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Zusammenfassung

Diese Arbeit befasst sich mit dem Problem der schnellen 3D Rekonstruktion aus
Bildfolgen. In der Forschung ist dies als Multiple-View Rekonstruktion bekannt. Es
ist ein komplexer Prozess aus dem Bereich der Computer Vision. In dieser Arbeit
werden drei Algorithmen entwickelt, welche drei grundlegende und wichtige Prob-
leme innerhalb dieses Themas lösen.

Erstens wird in Kapitel 3 eine neue, einfache und lineare Methode vorgeschlagen
um einen 3D-Punkt im Raum anhand seiner Projektionen in mehreren Ansichten
zu rekonstruieren, deren Projektion Matrizen als genau bekannt angenommen wer-
den. Diese Methode wird 1st-order MLE genannt, da sie das ursprüngliche Problem
umwandelt in Eines von linear begrenzter quadratischer Optimierung durch eine
Approximation erster Ordnung zu den epipolaren Randbedingungen.

Kapitel 4 schlägt eine lineare, iterative Methode der kleinsten Quadrate für das
Schätzen der Fundamentalmatrix zwischen zwei nicht kalibrierten Perspektiven vor.
Auch hier wird das Problem durch eine Approximation erster Ordnung zu den epipo-
laren Randbedingungen in ein Problem der kleinsten Quadrate umgewandelt. It-
erativ nähert sich die mittels der Least Square Methode minimierte Algebraische
Kostenfunktion dem Geometrischen Fehler, wodurch man eine genauere Fundamen-
talmatrix erhält.

Die in Kapitel 5 dargestellten Techniken sind eine umfangreiche Anwendung der
oben genannten 1st-order MLE Methode für das Problem Bundle Adjustment. Mit
ihnen wird die Kostenfunktion des Bundle Adjustment teilweise linearisiert, wodurch
der Minimierungsprozess beschleunigt wird.

Alle oben genannten Techniken bewahren den Fehler der gemessenen Bildpunkte
und erlauben die Zuordnung einer individuellen Kovarianz zu jeder Bildmessung.
Experimente zeigen, dass die Genauigkeit dieser Algorithmen mit der einer maxi-
mum likelihood Schätzung durch numerische Optimierung vergleichbar ist, jedoch
bei wesentlich verringerten Berechnungskosten.

Aufbauend auf den oben eingeführten Techniken wird in Kapitel 6 eine zusät-
zliche Methode der inkrementellen Multiple-View Rekonstruktion entwickelt. Die
höhere Leistungsfähigkeit der vorgeschlagenen Techniken erlaubt die Berücksich-
tigung von korrespondierenden Punkten aus vielen Ansichten, wodurch genauere
Resultate erzielt werden. Bisherige Methoden betrachten nur korrespondierenden
Punkten aus zwei oder drei Ansichten. Somit werden höhere Genauigkeit und Leis-
tungsfähigkeit durch die vorgeschlagene Methode der inkrementellen Multiple-View
Rekonstruktion erzielt.
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Abstract

This dissertation deals with the problem of 3D reconstruction from image se-
quences in a more efficient manner. This technique is known as Multiple-View
Reconstruction. It is a complex process in computer vision. Three techniques are
developed in the dissertation, which solve respectively three fundamental problems
within this topic.

Firstly, a new linear and non-iterative method to reconstruct a 3D-point in space
from its projections in multiple views with known projection matrices is proposed in
Chapter 3. This method is called 1st-order MLE, since it converts the original recon-
struction problem into one of linearly-constrained quadratic optimization through a
first-order approximation to the epipolar constraints.

Chapter 4 proposes a linear iterative least-squares method for estimating the fun-
damental matrix between two un-calibrated perspective views. Like in chapter 3 the
problem is converted into a least-squares problem by a first-order approximation to
the epipolar constraints. The algebraic cost function of the least-squares is mini-
mized iteratively to approach the geometric error, and a more accurate fundamental
matrix is obtained accordingly.

The techniques presented in Chapter 5 are extensive applications of the above
1st-order MLE method to the problem of bundle adjustment. With it the cost
function of bundle adjustment is partly linearized, and thus the minimization process
is accelerated.

All the above techniques preserve the error model of the measured image points,
and allow the assignment of individual covariance to each image measurement. Ex-
periments show that the accuracy of these algorithms is consistently comparable to
that of a maximum likelihood estimation using numerical Newton-type optimization,
however, at a much reduced computational cost.

Finally, based on the above techniques, an incremental multiple view reconstruc-
tion method is developed in Chapter 6. The higher efficiency of these techniques
allows the incremental reconstruction method to take point-matches across multi-
ple views into consideration, and thus more accurate results are achieved. This is
different from previous approaches which consider only point matches across two or
three views. Therefore both higher accuracy and efficiency can be achieved at the
same time by the proposed multiple view reconstruction method.
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Notation and Abbreviation

Notation

Scalars are denoted by italic lower-case letters, except the components of the world

coordinates, which are small capital letters. Bold lower-case letters denote vectors,

and bold capital letters denote matrices. A vector will by default refer to a column

vector.

ã homogeneous coordinates

x = (x, y)> inhomogeneous 2D-coordinates

x̃ = (x, y, 1)> homogeneous 2D-coordinates

X = (x,y,z)> inhomogeneous 3D-coordinates

X̃ = (x,y,z, 1)> homogeneous 3D-coordinates

P the projective matrix

K the internal calibration matrix

f the focal length in the world coordinates

fx, fy the focal length in pixels

px, py the principal point of a camera

s the skew parameter of a camera

R a rotation matrix

t a translation vector

C projection center / camera center / optical center

H planar homography

e epipole

F the fundamental matrix

det(M) the determinant of square matrix M

M> the transpose of matrix M

a> the transpose of vector a

diag(x1, · · · , xn) a n× n diagonal matrix

[x]× the cross product matrix of a 3-vector x

0n a null column n-vector

0n×m a n×m null matrix

In×n a n× n identity matrix

Rn n-dimensional Euclidean space

Pn n-dimensional projective space
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Notation and Abbreviation

Abbreviation

2D Two Dimensional

3D Three Dimensional

n-vector n-dimensional vector

n-space n-dimensional space

CCD Charge Coupled Device

DLT Direct Linear Transformation

DOF Degree of Freedom

IEEE Institute of Electrical and Electronic Engineers

LMS Least-Mean Squares

LSM Least-Squares Method

MLE Maximum Likelihood Estimation

RANSAC RANdom SAmple Consensus

RMS Root Mean Square

SVD Singular Value Decomposition
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1 Introduction

1.1 Motivations

Over the past decade the interest in 3D models has dramatically increased. Computer-

generated 3D models have been used in more and more applications. Although many

tools are at hand to ease the generation of 3D models, it is still a time consuming

and expensive process, and is hard to satisfy the increasing demand for more com-

plex and realistic models. In many cases the models are copies of existing scenes

or objects in the real world. Traditional solutions include stereo rigs, laser range

scanners and other 3D digitizing devices. These devices require careful handling

and complex calibration procedures, and are usually designed for a restricted depth

range only. A flexible method of 3D-scene reconstruction is required.

Since the end of the last century researchers in computer vision have paid much

attention to this problem, to automatize the 3D-model acquisition from real world.

Their goal is focused on automatic and real-time extracting of a realistic 3D model

by freely moving one or more cameras across a 3D scene, i.e. 3D-scene reconstruction

from its 2D projections.

Human vision system could understand a three dimensional world naturally, only

through its 2D projections. However, this seemingly effortless act of inferring 3D

from 2D observations is in fact a non-trivial problem and is still far from being

resolved scientifically.

Considerable efforts have been devoted to this topic in the recent years as seen

from the number of publications and books [4] [15] [16] [28]. Pollefeys [53] gave an

overview of the procedure for 3D modelling from multiple images in Fig. 1.1. The

overall process may be stated in the following steps:

3



1 Introduction

Figure 1.1: Procedure for 3D modelling from images (from [53]). The high-

lighted step is the topic addressed in this dissertation.
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1.1 Motivations

step 1 A sequence of images caught with one or more perspective cameras are the

input to the modelling system.

step 2 Features that are sufficiently different from its neighborhoods are extracted

from the images, e.g. the corner points [20], and matched between each pair of

the successive images using similarity measurement based on sum-of-square-

differences (SSD) [62] [67] or normalized cross-correlation (NCC) [39].

step 3 Since wrong correspondences are usually present, a robust algorithm is neces-

sarily applied to filter out the outlying matches. Usually this process is done

through establishing a reasonable relationship (2D homography / 2D projec-

tive transformation) between the consecutive views [77] [83] [82].

step 4 When un-calibrated cameras are used, (i.e. the intrinsic parameters of the

cameras are unknown,) the structure of the scene can be determined up to an

arbitrary projective transformation using image feature correspondences, e.g.

points or lines. Accordingly, the procedure is called projective reconstruction.

Many methods have been proposed to conduct projective reconstruction, as

will be reviewed in detail in Chapter 2.

step 5 Self-calibration or auto-calibration is next conducted to restrict the ambiguity

of the projective model to metric. Mostly self-calibration algorithms are con-

cerned with unknown but constant intrinsic camera parameters, e.g. constant

aspect ratio, skew or focal length [17] [21] [55] [54] [56] [29] [31] [72]. Many

researchers also proposed specific self-calibration algorithms for restricted mo-

tions, such as pure translation [49] [2], pure rotations [23] or planar motion

[1] [2]. Moreover, some self-calibration methods were proposed based on scene

constraints [73] [14] [35].

When the cameras are calibrated, (i.e. the intrinsic parameters of the cameras

are pre-calibrated,) the above two steps may be replaced by a direct metric

reconstruction. That is, the structure of the scene and the motion of the

cameras are determined up to an arbitrary scale factor, using the set of feature

correspondences across the views. Approaches similar to those of projective

reconstruction may be applied to metric reconstruction from calibrated images.

step 6 At this point enough information is available to go back to the images and

search for correspondences for all the other image points, in order to get a dense

depth estimate for the scene. The search is restricted to one dimension, since

the line of sight corresponding to an image point is projected to a computable

line in another image. The technique of rectification is usually used to simplify

5



1 Introduction

the stereo matching and reduce the search to one row of the rectified images

[5] [57].

From the correspondences, the distance/depth from the corresponding 3D

points to the principal plane of the camera can be obtained through trian-

gulation [27].

step 7 Finally, a textured 3D surface integrating all the results above can be gener-

ated, through approximating the depth map with a triangular wire frame [36]

[76] [13].

As we have seen above, 3D-modelling from multiple images is a comprehensive

task, and each step in the system is also a complex issue itself. The accuracy and

efficiency of each step influence the whole system. This dissertation addresses the

high-lighted step in Fig. 1.1, projective reconstruction for un-calibrated cameras, as

well as the metric reconstruction with calibrated cameras. They together are known

as multiple-view reconstruction in the field of Computer Vision.

1.2 Organization of the Dissertation

First, some background knowledge is introduced in Chapter 2, including the basic

concepts in multiple-view geometry and some existing algorithms used in multiple-

view reconstruction. It allows the interested readers to understand the material

covered in the following.

Chapters 3, 4, 5 are the main contributions of this dissertation. They present

three new techniques, dealing with three fundamental problems in multiple-view

reconstruction.

Chapter 3 deals with 3D-point reconstruction from multiple views. A linear

non-iterative algorithm is presented to reconstruct a 3D point directly from its pro-

jections in multiple views with known projection matrices. Experiments show that

the linearization used in this algorithm does not reduce the accuracy of the recon-

struction, and it is by far faster than other previous methods [43].

Chapter 4 proposes a linear and iterative method for estimating the funda-

mental matrix, which represents the epipolar geometry between two un-calibrated

perspective images. It preserves the noise model of the observed image points, e.g.

a Gaussian noise distribution. When noise in the measurement of image points is

small, the accuracy of this method is comparable to that of non-linear Newton-type

optimizers, but the computational cost is much reduced [41].

6



1.2 Organization of the Dissertation

Chapter 5 discusses the problem of bundle adjustment, which refines the estima-

tion of 3D structure and view parameters through minimizing the global reprojection

error. In this chapter it is suggested to partially linearize the computation of the

cost function first, and then with the help of the linearization two techniques of

bundle adjustment can be accelerated at very little cost of accuracy, whether the

cameras are calibrated or not. The two proposed methods for conducting bundle

adjustment are not only tolerant of missing data, but also allow the assignment of

individual covariance to each image measurement [42].

Afterwards the techniques proposed in the previous three chapters are integrated

in Chapter 6 to solve the problem of 3D-scene reconstruction from a sequence

of images. An incremental-reconstruction technique is proposed. Because of the

efficiency of the sub-procedures in the system, more information in the images is

allowed to be taken into account in the computation, compared with previous ap-

proaches; and accordingly higher accuracy is achieved with the proposed technique

of incremental reconstruction.

Finally, Chapter 7 draws the conclusions for this dissertation.
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2 Camera Geometry and

Multiple-View Geometry

This chapter introduces and reviews some of the basic ideas and concepts in the

area of multiple-view geometry.

The geometry of a perspective camera model is first introduced, as well as the

algorithms to estimate the projection matrix of a perspective camera, given the

coordinates of a set of world-to-image point correspondences. Then the properties

of two or three camera views are described, and so is the possible 3D reconstruc-

tion from two or three camera images. Finally, the geometry of multiple views is

introduced based on the previous knowledge.

Projective reconstruction for un-calibrated cameras and metric reconstruction for

calibrated cameras are the main topics of this dissertation. The two kinds of recon-

struction may be conducted in a similar way. At the end of this section, a detailed

introduction to the literature of projective 3D-scene reconstruction is given.

2.1 Camera Geometry

A camera is a mapping from the 3D world to a 2D image. In this dissertation

perspective camera models are used. A perspective camera model corresponds to an

ideal pinhole camera. The geometric process for image formation in a pinhole camera

has been nicely illustrated by Leon Battista Alberti (1404-1472). See Fig. 2.1. The

process is completely determined by choosing a perspective projection center and a

“retinal” plane (or image plane). The projection of a scene point is then obtained as

the intersection of a line passing through this point and the projection center with

the“retinal”plane. The 3D-2D projection can be represented by a 3×4 matrix which

9



2 Camera Geometry and Multiple-View Geometry

Figure 2.1: Alberti’s Grid - c.1450 (also known as “The Square Grid of the

Renaissance”). It offers a portable model for a perspective system,

which represents three-dimensional objects on a two-dimensional surface.

maps from homogeneous coordinates of a 3-space point to homogeneous coordinates

of an imaged point on the image plane.

2.1.1 A Simple Model

Let the projection center be the origin of a Euclidean coordinate system, and the

image plane be the plane z = f . See Fig. 2.2. The projection of a point in space

with coordinates X = (x,y,z)> can be modelled as follows:

(x,y,z)> 7→ (fx/z, fy/z)> (2.1)

The center of projection is called the camera center or optical center. The line

from the camera center perpendicular to the image plane is called the principal axis

or principal ray of the camera. The point where the principal axis meets the image

plane is termed as the principal point of the camera.

Using homogeneous coordinates, Eq. 2.1 can be written in terms of matrix multi-

10



2.1 Camera Geometry

Figure 2.2: Pinhole camera geometry. C is the camera center and p the principle

point. The camera center is placed at the coordinate origin, and the

image plane is placed at the plane z = f .

plication as 
x

y

z

1

 7→

 fx

fy

z

 =

 f 0

f 0

1 0




x

y

z

1

 . (2.2)

We define X̃ = (x,y, z, 1)>, the homogeneous 4-vector of the world point, and

x̃ = (fx/z, fy/z, 1)>, the homogeneous 3-vector of the image point. Then Eq. 2.2

can be written compactly as

x̃ ∼ PX̃ (2.3)

where the 3×4 homogeneous matrix P is called the camera matrix or the projection

matrix and

P = diag(f, f, 1)(I3×3|03). (2.4)

03 is a null 3-vector, and I3×3 is a 3 × 3 identity matrix. 3 × 3 diagonal matrix

diag(f, f, 1) is the calibration matrix K of this camera model.

2.1.2 The Internal Calibration Matrix.

With an actual camera, the origin of coordinates in the image plane may not be at

the principal point; the number of pixels per unit distance in both axial directions

of the image plane may not be equal; and even the pixels could be non-rectangular.
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2 Camera Geometry and Multiple-View Geometry

The calibration matrix of any perspective camera can be written in a common form

as

K =

 fx s x0

fy y0

1

 (2.5)

where fx and fy represent the focal length of the camera in terms of the pixel

dimension in x and y directions respectively, and (x0, y0)
> is the principal point

in terms of pixels. The parameter s is referred to as the skew parameter, and

s = (tan α)fy where α is the skew angle as indicated in Fig. 2.3. The ratio fy/fx is

called the aspect ratio of the camera.

Figure 2.3: A non-rectangular pixel. px and py are the width and the height of

the pixel respectively, and α is the skew angle.

In such a case, it can be derived that a 3-space point Xcam in the camera coordinate

frame is projected to the image point

x̃ ∼ K[I3×3|03]X̃cam (2.6)

where the camera coordinate frame refers to the Euclidean coordinate system with

the camera center at the origin, and the principal axis of the camera straight down

the Z-axis.

If the internal parameters of a camera are known, we say the camera is calibrated,

or else it is un-calibrated.

2.1.3 Camera Motion

In general, points in space will be expressed in terms of the world coordinate frame.

It does not necessarily coincide with the camera coordinate frame. The two frames

are related via a rotation matrix and a translation vector. See Fig. 2.4. Let an inho-

mogeneous 3-vector X represent the coordinates of a point in the world coordinate

12



2.1 Camera Geometry

frame, and Xcam represent the same point in the camera coordinate frame, then we

may write

Xcam = R(X−C), (2.7)

where C represents the coordinates of the camera center in the world coordinate

frame, and R is a 3 × 3 rotation matrix representing the orientation of the cam-

era coordinate frame to the world coordinate frame. In homogeneous coordinates,

Eq. 2.7 may be written as

X̃cam =


xcam

ycam

zcam

1

 =

[
R −RC

0>3 1

]
x

y

z

1

 =

[
R −RC

0>3 1

]
X̃. (2.8)

2.1.4 A General Perspective Camera

Put Eq. 2.8 together with Eq. 2.6, and yield

x̃ ∼ K[R| −RC]X̃ = PX̃. (2.9)

This is the general mapping given by a perspective camera. The 3 × 4 matrix

P = K[R| −RC] is the general form of the projective matrix or camera matrix. It

has rank 3 and 11 DOF: 5 for K, 3 for R, and 3 for C. The parameters contained

in K are called the internal parameters of the camera; the parameters of R and C

which relate the camera orientation and position to the world coordinate system are

called the external parameters.

For simplification, t is defined as t = −RC. Hence,

Xcam = RX + t (2.10)

and

P = K[R|t]. (2.11)

It can be proved that the 3-vector t is the coordinate of the world frame center in

the camera coordinate frame.

2.1.5 Computation of the Projective Matrix P

Given sufficiently many correspondences between 3D points Xi and their according

images xi, the camera matrix P can be determined.

13



2 Camera Geometry and Multiple-View Geometry

Figure 2.4: Camera rotation and translation. R and t are the rotation matrix

and the translation vector from the camera coordinate frame to the world

coordinate frame.

The Linear Algorithm

Given a set of corresponding points {Xi ↔ xi} between 3D space points Xi and 2D

image points xi, it is required to find the camera matrix P, namely a 3× 4 matrix

such that x̃i ∼ PX̃i for all i.

Let xi = (xi, yi)
>. For each correspondence x̃i ∼ PX̃i, and hence x̃ × PX̃i = 0

which is equivalent to 0>4 −X>
i yiX

>
i

X>
i 0>4 −xiX

>
i

−yiX
>
i xiX

>
i 0>4

 P1

P2

P3

 = 03 (2.12)

where Pi> is the i-th row of P, i.e.

P =

 P1>

P2>

P3>

 .

The three equations in Eq. 2.12 are linearly dependent. Therefore, we may use only

the first two equations. [
0>4 −X>

i yiX
>
i

X>
i 0>4 −xiX

>
i

]
p = 02, (2.13)

where p = (P1>,P2>,P3>)>. For a set of n point correspondences, we obtain a

2n×12 matrix A by stacking up the equations 2.13 for each correspondence, so that

14



2.2 Two-View Geometry

the entries of matrix P may be computed through solving the set of linear equations

Ap = 02n.

One way to solve the equations Ap = 02n is using Singular Value Decomposition

(SVD) to minimize ‖ Ap ‖ subject to ‖ p ‖= 1. p is computed as the unit singular

vector corresponding to the smallest singular value of the matrix A. The method

to compute the singular value decomposition of a matrix can be found in book [19].

The Gold Standard Algorithm

Due to the noise in the measurement of point coordinates, there will not be an exact

solution to the equations Ap = 02n. Therefore, a solution to P may be obtained by

minimizing the geometric error ∑
i

d(xi, x̂i)
2

where xi is the measured image point and x̂i is the projection of the 3D point Xi

under P, i.e. ˜̂xi ∼ PX̃i. d(∗, ∗) represents the distance between two points. When

the world points Xi are known precisely and the measurement errors of the image

points are Gaussian, the solution of

min
P

∑
i

d(xi, x̂i)
2 (2.14)

is the Maximum Likelihood Estimate (MLE) of P, and d(xi, x̂i) =‖ xi − x̂i ‖Σi
is

called the Mahalanobis distance from xi to x̂i, where Σi is the covariance matrix for

the measurement error of image points.

The complete Gold Standard algorithm for computing P is given in algorithm 2.1.

2.2 Two-View Geometry

Epipolar geometry is the intrinsic projective geometry between two perspective

views. It is independent of scene structure, but depends on the cameras’ inter-

nal parameters and their relative pose (position and orientation). There exists a

3× 3-matrix F , termed as fundamental matrix, that encapsulates this intrinsic ge-

ometry.

In this section epipolar geometry is first introduced, and then the fundamental

matrix between two views is derived. It will be shown that the projection matrices

of two views can be retrieved from their fundamental matrix up to a projective

transformation of 3-space. This result is the basis for projective reconstruction.

The estimation of F from correspondences of imaged scene points is presented at

the end of this section.
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Algorithm 2.1 The Gold Standard algorithm for estimating P from a set of world-

to-image point correspondences in the case that the world points are accurately

known.

Objective

Given n ≥ 6 world-to-image point correspondences {Xi ↔ xi}, determine the Max-

imum Likelihood Estimate of the projection matrix P that minimizes
∑

i d(xi, x̂i)
2

where ˜̂xi ∼ PX̃i.

Algorithm

1. The linear algorithm. Compute an initial estimate of P using a linear

method:

a) Normalization: Use a similarity transformationa T to normalize the

image points xi, and a second similarity transformation U to normalize

the space points Xi. Suppose the homogeneous coordinates of the nor-

malized image points are x̃iN = Tx̃i, and the normalized space points are

X̃iN = UX̃i.

b) Direct linear transformation method: Form the 2n × 12 matrix A

by stacking the equations (2.13) generated by the normalized correspon-

dences {XiN ↔ xiN}. Write pN for the vector containing the entries of

the projection matrix PN corresponding to {XiN ↔ xiN}. A solution of

ApN = 02n, subject to ‖ pN ‖= 1, is obtained from the unit singular

vector of A corresponding to the smallest singular value.

c) Denormalization. The initial estimate of P for the original coordinates

is obtained from PN as P = T−1PNU.

2. Minimize geometric error. Use the linear estimate of P as a starting

point to minimize the geometric error
∑

i d(xi, x̂i)
2 over P, with an iterative

optimization algorithm such as Levenberg-Marquardt optimizer, where ˜̂xi ∼
PX̃i.

a The similarity transformation that normalizes a set of n-dimensional points is obtained through
the following steps:

i. The points are translated so that their centroid is at the origin.

ii. The points are then scaled so that their average distance from the origin is equal to
√

n.
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2.2 Two-View Geometry

2.2.1 Epipolar Geometry

The geometric entities involved in the epipolar geometry between two perspective

cameras are illustrated in Fig. 2.5. Each camera is indicated by its optical center C

(C′) and its image plane. The line joining the two camera centers is the baseline.

The baseline intersects the image plane at the epipole e (e′). Any plane containing

the baseline is an epipolar plane, which intersects the two image planes at a pair of

corresponding epipolar lines, e.g. l and l′.

An image point x in the first view is back-projected to a ray in 3-space, which

is defined by the first camera center C and the point x. The ray is imaged as a

line l′ in the second view. The line l′ is termed as the epipolar line corresponding

to the point x, and x’s corresponding point x′ in the second image always lies on

the epipolar line l′. The other way around, the point x lies on the epipolar line l

corresponding to the point x′.

Figure 2.5: The epipolar geometry.

2.2.2 The Fundamental Matrix F

The fundamental matrix F is the algebraic representation of epipolar geometry.

Given two images acquired by cameras with non-coincident centers, the fundamental

matrix F from one image to another is a unique 3 × 3 rank-2 homogeneous matrix

which satisfies

x̃′>Fx̃ = 0 (2.15)

for any pair of corresponding image points x ↔ x′.
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2 Camera Geometry and Multiple-View Geometry

For any point x in the first image, the homogeneous coordinates of its correspond-

ing epipolar line in the second image is l′ = Fx̃. Similarly, l = F>x̃′ represents the

epipolar line corresponding to x′ in the second image.

Since the epipole e(e′) is on the epipolar line l(l′), it follows that Fẽ = 03 and

ẽ′>F = 03.

3 × 3 matrix F has 9 elements, but only 7 DOF. The rank-2 constraint, i.e.

det(F) = 0, removes one DOF; and the homogeneous definition removes another,

for the common scaling is not significant.

Additionally, F can be computed from the two camera projective matrices P, P′:

F = [ẽ′]×P′P+, (2.16)

where P+ is the pseudo-inverse of P, and ẽ′ = P′C̃ with PC̃ = 03. [ẽ′]× is the cross

product matrix of 3-vector ẽ′.

2.2.3 Retrieving Camera Matrices from F

One of the most important properties of F is that it can be used to determine the

camera matrices of the two views. Let us look at the following three results:

• H is a random 4×4 matrix representing a projective transformation of 3-space,

then the fundamental matrix corresponding to a pair of camera matrices (P,

P′) is the same as that corresponding to the pair of camera matrices (PH,

P′H).

• Let F be a fundamental matrix, and (P, P′) and (P̂, P̂′) be two pairs of

camera matrices such that F is the fundamental matrix for either of the two

pairs. Then there exists a non-singular 4×4 matrix H such that P̂ = PH and

P̂′ = P′H.

• The fundamental matrix corresponding to a pair of camera matrices P = [I|0]

and P′ = [M|m] is equal to [m]×M.

Therefore, we know that, although a pair of camera matrices can uniquely deter-

mine a fundamental matrix, the converse is not true; and the pair of camera matrices

can be determined at best up to a 3D projective transformation by a fundamental

matrix. One may write down a particular solution for a pair of camera matrices

corresponding to a fundamental matrix as

P = [I|0] and P′ = [SF|e′],
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2.2 Two-View Geometry

where e′ is the epipole such that e′>F = 03. It is suggested by Luong [45], a good

choice for S is S = [e′]×, since e′>e′ 6= 0.

Given P = [I|0] and the fundamental matrix F, the general formula for the other

camera matrix is

P′ = [[e′]× + e′v>|λe′] (2.17)

where v is any 3-vector, and λ a non-zero scalar.

2.2.4 The Essential Matrix E

Consider a camera matrix decomposed as P = K[R|t], and x̃ = PX̃ is the projection

of a space point X. Let x̃c = K−1x̃, then we have x̃c = [R|t]X̃. xc is termed as the

canonical image point corresponding to image point x and 3× 4 matrix [R|t] is the

canonical camera matrix or canonical projection matrix of the camera.

Now consider a pair of canonical camera matrices P = [I|0] and P = [R|t]. The

fundamental matrix corresponding to the pair of canonical camera matrices is called

the essential matrix, and it can be derived that

E = [t]×R = K′>FK (2.18)

and

x̃′>c Ex̃c = 0 (2.19)

where xc and x′c are the canonical image points corresponding to a pair of matched

image points x ↔ x′. The essential matrix E = [t]×R has only 5 DOF: 3 for R and

3 for t, but one removed for the overall scale ambiguity.

E has two equal non-zero singular values and one zero singular value. That means,

E can be written in the form E ∼ Udiag(1, 1, 0)V>, where U and V are 3 × 3

orthogonal matrices. Given an essential matrix E = Udiag(1, 1, 0)V> and the first

camera matrix P = [I|0], there are four possibilities for the second camera matrix,

namely
P′ = [UWV>|+ u3] or P′ = [UW>V>|+ u3] or

P′ = [UWV>| − u3] or P′ = [UW>V>| − u3]

where u3 is the last column of U and

W =

 0 −1 0

1 0 0

1 0 0

 .

The four possible reconstructions from the essential matrix are illustrated in

Fig. 2.6. In the image a camera is represented by its principle axis and its image

plane.
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2 Camera Geometry and Multiple-View Geometry

Figure 2.6: Four possible reconstructions from E. The 3rd P′ may be obtained

by rotating the 1st P′ by 180◦ around the baseline, and similarly, the

4th is obtained by rotating the 2nd by 180◦. The 1st and the 2nd P′ are

parallel to the 3rd and the 4th P′ respectively. Note that the principle

axes of P and P′ are not necessarily on the same plane.

2.2.5 Computation of the Fundamental Matrix F

A fundamental matrix F is independent of scene structure, and can be computed

from imaged point matches alone, without any a priori knowledge of the cameras’

internal parameters or the relative pose between the two cameras.

The Linear Algorithm

Given a number of image point matches {xi ↔ x′i} in two images, we may com-

pute the fundamental matrix F between the two images, namely a 3 × 3 rank-2

homogeneous matrix such that

x̃′>i Fx̃i = 0 (2.20)

for all i.

Let xi = (xi, yi)
> and x′i = (x′i, y

′
i)
>. We may rewrite Eq. 2.20 by

x′ixif11 + x′iyif12 + xif13 + y′ixif21 + y′iyif22 + yif23 + xif31 + yif32 + f33 = 0,

i.e. (x′ixi, x
′
iyi, x

′
i, y

′
ixi, y

′
iyi, y

′
i, xi, yi, 1)f = 0.

(2.21)

where fij are the entries of F, and f denotes the 9-vector made up of the entries of

F in row-major order. From a set of n point matches, we can get n linear equations,
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2.3 Three-View Geometry

which may be written in the form of

Af =

 x′1x1 x′1y1 x′1 y′1x1 y′1y1 y′1 x1 y1 1
...

...
...

...
...

...
...

...
...

x′nxn x′nyn x′n y′nxn y′nyn y′n xn yn 1

 f = 0n. (2.22)

Hence the entries of the matrix F can be computed up to scale by solving the set of

linear equations Af = 0n using SVD [19].

When the rank of A is 8, the solution of f or F is unique. It means, at least 8

points are necessarily available for the estimation. Therefore, the algorithm is called

the 8-point algorithm.

Additionally, because F must be a rank-2 matrix, i.e. det(F) = 0, the obtained

F from Af = 0n must be replaced by the closest singular matrix to F still using

SVD. More specifically, let F = UDV> be the SVD of F, where D = diag(r, s, t) is

a diagonal matrix subject to r ≥ s ≥ t. Then F′ = Udiag(r, s, 0)V> is the closest

rank-2 matrix to F, which minimizes the Frobenius norm of F− F′.

The Gold Standard Algorithm

Due to the noise in the identification of image points, there usually exists no exact

solution to the equations Af = 0n. Therefore, a solution to F may be obtained by

minimizing the geometric error in the image∑
i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 (2.23)

where xi and x′i are the measured correspondences in the two images, and x̂i and

x̂′i are the estimates of the “true” correspondences that satisfy ˜̂x
′>
i F˜̂xi = 0 for some

rank-2 matrix F. When the measurement error of the image points can be assumed

Gaussian, the solution above is the MLE of F.

The complete Gold Standard algorithm for computing F is given in algorithm 2.2.

2.3 Three-View Geometry

The trifocal tensor plays an analogous role in three views to that played by the

fundamental matrix in two views. It is independent of scene structure, depending

only on the projective relations between the three cameras. The camera matrices can

be retrieved from the trifocal tensor up to a common projective transformation of

3-space, and the fundamental matrices for each view pair can be retrieved uniquely.
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Algorithm 2.2 The Gold Standard algorithm for estimating F from image corre-

spondences.

Objective

Given n ≥ 8 image point correspondences {xi ↔ x′i}, determine the Maxi-

mum Likelihood Estimate of the rank-2 fundamental matrix F that minimizes∑
i d(xi, x̂i)

2 + d(x′i, x̂
′
i)

2 subject to ˜̂x
′>
i F˜̂xi = 0.

Algorithm

1. Linear initial estimate of F.

a) Normalization: Use two similarity transformations T and T′ to nor-

malize the measured image points in the two images respectively. Denote

the homogeneous coordinates of the normalized point correspondences by

({x̃iN = Tx̃i) ↔ (x̃′iN = T′x̃′i)}.

b) DLT: Form the n×9 matrix A as in Eq. 2.22 generated from the normal-

ized correspondences {xiN ↔ x′iN}. Write fN for the 9-vector containing

the entries of the 3 × 3 matrix FN . A solution to AfN = 0n, subject to

‖ fN ‖= 1, is obtained from the unit singular vector of A corresponding

to the smallest singular value.

c) Rank-2 constraint enforcement. Replace FN by F′
N such that

det(F′
N) = 0 using SVD (see p21).

d) Denormalization. The initial estimate of F for the original image cor-

respondences is obtained from F′
N as F = T−1F′

NT′.

2. An initial estimate of the subsidiary variables Xi.

a) Choose two projection matrices P = [I|0] and P′ = [[ẽ′]×F|ẽ′], where ẽ′

is computed as the left null-space of F using SVD.

b) Reconstruct 3D point Xi from the correspondence {xi ↔ x′i} and the

pair of projection matrices P and P′ using the triangulation method as

described in Sect. 2.4.1.

3. Minimize the geometric error. Using the above estimate P′ and Xi as

a starting point minimize the geometric error
∑

i d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 with

an iterative algorithm such as Levenberg-Marquardt, over 3n + 12 variables:

3n for the n 3D points Xi and 12 for the camera matrix P′ = [M|t], and
˜̂xi ∼ PX̃i, ˜̂x

′
i ∼ P′X̃i. The final MLE of the fundamental matrix is then

F = [t]×M.
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2.3 Three-View Geometry

This section begins with an introduction to the geometric and the algebraic prop-

erties of the trifocal tensor; then it is shown how the tensor represents the relations

between image correspondences for points and lines and how the camera matrices

and the fundamental matrices are retrieved from the tensor. The computation of

the trifocal tensor from point correspondences over three-views is described at the

end of this section.

2.3.1 The Trifocal Tensor

Similar to what was derived for two views, there are multi-linear relationships be-

tween the image correspondences for points and lines in three images [65]. These

multi-linear relationships between points [61] and lines [22] or any combination

thereof [24] can be represented by the trifocal tensor [68] [69].

Let the projection matrices for three cameras be

P = [I|0], P′ = [A|a4], P′′ = [B|b4],

where A and B are 3× 3 matrices, and the vectors ai and bi are the i-th columns

of the respective camera matrices for i = 1, · · · , 4. Then from the incidence relation

between a set of corresponding lines l = (l1, l2, l3)
> ↔ l′ ↔ l′′ in the three views (see

Fig. 2.7), we can derive the following equations

li = l′>(aib
>
4 )l′′ − l′>(a4b

>
i )l′′.

Therefore, a set of rank-2 3× 3 matrices

Ti = aib
>
4 − a4b

>
i for i = 1, 2, 3 (2.24)

are introduced, and the line incidence relation above can be written as

li = l′>Til
′′.

The set of matrices {T1,T2,T3} constitutes a 3 × 3 × 3 tensor, i.e. the trifocal

tensor T , also written as [Tijk]. The tensor contains 27 parameters, but only 18 of

these are independent due to additional nonlinear constraints.

With the trifocal tensor T , the incidence relations between lines and points in

three views are summarized as follows:

(i) Line-line-line correspondence (l ↔ l′ ↔ l′′)

l′>[T1,T2,T3]l
′′ ∼ l> or (l′>[T1,T2,T3]l

′′)[l]× = 0>3 , (2.25)

where l′>[T1,T2,T3]l
′′ represents the vector (l′>T1l

′′, l′>T2l
′′, l′>T3l

′′).
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Figure 2.7: Line correspondences in three views. A line L in 3-space is imaged

as the corresponding triplet l ↔ l′ ↔ l′′ in three views; and conversely,

the back-projected planes from the three corresponding lines intersect in

a single line in 3-space.

(ii) Point-line-line correspondence (x̃ = (x1, x2, x3)
> ↔ l′ ↔ l′′)

l′>(
3∑

i=1

xiTi)l
′′ = 0. (2.26)

(iii) Point-point-line correspondence (x̃ ↔ x̃′ ↔ l′′)

x̃′ ∼ (
3∑

i=1

xiTi)l
′′ or [x̃′]×(

3∑
i=1

xiTi)l
′′) = 03. (2.27)

(iv) Point-line-point correspondence (x̃ ↔ l′ ↔ x̃′′)

l′>(
3∑

i=1

xiTi) ∼ x̃′′ or (
3∑

i=1

xiTi)l
′′)[x̃′′]× = 0>3 . (2.28)

(v) Point-point-point correspondence (x̃ ↔ x̃′ ↔ x̃′′)

[x̃′]×(
3∑

i=1

xiTi)l
′′)[x̃′′]× = 03×3. (2.29)

Given the trifocal tensor T , we can also compute the epipolar lines, and retrieve

the epipoles, the fundamental matrices and the projection matrices:
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• If x̃ = (x1, x2, x3)
> is a point in the first image, and l′ and l′′ are the corre-

sponding epipolar lines in the second and third images respectively, then

l′>(
3∑

i=1

xiTi) = 0>3 and (
3∑

i=1

xiTi)l
′′ = 0>3 ,

i.e. the epipolar lines l′ and l′′ are the left and right null-vectors of the matrix

of
∑

i xiTi, respectively.

• The epipole ẽ′ in the second image with respect to the first image is the

common intersection of the left null-vectors of the matrices Ti, i = 1, 2, 3.

Similarly the epipole ẽ′′ in the third image with respect to the first is the the

common intersection of the right null-vectors of the Ti.

• The fundamental matrices F21 and F31 are computed as

F21 = [ẽ′]×[T1,T2,T3]ẽ
′′ and F31 = [ẽ′′]×[T>

1 ,T>
2 ,T>

3 ]ẽ′.

• With T and P = [I|0], P′ and P′′ may be retrieved by

P′ = [[T1,T2,T3]ẽ
′′|ẽ′] and P′′ = [(ẽ′′ẽ′′> − I)[T>

1 ,T>
2 ,T>

3 ]ẽ′|ẽ′′].

2.3.2 Computation of the Trifocal Tensor T
As with the fundamental matrix, the trifocal tensor is independent of scene struc-

ture, and invariant to 3D projection transformation. It can be computed from image

correspondences over three views. Then the cameras and 3D scene can be recon-

structed up to a projective transformation of 3-space.

The Linear Algorithm

Given several point or line correspondences between three images, a set of the linear

equations involving the trifocal tensor may be generated according to the incidence

relations as described in Sect. 2.3.1. All of these equations are linear in the entries

of the trifocal tensor T , and therefore may be written in the form of At = 0, where

t is the 27-vector made up of the entries of T . As with the computation of P in

Sect. 2.1.5 and F in Sect. 2.2.5, the entries of T may be solved through minimizing

‖At‖ using SVD.

But not all these equations are necessary to be used. For instance in the case of

a point-point-point correspondence, there are a total of 9 equations from Eq. 2.29,

but only 4 of them are linearly independent and may be obtained by choosing any
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Algorithm 2.3 The normalized linear algorithm for computation of T .

Objective

Given n ≥ 7 image point correspondences {xi ↔ x′i ↔ x′′i }, compute the trifocal

tensor.

Algorithm

1. Normalization: Use three similarity transformations U, U′, U′′ to nor-

malize the measured image points in the three images respectively. Denote

the homogeneous coordinates of the normalized point correspondences by

({x̃iN = Ux̃i) ↔ (x̃′iN = U′x̃′i) ↔ (x̃′′iN = U′′x̃′′i )}.

2. DLT: Generate the set of linear equations in the form AtN = 04n according to

the independent equations in Eq. 2.29, using the normalized correspondences

{xiN ↔ x′iN ↔ x′′iN}, where A is a 4n × 9 matrix and tN is the 27-vector

representing the 27 entries of the trifocal tensor. Solve tN through minimizing

‖AtN‖ using SVD.

3. Enforcement of the trifocal tensor constraints as described in the linear

algorithm (p28).

4. Denormalization. Compose the trifocal tensor {T1N ,T2N ,T3N} with tN .

a) Define 3× 3 matrices T′
kN = U′−1TkNU′′−> for k = 1, 2, 3, and Tij

kN

′
the

entry of T′
kN at the i-th row and j-th column.

b) Let T = {T1,T2,T3} be the initial estimate of the trifocal tensor for the

original image correspondences, and Tij
k represent the entry of matrix Tk

at the i-th row and j-th column. Then the entries of T may be computed

as follows: Tij
1

Tij
2

Tij
3

 = U>

 Tij
1N

′

Tij
2N

′

Tij
3N

′

 for i = 1, 2, 3 and j = 1, 2, 3.
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Algorithm 2.4 The Gold Standard algorithm for estimating T .

Objective

Given n ≥ 7 image point correspondences {xi ↔ x′i ↔ x′′i }, determine the Maximum

Likelihood Estimate of the trifocal tensor that minimizes∑
i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 + d(x′′i , x̂
′′
i )

2.

The set of point correspondences {x̂i, x̂′i and x̂′′i } are the estimated “true” corre-

spondences that exactly satisfy the trifocal constraints in Eq. 2.29 with respect to

the estimated trifocal tensor.

Algorithm

1. Initial estimate of T using the linear algorithm 2.3.

2. Initial estimate of the subsidiary variables Xi.

a) Let P = [I|0], and retrieve the camera matrices P′ and P′′ from T .

b) Reconstruct 3D point Xi from the correspondence {xi ↔ x′i ↔ x′′i } and

P, P′ and P′′ using the triangulation method as described in Sect. 2.4.1.

3. Using the above retrieved P′, P′′ and estimated Xi as a starting point minimize

the geometric error∑
i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 + d(x′′i , x̂
′′
i )

2.

with an iterative algorithm such as Levenberg-Marquardt, over 3n + 24 vari-

ables: 3n for the n 3D point Xiand 24 for the elements of the two camera

matrices P′ and P′′, where ˜̂xi ∼ PX̃i, ˜̂x
′
i ∼ P′X̃i and ˜̂x

′′
i ∼ P′′X̃i. The fi-

nal MLE of the trifocal tensor is then obtained as given in Eq. 2.24 with the

new-estimated P′ and P′′.
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two equations from any two columns or rows. Similarly, two of the three equations

in Eq. 2.27, Eq. 2.28 or Eq. 2.25 are linearly independent.

The T that minimizes ‖At‖ does not consider the constraints on T discussed in

Sect. 2.3.1. These constraints may be enforced through the following steps:

(i) Retrieve the epipoles ẽ′, ẽ′′.

a) For each i = 1, 2, 3 find the unit vector vi that minimizes ‖Tivi‖. Form

the matrix V, the i-th row of which is v>i .

b) Compute ẽ′′ (the epipole in the third image with respect to the first

image) as the unit vector that minimizes ‖Vẽ′′‖.

Similarly, the epipole ẽ′ in the second image with respect to the first image is

computed using T>
i instead of Ti.

(ii) Retrieve the camera matrices P′, P′′ with P = (I|0). Given P = (I|0),

it can be derived that ẽ′ equals the last column of P′ (up to scale), and so does

ẽ′′ for P′′. Then from Eq. 2.24, it may be seen that once the epipoles ẽ′ = a4

and ẽ′′ = b4 are known, the entries of T may be represented linearly in terms

of the remaining entries of P′ and P′′. Let a 27 × 18 matrix E express the

known linear relationship between the 27-vector t (the entries of T ) and the

18-vector q (the remaining entries of P′ and P′′), i.e. t = Eq. Hence, q may

be solved through minq ‖At‖ = ‖AEq‖ using SVD with known A and E, and

t = Eq follows. The solution t = Eq represents the trifocal tensor subject to

all the constraints upon a valid trifocal tensor.

The normalized linear algorithm for computing T is summarized in algorithm 2.3.

The Gold Standard Algorithm

As with the fundamental matrix, the best estimation of T may be obtained by the

Maximum Likelihood Estimation. Given a set of point correspondences {xi ↔ x′i ↔
x′′i } in three views, the cost function to be minimized is∑

i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 + d(x′′i , x̂
′′
i )

2 (2.30)

where x̂i, x̂
′
i and x̂′′i are the estimated“true”correspondences that satisfy the trifocal

constraints in Eq. 2.29 exactly with respect to the estimated trifocal tensor. The

complete algorithm for estimating T is given in algorithm 2.4.
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2.4 Multiple-View Reconstruction

2.4 Multiple-View Reconstruction

This section will show that it is possible to reconstruct a 3D scene from two or

more images captured from different positions by one or more cameras. The most

commonly-used approaches for scene reconstruction are feature-based. Features refer

to points, lines, or other primitives in the images.

In this section, some basic algorithms are reviewed to reconstruct 3D points and

lines from their projections in two or more camera images with known projection

matrices. Then the existing techniques of projective reconstruction from a set of

un-calibrated camera images are described.

2.4.1 3D Point and Line Reconstruction

In this section the reconstruction of 3D points and lines is discussed, given their im-

ages in N(≥ 2) views and the projection matrices of those views. It is assumed that

noise occurs only in the measured image coordinates, but not the camera matrices.

Point Reconstruction

Suppose xi = (ui, vi) be the image point in view i, for i = 1, . . . , N , and their

back-projected rays intersect at a single 3D-point X in space. Then we have

x̃i ∼ PiX̃ or wix̃i = PiX̃ (2.31)

where wi is an unknown scale factor and Pi is the projection matrix of view i and

supposed to be known a priori.

Denote the j-th row of Pi by Pj>
i . Then Eq. 2.31 may be rewritten as

wiui = P1>
i X̃, wivi = P2>

i X̃, wi = P3>
i X̃

Eliminate wi by substituting the third equation into the first two, which yields the

following two independent linear equations

(uiP
3>
i −P1>

i )X̃ = 0

(viP
3>
i −P2>

i )X̃ = 0
. (2.32)

Then for N views, there are 2N linear equations in terms of X̃. They may be written

in the form of

AX̃ = 02N , (2.33)
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where A is a 2N × 4-matrix and

A =


. . .

uiP
3>
i −P1>

i

viP
3>
i −P2>

i

. . .

 . (2.34)

As before, X can be computed by solving the set of linear equations AX̃ = 02N

using SVD.

An alternative method to solve AX̃ = 02N is using the so-called normal equations

since the last element of X̃ is known to be 1. That is to minimize ‖ A′X − b ‖,
where A′ is the first three columns of A and b is its last column, and hence X may

be solved as

X = (A′>A′)−1A′>b. (2.35)

When not all the optical centers of the views are collinear with the 3D-point X, the

3× 3 matrix A′>A′ is invertible. Otherwise, the 3D-point is un-reconstructable.

The above linear method for reconstructing a point in 3-space is called Linear

Triangulation Method or Least-Squares Method, in which an algebraic error ‖ AX̃ ‖
or ‖ A′X̃− b ‖ is minimized.

The above presents a simple linear solution to 3D point reconstruction, in which

the algebraic distance (as defined by [26]) between measured image points and esti-

mated points is minimized. The geometric error for a reconstructed 3D point X is

computed as follows

N∑
i=1

d(xi, x̂i)
2 subject to ˜̂xi ∼ PiX̃, (2.36)

where xi is the measured image point in view i, and x̂i is its estimated “true” image

point. When a Gaussian error distribution can be assumed for the measurement of

the image points, the points x̂i for i = 1, · · · , N that minimize the cost function in

Eq. 2.36 are Maximum Likelihood Estimates (MLE) for the true image point corre-

spondences. The minimization may be carried out with the a numerical optimization

method such as Levenberg-Marquardt [50]. Once x̂i for i = 1, · · · , N are obtained,

the MLE of the 3D point X̂ may be computed by any triangulation method.

Line Reconstruction

Suppose a line in 3-space is projected to 2D lines in N views. Given the projection

matrices Pi of those views and the imaged lines li in the views, the line in 3-space
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2.4 Multiple-View Reconstruction

can be reconstructed as the intersection line of the back-projected planes from the

N imaged lines.

With the homogeneous coordinates, the planes defined by the back-projection of

the imaged lines are πi = P>
i li, for i = 1, · · · , N . Without noise, these planes should

intersect at a single 3D line in space, and hence the 4×N matrix

A =
[

π1 π1 · · · πN

]
=
[

P>
1 l1 P>

2 l2 · · · P>
N lN

]
has rank 2. The line in space may be parameterized by any two of the N planes

defined by the image lines, as long as the two planes are distinct.

However, in the presence of noise, the rank of the 4 × N matrix A is generally

greater than 2 when N > 2. To reconstruct the line, we can also use the technique

of SVD [28] [40]. Let A = UDV> be the SVD of A. The two columns of U

corresponding to the two largest singular values span the best rank-2 approximation

to A and define the best intersection line of the planes.

2.4.2 Projective Reconstruction from Multiple Images

Consider a situation in which a set of 3D points Xj are viewed by a set of cameras

with projection matrices Pi. Denote by xi
j the coordinates of the j-th point in

the view of the i-th camera. We are going to solve the following reconstruction

problem: given a set of image-point correspondences xi
j, find the set of camera

matrices Pi and the 3D points Xj such that PiX̃j ∼ x̃i
j. Without any further

constraint on the scene or cameras, the reconstruction could only be retrieved up

to a projective transformation. Accordingly, this reconstruction problem is called

projective reconstruction. To understand it, it is necessary to master the knowledge

introduced in the previous sections of this chapter.

This section addresses the projective reconstruction of a 3D scene from multiple

images captured from it. When calibrated cameras are used, it is possible to recon-

struct the scene up to scale from the images, i.e. metric reconstruction, in a manner

similar to that of projective reconstruction. It will not be repeated in this section.

The optimal way to perform projective reconstruction from multiple images is to

use bundle adjustment, which involves the minimization of the total reprojection

error over the camera matrices and the 3D structure:

min
Pi,Xj

∑
ij

d(xi
j, x̂

i
j)

2 (2.37)

where x̂i
j is the estimated image point computed from the estimated projection

matrix Pi and the estimated 3D point Xj, i.e. ˜̂x
i

j ∼ PiX̃j. The techniques for
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conducting the bundle adjustment will be discussed in detail in chapter 5. However,

bundle adjustment does not give a direct solution; it is a refining process involving

a non-linear optimization which requires a good starting point, i.e. the initial recon-

struction. The strategies to perform the initial reconstruction are generally classified

into the following three categories.

1. Factorization

Factorization using singular value decomposition is often used for recovering 3D

space and motion from image correspondences across multiple frames. Its basic idea

is as follows:

Assuming that each point is visible in each view, i.e. xi
j is known for all i, j, we

may write the complete set of the equations x̃i
j ∼ PiX̃j as

λ1
1x̃

1
1 λ1

2x̃
1
2 · · · λ1

nx̃
1
n

λ2
1x̃

2
1 λ2

2x̃
2
2 · · · λ2

nx̃
2
n

...
...

. . .
...

λm
1 x̃m

1 λm
2 x̃m

2 · · · λm
n x̃m

n

 =


P1

P2

...

Pm

 [ X̃1 X̃2 · · · X̃n

]
(2.38)

where weighting scalars λi
j are called the projective depths of the points. When these

depths λi
j are known, Pi and Xj can be computed using SVD. In detail, denote the

3m× n-matrix on the left side of Eq. 2.38 by a measurement matrix W. The rank

of W should be less than 4, since it is a product of two matrices with 4 columns

and rows respectively. Let W = UDV> be the SVD of W, and D̂ be the diagonal

matrix resulting from setting all but the first four diagonal entries of D to zero.

Then the measurement matrix W is adjusted to be a rank-4 matrix Ŵ = UD̂V>.

The camera matrices are hence retrieved from [P1>,P2>, . . . ,Pm>]> = UD̂ and

the 3D points from [X̃>
1 , X̃>

2 , . . . , X̃>
n ] = V>. As the SVD of W is not unique,

the factorization is not unique either and could only be determined up to a 4 × 4

projective transformation. That is, the reconstruction is projective. However, the

projective depths λi
j are unknown, so they are given an initial estimate, e.g. λi

j =

1; and the above factorization process is iterated while projective depths λi
j are

re-estimated in each iteration through the equations λi
jx̃

i
j = PiX̃j using the new

estimated Pi and Xj.

The factorization algorithm was first proposed for orthographic projection by

Tomasi and Kanade in paper [66]. Method of iteration using this approach was

proposed in [71] [30] [32]. Irani and Anandan proposed the covariance-weighted fac-

torization, dealing with noisy feature correspondences with high degree of directional
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uncertainty [33]. Factorization with line correspondences was proposed as well [59]

[51].

The biggest disadvantage of factorization is that it requires each image feature

must be visible in all the views. However, this is rarely the case in real data.

Additionally, an algebraic error instead of the reprojection error is minimized in the

process of factorization, therefore its result is not optimal and bundle adjustment

should be conducted afterwards.

2. Hierarchical Merging of Sub-Sequences

The hierarchical technique is usually used for the reconstruction from a long im-

age sequence. The basis idea is to first partition the sequence into manageable

sub-sequences. There could be several hierarchical layers of the partition [63], and

the sub-sequences in one layer may share overlapping images [38] [18] or may not

[63]. The reconstruction is computed for each sub-sequence separately, and then

they are “zipped” (merged) together using resection or triangulation [86] [38] [3].

Whenever several sub-sequences are registered into a longer sub-sequence or the

complete sequence, bundle adjustment is usually necessary to be conducted upon

the re-combined sequence.

In such a way, the hierarchical technique distributes the camera and structure

“error” throughout the sequence of images and to some extend reduces the error

accumulation from the first to the last image in the sequence; and accordingly it

provides the final bundle adjustment quick convergency to a good minimum. But

the advantage of the hierarchical technique is based on the costly expense of com-

putational effort.

Another advantage of the hierarchic reconstruction is the possibility of parallel

computation. The reconstructions of the sub-sequences are independent from each

other and may be conducted in a parallel computing system synchronously, and so

are the merging procedures. In such a way, the computational speed can be increased

significantly.

The disadvantages of the hierarchical technique result from the merging procedure:

1) point matches between two views are usually ignored in this technique, but they

are more common than the multiple-view point matches; 2) when there are two or

more overlapping images between two successive sub-sequences, there is generally

no transformation consistent with all the overlapping images between the two sub-

sequences; therefore an additional non-linear minimization is necessarily conducted

in order to maximize the consistency [18].
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3. Incremental Reconstruction

A classical incremental reconstruction algorithm is given in the tutorial [53]. In the

algorithm, the structure and view reconstruction is first conducted for two/three se-

lected views (images) using a 2-view/3-view estimation method as stated in Sect. 2.2

and Sect. 2.3. For every additional view, the correspondences between the recon-

structed 3D points in space and the image points in this additional view are set up

and used to estimate the camera matrix for the added view. Then the 3D structure

is reconstructed again with this added view. At last the overall reconstruction may

be refined optionally through a global bundle adjustment over all the established

views and the 3D structure. Obviously, the method has the disadvantage of error

accumulation.

Avidan and Shashua [3] proposed another type of incremental reconstruction, i.e.

threading two consecutive fundamental matrices using the trifocal tensor. In this

algorithm, the view and structure error is distributed to each pair of consecutive

view.

One may call the second incremental-reconstruction algorithm above a two-layered

hierarchical-reconstruction algorithm, in which each sub-sequence consists of two

views and every pair of successive sub-sequences share one common view. It shows

that, there is some kind of connection between incremental reconstruction and two-

layered hierarchical reconstruction. For incremental reconstruction, each incremen-

tal step estimates only one view; whereas a step in the ground layer of hierarchical

reconstruction may estimate one or more views. Although it is claimed hierarchical

reconstruction distributes the structure and view error throughout the sequence, the

error is in fact still accumulated from the first to the last view after the sub-sequences

are stitched together if the sequence is not closed. In other words, for a long open

image sequence, error accumulation is an unavoidable inherent fact.

Zhang proposed another incremental reconstruction method in paper [85], which

works on a sliding window of triplets of images. This method is related to the

hierarchical reconstruction method proposed by Fitzgibbon and Zisserman in [18]

and the incremental method proposed in [3]. The advantages of this algorithm over

the other two algorithms are that 1) each incremental view is added through a

local optimal estimation over three views, and that 2) it takes the three-view point

matches as well as the two-view point matches into account.

In Chapter 6, another incremental reconstruction method will be proposed and

implemented. It makes use of not only the two-view and three-view point matches,

but also all the multiple-view point matches, at no extra expense of the computa-
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tional effort.

Additionally, projective reconstruction with minimal feature correspondences were

also researched on [58] [60]. It may be used to bootstrap robust estimation, such

as RANSAC and LMS algorithms, to filter out the outliers for multiple-view recon-

struction.

2.5 Conclusions

In this chapter some basic concepts in multiple-view geometry are introduced and

some algorithms for multiple-view reconstruction are reviewed, including the pro-

jective geometry of a perspective camera model, the epipolar geometry between two

camera views, the trifocal tensor between three views, and the 3D reconstruction

from two or more camera images. For more details about the multiple-view geome-

try, readers are referred to books [15] [28] or [16].

3D-scene reconstruction from multiple views is a comprehensive research topic

and concerned with various concepts and problems in computer vision. In the next

three chapters, several techniques will be proposed to deal with some basic problems

in the multiple-view reconstruction.
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3 First-Order MLE Method for

3D-Point Reconstruction from

Multiple Views

This chapter deals with the problem of finding the position of a 3D point in space

given its projections in multiple images taken by cameras with known calibration

and pose (position and orientation). Ideally the 3D point can be obtained as the

intersection of the multiple known space rays back-projected from its projections.

However, with noise the rays will not meet at a single 3D point generally. Therefore,

it is necessary to find a best point of intersection.

In this chapter a new algorithm is proposed to obtain the Maximum Likelihood

Estimate (MLE) of the true position of a 3D point in space from its projections in

multiple views with known calibration and pose. The algorithm is based on the first-

order approximation to the geometric error. In the case of two views, it is exactly

the same as the Sampson approximation [27]. It is linear, non-iterative, simple

in concept, and straightforward to implement. Through a series of experiments,

the algorithm was extensively tested against many other reconstruction methods.

It consistently obtains more accurate results than other linear methods, and its

computational cost is also relatively low.

3D-point reconstruction is a basic problem in computer vision, but of great im-

portance to multiple-view reconstruction, such as the incremental motion estimation

[28] [85] and the bundle adjustment [75] [46] [28] [85] [7], as will be further discussed

in chapter 5 and chapter 6.

In the following of this chapter, the reconstruction problem is briefly stated in

Sect. 3.1. Then several reconstruction algorithms are reviewed in Sect. 3.2. Mean-
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while, a generalized iterative least-squares method is proposed in Sect. 3.2.4, but it

is not the main suggested method in this chapter. In Sect. 3.3 a special minimization

criterion is presented for the reconstruction problem. According to this criterion,

the first-order MLE method is proposed in Sect. 3.4. Experimental results on both

simulated and real data are given in Sect. 3.5, to compare the proposed method with

other methods. Finally the conclusions are given in Sect. 3.6.

3.1 Problem Statement

Suppose that a point X in 3-space is visible in N (≥ 2) views. Given its projections

(or image points) xi (i = 1, 2, · · · , N) in the N views and the projection matrices

of the views Pi, we are expected to estimate the position of the 3D point X. It is

assumed that noise occurs only in the identification of the image points but not the

camera matrices.

With Pi and xi, we can compute the N back-projected rays in space, which run

from the N optical centers to the N corresponding image points, respectively. Hence,

the problem of reconstructing a 3D-point is to find the intersection of the N rays in

space. In the presence of noise, the rays are not guaranteed to intersect at a single

point, hence a best choice of the intersection point is necessary to be found.

3.2 State of the Art

3.2.1 Numerical Optimization

Since it is assumed that noise only occurs in the measurement of image points,

the maximum likelihood estimate of the 3D point is the one that minimizes the

reprojection error, i.e. the summed squared distance between the measured image

point xi and the reprojection x̂i of the reconstructed 3D point X

J0 =
N∑

i=1

d(xi, x̂i)
2 (3.1)

where ˜̂xi ∼ PiX̃. Function d(xi, x̂i) represents the geometric distance between xi

and x̂i.

It is commonly assumed that the measurement noise obeys a Gaussian distribution

and is independent from view to view [28]. Let Σi be the covariance matrix for
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measured image point xi. Then d(xi, x̂i)
2 is the Mahalanobis distance (or covariance-

weighted error) between the two image points, i.e.

d(xi, x̂i)
2 =‖ xi − x̂i ‖2

Σi
= (xi − x̂i)

>Σi
−1(xi − x̂i).

When an isotropic Gaussian noise distribution can be assumed, d(∗, ∗) refers to the

Euclidean distance.

The minimization of the reprojection error Eq. 3.1 over the 3 parameters of X may

be carried out with the a Newton-type optimizer such as Levenberg-Marquardt [50].

In addition, an initial estimate of X is necessarily computed before the minimization,

through one of the following linear triangulation methods.

Numerical optimization is relatively slow in computation, and thus many linear

methods as follows were proposed instead to solve the reconstruction problem.

3.2.2 Least-Squares Method

In Sect. 2.4.1, we have reviewed the Least-Squares Method or Linear Triangulation

for reconstructing a 3D point X in space, given its projections (xi = (ui, vi)
>) in

N (≥ 2) views and the projection matrices (Pi) of those views. In the method, the

3D point X is computed through minimizing the least-squares ‖AX̃‖, where A is a

2N × 4-matrix composed of functions of xi and Pi (see Eq. 2.34).

However, this algebraic solution of Least-Squares Method has no geometric mean-

ing, since its result varies with the weights upon the rows of the matrix A. Or the-

oretically, this linear method is non-projective invariant. That means that, under a

projective transformation H of the space the original solution X does not correspond

to a solution HX for the transformed problem.

3.2.3 Iterative Least-Squares Method

An alternative linear solution to the reconstruction problem is Iterative Least-

Squares Method (ILSM) as proposed in [27] [7]. It changes the weights of the

rows of the matrix A in each iteration, such that the least-squares of the weighted

equations approaches the geometric errors adaptively. In detail, it aims at seeking

a 3D-point X that minimizes

JI =
N∑

i=1

‖ wi

[
uiP

3>
i −P1>

i

viP
3>
i −P2>

i

]
X̃ ‖2 (3.2)

where the weights wi = (P3>
i X̃)−1, for i = 1, · · · , N . Note that P3>

i X̃ is in fact the

depth of 3D-point X in the coordinate system of view i (see Fig. 3.2). It is easy
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Figure 3.1: Depth of a 3D point in the coordinate system of a view.

to prove [27] that JI is equal to the geometric reprojection error given in Eq. 3.1,

when an isotropic Gaussian error distribution can be assumed for the measurement

of the image points. JI may be rewritten as the least-squares ‖ BX̃ ‖2, where B is

a 2N × 4-matrix

B =


. . .

wi

[
uiP

3>
i −P1>

i

viP
3>
i −P2>

i

]
. . .

 . (3.3)

Besides X, the true values of the scalars wi are also unknown. Therefore wi is given

an initial estimate, e.g. wi = 1, for i = 1, . . . , N , and hence X can be solved using

SVD or the normal equations (see Sect. 2.4.1). This process is repeated while wi is

re-estimated in each iteration by (P3>
i X̃)−1 using the new estimated X.

Note that, the solution of the Least-Squares Method is equivalent to that of the

Iterative Least-Squares Method in the first iteration with an initial estimate wi =

1, for i = 1, . . . , N . Moreover, the inversion of the weights in Eq. 3.3, w−1
i = P3>

i X̃

is in fact the depth of the 3D point X in the coordinate system of view i (see Fig. 3.1).

Therefore we can tell, when the depth of a space point does not vary significantly

over the views compared with the value of the depth (i.e. wi ≈ wj, when i 6= j), the

Least-Squares Method (LSM) of 3D-point reconstruction can obtain similar accuracy

with ILSM. This point is also shown by the experimental results in Sect. 3.5.

ILSM obtains more accurate results than LSM. But as an iterative method, ILSM

is still relatively slow in computation.
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Figure 3.2: Depth of a 3D-point in the coordinate system of a view.

3.2.4 Generalized Iterative Least-Squares Method

In the presence of a general Gaussian noise distribution, ‖ BX̃ ‖2 in the above

section is not equal to the geometric reprojection error in Eq. 3.1. This section will

propose another linear triangulation method. It is a generalized ILSM method and

it works under the assumption of a general Gaussian noise distribution.

In this algorithm, function ‖ MBX̃ ‖2 instead of ‖ BX̃ ‖2 is minimized, where

M>M = Σ−1 and Σ is the covariance matrix of the measurement errors of image

points. It is easy to prove that ‖ MBX̃ ‖2 is equal to the geometric reprojection

error in terms of Mahalanobis distance.

Sect. 2.4.1 introduced two methods: SVD and the normal equation, to solve the

least-squares problem of minimizing ‖ AX̃ ‖, ‖ BX̃ ‖ or ‖ MBX̃ ‖. However, the

SVD solution is even variant to Euclidean transformation of the world coordinate.

Therefore, the normal-equation solution is suggested. It is not only faster to compute

than SVD, but also invariant to the affine transformation of the world coordinate

system. In the following of this chapter, the normal-equation solution is always

implied in default.

In general ILSM obtains more accurate results than LSM. But when the depth

of the space point does not vary much across the views, LSM may achieve as good

results as ILSM, since in such a case the weights wi in matrix B are nearly identical

and thus will not change much through the iterations of ILSM.

Moreover, due to the advanced research on numerical optimization during the re-
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cent years, the iterative ILSM method does not run much faster than some numerical

optimizers, such as the advance Levenberg-Marquardt optimizer [37].

These conclusions are confirmed by the experimental results.

3.2.5 Other Methods for 3D-Point Reconstruction from Two

views

For two views, many methods have been proposed to reconstruct a space point,

including the above three. An optimal triangulation method was proposed in [27],

which reduces the problem of point reconstruction to one of finding the minimum of

a sixth-order polynomial function with a single variable. When isotropic Gaussian

noise distribution can be assumed, it can be proved that this method obtains the

optimal solution. But when the number of views increases, it would be too difficult

to create a corresponding polynomial function with only one variable.

Mid-point method is another commonly-known method for two-view triangula-

tion. It is to find the mid-point of the common perpendicular to the two rays

corresponding to the matched points. This method is easy to compute, but it is

neither affine nor projective invariant. It behaves very poorly under projective and

affine transformation, and has been seldom used in precise computation.

3.3 A Proposed Minimization Criterion for 3D-Point

Reconstruction from Multiple Views

3.3.1 Representation of Intersection Constraint

Suppose that a point X in 3-space is projected in N(≥ 2) views. Let xi be the

projection of the 3D-point X in view i (i = 1, . . . , N). The projection matrix Pi

of each view is known, and hence the fundamental matrix Fi,j between each pair of

views is known. In the absence of noise, the N back-projected rays corresponding

to the N image points meet at a single point in space, which is the 3D-point X, and

each pair of matched image points (xi,xj) must satisfy the epipolar constraint

x̃>j Fi,jx̃i = 0. (3.4)

In the case of two views, the intersection constraint can be expressed by the

epipolar constraint between the two image points (see [27]). In other words, an

epipolar constraint is equivalent to the intersection constraint between two rays

in space. When N ≥ 3 and not all the optical centers of the views are coplanar
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with the 3D-point, the intersection constraint can also be expressed by the epipolar

constraints between each pair of image points. There are a total of N(N−1)
2

pairs

of image points (or views), and accordingly N(N−1)
2

pairwise epipolar constraints.

However, only 2N − 3 of them [48] [78] are necessary and sufficient to be used as

the intersection constraints upon the N rays.

( a ) ( b )

Figure 3.3: Intersection of non-coplanar rays. (a) When the rays r1, r2 and r3

are non-coplanar, the points Q, S and T are a same point. (b) Similarly

when the rays ri, rj and rk are non-coplanar, the points S and T are the

same point with Q.

Assume the three rays r1, r2 and r3 are the related back-projected rays from three

views and they are non-coplanar. First we use one epipolar constraint to define that

r1 and r2 cross at a single 3D-point Q. When the third ray r3 is added, we add

another two epipolar constraints to define that r3 intersects r1 at a 3D-point S, and

intersects r2 at a 3D-point T. Since r1, r2 and r3 are non-planar, S and T must

be the same point as Q (see Fig. 3.3a). That is, the three rays intersect at a single

point in space. Similarly, each time when a new ray rk (k > 3) is added, there

always exist two rays, say ri and rj among the first k − 1 rays such that they are

non-coplanar with rk (see Fig. 3.3b). Therefore, we only need to add another two

epipolar constraints to define that ri intersects rk and that rj intersects rk. Then rk

is sufficiently constrained to intersect the first k rays at the same point. Therefore,

we can conclude, for N views only 1+ (N − 2) ∗ 2 epipolar constraints are necessary

and sufficient to enforce the intersection of all the N rays at a single 3D-point, as

long as not all of them are coplanar.

When N ≥ 4, the possible combinations of such 2N−3 independent constraints are
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not unique. The following set of epipolar constraints is one possibility to represent

the intersection constraint of the N back-projected rays:

˜̂x
>
2 F1,2

˜̂x1 = 0,

˜̂x
>
3 F2,3

˜̂x2 = 0, ˜̂x
>
3 F1,3

˜̂x1 = 0,

˜̂x
>
4 F2,4

˜̂x2 = 0, ˜̂x
>
4 F1,4

˜̂x1 = 0,
...

...

˜̂x
>
NF2,N

˜̂x2 = 0, ˜̂x
>
NF1,N

˜̂x1 = 0

(3.5)

where it is assumed that there exist no other optical centers of the views in the plane

determined by the 3D-point and the two optical centers of view 1 and view 2.

3.3.2 The Proposed Minimization Criterion

It is assumed in this chapter that the projection matrices of those views as well as

the fundamental matrices between the view pairs are known precisely, or at least

with great accuracy compared with the measured image points. Thus, the maximum

likelihood estimate of the 3D point depends on the assumption of the error model of

image-point measurement; and as given in Sect. 3.2.1, the geometric cost function

may be computed as the summed squared distance between the measured image

point xi and its estimation x̂i

J =
N∑

i=1

d(xi, x̂i)
2, (3.6)

subject to the intersection constraint of the back-projected rays, e.g. the 2N − 3

equations in Eq. 3.6.

Therefore, seeking the estimated “true” image points x̂i (i = 1, 2, · · · , N) that

minimize the objective function Eq. 3.6 subject to constraints in Eq. 3.5 can be used

as a minimization criterion for reconstructing a 3D point in space from its projections

in N(≥ 2) views. As stated above, the constraints in Eq. 3.5 are possibly substituted

by another set of 2N − 3 independent epipolar constraints, when N ≥ 4.

In the presence of Gaussian noise, the estimated image points x̂i that meet the

above minimization criterion in Eq. 3.5 are the Maximum Likelihood Estimates of

the true values of the observed image points xi. The intersection point of their

back-projected rays is accordingly the MLE of the true 3D-point in space.
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3.4 The Proposed Method of 3D-Point

Reconstruction from Multiple Views

In this section, a linear and non-iterative method is proposed to reconstruct a 3D-

point in space from its projections in multiple views. First, it estimates the true

values of the image points through the first-order approximation to the geometric

error, and then reconstructs the 3D-point using the estimated image points. Due to

the first-order approximation, we may call this method 1st-order MLE.

In the following, the first-order correction of image points in the presence of

isotropic Gaussian noise is firstly deduced. Then it is shown that, with the corrected

image points, the 3D point is possibly reconstructed using various linear triangula-

tion methods. The according solution in the presence of a general Gaussian noise

distribution is also proposed nextly. At last, several special topics on this first-order

solution are discussed.

3.4.1 First-Order Geometric Correction of the Image Points

Assuming that the measurement of image points follows an isotropic Gaussian noise

distribution, the objective function in Eq. 3.6 can then be rewritten as

J =
N∑

i=1

‖ xi − x̂i ‖2 =
N∑

i=1

∆x>i ∆xi = ∆x>∆x (3.7)

subject to the epipolar constraints given in Eq. 3.5, where ‖ · ‖ refers to Euclidean

distance, and 2N -vector ∆x = [∆x>1 , ∆x>2 , . . . , ∆x>N ]>.

By applying the technique of Lagrange multiplier, the constrained minimization

problem can be converted into an unconstrained minimization problem with a new

objective function given by

J ′ = J + λ1,2F1,2 +
N∑

j=3

(λ2,jF2,j + λ1,jF1,j) (3.8)

where Fi,j = ˜̂x
>
j Fi,j

˜̂xi, and λi,j is the Lagrange multiplier.

Let (2N − 3)-vector λ = [λ1,2 λ2,3 λ1,3 . . . λ2,N λ1,N ]>, and (2N − 3)-vector F =

[F1,2 F2,3 F1,3 . . . F2,N F1,N ]>, then the objective function of the unconstrained

minimization problem can be rewritten as

J ′ = J + λ>F . (3.9)
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Now we may expand the individual Fi,j as follows:

Fi,j = (x̃j −∆x̃j)
>Fi,j(x̃i −∆x̃i)

= x̃>j Fi,jx̃i − x̃>j Fi,j∆x̃i −∆x̃>j Fi,jx̃i + ∆x̃>j Fi,j∆x̃i

= 0.

(3.10)

Neglect the second-order term, then we get

Fi,j ≈ x̃>j Fi,jx̃i − x̃>j Fi,j∆x̃i −∆x̃>j Fi,jx̃i

= x̃>j Fi,jx̃i − x̃>j Fi,jZ∆xi − x̃>i Fj,iZ∆xj

≈ 0

(3.11)

where the 3× 2-matrix Z [85] is given by

Z =

[
1 0 0

0 1 0

]>
. (3.12)

With it, we can convert easily between ∆x̃ and ∆x, for ∆x̃ = Z∆x and ∆x = Z>∆x̃.

We define a set of 2-vectors hi,j = Z>Fj,ix̃j and a set of scalars ei,j = x̃>j Fi,jx̃i,

in order to simplify the notation. Note that ei,j = ej,i, but hi,j 6= hj,i. Therefore,

Eq. 3.11 can be rewritten as

Fi,j ≈ ei,j −
[

h>i,j h>j,i
] [ ∆xi

∆xj

]
≈ 0. (3.13)

To minimize J ′, we may set its first-order derivatives to zero with respect to ∆xi,

i = 1, 2, . . . , N , which yields(
∂J ′

∂∆x1

)>
= 2∆x1 −

∑N
j=2 λ1,jh1,j = 0,

(
∂J ′

∂∆x2

)>
= 2∆x2 − λ1,2h2,1 −

∑N
j=3 λ2,jh2,j = 0,

and for i = 3, . . . N ,

(
∂J ′

∂∆xi

)>
= 2∆xi − λ2,ihi,2 − λ1,ihi,1 = 0.

(3.14)

From Eq. 3.14 we obtain a total of 2N linear equations, which may be written in
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the following form



∆x1

∆x2

∆x3

...

∆xN−1

∆xN


= 1

2



h1,2 h1,3 h1,4 . . . h1,N

h2,1 h2,3 h2,4 . . . h2,N

h3,2 h3,1

h4,2 h4,1

. . .

hN,2 hN,1





λ1,2

λ2,3

λ1,3

λ2,4

λ1,4

...

λ2,N

λ1,N


abbr. ∆x = 1

2
H1λ

(3.15)

where H1 is a (2N)× (2N − 3)-matrix.

Additionally, from the epipolar constraints in Eq. 3.5, we can obtain a total of

2N − 3 linear equations as Eq. 3.13, which may be written as



e1,2

e2,3

e1,3

...

e2,N

e1,N


=



h>1,2 h>2,1

h>2,3 h>3,2

h>1,3 h>3,1

h>2,4 h>4,2

h>1,4 h>4,1
...

...
. . .

h>2,N h>N,2

h>1,N h>N,1





∆x1

∆x2

∆x3

∆x4

...

∆xN



abbr. e = H>
2 ∆x

(3.16)

where (2N − 3)-vector e = [e1,2 e2,3 e1,3 . . . e2,N e1,N ]>.

Comparing the two sets of linear equations in Eq. 3.15 and Eq. 3.16, we can see

the two sparse matrices H1 and H2 are equal. We define matrix H = H1 = H2.

Then Eq. 3.15 and Eq. 3.16 may be rewritten as

∆x =
1

2
Hλ, (3.17)

e = H>∆x. (3.18)

In the above two sets of linear equations, e and H are functions of the observed

image points and the known fundamental matrices and can be computed directly,

whereas λ and ∆x are still the unknowns and to be computed.
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Substituting Eq. 3.17 into Eq. 3.18, we get

e =
1

2
H>Hλ. (3.19)

Then λ can be computed as

λ = 2(H>H)−e (3.20)

where (H>H)− is the generalized inverse (or pseudo inverse) of the (2N−3)×(2N−
3)-matrix H>H. When the preconditions in selecting the 2N−3 epipolar constraints

are satisfied, H>H is of full rank and (H>H)− is equal to (H>H)−1.

Substitute Eq. 3.20 into Eq. 3.17, then the solution to ∆x is obtained:

∆x = H(H>H)−e (3.21)

and the residual of the objective function is then

J =‖ ∆x ‖2= ∆x>∆x = e>(H>H)−e. (3.22)

Because of the first-order approximation in Eq. 3.11 during the whole deduction

process, the obtained ∆xi, (i = 1, . . . , N) is called the first-order geometric correc-

tion of the image points xi, and x̂i = xi−∆xi is the first-order maximum likelihood

estimate (1st-order MLE) of the true value of the image points.

3.4.2 3D-Point Reconstruction Using the Estimated Image

Points

Due to the first-order approximation, the epipolar constraints in Eq. 3.5 are not

satisfied precisely. Accordingly, the back-projected rays of the estimated image

points do not exactly but almost meet at a single point in space. Therefore, we may

use the estimated image points to reconstruct the 3D-point.

Several methods can be used to conduct the reconstruction, since the reprojection

error for the estimated image points is just subtle. One way is using all the esti-

mated image points to reconstruct the 3D-point with the LSM method (or linear

triangulation) as stated in Sect. 2.4.1. Because the estimated image points have been

corrected to a great extent to meet the minimization criterion as given in Sect. 3.3,

the LSM reconstruction using the estimates obtains more accurate results than us-

ing the original observed image points. The difference will be shown through the

experimental results in Sect. 3.5.

Alternative methods to reconstruct the 3D-point use some of the estimated image

points, e.g. x̂1 and x̂2, instead of all the points. When N is large, this alternative
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could reduce the computational cost significantly at the cost of a very slight loss of

accuracy. It will be further discussed in Sect. 3.5.

Note that the reprojection error for the reconstructed 3D-point is not exactly

equal to the residual obtained in Eq. 3.22 generally. If necessary, the reprojection

error should be re-computed using the reconstructed point.

3.4.3 Solution for General Gaussian Noise Distribution

After the first-order approximation in Eq. 3.11, the problem solved in Sect. 3.4.1 is

in fact converted into one of quadratic optimization constrained by linear equations.

We can rewrite the problem in the following form

J [∆x] = ∆x>Σ−1∆x → min (3.23)

constrained by

H>∆x = e (3.24)

where matrix Σ is given by

Σ =


Σ1

Σ2

. . .

ΣN

 . (3.25)

Σi is the covariance matrix of the measurement errors of the image point xi.

Solution to such linearly-constrained quadratic optimization has been given in [34]

by

∆x = ΣH(H>ΣH)−e (3.26)

and the residual is

J [∆x] = e>(H>ΣH)−e. (3.27)

In the presence of an isotropic Gaussian noise distribution, Eq. 3.26 and Eq. 3.27

are equivalent to Eq. 3.21 and Eq. 3.22, respectively. In the presence of a general

Gaussian noise distribution, the same solution as in Eq. 3.26 and Eq. 3.27 can be

obtained as well through the same deduction as described in Sect. 3.4.1.

Additionally, when another set of 2N − 3 independent epipolar constraints is

used in the minimization criterion in Eq. 3.5, the minimization problem can still be

converted into one of such linearly-constrained quadratic optimization only with a

little difference in the matrix H and can be solved in the same way.
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3.4.4 Arguments in the First-Order Geometric Solution

Equivalence with Sampson Approximation for a Two-View correspondence

Let us consider the case when a 3D point is only captured in two views, i.e. N = 2.

When an isotropic Gaussian noise distribution can be assumed for the measurement

error of image points, the image-point correction in Eq. (3.21) and the minimized

residual in (3.22) are computed as

∆x =
e1,2

h>1,2h1,2 + h>2,1h2,1

[
h1,2

h2,1

]
(3.28)

and

J =
e2
1,2

h>1,2h1,2 + h>2,1h2,1

(3.29)

These two equations are exactly the same with the results obtained with Sampson

approximation [28], i.e. the first-order geometric correction and cost function.

Independence from the Scales of Individual Fundamental Matrices

We see both matrix H and vector e in Eqs. (3.26) and (3.27) are composed of the

homogeneous fundamental matrices Fij, so questions may be raised whether the

results depend on the scales of the individual fundamental matrices.

Now let us use another set of fundamental matrices, F′
ij = wijFji, where wij is a

scalar and wij = wji to guarantee Fij = F>
ij. Define a (2N − 3)× (2N − 3) diagonal

matrix W = diag(w12, w23, w21, w24, w14, . . . , w2N , w1N). Then the corresponding

scaled H′ = HW and e′ = We. Because W is a diagonal matrix, it can easily prove

that (W>MW)− = W−M−W− for an arbitrary square matrix M of the same size

with W. Then we have

∆x′ = ΣH′(H′>ΣH′)−e′

= ΣHW(W>H>ΣHW)−We

= ΣHWW−(H>ΣH)−W−We

= ΣH(H>ΣH)−e

= ∆x

and
J [∆x′] = e′>(H′>ΣH′)−e′

= e>W>(W>H>ΣHW)−We

= e>WW−(H>ΣH)−W−We

= e>(H>ΣH)−We

= J [∆x].
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The above deduction shows that both the image-point corrections in Eq. (3.26) and

the residual in Eq. (3.27) are consistent with the scales of the fundamental matrices.

Avoid Biased-Estimation When Using Canonical Coordinates

Moreover, it is important to point out that, when image points in the canonical

coordinates x′i are used in the objective function J , matrix Σi should be replaced

as well by the covariance matrix Σ′
i with respect to ∆x′i. The canonical image point

x′i is defined in such a way that x̃′i = K−1
i x̃i. Ki is the calibration matrix of the i-th

view, which can be written as

Ki =

 fxi αi x0i

0 fyi y0i

0 0 1

 . (3.30)

Then the covariance matrix of ∆x′i is computed as

Σ′
i =

[
1

fxi
− αi

fxifyi

0 1
fyi

]
Σi

[
1

fxi
0

− αi

fxifyi

1
fyi

]
. (3.31)

The problem of minimizing ∆x′>Σ−1∆x′ is equivalent to that of minimizing ∆x′>Σ′−1∆x′

or ∆x>Σ−1∆x, if and only if the following conditions are satisfied:

• αi = 0 and fxi = fyi, for i = 1, 2, . . . , N ;

• fx1 = fxi, for i = 2, 3, . . . , N .

Otherwise, ∆x′>Σ′−1∆x′ instead of ∆x′>Σ−1∆x′ must be minimized. This differ-

ence is very essential, or else biased estimation will be conducted. However, this

point has been ignored in some papers [48] [47] before.

3.5 Experiments and Discussions

In this section, the experimental results with both simulated and real data are

presented. Several algorithms are evaluated, including:

LSM. Least-Squares Method as described in Sect. 3.2.2.

ILSM. Iterative Least-Squares Method as described in Sect. 3.2.3.

MLE1. the proposed First-Order Maximum Likelihood Estimation, with the linear

triangulation using all the corrected image points.
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MLE2. First-Order Maximum Likelihood Estimation, with the linear triangula-

tion using the first two corrected image points.

LM. Levenberg-Marquardt optimizer [37] used to minimize the cost function in

Eq. 3.1, with the result of LSM as the initial estimate of the point in space.

The 3D position of the space point is the parameter vector of the optimization,

and its goal vector is composed of the 2D positions of the observed image

points.

The threshold t for the convergence of both ILSM and LM is set to 10−8. That

means, the iteration is terminated when the relative reduce of the reprojection error

in one iteration is less than t.

In the following experiments, it is assumed that error occurs only in the measured

image coordinates, but not in the camera matrices; and an isotropic Gaussian noise

distribution is assumed for the measurement of image points.

3.5.1 Experiment on Simulated Data

In this section, we set up a simulated scene, in which twelve cameras are posed

around facing down at the points in space (see Fig. 3.4). The calibration and exact

pose of the cameras are known. We set the focal lengths of all the cameras to

1000, and every image size is 512 × 512. 10,000 3D points are chosen in front of

the cameras. The image points are corrupted by an additive independent Gaussian

noise [10] in each dimension, with mean 0 and standard deviation σ.

Outliers are filtered out with significance level α% = 5% (or confidence level 95%),

if

• its total reprojection error in Eq. (3.7) falls into the rejection region (χ2
2N,ασ2,∞),

• or its reprojection error of any image point falls into the rejection region

(χ2
2,ασ2,∞).

χ2
r,α could be looked up in [9].

Reconstruction accuracy.

First, we fix the number of views to 8, and vary the standard deviation σ

of the noise in each dimension of the image points, to compared the average

reprojection error obtained by the several reconstruction methods. In the

experiment, the iterative optimizer LM always gets the minimal reprojection

errors. In Fig. 3.5a we show the average reprojection error obtained by LM.
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Figure 3.4: Poses of cameras in the simulated circumstance.

( a ) ( b )

Figure 3.5: Average reprojection error per image point versus noise in each dimen-

sion of the image points, when the number of views is 8. (a) Average

reprojection error obtained by LM ; (b) Differences between LM and the

linear methods in the average reprojection error (log10 pixel).
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( a ) ( b )

Figure 3.6: Average reprojection error per image point versus number of views,

when σ = 1.5 pixels. (a) Average reprojection error obtained by LM ;

(b) Differences between LM and the linear methods in the average re-

projection error (log10 pixel).

It is easy to understand that the reprojection error increases linearly with the

magnitude of the noise. The differences between LM and the other methods

in the average reprojection error are shown in Fig. 3.5b. Difference between

LSM and LM is the largest. In this experiment, it is more than 10−3 pixel

when σ > 0.5 pixel. Then ILSM always obtains more accurate results than

LSM, but still not so accurate as methods MLE1 and MLE2. The results by

these two methods are always very similar to each other, and the closest to

those by LM. When σ < 2.5 pixels, relative difference between MLE1 and LM

is less than 10−6.

Second, we fix the standard deviation to 1.5 pixels, while varying the number

of views to compare the obtained average reprojection errors. The average

reprojection error obtained by LM is shown in Fig. 3.6a, and the differences

between it and the others are shown in Fig. 3.6b. Difference between LM and

LSM is still the largest, around 10−3 pixel in this experiment. In the case

of two views, difference between LM and ILSM is more than 10−4 pixel, and

it decreases gradually with the number of the views. Results by MLE1 and

MLE2 are still very similar to each other, and the closest to those by LM.

MLE1 is always a little more accurate than MLE2. In this experiment, the

difference between MLE1 and LM in the average reprojection error is around

10−7 pixel.

Since the ground-truth of 3D points is known for the simulated data, we can
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( a ) ( b )

Figure 3.7: Accuracy comparison in term of reconstructed 3D points. (b) Error of

reconstructed 3D point versus noise level of image points, in case of 4

views. (a) Error of reconstructed 3D point versus number of views, when

σ = 0.5 pixels.

also compared the accuracy of the 3D points reconstructed with different meth-

ods. See Fig. 3.7. It is shown that, when the noise level of the measured image

points is small, the four methods LM, ILSM, MLE1 and MLE2 obtain quite

close accuracy in term of the reconstructed 3D points, which is significantly

higher than that of LSM.

Computational cost.

Now we vary the number of views, to compare the average running time for

these methods to reconstruct a single space point (see Fig. 3.8). We observe

from the figure that the curves of MLE1 and MLE2 have relatively steeper

gradient than the other methods. But when the number of views is small,

these two methods are by far faster than the two iterative methods, ILSM and

LM. From the experiments with real data in the following section, we will find

image-point correspondences cross 3, 4 or 5 views are by far more frequent

than those cross a large number of views (see Tab. 3.1).

3.5.2 Experiment on Real Data

In this section, two sets of real images are used to evaluate the proposed method

1st-order MLE with the other methods. One is the well-known Dinosaur36 Sequence

from the University of Hannover, and it consists of 36 images that are taken from an

artificial dinosaur on a turntable. The other set is a 11-image sequence (Mouse11)
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Figure 3.8: CPU time versus the number of views.

of a savings box in shape of two mouses. It was taken by a hand-held camera, and

the camera motion is semi-translation.

Number of Views 2 3 4 5 6 7 8 ≥9
Dinosaur63 (with 1304 correspondences) 0 626 387 189 67 23 11 1
Mouse11 (with 512 correspondences) 9 352 100 39 9 3 0 0

Table 3.1: Counts of image-point correspondences across different number of views.

The configurations of the cameras and 3D points for the two real sequences of

images are shown in Fig. 3.9. The feature points are detected and matched between

the images using the standard KLT tracker [62], and the counts of image-point

correspondences over different number of views are listed in Tab. 3.1. The pose

and calibration of the cameras are computed a priori using the technique of bundle

adjustment [28]. Assuming that noise occurs only in the measured image points, we

reconstruct the 3D points for two sets of real images with the above five methods.

The experimental results are listed in Tab. 3.2 and Tab. 3.3.

Generally, as with the experiments over the simulated data, the reprojection error

obtained with the optimizer LM is still the smallest, then MLE1, MLE2, ILSM, and

LSM sequentially. As for computational cost, LSM is still the fastest, then MLE2

and MLE1. They are about twice as fast as the two iterative methods LM and

ILSM.

Comparing the results of the two sets of real data, we can notice that difference

between the five methods upon Dinosaur36 is by far less significant than that upon
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3.5 Experiments and Discussions

(Dinosaur36) (Mouse11)

Figure 3.9: Settings of two real image sequences.

Mouse11 in term of the reprojection error. Especially, LSM performs much better

for Dinosaur36. This phenomenon has been explained in Sect. 3.2.3. Because the

depths of the 3D points on the “Dinosaur” are nearly identical from the optical

centers of the views in Dinosaur36, LSM can achieve very close results to ILSM. For

Mouse11, cameras are distributed far or near in front of the 3D scene (see Fig. 3.9),

and in such a case the other four methods obtain much smaller residual than LSM.

LSM ILSM MLE1 MLE2 LM
Residual error
(pixel*pixel)

2793.8915 2793.7265 2793.7200 2793.7215 2793.7193

Relative difference
from LM

6.2 ∗ 10−5 2.6 ∗ 10−6 2.5 ∗ 10−7 7.9 ∗ 10−7 0

Running time
(milliseconds)

45 138 99 76 182

* Number of 3D points = 1304, number of outliers = 7, σ = 1.5 pixels, α% = 5%, t = 10−8.

Table 3.2: Experimental results on real Dinosaur images.

LSM ILSM MLE1 MLE2 LM
Residual error
(pixel*pixel)

771.24 769.45 769.23 769.55 769.06

Relative difference
from LM

2.8 ∗ 10−3 5.07 ∗ 10−4 2.2 ∗ 10−4 6.37 ∗ 10−4 0

Running time
(milliseconds)

26 78 53 43 111

* Number of 3D points = 512, number of outliers = 2, σ = 1.5 pixels, α% = 5%, t = 10−8.

Table 3.3: Experimental results on real Mouse images.
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3 First-Order MLE Method for 3D-Point Reconstruction from Multiple Views

3.5.3 Analysis of the Experimental Results

According to the above experimental results, we can get the following conclusions:

• The iterative numerical optimizer LM converges consistently at a best solution,

but it is relatively slow compared with the non-iterative methods.

• The direct linear LSM is the fastest method. But it has the lowest accuracy,

especially when the depth of a space point varies significantly across the views,

compared with the magnitude of the depth itself.

• ILSM obtains much higher accuracy than LSM, but it is still inferior to MLE1

and MLE2, and it is significantly slower than the other two when processing

correspondences cross a small number of views.

• MLE1 and MLE2 consistently obtain more accurate results than the other

two linear methods.

• When the measurement errors of image points are small, the results obtained

by MLE1 and MLE2 are comparable to those by LM, but they are much faster

than LM.

• When the number of views increases, MLE2 becomes much faster than MLE1

with a little loss of accuracy.

Analysis of Reconstruction Accuracy.

When the measurement error of image points is small, the neglected second-

order term in the epipolar constraints is trivial, and hence the corrected image

points in the method 1st-order MLE are very close to the true image points.

Therefore, the results obtained with methods MLE1 and MLE2 are very close

to those with LM, no matter how many views are taken into account. In the

last step of 1st-order MLE, the 3D point can be reconstructed by two or more

corrected image points, and the accuracy increases slightly in direct proportion

to the number of corrected image points in use, but the difference is generally

insignificant.

ILSM obtains more accurate results than LSM, especially when the depths

of the space point vary much over the views. It is because in such a case,

the weights upon the linear equations in Eq. (3.3) change significantly in the

iterations to approach the geometric reprojection error, while the algebraic

solution by LSM is more inaccurate.
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Computational Steps Number of Multiplications Number of Additions
A2N×3,b2N 8N 8N
A>A 12N 12N − 6
(A>A)−1 18 8
A>b 6N 6N − 3
X = (A>A)−1A>b 9 6

SUM 26N + 27 26N + 5

Table 3.4: Floating-point operations in LSM. (See Sect. 3.2.2.)

Computational Steps Number of Multiplications Number of Additions

Initial estimate of X0 = (A>A)−1A>b using LSM 26N + 27 26N + 5
Initial residual 14N 13N − 1

Wi = diag(w1, w1, · · ·wN , wN ) 5N 3N
Each A>W>

i Wi 6N 0
iteration A>W>

i WiA 12N 12N − 12
(i – id of (A>W>

i WiA)−1 18 8
iteration) A>W>

i Wib 6N 6N − 3
Xi = (A>W>

i WiA)−1A>W>
i Wib 9 6

reduce of relative residual 14N + 1 13N
SUM (m – number of iterations) 40N + 27 + m(43N + 28) 39N + 4 + m(34N − 1)

Table 3.5: Floating-point operations of ILSM. (See Sect. 3.2.3.)

Analysis of Computational Cost.

In Tab. 3.4-3.7, the floating-point operations (flops) required to compute the

five methods are listed out. Comparing the four tables, we see the time com-

plexity of MLE1 and MLE2 is O(N3), while the others are O(N2). This

explains why the computational costs of MLE1 and MLE2 increase greater

with the number of views than the other methods. In Tab. 3.8, the number

of floating-point operations is counted for each algorithm to reconstruct a 3D

point from an image-point correspondence across 2–8 views, where the num-

ber of iterations for the two iterative methods is assumed to be 3. From this

table we can see, when the number of views is less than 4, the number of flops

required in the two 1st-order MLE methods is much less than that required

by the two iterative methods.

3.6 Conclusions

In this chapter, a new method is proposed to reconstruct a 3D point in space from

its projections in multiple views that have known calibration and pose. The method

is called 1st-order MLE. It is linear and non-iterative. First, it converts the recon-

struction problem into one of linearly-constrained quadratic optimization through

approximating the error model to the first order. Then the first-order geometric

correction of the image points is computed. Finally the 3D-point is reconstructed

using the corrected image points through linear triangulation.
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3 First-Order MLE Method for 3D-Point Reconstruction from Multiple Views

Computational Steps Number of Multiplications Number of Additions
Initial estimate of X0 using LSM 26N + 27 26N + 5
Initial residual and ε0 14N 13N − 1
Each Ji 25N 15N
iteration J>i Ji 12N 12N − 6
(i – id of J>i εt−1 6N 6N − 3
iteration, adjusted NJ>i Ji 4 1
J – Xi from NJ>i JiXi = J>i εt−1 22 10
Jacobian reduce of relative residual and εi 14N + 1 13N
matrix) Note, different from Newton optimization, LM optimization need to conduct the last

three steps for more than once in each iteration, say li times (li ≥ 1).

SUM (m – number of iterations)
Multiplications: 40N + 27 +

∑m
i=1 [43N + li(14N + 27)]

Additions: 39N + 4 +
∑m

i=1 [33N − 4 + li(13N + 11)]

Table 3.6: Floating-point operations of LM.

Computational Steps Number of Multiplications Number of Additions
H2N×(2N−3), e2N−3 16N − 24 8N − 12

H>H 2N2 + 4N − 12 N2 + 2N − 6
(H>H)−1, (k = 2N − 3) (k3 + k2)/2 (k3 − 2k2 + 3k − k logk

2)/2
(H>H)−1e 4N2 − 12N + 9 4N2 − 14N + 12
∆x = H(H>H)−1e 8N − 12 6N − 12
X from x−∆x MLE1 26N + 27 28N + 5

using LSM MLE2 79 61

SUM MLE1 4N3 − 10N2 + 63N − 21 4N3 − 17N2 + 72N − 40− (2N − 3) log2N−3
2 /2

MLE2 4N3 − 10N2 + 37N + 31 4N3 − 17N2 + 44N + 16− (2N − 3) log2N−3
2 /2

Table 3.7: Floating-point operations in 1st-order MLE.

N LSM ILSM (m = 3) LM (m = 3, li = 2) MLE1 MLE2

2
Multiplications 79 107 + 114m = 449 107 +

∑m
i=1(86 + 55li) = 695 97 97

Additions 57 82 + 67m = 238 82 +
∑m

i=1(62 + 37li) = 490 68 68

3
Multiplications 105 147 + 157m = 618 147 +

∑m
i=1(129 + 69li) = 948 186 160

Additions 83 121 + 101m = 424 121 +
∑m

i=1(95 + 50li) = 706 129 101

4
Multiplications 131 187 + 200m = 787 187 +

∑m
i=1(172 + 83li) = 1201 327 275

Additions 109 160 + 135m = 565 160 +
∑m

i=1(128 + 63li) = 922 227 171

5
Multiplications 157 227 + 243m = 956 227 +

∑m
i=1(215 + 97li) = 1454 544 466

Additions 135 199 + 169m = 706 199 +
∑m

i=1(161 + 76li) = 1138 386 302

6
Multiplications 183 267 + 286m = 1125 267 +

∑m
i=1(258 + 111li) = 1707 861 757

Additions 161 238 + 203m = 847 238 +
∑m

i=1(194 + 89li) = 1554 630 518

7
Multiplications 209 307 + 329m = 1294 307 +

∑m
i=1(301 + 125li) = 1960 1302 1172

Additions 187 277 + 237m = 988 277 +
∑m

i=1(227 + 102li) = 1570 984 844

8
Multiplications 235 347 + 372m = 1463 347 +

∑m
i=1(344 + 139li) = 2213 1891 1735

Additions 213 316 + 271m = 1129 316 +
∑m

i=1(260 + 115li) = 1786 1472 1304

Table 3.8: Comparison of floating-point operations in 1st-order MLE.
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3.6 Conclusions

A series of experiments have been presented both with simulated data and with

real data, which show the proposed method obtains consistently higher accuracy

than the currently widely-used Least-Squares Method (LSM) and Iterative Least-

Squares Method (ILSM). When the measurement errors of the image points are

relatively small, the results obtained by 1st-order MLE are comparable to those of

the Levenberg-Marquardt optimizer. However, it is much faster than the numerical

optimizer. The solution in the presence of a general Gaussian noise distribution is

also provided by the proposed 1st-order MLE, which has never been solved with

other linear methods before. When the number of views is small, the proposed

method is by far more efficient than the Newton-type optimizers and the Iterative

Least-Squares Method. This is a very practical advantage of the 1st-order MLE

method, because in real data image-point correspondences cross 3 views, 4 views, or

sometimes 5 views as well are the commonest. Furthermore, solution in the presence

of a general Gaussian noise distribution is also provided by 1st-order MLE.

The 1st-order MLE method is valid under two assumptions: (1) not all optical

centers of the views are coplanar with the 3D point, when the number of views ≥ 3;

(2) the measurement error of the image points is relatively small. Fortunately, the

first assumption is usually satisfied in the real data; and the outlier threshold could

help to diminish the deviation of the proposed method from the LM optimizer.

Meanwhile, a generalized iterative least-squares method is proposed as well in this

chapter. Unlike the previous ILSM, this generalized method works as well in the

presence of a general Gaussian noise distribution. But this method only provides

another theoretically-provable possibility to solve the reconstruction problem.

As a basic 3D-reconstruction tool, the proposed method 1st-order MLE is also

very useful in the field of motion and structure estimate, such as the incremental

multiple-view reconstruction or other applications where numerous 3D points need

to be reconstructed for many times.
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4 Linear Iterative Least-Squares

Method for Estimating the

Fundamental Matrix

This Chapter deals with the problem of estimating the fundamental matrix. In

Sect. 2.2, we have learnt that the fundamental matrix encapsulates the epipolar

geometry between two un-calibrated views. It is independent of the scene structure,

and can be computed from image-point matches without a priori knowledge of the

internal parameters of the views. Due to these characteristics, the estimation of

the fundamental matrix is usually the first and important step in multiple-view

reconstruction.

In the last decade a lot of researches have been done on the fundamental matrix

[25] [84] [12] [70]. Specific surveys of the estimation criterions and algorithms of the

fundamental matrix were given in paper [44] and [81]. The most commonly-used

method for estimating the fundamental matrix from a set of image-point matches

is the normalized 8-point method as described in Sect 2.2.5. But as an algebraic

method, this method has no geometric meaning [25] [28]. Usually a Newton-type

optimizer is applied further to improve its result through minimizing the geometric

error.

In this chapter, a linear and iterative least-squares method is proposed for esti-

mating the fundamental matrix. It preserves the noise model of the observed image

points, e.g. a Gaussian noise distribution. When the noise in the measurement of

image points is small, the accuracy of this method is comparable to that of the

non-linear Newton-type optimizers. However, the proposed method is much faster

than the optimizers.

63



4 Linear Iterative Least-Squares Method for Estimating the Fundamental Matrix

Moreover, all the previous proposed linear methods for estimating the fundamental

matrix are only applied to the situation when the x and y positional errors of the

image points are uncorrelated and identically distributed. However, this is rarely the

case in the real data. The method proposed in this chapter is covariance-weighted,

and can deal with noisy feature correspondences with high degree of directional

uncertainty.

This chapter is organized as follows. In Sect. 4.1 several minimization criteri-

ons are first reviewed for estimating the fundamental matrix in the presence of an

isotropic Gaussian noise distribution, and then a generalized criterion is proposed

in the presence of a general Gaussian noise distribution in Sect. 4.2. The proposed

iterative least-squares method is presented in Sect. 4.3. Several algorithms are com-

pared in Sect. 4.4 through the experiments on the real image pairs. Sect. 4.5 gives

the conclusions of this work.

4.1 Previous Minimization Criterions

As described in Sect. 2.2.2, the fundamental matrix F has 7 DOF, and each point

correspondence {x ↔ x′} provides a linear constraint on it by x̃′Fx̃ = 0. There-

fore, as long as 7 non-collinear point correspondences are available, the fundamental

matrix can be computed. When there are more image correspondences available

and with noise in their measurement, the goal of the computation is hence to find a

rank-2 matrix that best fits a given criterion.

4.1.1 Algebraic Error

We learnt from Sect. 2.2.2 that each noise-free point correspondence {xi ↔ x′i}
satisfies x̃′iFx̃i = 0. Hence, the most direct idea for computing the fundamental

matrix is to find the matrix F that minimizes the algebraic error:

min
F

∑
i

(x̃′iFx̃i)
2.

This minimization problem could be solve with a linear non-iterative algorithm, as

described in Sect. 2.2.5. Usually, normalization is necessary to be conducted upon

the image points in the two images respectively before the computation (see the step

1 in algorithm 2.2).

The advantage of the linear criterion is that it may be solved with a linear non-

iterative method, and its disadvantages are (1) that the rank-2 constraint on F is

not taken into consideration during the minimization, (2) and that the algebraic

minimization criterion has no geometric meaning.
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4.1 Previous Minimization Criterions

4.1.2 Symmetric Epipolar Distance

As described in Sect. 2.2.1, a point in one image should lie on the epipolar line of

its corresponding point in the other image. However, this is usually not the case for

the measured image points due to noise. The distance of a point from the epipolar

line of its corresponding image point is termed as the epipolar distance. Another

criterion is proposed to estimate the fundamental matrix F through minimizing the

epipolar distance in both images for all the point correspondences:

min
F

∑
i

d(x′i,Fx̃i)
2 + d(xi,F

>x̃′i)
2 (4.1)

where d(x′i,Fx̃i) is the distance of an image point x′i from the epipolar line Fx̃i, and

similar is d(xi,F
>x̃′i). It is provable that the cost function in Eq. 4.2 is equal to∑
i

(x̃′iFx̃i)
2

(
1

(Fx̃i)2
1 + (Fx̃i)2

2

+
1

(F>x̃′i)
2
1 + (F>x̃′i)

2
2

)
(4.2)

where (Fx̃i)k refers to the k-th entry of the 3-vector Fx̃i, and similar is (F>x̃′i)k.

The symmetric epipolar distance above provides a kind of geometric error for the

estimated F, however, it does not really follow the noise model of the measured image

points. Moreover, it works only under the assumption of an isotropic Gaussian noise

distribution.

4.1.3 Standard Geometric Error (Reprojection Error)

In Sect. 2.2.5, we reviewed the gold-standard algorithm 2.2 (p 22) for estimating the

fundamental matrix F. In the algorithm, F is estimated through minimizing the

reprojection error of the matched image points∑
i

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2 (4.3)

subject to the epipolar constraints ˜̂x
′>
i F˜̂xi = 0 for each pair of matched image points

{xi ↔ x′i}. This function is called the standard geometric error or standard geomet-

ric cost function, since it follows the noise model of the image-point measurement.

In the presence of a Gaussian noise distribution, the estimated image points x̂i

that meet the above minimization criterion are the Maximum Likelihood Estimates

for the true values of the observed image points xi; and the matrix F is the MLE of

the true fundamental matrix.

However, as described in the algorithm 2.2, the above non-linear minimization is

usually conducted over 3n + 12 variables: 3n for the n 3D points Xi and 12 for
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4 Linear Iterative Least-Squares Method for Estimating the Fundamental Matrix

the second camera matrix P′. This is a large-scaled sparse optimization problem,

compared with the minimizations in Eq. 4.2 and Eq. 4.4 with only 7 parameters of

the 7-DOF fundamental matrix F.

4.1.4 First-Order Geometric Error (Sampson Distance)

When an isotropic Gaussian noise distribution can be assumed for the measurement

of the image points, the distance d(∗, ∗) in Eq. 4.3 represents the Euclidean dis-

tance. Neglecting the second-order term in the epipolar constraint ˜̂x
′>
i F˜̂xi = 0, the

geometric error in Eq. 4.3 is computed as∑
i

e2
i (hi

>hi)
−1, (4.4)

where hi is the 4-vector [(Fx̃i)1, (Fx̃i)2, (F>x̃′i)1, (F>x̃′i)2]
>, and ei is the scalar

x̃′>i Fx̃i. The detailed deduction can be found in Sect. 3.4.1. This first-order ge-

ometric error is called Sampson distance in book [28]. In paper [44], the same

minimization criterion is deduced as the non-linear gradient criterion for estimating

the fundamental matrix.

Compared with the cost function in Eq. 4.2, the minimization criterion in Eq. 4.4

fits the noise model of the observed image points, and hence provides better results

than the former [81].

However, the 1st-order approximation to the geometric error in Eq. 4.4 is correct

only when the x and y positional errors of the image points are uncorrelated and

identically distributed, i.e. an isotropic Gaussian noise distribution is assumed.

4.2 Proposed Minimization Criterion — Generalized

First-Order Geometric Error

In Sect. 3.4.3 we learnt, in the presence of a general Gaussian noise distribution, the

first-order geometric correction to a pair of matched image points {x ↔ x′} in two

views with known fundamental matrix F may be computed as

[∆x>, ∆x′>]> = e(h>Σh)−1h, (4.5)

and the reprojection error is

e2(h>Σh)−1, (4.6)

where Σ is the 4×4 covariance matrix of the measurement noise for the image points

in the two 2D views.
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4.3 Proposed Linear Iterative Least-Squares Method

When the fundamental matrix must be estimated, the sum of the reprojection

error in Eq. 4.6 for n (≥ 8) point matches can be used as the cost function as well.

In other words, we seek a rank-2 3× 3-matrix F that minimizes the total first-order

geometric error

J =
n∑

i=1

e2
i (h

>
i Σhi)

−1. (4.7)

This cost function is the general form of Eq. 4.4, in the presence of a general Gaussian

noise distribution. The cost function in Eq. 4.4 is in fact a special case of Eq. 4.6,

which is valid only in the presence of an isotropic Gaussian noise distribution, i.e.

the covariance matrix Σ is an identity matrix.

Because of the first-order approximation, the minimization criterions in Eq. 4.4

and 4.7 are valid under the assumption that the measurement error of the image

points is small. Experiments in Sect. 3.5.1 show, when the standard deviation of the

noise is around 2 pixels, the average reprojection error obtained with the Sampson

approximation is different from that obtained with maximum likelihood estimation

by around 10−8 pixel. Therefore, the minimization criterion in Eq. 4.7 can provide

us reliable estimate of the fundamental matrix.

The method proposed in the next section for estimating the fundamental matrix

is based on the minimization criterion given in Eq. 4.7.

4.3 Proposed Linear Iterative Least-Squares Method

Instead of using the traditional non-linear Newton-type optimizers, such as Levenberg-

Marquardt optimizer, this section proposes an iterative but linear method to esti-

mate the fundamental matrix that meets the minimization criterion given in Eq. 4.7.

It converts the problem into one of linear least-squares, and then solves the least-

squares problem iteratively.

4.3.1 Least-Squares Expression for the Minimization Criterion

From the commonly-used 8-point algorithm [25], [28], we know the function x̃′>i Fx̃i

can be written as a>i f , where the 9-vector ai = [x′ixi, x′iyi, x
′
i, y

′
ixi, y

′
iyi, y

′
i, xi, yi, 1]>

and f is the 9-vector consisting of the entries of F in the row-major order. Note that

xi = [xi, yi]
> and x′i = [x′i, y

′
i]
>. Through this expression we can rewrite the cost

function in Eq. 4.7 by

J =
n∑

i=1

(wia
>
i f)2 (4.8)
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4 Linear Iterative Least-Squares Method for Estimating the Fundamental Matrix

where wi = (h>i Σhi)
− 1

2 . We may define an (n×9)-matrix B = [w1a1, w2a2, · · · , wnan]>,

and substitute it into Eq. 4.8, which yields

J = ‖Bf‖2 (4.9)

where the ‖ · ‖ represents the 2-norm of a vector. Now the minimization problem of

Eq. 4.7 is converted into a least-squares problem.

4.3.2 Iterative Solution to the Least-Squares Problem

Now the problem in Eq. 4.9 is that the weights wi in the rows of matrix B are

unknown. Iterative least-squares method is usually used to solve such problems [7],

[27]. The proposed method in this section also belongs to this category.

First, wi is given an initial estimate, e.g. wi = 1, for i = 1, 2, . . . , n, and then f

can be computed as the unit singular vector corresponding to the smallest singular

value of the matrix B using Singular Value Decomposition (SVD) [19]. This process

is iterated while wi is re-estimated in each iteration by wi = (h>i Σhi)
− 1

2 using the

new estimated f .

Additionally, because F is a rank-2 matrix, the obtained F in each iteration must

be replaced by the closest singular matrix to F using SVD (see Sect. 2.2.5).

4.3.3 Normalized Linear Iterative Least-Squares Method

As with the 8-point algorithm, it is also necessary for the proposed linear iterative

least-squares method to normalize the image points in both images, respectively.

The normalized linear iterative least-squares algorithm is proposed as follows.

(i) Normalization: Transform the image coordinates according to x̃Ni = Tx̃i and

x̃′Ni = T′x̃′i, where 3 × 3-matrices T and T′ are normalizing transformations

that translate the origin of the coordinates to the centroid of the reference

points and scale the root-mean-square (RMS) distance of the points from the

origin to be
√

2.

(ii) Initialize BN : As defined in Sect. 4.3.1, BN is computed using the matches

{xNi ↔ x′Ni}, with wi = 1, for i = 1, 2, . . . , n.

(iv) Iterative estimation of the fundamental matrix FN corresponding to

the matches {xNi ↔ x′Ni}

(a) Linear least-squares solution: Compute F′
N by the singular vector

corresponding to the smallest singular value of BN .
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(b) Enforce rank constraint: Replace F′
N by the closest rank-2 matrix FN

using SVD.

(c) Update BN : The weights wi in BN are re-estimated by (h>NiΣhNi)
− 1

2

using the new estimated FN , where

hNi =


(T′>FN x̃Ni)1

(T′>FN x̃Ni)2

(T>F>
N x̃′Ni)1

(T>F>
N x̃′Ni)2

 (4.10)

(d) Compute residual: The residual is computed as ‖BN fN‖2, where fN is

the 9-vector made up of the entries of FN in the row-major order.

(e) Repeat (a)-(d) till the convergency in the residual.

(iv) Denormalization: Set F = T′>FNT. Matrix F is the estimated fundamental

matrix corresponding to the original matches {xi ↔ x′i}.

4.4 Experiments

In this section, four algorithms of computing fundamental matrices are compared.

The algorithms are

LSM. Least-Squares Method or the normalized 8-point algorithm.

ILSM. The normalized Iterative Least-Squares Method as proposed in Sect. 4.3.3.

LM. An advanced Levenberg-Marquardt optimizer [37], in which the 1st-order

geometric cost function in Eq. 4.7 is minimized. The fundamental matrix is

parameterized with 7 variables. The initial estimate of the fundamental matrix

is provided by method LSM.

SparseLM. Sparse Levenberg-Marquardt optimizer or the golden standard algo-

rithm (see algorithm 2.2), in which the geometric cost function as given in

Eq. 4.3 is minimized. There are totally 3n + 12 variables involved in the

minimization. The initial estimate is also provided by the normalized 8-point

algorithm.

The algorithms are tested with two different pairs of images, as shown in Fig. 4.1.

249 point matches are tracked for the pair of table images, and 696 matches for the

image pair of the corridor scene.
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Table images

Corridor scene

Figure 4.1: Two real image pairs are used to evaluate the algorithms. The

lines in the images are the corresponding epipolar lines.
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Figure 4.2: Average reprojection error versus the number of image-point

matches. The four algorithms of estimating the fundamental matrix

are compared in this graph with the two pairs of images as shown in

Fig. 4.1. The two optimizers LM and SparseLM obtain very close results

in the experiment and hence are represented by a same curve in the

graph. It is shown that in most cases the results of ILSM are almost

indistinguishable from those of LM. Both of them are noticeably better

than the non-iterative normalized 8-point algorithm (LSM).

The experimental procedure is as follows. For each pair of images, a number n

of matched image points are chosen randomly from the tracked matches and used

to estimate the fundamental matrix. The average reprojection error (see below)

is computed and compared. The experiment were repeated 20 times for each pair

of images and each value of n. This gives an idea of how the different algorithms

behave as the number of points is increased. The average reprojection error in this

section is defined as

1

N

N∑
i=1

d(xi, x̂i)
2 + d(x′i, x̂

′
i)

2

where x̂i and x̂′i are the estimated image-point matches subject to the epipolar

constraints ˜̂x
′>
i F˜̂xi = 0.

The results of this experiment are shown and explained in Fig. 4.2. It is obvi-

ous that the difference between Levenberg-Marquardt optimizer (LM) and sparse

Levenberg-Marquardt optimizer (SparseLM) is very slight. In this experiment, the

difference between the two optimizers in terms of the average reprojection error is

around 10−6. This experiment shows that the proposed linear iterative least-squares

method (ILSM) gives essentially indistinguishable results from the numerical opti-

mizers.
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Table (249 matches) Corridor (696 matches)

Average CPU time Average CPU time

error (ms)
Iterations

error (ms)
Iterations

LSM 0,0618 19 - 0,1046 7 -

ILSM 0,0602 71 8 0,0914 18 5

LM 0,0598 369 5 0,0904 3379 165

SparseLM 0,0598 713 4 0,0904 1062 5

Table 4.1: Experimental results using all the detected matches. The fun-

damental matrices for the two image pairs are estimated with the four

algorithms respectively. In this experiment method LSM is the fastest,

but obtains much larger reprojection error than the other three methods,

especially for the image pair of the corridor scene. Relatively, the results

of method ILSM is very similar to those of methods LM and SparseLM,

but it is by far faster than the two optimizers.

However, the proposed iterative least-squares method is much faster than the

Levenberg-Marquardt optimizers. Tab. 4.1 lists out the experimental results ob-

tained with the four algorithms using all the tracked image-point matches. The

epipoles and the epipolar lines obtained with ILSM are shown in Fig. 4.1.

4.5 Conclusions

This chapter proposed a linear iterative least-squares method (ILSM) for estimating

the fundamental matrix.

First, a minimization criterion for estimating the fundamental matrix was pro-

posed, in the presence of a general Gaussian noise distribution. It makes use of the

first-order approximation to the geometric error, to convert the original geometric

cost function (i.e. reprojection error) into one of linear least-squares minimization

‖Bf‖2, where f is composed of the entries of the fundamental matrix in the row-

major order. Then f can be computed through singular value decomposition [28].

The weights on the rows of B are re-estimated in each iteration using the new

estimated f , such that the weighted least-squares approaches the geometric error

adaptively.

The proposed ILSM preserves the noise model of the observed image points, and

can deal with noisy feature correspondences with high degree of directional uncer-

tainty. When the noise is small compared with the measurement, its accuracy is
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comparable to that of the non-linear Newton-type optimizers. However, because of

its linearity, ILSM is by far faster than these non-linear iterative optimizers.

Additionally, it should be noted that, as with the 8-point algorithm, normalization

is also important and necessary for the proposed ILSM. Moreover, ILSM performs

well especially for a pair of un-calibrated cameras; but when the pair of cameras

are calibrated, ILSM usually obtains no better results than the normalized 8-point

algorithm, because there are more constraints upon the fundamental matrix. When

the cameras are calibrated, in fact it is the essential matrix to be computed, which

represents the relative rotation and the translation between the two cameras. Besides

the rank-2 constraint, two of the non-zero singular values of the essential matrix must

be equal. With the two non-linear constraints, a good convergency is usually difficult

to be achieved through the proposed iterative least-squares method.
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5 Accelerated Bundle

Adjustment

This chapter discusses a central topic in computer vision, bundle adjustment. It is

one of the main tools used to optimize the estimates of 3D structure and multiple

view parameters, e.g. camera pose or/and calibration parameters (See Sect. 2.4.2).

Various techniques have been proposed for bundle adjustment. Mostly they are

performed using non-linear Newton-type optimizers which are usually slow when

handling a large number of points or views. Readers are referred to books [8] [64] for

more detailed introduction to bundle adjustment, or [75] for a latest comprehensive

survey of the topic.

In this chapter two bundle-adjustment algorithms are proposed. The algorithms

are not only tolerant of missing data, but also allow the assignment of individual

covariance to each image measurement. Experiments are conducted on both syn-

thetic data and real data to compare the proposed bundle adjustment techniques

with other techniques. It is shown that results of the proposed algorithms are con-

sistently as accurate as those obtained with traditional Newton-type optimizers, and

they are much faster in computation.

The remainder of this chapter is organized as follows. First, Sect. 5.1 gives an

overview to the problem of bundle adjustment. Then, Sect. 5.2 reviews the previ-

ous techniques of bundle adjustment. Sect. 5.3 proposes a simplified cost function

for multiple-view reconstruction, and solves it using two of the bundle adjustment

techniques. Experimental results on both synthetic data and real data are given in

Sect. 5.4, to compare the proposed bundle adjustment techniques with other tech-

niques. Sect. 5.5 gives the conclusions of this chapter.
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5.1 Problem Statement

Consider the situation where a set of 3D points Xj is viewed by a set of cameras.

Given the observed image points xi
j (the projection of the j-th 3D point in the i-th

camera image) and the initial estimates of the camera matrices Pi and the 3D points

Xj, bundle adjustment is to refine the estimates of Pi and Xj such that PiX̃j ∼ x̃i
j

for all available xi
j. In this chapter, the initial estimation of the cameras and the 3D

structure is not discussed.

Because the observed image points are usually noisy, the relationships PiX̃j ∼
x̃i

j will not be satisfied exactly. Therefore, we seek Pi and Xj that minimize the

objective function, i.e. the total reprojection error

J =
∑
ij

d(xi
j, x̂

i
j)

2 (5.1)

where x̂i
j are the estimated image points and ˜̂x

i

j ∼ PiX̃j. In the presence of a

Gaussian noise distribution, d(xi, x̂i) refers to the Mahalanobis distance between

two image points. Pi and Xj meeting the above minimization criterion are the

MLE of the views and the 3D structure, and the according points x̂i
j are the MLE

of the true image points.

As with other optimization problems, a good initialization is required for bundle

adjustment. The initialization has been generally covered in Sect. 2.4.2.

5.2 State of the Art

According to the way of minimizing the cost function, I propose to classify the

bundle-adjustment techniques into four categories: the joint, the partitioned, the

interleaved, and the embedded techniques.

5.2.1 Joint Bundle Adjustment

Joint bundle adjustment optimizes the 3D structure and the view parameters simul-

taneously. That is, the objective function given in Eq. 5.1 is minimized by varying

both the 3D points Xj and the camera matrices Pi at the same time.

Sparse Levenberg-Marquardt optimizer is an efficient method to solve the problem

of bundle adjustment jointly [28], which takes advantage of the sparse and regular

structure of the Jacobian matrix and the Hessian matrix of the objective function.

But as with the factorization method reviewed in Sect. 2.4.2, the sparse Levenberg-
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Marquardt optimizer is not tolerant of missing data. In other words, it requires each

3D-point to be visible in all the views.

However, in a real image sequence, a 3D point is usually visible in some arbitrary

subset of the available views. In such cases, the joint bundle adjustment has to

be solved with a classical Newton-type optimizer, such as Levenberg-Marquardt,

over 3n + k ∗m parameters (or variables), where n is the number of 3D points, m

is the number of the views, and k is the number of the unknown parameters for

each view. In the projective reconstruction, each camera has 11 DOF, i.e. k =

11 [6]. Actually entities are often over-parameterized to simplify the coding. For

example, 12 parameters are usually used to represent a homogeneous camera matrix,

i.e. k = 12. As m and n increase, this optimization becomes an extremely large-

parameterized optimization problem, and the computation is extremely costly and

eventually impossible.

5.2.2 Interleaved Bundle Adjustment

Since each point is estimated independently given fixed cameras, and similarly each

camera is estimated independently from fixed points, an interleaved technique was

proposed to solve the problem of bundle adjustment: interleaved bundle adjustment.

The interleaved bundle adjustment is also called resection-intersection [79] [11] [46]

[7], which alternates between the two steps of resection and intersection. Resection

refers to optimizing each view independently with fixed 3D points Xj, i.e.

min
P i

∑
j

d(xi
j, x̂

i
j)

2 (5.2)

for i = 1, . . . , n, where x̃i
j ∼ PiX̃j. The other way round, intersection is to optimize

each 3D-point independently with fixed views Pi, i.e.

min
Xj

∑
i

d(xi
j, x̂

i
j)

2 (5.3)

for j = 1, . . . ,m.

In both of the steps, the same objective function as that in Eq. 5.1 is minimized.

According to the reports in [11] [46] [80], this algorithm performs as well as directly

optimizing over all the parameters, i.e. the joint bundle adjustment in terms of

convergence accuracy. But it should be noted that such an interleaved solution is

only an approximation, but not equivalent to the original optimization problem in

the full meaning [52]. Additionally, it usually takes more iterations for the inter-

leaved bundle adjustment to converge than the joint bundle adjustment [74], as is

also shown through the experiments in Sect. 5.4.
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The main advantage of this interleaved algorithm is that, there are by far fewer

parameters involved in the individual minimizations (Eq. 5.2 and Eq. 5.3).

5.2.3 Embedded Bundle Adjustment

As with the sparse Levenberg-Marquardt optimizer, embedded bundle adjustment

also takes advantage of the sparse structure of the Jacobian matrix of the objective

function (Eq. 5.1). But it embeds the optimization of the 3D structure in the

optimization of the cameras [85], since the unknown 3D points are independent

from each other. The problem may be written mathematically as

min
Pi

(∑
j

min
Xj

∑
i

d(xi
j, x̂

i
j)

2

)
. (5.4)

Therefore, a problem of minimization over 3n + k ∗ m dimensional space becomes

a problem of minimization over k ∗ m, and each iteration contains n independent

optimizations over 3 structure parameters. The minimization that has usually the

computational complexity of n3 in the number of parameters n is thus considerably

reduced by optimization embedding.

Note that the embedded optimization is totally equivalent to the optimization in

Eq. 5.1; there is no approximation. This is different from the approximate algorithm

of resection-intersection.

5.2.4 Partitioned Bundle Adjustment

Instead of optimizing over all the views or all the points, partitioned bundle adjust-

ment divides the data into several sets, bundle adjusts each set separately, and then

merge them by resection or triangulation. This technique is similar to the hierarchi-

cal reconstruction (see Sect. 2.4.2 p 33). Compared with the other three techniques,

this method is sub-optimal. When higher accuracy is required, an overall bundle

adjustment still has to be conducted after the merging step.

5.3 Proposed Techniques of Bundle Adjustment

In this section, the 1st-order MLE method of 3D-point reconstruction, as proposed in

Chapter 3, is applied to speed up both the embedded and the interleaved techniques

of bundle adjustment.

First let us review the situation where the 1st-order MLE method of 3D-point

reconstruction applies. Consider the situation in which the camera matrices Pi
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(i = 1, . . . ,m) are given fixed, and the image points xi corresponding to a single

point in space are identified in the images. The problem is to seek the optimal 3D

point X that minimizes the cost function J =
∑

i d(xi, x̂i)2 where ˜̂x
i ∼ PiX̃, i.e.

the back-projected rays of the estimated image points x̂i intersect at a single point

X in space.

The above problem may be solved by the first-order MLE method as described in

Sect. 3.4. The first-order MLE of the true image points are computed by

x̂ = x−ΣH(H>ΣH)−e (5.5)

where x = (x1>, · · · ,xm>)>, x̂ = (x̂1>, · · · , x̂m>)>, and Σ is the covariance matrix

of the measurement error of the image points. The (2m)× (2m− 3) matrix H and

the 2N − 3 vector e may be computed by the image points xi and the fundamental

matrices between pairs of the views (see p 46-47). The residual of the cost function

is

J =‖ ∆x ‖2
Σ= e>(H>ΣH)−e. (5.6)

The 3D point X may be computed with the least-squares method using the corrected

image points x̂i.

The difference in the results between the first-order MLE and the MLE is very

slight, which has been compared in Sect. 3.5.

5.3.1 Accelerating the Embedded Bundle Adjustment

In the inner minimization of the embedded bundle adjustment, the reprojection

error for each 3D point is minimized separately with fixed view parameters. The

first-order MLE method applies exactly to such a situation. The result of the inner

minimization can be computed as the residual in Eq. 5.6, and the embedded bundle

adjustment is converted into the problem of

min
Pi

(∑
j

e>j (H>
j ΣHj)

−ej

)
. (5.7)

When Levenberg-Marquardt optimizer is used to perform the outer minimization,

the image-point corrections in Eq. 5.5 may be used as the measurement vector, and

the parameter vector is composed of the parameters of the camera matrices.

5.3.2 Accelerating the Interleaved Bundle Adjustment

In the intersection step of the interleaved bundle adjustment, the 3D points need

to be reconstructed as well with fixed view parameters. As above, the true image
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points may be estimated firstly using Eq. 5.5, and then be used to reconstruct the

3D points Xj with the least-squares method, for j = 1, . . . , n, which are further used

as the input of the following resection step.

5.4 Experiments

In this section, experiments with both synthetic and real data are conducted. Five

bundle-adjustment algorithms are evaluated, including:

Interleaved LM-LM. Resection-intersection with Levenberg-Marquardt optimiza-

tion in both steps.

Interleaved LM-MLE. Resection-intersection with Levenberg-Marquardt opti-

mization in the resection step and the proposed 1st-order MLE method in the

intersection step.

Embedded LM-LM. Embedded bundle adjustment with Levenberg-Marquardt

optimization in both the outer and the inner minimization.

Embedded LM-MLE. Embedded bundle adjustment with Levenberg-Marquardt

optimization in the resection step and the proposed 1st-order MLE method in

the intersection step.

Sparse-LM. Sparse Levenberg-Marquardt optimizer.

The convergency threshold for all the above methods is set to 10−6. Note that,

Embedded LM-MLE and Interleaved LM-LM are the two algorithms proposed

in Sect. 5.3 and Sect. 5.3.2.

5.4.1 Experiments on Synthetic Data

In this section, a virtual environment is set up, in which twelve cameras are posed

around facing down at an artificial scene. Each image’s size is 512× 512 pixel2. 100

random feature points are tracked by all the 12 cameras, i.e. there is no missing data

in the sequence of images. The projected image points are corrupted by an additive

independent Gaussian noise, with zero mean and standard deviation of σ = 0.5 pixel.

An initial estimate of the twelve projective matrices is achieved with an incremental

reconstruction method as a priori knowledge. The five algorithms listed above are

used to conduct projective bundle adjustment over the initial estimate.
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In this experiment, bundle adjustment is conducted over different numbers of

views. Each method is run 20 times, and then the average reprojection error per

image point and the average running time by the five bundle-adjustment methods

are compared in Fig. 5.1.

The difference of the five methods in terms of the reprojection error is too subtle

to be identified in the Fig. 5.1a. Generally, embedded LM-LM and Sparse LM

achieved the smallest reprojection error. embedded LM-MLE obtained a slightly

higher reprojection error by less than 10−5 pixel, and then interleaved LM-LM and

embedded LM-MLE by around 10−3 pixel. The difference between interleaved LM-

LM and embedded LM-MLE is about 10−4 pixel in terms of the reprojection error.

The two interleaved bundle-adjustment methods are relatively slower than the

other three, because they used more iterations to get converged. See Fig. 5.1bc.

Sparse LM is the fastest method among the five, but as mentioned before, it is

only useful for the no-missing data. Generally interleaved LM-MLE is faster than

interleaved LM-LM, and embedded LM-MLE is faster than embedded LM-LM, es-

pecially when the number of views is small. The experiments show, when dealing

with such global-bundle-adjustment problems, the two methods proposed in this

chapter (i.e. embedded LM-MLE and interleaved LM-MLE) are not significantly

faster than the two traditional techniques (i.e. embedded LM-LM and interleaved

LM-LM). One reason is that, whenever the parameters of the camera matrices are

changed, n(n − 1)/2 fundamental matrices between each pair of cameras have to

be re-computed from the n camera matrices for the proposed methods. However,

this disadvantage diminishes when the methods are applied to the local bundle

adjustment in the incremental multiple-view reconstruction. In that local bundle

adjustment the estimate of only one view is refined, and accordingly only n − 1

fundamental matrices are necessarily updated. It will be shown in Chapter 6.

5.4.2 Experiments on Real Data

In this section, bundle adjustment using different methods is conducted upon the

well-known Dinosaur Sequence provided by the University of Hannover. There are

37 images in the sequence. They are taken from an artificial dinosaur on a turntable.

The inter-frame rotation axis is fixed and the rotation angle is controlled to be 10

degrees. It is a closed sequence, meaning that the first image is the same as the

last. 2224 feature points are tracked from the sequence of images, but they are not

always visible in all the views.

The intrinsic parameters of the cameras are given a priori, and an initial estimate

of camera motions is obtained using an incremental reconstruction method. Then
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( a ) ( b ) ( c )

Figure 5.1: Experimental results on the synthetic data (σ = 0.5). (a) aver-

age reprojection error versus the number of views; (b)(c) running time

versus the number of views. In this experiment, the accuracy and

the computational cost of the five bundle-adjustment methods are com-

pared with various number of views. The average reprojection errors

obtained with the five methods are very close to one another. The em-

bedded LM-LM method obtains the smallest reprojection error, then

embedded LM-MLE, interleaved LM-LM and interleaved LM-MLE se-

quentially. Graphs (b) and (c) represent the same set of data with dif-

ferent scales in the vertical direction, since the two interleaved methods

are by far slower than the other three methods.

the four methods Embedded LM-LM, Embedded LM-MLE, Interleaved LM-LM and

Interleaved LM-MLE are used to conduct the global metric bundle adjustment over

the 37 views. The reconstructed camera motions by the four methods is shown

in Fig. 5.2, and the statistical evaluation of the experimental results is listed in

Tab. 5.1. The meaning of the statistical items is listed in table. 5.2. The residual,

the running time and the number of iterations of the four bundle-adjustment are

given in Tab. 5.3.

It is shown through this experiment that the four bundle-adjustment methods got

similar results both in terms of the reconstructed 3D structure and motion and in

terms of the total reprojection error. Relatively the two embedded methods obtain

even more similar results to each other, and so do the two interleaved methods. It

also can be seen that it takes much more iterations for the interleaved methods to

converge than the embedded methods. Additionally, compared with the experiment

with the synthetic data, in this experiment the two proposed approaches Embedded

LM-MLE and interleaved LM-MLE are much faster than the other two approaches,

respectively. It is because much more feature points are tracked in the real se-

quence, i.e. 2224 features versus 100 features in the synthetic sequence. The two

proposed approaches gain efficiency especially through the 3D-point reconstruction,
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and therefore the more feature points are taken into account, the more efficient are

the proposed methods in computation.

‖t‖ δ‖t‖ t δt
Initial Estimate 1.0259 0.0207 1.0227, 0.0112, -0.0784 0.0206, 0.0164, 0.0090
Embedded LM-LM 1.0104 0.0183 1.0072, 0.0110, -0.0769 0.0181, 0.0160, 0.0090
Embedded LM-MLE 1.0104 0.0184 1.0072, 0.0110, -0.0769 0.0181, 0.0160, 0.0090
Interleaved LM-LM 1.0211 0.0189 1.0180, 0.0108, -0.0776 0.0185, 0.0164, 0.0093
Interleaved LM-MLE 1.0212 0.0189 1.0181, 0.0108, -0.0777 0.0186, 0.0164, 0.0093
Standard 1.0000 0.0000 0.9969, 0.0152, -0.0773 0.0000, 0.0000, 0.0000

α δα r δr
Initial Estimate 10.0365 0.1771 0.0218, 0.9108, 0.4118 0.0147, 0.0040, 0.0090
Embedded LM-LM 10.0177 0.1422 0.0222, 0.9103, 0.4129 0.0144, 0.0047, 0.0104
Embedded LM-MLE 10.0177 0.1423 0.0222, 0.9103, 0.4129 0.0144, 0.0047, 0.0104
Interleaved LM-LM 10.0150 0.1532 0.0225, 0.9103, 0.4129 0.0146, 0.0046, 0.0102
Interleaved LM-MLE 10.0151 0.1532 0.0226, 0.9103, 0.4129 0.0147, 0.0045, 0.0101
Standard 10.0000 0.0000 0.0184, 0.9087, 0.4170 0.0000, 0.0000, 0.0000

‖∆x‖ δ‖∆x‖ ∆x δ∆x

Initial Estimate 0.2948 0.3054 -0.0003, 0.0000 0.2083, 0.3699
Embedded LM-LM 0.2937 0.3034 0.0000, -0.0000 0.2060, 0.3686
Embedded LM-MLE 0.2937 0.3034 0.0000, -0.0000 0.2060, 0.3686
Interleaved LM-LM 0.2940 0.3032 -0.0000, -0.0000 0.2063, 0.3686
Interleaved LM-MLE 0.2941 0.3032 -0.0000, -0.0000 0.2064, 0.3686
Standard 0.2999 0.3249 0.0041, -0.0002 0.2094, 0.3893

‖∆X‖ δ‖∆X‖ ∆X δ∆X

Initial Estimate 0.5465 0.0144 -0.0146, 0.0033, 0.5456 0.0181, 0.0209, 0.0143
Embedded LM-LM 0.2114 0.0104 -0.0036, 0.0032, 0.2108 0.0120, 0.0104, 0.0102
Embedded LM-MLE 0.2114 0.0105 -0.0036, 0.0032, 0.2108 0.0120, 0.0105, 0.0103
Interleaved LM-LM 0.4969 0.0141 -0.0134, 0.0037, 0.4962 0.0174, 0.0189, 0.0142
Interleaved LM-MLE 0.4972 0.0142 -0.0135, 0.0037, 0.4966 0.0173, 0.0191, 0.0141
Standard 0.0000 0.0000 0.0000, 0.0000, 0.0000 0.0000, 0.0000, 0.0000

Table 5.1: Statistical evaluation of the global bundle-adjustment methods

through experiments on the Dinosaur sequence. The four bundle-

adjustment methods obtains very similar results to the standard config-

uration of the Dinosaur sequence in terms of the average translation and

rotation between the inter-frames. Relatively, the two embedded methods

obtain closer results to each other, and so do the two interleave methods.

In terms of error in the reconstructed 3D points, the embedded methods

are more accurate or much closer to the standard configuration than the

interleave methods. Additionally, all the four bundle-adjustment methods

obtains smaller reprojection error than the standard configuration. This

is because of the noise in the mechanical measurement of the camera

motions for the standard configuration.
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Initial estimation

Embedded LM-LM

Embedded LM-MLE

Interleaved LM-LM

Interleaved LM-MLE

Figure 5.2: Reconstructed camera motions through global bundle adjustment.
The above graphs show the frontal (left) and planform (right) of the recon-
structed camera motions with respect to the first camera motion. The red
and the green cameras inside the dashed rectangles represent the first and the
last motions. Actually the two motions are identical, but due to noise they
do not coincide through the computation. The top set of graphs is the result
of an initial estimation; the other four sets are the refined estimation using
the four different bundle-adjustment algorithms. The improvement from the
initial estimation to the refined estimation is obvious. But the four refined
results are almost indistinguishable from one another. The related statistical
evaluation of this experiment is given in Tab. 5.1.
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‖t‖ the mean inter-frame translation magnitude

δ‖t‖ deviation of ‖t‖
t the mean inter-frame translation vector

δt deviation of t in each dimension

α the mean inter-frame rotation angle

δα deviation of α

r the mean inter-frame rotation axis

δr deviation of r in each dimension

‖∆x‖ the mean magnitude of the reprojection error per image point

δ‖∆x‖ deviation of ‖∆x‖
∆x the mean vector of reprojection error per image point

δ∆x deviation of ∆x in each dimension

‖∆X‖ the mean magnitude of the reconstructed 3D-point error

δ‖∆X‖ deviation of ‖∆X‖
∆X the mean magnitude of the reconstructed 3D-point error

δ∆X deviation of ∆X in each dimension

Table 5.2: Meaning of the statistical items

Residual Running Time Number of Iterations

Initial Estimate 1417.0179 - -

Embedded LM-LM 1402.3779 799 4

Embedded LM-MLE 1402.3780 541 4

Interleaved LM-LM 1403.5408 2559 357

Interleaved LM-MLE 1403.5611 1724 353

Standard 1537.1310 - -

Table 5.3: Experimental results of the Dinosaur sequence with different

global bundle-adjustment methods. In this table, the final resid-

ual as computed in Eq. 5.1 and the running time are compared for the

four bundle-adjustment methods. The residuals obtained with the two

embedded methods are very close to each other and the Embedded LM-

MLE method proposed in this chapter is much faster than the Embedded

LM-LM method. Similar rules may be drawn from the table for the

two interleaved methods. Additionally, the interleaved methods converge

much slower than the embedded methods and also obtain larger residuals.

As explained in Tab. 5.1, due to the measurement noise of the camera

motions the residual of the standard configuration is larger than those

obtained by the reconstruction methods.
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5.5 Conclusions

This chapter proposed two bundle-adjustment approaches. In the approaches, the

1st-order MLE method of 3D-point reconstruction as proposed in Chapter 3 is ap-

plied to simplify the cost function for multiple-view reconstruction, and therefore the

computation of the interleaved and the embedded bundle adjustment techniques is

partly linearized, whether the cameras are calibrated or un-calibrated. Experiments

show the proposed approaches are much faster than the previous bundle-adjustment

approaches, at a slight cost of accuracy. Additionally, the proposed bundle adjust-

ment algorithms are not only tolerant of missing data, but also allow the assignment

of individual covariance to each image measurement.
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Multiple-View Reconstruction

In Chapter 2, we have reviewed the problem of 3D-scene reconstruction using a set

of point matches across a sequence of images, and reviewed the existing techniques

used to solve the problem. In this chapter a new incremental multiple-view recon-

struction method is proposed, dealing with the problem of 3D reconstruction from

long sequences of camera images. It is assumed that feature correspondences (or

image-point matches) across the images have been established, and each point fea-

ture does not necessarily appear in all the images. The length of a point track (i.e.

the path of consecutive images that track a same feature point in space) can be any

value equal or larger than 2.

The main idea of the incremental reconstruction is to firstly set up a reference

3D frame using the first two/three images, and then the camera poses for the other

views are determined one by one in this frame.

The incremental reconstruction method proposed in this chapter integrates the

techniques presented in the previous three chapters. The ILSM algorithm as pro-

posed in Chapter 4 is used to estimate the fundamental matrix between the first

two images, when the cameras used to take the images are un-calibrated. The 1st-

order MLE method as proposed in Chapter 3 is used to reconstruct the 3D points

which are used to initially estimate an additional image using the 3D-2D point cor-

respondences. The embedded bundle-adjustment method as proposed in Chapter 5

is used to conduct the local bundle adjustment, in order to refine the estimate of

the additional image. These three linearized or partly-linearized techniques help to

improve the efficiency of multiple-view reconstruction. Due to efficiency, the algo-

rithm may take both two-view and multiple-view point matches into consideration.
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This is unlike the previous approaches, which rely on point matches only across two

or three views. Accordingly, more accurate results can be obtained with the pro-

posed incremental construction technique. Experiments with both simulated data

and real data are conducted as a main part of this chapter, to compare the proposed

technique with other techniques.

In the the following of this chapter, the proposed reconstruction algorithm is first

given in Sect. 6.1. Then experimental results are presented and discussed in Sect. 6.2.

At last conclusions are given in Sect. 6.3.

6.1 The Proposed Incremental Reconstruction

Algorithm

Given a sequence of images {Ii|i = 1, . . . , N}, points of interest are extracted from

each image and matched between successive images with the standard feature tracker

[62]. The rotations and translations of the images, {Ri, ti|i = 1, . . . , N} are to be

estimated, when the calibration matrices of all the images {Ki|i = 1, . . . , N} are

known; or their projection matrices {Pi|i = 1, . . . , N} are to be estimated, when

the images are un-calibrated.

The algorithm of the proposed reconstruction method is given as follows:

1. Set the world coordinate system. Choose the camera coordinate system

associated with the first image I1 as the world coordinate system, i.e. R1 =

I3×3 and t1 = 03; and K1 = I3×3 if the cameras are un-calibrated.

2. Estimation of I2. Estimate the second image I2, using a two-view recon-

struction technique.

– For un-calibrated images.

(a) Initial estimation of P2.

i. Estimation of F12. Use the ILSM method as proposed in Chap-

ter 4 to estimate the fundamental matrix F12 between images I1

and I2.

ii. Computation of P2 from F12. Compute the projection ma-

trix P2 for the second image from F12, with P1 = [I|0] (See

Sect. 2.2.3).

(b) Refine the estimate. Refine the estimate of P2 through mini-

mizing the reprojection error of the image point matches between
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the two images, using the embedded bundle adjustment technique as

proposed in Chapter 5, i.e.

min
P2

(
n12∑
j

e>j (H>
j ΣHj)

−ej

)
,

where n12 is the number of the point matches between I1 and I2.

The value of e>j (H>
j ΣHj)

−ej is the first-order approximation to the

reprojection error of one point match. More explanation of the above

function may be found in Sect. 3.4 and Sect. 5.3.

– For calibrated images.

(a) Initial estimation of R2, t2.

i. Initial estimation of F12. The normalized 8-point method as

mentioned in Sect. 2.2.5 is used to initially estimate F12.

ii. Computation of E12 from F12. From the fundamental matrix

F12 and the calibration matrices K1 and K2, the essential matrix

E12 can be computed directly (see Eq. 2.19). Then the singular

value constraint upon a valid essential matrix (i.e. two of its

three singular values are equal non-zero and one is zero, or see

Sect. 2.2.4) needs to be enforced on the matrix E12 using the

SVD technique.

iii. Computation of R2 and t2 from E12. As mentioned in

Sect. 2.2.4, four possible motions of the second image can be

computed from the essential matrix E12. But only one of them

is the correct and reasonable result, which can be found out by

some samples of the point matches between the two images.

(b) Refine the estimate. As in the above step 2(b) for un-calibrated

cameras, refine the initial estimates of R2 and t2 using the embedded

bundle adjustment technique as proposed in Chapter 5:

min
R2,t2

(
n12∑
j

e>j (H>
j ΣHj)

−ej

)
.

3. 3D-point reconstruction for images I1 and I2. Reconstruct the 3D points

for the point matches between the first two images I1 and I2, using the 1st-

order MLE method as proposed in Chapter 3, i.e. Sampson approximation for

two views.

4. Estimation of image Ii for i ≥ 3.
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6 Integration in Incremental Multiple-View Reconstruction

(a) Initial estimation.

i. Estimation of Pi. Estimate the projection matrix Pi of image Ii

using the 3D-2D point matches between the reconstructed 3D points

in space and the 2D points in image Ii, using the Gold-Standard

algorithm 2.1.

ii. Computation of Ri, ti for calibrated images. As in step 2(a)iii,

Ri and ti can be computed directly from Pi and Ki, i.e.

(Ri|ti) = K−1
i Pi.

(b) Refine the estimate. Refine the estimate of Pi, or Ri and ti, through

bundle adjusting the group of images {I1, I2, . . . , Ii}, using all the point

matches shared by image Ii and one or more of the previous images.

As above, this local bundle adjustment is conducted using the algorithm

proposed in Chapter 5, i.e.

min
Ri,ti

(∑
j

e>j (H>
j ΣHj)

−ej

)
.

(c) 3D-point reconstruction. Reconstruct the 3D points that are tracked

by image Ii and one or more of the previous images using the 1st-order

MLE method as proposed in Chapter 3.

5. Repeat step 4 while Ii is not the last image in the sequence.

In step 4b, a maximum number of views (or images), say m ≥ 3, may be set for the

local incremental bundle adjustment, since the point matches over a large number of

views are usually few. That means, only the image-point matches across m or less

views are taken into account for the local bundle adjustment to refine the estimate

of an incremental view. Such an incremental reconstruction method is termed as

m-view incremental reconstruction. Obviously, the computation is faster when m

is small. It should be noted that the m-view incremental reconstruction is different

from m-view reconstruction. In the m-view reconstruction there are altogether m

views (or images/frames), whereas in the m-view incremental reconstruction there

could be more views.

Additionally, when the motion between I1 and I2 is small, the estimate of I2 may

not be very accurate, and one can obtain better results through bundle adjusting

the first three views, over P2 and P3 for un-calibrated images, or over R2, t2, R3

and t3 for calibrated images.
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6.2 Experiments

6.2 Experiments

In order to provide visible and statistical evaluation of the results, the experiments

in this section are conducted with calibrated cameras, i.e. the metric reconstruction

is performed.

The following three algorithms are tested in the experiments:

Method I. The incremental-reconstruction method proposed in Sect. 6.1.

Method E. A reconstruction method similar to Method I, except that in steps 2b,

4b and 4c, Levenberg-Marquardt optimizers are used to conduct the (inner)

optimizations.

Method G. Global bundle adjustment which gives the statistically optimal solu-

tion. The embedding optimization technique proposed in Chapter 5 is used to

conduct the bundle adjustment, and the result obtained with Method I (5-view

incremental reconstruction) is used to initialize the optimization.

The above algorithms have been implemented in C++, and all experiments re-

ported in this section were conducted on a Pentium IV 2.53GHz machine.

6.2.1 The Data

Real data

Two real sequences named Dinosaur37 and Mouse11 were used in the experiments.

Dinosaur37 is a sequence of 37 images taken from an artificial dinosaur on a turntable.

The inter-frame rotation angle is accurately controlled to be 10 degrees, and accord-

ingly the inter-frame translation is fixed as well. Dinosaur37 is a closed-loop se-

quence, meaning that the 37th image coincides with the first image (i.e. the motion

between them is zero).

Mouse11 is a 11-image sequence of a savings box in shape of two mouses (see

Fig. 6.1). The camera motions in this sequence are semi-translation. Semi-translation

means that the rotation between two consecutive frames is much less significant

compared with the translation (see Fig. 6.2). The camera intrinsic parameters for

the two image sequences were calibrated a priori, and those for Mouse11 are self-

calibrated and thus less accurate. Fig. 6.1 shows the first four images of the two

image sequences respectively.
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Dinosaur37

Mouse11

Figure 6.1: The respective first four images of the image sequences Di-

nosaur37 and Mouse11.

Synthetic data

The synthetic data used in the experiments were generated from the above two real

sequences of Dinosaur37 and Mouse11. First, 3D points were reconstructed using the

real image points and camera motions; then the original image points were replaced

by the re-projected 2D points of the reconstructed 3D points. After this replacement,

the camera motions and the 3D points in the real data became the ground truth for

the synthetic data. The re-projected 2D points are further corrupted with different

noise levels [10] and used as the synthetic data for the experiments.

6.2.2 Experiments on Synthetic Data

In this section, Method I and Method E are compared using synthetic data. The

two methods are used to conduct the incremental reconstructions, and their results

are compared against those of the global bundle adjustment (i.e. Method G) and

the standard configuration. The standard configuration refers to the ground-truth

camera motions with the synthetic points. The 3D points and the relative camera

motions with respect to the ground truth are used as the standard error metrics for

the estimated results. At each image noise level, each method is run 20 times, and

the mean differences between computed results and the ground truth were recorded.

Average running time was recorded in the same way.

It should be noted that results of the global bundle adjustment are different from
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the standard configuration. Global bundle adjustment seeks the 3D reconstruction

with the given image-point matches such that the cost function (as given in Eq. 2.37),

i.e. the total reprojection error, is minimized. Therefore, the results of the global

bundle adjustment are influenced by the random selection of the noise that are

added to the ground-truth image point and thus they do not always coincide with

the standard configuration.

Additionally, for Dinosaur37 the ground-truth camera motions are measured me-

chanically through the movement of the turn-table, and the ground-truth 3D points

are reconstructed with the real image points and the ground-truth camera motions.

Therefore, the ground-truth 3D reconstruction of Dinosaur37 does not necessarily

minimize the total reprojection error both for the real data and the synthetic data.

For Mouse11 the ground-truth camera motions and 3D points are reconstructed

using the real image points through self-calibration, and thus in the experiments

with the real Mouse11 the ground-truth reconstruction is the same as that of the

global bundle adjustment; but for the synthetic Mouse11, the two reconstructions

are different.

Synthetic Dinosaur37

There are totally 2224 feature points tracked from the image sequence Dinosaur37.

They are not visible in all the images. The image size is 720 × 576. Several facts

are known for sure, within the control accuracy offered by the turntable. First,

the camera movement is on a circle; second, the relative rotation angle and relative

translation vector between two consecutive images are the same throughout the

sequence, i.e. 10 degrees, and the rotation axis is fixed; third, the camera position

of the first image is overlapped with the last one. As described in Sect. 6.2.1, these

facts are the ground-truth camera motions for the synthetic data, and the 3D points

reconstructed with these motions and the real image points are the ground-truth

3D structures. The real image points are then replaced with the re-projected 2D

points of the ground-truth 3D points. Note that the visibility of the features in

the images is unchanged after the replacement. At last, seven synthetic Dinosaur37

sequences are generated respectively from the re-projected 2D points corrupted with

a Gaussian noise [10] with zero mean and standard deviation σ = 0.1, 0.2, · · · , 0.7.

1) Graphical comparisons under different noise levels. Incremental reconstruc-

tions are conducted for the synthetic Dinosaur37 sequences with Method I and

Method E, using point correspondences across 3–6 views respectively. Fig. 6.3–6.6

give the graphical comparisons of the experimental results under different noise levels
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of image points. The results are compared against those of the bundle adjustment

and the standard configuration in different aspects, including the average translation

magnitude and rotation angle between every pair of consecutive frames, the average

reprojection error per image point, the reconstructed 3D points. The computational

time is compared as well.

Generally, the reconstruction errors increase with the level of image noise, espe-

cially the reprojection error. In comparison, the curves for the reconstructed camera

motions and 3D points are much more irregular. The regularity of the reprojection-

error curves and the irregularity of the other curves may be explained with two

facts. First the random noise is added upon the image points, but not upon the

3D points or the camera motions; second, the reconstruction is conducted through

minimizing the reprojection error, since the errors of 3D points and camera motions

are unavailable for real image sequences.

In all the four figures, Method I consistently gives almost indistinguishable results

from Method E. In this experiment, their difference is around 10−6 pixel in terms

of the average reprojection error per image point, when the noise level is less than

1 pixel. However, Method I is nearly 5 times as fast as Method E, as shown in

Fig. 6.3(f)–6.6(f).

In addition, comparing the four sets of graphs in Fig. 6.3–6.6, the curves are not

much different from one another, except those in graphs(d). This is because of

the missing data in Dinosaur37. The 2224 tracked feature points are not visible

in all the images. The numbers of correspondences across different numbers of

views in Dinosaur37 are listed in Tab. 6.1. In this sequence of images there are

by far more features across 3 views than those across more views. Therefore, the

3 to 6-view incremental reconstructions give no significantly different results from

one another, including the running time. Comparatively, the experiment with the

synthetic Mouse11 sequences gives more noticeable comparison (see Fig. 6.10–6.13),

since no missing data is assumed for those sequences.

Number of views 2 3 4 5 6 7 8 9 10 >=11

Number of correspondences 0 1482 454 183 66 22 15 1 1 0

Table 6.1: The numbers of correspondences across different numbers of views in Di-

nosaur37 sequences.

2) Visual and statistical comparisons of 5-view incremental reconstructions.

The visual and statistical comparisons between the two incremental-reconstruction

methods, Method I and Method E, are given in Fig. 6.7 and Tab. 6.2. Incremental
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reconstructions are conducted for the synthetic Dinosaur37 sequence at noise level of

0.4 pixel, with Method I and Method E respectively, using the point correspondences

across 5 views. The results are compared against those of the bundle adjustment

and the standard configuration.

According to the ground truth mentioned earlier, the frames should form a closed

circle if the camera motions are computed correctly. This conforms quite good with

the results of the two incremental reconstructions and the bundle adjustment, as can

be seen from Fig. 6.7. Note that, all the reconstructions conducted in this section

for the Dinosaur37 sequence did not use the knowledge that the last frame is the

same as the first frame.

The similar performances of Method I and Method E are shown both through

the visual comparison of the reconstructed camera motions in Fig. 6.7 and through

the statistical measurements in Tab. 6.2. Readers are referred to Tab. 5.2 for the

meaning of the statistical items.

In this experiment, the global bundle adjustment in this experiment does not

achieve better results than the incremental-reconstruction methods in terms of the

reconstructed camera motions and 3D points, but only the reprojection error is

much reduced through the global minimization. It may be explained as in the last

experiment. Random noise is added upon the image points, but not upon the 3D

points or the camera motions; and the total reprojection error of the image point

is aimed to be minimized in the process of reconstruction, since it is impossible to

measure the error of 3D points or camera motions directly for a real image sequence.

In the experiment with the real Dinosaur37, the global bundle adjustment achieves

much better results than the incremental reconstructions (see Fig. 6.17 or Fig. 6.16).

3) Graphical, visual and statistical comparisons of (3–6)-view incremental re-

constructions. Comparing the four sets of graphs in Fig. 6.3–6.6, we can observe

that the errors of the two incremental reconstructions generally decrease when point

correspondences across more views are taken into account. Take for example the

synthetic Dinosaur sequence at noise level of 0.4 pixel. The reconstruction error and

the computational time for this synthetic sequence are compared in Fig. 6.8. In ev-

ery respect, the reconstruction accuracy increases with the number of views, though

the improvement of the reconstructed 3D points is relatively insignificant; and it is

obvious that the running time increases with the number of views for both Method I

and Method E. Still, it is observed that the two incremental-reconstruction methods

obtain similar results at very different computational costs.

Fig. 6.9 shows the visual comparison of the estimated camera motions for the syn-

thetic Dinosaur37 sequence at noise level of 0.4 pixel. The motions are reconstructed
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with Method I using point correspondences across different numbers of views. The

slight improvement with the number of views may be observed from the figures. The

related statistical evaluation of this experiment is given in Tab. 6.3. It can be seen

from the table that, the accuracy of the incremental reconstructions increases with

the number of views, both in terms of the reprojection error and in terms of the

reconstructed motions and structures. Additionally, as with for results in Fig. 6.7

and Tab. 6.2, the bundle adjustment in this experiment achieves no better results

than the incremental-reconstruction methods in terms of camera motions and 3D

structure, except that the reprojection error is minimized.

Synthetic Mouse11 (with no missing data)

The ground truth of 3D points and camera motions for the Mouse11 sequence is

shown in Fig. 6.2. The image size is 1280 × 960. Totally 512 feature points are

tracked from the sequence. They are not visible in all the images in the real data.

But in the synthetic data, they were easily made visible in all the images. That

means, there is no missing data in the synthetic Mouse11 sequences. Nine synthetic

Mouse11 sequences are generated respectively with a Gaussian noise [10] of zero

mean and standard deviation σ = 0.1, 0.2, · · · , 0.9.

Figure 6.2: The ground-truth camera motions and 3D points of image se-

quence Mouse11.
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The ground-truth camera parameters for Mouse11 were calibrated through self-

calibration. Metric reconstructions with known intrinsic camera parameters are

conducted for the synthetic Mouse11 sequences in the following experiments.

1) Graphical comparisons under different noise levels. In this experiment, recon-

structions for the nine synthetic Mouse11 sequences are conducted and the results

are compared under different noise levels in Fig. 6.10–6.10. The two incremental-

reconstruction methods using point correspondences across different numbers of

views are compared respectively with the bundle adjustment and the standard con-

figuration (i.e. the ground-truth camera motions with the synthetic points). In the

graphs, the reprojection error, the error of the reconstruction 3D points and the

computational cost are compared while the noise level of image points is varied.

Compared with the graphs in Fig. 6.3–6.6, the reconstruction errors in this ex-

periment increase with the level of image noise as well. But the difference between

Method I and Method E in terms of the average reprojection error is relatively

larger, around 10−3 pixel in this experiment compared with 10−6 pixel in the last.

Sometimes, Method I obtains even smaller errors than Method E, e.g. for the syn-

thetic Mouse11 sequence at noise level of 0.2 pixel. However, Method I requires only

half the running time of Method E in general.

2) Graphical comparisons of (3–6)-view incremental reconstructions. In Fig. 6.14

we take the synthetic Mouse11 at noise level of 0.5 pixels for example, to compare the

incremental reconstructions using point correspondences across different numbers of

views. From the graphs we observe that the reprojection error for the incremental

reconstructions drops significantly with the number of views, whereas the error of

the reconstructed 3D points does not change much. Method E obtains a little better

results than Method I.

6.2.3 Experiments on Real Data

In this section, the two incremental reconstruction methods, Method I and Method

E are tested with the two real image sequences of Dinosaur37 and Mouse11. As

with the synthetic data, (3–6)-view incremental reconstructions are conducted with

the two methods and compared with the global bundle adjustment and the standard

configuration (for Dinosaur37). Each method is run 20 times with the real image

sequences.
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Real Dinosaur37

1) Graphical, visual and statistical comparisons of (3–6)-view incremental re-

constructions. Fig. 6.15 shows the experimental results for the real Dinosaur37

sequence using the two incremental reconstruction methods and the global bundle

adjustment. Compared with the curves in the Fig. 6.8 for the synthetic Dinosaur37,

the bundle adjustment for the real data obtained much better results than the incre-

mental reconstructions both in terms of the reprojection error and in terms of the

reconstructed 3D structure and camera motions (which can also be seen from the

following visual and statistical comparisons). Method I still gets nearly the same

results as Method E, and their reconstruction error decrease with the number of

views used for the incremental reconstruction. Method I is about 4 times as fast

as Method E, and more than 20 times faster than the global bundle adjustment.

Additionally, compared with the experiment on the synthetic data, all the three

reconstruction methods achieved by far smaller reprojection error than the standard

configuration. It may be explained by the noise in the mechanical measurement of

camera motions for the standard configuration.

Fig. 6.16 shows the camera motions reconstructed with Method I using point

correspondences across different numbers of views. Compared with Fig. 6.8, the

improvement in accuracy with the number of views are relatively more significant

in Fig. 6.16. The related statistical evaluation of the results are listed in Tab. 6.4.

2) Visual and statistical comparisons of two 5-view incremental reconstructions.

Fig. 6.17 and Tab. 6.5 show respectively the visual and statistical comparisons of

the experimental results for the real Dinosaur37, using the two 5-view-incremental-

reconstruction methods. We observe again that the difference between Method I

and Method E is very slight, both in terms of reconstructed motions and structures

and in terms of the reprojection error (or the residual of the cost function).

Real Mouse11

In this section, Method I, Method E and Method G are compared using the

real Mouse11 sequence. As mentioned earlier, the ground-truth configuration for

the real Mouse11 sequence coincides with that of the bundle adjustment, since the

intrinsic and extrinsic camera parameters are self-calibrated.

Fig. 6.18 and Tab. 6.6 show the experimental results of the three reconstruction

methods for the real Mouse11. Compared with the experiments on the synthetic

Mouse11 sequence in Fig. 6.14, Method I and Method E achieve even closer

results for the real data. The difference between them is around 10−5 pixel in terms
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of the average reprojection error per image point. Additionally, Method I is about

twice as fast as Method E, and more than 5 times faster than the global bundle

adjustment, i.e. Method G.

6.3 Conclusions

An incremental reconstruction algorithm for long sequences of images is proposed

in this chapter. It deals with both the projective reconstruction for un-calibrated

cameras and the metric reconstruction for calibrated cameras, given point matches

across the images. The algorithm integrates the three techniques proposed in the

previous chapters.

With the three techniques, the process of the incremental reconstruction is accel-

erated, and it allows the computation over point matches across more views. This

is unlike the previously-proposed reconstruction approaches [3] [18] [85], which rely

on point matches only across two or three views. Experiments both with simulated

data and with real data show that the reconstruction accuracy is significantly im-

proved when point matches across more views are taken into account and that the

proposed method consistently obtains as accurate results as the classical incremental-

reconstruction methods, however the computational cost is much reduced.
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‖t‖ δ‖t‖ t δt

Method I 1.0080 0.0185 1.0049, 0.0145, -0.0772 0.0185, 0.0091, 0.0050

Method E 1.0080 0.0186 1.0049, 0.0145, -0.0772 0.0185, 0.0091, 0.0050

Method G 1.0075 0.0098 1.0043, 0.0165, -0.0781 0.0096, 0.0068, 0.0041

Standard 1.0000 0.0000 0.9969, 0.0152, -0.0773 0.0000, 0.0000, 0.0000

α δα r δr

Method I 10.0113 0.1443 0.0191, 0.9099, 0.4143 0.0084, 0.0025, 0.0056

Method E 10.0112 0.1444 0.0191, 0.9099, 0.4143 0.0084, 0.0025, 0.0056

Method G 9.9855 0.0841 0.0173, 0.9088, 0.4168 0.0061, 0.0017, 0.0037

Standard 10.0000 0.0000 0.0184, 0.9087, 0.4170 0.0000, 0.0000, 0.0000

‖∆x‖ δ‖∆x‖ ∆x δ∆x

Method I 0.3659 0.2083 -0.0001, -0.0000 0.2624, 0.3292

Method E 0.3659 0.2083 -0.0001, -0.0000 0.2624, 0.3292

Method G 0.3641 0.2072 -0.0000, -0.0000 0.2603, 0.3282

Standard 0.3686 0.2097 -0.0003, -0.0001 0.2638, 0.3320

‖∆X‖ δ‖∆X‖ ∆X δ∆X

Method I 0.2270 0.0127 0.0018, -0.0031, 0.2264 0.0127, 0.0101, 0.0127

Method E 0.2273 0.0127 0.0018, -0.0031, 0.2267 0.0127, 0.0101, 0.0127

Method G 0.2474 0.0125 0.0044, -0.0110, 0.2464 0.0145, 0.0128, 0.0123

Standard 0.0108 0.0082 -0.0002, 0.0000, 0.0002 0.0086, 0.0065, 0.0082

Table 6.2: Statistical evaluation of 5-view incremental reconstructions for
synthetic Dinosaur37 (at noise level of 0.4 pixel) with Method
I and Method E. Incremental reconstructions are conducted for the
synthetic Dinosaur37 with Method I and Method E respectively using
point correspondences 5 views. The results are statistically compared
with those of the global bundle adjustment (Method G) and the stan-
dard configuration in the above table. The related camera motions re-
constructed in this experiment is compared in Fig. 6.9. It can be seen
from the table that the accuracy of Method I and Method E are very
close to each other in all the statistical respects, and the reprojection
error of the two incremental reconstructions is also very close to that ob-
tained with the global bundle adjustment. The global bundle adjustment
in this experiment does not achieve better results than the incremental-
reconstruction methods in terms of the reconstructed camera motions and
3D points, but the reprojection error is much reduced through it in any
way (see the text for the explanation).
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( a ) ( b )

( c ) ( d )

( e ) ( f )

Figure 6.3: 3-view incremental reconstruction for synthetic Dinosaur37. (a) Error
of the translation magnitude vs. image noise level; (b) Error of the rotation angle
vs. image noise level; (c) Reprojection error vs. image noise level; (d) Difference
in reprojection error vs. image noise level; (e) Error of reconstructed 3D-points vs.
image noise level; (f) Running time vs. image noise level. Incremental reconstructions
are conducted for the synthetic sequences of Dinosaur37 with Method I and Method
E using point correspondences across 3 views. Their results are compared against
those of the global bundle adjustment and the standard configuration in the above
graphs. We see from the graphs that the reprojection error increases linearly with
the level of noise for all the reconstruction methods. In comparison, the curves
for the reconstructed camera motions and 3D points are much more irregular, but
a general tendency to increase with the noise level still can be observed from the
graphs. Method I and Method E obtain very similar results, but the former is by far
faster than the later. Similar conclusions can be drawn from the following graphs in
Fig. 6.4, 6.5 and 6.6. 101



6 Integration in Incremental Multiple-View Reconstruction

( a ) ( b )

( c ) ( d )

( e ) ( f )

Figure 6.4: 4-view incremental reconstruction for synthetic Dinosaur37.

(a) Error of the translation magnitude vs. image noise level; (b) Error of

the rotation angle vs. image noise level; (c) Reprojection error vs. image

noise level; (d) Difference in reprojection error vs. image noise level; (e)

Error of reconstructed 3D-points vs. image noise level; (f) Running time

vs. image noise level.
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6.3 Conclusions

( a ) ( b )

( c ) ( d )

( e ) ( f )

Figure 6.5: 5-view incremental reconstruction for synthetic Dinosaur37.

(a) Error of the translation magnitude vs. image noise level; (b) Error of

the rotation angle vs. image noise level; (c) Reprojection error vs. image

noise level; (d) Difference in reprojection error vs. image noise level; (e)

Error of reconstructed 3D-points vs. image noise level; (f) Running time

vs. image noise level.
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( a ) ( b )

( c ) ( d )

( e ) ( f )

Figure 6.6: 6-view incremental reconstruction for synthetic Dinosaur37.

(a) Error of the translation magnitude vs. image noise level; (b) Error of

the rotation angle vs. image noise level; (c) Reprojection error vs. image

noise level; (d) Difference in reprojection error vs. image noise level; (e)

Error of reconstructed 3D-points vs. image noise level; (f) Running time

vs. image noise level.
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6.3 Conclusions

Method I (5-view incremental reconstruction)

Method E (5-view incremental reconstruction)

Global bundle adjustment

Standard configuration (or ground-truth camera motions)

Figure 6.7: Reconstructed camera motions for the synthetic Dinosaur37 (at
noise level of 0.4 pixel) using two 5-view-incremental-reconstruction
methods (Method I and Method E) and the global bundle adjust-
ment. Here display the camera motions for a synthetic Dinosaur37 sequence,
reconstructed with Method I and Method E respectively using image-point
correspondences across 5 views. The results are compared against those of
the global bundle adjustment and the ground-truth camera motions. The
left graphs are the frontal profiles of the camera motions with respect to the
first motion, and the right are the planforms. The red and the green cameras
inside the dashed rectangles represent the first and the last camera motions
respectively. In the ground-truth configuration, the camera position of the
first frame coincides with that of the last. From the graphs above, the results
of Method I and Method E are too close to be distinguished visually from
each other. The related statistical evaluation of this experiment is given in
Tab. 6.2. In this experiment, the global bundle adjustment achieves no bet-
ter results than the incremental-reconstruction methods in terms of camera
motions, but its final reprojection error (or the residual of the cost function)
is much reduced (see Tab. 6.2).

105



6 Integration in Incremental Multiple-View Reconstruction

‖t‖ δ‖t‖ t δt

3-view 1.0097 0.0327 1.0066, 0.0138, -0.0773 0.0327, 0.0104, 0.0062
4-view 1.0084 0.0213 1.0053, 0.0142, -0.0772 0.0212, 0.0091, 0.0052
5-view 1.0080 0.0185 1.0049, 0.0145, -0.0772 0.0185, 0.0091, 0.0050
6-view 1.0075 0.0166 1.0044, 0.0150, -0.0774 0.0166, 0.0086, 0.0046
Method G 1.0075 0.0098 1.0043, 0.0165, -0.0781 0.0096, 0.0068, 0.0041
Standard 1.0000 0.0000 0.9969, 0.0152, -0.0773 0.0000, 0.0000, 0.0000

α δα r δr

3-view 10.0295 0.2575 0.0196, 0.9102, 0.4134 0.0196, 0.9102, 0.4134
4-view 10.0157 0.1648 0.0193, 0.9100, 0.4141 0.0084, 0.0029, 0.0066
5-view 10.0113 0.1443 0.0191, 0.9099, 0.4143 0.0084, 0.0025, 0.0056
6-view 10.0030 0.1329 0.0186, 0.9097, 0.4148 0.0079, 0.0023, 0.0051
Method G 9.9855 0.0841 0.0173, 0.9088, 0.4168 0.0061, 0.0017, 0.0037
Standard 10.0000 0.0000 0.0184, 0.9087, 0.4170 0.0000, 0.0000, 0.0000

‖∆x‖ δ‖∆x‖ ∆x δ∆x

3-view 0.3695 0.2107 -0.0003, -0.0000 0.2685, 0.3299
4-view 0.3664 0.2087 -0.0002, -0.0000 0.2633, 0.3294
5-view 0.3659 0.2083 -0.0001, -0.0000 0.2624, 0.3292
6-view 0.3655 0.2082 -0.0001, -0.0000 0.2621, 0.3290
Method G 0.3641 0.2072 -0.0000, -0.0000 0.2603, 0.3282
Standard 0.3686 0.2097 -0.0003, -0.0001 0.2638, 0.3320

‖∆X‖ δ‖∆X‖ ∆X δ∆X

3-view 0.2314 0.0206 -0.0014, -0.0021, 0.2299 0.0221, 0.0145, 0.0209
4-view 0.2286 0.0142 -0.0009, -0.0022, 0.2279 0.0141, 0.0107, 0.0142
5-view 0.2270 0.0127 0.0018, -0.0031, 0.2264 0.0127, 0.0101, 0.0127
6-view 0.2263 0.0118 0.0032, -0.0045, 0.2257 0.0119, 0.0100, 0.0117
Method G 0.2474 0.0125 0.0044, -0.0110, 0.2464 0.0145, 0.0128, 0.0123
Standard 0.0108 0.0082 -0.0002, 0.0000, 0.0002 0.0086, 0.0065, 0.0082

Table 6.3: Statistical evaluation of (3–6)-view incremental reconstructions
for the synthetic Dinosaur37 (at noise level of 0.4 pixel) with
Method I. Incremental reconstructions are conducted for the synthetic
Dinosaur37 with Method I using point correspondences across different
numbers of views (3 to 6 views) respectively. In this table their results
are compared statistically with those of the global bundle adjustment
(Method G) and the standard configuration. The related camera mo-
tions reconstructed in this experiment is compared in Fig. 6.9. It can
be seen from the table that, the reconstruction accuracy increases with
the number of views in the incremental reconstructions both in terms
of the reprojection error and in terms of the reconstructed motions and
structures.
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( a ) ( b )

( c ) ( d )

( e )

Figure 6.8: (3–6)-view incremental reconstruction for synthetic Dinosaur37 (at
noise level of 0.4 pixel). (a) Error of the translation magnitude vs. the
number of views; (b) Error of the rotation angle vs. the number of views; (c)
Reprojection error vs. the number of views; (d) Error of reconstructed 3D-points
vs. the number of views; (e) Running time vs. the number of views. Incremental
reconstructions are conducted for the synthetic Dinosaur37 (at noise level of 0.4
pixel) with Method I and Method E using point correspondences across different
numbers of views. The results are compared against those of the global bundle
adjustment and the standard configuration in the above graphs. Very similar
results are obtained with the two incremental-reconstruction methods, except
that Method I is by far faster than Method E. In every respect, the reconstruction
accuracy increases with the number of views, though the improvement for the
reconstructed 3D points is relatively insignificant. Obviously the running time
increases with the number of views.
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6 Integration in Incremental Multiple-View Reconstruction

3-view incremental reconstruction

4-view incremental reconstruction

5-view incremental reconstruction

6-view incremental reconstruction

Global bundle adjustment

Figure 6.9: Reconstructed camera motions for synthetic Dinosaur37 (at noise
level of 0.4 pixel) with Method I and the global bundle adjustment.
Here display the camera motions for a synthetic sequence of Dinosaur37 re-
constructed with Method I using image-point correspondences across different
numbers of views. The results are compared against those obtained with the
global bundle adjustment. The slight improvement may be observed from
the figures, when correspondences across more number of views are taken
into account. The related statistical evaluation of this experiment is given
in Tab. 6.3. As with the results in Fig. 6.7, the global bundle adjustment
achieves no better results than the incremental-reconstruction methods in
terms of camera motions.
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( a ) ( b )

( c ) ( d )

Figure 6.10: 3-view incremental reconstruction for synthetic Mouse11: (a)

Reprojection error vs. image noise level; (b) Difference in reprojection

error vs. image noise level; (c) Error of reconstructed 3D-points vs.

image noise level; (d) Running time vs. image noise level.
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6 Integration in Incremental Multiple-View Reconstruction

( a ) ( b )

( c ) ( d )

Figure 6.11: 4-view incremental reconstruction for synthetic Mouse11: (a)

Reprojection error vs. image noise level; (b) Difference in reprojection

error vs. image noise level; (c) Error of reconstructed 3D-points vs.

image noise level; (d) Running time vs. image noise level.
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( a ) ( b )

( c ) ( d )

Figure 6.12: 5-view incremental reconstruction for synthetic Mouse11: (a)

Reprojection error vs. image noise level; (b) Difference in reprojection

error vs. image noise level; (c) Error of reconstructed 3D-points vs.

image noise level; (d) Running time vs. image noise level.
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6 Integration in Incremental Multiple-View Reconstruction

( a ) ( b )

( c ) ( d )

Figure 6.13: 6-view incremental reconstruction for synthetic Mouse11: (a)

Reprojection error vs. image noise level; (b) Difference in reprojection

error vs. image noise level; (c) Error of reconstructed 3D-points vs.

image noise level; (d) Running time vs. image noise level.
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( a ) ( b )

( c )

Figure 6.14: (3–6)-view incremental reconstruction for synthetic Mouse11

(at noise level of 0.5 pixel): (a) Reprojection error vs. the number

of views; (b) Error of reconstructed 3D-points vs. the number of views;

(c) Running time vs. the number of views.

113



6 Integration in Incremental Multiple-View Reconstruction

( a ) ( b )

( c ) ( d )

( e )

Figure 6.15: (3–6)-view incremental reconstruction for real Dinosaur37

(compare with Fig. 6.8). (a) Error of the translation magnitude vs.

the number of views used for incremental reconstruction; (b) Error of

the rotation angle vs. the number of views; (c) Reprojection error

vs. the number of views; (d) Error of reconstructed 3D-points vs. the

number of views; (e) Running time vs. the number of views.
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‖t‖ δ‖t‖ t δt

3-view 1.0284 0.0199 1.0252, 0.0107, -0.0786 0.0197, 0.0172, 0.0093

4-view 1.0259 0.0207 1.0227, 0.0112, -0.0784 0.0206, 0.0164, 0.0090

5-view 1.0248 0.0201 1.0216, 0.0114, -0.0783 0.0199, 0.0162, 0.0089

6-view 1.0246 0.0203 1.0214, 0.0115, -0.0783 0.0201, 0.0161, 0.0090

Method G 1.0104 0.0184 1.0072, 0.0110, -0.0769 0.0181, 0.0160, 0.0090

Standard 1.0000 0.0000 0.9969, 0.0152, -0.0773 0.0000, 0.0000, 0.0000

α δα r δr

3-view 10.0600 0.1732 0.0227, 0.9112, 0.4108 0.0153, 0.0039, 0.0087

4-view 10.0365 0.1771 0.0218, 0.9108, 0.4118 0.0147, 0.0040, 0.0090

5-view 10.0261 0.1680 0.0220, 0.9106, 0.4123 0.0145, 0.0041, 0.0091

6-view 10.0244 0.1682 0.0219, 0.9105, 0.4125 0.0144, 0.0041, 0.0092

Method G 10.0177 0.1423 0.0222, 0.9103, 0.4129 0.0144, 0.0047, 0.0104

Standard 10.0000 0.0000 0.0184, 0.9087, 0.4170 0.0000, 0.0000, 0.0000

‖∆x‖ δ‖∆x‖ ∆x δ∆x

3-view 0.2956 0.3054 -0.0005, 0.0000 0.2092, 0.3700

4-view 0.2948 0.3054 -0.0003, 0.0000 0.2083, 0.3699

5-view 0.2945 0.3054 -0.0002, 0.0000 0.2078, 0.3700

6-view 0.2944 0.3055 -0.0002, -0.0000 0.2077, 0.3700

Method G 0.2937 0.3034 0.0000, -0.0000 0.2060, 0.3686

Standard 0.2999 0.3249 0.0041, -0.0002 0.2094, 0.3893

‖∆X‖ δ‖∆X‖ ∆X δ∆X

3-view 0.5450 0.0133 -0.0158, 0.0080, 0.5440 0.0180, 0.0228, 0.0133

4-view 0.5465 0.0144 -0.0146, 0.0033, 0.5456 0.0181, 0.0209, 0.0143

5-view 0.5458 0.0148 -0.0127, 0.0016, 0.5449 0.0182, 0.0205, 0.0147

6-view 0.5446 0.0147 -0.0108, 0.0006, 0.5438 0.0183, 0.0204, 0.0146

Method G 0.2114 0.0105 -0.0036, 0.0032, 0.2108 0.0120, 0.0105, 0.0103

Standard 0.0000 0.0000 0.0000, 0.0000, 0.0000 0.0000, 0.0000, 0.0000

Table 6.4: Statistical evaluation of (3–6)-view incremental reconstructions

for real Dinosaur37 with Method I (compare with Tab. 6.3).
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3-view incremental reconstruction

4-view incremental reconstruction

5-view incremental reconstruction

6-view incremental reconstruction

Global bundle adjustment

Figure 6.16: Reconstructed camera motions for real Dinosaur37 with

Method I and the global bundle adjustment (compare with

Fig. 6.9).
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6.3 Conclusions

Method I (5-view incremental reconstruction)

Method E (5-view incremental reconstruction)

Global bundle adjustment

Standard configuration

Figure 6.17: Reconstructed camera motions for real Dinosaur37 using two

5-view-incremental-reconstruction methods (Method I and

Method E) and the global bundle adjustment (compare with

Fig. 6.7).
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‖t‖ δ‖t‖ t δt

Method I 1.0248 0.0201 1.0216, 0.0114, -0.0783 0.0199, 0.0162, 0.0089

Method E 1.0248 0.0200 1.0216, 0.0114, -0.0783 0.0198, 0.0162, 0.0089

Method G 1.0104 0.0184 1.0072, 0.0110, -0.0769 0.0181, 0.0160, 0.0090

Standard 1.0000 0.0000 0.9969, 0.0152, -0.0773 0.0000, 0.0000, 0.0000

α δα r δr

Method I 10.0261 0.1680 0.0220, 0.9106, 0.4123 0.0145, 0.0041, 0.0091

Method E 10.0263 0.1677 0.0220, 0.9106, 0.4123 0.0145, 0.0041, 0.0091

Method G 10.0177 0.1423 0.0222, 0.9103, 0.4129 0.0144, 0.0047, 0.0104

Standard 10.0000 0.0000 0.0184, 0.9087, 0.4170 0.0000, 0.0000, 0.0000

‖∆x‖ δ‖∆x‖ ∆x δ∆x

Method I 0.2945 0.3054 -0.0003, 0.0000 0.2078, 0.3700

Method E 0.2945 0.3054 -0.0003, 0.0000 0.2078, 0.3700

Method G 0.2937 0.3034 0.0000, -0.0000 0.2060, 0.3686

Standard 0.2999 0.3249 0.0041, -0.0002 0.2094, 0.3893

‖∆X‖ δ‖∆X‖ ∆X δ∆X

Method I 0.5458 0.0148 -0.0127, 0.0016, 0.5449 0.0182, 0.0205, 0.0147

Method E 0.5456 0.0148 -0.0127, 0.0016, 0.5449 0.0182, 0.0205, 0.0147

Method G 0.2114 0.0105 -0.0036, 0.0032, 0.2108 0.0120, 0.0105, 0.0103

Standard 0.0000 0.0000 0.0000, 0.0000, 0.0000 0.0000, 0.0000, 0.0000

Table 6.5: Statistical evaluation of 5-view incremental reconstructions for

real Dinosaur37 with Method I and Method E (compare with

Tab. 6.2).
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( a ) ( b )

( c )

Figure 6.18: (3–4)-view incremental reconstructions for real Mouse11 (com-

pare with Fig. 6.14). (a) tslReprojection error vs. the number of views;

(b) tslError of reconstructed 3D-points vs. the number of views; (c)

tslRunning time vs. the number of views.
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‖∆x‖ δ‖∆x‖ ∆x δ∆x

I 0.35329 0.23913 -0.00106, -0.00065 0.26278, 0.334093-view
E 0.35326 0.23917 -0.00230, -0.00017 0.26291, 0.33398
I 0.35271 0.23902 -0.00092, -0.00007 0.26218, 0.333884-view
E 0.35268 0.23899 -0.00136, -0.00002 0.26210, 0.33389
I 0.35262 0.23899 -0.00059, -0.00011 0.26216, 0.333845-view
E 0.35256 0.23900 -0.00032, 0.00001 0.26191, 0.33391
I 0.35256 0.23891 -0.00006, -0.00009 0.26187, 0.333906-view
E 0.35255 0.23894 -0.00013, 0.00001 0.26181, 0.33395

Method G 0.34742 0.23880 -0.00000, -0.00012 0.26164, 0.33383

‖∆X‖ δ‖∆X‖ ∆X δ∆X

I 0.02937 0.03742 -0.00354, 0.00329, -0.03093 0.01674, 0.01165, 0.038093-view
E 0.02836 0.03602 -0.00327, 0.00273, -0.02713 0.01444, 0.00935, 0.03242
I 0.02918 0.04096 -0.00387, 0.00334, -0.03165 0.01807, 0.01184, 0.037464-view
E 0.02879 0.03456 -0.00338, 0.00285, -0.02748 0.01555, 0.01030, 0.03565
I 0.02963 0.03857 -0.00367, 0.00325, -0.03118 0.01731, 0.01104, 0.035315-view
E 0.02822 0.03828 -0.00312, 0.00278, -0.02697 0.01507, 0.00985, 0.03453
I 0.02922 0.03805 -0.00346, 0.00321, -0.03080 0.01703, 0.01096, 0.034866-view
E 0.02829 0.03890 -0.00307, 0.00283, -0.02703 0.01530, 0.01008, 0.03507

Method G 0.00000 0.00000 0.00000, 0.00000, 0.00000 0.00000, 0.00000, 0.00000

Table 6.6: Statistical evaluation of the reconstructions for real Mouse11

with Method I, Method E and Method G(the global bundle

adjustment).
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7 Summary

7.1 Conclusions

As the title suggests, this dissertation attempts to solve the problem of 3D recon-

struction from multiple images in a more efficient manner. The research is known

as Multiple-View Reconstruction. As is mentioned in Chapter 2, multiple-view re-

construction is a comprehensive literature in computer vision. Three techniques are

developed in the dissertation, which solve respectively three fundamental problems

within this topic.

Firstly, a new linear and non-iterative method to reconstruct a 3D-point in space

from its projections in multiple views with known projection matrices is proposed in

Chapter 3. This method is called 1st-order MLE, since it converts the original recon-

struction problem into one of linearly-constrained quadratic optimization through a

first-order approximation to the epipolar constraints.

Chapter 4 proposes a linear iterative least-squares method for estimating the fun-

damental matrix between two un-calibrated perspective views. Like in chapter 3

the problem is converted into a least-squares problem by a first-order approxima-

tion to the epipolar constraints. Adaptively, the algebraic cost function minimized

in the least-squares problem approaches the geometric error, and a more accurate

fundamental matrix is obtained iteratively.

The techniques presented in Chapter 5 are extensive applications of the above 1st-

order MLE method to the problem of bundle adjustment. By this, the cost function

of bundle adjustment is partly linearized, and accordingly the minimization process

is accelerated.

All the above techniques preserve the error model of the measured image points,

and allow the assignment of individual covariance to each image measurement. Ex-
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7 Summary

periments show that the accuracy of these algorithms is consistently comparable to

that of a maximum likelihood estimation using numerical Newton-type optimization,

however, at a much reduced computational cost.

Finally, based on the above techniques, an incremental multiple view reconstruc-

tion method is developed in Chapter 6. The higher efficiency of these techniques

allows the incremental reconstruction method to take point-matches across multi-

ple views into consideration, and thus more accurate results are achieved. This is

different from previous approaches which consider only point matches across two or

three views. Therefore both higher accuracy and efficiency can be achieved at the

same time by the proposed multiple view reconstruction method.

7.2 Future Work

People can easily manipulate in a three dimensional world, although they only sense

2D projections of it. For years, researchers have worked on this seemingly effort-

less behavior. However, despite the fact that we seem to have known quite a lot

about vision, the state-of-the-art computer vision systems still have no match for

human vision, especially when the efficiency of the process is concerned. Though

mathematics allows us to study the fundamental geometric principles underlying

visual perception as this dissertation has shown, time used to process the massive

computations is still by far incomparable to that of the human vision system. A thor-

ough understanding and simulation of the phenomenon of vision not only depends

on the advancement in mathematics, computer science and electronic engineering,

but also relies on more interdisciplinary efforts from many other disciplines such as

neuroscience, psychophysics, and cognitive science.
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A Projective Geometry and

Transformations

The properties and entities of projective space, especially P2 and P3, are described

in this appendix. Projective space is an augmented Euclidean space with a set of

ideal points at infinity. Homogeneous coordinates play an important role in it, with

all dimensions increased by one.

This appendix begins with describing the homogeneous representation of points,

lines and planes in projective space, and how these entities map under projective

transformations. Then it introduces a hierarchy of projective transformations and

the invariant properties under different levels of transformations.

A.1 The Projective Space - Homogeneous

Coordinates

It is common to identify a plane with 2D Euclidean space R2, and a 3-space with

3D Euclidean space R3; and the finite points in them are represented by 2-vectors

and 3-vectors respectively. Projective space is an extension to Euclidean space in

which points, lines or planes at infinity are treated no differently from those in finite

space. The following of this section will introduce the homogeneous representation

of points, lines, and planes in projective space.

Points in projective n-space, Pn

A point in projective n-space, Pn, is given by a (n + 1)-vector of coordinates x̃ =

(x1, · · · , xn+1)
>. At least one of these coordinates should differ from zero. These
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A Projective Geometry and Transformations

coordinates are called homogeneous coordinates. When xn+1 6= 0, x̃ corresponds the

point x = (x1/xn+1, · · · , xn/xn+1)
> in Euclidean space Rn; when xn+1 = 0, the point

is known as a ideal point, corresponding to the point at infinity in the direction of

(x1, · · · , xn)>.

The other way round, the homogeneous corresponds for a point x = (x1, · · · , xn)>

in Euclidean space Rn may be written as x̃ = (x1, · · · , xn, 1)>.

Two homogeneous points p̃ and q̃ are equal if and only if there exists a nonzero

scalar λ such that p̃ = λq̃. This relationship is indicated by p̃ ∼ q̃, with ∼ meaning

equality up to a nonzero scalar factor.

Points and Lines in P2

A line in projective 2-space, P2, e.g. l1x + l2y + l3 = 0, is represented by the

homogeneous 3-vector l = (l1, l2, l3)
>. As with homogeneous points, only the ratio

of homogeneous line coordinates is significant, but not the scaling. The line l∞ =

(0, 0, 1)> is known as the line at infinity. All the ideal points in P2 lie on l∞, since

(0, 0, 1)(x1, x2, 0)> = 0.

The join and incidence relations between the points and lines in P2 are summarized

as follows:

• A point x̃ lies on a line l if and only if l>x̃ = 0, i.e. x̃>l = 0.

• Two distinct points x̃ and x̃′ define a line: l = x̃× x̃′ = [x̃]×x̃′.

• Two distinct lines l and l′ define a point: x̃ = l× l′ = [̃l×l̃′.

The v× above for a 3-vector v = (v1, v2, v3)
> is the matrix notation for vector

product given by

v× =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 .

That means, the vector product ṽ× x̃ can be represented as a matrix multiplication

ṽ×x̃. ṽ× is a 3 × 3 skew-symmetric matrix of rank 2. Its null-vector is ṽ, since

ṽ × ṽ = 0.

Points, Lines and Planes in P3

A plane in P3, e.g. π1x + π2y + π3z + π4 = 0, is denoted by the homogeneous

4-vector π = (π1, π2, π3, π4)
>. The scaling of the homogeneous plane vector is also

insignificant. Every point at infinity (x1, x2, x3, 0)> in P3 lies on a single plane, the

plane at infinity, denoted by π∞ = (0, 0, 0, 1)>, for (0, 0, 0, 1)(x1, x2, x3, 0)> = 0.
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A.2 Projective Transformations

The join and incidence relations of the entities in P3 are given as follows:

• A point X̃ lies on a plane π if and only if π>X̃ = 0, i.e. X̃>π = 0.

• A plane π is uniquely defined by the join of three non-coplanar points X̃1, X̃2

and X̃3, which satisfies

π>
[

X̃1 X̃2 X̃3

]
= 0>. (A.1)

• Three distinct planes π1, π2 and π3 intersect in a unique point X̃, which satisfies

X̃> [ π1 π2 π>3
]

= 0>. (A.2)

• A line is uniquely defined by the join of two distinct points X̃1 and X̃2, which

can be represented by a 4× 2 matrix W:

W =
[

X̃1 X̃2

]
;

and the line is composed of the pencil of points λX̃1 + µX̃2, the span of the

column space of W, where λ and µ are random scalars.

• A line is uniquely defined by the intersection of two distinct planes π1 and π2,

which can also be represented by a 4× 2 matrix:

W∗ =
[

π1 π2

]
.

It is known as the dual representation of a line, and the line is the axis of the

pencil of planes λ′X̃1 + µ′X̃2, the span of the column space of W∗.

The two representations above are related by W>W∗ = W∗>W = 02×2,

where 02×2 is a 2× 2 null matrix.

A.2 Projective Transformations

A projective transformation is a linear transformation on homogeneous coordinates.

For P2, it is represented by a non-singular 3× 3 matrix, and by a non-singular 4× 4

matrix for P3. Tab. A.1 illustrates how points, lines and planes are transformed

under projective transformation in P2 and P3.

Both in P2 and P3 the transformation on homogeneous coordinates can be clas-

sified into four levels: projective, affine, similarity, and Euclidean. A hierarchy is

set up by the four levels of transformation. The set of affine transformations is a
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A Projective Geometry and Transformations

P2 P3

Size of non-singular

transformation matrix (H)
3× 3 4× 4

Point (x) x′ = Hx x′ = Hx

line (l) l′ = H−>l -

Plane (π) - π′ = H−>π

Table A.1: Mapping of points, lines and planes under projective transformations.

P2 P3

Transformations
DOF Distortion DOF Distortion

Invariant Measurements

Euclidean 3 6 angles, distances

Similarity 4 7 angles, relative distances

Affine 6 12 parallelism, center of mass

Projective 8 15 collinearity, cross ratio

Table A.2: Comparison of different levels of transformations.

sub-group of projective transformations, and so is similarity to affine, and Euclidean

to similarity.

Under different levels of transformations, different geometric properties are invari-

ant. Tab. A.2 lists the invariant properties and the possible distortions of a geometric

structure under different levels of transformations in P2 and P3 respectively.
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