveness of
instance type predictions, as done in related works before [24, 28].
We report on both F1-macro and F1-micro for the aggregation of
multi-label performance in order to show the impact of prediction

3This pre-processing step removes noisy entities with toomany or too few descriptions.

errors in more detail. We conducted each experiment by using 10-
fold cross-validation and report on the average F1-score. The results
can be reproduced using the k-fold cross-validator implemented in
scikit-learn [25] using a random seed of 42.
Baselines. We compare our approach, Ridle, with current state-
of-the-art models in instance type prediction. The models include
strong baselines, e.g., RDF2Vec [28]. The selection of the mod-
els was based on their focus on instance type prediction in RDF
data e.g. SDType [24], excellent performance, e.g., TransE [5] and
RESCAL [23], as well as latest developments in link predictions,
e.g. InteractE [32]. The state-of-the-art methods were used to learn
a KG representation for each of the datasets described in Table 1.
Then, for a direct comparison, each learned representation was fed
to the same neural network architecture detailed in Sect. 3.2. The
only exception is SDType, as it does not learn a KG representation,
but directly produces an instance type prediction.
Implementation. Ridle is implemented in Python3. We used the
same hyperparameter settings on every knowledge graph.We chose
a learning rate 𝛼 = 0.01 with a hidden layer size of 50 and 100 iter-
ations for learning the representations. The experiments were per-
formed on a server with Intel(R) Xeon(R) Gold 6142 CPU@2.60GHz,
32 physical cores and 188GB RAM. For the baselines, we used the
standard hyperparameters recommended by the authors4.

4.2 F1-Score Performance
The effectiveness of the approaches in terms of the F1-macro and F1-
micro is presented in Table 2. Overall, we can observe that none of
the methods completely outperforms the other methods throughout
all the studied knowledge graphs.

Considering the cross-domain KGs (cf. Table 2a), Ridle signifi-
cantly outperforms the state-of-the-art methods with respect to the
metric F1-macro. This indicates that, even in the presence of large
KGs with a high number of classes and relations like is the case of
DBpedia, Wikidata, and YAGO, our proposed solution is still able
to produce accurate predictions. The main reason for this is that
the KG representation learned with the RBM model (cf. Sect. 3.1) is
able to capture the distribution of relations across the entity in the
KG. This, in turn, enables the identification of entities that belong
to the same classes based on the relations used to describe the en-
tity. In contrast, the studied baselines are mostly tailored to learn
statement-level representations which cannot effectively encode
the knowledge about instance types when considering large KGs
with a high number of classes and relations. With respect to the
metric F1-micro, we can observe that Ridle clearly outperforms
the other approaches except for the Wikidata KG. In this case, Ri-
dle cannot correctly predict entities for the most popular classes,
i.e., classes with a large number of entities like human settlement
(wd:Q486972). The reason for this behavior is that the entities (e.g.
wd:Q13071219) in the most popular Wikidata classes contain a few
class-specific relations, thus, affecting the performance of Ridle. In
contrast, the baseline methods use additional object information
while learning the KG representations, which allows for differen-
tiating subjects from different classes. These results confirm that
Ridle achieve a high performance in scenarios where entities in the
KG are described with sufficient class-specific relations. In the rest
4https://github.com/TobiWeller/Ridle
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Table 2: Results for predicting instance types specified with the predicates rdf:type (DBpedia) and wd:P31 (Wikidata). Bold
values represent best average results.

(a) Results for cross-domain knowledge graphs

F1-Macro F1-Micro

KG Ridle SDType RDF2Vec RESCAL IntE TransE Ridle SDType RDF2Vec RESCAL IntE TransE

DBp_3.8 .840±.01 .224±.02 .331±.02 .370±.01 .098±.01 .376±.01 .965±.00 .662±.01 .000±.00 .688±.00 .002±.00 .716±.00
DBp_2016-04 .846±.01 .222±.01 .209±.02 .317±.02 .188±.02 .371±.02 .968±.00 .595±.01 .000±.00 .624±.00 .000±.00 .715±.00
WD_2017-03-13 .805±.01 .115±.01 .774±.01 .784±.01 .784±.01 .779±.01 .590±.01 .563±.01 .000±.00 .751±.00 .752±.00 .801±.00
YAGO4 .727±.01 .056±.00 .693±.02 .623±.01 .657±.01 .621±.01 .965±.00 .888±.00 .643±.00 .889±.00 .725±.00 .890±.00

(b) Results for category-specific knowledge graphs

F1-Macro F1-Micro

KG Ridle SDType RDF2Vec RESCAL IntE TransE Ridle SDType RDF2Vec RESCAL IntE TransE

UMLS .669±.04 .064±.02 .555±.06 .617±.05 .557±.06 .387±.18 .598±.08 .281±.08 .315±.06 .524±.09 .318±.05 .508±.12
DBLP .803±.04 .018±.00 .198±.05 .593±.00 .134±.03 .645±.01 .995±.00 .051±.00 .630±.01 .970±.00 .504±.01 .970±.00
Pers(DBp) .680±.03 .329±.01 .210±.02 .331±.03 .212±.03 .375±.02 .943±.00 .880±.00 .735±.00 .842±.00 .743±.01 .879±.00
Pers(WD) .844±.08 .322±.23 .848±.10 .848±.10 .848±.10 .848±.10 .997±.00 .997±.00 .997±.00 .997±.00 .997±.00 .997±.00
Books(DBp) .859±.10 .603±.18 .865±.12 .770±.24 .865±.12 .865±.12 .999±.00 .999±.00 .999±.00 .999±.00 .999±.00 .999±.00
Books(WD) .734±.01 .036±.01 .712±.02 .720±.02 .712±.02 .720±.02 .932±.00 .901±.00 .912±.00 .914±.00 .912±.00 .916±.00
Chem(DBp) .820±.19 .729±.18 .820±.19 .820±.19 .820±.19 .820±.19 .999±.00 .994±.00 .999±.00 .999±.00 .999±.00 .999±.00
Chem(WD) .765±.01 .012±.00 .766±.02 .766±.02 .766±.02 .766±.02 .847±.01 .816±.01 .797±.01 .798±.01 .797±.01 .831±.01
Comp(DBp) .762±.07 .386±.14 .681±.13 .737±.13 .681±.13 .753±.13 .993±.00 .980±.00 .969±.00 .981±.00 .969±.00 .990±.00
Comp(WD) .828±.03 .070±.02 .819±.03 .819±.03 .819±.03 .819±.03 .939±.01 .892±.01 .935±.01 .935±.01 .935±.01 .935±.01
Movies(DBp) .650±.18 .331±.11 .608±.13 .608±.13 .608±.13 .608±.13 .999±.00 .998±.00 .999±.00 .999±.00 .999±.00 .999±.00
Movies(WD) .785±.08 .197±.08 .787±.07 .685±.22 .787±.07 .787±.07 .989±.00 .989±.00 .989±.00 .985±.01 .989±.00 .989±.00
Songs(DBp) .854±.10 .739±.10 .731±.10 .837±.10 .733±.10 .842±.10 .990±.00 .989±.00 .952±.00 .986±.00 .952±.00 .989±.00
Songs(WD) .745±.02 .062±.01 .731±.03 .736±.03 .731±.03 .740±.03 .917±.00 .806±.00 .889±.00 .895±.00 .889±.00 .911±.00
Uni(DBp) .766±.16 .613±.20 .708±.11 .683±.14 .708±.11 .708±.11 .998±.00 .998±.00 .998±.00 .998±.00 .998±.00 .998±.00
Uni(WD) .710±.03 .047±.01 .701±.03 .704±.03 .701±.03 .704±.03 .854±.01 .790±.01 .824±.01 .828±.01 .824±.01 .831±.01

of the KGs, Ridle can correctly classify entities for both large and
small classes as shown with both metrics. Another important result
is the low F1-micro values achieved by RDF2Vec in DBpedia and
Wikidata. In particular, RDF2Vec is always predicting foaf:Agent as
class, which is considered a false positive according to the test data.

Next, we look at the performance of the approaches in the
category-specific KGs (cf. Table 2b). We can observe that, in some
KGs, the performance of all approaches is significantly higher in
comparison to the cross-domain KGs. This indicates that the correct
classification of entities is easier in certain classes of a given KG. In
terms of average F1-macro, Ridle outperforms the state of the art in
12 out of the 16 studied KGs. Still, in the other 4 KGs – Pers(WD),
Books(DBp), Chem(WD), and Movies(WD) – we can conclude that
Ridle achieves competitive performance in comparison to the best
approaches when considering the difference between the average
F1-macro (in the order of 10−2) and the standard deviation (in the
order of 10−1). In terms of F1-micro, Ridle achieves a very high
performance on average. Furthermore, the other approaches also
achieve a high performance for the datasets Pers(WD), Books(DBp),
Chem(DBp), Movies(DBp), Movies(WD), and Uni(DBp). These KGs
are mostly characterized by having a low to moderate number of
classes (|T | between 5 and 53), and hundreds of relations (|R | be-
tween 265 and 959) with the exception of Pers(WD) with |R | = 1509.

Yet, even in category-specific KGs with hundreds of classes or few
relations, our approach outperforms the state-of-the-art.

4.3 Visualizing Entities from the Learned KG
Representations.

To get insights into the effectiveness of our solution in instance
type predictions, we computed PCA projections of the learned en-
tity representations into a two-dimensional space for the DBpedia,
Wikidata, and YAGO KGs. Besides Ridle, we present the results for
RDF2Vec, as an exemplary approach that exhibits a good perfor-
mance in the category-specific KGs. In the following, we analyse
the results for selected classes in the KGs in Figure 3.

For the DBpedia KG, we focus on the top four most popular
classes5. We can observe that, although the class Agent is broad
in both representations, Ridle allows for better distinguishing the
classesWork and Place from Agent. This separation in vectors from
different classes is essential to achieve a high performance in the
downstream task for predicting instance types. The representations
of RDF2Vec, in contrast, are suggesting that the classesWork and
Place are (semantically) related to Agent, which does not hold in

5The DBpedia Ontology hierarchy is available at http://mappings.dbpedia.org/server/
ontology/classes/
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Figure 3: PCA projections for the learned entity representations. Popular classes from cross-domain KGs were selected for
visualization. Ridle (top) allows for a better separation of the instances into their respective classes in comparison to the
state-of-the-art RDF2Vec approach (bottom).

DBpedia. Furthermore, the class Species is not visible in RDF2Vec
since it is covered by the representation of Agent.

Next, we analyse the learned representations of the top four
classes from the Pers(DBp) KG. In both approaches, we observe
that the instances of the classes OfficeHolder and Politician are
strongly interwoven and are difficult to distinguish from each other.
A closer look at the instances of OfficeHolder and Politician revealed
that these instances frequently use the same relations and that there
is no variety of specific relations for these classes. In regards to the
classes Athlete and Artist, Ridle achieves a greater separation of the
computed vectors in comparison to RDF2Vec. The reason for this
is that RDF2Vec considers the object values in the triples, there-
fore, under this representation the classes Athlete and Politician are
considered similar as their instances share in some cases the same
object. This behaviour, however, negatively affects the instance
type prediction capabilities of RDF2Vec. To analyse the results for
Wikidata and YAGO, we selected some similar and some dissimi-
lar classes to show the behavior of Ridle in different scenarios. In
Wikidata, Ridle clearly distinguishes distant classes – i.e., protein
and river – and represents closely those with semantic proximity
– i.e., river and lake, which often use similar relations e.g. located
in the administrative territorial entity (P131) and tributary (P974).
Similar to previous results, the YAGO instance representations of
Ridle allow for distinguishing the different classes,6 although enti-
ties using similar relations, e.g, entities of the classes Painting and
Movie, are closer to each other due to the frequent use of the same
relations. In contrast, RDF2Vec cannot effectively distinguish the
entity types in these datasets.

Using the insights gained from the PCA projections, we can
further comprehend the results for predicting the instance types
presented in Table 2. In the cross-domain KGs like DBp_2016-04
6The plot includes all the entities, but they are superimposed. Ridle maps many of the
entities from the class Scholarly Article to the same point in space.

and YAGO4, there exists a larger number of classes whose instances
are mostly described by class-specific relations. By computing a
target distribution over the usage of these relations, the representa-
tion of Ridle can classify the entities more accurately on average
than the baseline methods. Including the object information of the
statements, as done by the baseline methods, a closer proximity
of the instances is caused, leading to a more difficult classification
of the instances into their correct classes. This was observed, for
example, in RDF2Vec with the classes Agent and Place in DBp_2016-
04. By using very few class-specific relations to describe instances,
Ridle can no longer distinguish between classes, causing a loss of
performance with respect to the F1-score. Overall, we can conclude
that when entities are described with class-specific relations, Ri-
dle is able to obtain a representation that effectively encodes both
semantically similar and dissimilar classes.

5 CONCLUSION AND FUTUREWORK
In this paper, we presented an inductive stochastic factorization
model to represent entities of knowledge graphs (KGs), suitable
for predicting instance type assertions. Our approach, Ridle, first
implements an unsupervised learning model based on Restricted
Boltzmann Machines (RBMs) to leverage the distribution over the
usage of relations in instances of KGs. We then devise entity repre-
sentations based on the latent features learned with the RBM. Using
the learned representations, Ridle implements a neural network
architecture for predicting instance type assertions.

The experimental results showed that, on average, Ridle outper-
forms current state-of-the-art models in several KGs, which sets
a new baseline in the tasks of predicting instance type assertions.
The visualization of the learned KG representation shows that Ri-
dle is able to correctly group entities with similar distribution of
relations, whereas dissimilar entities are represented far away. This
property of Ridle is key for achieving a high performance in entity
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prediction. Likewise, Ridle was able to reconstruct semantic associ-
ations between relations from instance-relation distributions, even
though ontological information was not available during training.
This learned semantic associations in the instance representation
of Ridle is a decisive factor for the downstream performance of the
instance type prediction task.

Future work may focus on studying the effectiveness of the
learned instance representations for constructing class taxonomies.
As shown in this paper, instances using a similar target distribution
are closed in the dimensional space, which could bemined to predict
containment relations between classes. Future work may also study
the completion of other types of schema knowledge, e.g., the domain
and range of properties.
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