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Trends such as the Internet of Things lead to a growing number of networked devices and to a variety of

communication systems. Adding self-adaptive capabilities to these communication systems is one approach

to reducing administrative effort and coping with changing execution contexts. Existing frameworks can

help reducing development effort but are neither tailored toward the use in communication systems nor

easily usable without knowledge in self-adaptive systems development. Accordingly, in previous work, we

proposed REACT, a reusable, model-based runtime environment to complement communication systems

with adaptive behavior. REACT addresses heterogeneity and distribution aspects of such systems and reduces

development effort. In this article, we propose REACT-ION—an extension of REACT for situation awareness.

REACT-ION offers a context management module that is able to acquire, store, disseminate, and reason on

context data. The context management module is the basis for (i) proactive adaptation with REACT-ION

and (ii) self-improvement of the underlying feedback loop. REACT-ION can be used to optimize adaptation

decisions at runtime based on the current situation. Therefore, it can cope with uncertainty and situations that

were not foreseeable at design time. We show and evaluate in two case studies how REACT-ION’s situation

awareness enables proactive adaptation and self-improvement.
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1 INTRODUCTION

With increasing network sizes, mobility, and traffic, it becomes a challenging task to achieve goals
such as continuously delivering a satisfying service quality. Self-adaptive approaches adapt a sys-
tem at runtime according to changes in the execution context [61]. A self-adaptive system con-
sists of the managed target system and an adaptation logic managing the target system. Adding
self-adaptive capabilities to communication systems—computer networks as well as supporting
structures such as overlays or middleware—is a major research focus. For instance, self-adaptive
applications in the software-defined networking (SDN) domain can help to reduce management
effort and improve the network’s performance [21]. SDN provides possibilities to monitor and re-
configure a network by specifying selectors for packets and corresponding actions. An adaptation
logic may use these capabilities for reconfiguring the packet flows at runtime.

Making such communication systems self-adaptive, however, is a challenging task for domain
experts, i.e., communication systems developers. First, the distributed nature of those systems re-
quires the collection of monitoring information from multiple hosts and the adaptation of dis-
tributed components. Second, communication systems consist of heterogeneous components, e.g.,
developed in different programming languages. Third, domain experts typically lack knowledge
about the development of self-adaptive systems.

Instead of manually integrating self-adaptivity, the domain expert may rely on frameworks or
tools. While approaches such as Rainbow [36], SASSY [54], or MUSIC [38] are suitable for the
general purpose of engineering self-adaptive systems, they are neither tailored to communication
systems, nor support the domain expert adequately in these use cases. To the best of our knowledge,
no existing approach supports multiple programming languages, enables decentralized adaptation
logics with distributed deployments, and is available as an easy-to-use open source project for
domain experts.

Motivated by these observations, we proposed REACT, a Runtime Environment for

Adapting Communication SysTems1 in Reference [67] and applied it in a demo case in Ref-
erence [66]. REACT supports domain experts in specifying adaptation behavior in a model-based
fashion with Clafer [8] and UML. By implementing language-independent interfaces and selecting
deployment options, REACT connects to the target system and automatically deploys its integrated
feedback loop. Thus, it is applicable to legacy systems as well. REACT is lightweight and easy-
to-use while satisfying the specific requirements of adaptive communication systems. To bridge
the prevailing gap between self-adaptive systems research and practice [25, 90], we implemented
REACT and made it available as an open source project.2

In this article, we present REACT-ION—an extension of REACT that additionally integrates fea-
tures for providing situation awareness [28] as demanded for self-adaptive systems in Reference
[33]. Situation awareness is “the perception of the elements in the environment within a volume of

time and space, the comprehension of their meaning, and the projection of their status in the near

future” [28]. The core of REACT-ION is a context management module that is able to acquire con-
text data, store it in a context model, and perform reasoning on the data. These features cover the
perception aspect of situation awareness. In addition to its internal context reasoning capabilities,
REACT-ION is able to disseminate context information to (external) components, which may rea-
son on the data as well. Therefore, REACT-ION provides two options for the comprehension part of
situation awareness. As far as projection is concerned, we show in this article how REACT-ION can
be used for proactive adaptation. Proactive adaptation typically requires forecasts, i.e., projections

1This article is an extended version of previous work published in the Proceedings of the 1st IEEE International Conference

on Autonomic Computing and Self-Organizing Systems (ACSOS 2020).
2Available here: https://github.com/martinpfannemueller/REACT.
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of the status in the future. In addition, we use REACT-ION to adapt the underlying adaptation
logic (known as self-improvement [48]) to tackle uncertainty [31]. More precisely, we show how
it is possible with REACT-ION to make a situation-dependent choice of the feedback loop that is
applied for an adaptation.

The remainder of this article is structured as follows. Section 2 reviews related work. Section 3
briefly outlines REACT’s architecture. This section also introduces how REACT’s implementa-
tion supports self-adaptivity. Section 4 proposes REACT-ION. It first presents the concept of sit-
uation awareness in more detail. Based on this concept, the section describes REACT-ION’s con-
text management module. This includes improved interfaces enabling external systems outside
of REACT-ION to use the context information for situation awareness. The section further de-
scribes how REACT-ION can be used for proactive adaptation and for self-improvement of adap-
tation logics. Section 5 first presents a comparative evaluation of REACT and Rainbow. Then, it
describes experiments that evaluate REACT-ION and its capabilities for proactive adaptation and
self-improvement. Finally, Section 6 summarizes our findings and outlines future work.

2 RELATED WORK

In this section, we review related work. In Section 2.1, we present approaches related to REACT,
i.e., frameworks for engineering self-adaptive systems. In Section 2.2, we summarize approaches
to situation awareness in self-adaptive systems. These are approaches particularly related to
REACT-ION—the extension to REACT presented in this article.

2.1 Engineering Self-adaptive Systems

Engineering of self-adaptive systems is a prominent research area with a large body of excellent
related work that we can build upon. We review the research landscape in Reference [49]. Several
related approaches perform adaptations based on architectural models (e.g., References [32, 61, 78])
or specify architecture definition languages for self-adaptive systems (e.g., References [23, 27, 51]).
Model-based engineering approaches such as [11, 34, 59, 68] often use Dynamic Software Prod-

uct Lines (DSPLs) with feature models. The models@run.time research proposes to use runtime
models that represent the system and environment for reasoning [9, 14]. All of the aforemen-
tioned approaches, however, do not offer an implementation explicitly designed to be used by
others. Since we design an approach that aims at high applicability for practitioners and fellow
researchers, we focus on implementation aspects of related work in the remainder of this section,
as summarized in Table 1.

First, an approach that optimally assists domain experts should support all self-* proper-
ties [45]—self-configuration, self-optimization, self-healing, and self-protection—to be suitable for
various use cases in communication systems. Second, the integration of a ready-to-use adapta-
tion decision engine, which adapts the communication system based on models, goals, or utilities
makes the approach useful for domain experts without extensive knowledge about self-adaptive
systems. Third, the support for existing systems is essential to integrate self-adaptivity into legacy
systems. Fourth, a use case independent approach is applicable to a wide range of communication
systems. We observe that multiple approaches fulfill these requirements. However, FESAS [47] and
HAFLoop [94], for instance, provide excellent support with reusable MAPE components, but do
not integrate a decision engine.

We aim to support the domain expert during the development process. In this regard, ap-
proaches that support multiple programming languages (e.g., Reference [52]) are easier to use.
A vast majority of approaches relies on particular programming languages only, with Java
being the most frequently used language. In addition, predefined interfaces as introduced by
the prominent Rainbow [36] framework allow for connecting the target system easily to the
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adaptation logic, which is especially important for legacy systems. Rainbow, however, belongs to
the approaches [19, 20, 36, 54, 80] that do not specify an easy-to-follow development process.

We argue that an approach that is suitable for large and heterogeneous communication systems
must support decentralized control with multiple feedback loops [92]. This typically also encom-
passes that one feedback loop itself can be separated into several distinct components that may
run distributed. Most existing approaches are designed for centralized feedback loops only. As a
running system might change over time in an unexpected way, it is helpful to adjust the behavior
manually, apply self-improvement [48], or change the deployment at runtime. This is true for com-
munication systems in particular, where, e.g., new components or subsystems may join or leave
the system at any time. In several related approaches [5, 19, 20, 36, 69, 79], the influence of the
developer already ends with the design process.

Ideally, the source code of the implementation is publicly available and well documented. This
helps to foster further research and enables adoption by domain experts in practice. Only a small
subset of existing approaches [5, 36, 47, 79, 91, 94] is available at present. Moreover, a comparative
evaluation with other approaches highlights the merits of the particular approach and gives users
guidance to select the proper approach for their respective communication system. Here, only
Rainbow [36] and Zanshin [79] have been compared in Reference [3].

Accordingly, in Reference [67], we proposed REACT, a reusable runtime environment for model-
based adaptations in communication systems. REACT contributes to the state of the art thanks to
its focus on communication systems and domain expert support. None of the existing approaches
offers multi-language support, enables decentralized control as well as distributed deployments,
and is available as an open source project. We made the source code of REACT’s implementation
available and compared it with Rainbow. A summary of the comparison is provided in Section 5.

2.2 Situation Awareness

This section briefly summarizes research related to REACT-ION—the extension to REACT intro-
duced in this article. It presents approaches on (i) context awareness, (ii) proactive and history-
aware adaptation, and (iii) self-improvement and hybrid planning. We focus on implemented ap-
proaches excluding general architectures or methodologies.

2.2.1 Context Awareness. Context is “any information that can be used to characterize the situa-

tion of an entity” [1, p. 304]. The interested reader is referred to References [39, 50] for an overview
of context-aware systems in general. Particularly relevant for REACT-ION is context management,
i.e. the acquisition, modeling, reasoning, and dissemination of context [65]. Prominent approaches
such as Aura [37], CARISMA [18], Gaia [71], or PROACTIVE [85] illustrate that context manage-
ment is a major research focus in the pervasive and context-aware computing domain.

As far as self-adaptive systems are concerned, context awareness and, hence, context manage-
ment are mostly covered implicitly. Being aware of the context, including the state of the environ-
ment and the system itself, is considered as a fundamental property of a self-adaptive system [74].
Context data is often collected via sensor interfaces, e.g., in References [36, 38, 47, 79]. The ap-
proach by Fredericks et al. [33] is an example where context is considered explicitly. The approach
plans adaptations in the large state space of possible contexts using optimization. At runtime,
specific situations are identified and used for finding optimal system configurations with cluster-
ing techniques. The authors apply the approach successfully in a real-world navigation scenario.
In Reference [44], Képes et al. propose a system for modeling the context of software updates in
cyber-physical systems. Based on the context, a situation-aware choice of the optimal time for
updates is made. Nakahara et al. [60] propose CoSMOS, an approach for self-adaptive offloading
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Table 1. Overview of Related Approaches (Depl. =
Deployment, Dev. = Development, Eng. = Engine,
Eval. = Evaluation, ex. = existing, Sup. = Support)

Capabilities Dev. Sup. Depl. Eval.
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ActivFORMS [91] • • • • • • •
Cetina [20] • •

EUREMA [87, 88] • • • •
FESAS [47] • • • • • • • •
Genie [10] • • • • •
GRAF [2] • • • • • • •

HAFLoop [94] • • • • • • • •
KX [64] • • • • • •

Malek [52] • • • • • • •
MOSES [19] • •
MUSIC [38] • • • • • •
Preisler [69] • • • • •

Rainbow [24, 36] • • • • • • •
REFRACT [80] • • •

SASSY [54] • • • • •
StarMX [5] • • • • • •

Tomforde [82] • • • • • • •
Zanshin [79] • • • • • • • •
REACT [67] • • • • • • • • • • •

decisions. In their system, the offloading strategy of applications is adapted at runtime based on
the context.

2.2.2 Proactive and History-Aware Adaptation. In this article, we show how REACT-ION’s con-
text management module can be used to perform proactive adaptation (cf. Section 4.2). Related
to this, the PROACTIVE project [85] presents an approach for handling proactive system config-
urations in pervasive computing systems. A constraint satisfaction problem is solved that takes
different application requirements into account. In Reference [16], Cámara et al. propose a formal
model and algorithm that considers the time required for an adaptation—such as booting an addi-
tional server in a cloud scenario—for proactive adaptation. As an extension, Moreno et al. [55] also
consider uncertainty and use model checking at runtime for making adaptation decisions. They
apply a Markov Decision Process (MDP). One drawback is that the MDP has to be constructed
for each adaptation decision. Consequently, in Reference [56], the authors move a large portion of
the MDP construction to the offline phase for increasing the adaptation speed. In Reference [77],
Shin et al. propose PASTA—a proactive adaptation approach that uses statistical model checking.
The approach tackles state explosion by providing an algorithm, a reference architecture, and an
open-source implementation.

Closely related to proactive adaptation, history-aware adaptation describes approaches that are
time-aware and include time series modeling for reasoning about the next adaptation [73, 84].
In Reference [35], García-Domínguez et al. argue that model-based approaches often use model
evolution for integrating changes at runtime. The authors propose an extension of a model
query language to keep track of model changes in a scalable way and to annotate “situations of
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interest” [35]. This enables to easily query the system specifically for annotated situations and can
be considered as an indexing approach. Additionally, the approach takes specific model evolution
steps into account for determining “time-aware patterns” [35]. A time-aware pattern happens,
e.g., if a hierarchical model node does not have children at one time stamp and has some children
at another. Accordingly, the system enables to directly query such situations. Comparably,
in Reference [73], Sakizloglou et al. propose a (memory-efficient) querying scheme for model
history. Their approach has the advantage of enhancing a runtime model with history-aware
capabilities and has a strong focus on scalability by including pruning strategies.

2.2.3 Self-Improvement and Hybrid Planning. Self-improvement is the “adjustment of the adap-

tation logic to handle former unknown circumstances or changes” [48, p. 2] in the environment or
the target system. We review self-improvement approaches in Reference [48]. ActivFORMS [91]
follows the Three-layer Architecture (3LA) proposed by Kramer and Magee in Reference [46].
The architecture includes an additional goal management layer that adapts the adaptation logic.
Hence, the goal management layer represents the self-improvement mechanism. PLASMA [81]
uses two models that capture the possible system states and the architecture of the target system.
It also uses a specific layer for generating new plans in the case of changing high-level goals
or failing components. FUSION [30] is a utility-based approach that adapts the knowledge base
of the adaptation logic. The FESAS Adaptation Logic Manager (ALM) [72] encompasses an
additional MAPE-K-based layer on top of an adaptation logic. This additional feedback loop
performs self-improvement of the underlying adaptation logic.

In this article, we use REACT-ION for hybrid planning. Hybrid planning describes a form of
self-improvement where the feedback loop for adaptation is chosen at runtime (among several
alternatives). In References [62, 63], Pandey et al. specifically define the hybrid planning problem
and investigate multiple planning alternatives for balancing adaptation quality and adaptation
speed. EUREMA [88] proposes a model-based engineering approach for specifying adaptation log-
ics. Additional trigger conditions can be used at runtime to select the feedback loop that should be
executed. In Reference [43], the authors propose a reinforcement learning-based approach for im-
proving the decision-making system of a robot, which is similar to hybrid planning. HAFLoop [94]
extends FESAS [47] with the explicit option to adapt the adaptation logic component’s param-
eters and structure in a reusable way. This also permits having multiple parallel adaptation
logic components and restructuring them at runtime according to changing contexts and system
goals.

3 REACT: A REUSABLE RUNTIME ENVIRONMENT FOR ADAPTIVE
COMMUNICATION SYSTEMS

We briefly introduce REACT’s architecture and internal feedback loop based on Reference [67] in
this section, before we present REACT-ION—the extension for situation awareness—in Section 4.

3.1 REACT’s Architecture

In contrast to self-adaptation frameworks that offer a standard way to build self-adaptive
applications, we refer to REACT as a runtime environment, i.e., a platform that is additionally able
to plan and execute adaptations based on user-specified adaptation behavior. REACT includes a
feedback loop as well as interfaces for connecting target systems. Potential target systems in the
communication systems domain are overlay networks such as peer-to-peer systems and underlay
networks, e.g., in SDN scenarios. However, REACT could possibly be used in other application
domains as well. The feedback loop follows the MAPE-K architecture that consists of components
for (i) Monitoring the system and the environment, (ii) Analyzing the monitored data for
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Fig. 1. REACT’s architecture in a UML-like notation. It consists of one or multiple MAPE feedback loop(s)
connected to instance(s) of the knowledge service with the adaptation options specification and target system

specification provided by the domain expert. REACT’s reusable feedback loop uses the adaptation options

specification to solve the current adaptation problem and maps it to the target system with the target system

specification. The target system connects to REACT via well-defined sensor and effector interfaces.

necessary adaptations, (iii) Planning the adaptations, and (iv) Executing the adaptations in the
target system as well as (v) a shared Knowledge base [45]. The feedback loop uses information
stored in the knowledge for reasoning. It receives sensor information from the communication
system as an input and determines the required adaptations as an output via interfaces. Figure 1
shows REACT’s architecture on top of a communication system using a UML-like notation. The
MAPE components and the knowledge service are generic internal parts of REACT and are inde-
pendent from the use case. These gray parts in Figure 1 are encapsulated in a ready-to-use fashion
and do not require any programming effort from the domain expert. The white boxes represent
the specifications and the effector implementation that have to be provided by the domain expert.

As models provide a sufficient level of expressiveness while being easy to use for domain experts,
we selected a model-based approach for REACT’s feedback loop. By creating the models at design
time, the domain expert tailors the feedback loop to the respective use case. Thus, the domain
expert is able to integrate self-adaptivity into the target system by only providing the models used
as decision criteria. These models are then used by the readily provided internal feedback loop of
the runtime environment. REACT requires two models:

(1) The adaptation options specification is an explicit representation of valid reconfigura-
tion options. It thus describes the problem space with a structural modeling language, including
constraints.

(2) The target system specification models the architecture of the target system, i.e., the solu-
tion space. After solving a problem in the problem space, REACT maps the result to the solution
space according to the target system specification.

With these two models, REACT is able to perform architectural as well as parametric adap-
tation [53]. The separation of the two models decouples the specification of the reconfiguration
behavior from the target system and its architecture. REACT uses the live sensor data provided by
the communication system together with the adaptation options specification to adapt the system
to the desired target state. REACT’s internal MAPE components themselves are reusable, since
they are working with arbitrary adaptation options specifications and target system specifications.
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12:8 M. Pfannemüller et al.

To connect to the underlying communication system, REACT provides programming language
independent sensor and effector interfaces (ISensor and IEffector). The sensor receives live con-
text information from different parts of the communication system and forwards it to the feedback
loop. The effector transfers the result of the feedback loop to the respective part of the commu-
nication system. The exposed IKnowledgeService interface can be used by domain experts to
update the specifications stored in a knowledge service instance at runtime. This may be neces-
sary due to two reasons. First, complexity and uncertainty may lead to situations that were not
foreseeable at design time [83]. Second, environmental changes may necessitate model changes.
The IKnowledgeService interface thus allows, for instance, REACT to be connected to a self-
improvement [48] module that continuously learns and improves the models. Multiple instances
of the MAPE-K components and the sensor can be distributed on different machines, as the com-
munication between the components is handled by REACT. Thus, this enables high scalability and
allows distributed deployments and decentralized control. Fully decentralized or hybrid patterns,
as described in Reference [92], are realizable.

3.2 Enabling Self-adaptivity with REACT

In this section, we summarize the implementation of REACT and how it achieves self-adaptivity.
First, we describe how domain experts use a model-based specification approach for self-
adaptation with REACT. Second, we explain REACT’s integrated feedback loop that leverages
the model-based specification without human intervention. Third, we show how REACT makes
decentralized control, distributed deployment, and changes at runtime possible.

3.2.1 Modeling. An essential part of REACT are the models of the adaptation behavior (adapta-

tion options specification) and of the target system (target system specification). The domain expert
provides these models at design time and may update them at runtime. REACT uses the models
at runtime to adapt the target system. REACT supports adaptation options specifications in the
structural specification language Clafer (CLAss, FEature, Reference) [8]. There are multiple
reasons to use Clafer. First, it is a well-established approach applied in different domains [4, 8],
which is available as an open source project and extensively documented. Second, Clafer provides
lightweight modeling capabilities with just a minimal set of concepts. Thus, Clafer makes model-
ing accessible to users from different domains without large modeling experience. Third, Clafer
provides model verification and validation [7]. By using Clafer, REACT offers the possibility for
advanced static analysis as presented in Reference [89]. Thus, we can make sure that no contradic-
tions exist in the Clafer specifications and that each possible sensor input leads to valid adaptation
decisions.

A Clafer-based model is created using a single type of element, named Clafer. A Clafer repre-
sents a type, an attribute, a relationship, an instance, or a combination of these. Each Clafer has a
name and is either top-level or nested under other Clafers. Nesting is expressed using indentation.
We illustrate Clafer’s basic modeling capabilities with the following use case from a cloud server
management scenario, where a domain expert uses REACT to implement adaptive behavior. Based
on the context dimensions (i) number of running servers, (ii) total number of servers, and (iii) av-
erage response time, REACT launches additional servers adaptively if required. The launch of an
additional server happens if the average response time exceeds a threshold value (here 75) and
additional servers are available. Listing 1 shows an exemplary adaptation options specification in
Clafer for this use case. Line 1 contains a (top-level) Clafer named ServerLauncher that describes
that an additional cloud server should be started. Clafers may have cardinalities, while the default
cardinality is 1. By adding 0..1 to Line 1, we specify that model instances are valid with either
none or only one ServerLauncher Clafer. Clafers may be abstract. An abstract Clafer “aggregates
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1 ServerLauncher 0..1
2 abstract Context 1
3 servers −> integer 1
4 maxServers −> integer 1
5 responseTime −> integer 1
6 ExtraServers 0..1
7 HighRT 0..1
8 [ if Context.servers < Context.maxServers then one ExtraServers else no ExtraServers
9 if Context.responseTime >= 75 then one HighRT else no HighRT

10 if HighRT && ExtraServers then one ServerLauncher else no ServerLauncher ]

Listing 1. Adaptation options specification in Clafer for self-adaptive cloud server management.

commonalities” [4] like a class in object-oriented programming. Hence, a Clafer can inherit from an
abstract Clafer and use abstract Clafers like a type. The lines 2–5 describe an abstract entity of type
Context with integer attributes. A solution of this problem space requires to have exactly one in-
stance of this Clafer with all attributes set. Lines 6 and 7 define the auxiliary Clafers ExtraServers
and HighRT that state whether it is possible to start an additional server and whether the response
time is high. In addition, a Clafer model may contain constraints in brackets. Lines 8 and 9 spec-
ify constraints that set the auxiliary Clafers ExtraServers and HighRT according to the context.
Line 10 is the adaptation rule stating that the ServerLauncher Clafer should be present in a model
instance if the response time is high and more servers are available.

REACT uses separate models for the adaptation behavior, which is modeled in Clafer, and the
target system. Hence, REACT needs a mapping from the problem space to the solution space, which
represents the target system. For this purpose, REACT uses the target system specification, which
the domain expert provides in UML as class diagrams. In many cases, a UML model of a target
system might already exist and be ready to use as a target system specification for REACT. This
considerably decreases development effort. In addition, an automated creation of a UML model
from source code can also reduce the time for modeling. REACT parses the UML class diagram
as an XML file complying with the UML 2 Abstract Syntax Metamodel by the Object Management
Group. Due to this standardized format, the domain expert can create the XML file manually or
use a graphical editor that offers an export in this format such as Papyrus.3 In the cloud server
management example with its adaptation options specification in Listing 1, the simplest UML model
only contains a single class named ServerLauncher. An instance of this UML model indicates if
the corresponding class should be present in the target system or not.

3.2.2 Integrated Feedback Loop. The previous section describes the modeling of the adapta-

tion options specification in Clafer and the target system specification in UML. Now, we show
how REACT autonomously leverages these use case dependent models to achieve self-adaptivity.
Figure 2 shows the behavior of REACT’s integrated MAPE-K feedback loop in the aforementioned
cloud server management example. The feedback loop starts as soon as new sensor information

is received via the sensor interface in JSON format. In the example, this sensor data 1 is context
information about the cloud system. The received information is handed over to the monitoring
component.

REACT allows domain experts to choose from multiple integrated monitoring strategies. In the

default strategy, the monitor parses the raw JSON data and hands it to the analyzer as a map 2 .
REACT offers an aggregation strategy that additionally aggregates information from multiple sen-
sors and a windowing strategy that applies a sliding window approach to the incoming sensor

3https://www.eclipse.org/papyrus/.
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values. An IMonitoringStrategy interface further makes it possible for advanced users to create,
share, and integrate custom monitoring strategies.

The analyzer fetches the adaptation options specification 3 from the knowledge service. It uses
the abstract Clafers specified in the adaptation options specification to create concrete Clafers from
the monitoring data. To achieve this mapping, the original sensor data contains type attributes.
REACT uses these type attributes to map the monitoring data objects to the correct abstract Clafers
in the adaptation options specification. In the exemplary case, the type has the value Context and

REACT therefore maps it to the Context Clafer in the adaptation options specification 3 . The

concrete Clafers are then forwarded to the planning component 4 .
REACT’s planner merges the generated Clafers with the adaptation options specification to

the problem specification. The problem specification thus contains the global constraints of the
adaptation options specification and the current constraints imposed by the sensor data. Now,
REACT solves this problem specification as a constraint-satisfaction problem (CSP) with
Chocosolver [70], a Java-based library for constraint programming. Hence, the solver finds a model

instance 5 that satisfies all constraints. In the exemplary case, this model instance would either
contain or not contain the ServerLauncher Clafer, which constitutes the adaptation decision.

The planning result in the form of concrete Clafers is then passed to the executor, which

maps the Clafers to the target system specification 6 . REACT maps the Clafers by name to the
classes or parameters of the UML model and creates a UML instance. In the example, the cre-

ated ServerLauncher Clafer (note the missing 0..1 cardinality in 5 ) is mapped to the class
ServerLauncher of the target system specification. REACT transforms the UML instance to a
language-independent representation. Finally, the executor passes this representation via the effec-

tor interface 7 to the target system, where adaptations will take place. The integrated feedback
loop of REACT works with arbitrary adaptation options specifications and target system specifica-

tions and is thus applicable to a wide range of scenarios.

3.2.3 Communication and Deployment. We showed how REACT makes it possible to build self-
adaptive communication systems or integrate self-adaptive behavior into a legacy system while
only demanding two models from the domain expert and low programming effort. Another main
strength of REACT is its ability to run distributed. To achieve this, REACT’s internal communica-
tion interfaces between MAPE components, knowledge service, and sensor/effector interfaces are
specified in ZeroC Ice’s Interface Definition Language [41]. Ice is a well-established framework
for creating Remote Procedure Call (RPC) bindings to many programming languages. For sup-
porting distribution, runtime change of the deployment, and bootstrapping, REACT’s MAPE-K
components and sensors are integrated into OSGi bundles with iPOJO [29]. The domain expert
deploys the system with a key-value-based configuration file for each component. REACT’s OSGi
runtime then instantiates one component for each available key-value-based configuration file
on a host. Thus, domain experts can deploy the feedback loop easily in a distributed way. For
setting up the connections to the successor and knowledge component(s), REACT uses Multicast
DNS in local networks or a Consul4 registry for automatic setup, or manual IP address and port
specifications.

Apart from distributed deployment, REACT further supports changes of the adaptation options

specification, the target system specification, and the deployment at runtime. REACT allows to use
an RPC at runtime to add models remotely to the knowledge service. Hence, a domain expert can
change the self-adaptive behavior without interruptions. The domain expert can also change the

4https://www.consul.io/.
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deployment or re-locate REACT’s components. After updating the configuration files, REACT’s
OSGi containers reconfigure automatically.

4 REACT-ION: SITUATION AWARENESS WITH REACT

In this article, we present REACT-ION—an extension for REACT that achieves situation awareness.
Situation awareness can be defined as“the perception of the elements in the environment within a

volume of time and space, the comprehension of their meaning, and the projection of their status in

the near future” [28]. Accordingly, the three levels of situation awareness consist of (i) perception,
(ii) comprehension, and (iii) prediction [28]. Situation awareness has already been applied in the
ubiquitous and pervasive computing domain, mainly with a focus on the perception and compre-
hension levels (e.g., see Reference [93]). Fredericks et al. have studied and discussed the usefulness
of situation awareness in self-adaptive systems in Reference [33]. REACT-ION supports all three
levels of situation awareness. First, it extends REACT with perception by providing a context man-
agement module (cf. Section 4.1). As the comprehension of a situation is dependent on the use case
and scenario, the context manager is also able to distribute context information for supporting the
domain expert to reason about it and integrate arbitrary situation recognition techniques. For ad-
dressing the projection, we show how REACT-ION can be used to adapt a target system proactively
(cf. Section 4.2). As soon as situations can be determined, this information can be used for adapting
the adaptation logic (i.e., self-improvement [48]) to tackle uncertainty [31]. Thus, we exemplarily
apply hybrid planning with multiple feedback loops (cf. Section 4.3). This enables the domain ex-
pert to choose a feedback loop based on the current situation of the system. As REACT-ION is an
optional extension, domain experts are free to disable it for use cases that require a lightweight
deployment of REACT.

4.1 Context Management Module

REACT-ION provides a context management module as a foundation for situation awareness.
The integration of this context management module has two implications. First, it paves the way
toward proactivity as well as self-improvement [48] with REACT, i.e., adapting the adaptation
logic. The context manager is able to collect and distribute the context to an external software
component such as a machine learning pipeline. This external component may reason on the data
to infer the current situation. Based on the situation, the external component is then able to modify
the REACT-based system with REACT’s well-integrated options for runtime modification (cf. Sec-
tion 3.1). Second, context management may accelerate adaptation. If the context has been similar
in the past, then REACT-ION may skip the planning process and perform the same adaptation
again.

4.1.1 Architecture. In Reference [65], Perera et al. define the context life cycle, which describes
how context information is processed in a context-aware system. The life cycle consists of four
phases: acquisition, modeling, reasoning, and dissemination. The acquisition phase describes how
the context data is gathered from several sources such as physical or virtual sensors. In the second
phase (context modeling), this context data is transformed into a “meaningful” representation, i.e.,
the context model. This context model “identifies a concrete subset of the context that is realistically

attainable [...] and able to be exploited in the execution of the task” [42]. Usually, a context model
consists of multiple context attributes that contain an identifier, a type, a value, and optional prop-
erties. With the help of the context model, the system performs context reasoning—the third phase
of the life cycle. In this phase, the system exploits the context model to gain new knowledge or im-
prove its performance [13]. For instance, a situation-aware system may infer the current situation
from the context model and adapt accordingly. In the final phase of the life cycle (dissemination),
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Fig. 2. An adaptation cycle of REACT for the cloud server management example. The analyzer maps the
JSON-based sensor information to the adaptation options specification in Clafer. The planner evaluates the
model and finds a valid instance. Here, it adds a ServerLauncher Clafer as starting a new server is desired.
The effector maps the plan to the target system specification in UML and transfers the adaptation to the
target system.

the system distributes the context information to external components, either initiated by a query
or a subscription.

We design REACT-ION’s Context Manager along the four phases of the context life cycle. Thus,
the context manager consists of four components with clear responsibilities. These four compo-
nents are Acquisition, Storage, Reminiscence, and Distribution. They are responsible for context
acquisition, modeling, reasoning, and dissemination, respectively. Figure 3 shows the architecture
of REACT-ION including the context manager. In the following, we introduce how REACT-ION
performs the four phases of the life cycle.

The context acquisition process starts at REACT-ION’s ISensor interface that receives sensor
data from the target system. This data may originate from multiple physical or virtual sensors. As
REACT-ION is a generic runtime environment that is applicable to a wide range of use cases, it has
to be able to collect context data from diverse sensors. To achieve this, REACT-ION includes the
standardized ISensor interface. The data sources connect to REACT-ION via this interface and
provide context data in JSON format according to the adaptation options specification (cf. Figure 2
and Section 3.2.2). The analyzer forwards the current context information to the knowledge service.
The acquisition component of the context manager is now responsible for receiving the context
information from the knowledge service and prepares it for storage in the context model.

The Storage component contains the context model. It covers the second phase of the context
life cycle. Approaches for context modeling range from simple key-value pairs over model-based
approaches (e.g., Reference [18]) to ontology-based approaches (e.g., Reference [71]). REACT-ION
uses a database for context modeling, which allows for fast and simple storage and retrieval of
large amounts of context information [65]. In addition to the context information, the database
stores the corresponding adaptation decisions of REACT-ION.
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Fig. 3. Architecture of REACT-ION including the optional context manager module. The context manager
encompasses four components: Acquisition, Storage, Reminiscence, and Distribution. AOS: adaptation options

specification, TSS: target system specification.

As far as the third phase of the context life cycle (reasoning) is concerned, REACT-ION offers two
options. First, the internal Reminiscence component is able to decide whether the current context
has been sensed in the past. In this case, REACT-ION skips the planning phase of its feedback loop
and executes the previously planned adaptation. If a context is unknown, then the context is added
to the context model and the loop continues. Accordingly, the executor sends the corresponding
target system specification to the knowledge component, which forwards it to the context manager.
This enables to use this adaptation in future loop executions that skip the planning phase. The
configuration file of the analyzer (cf. Section 3.2.3) allows domain experts to enable or disable this
behavior. As slight deviations in a numerical context dimension should be interpreted as a similar
context, the Reminiscence component uses absolute thresholds. Only if the new value differs from a
previous value by more than this absolute value, it will be considered as a new state. The thresholds
are configurable at design time and at runtime. Second, an external component may reason on the
context information. For this purpose, REACT-ION is able to disseminate the context information
to external components, which is the last phase of the context life cycle.

In REACT-ION, the Distribution component is responsible for context dissemination. This com-
ponent communicates with external software that, e.g., reasons on the context information to
detect the current situation. REACT-ION requires a flexible solution that is applicable in many
use cases. Thus, the Distribution component is able to work both subscription- and query-based.
It disseminates (new) context information and planned adaptations via a publish/subscribe sys-
tem. External components may also query the Storage component—and, hence, also the context
model—via this publish/subscribe system.

4.1.2 Implementation. For context acquisition, the context information in form of Clafers cre-
ated in the analyzer is used as foundation. All Clafers in the adaptation options specification without
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a corresponding element in the UML-based target system specification represent the context. The
Storage component includes a MySQL5 database with one or multiple tables for the context and one
table for the adaptations. REACT-ION automatically generates the table structures at the system
start based on the adaptation options specification and the target system specification. The adapta-

tion options specification already pre-defines a suitable schema for the SQL-based context table(s)
to store the context information. In the example shown in Figure 2, this would lead to a single
context table named Context with three integer attributes representing the servers, maxServers,
and responseTime attributes as columns. In addition to simple data types, the Clafer language also
includes abstract Clafers that describe complex types, similar to classes in object-oriented program-
ming. REACT-ION creates a separate table for each abstract Clafer if such Clafers are part of the
context information. The separate tables include a foreign key relation to the main context table.
The adaptations table contains an entry for each parameter of all components in the target system

specification. A foreign key relation in the adaptations table references the corresponding context
in the context table. In the example in Figure 2, the component column of the adaptations table
would either be empty or contain the String ServerLauncher.

The Reminiscence component contains a map structure that stores the configurable percent-
age thresholds for numerical context dimensions. REACT-ION offers an interface to adjust these
thresholds at runtime via a method in the IKnowledgeService interface (cf. Section 3.1). This is
beneficial in use cases where the frequency of planning should be adjusted at runtime, e.g., to skip
the planning phase more often when the computational load for the REACT-based feedback loop
is high.

The Distribution component uses the Message Queuing Telemetry Transport (MQTT) proto-
col to provide a lightweight publish/subscribe solution. The usage of the well-established protocol
enables an intuitive communication of external components with REACT-ION’s context manage-
ment module. We use Eclipse Mosquitto6 for the MQTT broker and Eclipse Paho7 as the Java
library for communicating with the broker. If the context distribution is enabled via a method in
the IKnowledgeService interface (cf. Section 3.1), then the module connects to an MQTT bro-
ker and publishes events. REACT-ION allows domain experts to start a local MQTT broker or to
connect to an external one.

The context management module offers a foundation for several sophisticated use cases with
REACT-ION. In the following, we investigate two options. First, we show in Section 4.2 how
REACT-ION achieves proactive adaptation based on the context management module. Second, we
show in Section 4.3 how context-awareness can be used as foundation for self-improvement with
REACT-ION.

4.2 Proactive Adaptation with REACT-ION

Self-adaptive systems either perform reactive or proactive adaptation [49]. Traditionally, many self-
adaptive systems only adapt after a change in the target system has been detected, which makes
them reactive. This has several disadvantages such as slower adaptation to changes, which may—in
the worst case—lead to a failing target system. Proactive adaptation aims at avoiding such situa-
tions in the first place [39, 49]. In general, for performing proactive adaptation, the system context
has to be known [85]. REACT-ION’s context management module covers this requirement. In this
section, we show how proactive adaptation can be achieved with REACT-ION.

5https://www.mysql.com.
6https://mosquitto.org/.
7https://www.eclipse.org/paho/.
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Proactive adaptation with REACT-ION requires three steps: (i) communicating the context to a
prediction system, (ii) predicting future context, and (iii) using the prediction to plan adaptations.
In REACT-ION’s context management module, the context is represented as a Clafer-based
specification, which is transformed into a context database. Hence, the context management
module provides a history of context information in a structured way in its Storage component.
In addition, the Distribution component is able to communicate with external prediction and
learning systems. Thus, REACT-ION’s context management module is suitable to perform the
first step of proactive adaptation.

The choice of the prediction system for step (ii) is highly dependent on the use case. Domain
experts are able to easily connect their prediction system of choice to REACT-ION’s context
management module via the platform-independent publish/subscribe system. Often, time series
forecasting is used for prediction [96]. In Section 5.2, we therefore show how to connect a
REACT-based self-adaptive system to the Telescope [95] time series forecasting framework to
make context predictions.

REACT-ION offers two options to use the prediction for proactive adaptation in step (iii): an
implicit and an explicit approach. For the implicit approach, the prediction system sends the pre-
dictions to REACT-ION via the ISensor interface. Instead of the current context information,
REACT-ION uses the prediction for the usual planning process. Consequently, REACT-ION adapts
the system based on the predicted information instead of the current context, which results in
proactive adaptation. This approach leads to minimal effort for domain experts, since adaptation

options specification and target system specification do not need to be changed. On the downside,
this approach may lead to bad adaptation decisions as it only relies on—possibly inaccurate—
predictions. Thus, REACT-ION also offers the explicit approach, where the predicted context is
added to the adaptation options specification. In this case, the adaptation decisions are based on
both the current context and the predicted context. Even though this approach requires additional
modeling overhead, it enables domain experts to influence how the predictions are incorporated
into the decision-making process.

4.3 Self-Improvement with REACT-ION

REACT-ION’s context management module enables domain experts to introduce situation aware-
ness to their system. Additionally, REACT-ION offers the option to modify the feedback loop at
runtime (cf. Section 3.1). When combining both, domain experts are able to modify the feedback
loop based on the current situation, i.e. to apply self-improvement. Self-improvement is important
as complexity and uncertainty may lead to situations that were not foreseeable at design time [83].
Examples for such situations include a significant change in the system’s environment or user
group (hence, the users’ objectives) or the requirement to add or update adaptation decision rules
through learning.

REACT-ION offers three options for self-improvement. First, the adaptation options specifica-

tion and the target system specification may be adjusted at runtime (cf. Section 3.1) based on the
current situation. This leads to a change of the reconfiguration behavior. Second, the deployment
of REACT-ION’s MAPE-K components is changeable at runtime (cf. Section 3.2.3). For instance,
in high load situations, analyzer and planner may be migrated to separate machines. Third, sev-
eral MAPE-K loops might exist simultaneously and might be used for different situations. In this
section, we show how REACT-ION is able to achieve self-improvement in this case.

In the literature, many approaches for analyzing and planning in self-adaptive systems exist.
The approaches differ in their adaptation speed, ease of use, applicability for many use cases,
and memory consumption. We propose to combine several reasoning approaches and to choose
the suitable feedback loop based on the current situation. The reconfiguration behavior of a
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Fig. 4. Exemplary CFM that represents the reconfiguration space of the wireless connectivity of a smart-
phone. Depending on the constraints, it determines the selection of LTE or Wifi for providing wireless
connectivity.

REACT-based system is modeled in Clafer and UML. Planning happens by solving a constraint-
satisfaction problem (cf. Section 3.2). This approach is easy-to-use for domain experts but may lead
to considerable overhead in terms of computational complexity and memory footprint.

We now integrate an alternative reasoning approach into REACT-ION. This approach relies on
context feature models (CFMs) [40, 75] for specifying the problem space. A CFM is a hierar-
chical tree-like model. It specifies the reconfiguration space of a self-adaptive system including
the adaptations based on the context. While the left subtree represents the configuration features
and attributes of the system, the right subtree represents context features and context attributes.
Constraints between both subtrees resemble the reconfiguration behavior. Figure 4 shows a small
example CFM of a smartphone reconfiguring its wireless connectivity. In the shown model, the
system can turn on the LTE and/or Wifi features for providing the Wireless Connectivity feature.
The context includes the current latency of the connection and the location of the phone. The
phone can either be Away or at Home. Accordingly, the shown constraints turn Wifi on at home,
and off when being away. Finally, if using the Wifi connection results in a higher latency than
100 ms, then the LTE connection is enforced for decreasing the latency.

CFMs can be translated into Boolean satisfiability (SAT) problems or mixed-integer linear

programming (MILP) problems [89]. While SAT problems can be solved relatively fast with lower
expressiveness, MILP problems can be applied to specifically state integer or real parameters and
optimize the results using multi-objective optimization. Figure 5 shows REACT-ION’s architecture
with CFM-based reasoning. The knowledge consists of the CFM specified with CardyGAn [76],
which models the problem space, and a (UML) class diagram, which models the solution space. In
the monitoring step, the sensor data is preprocessed. In the analyzing phase, the right subtree of
the CFM—the context—is instantiated. Based on this context information, the planning component
transforms the CFM and the context instance to a SAT or MILP problem resulting in a complete
system configuration including the system features. Finally, the executing phase creates a class
diagram instance of the solution space from the completed CFM. For more information on this
feedback loop, the interested reader is referred to Reference [89].

Deploying both the Clafer-based feedback loop and the CFM-based loop simultaneously has
several advantages. For instance, it might be beneficial to execute the CFM-based reasoning
approach with a SAT solver if the target system is in a critical state. While the result might not be
optimal, it could be good enough for bringing the system back into a non-critical state as fast as
possible. At the same time, a more complex Clafer-based planner could be executed as well, which
provides an optimized solution later. Hence, situation awareness enabled by the context manage-
ment module may improve adaptation decisions at runtime by selecting the suitable feedback
loop or by executing multiple loops in parallel. In Section 5.3, we evaluate self-improvement with
REACT-ION in a case study in which we use the Clafer-based and the CFM-based feedback loops
simultaneously.
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Fig. 5. Architecture and functionality of REACT-ION using the CFM-based feedback loop. The knowledge
consists of a CFM representing the problem space, a class diagram representing the solution space, and an
explicit mapping between both. The boxes attached to the MAPE functionalities show the results of each
component [89]. The context manager is omitted here.

5 EVALUATION

We evaluate REACT and its extension REACT-ION in three experiments. First, Section 5.1 com-
pares REACT with Rainbow [36]—a well-known and frequently applied framework for model-
based adaptation. This section summarizes the essential findings from the evaluation of REACT
in Reference [67]. Second, Section 5.2 builds upon the extensions of this article and evaluates
proactive adaptations with REACT-ION in a smart grid use case. Third, Section 5.3 outlines the
evaluation of applying different feedback loops as part of REACT-ION which enables the system
to select feedback loops at runtime for self-improvement. Finally, Section 5.4 discusses potential
threats to validity.

5.1 Comparison of REACT and Rainbow

In our first experiment, we compare REACT with the well-known Rainbow framework [36] in
terms of development effort, performance, and features.

Rainbow—the baseline approach: The Rainbow framework uses software architectures and
a reusable infrastructure to support self-adaptation of software systems, with components imple-
menting each aspect of the MAPE-K loop. Probes are used to extract information from the target
system that update the model via gauges, which abstract and aggregate low-level information to
detect architecture-relevant events and properties. The adaptation manager, on receiving the adap-
tation trigger, chooses the “best” adaptation plan—on the basis of stakeholder utility preferences
and the current state of the system, as reflected in the models—to execute, and passes it on to the
strategy executor, which executes the strategy on the target system via effectors. The underlying
decision making model is based on decision theory and utility [24]; varying the utility preferences
allows the adaptation engineer to affect which strategy is selected. Each strategy, which is written
using the Stitch adaptation language [23], is a multi-step pattern of adaptations in which each
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Table 2. SLOC Measurements of the Modeling in Rainbow and REACT

Rainbow REACT

Artefact SLOC Language Artefact SLOC Language

Strategies

and tactics
113 Stitch

Adaptation

options

specification

123 Clafer

Utilities 55 YAML

Architecture

Model

261 YAML
Target

system

specification

38 XML
128 ACME

25 DTD

11 XML

Total 593 Total 152

step evaluates a set of condition-action pairs and executes an action, namely, a tactic, on the tar-
get system with variable execution time. As a framework, Rainbow can be customized to support
self-adaptation for a wide variety of system types. Furthermore, the flexibility of the framework
has enabled not only the multi-object trade-off selection of strategies among competing objectives
that is embodied in Stitch, but has also supported research into online adaptation planning [15],
predictive proactive adaptation [57], and human-machine cooperation [17].

SWIM—the use case: We deploy Rainbow and REACT with the SEAMS exemplar SWIM (Sim-
ulator for Web Infrastructure and Management) [58], which represents a cloud system. SWIM [58]
offers a reproducible way for evaluating adaptation logics in a web server environment. The SWIM
exemplar consists of multiple simulated web servers connected to a round-robin load balancer. The
load balancer distributes simulated requests and the corresponding server simulates the execution.
Each web server response can contain optional content (e.g., advertisements), which increases the
response time but also leads to additional revenue for the web site operator. The percentage of the
requests with optional content is described as dimmer value. The overall goal of the system is thus
continuously reaching a fixed response time goal, while maximizing the revenue with the optional
content and minimizing the cost for the servers. Accordingly, there are two ways of adapting the
running system: (1) Adding or removing servers, and (2) controlling the number of responses with
optional content, represented by the dimmer value.

In this experiment, we compare Rainbow and REACT from the perspective of a domain expert.
To provide the best experience for the domain expert, Rainbow and REACT should (i) be usable
with low effort, (ii) lead to fast adaptations, and (iii) provide sufficient capabilities to introduce
the desired self-adaptive behavior. Thus, we answer three research questions in the following that
evaluate the (i) development effort (RQ1.1), (ii) performance (RQ1.2), and (iii) features (RQ1.3) of
both Rainbow and REACT.

RQ1.1: How does REACT compare to the state of the art in terms of development effort?

As far as development effort is concerned, two metrics influence the domain expert’s experience:
the source lines of code (SLOC) required to achieve self-adaptivity and the number of different
programming languages, tools, and technologies she needs to be familiar with. Both metrics apply
to (i) specifying the adaptive behavior and (ii) implementing the interfaces to SWIM.

As shown in Table 2, we observe that specifying the adaptive behavior with REACT requires
considerably fewer SLOC. The domain expert has to write 152 SLOC in two files with clear respon-
sibilities. To achieve the same behavior with Rainbow, the domain expert has to write 593 SLOC
in six files using various programming/specification languages. Next, we assess the development
effort for the interface implementation (cf. Table 3). We measure that REACT requires 200 SLOC
and Rainbow requires 204 SLOC. However, REACT requires fewer (configuration) files for setting
up the connection. In addition, due to its language-independent interfaces, domain experts can

ACM Transactions on Autonomous and Adaptive Systems, Vol. 15, No. 4, Article 12. Publication date: December 2021.



REACT-ION 12:19

Table 3. SLOC Measurements of the Interface Implementations
of Rainbow and REACT

Rainbow REACT

Artefact SLOC Language Artefact SLOC Language

Probes
91 Perl

Interfaces 200 Python

68 YAML

Effectors
9 Bash

25 YAML

Utility Files 11 Bash

Total 204 Total 200

Fig. 6. Average run times of the MAPE activities of REACT and Rainbow.

use their preferred language. We acknowledge that SLOC as a metric might have its shortcomings,
however, it is frequently applied as a metric to provide an estimation of the development effort
(e.g., in References [24, 47, 86]).

RQ1.2: How well does REACT perform compared to the state of the art?

We run the “1998 World Cup Web Site Access Logs” trace provided by SWIM 10 times with
REACT and Rainbow. Figure 6 presents the average runtimes per MAPE activity as well as their
average sum. REACT considerably outperforms Rainbow in the monitoring and analyzing phase
with regards to execution time. The design considerations for Rainbow—to (i) hold an exact ar-
chitecture model of the target system, (ii) update the model when new sensor data is available,
(iii) periodically check for issues including an analysis where the problem is located in the model,
and (iv) trigger an adaptation accordingly—allow a more complex analysis of the target system
architecture at the cost of slower adaptations. The total execution time of an adaptation cycle in
REACT is determined to a very high degree by the planner component. This is not surprising,
as the planner executes Chocosolver to find a valid model instance. Clafer itself scales well with
increasing problem size even with models of several thousand Clafers [6, p. 84]. In Rainbow, the
complex problem analysis in the monitoring and analyzing component accelerates planning. The
planner only uses the utility function and expected outcomes for selecting one of the specified
strategies instead of running a solver. In total, REACT’s average adaptation cycle execution re-
quires 84 ms in comparison to 215 ms in Rainbow. Thus, we argue that REACT is well-applicable
in scenarios where fast adaptation is required.

RQ1.3: How do REACT and Rainbow differ in terms of capabilities?

Rainbow has its strengths in more in-depth analysis using its architecture model and a
less complex planning phase as a result. In addition, it is utility-based with the possibility to
weight optimization goals, which may considerably reduce a domain expert’s effort in scenarios

ACM Transactions on Autonomous and Adaptive Systems, Vol. 15, No. 4, Article 12. Publication date: December 2021.



12:20 M. Pfannemüller et al.

with multiple goals. REACT, however, offers runtime modifications of the adaptation behavior,
decentralized control, and multi-language support. Accordingly, if there is the need for weighted
optimization and a central deployment without overly strict timing requirements, Rainbow is a
good choice. If there is no need for weighted optimization, and the requirement for decentralized
deployments and fast execution, then REACT is a good candidate.

5.2 Proactive Adaptation

In the next experiments, we evaluate REACT-ION. First, we apply proactive adaptation with
REACT-ION in a smart grid scenario as prediction and proactive adaptation is an important as-
pect for situation awareness [28].

The smart grid consists of multiple households that consume power and multiple power sources
that produce the same. The goal of the smart grid is to be self-sufficient. If the energy consumers
require more power than available, then the required power is taken from the general power lines
outside of the smart grid. Analogously, excess power is transferred to the surrounding power lines.
A domain expert uses REACT-ION to implement adaptive behavior in the smart grid with two goals.
First, the smart grid should activate at least as many power sources as needed to fulfill the current
power demand. This is the primary goal. Second, the production of excess power—by activating
too many power sources—should be kept at a minimum if possible.

We simulate the scenario with the Python-based smart grid simulator Mosaik.8 The simulation
includes 10 households, which consume power based on realistic usage profiles. Additionally, 40
power sources produce power. Immediately after activating the power sources, they produce power
at a constant rate. Each simulation run simulates a time period of two weeks in steps of 15 min.
We execute 30 runs with different household power profiles, each once with reactive adaptation
and once with proactive adaptation.

We implement proactive adaptation based on REACT-ION’s context management module as
described in Section 4.2. We connect REACT-ION to Telescope [95]—an R-based software for uni-
variate time-series forecasting—for predicting the future power consumption. Telescope uses the
data of the first week for predicting the second week. The adaptation options specification in Clafer
activates power sources based on the currently required power, the number of already running
power sources, and a predicted power requirement for the next simulation step. When applying
reactive adaptation, this prediction value is not used. The horizon of Telescope is set to 1, i.e., only
the power consumption in the following simulation step—the next 15 min—is predicted.

In this experiment, we answer two research questions. First, we investigate whether proactive
adaptation with REACT-ION leads to benefits compared to reactive adaptation (RQ2.1). As the
overall goal of REACT-ION is to achieve situation awareness, we discuss how proactivity relates
to situation awareness in this case study (RQ2.2).

RQ2.1: How does the system performance improve when applying proactive adaptations using

REACT-ION?

Figure 7(a) compares the average number of overloads for reactive and proactive adaptation. An
overload occurs if the power production in the smart grid is lower than the power consumption.
Reducing the number of overloads is the primary goal in this experiment. We observe that proac-
tive adaptation with REACT-ION is able to decrease the number of overloads from 230 to 203 on
average in comparison to reactive adaptation. We therefore conclude that proactive adaptation is
superior to reactive adaptation in this use case. Figure 7(b) shows the excess power produced in

8https://mosaik.offis.de/.
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Fig. 7. Average number of overloaded simulation steps (a) and the average power delta (b) of the reactive
and the proactive approach.

the smart grid. Since activating power sources increases the production step-wise and not contin-
uously, proactive adaptation leads to more excess power.

In addition to proactive and reactive adaptation, it is also feasible to apply a static configuration
with a fixed number of power sources. With such a static configuration, it is trivial to optimize
either the number of overloads or the excess power. For instance, a high number of power sources
may reduce the number of overloads to 0. The other extreme would be to produce no power at all,
which would optimize the amount of excess power. Balancing the two goals with a static configu-
ration, however, is not feasible due to two reasons. First, choosing a suitable static configuration
manually is challenging itself. Second, such a configuration would be tailored to a certain situation
and would not adapt to context changes. Overall, we therefore conclude that proactive adaptation
with REACT-ION and Telescope is able to anticipate increases in power consumption and to acti-
vate power sources accordingly. This not only helps to improve the stability of the grid but also
contributes to its resilience.

RQ2.2: How does proactive adaptation contribute to situation awareness?

According to Reference [28], prediction is an important requirement for situation awareness, i.e.,
the requirement to foresee changes in the situation and react accordingly, e.g., through proactive
adaptation. However, our evaluation shows a second facet in the relation of situation awareness
and proactive adaptation. Figure 8 depicts an excerpt of an exemplary simulation run. The first
5 h of the excerpt show the strengths of situation awareness: Through prediction of the new de-
mand (i.e., the new situation) and proactive adaptation, the production is increased in advance to
avoid overloads. However, sudden peaks in the power consumption—as shown between 7:45 and
8:15—are difficult to predict. In these situations, it is important to decide if an adaptation decision
should be reactive or proactive. When integrating proactive adaptation, the reliability of the pre-
dictions/forecasts is a relevant metric. If the predictions are not reliable in a specific situation, then
reactive adaptation might still be the better option. The reason for this is that—in this case—the
best known adaptation for the situation is performed rather than applying an adaptation for a
situation that might not happen. This potentially decreases system performance even stronger as
a reactive, delayed adaptation would impact performance. Further, reactive adaptation is required
as backup for unknown situations. For the smart grid scenario, the current situation of COVID-19
lockdowns would be such an example, because it creates completely different situations—people
stay at home at times when they would usually be at work/school—that the prediction/forecasting
framework did not encounter and hence was not able to learn. Consequently, it is important to
integrate a situation-aware choice whether to apply proactive or reactive adaptation, depending
on the reliability of the prediction.
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Fig. 8. Excerpt of the timeline of an exemplary run of the proactivity evaluation. Note: Starting at 5:45 reactive
and proactive production are equal.

5.3 Self-Improvement with REACT-ION and Multiple Feedback Loops

In this experiment, we deploy five MAPE-K feedback loops with different reasoning approaches
as proposed in Section 4.3. Similar to Section 5.1, REACT-ION adapts a cloud server deployment
provided by the SWIM exemplar in this case study.

Experimental Setup: We deploy five MAPE-K feedback loops with REACT-ION. These feedback
loops either use the planning approach that solves a CSP (cf. Section 3) or the planning approach
that uses a CFM as introduced in Section 4.3. The feedback loops differ in their solver implemen-
tations and in the specification of the reconfiguration options. The first feedback loop (CFM-based
(SAT)) is CFM-based. It transforms the CFM into a Boolean satisfiability problem and solves it
with the SAT4J [12] solver. The second feedback loop (CFM-based (MILP, Simplified)) is
also CFM-based but transforms the CFM into a MILP problem. It solves the MILP problem with
the CPLEX9 solver. For reasons of comparability, we use the same problem specification for this
feedback loop as for the first feedback loop. This means that several additional modeling features
that the MILP solver is able to handle (in comparison to the SAT solver) are not used here. The
third feedback loop (CSP-based (Simplified)) uses REACT’s original reasoning approach that
solves a CSP. Similar to the previous loop, we use the same problem specification as for CFM-based
(SAT). Again, this leaves several strengths of the CSP-based approach (e.g., extensive modeling
capabilities) unused but makes it possible to compare the pure execution time of the planning
approaches. The fourth feedback loop (CFM-based (MILP)) is CFM-based and transforms the
CFM into a MILP problem. Thus, it is similar to the second feedback loop. However, we now
apply a specification of the reconfiguration behavior that exhausts the additional capabilities
and expressiveness of a MILP problem in comparison to a SAT problem. For instance, there is no
restriction on Boolean variables only, which was required for the SAT solver. The fifth feedback
loop (CSP-based) is CSP-based. In contrast to the third feedback loop, it uses a more sophisticated
problem specification that exploits the additional features of Clafer.

In the scenario, the 30-min ClarkNet [26] trace provided with SWIM is used. Every run is re-
peated 20 times, and the context of the system is fetched every 10 s. By comparing the different
feedback loops with regards to adaptation quality and adaptation speed (RQ3), we show the bene-
fits of choosing the reasoning approach based on the current situation. Therefore, we measure the
average planning time and the average utility. The utility is provided by SWIM and describes the
quality of the adaptation decisions.

RQ3: Is self-improvement with REACT-ION able to combine the advantages of several reasoning ap-

proaches with regards to adaptation quality and adaptation speed?

9http://www.ibm.com/analytics/cplex-optimizer.

ACM Transactions on Autonomous and Adaptive Systems, Vol. 15, No. 4, Article 12. Publication date: December 2021.

http://www.ibm.com/analytics/cplex-optimizer


REACT-ION 12:23

Fig. 9. Average utility per feedback loop type (a) and corresponding average planning times (b).

Figure 9 shows the results of the experiment with regards to the utility (Figure 9(a)) and plan-
ning time (Figure 9(b)). As far as the quality of the adaptation decisions is concerned, we observe in
Figure 9(a) that CFM-based (MILP) and CSP-based considerably outperform the three other plan-
ning approaches that use the basic problem specification. We conclude that the improved modeling
capabilities of CFM-based (MILP) and CSP-based lead to better adaptations. When comparing
the remaining three planning approaches that use the same simple specification, we observe that
CFM-based (SAT) leads to the highest utility. We argue that the faster adaptation is the reason for
this. Figure 9(b) shows that CFM-based (SAT) leads to the fastest adaptations. It is 10 % faster than
CFM-based (MILP, Simplified) and 73 % faster than CSP-based (Simplified), even though
they are using the same specification. The difference is even larger for more sophisticated specifi-
cations in CFM-based (MILP) and CSP-based. Therefore, the feedback loop that uses CFM-based
(SAT) reacts more promptly to changes in the load and is thus able to achieve higher utilities than
the other approaches with the simple specification. Still, more sophisticated specifications lead to
even higher utility values.

Answering RQ3, we therefore conclude that there is a clear tradeoff between planning time and
adaptation quality. If fast adaptations are required, then employing CFM-based (SAT) or a MILP
solver with a restricted SAT-based specification (CFM-based (MILP, Simplified)) is possibly
the better choice. This, however, comes at the cost of worse adaptation decisions in comparison to
CFM-based (MILP) and CSP-based. As there is no planning approach that dominates the others
with regards to both planning time and adaptation quality, the optimal choice depends on the
current situation. With REACT-ION, such a change of the planning approach based on the situation
at runtime is possible. REACT-ION’s context management module distributes context information
to external components that determine the current situation. Due to REACT-ION’s options for self-
improvement, it is possible to change the reasoning approach based on the determined situation at
runtime. We therefore argue that situation awareness with REACT-ION increases the flexibility of
planning. In situations where fast adaptations are important (e.g., in a critical state of the system),
the system may use the fastest planning approach. When fast adaptations are less important, the
system may in contrast use a more sophisticated planning approach to achieve a higher adaptation
quality. A third option would be to use multiple loops at the same time, e.g., to get a result as fast as
possible, and, simultaneously, run in the background another solver that tries to identify a better
solution. The system may choose this option when the current situation allows the additional
planning effort, e.g., in terms of memory footprint and computational load. We acknowledge that
the integration of multiple feedback loops could lead to conflicts. Still, this may be a valuable
option in a situation-aware system that chooses the planning approach depending on the current
situation. Selecting, handling, and coordinating multiple feedback loops that run in parallel is an
interesting field for future research.
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5.4 Threats to Validity

We identify the following threats to validity for our evaluation results. We measure SLOC and
the number of different languages to show REACT’s low development effort for domain experts.
Even though SLOC are frequently used as a metric (e.g., in References [24, 47, 86]), a future user
study with domain experts who apply REACT in different scenarios would strengthen validity.
This work is further limited to a comparison with Rainbow. Future research may include a com-
parison to other frameworks such as SASSY [54] or StarMX [5] in additional use cases from the
communication systems domain. As far as situation awareness with REACT-ION is concerned,
only Telescope [95] as external prediction approach has been applied, and we omit a compari-
son of several approaches for prediction. Moreover, we focus in this work on compositional self-
improvement. As future work, we aim at evaluating further situation-aware self-improvement
options besides compositional adaptations. This includes parametric adaptation, i.e., changing the
models autonomously as well as deployment changes of the adaptation logic. These deployment
changes could, e.g., result in moving the computationally intensive planner to faster machines at
runtime in high-load situations. Finally, we acknowledge that situation awareness, proactive adap-
tation, and self-improvement are broad terms. REACT-ION covers only a part of the spectrum that
these terms potentially contain.

6 CONCLUSION

In this article, we present REACT-ION, a reusable runtime environment for model-based adapta-
tions in communication systems that supports situation awareness. REACT-ION is an extension
of REACT, which integrates a MAPE-K feedback loop that leverages a Clafer and a UML model
provided by the domain expert to autonomously achieve self-adaptivity. Due to its support for mul-
tiple programming languages, decentralized control, distributed deployments, and runtime mod-
ifications, REACT is well-applicable for adapting overlay and underlay networks. We compared
REACT to the well-known Rainbow framework, showing that it is easy-to-use for domain experts
and suitable for use cases that require fast adaptations. REACT-ION extends REACT with a context
management module, which can be used for providing situation awareness capabilities, executing
proactive adaptations, and performing self-improvement. We applied proactive adaptations using
REACT-ION and showed the possibility to run multiple REACT-ION-based feedback loops. This
capability can be used for self-improvement by selecting a specific feedback loop based on the
current system situation.

As future work, we plan to integrate additional interfaces that allow developers to directly use
own analyzing and planning techniques such as machine learning or a different specification lan-
guage such as Stitch [22] instead of Clafer. As verification and validation (V&V) is an important
research challenge [22, 25], we plan to add verification of dynamic properties such as runtime V&V
techniques and guarantees according to costs into REACT, e.g., using model-checking methods.
This will ensure the correctness of the models and REACT will give certain runtime guarantees.
Future work additionally includes a user study with domain experts that further investigates the
development effort. Focussing on such empirical evidence with practitioners has been identified
as general challenge for further self-adaptive systems research [90]. For prediction, we integrated
the Telescope [95] framework as an external prediction approach. We plan to investigate possibil-
ities to provide a standardized solution for prediction/forecasts as part of REACT-ION itself. For
example, it might be possible to integrate a recommendation system for time series forecasting
(e.g., Reference [96]), which autonomously chooses the best suitable algorithm depending on the
data characteristics.
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