
Knowledge Injection via ML-based Initialization of Neural
Networks
Lars Hoffmann1, Christian Bartelt1 and Heiner Stuckenschmidt2

1University of Mannheim, Institute for Enterprise Systems, L15, 1-6, 68131 Mannheim, Germany
2University of Mannheim, Chair of Artificial Intelligence, B6, 26, 68131 Mannheim, Germany

Abstract
Despite the success of artificial neural networks (ANNs) for various complex tasks, their performance and training duration
heavily rely on several factors. In many application domains these requirements, such as high data volume and quality, are
not satisfied. To tackle this issue, different ways to inject existing domain knowledge into the ANN generation provided
promising results. However, the initialization of ANNs is mostly overlooked in this paradigm and remains an important
scientific challenge. In this paper, we present a machine learning framework enabling an ANN to perform a semantic map-
ping from a well-defined, symbolic representation of domain knowledge to weights and biases of an ANN in a specified
architecture.

Keywords
Knowledge Injection, Neural Networks, Initialization, Machine Learning

1. Introduction
Despite the substantial achievements of artificial neural
networks (ANNs) driven by high generalization capa-
bilities, flexibility, and robustness, the training duration
and performance still highly depend on several factors,
such as the network architecture, the loss function, the
initialization method, and most importantly on the avail-
able training data. However, in many real-world appli-
cations, e.g., in safety-critical systems, there are various
issues regarding data collection and generation. In these
scenarios, the capabilities of exclusively data-oriented
approaches to train an ANN are limited.

To tackle these domain-specific challenges, the concept
of integrating or injecting existing domain knowledge
into the generation process of ANNs becomes increas-
ingly attractive in research and practice, indicated by sev-
eral survey papers for machine learning (e.g., [1, 2, 3, 4])
as well as deep learning in particular (e.g., [5, 6, 7]).
Furthermore, this paradigm bares the potential to miti-
gate general weaknesses of ANNs, like slow convergence
speed, high data demands and the risk of getting stuck

KINN@CIKM’21: Proceedings of CIKM Workshop on Knowledge
Injection in Neural Networks, November 1, 2021, Online Virtual Event
" hoffmann@es.uni-mannheim.de (L. Hoffmann);
bartelt@es.uni-mannheim.de (C. Bartelt);
heiner@informatik.uni-mannheim.de (H. Stuckenschmidt)
~ https://www.uni-mannheim.de/ines/ueber-uns/
wissenschaftliche-mitarbeiter/lars-hoffmann (L. Hoffmann);
https://www.uni-mannheim.de/ines/ueber-uns/
wissenschaftliche-mitarbeiter/dr-christian-bartelt (C. Bartelt);
https://www.uni-mannheim.de/dws/people/professors/
prof-dr-heiner-stuckenschmidt/ (H. Stuckenschmidt)
� 0000-0002-9667-0310 (L. Hoffmann); 0000-0003-0426-6714
(C. Bartelt); 0000-0002-0209-3859 (H. Stuckenschmidt)

© 2021 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

at local minima or saddle points [8].
Consequently, there is a great variety of approaches in

this field focusing on different elements within the ANN
generation process. One prominent category targets the
learning process by adding domain-specific constraints
or loss terms to the cost function, such as [9], [10], [11]
and [12]. However, there is little to no research on initial-
izing the weights and biases of an ANN based on domain
knowledge. Such knowledge can act as a pointer towards
a promising starting point in the optimization landscape.
The resulting “warm start” of the learning process can
reduce the required training time as well as improve the
overall performance. This effect shall be exploited effi-
ciently by the framework presented in this paper.

With this goal in mind, the existing collection of net-
work initialization techniques were analyzed. Aguirre
and Fuentes [13] define three groups. “Data-independent”
methods are based on randomly drawing samples of dif-
ferent distributions, e.g., LeCun [14], Xavier [15] and He
[16]. “Data-dependent” approaches, such as WIPE [17],
LSUV [18] and MIWI [19], additionally take statistical
properties of the available training data into account. Ap-
proaches within the third group, like [20, 21, 22, 23, 24],
apply the concept of “pre-training“. Their goal is to learn
an ANN on a related problem (with sufficient availability
of high-quality data) and use it as an initialization for the
primary task. Consequently, they are not limited to the
actual training data, and thus to some extent indepen-
dent to task-specific data issues. Although, none of these
approaches explicitly considers domain knowledge, they
could be adapted to pre-train an ANN on synthetic data
encoding domain knowledge; also proposed by Karpatne
et al. [4]. These data can be generated, for instance, by
simulations or querying a domain model. But this comes

mailto:hoffmann@es.uni-mannheim.de
mailto:bartelt@es.uni-mannheim.de
mailto:heiner@informatik.uni-mannheim.de
https://www.uni-mannheim.de/ines/ueber-uns/wissenschaftliche-mitarbeiter/lars-hoffmann
https://www.uni-mannheim.de/ines/ueber-uns/wissenschaftliche-mitarbeiter/lars-hoffmann
https://www.uni-mannheim.de/ines/ueber-uns/wissenschaftliche-mitarbeiter/dr-christian-bartelt
https://www.uni-mannheim.de/ines/ueber-uns/wissenschaftliche-mitarbeiter/dr-christian-bartelt
https://www.uni-mannheim.de/dws/people/professors/prof-dr-heiner-stuckenschmidt/
https://www.uni-mannheim.de/dws/people/professors/prof-dr-heiner-stuckenschmidt/
https://orcid.org/0000-0002-9667-0310
https://orcid.org/0000-0003-0426-6714
https://orcid.org/0000-0002-0209-3859
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

with several disadvantages. First, the data samples must
be efficiently generated to fully represent the domain
knowledge, and second, the ANN must be able to learn
the contained knowledge. On top of this potential loss
of information, this entire process must be repeated ev-
ery time the domain knowledge or the target network
architecture changes.

Replacing this indirect, data-based knowledge transfer
from an already existing domain model into an ANN with
a direct mapping or transformation can potentially solve
these problems. Although they do not relate to knowl-
edge injection, several authors engineered explicit map-
ping algorithms for different representations. A promi-
nent example are Decision Trees (DTs), because they
also have a graph-based structure. Early work was al-
ready performed in the 1990s (e.g., [25, 26, 27, 28, 29]),
but this topic is recently becoming more attention again
(e.g., [30, 31, 32, 33]). Nevertheless, there are two ma-
jor shortcomings if applied to knowledge injection with
initialization. On the one hand, they are model-specific
and hard to engineer, which makes them impractical
considering the diversity of knowledge representations.
On the other hand, they cannot map to arbitrary ANN
architectures, which may restrict an ANN’s ability to dis-
cover new characteristics in the subsequent optimization.
This becomes increasingly critical as the gap between
the expressed knowledge and the entire task complexity
widens.

Instead of engineering such mappings by hand, this
paper introduces a machine learning (ML) framework ca-
pable of training an ANN to become a semantic mapping
from a well-defined, algebraic representation of domain
knowledge to a network’s weights and biases. We call
such a mapping “Transformation Network” or 𝒯 -Net.
This data-driven framework can be applied to various
model algebras, such as DTs or polynomials, with only
slight adaptions. Thereby, it tackles the challenge of vari-
ability in domain knowledge representations by transfer-
ring the complex mapping generation from humans to
machines. Furthermore, an arbitrary network structure
as 𝒯 -Net output can be selected, which achieves an inde-
pendence between the complexity of the domain model
and the target ANN.

2. Framework and Approach
In this section, we give a brief introduction on (1) how
the proposed framework trains an ANN to become a
semantic mapping (𝒯 -Net) from the internals of a given
algebraic model to a network’s weights and biases, and
(2) how to utilize its capabilities for knowledge injection
via ANN initialization.

2.1. 𝒯 -Net Generation
Before a given task-specific function approximation, also
referred to as domain model, can be injected, a suitable
𝒯 -Net must be generated once with the proposed ML
framework. This can be done completely with synthetic
data. The overall objective is to maximize the transforma-
tion fidelity between the input function and the predicted
ANN. A schematic overview of the framework consisting
of three main steps is shown in Figure 1.

2.1.1. Algebra Selection and 𝜆-Function
Generation

At first, a diverse set of functions Λ in the same algebra
as the given task-specific domain model is created. If
such a domain model is not already defined, a well-suited
algebra for representing the existing domain knowledge
needs to be selected and the model generated. This can
be done implicitly by pre-training or explicitly by an
expert. However, each function 𝜆𝑖 ∈ Λ must operate on
the same solution space defined by the overall task to be
solved, for instance, a binary classification or regression
problem. In addition, each function 𝜆𝑖 requires a set of
𝑁 representative examples 𝒟𝜆𝑖 as{︁

𝒟𝜆𝑖 = {(𝑥𝑖,𝑗 , 𝑦𝑖,𝑗)}𝑁𝑗=1

}︁|Λ|

𝑖=1
,

where 𝑥𝑖,𝑗 = (𝑥𝑖,𝑗1 , 𝑥𝑖,𝑗2 , . . . , 𝑥𝑖,𝑗𝐷) denotes one data
point of dimensionality 𝐷 and 𝑦𝑖,𝑗 = 𝜆𝑖(𝑥𝑖,𝑗) is the
result after applying the function 𝜆𝑖 to 𝑥𝑖,𝑗 . How to
generate Λ and set 𝑁 depends on the given context.

2.1.2. Data Preparation for 𝒯 -Net Training

Before the 𝒯 -Net training, the data and 𝜆-functions must
be put in the correct shape, i.e., numeric vectors for ANNs.
Therefore, an encoding method, denoted as 𝐸𝑛𝑐𝜆, is
required. Similarly, a decoding method 𝐷𝑒𝑐𝜇 enables the
translation of the returned network weights and biases
to an executable ANN 𝜇𝑖. The dataset required for the
𝒯 -Net training is defined as

𝒟𝒯 := {(𝐸𝑛𝑐𝜆(𝜆𝑖),𝒟𝜆𝑖)}
|Λ|
𝑖=1 ,

where each example is a tuple of the encoded function
𝜆𝑖 and its representative samples 𝒟𝜆𝑖 . For clarification,
these samples are not the target output of the 𝒯 -Net, but
are required for the loss calculation. This is described in
the next step.

2.1.3. 𝒯 -Net Training

After the preparations, the 𝒯 -Net is trained. Its weights
and biases are adjusted based on the backpropagated pre-
diction error over the training dataset 𝒟𝒯 . This error

𝜆2

𝜆|Λ|
…𝜆1, 2, … , |Λ| ∈ Λ

𝒟𝜆𝑖 = ൛(𝑥𝑖,𝑗 , ൟ𝑦𝑖,𝑗) 𝑗=1

𝑁

𝑖=1

|Λ|

𝑥1,𝑗 =

𝑥1,𝑗1
𝑥1,𝑗2
⋮

𝑥1,𝑗𝐷
𝑦1,𝑗 = 𝜆1 𝑥1,𝑗1 𝑥1,𝑗2 … 𝑥1,𝑗𝐷

𝒟 ∶= ൛(𝐸𝑛𝑐𝜆(ൟ𝜆𝑖), 𝒟𝜆𝑖) 𝑖=1

|Λ|

𝑤1,1

⋮
𝑤1,|𝑊|

𝑏1,1
⋮

𝑏1,|𝐵|

𝜆1

minimize
𝑖∈{1, 2, … , Λ }

𝐸𝑟𝑟𝑜𝑟(𝒚𝒊, 𝜇𝑖(𝒙𝒊))

⋮ 𝛌𝟏

⋮

⋮

⋮

𝜆

𝜇1

⋮

⋮

𝜇

Figure 1: Overview of proposed machine learning framework for training a transformation ANN (𝒯 -Net) in three main steps:
function generation, data preparation and 𝒯 -Net training.

measures how different each input function 𝜆𝑖 is com-
pared to the currently predicted ANN counterpart 𝜇𝑖. To
quantify this difference, a traditional task-specific mea-
sure (𝐸𝑟𝑟𝑜𝑟), e.g., categorical cross-entropy, is applied to
the true values 𝑦𝑖 = 𝜆𝑖(𝑥𝑖) and the predictions 𝜇𝑖(𝑥𝑖)
given the vector of all input samples 𝑥𝑖. The overall
optimization goal can be formally described as

minimize
𝑖∈{1,2,...,|Λ|}

𝐸𝑟𝑟𝑜𝑟(𝑦𝑖, 𝜇𝑖(𝑥𝑖)).

Thus, the 𝒯 -Net training aims to maximize the transfor-
mation fidelity. By that, we want to enable the 𝒯 -Net to
generalize to previously unseen 𝜆-functions, making it a
capable mapping for this family of functions.

2.2. Knowledge Injection via 𝒯 -Net
Execution

After the one-time effort of generating a suitable 𝒯 -Net, it
is able to instantly initialize ANNs for all possible domain
models within the trained function algebra. Therefore,
we just need to pass the encoded representation to the
𝒯 -Net and let it predict the initial weights and biases.
In the current state, one 𝒯 -Net maps to ANNs with a
pre-defined specification, i.e., architecture and activation
functions. To achieve a high fidelity, it must be assumed
that ANNs with this specification are capable of accu-
rately approximating the input functions. However, if
changes to the network specification are required, only
the 𝒯 -Net training must be repeated with an adapted
output layer and/or 𝜇-Decoding.

3. Evaluation
In this section, we want to briefly show that our frame-
work shows promising results in practice in terms of the
𝒯 -Net mapping fidelity as well as the effects of applying

it for ANN initialization. Therefore, we conducted ex-
periments on polynomials as symbolic domain models to
support solving random regression problems including
two variables. The 𝒯 -Net was trained on 10,000 polyno-
mials with orders between 0 and 8 to find the closest ANN
approximations with one hidden layer of 225 neurons.

Without extensive hyperparameter optimization, the
𝒯 -Net could achieve on average a mapping fidelity quan-
tified by the coefficient of determination (𝑅2) of 0.77
(±0.26) over representative samples on a set of 2,500 test
polynomials. Despite the noticeable distance to a perfect
mapping (𝑅2 = 1), it significantly proves the learning
capability of the proposed ML framework.

To investigate the impact of injecting knowledge by
utilizing 𝒯 -Nets on a given ANN task, the training dura-
tion and prediction performance were analyzed. A total
of 2,500 synthetic regression problems were randomly
created and then two ANNs were trained on each prob-
lem; one lets the 𝒯 -Net predict the initial weights and
biases based on a polynomial approximation, and the
second one applies the Xavier uniform initializer [15] as
a benchmark. Early stopping was used to indicate con-
vergence during the optimization. Besides the different
initialization, all other factors and parameters remained
the same.

By applying the 𝒯 -Net for initialization, in 91% of
the regression test cases the prediction performance in-
creased and 96% required less epochs to converge, i.e.,
hitting the early stopping criterion, compared to the naive
benchmark. More specifically, the training duration could
be reduced on average by 64%. In addition, the resulting
ANN performance in terms of the mean absolute error
(MAE) showed an average increase of 2.7%. Figure 2
illustrates these two benefits in more detail.

This condensed evaluation demonstrates the benefits
of the proposed framework and emphasizes the potential
for knowledge injection into ANNs. A more sophisticated
evaluation is currently a work in progress.

Figure 2: Comparison between 𝒯 -Net injection and Xavier
uniform initialization in terms of (a) training duration and (b)
performance.

4. Conclusion
In this paper, we have introduced a novel approach of
knowledge injection into ANNs by utilizing existing do-
main models for initialization. Therefore, a semantic
mapping from the domain model’s internals to weights
and biases is applied. Instead of engineering such an ex-
plicit mapping by hand, we designed a machine learning
framework capable of training an ANN to perform this
transformation. We call such a transformation network
𝒯 -Net. Besides the reduction of manual effort, it has
the big advantage of decoupling the complexity of the
domain model and ANN space.

Based on promising initial experiments, we hypothe-
size that this framework can generate 𝒯 -Nets with suffi-
cient fidelity by appropriately addressing the following
aspects: (1) its network specification (e.g., architecture
and activation functions), (2) the learning behavior (e.g.,
loss function and optimizer), (3) the training data gen-
eration (e.g., diversity of domain models), and (4) the
numeric encoding of the domain model algebra.

References
[1] R. Rai, C. K. Sahu, Driven by Data or Derived

Through Physics? A Review of Hybrid Physics

Guided Machine Learning Techniques With Cyber-
Physical System (CPS) Focus, IEEE Access 8
(2020) 71050–71073. doi:10.1109/ACCESS.2020.
2987324, conference Name: IEEE Access.

[2] L. von Rueden, S. Mayer, K. Beckh, B. Georgiev,
S. Giesselbach, R. Heese, B. Kirsch, M. Walczak,
J. Pfrommer, A. Pick, R. Ramamurthy, J. Garcke,
C. Bauckhage, J. Schuecker, Informed Machine
Learning - A Taxonomy and Survey of Integrat-
ing Prior Knowledge into Learning Systems, IEEE
Transactions on Knowledge and Data Engineering
(2021) 1–1. doi:10.1109/TKDE.2021.3079836,
conference Name: IEEE Transactions on Knowl-
edge and Data Engineering.

[3] C. Deng, X. Ji, C. Rainey, J. Zhang, W. Lu,
Integrating Machine Learning with Hu-
man Knowledge, iScience 23 (2020)
101656. URL: https://www.sciencedirect.
com/science/article/pii/S2589004220308488.
doi:10.1016/j.isci.2020.101656.

[4] A. Karpatne, G. Atluri, J. H. Faghmous, M. Stein-
bach, A. Banerjee, A. Ganguly, S. Shekhar, N. Sam-
atova, V. Kumar, Theory-Guided Data Science: A
New Paradigm for Scientific Discovery from Data,
IEEE Transactions on Knowledge and Data Engi-
neering 29 (2017) 2318–2331. doi:10.1109/TKDE.
2017.2720168, conference Name: IEEE Transac-
tions on Knowledge and Data Engineering.

[5] H. D. Gupta, V. S. Sheng, A Roadmap to Do-
main Knowledge Integration in Machine Learn-
ing, in: 2020 IEEE International Conference
on Knowledge Graph (ICKG), IEEE, Nanjing,
China, China, 2020, pp. 145–151. doi:10.1109/
ICBK50248.2020.00030.

[6] A. Borghesi, F. Baldo, M. Milano, Improving Deep
Learning Models via Constraint-Based Domain
Knowledge: a Brief Survey, arXiv:2005.10691 [cs,
stat] (2020). URL: http://arxiv.org/abs/2005.10691,
arXiv: 2005.10691.

[7] T. Dash, S. Chitlangia, A. Ahuja, A. Srinivasan, In-
corporating Domain Knowledge into Deep Neu-
ral Networks, arXiv:2103.00180 [cs] (2021). URL:
http://arxiv.org/abs/2103.00180, arXiv: 2103.00180.

[8] Ç. Gülçehre, Y. Bengio, Knowledge matters: impor-
tance of prior information for optimization, The
Journal of Machine Learning Research 17 (2016)
226–257.

[9] J. Xu, Z. Zhang, T. Friedman, Y. Liang, G. Broeck,
A Semantic Loss Function for Deep Learning with
Symbolic Knowledge, in: Proceedings of the 35th
International Conference on Machine Learning,
PMLR, Stockholm, Sweden, 2018, pp. 5502–5511.
URL: http://proceedings.mlr.press/v80/xu18h.html,
iSSN: 2640-3498.

[10] Z. Hu, Z. Yang, R. Salakhutdinov, X. Liang, L. Qin,

http://dx.doi.org/10.1109/ACCESS.2020.2987324
http://dx.doi.org/10.1109/ACCESS.2020.2987324
http://dx.doi.org/10.1109/TKDE.2021.3079836
https://www.sciencedirect.com/science/article/pii/S2589004220308488
https://www.sciencedirect.com/science/article/pii/S2589004220308488
http://dx.doi.org/10.1016/j.isci.2020.101656
http://dx.doi.org/10.1109/TKDE.2017.2720168
http://dx.doi.org/10.1109/TKDE.2017.2720168
http://dx.doi.org/10.1109/ICBK50248.2020.00030
http://dx.doi.org/10.1109/ICBK50248.2020.00030
http://arxiv.org/abs/2005.10691
http://arxiv.org/abs/2103.00180
http://proceedings.mlr.press/v80/xu18h.html

H. Dong, E. P. Xing, Deep generative models with
learnable knowledge constraints, in: Proceedings
of the 32nd International Conference on Neural In-
formation Processing Systems, NIPS’18, Curran As-
sociates Inc., Red Hook, NY, USA, 2018, pp. 10522–
10533.

[11] M. Diligenti, S. Roychowdhury, M. Gori, Integrating
Prior Knowledge into Deep Learning, in: 16th IEEE
International Conference on Machine Learning and
Applications (ICMLA), IEEE, Cancun, Mexico, 2017,
pp. 920–923. doi:10.1109/ICMLA.2017.00-37.

[12] N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne,
N. Ramakrishnan, Incorporating Prior Domain
Knowledge into Deep Neural Networks, in: 2018
IEEE International Conference on Big Data (Big
Data), IEEE, Seattle, WA, USA, USA, 2018, pp. 36–
45. doi:10.1109/BigData.2018.8621955.

[13] D. Aguirre, O. Fuentes, Improving Weight Ini-
tialization of ReLU and Output Layers, in: I. V.
Tetko, V. Kůrková, P. Karpov, F. Theis (Eds.), Ar-
tificial Neural Networks and Machine Learning
– ICANN 2019: Deep Learning, Lecture Notes
in Computer Science, Springer International Pub-
lishing, Cham, 2019, pp. 170–184. doi:10.1007/
978-3-030-30484-3_15.

[14] Y. LeCun, L. Bottou, G. B. Orr, K. R. Müller, Ef-
ficient BackProp, in: G. B. Orr, K.-R. Müller
(Eds.), Neural Networks: Tricks of the Trade,
Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 1998, pp. 9–50. URL: https:
//doi.org/10.1007/3-540-49430-8_2. doi:10.1007/
3-540-49430-8_2.

[15] X. Glorot, Y. Bengio, Understanding the diffi-
culty of training deep feedforward neural networks,
in: Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statis-
tics, JMLR Workshop and Conference Proceed-
ings, Chia Laguna Resort, Sardinia, Italy, 2010,
pp. 249–256. URL: http://proceedings.mlr.press/v9/
glorot10a.html, iSSN: 1938-7228.

[16] K. He, X. Zhang, S. Ren, J. Sun, Delving Deep into
Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification, in: 2015 IEEE Inter-
national Conference on Computer Vision (ICCV),
IEEE, Santiago, Chile, 2015, pp. 1026–1034. doi:10.
1109/ICCV.2015.123, iSSN: 2380-7504.

[17] P. Costa, P. Larzabal, Initialization of Super-
vised Training for Parametric Estimation, Neu-
ral Processing Letters 9 (1999) 53–61. URL: https://
doi.org/10.1023/A:1018671912219. doi:10.1023/A:
1018671912219.

[18] D. Mishkin, J. Matas, All you need is a good init, in:
Y. Bengio, Y. LeCun (Eds.), 4th International Con-
ference on Learning Representations: Conference
Track Proceedings, ICLR, San Juan, Puerto Rico,

2016. URL: http://arxiv.org/abs/1511.06422.
[19] J. Qiao, S. Li, W. Li, Mutual information based

weight initialization method for sigmoidal feedfor-
ward neural networks, Neurocomputing 207 (2016)
676–683. URL: https://doi.org/10.1016/j.neucom.
2016.05.054. doi:10.1016/j.neucom.2016.05.
054.

[20] G. Li, H. Alnuweiri, Y. Wu, H. Li, Acceleration
of back propagation through initial weight pre-
training with delta rule, in: IEEE International
Conference on Neural Networks, IEEE, San Fran-
cisco, CA, USA, 1993, pp. 580–585 vol.1. doi:10.
1109/ICNN.1993.298622.

[21] H. Shimodaira, A weight value initialization
method for improving learning performance of
the backpropagation algorithm in neural networks,
in: Proceedings Sixth International Conference on
Tools with Artificial Intelligence. TAI 94, IEEE, New
Orleans, LA, USA, 1994, pp. 672–675. doi:10.1109/
TAI.1994.346429.

[22] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast
learning algorithm for deep belief nets, Neural
Computation 18 (2006) 1527–1554. URL: https://
doi.org/10.1162/neco.2006.18.7.1527. doi:10.1162/
neco.2006.18.7.1527.

[23] H. Larochelle, Y. Bengio, J. Louradour, P. Lamblin,
Exploring Strategies for Training Deep Neural Net-
works, The Journal of Machine Learning Research
10 (2009) 1–40.

[24] S. Z. Seyyedsalehi, S. A. Seyyedsalehi, A
fast and efficient pre-training method based
on layer-by-layer maximum discrimination for
deep neural networks, Neurocomputing 168
(2015) 669–680. URL: https://www.sciencedirect.
com/science/article/pii/S0925231215007389. doi:10.
1016/j.neucom.2015.05.057.

[25] G. G. Towell, J. W. Shavlik, Knowledge-based
artificial neural networks, Artificial Intelligence
70 (1994) 119–165. URL: https://www.sciencedirect.
com/science/article/pii/0004370294901058. doi:10.
1016/0004-3702(94)90105-8.

[26] I. Ivanova, M. Kubat, Initialization of
neural networks by means of decision
trees, Knowledge-Based Systems 8 (1995)
333–344. URL: https://www.sciencedirect.
com/science/article/pii/0950705196819174.
doi:10.1016/0950-7051(96)81917-4.

[27] G. Thimm, E. Fiesler, Neural network initialization,
in: J. Mira, F. Sandoval (Eds.), From Natural to Arti-
ficial Neural Computation, Lecture Notes in Com-
puter Science, Springer, Berlin, Heidelberg, 1995, pp.
535–542. doi:10.1007/3-540-59497-3_220.

[28] A. Banerjee, Initializing Neural Networks Using De-
cision Trees, in: Computational Learning Theory
and Natural Learning Systems: Volume IV: Making

http://dx.doi.org/10.1109/ICMLA.2017.00-37
http://dx.doi.org/10.1109/BigData.2018.8621955
http://dx.doi.org/10.1007/978-3-030-30484-3_15
http://dx.doi.org/10.1007/978-3-030-30484-3_15
https://doi.org/10.1007/3-540-49430-8_2
https://doi.org/10.1007/3-540-49430-8_2
http://dx.doi.org/10.1007/3-540-49430-8_2
http://dx.doi.org/10.1007/3-540-49430-8_2
http://proceedings.mlr.press/v9/glorot10a.html
http://proceedings.mlr.press/v9/glorot10a.html
http://dx.doi.org/10.1109/ICCV.2015.123
http://dx.doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1023/A:1018671912219
https://doi.org/10.1023/A:1018671912219
http://dx.doi.org/10.1023/A:1018671912219
http://dx.doi.org/10.1023/A:1018671912219
http://arxiv.org/abs/1511.06422
https://doi.org/10.1016/j.neucom.2016.05.054
https://doi.org/10.1016/j.neucom.2016.05.054
http://dx.doi.org/10.1016/j.neucom.2016.05.054
http://dx.doi.org/10.1016/j.neucom.2016.05.054
http://dx.doi.org/10.1109/ICNN.1993.298622
http://dx.doi.org/10.1109/ICNN.1993.298622
http://dx.doi.org/10.1109/TAI.1994.346429
http://dx.doi.org/10.1109/TAI.1994.346429
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
http://dx.doi.org/10.1162/neco.2006.18.7.1527
https://www.sciencedirect.com/science/article/pii/S0925231215007389
https://www.sciencedirect.com/science/article/pii/S0925231215007389
http://dx.doi.org/10.1016/j.neucom.2015.05.057
http://dx.doi.org/10.1016/j.neucom.2015.05.057
https://www.sciencedirect.com/science/article/pii/0004370294901058
https://www.sciencedirect.com/science/article/pii/0004370294901058
http://dx.doi.org/10.1016/0004-3702(94)90105-8
http://dx.doi.org/10.1016/0004-3702(94)90105-8
https://www.sciencedirect.com/science/article/pii/0950705196819174
https://www.sciencedirect.com/science/article/pii/0950705196819174
http://dx.doi.org/10.1016/0950-7051(96)81917-4
http://dx.doi.org/10.1007/3-540-59497-3_220

Learning Systems Practical, volume Making Learn-
ing Systems Practical of Computational Learning
Theory and Natural Learning Systems, MIT Press,
Cambridge, MA, USA, 1997, pp. 3–15.

[29] R. Setiono, W. K. Leow, On mapping deci-
sion trees and neural networks, Knowledge-
Based Systems 12 (1999) 95–99. URL: https://doi.
org/10.1016/S0950-7051(99)00009-X. doi:10.1016/
S0950-7051(99)00009-X.

[30] R. Balestriero, Neural Decision Trees,
arXiv:1702.07360 [cs, stat] (2017). URL:
http://arxiv.org/abs/1702.07360.

[31] S. Wang, C. Aggarwal, H. Liu, Using a
Random Forest to Inspire a Neural Network
and Improving on It, in: Proceedings of
the 2017 SIAM International Conference on
Data Mining (SDM), SIAM, Houston, Texas,
USA, 2017, pp. 1–9. URL: https://epubs.siam.org/
doi/abs/10.1137/1.9781611974973.1. doi:10.1137/
1.9781611974973.1.

[32] G. Biau, E. Scornet, J. Welbl, Neural Random
Forests, Sankhya A 81 (2019) 347–386. URL: https://
doi.org/10.1007/s13171-018-0133-y. doi:10.1007/
s13171-018-0133-y.

[33] K. D. Humbird, J. L. Peterson, R. G. Mcclarren,
Deep Neural Network Initialization With Deci-
sion Trees, IEEE Transactions on Neural Net-
works and Learning Systems 30 (2019) 1286–1295.
doi:10.1109/TNNLS.2018.2869694, conference
Name: IEEE Transactions on Neural Networks and
Learning Systems.

https://doi.org/10.1016/S0950-7051(99)00009-X
https://doi.org/10.1016/S0950-7051(99)00009-X
http://dx.doi.org/10.1016/S0950-7051(99)00009-X
http://dx.doi.org/10.1016/S0950-7051(99)00009-X
http://arxiv.org/abs/1702.07360
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.1
https://epubs.siam.org/doi/abs/10.1137/1.9781611974973.1
http://dx.doi.org/10.1137/1.9781611974973.1
http://dx.doi.org/10.1137/1.9781611974973.1
https://doi.org/10.1007/s13171-018-0133-y
https://doi.org/10.1007/s13171-018-0133-y
http://dx.doi.org/10.1007/s13171-018-0133-y
http://dx.doi.org/10.1007/s13171-018-0133-y
http://dx.doi.org/10.1109/TNNLS.2018.2869694

	1 Introduction
	2 Framework and Approach
	2.1 T-Net Generation
	2.1.1 Algebra Selection and λ-Function Generation
	2.1.2 Data Preparation for ��-Net Training
	2.1.3 ��-Net Training

	2.2 Knowledge Injection via ��-Net Execution

	3 Evaluation
	4 Conclusion

