
TOM Matcher Results for OAEI 2021

Daniel Kossack1[0000−0002−8649−3357], Niklas Borg1[0000−0002−8081−6653], Leon
Knorr1[0000−0003−4117−2629], and Jan Portisch1,2[0000−0001−5420−0663]

1 SAP SE, Walldorf, Germany
{daniel.tobias.kossack, niklas.borg, leon.knorr, jan.portisch}@sap.com

2 Data and Web Science Group, University of Mannheim, Germany
jan@informatik.uni-mannheim.de

Abstract. This paper presents the matching system TOM together
with its results in the Ontology Alignment Evaluation Initiative 2021
(OAEI 2021). This is the first participation of TOM in the OAEI.
Very recently, transformers achieved remarkable results in the natural
language processing community on a variety of tasks. The TOM match-
ing system exploits a zero-shot transformer-based language model to cal-
culate confidences for each instance. The matcher uses the pre-trained
transformer model paraphrase-TinyBERT-L6-v2.3

Keywords: Ontology Matching · Ontology Alignment · Language Mod-
els · Transformers

1 Presentation of the System

1.1 State, purpose, general statement

Transformers for Ontology Matching (TOM) is a matching system that uses a
transformer-based language model to calculate a confidence for a pair of entities.
The matcher is implemented as a pipeline of subsequent steps using pre-defined
matching modules of the Matching EvaLuation Toolkit (MELT) [6], a framework
for ontology matching and evaluation. Particularly, the new transformer exten-
sion of MELT [7] is used in the implementation of this matcher. The matcher
was implemented and packaged as a Docker image implementing the new Web
Interface4.

1.2 Specific Techniques Used

Transformer-based language models Transformers are types of artificial
neural networks that have a specific architecture [13]. Especially in the domain
of natural language processing, transformers achieved good results on a variety

3 Copyright © 2021 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

4 https://dwslab.github.io/melt/matcher-packaging/web#

web-interface-http-matching-interface

https://dwslab.github.io/melt/matcher-packaging/web#web-interface-http-matching-interface
https://dwslab.github.io/melt/matcher-packaging/web#web-interface-http-matching-interface


2 D. Kossack et al.

of tasks [13,4]. The tasks a transformer is capable of carrying out depend on its
architecture and the task it was trained on.

To perform well, transformers need to be trained on large amounts of data.
Many researchers and organizations train their transformers on textual data
from various domains. After training the model (so called pre-training), the
transformer models can be fine-tuned for specific tasks or domains. Typically,
the fine-tuning process is computationally cheap compared to training the main
model. However, training data is required.

The TOM research project explored the capabilities of such pre-trained mod-
els for ontology matching. TOM does not use fine-tuned models, but there is a
fine-tuned version of TOM, which is named Fine-TOM (F-TOM) [9].

There are several python libraries, like the transformers library by hugging-
face5 [14] and the sentence-transformers library by the Ubiquitous Knowledge
Processing Lab6 [12] that provide access to a variety of pre-trained transformers.
We evaluated the performance of several pre-trained models, inter alia, GPT-
2 [11], BERT [4], and different Sentence-BERT models [12] on the Anatomy,
Conference, and Knowledge Graph track. Based on this evaluation, we decided
to use the Sentence-BERT model paraphrase-TinyBERT-L6-v2 [12] for our sub-
mitted matcher since it achieved the best results.

TOM Pipeline TOM consists of five components that are arranged in a
pipeline which is shown in Figure 1. The arrows indicate how the ontologies
and alignments are passed between the components. Each component can be
conceptually regarded as a matcher. This design pattern is proposed by MELT.
For chaining the components, class MatcherYAAAJena was used.

First, the ontologies are aligned in with string matching methods. Since these
are typically of high precision, the resulting alignment of this step is directly
added to the final alignment.
The transformer component in MELT is, by default, implemented as a filter.
Therefore, candidates have to be generated which are then filtered by the trans-
former. In this case, a string overlap metric is used. The transformer component
adds a confidence to each candidate. After the transformer matcher calculated
the confidence for each candidate pair, the alignment is filtered by a threshold.
Based on an evaluation on different OAEI tracks, we decided to set the threshold
to 0.8. Since most OAEI datasets are typically of one-to-one parity, we use an
efficient implementation of the Hungarian method, known as Maximum Weight
Bipartite Matching (MWBM) [3]. The motivation behind the matching compo-
nents and their details are described in the sections below.

String Matcher The string matcher is used to find very obvious correspon-
dences. To do that it compares the inputs word by word. It assigns a confidence
of 1.0 to the obvious correspondences. Therefore, the resource-consuming trans-
former matcher does not have to evaluate those pairs of elements again. We

5 https://huggingface.co
6 https://www.sbert.net



TOM Matcher Results for OAEI 2021 3

Fig. 1. High-level view of the TOM matching process. O1 and O2 represent the input
ontologies and optionally elements. The final alignment is referred to as A.

use the default string matcher implementation of MELT (class SimpleString-

Matcher).

Candidate Generator The Candidate Generator is used to generate an input
alignment for the transformer matcher. It creates a cross product of both on-
tologies, so that the alignment consists of all possible pairs of elements. For large
ontologies, the alignment would be too large to be proceeded by the transformer
matcher within an appropriate time frame. Therefore, the Candidate Generator
excludes the correspondences that are found by the string matcher and obvious
non-correspondences.

Those are found through broad string operations. The candidate generator
class splits the labels and saves single words in a set. Then the sets are compared
and if over 50 percent of the words are equal, the correspondence is further
processed by the transformer matcher. If less than 50 percent of the words are
equal, it is not necessary to calculate a similarity for this pair. Finally, the
alignment is passed to the transformer matcher.

Transformer Matcher The transformer matcher iterates over the alignment
and passes each pair of elements to the sentence-bert library [12]. For each pair,
it receives a similarity value s ∈ [0, 1] which is used as the assigned confidence
that this pair is a match. The transformer matcher does not change the size of
the alignment but only adds additional confidences. To access a transformer via
the sentence-BERT library, the transformer matcher starts a python server in the
background since the transformer libraries are implemented in Python while the



4 D. Kossack et al.

matching pipeline is implemented in Java. The communication between the Java
project and the python server works via an HTTP Application Programming
Interface (API) that is represented by the horizontal arrows in Figure 1. After
the python server received the pairs of elements and calculated the similarity
values with the cosine similarity function of scikit-learn7 [10], it returns the
confidence list back to the class Transformer Matcher. Then, the transformer
matcher replaces the confidences in the current alignment.

Threshold Filter The threshold filter uses the alignment and cuts off all corre-
spondences with a low confidence. To do that, the filter uses a threshold between
zero an one. All correspondences with a confidence lower than the threshold are
excluded from the alignment. The submitted matcher has a threshold t = 0.8
which yielded good results for all evaluated tracks. We use the default string
matcher implementation of MELT (class ThresholdFilter).

Max Weight Bipartite Extractor Up to this step in the pipeline, we could
have multiple correspondences for an ontological element in the alignment. There-
fore, the max weight bipartite extractor converts the current state to a one-to-one
alignment. We use the default class MaxWeightBipartiteExtractor of MELT.

2 Results

This section discusses the results of TOM for the tracks of OAEI 2021 on which
the matcher was able to produce results. These include the Anatomy [1], Con-
ference [2,15], and Knowledge Graph track [8,5].

2.1 Anatomy Track

TOM could achieve a higher F-measure than the OAEI Baseline (0.866 vs. 0.766).
It was noticeable that the recall was improved by TOM (0.808 vs 0.622) but the
precision is lower than with only the OAEI Baseline (0.997 vs 0.933). So there
are non-obvious matches that cannot be found with string based matching but
by TOM. Examples for these would be the matches Parietal Lobe of the Brain
& parietal cortex with a confidence of 0.8202 and great vein of heart & Great
Cardiac Vein with a confidence of 0.8794. Those are found because of the ability
of transformers to detect semantic similarities between two phrases or words
such as heart and cardiac, even though they are spelled differently.

2.2 Conference Track

Also on the Conference track, TOM is able to find more correspondences than
the OAEI Baseline. So the recall is higher (0.48 vs 0.41) and also the F-measure
is higher (0.57 vs 0.53). The precision is a bit lower (0.69 vs 0.76).

7 https://github.com/scikit-learn/scikit-learn/blob/844b4be24/sklearn/

metrics/pairwise.py#L1211l

https://github.com/scikit-learn/scikit-learn/blob/844b4be24/sklearn/metrics/pairwise.py#L1211l
https://github.com/scikit-learn/scikit-learn/blob/844b4be24/sklearn/metrics/pairwise.py#L1211l


TOM Matcher Results for OAEI 2021 5

3 General Comments

We thank the OAEI organizers for their support and commitment.

4 Conclusion

In this paper, we presented the TOM matching system and its results in the
OAEI 2021. We can conclude that transformer-based language models are able
to improve performance in the task and process of ontology matching.

The developed matching system achieves an overall better F-measure than
the baseline matchers and it improves the recall. It is important to note that
the highest possible recall is set by the Candidate Generator’s alignment. The
Transformer Matcher works only with this alignment and so it is not possible to
achieve a higher recall.

The research also showed that the presented architecture and the implemen-
tation in Java and Python are appropriate approaches to use transformers for
ontology matching. Most of the used matching components are available via the
MELT framework to allow other developers to re-use them. The docker packag-
ing allows to submit any implementation without set-up efforts on the organizer
side which is also beneficial for matcher developers who do not have to worry
about the execution of their system.

This is the first OAEI participation of TOM and the system can be greatly
improved in the future, for example by using fine-tuned models or by improving
the candidate generation pipeline. The reported results motivate further research
in the area of transformer-based ontology matching.

References

1. Bodenreider, O., Hayamizu, T.F., Ringwald, M., de Coronado, S.,
Zhang, S.: Of mice and men: Aligning mouse and human anatomies.
In: AMIA 2005, American Medical Informatics Association Annual Sym-
posium, Washington, DC, USA, October 22-26, 2005. AMIA (2005),
https://knowledge.amia.org/amia-55142-a2005a-1.613296/t-001-1.616182/

f-001-1.616183/a-012-1.616655/a-013-1.616652

2. Cheatham, M., Hitzler, P.: Conference v2.0: An uncertain version of the OAEI con-
ference benchmark. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock,
C.A., Vrandecic, D., Groth, P., Noy, N.F., Janowicz, K., Goble, C.A. (eds.) The Se-
mantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del
Garda, Italy, October 19-23, 2014. Proceedings, Part II. Lecture Notes in Computer
Science, vol. 8797, pp. 33–48. Springer (2014). https://doi.org/10.1007/978-3-319-
11915-1 3, https://doi.org/10.1007/978-3-319-11915-1_3

3. Cruz, I.F., Antonelli, F.P., Stroe, C.: Efficient selection of mappings and auto-
matic quality-driven combination of matching methods. In: Shvaiko, P., Euzenat,
J., Giunchiglia, F., Stuckenschmidt, H., Noy, N.F., Rosenthal, A. (eds.) Proceedings
of the 4th International Workshop on Ontology Matching (OM-2009) collocated
with the 8th International Semantic Web Conference (ISWC-2009) Chantilly, USA,

https://knowledge.amia.org/amia-55142-a2005a-1.613296/t-001-1.616182/f-001-1.616183/a-012-1.616655/a-013-1.616652
https://knowledge.amia.org/amia-55142-a2005a-1.613296/t-001-1.616182/f-001-1.616183/a-012-1.616655/a-013-1.616652
https://doi.org/10.1007/978-3-319-11915-1_3
https://doi.org/10.1007/978-3-319-11915-1_3
https://doi.org/10.1007/978-3-319-11915-1_3


6 D. Kossack et al.

October 25, 2009. CEUR Workshop Proceedings, vol. 551. CEUR-WS.org (2009),
http://ceur-ws.org/Vol-551/om2009_Tpaper5.pdf

4. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirec-
tional transformers for language understanding. CoRR abs/1810.04805 (2018),
http://arxiv.org/abs/1810.04805

5. Hertling, S., Paulheim, H.: The knowledge graph track at OAEI - gold standards,
baselines, and the golden hammer bias. In: Harth, A., Kirrane, S., Ngomo, A.N.,
Paulheim, H., Rula, A., Gentile, A.L., Haase, P., Cochez, M. (eds.) The Semantic
Web - 17th International Conference, ESWC 2020, Heraklion, Crete, Greece, May
31-June 4, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12123, pp.
343–359. Springer (2020). https://doi.org/10.1007/978-3-030-49461-2 20, https:

//doi.org/10.1007/978-3-030-49461-2_20
6. Hertling, S., Portisch, J., Paulheim, H.: MELT - matching evaluation toolkit. In:

Acosta, M., Cudré-Mauroux, P., Maleshkova, M., Pellegrini, T., Sack, H., Sure-
Vetter, Y. (eds.) Semantic Systems. The Power of AI and Knowledge Graphs - 15th
International Conference, SEMANTiCS 2019, Karlsruhe, Germany, September 9-
12, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11702, pp. 231–245.
Springer (2019). https://doi.org/10.1007/978-3-030-33220-4 17

7. Hertling, S., Portisch, J., Paulheim, H.: Matching with transformers in MELT.
CoRR abs/2109.07401 (2021), https://arxiv.org/abs/2109.07401

8. Hofmann, A., Perchani, S., Portisch, J., Hertling, S., Paulheim, H.: Dbkwik: To-
wards knowledge graph creation from thousands of wikis. In: Nikitina, N., Song,
D., Fokoue, A., Haase, P. (eds.) Proceedings of the ISWC 2017 Posters & Demon-
strations and Industry Tracks co-located with 16th International Semantic Web
Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th, 2017. CEUR
Workshop Proceedings, vol. 1963. CEUR-WS.org (2017), http://ceur-ws.org/

Vol-1963/paper540.pdf
9. Knorr, L., Portisch, J.: Fine-TOM matcher results for OAEI 2021. In: OM@ISWC

2021 (2021), to appear
10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

11. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Lan-
guage models are unsupervised multitask learners (2018), https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf

12. Reimers, N., Gurevych, I.: Sentence-bert: Sentence embeddings using siamese bert-
networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics (11 2019), http:
//arxiv.org/abs/1908.10084

13. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. CoRR abs/1706.03762 (2017), http:
//arxiv.org/abs/1706.03762

14. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Brew, J.: Huggingface’s transformers: State-
of-the-art natural language processing. CoRR abs/1910.03771 (2019), http://
arxiv.org/abs/1910.03771

15. Zamazal, O., Svátek, V.: The ten-year ontofarm and its fertiliza-
tion within the onto-sphere. J. Web Semant. 43, 46–53 (2017).
https://doi.org/10.1016/j.websem.2017.01.001, https://doi.org/10.1016/j.

websem.2017.01.001

http://ceur-ws.org/Vol-551/om2009_Tpaper5.pdf
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-030-49461-2_20
https://doi.org/10.1007/978-3-030-49461-2_20
https://doi.org/10.1007/978-3-030-49461-2_20
https://doi.org/10.1007/978-3-030-33220-4_17
https://arxiv.org/abs/2109.07401
http://ceur-ws.org/Vol-1963/paper540.pdf
http://ceur-ws.org/Vol-1963/paper540.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1016/j.websem.2017.01.001
https://doi.org/10.1016/j.websem.2017.01.001
https://doi.org/10.1016/j.websem.2017.01.001

	TOM Matcher Results for OAEI 2021

