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ABSTRACT

Dictionary-based approaches to computational text analysis have been
shown to perform relatively poorly, particularly when the dictionaries rely
on simple bags of words, are not specified for the domain under study, and
add word scores without weighting. While machine learning approaches
usually perform better, they offer little insight into (a) which of the assump-
tions underlying dictionary approaches (bag-of-words, domain transferabil-
ity, or additivity) impedes performance most, and (b) which language
features drive the algorithmic classification most strongly. To fill both gaps,
we offer a systematic assumption-based error analysis, using the integrative
complexity of social media comments as our case in point. We show that
attacking the additivity assumption offers the strongest potential for improv-
ing dictionary performance. We also propose to combine off-the-shelf dic-
tionaries with supervised “glass box” machine learning algorithms (as
opposed to the usual “black box” machine learning approaches) to classify
texts and learn about the most important features for classification. This
dictionary-plus-supervised-learning approach performs similarly well as clas-
sic full-text machine learning or deep learning approaches, but yields inter-
pretable results in addition, which can inform theory development on top of
enabling a valid classification.

When analyzing large amounts of digital data, various automated measurement tools are available to
social scientists (Boumans & Trilling, 2015). In the past, the field has relied heavily on off-the-shelf
dictionaries that search for a pre-defined list of words to parse such corpora (Dun et al., 2020). More
recently, however, there has been a shift toward using more enhanced supervised and unsupervised
machine learning approaches for this task, because they regularly outperform dictionary-based text
classifications (Van Atteveldt et al., 2021).

Oft-the-shelf dictionaries are widely appreciated for their simplicity. They are easy to implement
and just as easy to interpret, in addition to being rather cost-efficient since they require little human
input (Gonzalez-Bailén & Paltoglou, 2015). This makes them attractive to a broad range of research-
ers, including those that received traditional as opposed to computational methodological training
(Boumans & Trilling, 2015). However, major challenges of oft-the-shelf dictionaries evolve around the
problems arising from the bag-of-words, domain transferability, and additivity assumptions that are
underlying this approach (Chan et al.,, 2021).

Some scholars seem to implicitly assume that off-the-shelf dictionaries can be readily transferred
from one research context to another while producing similarly valid and reliable classifications
(domain transferability assumption). However, studies show that the validity of off-the-shelf
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dictionaries varies widely across different datasets (Ribeiro et al., 2016) and that “their performance is
poorer for less diverse, domain specific content” (Gonzéalez-Bailén & Paltoglou, 2015, p. 105). This
validity problem can be alleviated by manually validating oft-the-shelf tools or by creating tailor-made
dictionaries, which have been shown to work well in the context for which they were developed
(Haselmayer & Jenny, 2017; Muddiman et al., 2019; Young & Soroka, 2012). Still, both off-the-shelf
and context-tailored dictionaries perform rather poorly in relation to human coding and more
sophisticated automated methods, with low reliabilities that are barely better than chance (Boukes
et al,, 2020; Van Atteveldt et al., 2021). This is because dictionaries implement a bag-of-words
approach, which presumes that the words in a statement are semantically independent (bag-of-
words assumption) (Young & Soroka, 2012). Hence, dictionaries disregard the order of words in
a sentence and thereby the grammatical structure of texts (Chan et al., 2021). Moreover, word lists
usually operate on an additivity assumption, meaning that all dictionary features are equally relevant
to the presence of a sought-after construct (Young & Soroka, 2012). Thus, statements that include
a higher number of dictionary words often score stronger on a specific construct, that is, for example,
a message that contains the words “good” and “excellent” would be considered more positive than one
that features either the one or the other expression (Chan et al., 2021). This neglects that “in natural
language, of course, certain words may carry more weight than others” (Young & Soroka, 2012,
p- 209), like for example, “excellent” could be more relevant than “good” when measuring positive
sentiment. A key question in this context is how to determine the weight that should be assigned to
each dictionary feature (Young & Soroka, 2012). Furthermore, the additivity assumption again
disregards grammatical specifics, for instance, by ignoring adverbs that amplify certain words (e.g.,
“good” vs. “very good”) (Chan et al., 2021).

Supervised and unsupervised machine learning approaches can solve these problems and reach
significantly better agreements with manually coded data (Gonzalez-Bailon & Paltoglou, 2015;
Rudkowsky et al., 2018; Stoll et al., 2020; Van Atteveldt et al., 2021). However, as most research in
this area implements a shotgun approach, to date, there is little insight into why machine learning
works better than dictionary-based methods. Since extant studies usually address the bag-of-words,
domain transferability, and additivity assumptions all at once, it is ultimately unclear which of these
problems is tackled by the machine learning.

The present study aims to address this gap. It follows an assumption-based framework that tackles
the bag-of-words, domain transferability, and additivity assumption one at a time to locate the major
source of weakness in off-the-shelf dictionary-based methods. This multi-step error analysis (Ng,
2018) shows which assumption needs to be addressed for the largest improvement in agreement with
hand-coded gold standards. The study then also compares this assumption-based approach against the
performance of full-text machine learning methods to demonstrate the advantages of “dictionary-plus
-supervised-learning” combinations that have recently been suggested by Dun et al. (2020). The
dictionary-plus-supervised-learning approach we implement here tackles the additivity assumption
by using supervised machine learning to improve and extend the dictionary-based classification.
Specifically, this means that the machine learning algorithm is trained on a hand-coded data set that
has previously been pre-processed by using an off-the-shelf dictionary, instead of using the full text
items. The automated classifier thus capitalizes on the information that is contained in the dictionary
categories. Two main advantages of this approach are that it can reduce the quantity of hand-coding
that is needed for full-text machine learning and that it provides theoretically interpretable insights
into which dictionary features prove important in the automated classification.

Our main goal in this study is not to criticize off-the-shelf dictionaries as others have done before
us, but to diagnose the primary origin of their weakness and to show how researchers can nevertheless
leverage the theoretical information that is carried by pre-defined word lists. Computational social
science is at a point now where a closer link should be forged between conceptual reflections and
automated measurements, and where researchers need to move beyond binary classifications toward
the detection of more sophisticated theory-driven constructs (Baden et al., 2020). By means of
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automatically classifying an ordinally hand-coded content-related measure, namely the integrative
complexity, this paper uncovers the potential held for this task by combining off-the-shelf dictionaries
with supervised machine learning.

The case study: Integrative complexity

Our interest in developing state-of-the-art automated text analysis methods largely stems from our
goal to study the quality of user-generated political discussions on a large scale across different
platforms and countries. Therefore, our case study in this paper is to detect the integrative complexity
of English- and German-language online user comments from Facebook, Twitter, and news website
comment sections. In so doing, we add to the existing literature not only by locating the major source
of weakness in dictionary-based methods, but also by testing the applicability of different automated
text analysis tools in assessing complex non-sentiment-based constructs and exploring the potential of
these tools for comparative research that involves non-English languages.

Integrative complexity is a psychological measure that researchers increasingly implement to assess
the argumentative quality of public debate contributions (e.g., Moore et al., 2020; Wyss et al., 2015). It
captures the sophistication of written statements by assessing their degree of differentiation and
integration as two consecutive dimensions of complexity (Suedfeld et al., 1992). While differentiated
user comments consider several aspects or viewpoints with respect to a given topic, integration occurs
when these are linked to each other on a more abstract level, for example, by pinpointing shared
attributes, superordinate principles or conflicting goals (Moore et al., 2020).

The manual coding scale for integrative complexity is ordinal and ranges from 1 (lowest complex-
ity) to 7 (highest complexity) (Baker-Brown et al., 1992). Simplistic user comments that lack both
differentiation and integration receive a score of 1, whereas contributions that consider two or more
aspects of or perspectives on an issue but fail to integrate these are given a score of 3. Posts that contain
moderately or strongly developed conceptual integrations are high in complexity and obtain a score of
5 or 7, respectively. The scores of 2, 4, and 6 mirror transitional stages of complexity where
“differentiation and integration are implicit and emergent rather than explicit and fully articulated”
(Baker-Brown et al., 1992, p. 402).

The dominant approach to automatically score integrative complexity was made popular in the
social sciences by Wyss et al. (2015) and is to combine ten distinct categories from the off-the-shelf
Linguistic Inquiry and Word Count (LIWC) dictionary (see also Beste & Wyss, 2014; Kesting et al.,
2018; Moore et al., 2020). LIWC is widely used for automated content and sentiment analysis
(Pennebaker et al., 2015). Apart from linguistic, psychological, and personal dimensions based on
dictionary words, it also includes formal features such as word count (WC) or the average number of
words per sentence (WPS) (Pennebaker, et al., 2007). The relevant LIWC dimensions for measuring
integrative complexity have been derived theoretically by Owens and Wedeking (2011, pp. 1055-1057)
and include:

(1) The percentage of words in a text with six or more letters — a higher share of six-letter words is
associated with communicative sophistication and thus increased integrative complexity
(SixI)

(2) Discrepancy - words like “should”, “would”, or “could” that indicate whether a statement
points to differences or inconsistencies between multiple elements or perspectives, the
identification of which increases integrative complexity (Discr)

(3) Tentativeness — words like “maybe”, “perhaps”, or “guess” that signal an openness to other
arguments and perspectives on behalf of the author, which is connected to the reflection and
consideration of new or alternative interpretations and thus a higher integrative complexity
(Tent)
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(4) Inclusiveness — words like “and”, “with”, or “include” that are markers for the extent to which
a statement identifies relationships and connections between multiple differentiated aspects or
perspectives, which raises integrative complexity (Incl)

(5) Causation — words like “because”, “effect”, or “hence” that reflect the identification of causal
connections and linkages among different elements in a statement and thus increase inte-
grative complexity (Cause)

(6) Insight — words like “think”, “know”, or “consider” that signal an advanced depth of under-
standing on behalf of an author, whereby a higher degree of insight into an issue corresponds
to higher integrative complexity (Insig)

(7) Inhibition - words like “block”, “constrain”, or “stop” that suggest a certain degree of
restraint is exercised by the author of a comment, which indicates their ability to reflect
on how their actions or ideas are constrained, and is associated with greater integrative
complexity (Inhib)

(8) Certainty — words like “always”, or “never” that, in contrast to tentativeness or inhibition
markers, are typical for simple and undifferentiated utterances in which the author accepts
only one possible interpretation of events, which decreases integrative complexity (Cert)

(9) Negations - words like “no”, “not”, or “never” that are indicative of one-dimensional and
absolute rule structures; they signal that the author of a statement accepts only one (often
highly evaluative) view of the world and only one legitimate perspective on an issue with no
room for alternative arguments or interpretations, which is associated with lower integrative
complexity (Negate)

(10) Exclusiveness — words like “but”, “without”, or “exclude” that indicate whether an author
distinctly separates their ideas from other perspectives and, in this context, are often used
to exclude other interpretations from being valid, which lowers integrative complexity
(Excl)

Following these theoretical reflections, the integrative complexity score is obtained by using the ten
LIWC categories as a formula (Wyss et al., 2015). Below, we use this operationalization as a baseline
model that we compare to the multiple steps of our assumption-based error analysis framework and
the shotgun full-text machine learning approaches. The formula reads:

IC = Sixl 4 Discr + Tent + Incl + Cause + Insig + Inhib — Cert — Negate — Excl (1)

Methodology
Data set

In contrast to studies that rely on one type of data from a specific national context, we draw on a gold
standard sample that consists of a diverse set of 4,800 online user comments from different commu-
nication arenas and countries. These stem from the a) website comment sections, b) public Facebook
pages of mainstream news media, from the c¢) Facebook pages of partisan collective actors and
alternative media, and d) from Twitter, as well as from Australia, the United States, Germany, and
Switzerland. Our study thus strengthens previous conclusions on the performance of various auto-
mated text classification approaches by footing them on a broader basis in terms of both platforms and
countries (Van Atteveldt et al., 2021). The 4,800 gold standard comments were randomly sampled
from a data set of N = 1,236,551 collected user contributions on the public role of religion and
secularism in society (for further information on the data collection see Online Appendix I). We drew
300 comments from each of the four communication arenas in each of the four countries. The sample
thus contains an equal number of comments from English- and German-speaking countries. Please
note that even though Switzerland is a multi-lingual country, we focused on German-speaking
discourses only to keep the number of analyzed languages manageable.
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Figure 1. Overview of the Baseline, Assumption-Based Framework, and Shotgun Approaches. Note: Boxes highlighted in gray show
the process steps that differ from the baseline process.

Gold standard coding

The gold standard was coded by three trained human coders based on the previously described scale
from 1 (lowest complexity) to 7 (highest complexity) (Baker-Brown et al., 1992). In a pretest with 100
stratified randomly selected user comments, the three raters reached a Krippendorff’s oo qina reliability
of .85. Each gold standard comment was then coded by two individuals, with disagreements being
resolved consensually. The coder pairs had reached Krippendorft’s o, qina reliability of .88 and .86 in
the pretest, respectively.

Assumption-based approach versus shotgun approaches

We propose an assumption-based framework to diagnose the major source of weakness in off-the-
shelf dictionary-based classifications. Thereby, we address the three assumptions of dictionary
approaches (i.e., bag-of-words, domain transferability, and additivity) one at a time using methods
suggested in the literature. Based on the concept of error analysis, we evaluate tackling which
assumption brings the biggest improvement in agreement between the modified analysis and the
hand-coded gold standard. We then pit against the assumption-based approach with a shotgun full-
text machine learning approach, in which multiple assumptions are tackled at the same time. Figure 1
gives an overview over these approaches.

Baseline: Integrative complexity score

The baseline model is the theory-derived, dictionary-based integrative complexity (IC) score by Wyss
et al. (2015)." The original model was proposed to analyze argumentative complexity in Swiss
parliamentary debates. As elaborated previously, the score is based on the LIWC dictionary and
operationalized as follows:

IC = Sixl 4 Discr + Tent + Incl + Cause + Insig + Inhib — Cert — Negate — Excl 2)

'We recognize that there are several ways to capture textual complexity, and that syntax-based readability measures such as the
Flesch-Kincaid score (Kincaid et al.,
) can also be used for this purpose. As these readability scores are based on formal elements such as the number of words, syllables,
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This formula can be reasoned as the summation of every LIWC score with a weight coefficient. The
first seven terms have a +1 weight coefficient, whilst the last three terms have a —1 weight coefficient.
All the other terms from the LIWC dictionary have a 0 weight coefficient. A restatement of the IC
formula is:

IC = 1"Sixl 4 1"Discr + 1*Tent + 1*Incl + 1*Cause + 1*Insig + 1*Inhib
+(—=1)*Cert+(—1)"Negate+(—1)"Excl + 0*"WC + 0" Analytic + 0" (3)
Clout+...

In Wyss et al. (2015), the score was calculated for French and German speech acts, for which the
English LIWC2007 dictionary was translated into these languages by professional translators. In this
study, we used the original English LIWC2007 dictionary for pre-processing our English-speaking
gold standard comments. The German-speaking comments were pre-processed with the translated
German LIWC dictionary by Wyss et al. (2015) so that our results are comparable to the original
baseline IC score.

Assumption-based approach

As stated above, we attacked the three assumptions that underlie this dictionary approach one at a time
to see tackling which assumption can generate the greatest agreement with the human-coded gold
standard. In all cases, we divided the data into 10 equal parts and computed the accuracy metrics for
each part. The overall accuracy metric is the average value of the 10 values. For the case of domain
transferability and additivity, 10-fold cross validation was used, i.e., 9 parts were used for training and
1 part was used for validation.

Bag-of-words assumption

The bag-of-words assumption states that “the words people use convey psychological information
over and above their literal meaning and independent of their semantic context” (Pennebaker et al.,
2003, p. 550). Under this assumption, the word order and grammatical functions of words are not
considered. For instance, “my cat is bad” and “is not my cat bad?” might be processed as having the
same meaning, if the dictionary does not consider the grammatical function of the word “not” as well
as the difference in sentence structure. Most of the academic attention on modifying text analysis was
on attacking this assumption. Usually, the proposed solutions to tackle the bag-of-words assumption
are in the form of another shotgun approach, i.e., they address different assumptions about word order
and grammatical functions without knowing which of these problems is actually being addressed.
Instead, we isolate components that can be tested independently. Some suggestions such as n-grams or
word embeddings are not tested because they are dealing with more than one assumption. When using
n-grams and word embeddings, the weight coefficients need to be adjusted as well and we cannot use
the IC formula.

Negation. We followed Young and Soroka (2012) and paid special attention to words after negation
signifiers such as “not,” “no,” “never,” “hardly,” and “less.” In Young and Soroka (2012), words after
these negation signifiers were considered to have the opposite meaning. For example, the positive
word “good” is considered to have a negative meaning if it is preceded by “hardly,” i.e., “hardly good”
is considered negative. Unlike sentiment analysis, many categories in LIWC - such as words with six
or more letters — do not have a complementary category with the flipped meaning. Instead, we
followed Haselmayer and Jenny (2017) to exclude all words located after these negation signifiers.

and sentences, they are no dictionary-based methods and therefore not used as a baseline in this study. However, an additional
baseline analysis that uses the Flesch-Kincaid score is available in the online appendix. It shows a very weak correlation of the
Flesch-Kincaid score from both the English and German data with the respective hand-coded integrative complexity score.
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Part of speech. Part-of-speech (POS) tagging refers to the process of marking up the grammatical
function of a word in a sentence by considering both the meaning of the word and the context of the
word being used. For example, “arms” in the sentence “There was a clatter as the basilisk fangs
cascaded out of Hermione’s arms” should be tagged as common noun, but should be tagged as a verb
in the sentence “What sort of imbecile arms an assassin with his own blade?.” In our framework, we
tagged the POS of all words in our corpus using spacyr (Honnibal et al., 2020; Kenneth & Matsuo,
2020) and then applied the LIWC dictionary. We followed previous works to select only words with
specific grammatical functions. Jacobi et al. (2015) selected only common nouns, proper nouns, verbs,
and adjectives. Benamara et al. (2007) selected only adjectives and adverbs. We tried both in our
framework.

Lemmatization. Lemmatization refers to the process of reducing a word to its fundamental form. For
example, the plural “analyses” is reduced to the singular form “analysis.” This procedure is more
important for languages with a diverse set of conjugation rules, e.g., German or Hindi. How to
lemmatize a word depends on the grammatical functions of the word in the specific context. Using
the two sentences with the word “arms” above, the first instance of “arms” would be lemmatized to
“arm” (a limb), whilst the second instance would be lemmatized to “to arm” (to pick up or supply
weapons). In our framework, we lemmatized all words using spacyr (Honnibal et al., 2020; Kenneth &
Matsuo, 2020) and then applied the LIWC dictionary.

Domain transferability assumption

We modified the Lexicon Expansion and Reduction methods by Diesner and Evans (2015). The original
method proposes to rank terms in the entire corpus by TF-IDF, and then terms with a high TF-IDF
value are manually evaluated for either inclusion or exclusion from the original dictionary. As all
sentences in our data were coded manually, we deem the manual evaluation step no longer necessary.
Instead, we divided the training corpus into two sets: comments with coded complexity < 2 (not
complex) and > 4 (very complex). For each set, we calculated the TF-IDF for all words and selected
words with a TF-IDF value larger than a percentile-based threshold. We tried both 95% and 97.5%. In
other words, we selected signature words that are characteristic for the comments that are not complex
and very complex. With these two sets of signature words, two terms were added to the IC formula:

ICps= Sixl + Discr + Tent + Incl 4+ Cause + Insig + Inhib — —Cert — —Negate — —Excl
+signature words of the very complex set— — signature words of the not complex set (4)

Additivity assumption

The original additivity assumption states that “every instance of every word contributes isomorphi-
cally to the output” (Young & Soroka, 2012, p. 209). Many early sentiment dictionaries do assume an
isomorphic weighting scheme, e.g., sentiment analysis based on LIWC and General Inquirer. This
statement, however, is not technically correct for the IC calculation because not all word categories
contribute isomorphically to the output (e.g., words in the category “Sixl” vs. those in “Excl”). It is also
not applicable to many off-the-shelf dictionaries that have applied weight to different words, e.g.,
AFINN or VADER. We therefore restate the additivity assumption in a more general form, so that it
reads as follows: “Every instance of every word contributes to the output according to its predefined
weight.” If the predefined weighting scheme is isomorphic, then our restatement is equivalent to that
from Young and Soroka (2012).

We attacked this assumption by modifying the original weighting scheme of the IC score. The
original weighting scheme, according to Wyss et al. (2015) was derived to be “in chimes with manual
coding” (p. 644) on IC in Suedfeld et al. (1992). We created a modified weighting scheme in chimes
with manual coding through machine learning. It is important to note that the input of our machine
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learning algorithms was still the scores from LIWC, not individual words. By doing so, the machine
learning algorithms only adjusted the weight for each LIWC category and kept the other two
assumptions intact.

In this analysis, we used a two-level scheme. On the first level, we included exclusively the ten
LIWC dimensions put forward by Wyss et al. (2015) to have either a +1 or — 1 weight coefficient
(see equation 2). On the second level, we included all available LIWC dimensions, irrespective of
whether they had a +1, -1, or 0 weight coefficient in the original weighting scheme (see
equation 3).

Four machine learning algorithms were used to address the additivity assumption: linear regres-
sion, linear regression with L1 regularization (also known as Lasso regression), the tree-based M5P
algorithm, and random forest. For the machine learning approaches on the second level, we decided to
remove the word count from the generated features by LIWC. The word count is highly correlated
with the resulting IC scores, that is, user comments with higher integrative complexity tend to also be
longer. However, as we aim to measure integrative complexity based on the content of the user
comments, we removed word count as a feature to not skew the classifiers and their performance. This
also helps generalize the trained classifiers, as it removes the overfit to the training data set and thereby
increases the usefulness of the trained models when applied to other domains.

Linear regression. As a first step, we used a linear regression model trained to predict the target
dimension based on the LIWC categories. Compared to the baseline model, linear regression can
set weights in the form of regression coeflicients for each of the LIWC categories and therefore
increase or decrease the impact of each category on the prediction. The IC formula gets adjusted
to:

ICir = fB; * Sixl + B, * Discr + f8; * Tent + 3, * Incl + f3; * Cause + S * Insig + f3,
* Inhib + B¢ * Cert 4 B, * Negate + f3,, * Excl + f3;; * Analytic + f3,* (5)
Clout +

The weights are automatically set by training the regression model based on the provided training data
while minimizing the ordinary least squares cost function written as:

n P 2
> (% - Z%) ©)
1 =1

i=

Lasso regression. The second algorithm tested was linear regression with L1 regularization. Here the
cost function gets modified and includes a “Least Absolute Shrinkage and Selection Operator” (Lasso).
The cost function can be written as:

n 4 2 P
> (- 2oms) + 3l 2
i=1 =1 =1
By minimizing the extended cost function, features with low weights get eliminated. This adds

a feature selection element to the linear regression, which helps to avoid overfitting on the training
data.

MB5P regression. The third machine learning algorithm we tested was M5P (Quinlan, 1992; Wang &
Witten, 1997). It is a tree-based regression algorithm. First, it constructs a decision tree with the goal
to minimize the variance of the target variable with each split criterion. It then stops splitting the
training set when the variance of the remaining instances in the leaf nodes is below a certain
threshold or if the number of instances is below a particular minimum. Finally, a regression model
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gets trained on the remaining instances which is then used to predict the output. The resulting M5P
model is a collection of linear regression models, where the decision tree is used to select the model
that is ultimately used for the prediction. One advantage of tree-based algorithms is that they
automatically manage variable selection, variable importance, missing values, and normalization
(Song & Lu, 2015). Compared to a non-tree based linear regression, it allows for interactions
between the features, which is helpful when applied to LIWC categories as many of them are
correlated to each other.

Random forest regression. The last algorithm we tested was random forest regression. It adds
a random factor to tree-based regression. The random forest model contains n decision trees, that
each get trained on a random subset of the training data and features. It is therefore an ensemble of
tree-based regression models. The final prediction is the average of the value predicted by each
individual tree in the ensemble. Adding the random element helps to focus classification on generally
important features and therefore, again, avoids overfitting on the training data. Following the usual
practice (Lones, 2021), we tuned the three hyperparameters of random forest (number of variables
randomly sampled as candidates at each split, split rule, and minimum node size) using the adaptive
resampling approach (Kuhn, 2014). We did a sensitivity analysis to study the effect of tuning by
comparing the results with that from an untuned random forest regression using the default hyper-
parameters. Tuning brought about a negligible change in the 2™ decimal place of the accuracy metrics.
Nonetheless, we report the results based on the random forest regression with tuned hyperparameters
below.

Shotgun approaches

In contrast to our assumption-based approach, a shotgun approach attacks multiple assumptions at
the same time. This is currently the default mode of dealing with text analytic tasks. The most
important characteristic of this approach is to use full text, instead of scores extracted from LIWC,
as the features. Our shotgun approach is an imitation of Van Atteveldt et al. (2021). Their approach
consists of a preprocessing step of lemmatizing all texts (using spacy, as stated above) and then
a machine learning step.

We used two machine learning algorithms. The first one is the random forest regression as stated
above. For this algorithm, lemmatized comments were tokenized and formatted into a document-term
matrix for learning. The second one is the convolutional neural network (CNN, a so-called deep
learning approach), which Van Atteveldt et al. (2021) demonstrated to have the best agreement with
human coders out of all automated content analysis methods. The network architecture we used is the
same as Van Atteveldt et al. (2021), which is described as “a relatively standard architecture for
document classification” (p. 7). It consists of the following layers:

(1) An embedding layer using the 300-dimensional fastText multilingual embeddings
(2) A convolutional layer that concatenates the embeddings for each 3-word window
(3) A max-pooling layer

(4) A regular densely connected layer that predicts the IC from the pooled features

This network architecture is different from Van Atteveldt et al. (2021) only in that we used the
fastText multilingual embeddings, instead of the Amsterdam Embeddings Model, because the latter is
not available for English and German.
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Table 1. Results of the Cross-Validation for the Different Approaches.

English German
Approach RMSE Corr RMSE Corr
Baseline (Wyss et al., 2015) 30.30 -.07 32.90 .01
Assumption: Bag-of-words
Negation (Young & Soroka, 2012) 31.40 -.04 34.40 .02
POS-tagging (Jacobi et al., 2015) 51.30 S 62.60 16
POS-tagging (Benamara et al., 2007) 48.60 15 58.90 .08
Lemmatization (Haselmayer & Jenny, 2017) 22.50 -.06 29.30 .04
Assumption: Domain transferability
Adj. word choices (Diesner & Evans, 2015) - 5% 25.80 .04 30.10 .10
Adj. word choices (Diesner & Evans, 2015) — 10% 24.60 .06 29.80 1
Assumption: Additivity
10 features
Linear regression ' 0.93 30 1.04 22
Lasso regression 0.93 .30 1.04 22
M5P 0.75 .64 0.84 .62
Random forest regression 0.72 .68 0.78 67
All features 2
Linear regression ' 0.83 .52 0.84 .60
Lasso regression 0.83 .52 0.84 .61
M5P 0.76 .62 0.81 .65
Random forest regression 0.70 .70 0.75 71
Shotgun full-text machine learning
CNN (fastText Word Embeddings) 0.75 71 0.84 .69
Random forest 0.76 73 0.85 72

Note: RMSE = root mean squared error. POS = part-of-speech. CNN = convolutional neural network.

'Please refer to Online Appendix Il for the regression coefficients.

2The table reports the performance for machine learning models trained without word count as a feature (see section
“Additivity assumption”).

Evaluation

For the evaluation, we measured the root mean squared error (RMSE) and the correlation of the
prediction method with the gold standard (see Table 1 below). The correlation coefficient indicates the
general trend between the predicted values and the gold standard. As its magnitude could be
influenced by data points with high leverage, e.g., outliers, we also consider the RMSE, which
quantifies the average difference between the predicted values and the gold standard. The RMSE is
the root of the mean squared error of all predictions. For a test dataset with N datapoints and the
dependent variable y it is calculated by equation 8, with the predicted variable y, and the observed
outcome in the gold standard yg,.

2511 ()’p,i _)’gs,i)z
N

RMSE = (8)

By squaring the residual errors, the RMSE is always positive as well as giving more weight to
predictions that have a larger deviation from the actual value in the gold standard. Please note that
a lower RMSE indicates a better fit.

Results
Comparing performance

Table 1 shows the RMSE and the correlation of the prediction by each of the methods when compared
to the manually coded gold standard. For easier comparison, it reports the results for each of the
languages separately.
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When compared to the gold standard, the theoretically derived baseline LIWC formula showed no
correlation and a high RMSE. This might be due to the fact that this formula was validated against
Swiss parliamentary debate contributions, which are quite different from online user comments. This
result further emphasizes the need for a thorough validation before applying dictionaries in new
contexts.

The first enhancement step, namely the attempt to tackle the bag-of-words assumption by adjusting
word choices, only yielded minor improvements over the baseline. While both POS-tagging
approaches slightly increased the correlation, removing negated words and lemmatization did not
notably improve the correlation. Only lemmatization slightly improved the RMSE (English = 22.5,
German = 29.3). While text pre-processing can have a high impact on classification performance, this
does not seem to be the case in this particular use case. The results show that text-pre-processing needs
to be applied carefully, as it can also have a negative effect.

The second improvement step that dealt with the domain transferability assumption did not
increase the performance to acceptable levels either. When looking at the RMSE, the method worked
slightly better on the English corpus. However, the correlation is higher for the German model. This is
because both performance measures adjust differently depending on the size of the residual error. This
shows that the measure that the researcher chooses to optimize performance needs to be carefully
selected based on which type of error is more important overall, and that it is often beneficial to look at
multiple measures simultaneously. While adjusting the TF-IDF parameter yielded further gains, the
overall correlation remained low and RMSE still rather high. Thus, in our case, the low correlation and
high error do not seem to be rooted in the lack of domain transferability of the dictionary.

Thirdly, employing machine learning to tackle the additivity assumption was most promising. In
the first-level analysis with the ten theoretically derived LIWC features, each of the machine learning
approaches improved both the RMSE and the correlation with the prediction variable. While the
regression methods (linear and lasso regression) already compared favorably to the LIWC baseline, the
tree-based regression methods (M5P and random forest) showed the best performance. Random
forest regression had the best RMSE (English = 0.72, German = 0.78) and correlation values (English =
0.68, German = 0.67) of the tested dictionary-plus-supervised-learning approaches. Bringing in
features with a zero coefficient in the original weighting scheme (2" level analysis) brought some
additional, albeit not huge, improvement.

To study the weighting procedure in greater detail, we looked at the magnitude of the regression
coefficients from the linear regressions (equation 5; see Online Appendix II). The derived weight
coefficients are drastically different from those of the original equation (equation 2). For the regression
with the 10 LIWC features on the English user comments, for example, when setting the weight
coeflicient of Sixl to — 1, the largest weight coeflicient (that of Excl) can be as high as +21. This indicates
that the original expert-derived weighting scheme by Wyss et al. (2015) with only 0, +1, and -1 is
probably too conservative. It suggests that the predefined weights are not realistic, and therefore,
attacking the additivity assumption brings about a massive improvement.

Attacking just the additivity assumption had a similar performance as the shotgun full-text
machine learning approaches, namely the full-text random forest and the state-of-the-art neural
networks approach using word embeddings. The shotgun random forest yielded the best performance
of all methods for English (RMSE = 0.76, Correlation = 0.73) and German (RMSE = 0.85,
Correlation = 0.72). The neural network approach fell slightly behind in both languages when we
measured RMSE (English = 0.75, German = 0.84) and its correlation with the gold standard (English =
0.71, German = 0.69).

Variable importance

The random forest regression model that was combined with the off-the-shelf dictionary additionally
allows to generate a variable importance table. This measurement quantifies the reduction in pre-
dictive performance of the random forest regression model when a variable of interest is randomly
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Figure 2. Variable Importance for the English (left) and German (right) Random Forest Models Fed With All LIWC Dictionary Features.
Note: Achieve = Achievement (earn, hero, win), AllPunc = All punctuations, Article (a, an, the), AuxVerb = Auxiliary verbs (am, is, was),
Cause = Causation (because, effect, hence), Cert = Certainty (always, never), CogMech = Cognitive Processes (cause, ought), Comma,
Conj = Conjunctions (and, but, whereas), Dic = percentage of words in the dictionary, Discr = Discrepancy (should, would, could),
Excl = Exclusive (but, except, without), Funct = Function words (no, to, very), Incl = Inclusive (with, and, include), Insight (think, know),
iPron = Impersonal pronouns (it, it’s, those), Job (employ, boss, career), Negate = Negations (no, not, never), Occup = Occupation
(work, class, goal), Other = Other grammar words (e.g common verbs), OtherP = Other Punctuation, OthRef = Other References to
people (he, she, they), Period, Preps = Prepositions (above, on, to), Pronoun (I, we, it), Quant = Quantifiers (few, many, much), Sixl =
words > 6 letters, Tent = Tentative (maybe, perhaps), Verb = Common verb (ask, eat, cry), WPS = Words per sentence.

shuffled along rows. Applying the original terminology from Breiman’s landmark paper (Breiman,
2001), the variable of interest is “noised” (being turned into meaningless random noise). A greater
reduction in performance after a variable being “noised” indicates that the variable is relatively more
important for generating the prediction. It is important to note that the value is comparative only
across the variables in the random forest model and thus there is no cutoff point. Due to the complex
interactions among variables in a random forest regression model, the metric does not tell us anything
about the relative importance of variables in the case of a simple linear combination of variables (e.g.,
equation 2). Nonetheless, this makes it possible to find those LIWC categories that were used (most
heavily) by the regression trees in the random forest ensemble to generate the prediction. Figure 2
shows the variable importance for the random forest classifiers fed with all available LIWC dimensions
(2" level analysis), trained on the German and English corpus.
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In both models the top categories comprise several ones that also appear in the baseline LIWC
formula used by Wyss et al. (2015), including for example, “Excl,” “Discr,” “Sixl,” “Incl,” “Negate,”
“Tent,” and “Cause.” This suggests that the resulting classification model is closely linked to the
existing theory, which further validates this approach. The conjunctions (“Conj”) that are rather
important in the English model have also previously been part of theoretically derived LIWC-based
operationalizations of integrative complexity (Abe, 2011). Moreover, formal features such as punctua-
tion (e.g., “AllPunc,” “OtherP,” “comma”) or words per sentence (“WPS”) seem to carry important
information about the integrative complexity of the user comments. Additional top categories such as
job-related words, quantifiers, or achievement words have a further impact on explaining the oper-
ationalization of integrative complexity in our case study.

The variable importance analysis presented in Figure 2 is tied closely to our use case and especially
our dataset. Its main use is to open the black box to diagnose the random forest model. This allows for
further insights into our dataset and the specific operationalization of integrative complexity that we
have based our study on. Yet, further research is required to show which categories carry importance
when this method is transferred to other datasets. This reiterates our point for the thorough validation
of instruments when carrying them over to new datasets or application domains.

Conclusion

Echoing previous research (Van Atteveldt et al., 2021), our study reemphasizes that off-the-shelf
dictionaries such as LIWC cannot be applied to different research questions and contexts without (re)
validation against a manually coded gold standard. In our case, we aimed to transfer a theoretically
derived and empirically validated off-the-shelf dictionary measurement for the integrative complexity
of parliamentary debate contributions (Wyss et al., 2015) to the classification of the same phenomenon
in a diverse set of online user comments from different communication arenas and countries. The
analysis showed that if the (re)validation step is ignored, we would apply a measurement tool with
almost no correlation to the (manually coded) construct that we want to measure. This reminds us that
off-the-shelf dictionaries are theory-informed methods developed for very specific situations and
restates the important gate-keeping function of manual validation that has been stressed by social
scientists already early on (Grimmer & Stewart, 2013).

However, the current literature does not provide a compelling answer to what should be done next
when the gate is closed for an off-the-shelf dictionary-based method. The suggested default alternative
is state-of-the-art full-text machine learning (Gonzélez-Bailén & Paltoglou, 2015; Van Atteveldt et al.,
2021). Yet, while this approach has been shown to work well in practice, it addresses several
weaknesses of off-the-shelf dictionaries at the same time, namely the bag-of-words, domain transfer-
ability, and additivity assumption, without explaining which of these problems is tackled by the
machine learning. This shotgun approach thus tells us very little about why the off-the-shelf dictionary
fails in the first place.

The first innovation of this paper is to propose and follow a general assumption-based error
analysis framework that tackles the three assumptions one at a time to pinpoint the major source of
weakness in dictionary-based methods. We demonstrate that our framework is equally applicable to
both English and German. For our case of measuring integrative complexity in online user com-
ments, we found that compared to the LIWC baseline, the largest improvement in performance
comes from attacking the additivity assumption. This is particularly interesting because this
assumption has to date received comparatively little attention in the literature (Young & Soroka,
2012) as opposed to the bag-of-words (Chan et al., 2021) and domain transferability assumptions
(Gonzalez-Bailon & Paltoglou, 2015) that many researchers are deeply concerned with. By just
attacking the additivity assumption, we obtained an improvement in accuracy that is on par with
that of the shotgun full-text machine learning approach (Van Atteveldt et al., 2021). While this
promising performance may be specific to the integrative complexity of online user comments, the
general conclusion regarding the additivity assumption is likely transferable to other use cases. An
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additional analysis using the off-the-shelf sentiment dictionary AFINN (Nielsen, 2011) and a large
corpus of annotated tweets (see Online Appendix III) demonstrates the generalizability of our
framework as well as our findings. Although the task is quite different, e.g., in measuring sentiment
vs. integrative complexity and in that the sentiment analysis is a classification rather than
a regression task, our framework can be applied in this context without any problems. Again,
attacking the additivity assumption brings the greatest improvement in dictionary performance
compared to attacking the bag-of-words and domain transferability assumption, respectively.
However, while this mirrors the overall conclusion of our main analysis in this paper, one difference
is that the improvement is comparatively more modest and the performance of the dictionary-plus-
supervised-learning approach falls short of the power of shotgun full-text machine learning
approaches more clearly in the sentiment case. The former can be explained by the fact that
AFINN has a reasonable performance in measuring the sentiment of the analyzed tweets in the
first place, leaving less room for improvement. This may be due to the fact that sentiment in tweets
is, after all, easier to measure automatically than a more complex content-related construct such as
integrative complexity — or because the AFINN dictionary is better tailored to measuring sentiment
than LIWC is to capturing integrative complexity. In particular, the AFINN dictionary implements
a more sophisticated weighting scheme, which has weight coeflicients spanning from - 5 to +5, that
may already address a good portion of the additivity assumption in this case. Nonetheless, our
systematic error analysis suggests that the additivity assumption is rather unrealistic in many
circumstances. Even when dictionary-based methods assign different weights (e.g., AFINN), those
weights might work differently on new data or in different contexts (Young & Soroka, 2012). Thus,
in conducting dictionary-based content and sentiment analyses alike, social scientists should give
intensive thought to how different weights could be applied to different indicators in order to
improve the classification of the data.

The second innovation of this paper is also informed by our error analysis framework. The
comparison of our dictionary-plus-supervised-learning method to tackle the additivity assumption
to the state-of-the-art shotgun full-text machine learning shows that different “approaches to auto-
mated content analysis need not compete” (Dun et al., 2020, p. 14) since they can generate very
satisfactory performances when used in combination. Bundling (theory-informed) oft-the-shelf dic-
tionaries with machine learning algorithms that attack the additivity assumption in these dictionaries
can generate valid and interpretable models for automated text classification tasks. Compared to full-
text machine learning, the advantage of this combinatory approach lies primarily in the interpret-
ability of those models (Lipton, 2018). In contrast to the shotgun approach, a classifier that combines
oft-the-shelf dictionaries with machine learning provides substantial information about which dic-
tionary categories are important in predicting the variable - in a way that is understandable by human
beings (Zhang et al., 2020). This simpler approach thus supplies additional insights into the investi-
gated variable which can be used for theory development in the field, that is, it “can help us to revise
old or build new theory given empirical results from a machine learning model” (Radford & Joseph,
2020, p. 8). In so doing, the interpretability of the dictionary-plus-supervised-learning approach also
simplifies the refinement of subsequent theoretically driven operationalizations. In our case, the
random forest classifier that was combined with the LIWC categories delivered both confirmatory
and novel insights into which groups of words exactly make an online argument more complex
(Figure 2).

Combining word lists with machine learning may thus be one way to meet current calls for a more
strongly theory-driven automated analysis of large text corpora (Baden et al., 2020). In line with Rai
(2019), we propose to term this “glass box” machine learning as opposed to the usual “black box”
machine learning. In some cases, glass box models might not have the better accuracy compared to
their black box counterparts, i.e., the full-text machine or deep learning approaches. However, trading
the (small) penalty in accuracy for explainable insights that pay off in theory development may be
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areasonable price to pay for many social scientists. In our case, this penalty was even negligible, and on
the German user comments, the CNN approach actually performed worse than the random forest
glass box model trained with all the LIWC features.

Yet, combining an off-the-shelf dictionary with supervised machine learning does not come with-
out disadvantages. Those include, for example, the need for a training data set of adequate size, which
can be time-intensive and costly to produce. As numerous studies (e.g., Chan et al., 2021; Grimmer &
Stewart, 2013; Van Atteveldt et al., 2021) have shown the importance of properly validating automated
text analysis tools, though, training human coders and manually scoring a gold standard set for such
validation is always necessary. Therefore, producing a training data set for a dictionary-plus-
supervised-learning approach does not require as much extra effort as it might seem at first, especially
since pre-processing the data with an off-the-shelf dictionary can reduce the quantity of hand-coded
data that would be needed for full-text machine learning.

Furthermore, as it relies on off-the-shelf dictionaries, the proposed dictionary-plus-supervised-learning
approach may only be applicable to a limited number of languages. While there are many dictionaries
available for common languages like English and German, this choice is rather restricted when it comes to
languages that are used less widely, such as Dutch (Boukes et al., 2020). In this context, the present study
is constrained by the fact that it tested different automated text classification tools only on user comments
in two Germanic languages, while disregarding others (Baden et al., 2021). Thus, the analysis cannot
speak to whether these methods and the derived conclusions are equally applicable to languages from
other families, such as Sino-Tibetan or Semitic languages. In particular, applying the proposed dictionary-
plus-supervised-learning approach to data in these languages could be challenging because dictionaries
are scarcely available in these tongues. Our analysis on the German user comments has shown that
translated dictionaries can also lead to acceptable performance levels, at least for related languages like
English and German, even though this requires additional manual work on the part of the researcher.
Dictionary translation alone has been shown to be viable for comparative automated content analysis of
content in European languages (Lind et al., 2019). However, it remains an open question whether this
dictionary translation approach would also work for a) the added machine learning procedure, and 2)
languages that are more distant from each other and belong to different families. Thus, future research
should focus more strongly on testing and developing automated classification tools for non-Germanic as
well as less commonly spoken languages (Baden et al., 2021; Boukes et al., 2020), which would also help to
further cross-national computational social science research (Maier et al., 2021).

Similarly, even though the previously reported robustness check (Online Appendix IIT) has shown
that our framework and conclusions are equally applicable when analyzing sentiment rather than
integrative complexity, the results of this study need to be further substantiated by examining different
constructs in different topical contexts.

Finally, we acknowledge that the skills needed to employ machine learning as a social scientist
might pose a challenge. Therefore, we have provided guidelines with our framework and have also
shared our code” as a template for researchers who would like to adapt any of the approaches.
However, going forward, those methods should also be made more accessible by providing user-
friendly software that can apply machine learning solutions similar to existing text analysis software
such as LIWC. Moreover, as the requirements for future researchers are developing further in the
direction of automated text analysis, training them in the tools and skills needed in this area will
become increasingly important.

In advocating for the combination of interpretable machine learning algorithms with off-the-shelf
dictionaries, we align ourselves with researchers who have stressed “that the rapid development of
computational methods has not been accompanied by an equally strong emphasis on theoretical
developments within the scholarly community” (Waldherr et al., 2021, p. 3, see also Van Atteveldt
et al.,, 2019). Ultimately, most computational text analysis in the social sciences is concerned with
a more specific theoretical problem rather than the classification task itself. In line with other

2See online appendix hosted on https://doi.org/10.17605/0SF.I0/578MG
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colleagues (Grimmer et al., 2021; Radford & Joseph, 2020), we therefore advocate the use of machine
learning to advance theory building in social science. Our use case has shown that selecting an
interpretable machine learning algorithm can be more valuable for the researcher than just selecting
the method “that optimizes performance for their particular research task” (Grimmer et al., 2021,
p. 404). Knowing why our machine learning algorithm has made certain predictions and how the
model’s measurement categories relate to the theoretical concepts that we want to capture helps us
learn more about the problem that we are interested in in the first place, and thus contributes to theory
development in the field.
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