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Homophily influences ranking of 
minorities in social networks
Fariba Karimi1,2, Mathieu Génois1, Claudia Wagner1,2, Philipp Singer1 & Markus Strohmaier1,3

Homophily can put minority groups at a disadvantage by restricting their ability to establish links with 
a majority group or to access novel information. Here, we show how this phenomenon can influence 
the ranking of minorities in examples of real-world networks with various levels of heterophily and 
homophily ranging from sexual contacts, dating contacts, scientific collaborations, and scientific 
citations. We devise a social network model with tunable homophily and group sizes, and demonstrate 
how the degree ranking of nodes from the minority group in a network is a function of (i) relative 
group sizes and (ii) the presence or absence of homophilic behaviour. We provide analytical insights on 
how the ranking of the minority can be improved to ensure the representativeness of the group and 
correct for potential biases. Our work presents a foundation for assessing the impact of homophilic and 
heterophilic behaviour on minorities in social networks.

Social networks are comprised of individuals with a variety of attributes, such as race, age, educational back-
ground, or gender. Commonly, these attributes are distributed unequally in the population. For example, in many 
schools across the United States and Europe, Asian or Black students form a minority1; similarly, women are usu-
ally a minority in science and engineering2. In parallel, homophily, the tendency to associate with similar others, 
is observed in many social networks, ranging from friendship to marriage to business partnerships1,3–6. However, 
the extent to which homophilic behaviour combined with group size differences has an effect on the structure of 
a social network and ranking of minorities is not known.

Understanding the factors that impact the ranking of minorities has gained importance in recent years, since 
algorithms have been more and more widely used for ranking individuals in various application domains, includ-
ing search engines7–9, recommender systems10,11, or hiring processes12–14. These rankings are critical, since they 
can impact the influential power of individuals and the opportunities afforded to them. Rankings are commonly 
based on the topological structure of networks, and hence, the position of individuals in their social network 
significantly influences their ranks15–17. In particular, for networks in which one group of individuals is smaller 
in size (minority), global ranking can have a crucial impact on the representation of the whole group. A biased 
algorithm could create situations in which (i) high-ranked minority members become less noticeable globally and 
therefore less influential in society, (ii) a minority feels ignored or overlooked by the wider public, also known as 
the invisibility syndrome18. It is thus fundamental to understand the effect of group sizes and the different mech-
anisms of tie formation on the ranking of minorities in social networks.

In this study, we focus on two main mechanisms for the formation of ties: homophily3 and preferential attach-
ment19, and systematically study how relative size differences between groups in social networks, with various lev-
els of homophily, impact the ranking of nodes in synthetic and real-world networks. In recent years, models have 
been proposed that consider homophily20,21, or a combination of homophily and preferential attachment in the tie 
formation process22–24. We build on these models by systematically exploring the parameter range for homophily 
and group size differences and offer analytical and empirical evidence on the emergent properties of networks 
and the ranking of groups. In our settings, the notion of minority and majority refers to the relative size of the 
groups in the social network. We define rank as the importance of the node in the network and the ability of the 
node to receive information. Our results (cf. Fig. 1 top row for an illustration) show that the degree rank of nodes 
in such settings is generally disproportionate—i.e. ranking is not proportional to the size of the group and varies 
with homophily. We find that while minority nodes show higher degree ranks in heterophilic networks, they 
exhibit lower degree ranks in homophilic networks. Surprisingly, ranking has an asymmetrical and non-linear 
effect in both homophilic and heterophilic regimes. We provide an analytical solution that predicts the exponent 
of the degree distribution and demonstrates the presence of this asymmetric effect. We finally show evidence of a 
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disproportionate ranking in four empirical networks of sexual contacts, dating contacts, scientific collaboration, 
and scientific citation with different ranges of homophily and group size.

In the following sections, we first present the analytical and numerical results of the model, showing the effect 
of homophily and group sizes on the degree ranks of nodes in social networks. We then discuss the impact of 
the parameters on the ranking of nodes that belong to groups of different sizes. Finally, we demonstrate that our 
model captures well the properties of real cases, such as the degree distributions and ranks of the majority and 
minority in empirical social networks with different group sizes and different degrees of homophily.

Results
Model.  We use the well-known model of preferential attachment proposed by Barabási and Albert19, and 
incorporate homophily as an additional parameter to the model23,24. Thus, the mechanism of tie formation in our 
model is influenced by the interplay between preferential attachment, via the degree of nodes, and homophily, 
via the node attributes. A variant of this model, known as the fitness model, was first proposed by Bianconi and 
Barabási25. In this model, the probability of a connection is the product of the degree and fitness of the node. 
However, the fitness of a node is assumed to be constant regardless of the presence of other nodes. In our model, 
the fitness of a node also depends on the attributes of other nodes.

We model social networks with two types of nodes that are initially labeled as a or b. In Fig. 1 they are shown 
with two colors, blue and orange. The label of a node represents the node’s attribute. Next, we define a tunable 
homophily parameter, h, that regulates the tendency of nodes to connect with others based on their attributes. 
We refer to the nodes of the same attribute as a group. The homophily parameter ranges between 0 to 1, h ∈ [0, 
1], where 0 means that nodes from one group connect only to nodes from the other group (opposing attributes, 
complete heterophily), 1 means that the nodes connect only with nodes of the same group (similar attributes, 

Figure 1.  Disproportionate degree ranks and asymmetric effects of homophily on Barabási-Albert networks 
with minority and majority groups and homophily. The minority group (orange nodes) represents 20% of 
the population. Homophily is regulated by the parameter h. Panel A shows a maximally heterophilic network 
(h = 0). As homophily increases, the likelihood for nodes to connect with other nodes of the same color 
increases. Panel E finally shows a maximally homophilic network (h = 1.0). The top row is a schematic of the 
network topology generated from the model (Eq. (1)) for a small network with 100 nodes. The second row 
represents the resulting degree growth during the simulation. In the heterophilic regime (0 ≤ h < 0.5), the 
degree of the minority group grows faster than majority. In the homophilic regime (0.5 < h ≤ 1) the growth of 
the degree slows down for minorities. The third row represents the degree distribution generated by the model 
for the two types of node. The inset in the third row depicts the share of total degree for minority and majority 
groups and the dashed lines show the fraction size of the group. For the second and third row the results are 
given for a network with N = 5000 nodes, and averaged over 20 simulations.
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complete homophily), and 0.5 indicates a homogeneous mixing with respect to group affiliation. The model con-
sists of N nodes and the two attributes are initially assigned to nodes with given sizes. We call fa the fraction of 
nodes belonging to group a, and fb = 1 − fa the fraction of nodes belonging to group b. We shall refer to group a 
as the minority and group b as the majority, so that fb ≥ fa. At each time step, a newly arriving node j randomly 
attaches to m pre-existing nodes by evaluating their degree and group membership. Multiple linkage between two 
nodes is not allowed. The probability of node j to connect to node i is given by:

h k
h k (1)

i
ij i

l lj l
Π =

∑

where ki is the degree of node i and hij is the homophily between nodes i and j. Note that we assign the group 
membership of the nodes and determine the homophily between nodes based on their group membership before 
creating the networks. In the case of complete homophily, if the arrival node does not encounter any members of 
the same group, it can remain isolated until it encounters a new node from the same group.

In general, the homophily parameter defines the probability of connection within and between groups. For 
example, in the case of two groups, we may have two homophily parameters: haa (probability of connection 
between members of group a), hbb (probability of connection between members of group b), and the probability 
between groups (hab and hba), which are the complementary probabilities (hab = 1−haa, hba = 1−hbb). As a sim-
plification, one can assume that homophily is regulated by only one parameter h, considering that homophily is 
symmetric and complementary: haa = hbb = h and hab = hba = 1−h. In this paper, we first provide the results for the 
simple case of symmetric homophily and then discuss the asymmetric homophily.

Note that this model generates undirected networks. Since our main focus is modelling social networks, it 
is realistic to assume that a social link cannot be established if it is not trustful and reciprocal. Online social 
networks such as LinkedIn, Facebook and Google scholar are based on such a mechanism for link creation. In 
undirected networks, one important centrality measure, namely, PageRank centrality can be approximated by 
the degree centrality26. There are a few challenges in extending the model to directed graphs. First, many social 
networks are intrinsically undirected. Second, the model of directed graphs does not take into consideration the 
degree correlations that can exist in real networks and ultimately can impact node’s ranks27,28. Therefore, address-
ing all these issues are beyond the scope of this paper and we leave them for future work.

Degree growth.  Figure 1 (second row) illustrates the dynamics of the degree growth when tuning homoph-
ily. The minority fraction is fixed to 0.2. Our model covers the whole range of network topologies. For 0 ≤ h ≤ 0.5 
the network is heterophilic, and for 0.5 ≤ h ≤ 1 the network is homophilic. In the heterophilic regime, the degrees 
of the minority nodes grow faster than the degree of the majority. Complete heterophily (h = 0) leads to the for-
mation of a bipartite network. The difference in the degree growth reduces gradually as heterophily decreases, 
until we reach the homogeneous mixing case (h = 0.5), in which groups do not matter anymore and we recover 
the original Barabási-Albert growth model for both groups.

In the homophilic regime (0.5 ≤ h ≤ 1), the degrees of the majority nodes grow faster than the degrees of the 
minority nodes until a certain point h ≃ 0.8. After that, the difference in growth decreases until we reach the 
fully homophilic case (h = 1) in which the network is split between the two groups, each having the same degree 
growth. Such extreme homophilic cases resembles societies in which women and men are completely segregated 
at schools or some universities, e.g., in Iran or Saudi Arabia29.

Figure 1 (third row) illustrates the degree distributions of the groups as a result of their degree growth. The 
insets show the fraction of the total degree of the group in compare with the relative group sizes (orange and blue 
dashed lines). In the heterophilic regime, the minority receives more degree than what it is expected from its size 
and in the homophilic regime is the opposite but asymmetrical.

Impact of homophily and group size on degree distribution.  Figure 2 shows the evolution of the 
exponent of the degree distribution for the minority (Fig. 2A) and majority (Fig. 2B) nodes when we tune homo-
phily and group size. We derive analytically the exact exponent of the degree growth and the degree distribution 
as a function of homophily (h) and minority size (fa) (see Methods). The degree exponent illustrates the ability of 
nodes to stretch their degrees to high values and thus reach higher degree rank. Let us denote the degree distri-
bution p(k) ~ kγ, where γ is the exponent of the degree distribution. When both groups are of equal size (fa = 0.5), 
the model recovers the exponent γ = −3 for the degree distributions of both groups, as predicted from the classi-
cal Barabási-Albert model. In the heterophilic regime (h < 0.5), as the size of the minority decreases, the exponent 
of the degree distribution of the minority increases, which indicates that the degree of the minority nodes reaches 
larger values. The opposite situation occurs for the majority: as the size of the minority decreases, the exponent of 
the degree decreases, which indicates that the degree of majority nodes is limited to smaller values.

The homophilic regime (h > 0.5) exhibits an interesting behaviour. While the exponent of the degree distri-
bution for the majority does not change much when we tune group size or homophily, there is a non-linear effect 
for the minority. As homophily increases, the exponent decreases until a certain homophily value (h ≃ 0.8), and 
increases afterwards (see Fig. 2A). In the extreme homophilic case (h = 1.0) the degree growth of both groups is 
similar to the homogeneous mixing case (h = 0.5) and so are the exponents of the degree distributions.

This non-linear behaviour can be explained by the interplay between homophily and relative group size dif-
ferences. Both determine the amount of competition faced by the nodes from different groups. For the major-
ity, heterophilic conditions are not beneficial (in terms of degree exponent), since majority of nodes are mostly 
attracted to the minority of nodes which makes the minority group extremely popular. Therefore, majority nodes 
have difficulties competing for the attention of the newly arriving nodes. In the homophilic regime however, the 
majority is relatively indifferent because they compete for attention mostly among themselves.
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For the minority, heterophilic situations are the most beneficial. They receive most of the attention of the 
majority, and the competition for attention among minority nodes is relatively low since they are a small group. 
In homophilic situations, however, it is much more difficult for minority nodes to attract newly arriving nodes 
due to the competition with the majority, which is not only larger in size but also contains more popular nodes. 
The situation worsens in the middle range of homophily (h = 0.8) in which minority nodes are not only in a 
disadvantage to attract nodes from the majority group but also some nodes from their own group due to fierce 
competition with the majority. However, in the case of extreme homophily, no competition exists between the 
nodes of different groups, and thus both groups compete only among themselves. The degree of the nodes in both 
groups grow similarly, and the degree distributions are the same as in the homogeneously mixed case, with the 
only difference that the network is now split between the two groups.

Interestingly, the evolution of the degree exponent in the homophilic regime exhibits a parabolic shape. This 
suggests that our model despite its simplicity displays a non-trivial interplay between homophily and preferen-
tial attachment that cannot be explained only by the Barabási and Albert (BA) model. Although it is possible to 
recover two cases of the model - neutral or complete homophily- the BA model alone cannot explain the behav-
iour of the degree exponent in other cases of the intermediate range of homophily, in particular, in the homophilic 
range 0.5 < h < 1. In addition, the tipping point around h ≃ 0.8 indicates that there can be the same degree expo-
nent for two different values of homophily. That means, considering only aggregated properties of the network 
such as the degree distribution is not sufficient to determine the microscopic behaviour of the nodes such as tie 
formation mechanism. Besides, the minimum value in the parabolic curve for minority suggests that the medium 
range of homophily can be disadvantageous for the degree of the minority to grow.

Ranking of minorities.  So far we have observed that homophily and the difference in group sizes have an 
effect on the degree growth and the degree distribution of groups. Despite the simplicity of the model, the out-
come of social interactions on the ranking of groups is striking.

First, we examine the total degree ranks. Figure 3A depicts the average total degree share of the minority as 
a function of homophily. Colors represent different minority sizes. The results for the majority group are com-
plementary. In the extreme heterophilic case (h = 0), a minority group that represents 20% of the total popula-
tion (light blue line) receives 50% of the total degree (i.e. 50% of the link ends are attached to minority nodes). 
This result resembles the concept of majority illusion, in which the majority of nodes perceives the opinion of 
the minority as the majority opinion because they are exposed mainly to minority nodes30. As the homophily 
between groups increases up to 0.5, the average total degree decreases to what we would expect from the size of 
the minority (dashed grey lines). In the homophilic case (0.5 ≤ h ≤ 1), the degree drops below this expectation, 
and thus the minority group as a whole is penalised. In the extreme homophilic situation (h = 1), the minority 
group can take advantage of full in-group support and the degree returns to the expectation, proportional to the 
group size.

Figure 2.  The analytical and numerical exponent of the degree distribution for the minority (A) and majority 
(B) as a function of homophily, for various minority sizes. The degree distributions follow a power-law p(k) ∝ 
kγ in which the exponent of the distribution (γ) depends on homophily (h) and the minority fraction (shown 
by different colors). The dashed lines are the expected degree exponents given by our analytical derivation (see 
Methods) and the dots represent the fitted value from the simulations of over 5,000 nodes. The analytical results 
are in excellent agreement with simulation. The minority fraction ranges from 0.05 to 0.5. For minority nodes 
(A), in the heterophilic regime (h < 0.5), the degree exponent ranges from −2 to −3, which shows the advantage 
these nodes have as their degrees grow to large values. In the homophilic regime (h > 0.5), the exponent shows 
a non-linear behaviour: first the degree exponent decreases, which means that degree growth for the minority 
nodes becomes limited, and they are thus less well-connected. However, this effect is compensated in high 
homophilic regime by in-group support, which explains why the exponent increases for h > 0.8. For majority 
nodes (B), in the heterophilic situation the growth of their degree is limited, in particular for small minority 
fractions. In the homophilic regime, the exponent of the majority degree always remains close to −3: the 
majority nodes do not gain extra advantage due to the size of their group.
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If we wish to examine only the top-ranked nodes, which is a realistic scenario for users who want to explore 
a ranked list of items (as in search user interfaces), the results are even more striking. Figure 3B illustrates the 
probability of finding minorities in the top d% of nodes ranked by degree. For example, d = 0.2 means the fraction 
of nodes in the top 20% of the nodes ranked by degree. In the heterophilic case (brown shades), nodes from the 
minority are over-represented in the top- ranked nodes. In the homophilic case (green shades), nodes from the 
minority are underrepresented, an effect especially important for small top d%. Given the fact that nodes with 
high degree are very stable in terms of their rank31, these results suggest that in homophilic networks, the majority 
stabilises its position at high ranks and leaves little opportunity for minorities to appear in the top ranks. In heter-
ophilic cases, the roles are reversed: minority nodes stabilise their position at high ranks.

Given the fact that many social networks are homophilic with respect to attributes such as gender or ethnicity, 
our results suggest that in homophilic networks majorities occupy the high ranks and minorities tend to appear 
towards the lower ranks compared to what would be a proportionate representation of the population. In a recent 
Twitter study, the authors found empirical evidence for this effect32. They showed that among the top individ-
uals with the highest numbers of followers, white men are over-represented compared to their population size. 
In addition, the authors showed empirical evidence for the nature of the asymmetric homophily that can exist 
among groups. However, the paper does not explain what are the underlying social mechanisms that generate this 
inequality given the homophily and group sizes.

Access to information.  Homophilic or heterophilic interactions not only impact the rank of nodes in terms 
of degree, but can also impact the ability of nodes to receive information. In the context of scientific collaboration 
it can be the ability to access novel ideas or awareness of career opportunities. In one study on Twitter, Halberstam 
and Knight showed that users affiliated with majority political groups, relative to the minority group, have more 
connections and are exposed to more information. They also found that users are disproportionately exposed to 
like-minded information and that type of information reaches like-minded users more quickly33.

Although a perfect segregation causes the overall network characteristics and rank of the two groups to 
be similar (complete homophily), a node’s ability to receive information is clearly changing as the two groups 
become more segregated. To examine the ability of nodes to access information, we model information diffusion 
as a simple susceptible-informed (SI) process34. Initially one random source is chosen as an informed node and 
all other nodes are susceptible. The probability for adopting the information is fixed. We then propagate the 
information on the network until all possible transmission routes have been tested. We compute two measures: 
(i) the fraction of information from a random source successfully reaches a random target; (ii) the average arrival 
time of the information. In each simulation, the source and the target are chosen at random and we average the 

Figure 3.  Ranking of minorities as a function of relative group size and homophily. (A) Average cumulative 
degree of the minority as a function of homophily, for different minority fractions (0.1–0.5). In a balanced 
population (0.5, pink line), both groups share half of the links, independently of the level of homophily. As 
the size of the minority decreases, the inequality in the share of degree increases. In a homogeneous-mixing 
case (h = 0.5), the rank corresponds to the expected population size shown by the grey dashed lines. In 
heterophilic regimes (0 ≤ h < 0.5), the minority takes advantage of the population size effect. In homophilic 
regimes (0.5 < h ≤ 1), we observe that the degree of minorities is below the expectation and it is recovered 
only in the extreme homophilic case (h = 1) by full in-group support. (B) Fraction of minority nodes that are 
found in the top d% of nodes with the highest degree. The fraction of nodes belonging to the minority (fa) is 
set to 0.2. If the group membership does not impact the attractiveness of nodes, we expect that the presence 
of the minority in the top d% is the same as its relative size (dashed line). However, we see that the results are 
sensitive to homophily. In the heterophilic case (0 ≤ h < 0.5), minorities are over-represented in the top d%. In 
the homophilic case (0.5 < h ≤ 1), minorities are under-represented in the top d%. In the case of homogeneous 
mixing (h = 0.5) or complete homophily (h = 1.0), minorities are presented in the top d% as expected from their 
relative size. Note that the results for the majority group is only the complementary of those for the minority.
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results over many iterations. We therefore have four different paths of transmission: from minority to minority 
(min-min), minority to majority (min-maj), majority to minority (maj-min) and majority to majority (maj-maj).

Figure 4A displays the fraction of successful transmissions from source to target and Fig. 4B the average 
arrival time of information. We set the minority fraction to 0.2 and the probability of information transmission to 
0.2. In the heterophilic regime, information is overall more likely to diffuse faster due to the effect of the minority 
hubs, which concentrate the links. The difference between the two groups is due to the same split in terms of 
roles: the majority nodes have an advantage as they are connected to minority hubs, which facilitates the spread of 
information to other majority nodes. Minority nodes have to rely on majority nodes to transmit the information 
to other minority nodes, which is less likely to happen due to the low degrees of the majority.

In the homophilic regime, it is harder for information to reach the targets due to the absence of high 
degree-low degree correlations. More importantly, the arrival time of information from majority to minority and 
vice versa increases drastically in high homophily (h ≥ 0.9) and consequently the probability for information to 
reach the target decreases. In addition, information is transmitted faster among minority nodes in high homoph-
ily due to a smaller number of nodes and thus shorter transmission paths, resembling rumor spreading in a small 
village. Overall, despite the fact that in highly segregated networks the degree exponent and ranks of groups show 
similar behaviour, the ability of minority nodes to receive information from majority and vice versa decreases 
dramatically due to the split of the network.

Note that the SI process in this setting can be thought as a random walk process for undirected graphs. The 
probability of a random walker starting from a random source to a random target is related to the number of 
paths that exists between the two nodes. By definition, in undirected graphs, the number of paths are exactly the 
same in each direction, which explains why the majority-to-minority and minority-to-majority lines overlap.

Improving the rank.  Is there anything can be done to improve the global ranking of a minority? Here, we 
show two ways in which (i) the minority can overcome the low ranking to improve their visibility (ii) algorithms 
can be enhanced to enforce a better ranking for the minority.

Individuals belonging to the minority group can improve their ranking in various ways. First and foremost, 
both the minority and the majority group should strive to increase their heterophilic interactions. That would 
result in better access to information and better ranking for the minority. Second, the minority group can enhance 
its general activity in the social network. According to our model, in the general form, each arrival node attaches 
to m pre-existing nodes in the network. By definition, the behaviour of the network in general is not dependent 
on the choice of m. The parameter m only determines the lower-bound of the degree and normally it is assumed 
to be small. Due to the stochasticity of the model and the preferential attachment mechanism, as the network 
grows, there will be a large heterogeneity in the degree distribution and emergence of hubs as can be observed 
in the power-law degree distribution. However, one can assume that one group is socially more active than the 
other group. In this case, we can define two parameters ma and mb that regulate the lower-bound of degree for 
the minority and the majority respectively. We can show analytically that the minority nodes can improve their 
ranking by increasing their degree activity ma (see supplementary). In other words, more social engagements can 
help the minority group to improve its overall visibility and rank. However, in many social networks, it is often 
difficult if not impossible to change the micro-behaviour of the individuals.

A second way is for ranking algorithms to ensure that the percentage of a minority in top d% is reflecting 
the true fraction of the minority, if not better. This refers to Fig. 3B. If we assume that a network is driven by 

Figure 4.  Fraction of successful transmission and average arrival time of information from a random source to 
a random target for different groups of nodes. (A) Fraction of information that successfully reached the target. 
As homophily increases the information has harder time reaching a majority node from a minority node and 
vice versa. (B) Average arrival time of information. Average arrival time is shorter in heterophilic networks and 
it increases as the network become homophilic. In the extreme homophilic case, arrival time from majority to 
minority and vice versa (green and orange lines) increases dramatically until it goes to infinity for complete 
homophily. The arrival time for minority to minority group decreases in the extreme homophily due to their 
smaller group size compared to majority. In all cases, N = 2000, minority fraction is set to 0.2, the probability of 
information transmission is set to 0.2 and results are averaged over 2000 simulations.
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homophily and preferential attachment, we can analytically determine how much compensation is needed to 
increase or decrease the ranks (see supplementary).

For example, let us assume a network with symmetric homophily of h = 0.8 and a minority fraction of 0.2. Let 
us also assume that each arrival node initially connects to 10 existing nodes, thus m = 10. The exponents of the 
degree distributions can be then calculated as explained in the Methods. If we wish to consider only top 10% of 
the nodes, that means to choose nodes that have degree K = 20 or higher according to Eq. 15 in the supplemen-
tary. In this case, only 8% of the minority nodes will be chosen which is lower than what we would expect from 
their group size. To correct for that, the algorithm can be adjusted to lower the threshold of the degree for the 
minority to K = 14 and increase the degree threshold for the majority to K = 22.

Ranking of minorities in empirical social networks.  We provide evidence for the presence of inequal-
ity in degree rankings in real social networks, using four empirical social networks that exhibit various values 
of group size and homophily: sexual contacts, dating network, scientific collaborations and scientific citations.

We first have to determine the value of homophily in the empirical networks. Established methods to quantify 
homophily include Newman’s assortativity mixing35 and dyadicity36. These measures are used to quantify the 
significance level of outgroup links compared to random expectation. However, real social networks do not nec-
essarily exhibit symmetric homophily. Observing only the edges between groups does not capture this potential 
asymmetric behaviour between groups. For example, if homophily within the minority (fraction size = 0.2) is 0.1 
and the homophily within the majority is 0.7, assortativity mixing according to the Eq. 3 of the ref.35 will be close 
to zero; this is similar to the case in which homophily is equal to 0.5 for both groups. However, in the former case 
we would expect that the number of edges that exist within the majority group is far greater than the number of 
edges within the minority group, after correcting for the group size. Therefore, to fully grasp asymmetric homo-
philic behavior, we need to consider the fraction of links that run between groups. Given the number of links that 
run between each group and the relation between group sizes, homophily, and degree exponent, we can analyti-
cally determine the homophily parameter for each group (see Methods).

The analytical derivation enables us to accurately estimate the value of the homophily parameter in empirical 
networks by using only the number of edges within each group given the group sizes. We then focus on four 
examples exhibiting extreme heterophily (sexual contacts, Brazil), high heterophily (dating network PussOKram, 
POK), moderate homophily (scientific collaborations, DBLP) and high homophily (scientific citations, APS). We 
assume that all networks are undirected and we focus on one node attribute (e.g. gender or scientific field). The 
characteristics of the four empirical networks are summarised in Table 1. For detailed description of the networks 
see the supplementary.

To evaluate our model against the data, we compare the exponent of the empirical degree distribution with the 
exponent generated by our model given the same empirical homophily and group size values. Our model proves 
to be able to reproduce similar degree exponents as in the empirical networks. The results of the fit can be found 
in the supplementary.

Furthermore, we examine the top nodes ranked by degree. Figure 5 illustrates the probability of finding 
minority nodes in the top d % of nodes ranked by degree. In the heterophilic cases (sexual contacts and dating 
networks) Fig. 5A,B, the minority is over-represented with respect to its size. In the scientific collaborations 
Fig. 5C in which homophily is moderate, the minority rank is close to its expected value. In the case of the scien-
tific citations Fig. 5D which is extremely homophilic, the representation of the minority is highly underestimated. 
We provide the results of the ranks in synthetic networks with similar homophilic parameters (dashed orange 
lines). Despite the simplicity of the model, the majority of ranks fall well within the standard deviation of the 
model. These results provide empirical evidence for a ranking bias in empirical networks and the usefulness of 
the model to capture and understand such biases.

Discussion
We have demonstrated analytically and numerically that the degree ranking of nodes is influenced by the relative 
group size difference and by homophily, and that this influence has an asymmetric and non-linear property. As 
the size of a minority group decreases, minority nodes benefit more from heterophilic interactions and suffer 
from homophilic interactions. Minority nodes experience lower rankings mostly in the intermediate range of 
homophily, in which their ability to attract nodes from both groups is minimum. Minority nodes recover higher 
degrees by full in-group support when homophily further increases, but they will then suffer from poor accessi-
bility when it comes to receiving information spread by the majority. Although our model makes simple assump-
tions, such as all members of the same group behaving similarly and being equally active, it lays a theoretical 

Data Nodes Minority Majority
Homophily
(minority, majority)

Brazil 16,730 sex-workers 6,624 (40%) sex-buyers 10,106 0, 0

POK 29,341 minority 12,868 (44%) majority 16,473 0.2, 0.17

DBLP 280,200 female 63,356 (22%) male 216,844 0.57, 0.56

APS 1,853 CSM 695 (37%) QSM 1,158 0.8, 1.0

Table 1.  Characteristics of the empirical networks. The table shows four real-world networks with two groups. 
Number of nodes, group sizes and homophily values are reported. We report the homophily values for each 
group (haa homophily between minority to minority and hbb homophily between majority to majority).
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foundation for studying how inherent properties of networks can lead to biases in the ranking of nodes, in par-
ticular nodes that belong to minorities. Neglecting the relative group size differences and homophily thus leads 
to sever consequences for minorities, particularly in search engines or ranking algorithms. As counter measures, 
we have shown that an increase in the connectivity of minority nodes can mitigate the segregation effect. Another 
way is for algorithms to be devised to harness relative group size differences and homophily to ensure the repre-
sentativeness of minorities and correct for potential biases. We have shown how to measure the intensity of the 
homophilic behaviour in a network, and, knowing this parameter, how much compensation is thus needed.

Our work can be extended in multiple ways. First, it is important to collect more large-scale datasets that 
represent minority groups. This is, in particular, challenging since sampling methods from networks can poten-
tially impose a bias on the representativeness of minorities37, or often hard-to-reach populations are absent from 
datasets38. Second, the model can be extended to account for directionality and multiple attributes in networks 
or multiplex networks. Third, this model can be used to study community detections in annotated networks39 or 
evaluating the performance of classifiers in machine learning tasks40,41. We anticipate that this work will inspire 
more empirical and theoretical exploration on the impact of network structure on the visibility and ranking of 
minorities to help establish more equality and fairness in society.

Methods
Here, we provide the analytical derivation of the degree growth and the exponent of the degree distribution of the 
model. We do this using two approaches; exact derivation and continuum approximation (see Appendix).

Exact degree dynamics.  Let Ka(t) and Kb(t) be the sum of the degrees of nodes from group a and b respectively. 
Since the overall growth of the network follows a Barabási-Albert process, the evolution of these quantities verify:

K t K t K t mt( ) ( ) ( ) 2 (2)a b+ = =

where m is the number of new links in the network at each time step t. Let us denote the relative fraction of group 
size for each group as fa and fb. Considering the general case of asymmetric homophily, the evolution of Ka and 
Kb is given in discrete time by:
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Figure 5.  Ranking of minority groups in the top d% degree rank for four empirical networks. (A) Sexual contact 
network (minority = sex workers). (B) Online dating network PussOKram (POK). (C) Scientific collaboration 
network (minority = women). (D) Scientific citation network (minority = Classical Statistical mechanics (CSM)). 
The solid orange line is measured on the empirical network and the dashed orange line is the predicted trend, 
computed using synthetic networks with similar homophily parameters, for 5,000 nodes and averaged over 100 
simulations. The dashed gray line is the relative size of the minority, and thus the expected fraction of minority 
nodes. In the heterophilic cases (A,B), the minority is over-represented with respect to its size. In the collaboration 
network where homophily is moderate (C), the minority is underrepresented but close to its relative size. In the 
case of the citation network which is extremely homophilic (D), the minority is highly underrepresented. These 
results provide empirical evidence for a ranking bias in empirical networks.
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These equations verify that for haa = hbb = 0 and hab = hba = 1 (perfectly heterophilic network) we get:
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and thus for the evolution of the degree of a single node:











=
∑

= =

=
∑

= =

dk
dt

mf k
k

mf k
K t

f k
t

dk
dt

mf k
k

mf k
K t

f k
t

( )

( ) (6)

a
b

a

i i
b

a

b
b

a

b
a

b

i i
a

b

a
a

b

which gives:

k t

k t (7)

a
f

b
f

b

a








∝

∝

Similarly, for haa = hbb = 1 and hab = hba = 0 (perfectly homophilic network) we get:
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and thus for the evolution of the degree of a single node:
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Let us make the hypothesis that Ka(t) and Kb(t) are linear functions of time, so that Ka(t) = Cmt and 
Kb(t) = (2 − C)mt given Eq. (2). In the case of two groups, we can simplify the notations by denoting fa = f and 
fb = 1 − f. Using Eq. (4), we thus have:
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All other parameters being known, this equation for C can be numerically solved. Within the ranges of values 
of the parameters, it has three real solutions, but only one in the interval [0, 2] and thus valid in this case. We can 
then derive the evolution of the degree of a single node for both groups in the general case. Let’s define:
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For group a, we have:
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We plot the evolution of these exponents βa and βb in the special case where haa = hbb = h and hab = hba = 1−h 
(Fig. 6). The general case where homophily is not symmetrical is shown in the contour plot in Fig. 7. The dashed 
lines indicate the previous case of symmetric homophily.

Finally, as has been shown before, there is an inverse relation between the exponent of the degree growth and 
the exponent of the degree distribution (p(k) ∝ kγ), as follow19,25:
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In the case where homophily is equal to 0.5 for both groups, we have βa = βb = 0.5, in which the model con-
verges to classic BA model with degree exponent p(k) ∝ k−3.

Estimating asymmetric homophily parameters.  The analytical derivations in the previous section ena-
ble us to estimate the homophily parameter given the fraction of edges that exist within each group in empirical 
networks.

In a network with M edges, let us call Maa the number of edges linking two nodes of the group a (in-group 
links), and similarly Mbb the number of edges linking nodes of the group b. The probability to have an in-group 
link in group a, which can then be defined as =maa

M
M

aa , is given by (see derivation in supplementary):

Figure 6.  Evolution of the exponents for the degree growth, symmetric homophily. The exponents βa 
(minority) and βb (majority) are defined in Eqs (15 and 17). h = haa = hbb is the homophily parameter and the 
numbers on the curves indicate the fraction of nodes belonging to the minority group (parameter fa).
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Similar, we have for the group b:
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Note that in the general case homophily can be asymmetric, hab ≠ hba. From our previous analytical calcula-
tions, we know the relation between the exponent β, the group size and the homophily parameter by numerically 
solving Eq. (12) given maa and mbb. We can then solve these nonlinear dynamical equations and determine the 
expected homophily haa and hbb for group a and b.

References
	 1.	 Moody, J. Race, school integration, and friendship segregation in america1. American journal of Sociology 107, 679–716 (2001).
	 2.	 Beede, D. N. et al. Women in stem: A gender gap to innovation (2011).
	 3.	  McPherson, M., Smith-Lovin, L. & Cook, J. M. Birds of a feather: Homophily in social networks. Annual review of sociology 415–444 

(2001).
	 4.	 Baerveldt, C., Van Rossem, R., Vermande, M. & Weerman, F. Students’ delinquency and correlates with strong and weaker ties: A 

study of students’ networks in dutch high schools. Connections 26, 11–28 (2004).
	 5.	 Mislove, A., Viswanath, B., Gummadi, K. P. & Druschel, P. You are who you know: inferring user profiles in online social networks. 

In Proceedings of the third ACM international conference on Web search and data mining, 251–260 (ACM, 2010).
	 6.	 Fiore, A. T. & Donath, J. S. Homophily in online dating: when do you like someone like yourself? In CHI’05 Extended Abstracts on 

Human Factors in Computing Systems, 1371–1374 (ACM, 2005).
	 7.	 Brin, S. & Page, L. The anatomy of a large-scale hypertextual web search engine. Computer networks and ISDN systems 30, 107–117 (1998).
	 8.	 Kleinberg, J. M. Hubs, authorities, and communities. ACM computing surveys (CSUR) 31, 5 (1999).
	 9.	 Horowitz, D. & Kamvar, S. D. The anatomy of a large-scale social search engine. In Proceedings of the 19th international conference 

on World wide web, 431–440 (ACM, 2010).
	10.	 Zhou, X., Xu, Y., Li, Y., Josang, A. & Cox, C. The state-of-the-art in personalized recommender systems for social networking. 

Artificial Intelligence Review 37, 119–132 (2012).
	11.	 King, I., Lyu, M. R. & Ma, H. Introduction to social recommendation. In Proceedings of the 19th international conference on World 

wide web, 1355–1356 (ACM, 2010).
	12.	 Boyd, D. The Networked Nature of Algorithmic Discrimination. Ph.D. thesis, Fordham university (2014).
	13.	 Miller, C. C. Can an algorithm hire better than a human? The New York Times, June 25 (2015).
	14.	 Chalfin, A. et al. Productivity and selection of human capital with machine learning. The American Economic Review 106, 124–127 (2016).
	15.	 Chen, D., Lü, L., Shang, M.-S., Zhang, Y.-C. & Zhou, T. Identifying influential nodes in complex networks. Physica a: Statistical 

mechanics and its applications 391, 1777–1787 (2012).

Figure 7.  Evolution of the exponents for the degree growth, asymmetric homophily. The exponents βa and βb 
are defined in Eqs (15 and 17). haa and hbb are the homophily parameters. Bottom row shows the behaviour of 
βa and top row the behaviour of βb. Columns are ordered according to the fraction of nodes belonging to the 
minority group (parameter fa), respectively fa = 0.1, 0.2, 0.3 and 0.4 from left to right. The dashed lines indicate 
the symmetrical case plotted in Fig. 6.



www.nature.com/scientificreports/

1 2SCIEnTIFIC Reports |  (2018) 8:11077  | DOI:10.1038/s41598-018-29405-7

	16.	 Kitsak, M. et al. Identification of influential spreaders in complex networks. Nature physics 6, 888–893 (2010).
	17.	 Ghosh, R. & Lerman, K. Predicting influential users in online social networks. In Proceedings of KDD workshop on social network 

analysis (Citeseer, 2010).
	18.	 Franklin, A. J. & Boyd-Franklin, N. Invisibility syndrome: a clinical model of the effects of racism on african-american males. 

American Journal of Orthopsychiatry 70, 33 (2000).
	19.	 Barabási, A.-L. & Albert, R. Emergence of scaling in random networks. science 286, 509–512 (1999).
	20.	 Bramoullé, Y., Currarini, S., Jackson, M. O., Pin, P. & Rogers, B. W. Homophily and long-run integration in social networks. Journal 

of Economic Theory 147, 1754–1786 (2012).
	21.	 Currarini, S., Jackson, M. O. & Pin, P. Identifying the roles of race-based choice and chance in high school friendship network 

formation. Proceedings of the National Academy of Sciences 107, 4857–4861 (2010).
	22.	 Papadopoulos, F., Kitsak, M., Serrano, M. Á., Boguná, M. & Krioukov, D. Popularity versus similarity in growing networks. Nature 

489, 537–540 (2012).
	23.	 de Almeida, M. L., Mendes, G. A., Viswanathan, G. M. & da Silva, L. R. Scale-free homophilic network. The European Physical 

Journal B 86, 1–6 (2013).
	24.	 Avin, C. et al. Homophily and the glass ceiling effect in social networks. In Proceedings of the 2015 Conference on Innovations in 

Theoretical Computer Science, 41–50 (ACM, 2015).
	25.	 Bianconi, G. & Barabási, A.-L. Competition and multiscaling in evolving networks. EPL (Europhysics Letters) 54, 436 (2001).
	26.	 Perra, N. & Fortunato, S. Spectral centrality measures in complex networks. Physical Review E 78, 036107 (2008).
	27.	 Kim, H., Del Genio, C. I., Bassler, K. E. & Toroczkai, Z. Constructing and sampling directed graphs with given degree sequences. 

New Journal of Physics 14, 023012 (2012).
	28.	 Williams, O. & Del Genio, C. I. Degree correlations in directed scale-free networks. PloS one 9, e110121 (2014).
	29.	 Mehran, G. The paradox of tradition and modernity in female education in the islamic republic of iran. Comparative Education 

Review 47, 269–286 (2003).
	30.	 Lerman, K., Yan, X. & Wu, X.-Z. The “majority illusion” in social networks. PloS one 11, e0147617 (2016).
	31.	 Ghoshal, G. & Barabási, A.-L. Ranking stability and super-stable nodes in complex networks. Nature communications 2, 394 (2011).
	32.	 Messias, J., Vikatos, P. & Benevenuto, F. White, man, and highly followed: gender and race inequalities in twitter. In Proceedings of 

the International Conference on Web Intelligence, 266–274 (ACM, 2017).
	33.	 Halberstam, Y. & Knight, B. Homophily, group size, and the diffusion of political information in social networks: Evidence from 

twitter. Journal of Public Economics 143, 73–88 (2016).
	34.	 Nekovee, M., Moreno, Y., Bianconi, G. & Marsili, M. Theory of rumour spreading in complex social networks. Physica A: Statistical 

Mechanics and its Applications 374, 457–470 (2007).
	35.	 Newman, M. E. Assortative mixing in networks. Physical review letters 89, 208701 (2002).
	36.	 Park, J. & Barabási, A.-L. Distribution of node characteristics in complex networks. Proceedings of the National Academy of Sciences 

104, 17916–17920 (2007).
	37.	  Wagner, C., Singer, P., Karimi, F., Pfeffer, J. & Strohmaier, M. Sampling from social networks with attributes. In Proceedings of the 26th 

International Conference on World Wide Web, 1181–1190 (International World Wide Web Conferences Steering Committee, 2017).
	38.	 Shaghaghi, A., Bhopal, R. S. & Sheikh, A. Approaches to recruiting ‘hard-to-reach’ populations into research: a review of the 

literature. Health Promotion 1, 01–09 (2011).
	39.	  Newman, M. E. & Clauset, A. Structure and inference in annotated networks. Nature Communications 7 (2016).
	40.	 Hardt, M., et al. Equality of opportunity in supervised learning. In Advances in Neural Information Processing Systems, 3315–3323 (2016).
	41.	 Dwork, C., Hardt, M., Pitassi, T., Reingold, O. & Zemel, R. Fairness through awareness. In Proceedings of the 3rd Innovations in 

Theoretical Computer Science Conference, 214–226 (ACM, 2012).

Acknowledgements
We thank Daniele Cassese, Babak Fotouhi, Fakhteh Ghanbarnejad, Florian Lemmerich, Petter Holme, Eun Lee 
and Renaud Lambiotte for their invaluable comments and suggestions. The publication of this article was funded 
by the Open Access Fund of the Leibniz Association.

Author Contributions
F.K. and M.S. devised the research project. F.K. performed numerical simulations and analyzed the datasets. M.G. 
and F.K. performed analytical derivations. F.K., M.G., C.W., P.S. and M.S. wrote the paper.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-29405-7.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-29405-7
http://creativecommons.org/licenses/by/4.0/

	Homophily influences ranking of minorities in social networks

	Results

	Model. 
	Degree growth. 
	Impact of homophily and group size on degree distribution. 
	Ranking of minorities. 
	Access to information. 
	Improving the rank. 
	Ranking of minorities in empirical social networks. 

	Discussion

	Methods

	Exact degree dynamics. 
	Estimating asymmetric homophily parameters. 

	Acknowledgements

	Figure 1 Disproportionate degree ranks and asymmetric effects of homophily on Barabási-Albert networks with minority and majority groups and homophily.
	Figure 2 The analytical and numerical exponent of the degree distribution for the minority (A) and majority (B) as a function of homophily, for various minority sizes.
	Figure 3 Ranking of minorities as a function of relative group size and homophily.
	Figure 4 Fraction of successful transmission and average arrival time of information from a random source to a random target for different groups of nodes.
	Figure 5 Ranking of minority groups in the top d% degree rank for four empirical networks.
	Figure 6 Evolution of the exponents for the degree growth, symmetric homophily.
	Figure 7 Evolution of the exponents for the degree growth, asymmetric homophily.
	Table 1 Characteristics of the empirical networks.




