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Simultaneously tracking the global impact of COVID-19 is challeng-
ing because of regional variation in resources and reporting.
Leveraging self-reported survey outcomes via an existing interna-
tional social media network has the potential to provide standard-
ized data streams to support monitoring and decision-making
worldwide, in real time, and with limited local resources. The Uni-
versity of Maryland Global COVID-19 Trends and Impact Survey
(UMD-CTIS), in partnership with Facebook, has invited daily cross-
sectional samples from the social media platform's active users
to participate in the survey since its launch on April 23, 2020.
We analyzed UMD-CTIS survey data through December 20, 2020,
from 31,142,582 responses representing 114 countries/territories
weighted for nonresponse and adjusted to basic demographics.
We show consistent respondent demographics over time for many
countries/territories. Machine Learning models trained on national
and pooled global data verified known symptom indicators.
COVID-like illness (CLI) signals were correlated with government
benchmark data. Importantly, the best benchmarked UMD-CTIS
signal uses a single survey item whereby respondents report on
CLI in their local community. In regions with strained health infra-
structure but active social media users, we show it is possible to
define COVID-19 impact trajectories using a remote platform inde-
pendent of local government resources. This syndromic surveil-
lance public health tool is the largest global health survey to date
and, with brief participant engagement, can provide meaningful,
timely insights into the global COVID-19 pandemic at a local scale.

COVID-19 surveillance j global health j human social sensing j SARS-CoV-2
testing

In December 2019, the COVID-19 pandemic swept across the
globe and challenged the scientific community to urgently

assess and intervene (1). While impressive public health mitiga-
tion efforts have been made, such as the expansion of case
testing and reporting infrastructure, nonpharmaceutical inter-
ventions, and rapid vaccine development, barriers remain to
understanding and controlling the pandemic (2). The lack of
preexisting knowledge of the SARS-CoV-2 virus and lack of
uniform COVID-19 data among and within countries has
reduced our ability to assess severity and direct action across
regions (3). This data issue may have been additionally challeng-
ing in areas with less resilient healthcare systems, where disease
surveillance may be delayed or underestimated and surge capac-
ity limited (4, 5). This lack of timely information may obscure the
actual impact during a crucial window to mobilize targeted sup-
port (6).

One successful approach to responding to the need for
timely trends and insights has been to leverage syndromic sur-
veillance through surveys (7–12). Previous work on influenza,

and now COVID-19, has demonstrated the utility of this approach
based on self-reported symptoms and other data, including burden
estimation, hot-spot identification, and mitigation tracking (13–16),
in near real-time. While platforms differ in their data collection
methodology, scope, and target population, insights have been
comparable and used to inform decision-making (17–19). This fur-
ther underscores the value of participatory epidemiology in the
pandemic setting.

While existing platforms have many strengths, such as longi-
tudinal disease trajectories (9, 20) and rapid deployment of
timely survey questions (11, 21), there is a need for sufficient
data from diverse populations for certain research questions,
especially from regions already struggling with the pandemic
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response. High-quality, prospective, opt-in platforms that rely
on government endorsement, advertising, or word of mouth
may not be feasible given low uptake and high attrition in con-
junction with the incidence of disease. They may also be partic-
ularly problematic in populations with limited government trust
or variable access to smartphone technology.

Using a recruitment mechanism from a massive social media
platform sampling frame—the Facebook Active User Base
(FAUB)—the University of Maryland (UMD) developed the
Global COVID-19 Trends and Impact Survey (UMD-CTIS) in
collaboration with Facebook (22). The UMD-CTIS data stream
combines user responses to a unified survey instrument with
survey weights adjusting for sampling, nonresponse, and basic
demography for 114 countries and territories worldwide.
Because the FAUB spans locales with varied languages, social
structures, and economic resources, UMD-CTIS could provide,
with its daily samples, a unique, fine-grained understanding of
the longitudinal development of global and region-specific health
at a scale not feasible previously (23). The ability to pool global
UMD-CTIS data could enable a timely glimpse of emerging
syndromes. Additionally, the innovative UMD-CTIS approach
of leveraging sampled users as community sensors (24) could
enhance local surveillance signals with fewer responses.

We sought to characterize the utility of UMD-CTIS as a
global and local public health monitoring resource for these
fundamental syndromic surveillance applications. Toward this
end, we used 31 million UMD-CTIS responses from before
COVID-19 vaccine deployment to evaluate if the unique study
design produces consistent, cross-sectional views over time, first
of local demographics and then of the early COVID-19 waves.
We test if combined data from all countries/territories can be
used to identify known symptom predictors of testing positive
for COVID-19. Finally, we describe how UMD-CTIS signals,
using symptoms and human social sensing, may improve syn-
dromic surveillance for COVID-19.

Results
Study Participants. The UMD-CTIS (summarized in Fig. 1A)
includes 127 self-reported time-varying COVID-19–related
measures, including key demographic, behavior, and health
impacts, at an unparalleled spatiotemporal scale. The survey
has been running daily since April 23, 2020. In this analysis, we
use data from the first 34 complete weeks of the survey, ending
just prior to the COVID-19 vaccine rollout (International
Organization for Standardization [ISO] weeks 18 to 51 or April
27 to December 20, 2020). The same questionnaire was fielded
in all countries as a web-based instrument. Over the course of
the study period reported here, six versions of the survey were
deployed to Facebook users sampled from the FAUB (survey
questions and changes summarized in SI Appendix, Table 1).
Questions were translated into 56 languages (25), which
excludes only about 5% of the FAUB globally (estimates by
region and population not available). There were 31,142,582
responses with survey weights. The responses were from 114
countries and territories, with a median [interquartile range
(IQR)] number of responses of 7,837 (6,312, 9,458) surveys per
week per locale (survey uptake maps in Fig. 1B and SI
Appendix, Fig. 1). Here, the terms “local” or “locale” may be
used to refer to individual countries and territories in UMD-
CTIS. Countries and territories without survey weights (n = 136)
and in which Facebook is not allowed to operate are not
included. Data from the United States are also not included
because a slightly different questionnaire had been used there at
the beginning of the study, and the sampling methodology is
different in the US CTIS compared to UMD-CTIS (26).
The questionnaires were purposefully kept short to reduce

respondent burden and possible drop-off (mean response time 9.
2, median [IQR] 7.2 [5.3, 10.1] min).

Demographic Characteristics of Respondents by Country/Territory
and Time. The UMD-CTIS had several potential sources of bias.
For example, as an internet-based social media user group, the
FAUB is a nonrandom sample of the population in the countries/
territories covered by UMD-CTIS. In addition, the response to
invitations to participate in the survey and the response to indi-
vidual survey items may vary by user. Nevertheless, this very
large, globally distributed user base, in conjunction with the
UMD-CTIS sampling scheme and repeated cross-sectional sur-
veys, could provide a valuable COVID-19 data stream for public
health trends—provided these biases are consistent over relevant
timeframes and the signals from respondents adequately capture
relevant population-wide epidemiology. We therefore sought to
evaluate the demographic composition that UMD-CTIS achieved
across locales despite these potential sources of bias. We com-
pared UMD-CTIS with the census population (27) for six
age–gender groups (i.e., Dg = Pg,UMD-CTIS � Pg,Census, in which Pg
is the proportion in group g, Fig. 1C). Across all locales, the dif-
ference was more often positive for male groups and negative for
elderly groups (median Dg for young females 0.016, middle
females 0.003, elderly females �0.057, young males 0.018, middle
males 0.044, and elderly males �0.032). Male respondents are
more frequent in Africa and Asia, in contrast to the documented
female predominance of other health research studies. This may
reflect regional differences in technology access and use (28, 29).
To quantify the overall differences, we combined the age–gender
group differences to estimate the mean absolute difference (i.e.,
δ = Σg jDgj/6) for each locale (Fig. 1D). The median δ was 0.062,
and the majority had a δ < 0.1 (84%, n = 94/112). Thus, for
many countries and territories, UMD-CTIS demographics prior
to application of survey weights were similar to country/territory
census demographics.

UMD-CTIS time trends could be particularly valuable for
COVID-19 epidemiology, such as community transmission,
testing barriers, socioeconomic insecurity, knowledge, practices,
and mitigation measures (21, 23, 30, 31). To understand time
trends in UMD-CTIS respondents and how this might affect
the interpretation of epidemiologic trends, we sought to evalu-
ate weekly variability in UMD-CTIS demographics. For each
country/territory and week (w), we quantified the demographic
variability as the change in the age–gender difference measure
versus the median for that country/territory (i.e., ΔDg,w = Dg,w –
median[Dg,w], Fig. 1E). The middle age groups were the least
variable over the study period, while the young male group var-
ied more from the median in the first weeks of the study. To
quantify the week-to-week variability of overall differences for
each locale, we calculated the change in the mean absolute dif-
ference versus the median for that country/territory (Δδ,w =
δw – median[δw], Fig. 1F). The demographic composition of
UMD-CTIS respondents over time was relatively stable (range
Δδ,w �0.057 to 0.059 in all country/territory weeks). The
extended period covering survey version 5 was broadly the most
consistent with respect to this measure. The beginning of the
study had the most variability (week 18, median Δδ,18 across all
locales was 0.009). Certain countries and territories had sub-
stantial (e.g., Haiti) or minimal (e.g., Japan) demographic
variability over time (Δδ,w by country/territory in SI Appendix,
Fig. 2). Characterizing the variability of all UMD-CTIS covari-
ates was beyond the scope of this analysis. Nevertheless, since
the demographic questions were at the end of the survey during
this study period, the variability in demographics over time pro-
vides one metric for understanding time trends and demo-
graphic consistency among UMD-CTIS respondents. Despite
the potential bias in the FAUB sampling frame, sampling
scheme, survey nonresponse, and/or response to demographic
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questions, the survey design resulted in demographic consis-
tency for most locales for most of the study period.

Using Global Surveillance Data to Derive Symptoms Predictive of
Individual COVID-19–Positive Test Result. We sought to determine
if we could use a limited set of survey questions about recent

symptoms and demographics to predict the individual-level pos-
itive test result among respondents who had reported a recent
COVID-19 test result (schema in SI Appendix, Fig. 3A). The
goal of this application of surveillance data would be to deter-
mine if UMD-CTIS responses can identify the most important
symptoms associated with a positive test result. This model
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Fig. 1. UMD-CTIS data pipeline, coverage, and demographic distributions. (A) The FAUB is sampled daily and invited to participate in the online UMD-
CTIS, administered by Qualtrics and accessed via an online form using a smartphone or computer. Participants are asked about demographics, COVID-19
symptoms, behaviors, and outcomes. Facebook supplies survey weights to account for nonresponse and to adjust for basic demographics of the partici-
pant. Aggregated data are released to the public in near real time. Researchers may apply to use raw microdata to study COVID-19. (B) The map of the distri-
bution of surveys per capita during the study period for countries and territories sampled and that have survey weights (n = 114, gray for all other countries/
territories). (C) The distribution of difference of proportion in each group in UMD-CTIS versus local demographics by six age–gender groups (male and female
versus young [18 to 34 y], middle [35 to 54 y], and elderly [>54 y]), that is, Dg = Pg,UMD-CTIS � Pg,Census, where Pg is the proportion in group g. (D) The distribu-
tion of mean absolute differences across age–gender groups (i.e., δ = Σg jDgj/6). The distribution by week (w) of the change (Δ) in the (E) difference of propor-
tions [ΔDg,w = Dg,w – median(Dg,w)] and (F) mean absolute difference [Δδ,w = δw – median(δw)] versus the median measure for that country/territory over the
study period. The range across all locales (light ribbon), 25th to 75th percentile (dark ribbon), and median (solid line) are shown.
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might inform isolation of an untested individual or become the
basis of a symptom-based surveillance signal for COVID-19
case trends. Such information was needed early in the pan-
demic and would be valuable should a novel variant or virus
cocirculate at any place around the globe. We hypothesized
that a basic machine learning model trained on pooled global
UMD-CTIS positive and negative test result data—made possi-
ble by use of a unified survey instrument—would allow for a
rapid collection of symptom profiles of recent positive test
result respondents across regions with variable testing practices.
The global model performed well on holdout UMD-CTIS data
(F1 0.74) and performed better in 77% of countries/territories
than models built on local data (SI Appendix, Fig. 3C). The
global model area under the curve of 0.799 was comparable in
magnitude to that from a large prospective longitudinal syn-
dromic surveillance data set (11) (Fig. 2A). The very high
importance of self-reported loss of smell or taste and typical
COVID-19 symptoms (e.g., cough, fever) were consistent with
prior studies (32, 33) and were generally similar in local models
(Fig. 2, and SI Appendix, Fig. 3D). The young male category
was the strongest demographic feature for many local models
but was less so in the full global model. We acknowledge the
potential for differential testing across locales and within demo-
graphic groups, which is a limitation of using data from those
tested rather than a “gold standard” prospective study with uni-
form testing. However, despite these differences in the impor-
tance of some model features, the global model outperformed
most models trained on local data, in which these very different
testing probabilities may limit model building. These initial
models for predicting a positive COVID-19 test result could be
developed further or could incorporate external data or addi-
tional features. Even so, we show it is possible to use a globally
deployed surveillance system to bolster a predictive symptom-
based model that performs well locally.

Having demonstrated how UMD-CTIS could “crowdsource”
a symptom-based prediction model on a global scale, we tested
this using a subsample of data from tested respondents either
early in their illness or early in the pandemic when initial
insights would be valuable (see performance for these and
other sensitivity analyses in SI Appendix, Fig. 3). The model
trained on data from those with a brief illness (0 to 4 d) at the
time of the survey performed similarly (F1 0.69) and provided
the same top four symptom features for predicting a positive

test result (i.e., loss of smell/taste, cough, fever, and chest pain).
We also trained an early pandemic model on data from the first
2 wk of the global data (April 27 to May 10, 2020). The early
pandemic model performed well (F1 0.74) and identified the
four important symptom predictors despite using substantially
fewer survey responses for training (n = 10,766) than were used
to train the full global model (n = 407,308). Difficulty breathing
was the next most important symptom in the early pandemic
model and also increased in importance in longer versus
shorter duration of illness models. This variation might reflect
syndromic features of those tested early in disease versus those
tested early in the pandemic. The ability to pool global data
and evaluate early strata further demonstrates the potential
utility of a rapidly deployed syndromic surveillance platform to
gain early insights applicable to the global community impacted
during a pandemic, even when data quality or quantity may
otherwise limit the utility of digital surveillance to glean these
insights individually in a single country or territory.

Benchmarking COVID-19 Syndromic Surveillance Signals. As UMD-
CTIS respondent demographics were consistent within many
countries during the study period, we hypothesized we could
use UMD-CTIS to develop COVID-19 surveillance signals that
would function across a range of countries/territories. First, we
evaluated the recent positive test result signal, reasoning this
would be a suitable comparison for new cases given a positive
test result is often used to define COVID-19 cases. As a com-
parison, we devised two syndromic surveillance signals based
on classic COVID-19 symptoms (32, 33), including broad (i.e.,
loss of smell/taste, cough, or fever) and narrow (i.e., loss of
smell/taste with illness < 14 d duration) COVID-like illness
(CLI). Lastly, we sought to identify whether human social sen-
sing—that is, using a proxy response of knowing someone with
CLI in the respondents’ local community (CCLI)—could pro-
vide meaningful trends across the countries/territories covered
by the platform, even in areas with lower survey coverage (24).
Additionally, this signal was of interest because it could poten-
tially give insights about a broader slice of a population than
the population from which survey respondents were sampled
(e.g., a health-conscious Facebook user respondent can report
on CLI among their less health-conscious, non-Facebook com-
munity members) and required a single response from study
participants. The signals were purposely derived from separate
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Fig. 2. The global model predicting recent COVID-19 positive test results using self-reported symptoms and minimal demographic data. (A) The receiver
operating characteristic of the hyperparameter tuned global model showing the area under the curve. (B) The SHapley Additive exPlanations distribution
of relative feature importance from the global model (green diamonds) compared to country/territory models (box and whisker plots). The within-model
feature importance was normalized to loss of smell/taste to facilitate between-model comparison.
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questions found in different sections of the survey to avoid
aberrant responses (e.g., ticking “yes” to all symptoms or enter-
ing implausible illness duration) or missingness (e.g., leaving
the survey before completion) in one question driving all sig-
nals. As illustrated in Fig. 3, benchmark (34, 35) COVID-19 cases
per population (black) and UMD-CTIS responses per survey
over a 7-d moving window (here CCLI in dark pink) were nor-
malized to allow for visual comparison of epidemic curves versus
UMD-CTIS signals across regions and a wide range of values.
Overall, the four UMD-CTIS signals reveal the global pandemic
“fingerprint” of benchmark case trajectories (Fig. 4).

To facilitate qualitative comparisons of these four signals in
their ability to trend benchmark cases, across countries/territo-
ries with asynchronous COVID-19 waves and varied survey
coverage, we calculated simplified measures to characterize
similarity: difference in peak day (φ = signal � benchmark)
and Spearman correlation strength (ρ). These measures should
be taken as descriptive only. Statistical inference on these time
series is possible, but detailed analyses were beyond the scope
of this paper and should be tailored to the specific country/ter-
ritory, survey period, and application of interest. The jφj may
be large if there are multiple waves during the study period.
The ρ may be large with nonstationary time series (such as epi-
demic curves here), even when the time series are not meaning-
fully associated. Noisy signals not reflective of an epidemic

curve (e.g., white noise) might have large jφj and ρ near zero.
Signals with these features would be less informative for sur-
veillance. We ranked signal–benchmark similarity measures
within countries/territories (relative to the same benchmark
curve) in addition to comparing signal similarity measures
between countries/territories.

Overall, UMD-CTIS signals benchmarked well for many sig-
nals in many countries and territories (shown graphically in
Fig. 4, summarized in SI Appendix, Fig. 4). Narrow CLI had the
earliest peak relative to benchmark data (median rank φ = 2
[tied with CCLI], median φ = �4.5 d), while CCLI was the
most strongly correlated with benchmark data (median rank
ρ = 1, median ρ = 0.76). Positive test performed the least well
of the four signals by median rank and similarity measure
(median φ = ±12 d, median ρ = 0.63). We reasoned that a pre-
dicted test positive test signal based on reported symptoms and
the global positive test prediction model applied to all UMD-
CTIS responses (regardless of testing) might identify bench-
mark case trends better than reported positive tests in regions
with limited UMD-CTIS test reports. The predicted positive test
signal ranked better than the reported positive test signal for
both similarity measures (median φ = ±7.5, median ρ = 0.66)
but did not benchmark better than the other signals. It is pres-
ently not possible to distinguish poor benchmarking because of
UMD-CTIS signal performance (e.g., biased survey sample)

A

C

B

D

Fig. 3. The schematic of COVID-19 case and UMD-CTIS surveillance signal benchmarking globally. For each country and territory, the 7-d smoothed
COVID-19 case counts from Our World in Data (A) are compared to the survey-weighted CTIS surveillance measure. (B) The CCLI signal for Bolivia and Italy
is shown for illustrative purposes. The survey-weighted sum of “yes” responses to the surveillance questions (here the CCLI survey question) for each
week was divided by the sum of survey weights for all surveys over a 7-d window. (C) Time series were normalized to a range of 0 to 1using minimum
and maximum during the survey period to allow within- and between-locale comparison of trends across a range of values using color intensity. (D) For
each country/territory (rows), we combined normalized time series with log10 of the number of surveys (black bar chart), percent surveys per population
(white bar chart), age and gender distributions (stacked bar charts), peak day (solid black circle, benchmark; open colored shapes, signals) and the
benchmark–signal correlation strength (green) in the form of an annotated heatmap.
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Fig. 4. The time series heatmap comparing the benchmark cases to UMD-CTIS–based signals. Refer to the illustration of the generation of the time series
heatmap components in Fig. 3. Normalized benchmark (black column) and UMD-CTIS (navy through orange columns) signal time series by country or ter-
ritory (Country/Territory, rows) are clustered by benchmark within geographic regions. Signals include recent positive COVID-19 test result (Positive Test),
CCLI, self-reported fever, cough or loss of smell/taste (Broad CLI), or self-reported loss of smell/taste of less than 14 d duration (Narrow CLI). The days to
peak for each signal is compared (Peak) with the benchmark. The Spearman correlation strength (Correlation) of UMD-CTIS with the benchmark. Log10

surveys (LogN) and surveys per population (Pct) as bar charts and proportion of surveys for each Age or Gender as stacked bar charts.
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versus lower quality benchmark data in a specific locale (e.g.,
inadequate reporting and insufficient testing) versus the above
caveats. The value of the signals as measures of local disease
burden in the absence of adequate benchmark data were not
evaluated.

Finally, we filtered for country/territory signals that might be
especially useful in syndromic surveillance. We tabulated those
that met stringent thresholds for indicating peak timing (�14 ≤
φ < = 7 d) and being at least moderately correlated (0.7 ≤ ρ)
with benchmark cases. About half (n = 60) of the countries/ter-
ritories had at least one signal that met the stringent thresholds
for these syndromic surveillance signals, while the CCLI signal
met the thresholds for the largest number of countries/territo-
ries (n = 37; 33%). It is possible that combining signals (e.g.,
CCLI with case takeoff, CLI near peak), including additional
survey items (e.g., number CCLI), and incorporating rate of
change of the signal could theoretically enhance signals but was
beyond the scope of the descriptive analyses presented here.
These findings do highlight that very few survey questions,
human social sensing, and sampling from the FAUB can never-
theless provide a global data stream to remotely track public
health measures locally.

Discussion
While many areas of the world have access to sophisticated,
timely, and reliable methods for tracking COVID-19 impacts
over time, there are billions of people living in regions without
these resources (36). However, a necessary step in dampening
global COVID-19 transmission is the ability to efficiently and
quickly monitor events and responses locally. This is especially
important as governments downsize disease surveillance pro-
grams (37) despite inadequate testing of symptomatic people.
Furthermore, there is a constant threat of the evolution of
COVID-19 variants, reemergence of seasonal pathogens, and
emergence of future pandemic pathogens (38). The UMD-
CTIS online survey platform—delivered to social media users,
leveraging Facebook-provided infrastructure, and bolstered by
public health partners and survey methodologists—has the
potential to fill this surveillance gap.

Here, we show syndromic surveillance signals from cross-
sectional surveys offered daily to a statistical sample of Face-
book users are consistent with benchmark COVID-19 case time
series. The UMD-CTIS platform samples from over 2 billion
individuals in the FAUB sampling frame, including many in
emerging economies (39), and provides survey weights. Despite
these advantages, UMD-CTIS may suffer from biases (40) simi-
lar to other web surveys when generalizing to the full popula-
tion, particularly where internet access varies by regional or
demographic factors or is related to the outcome of interest.
The validity of the test positive signal in relation to benchmark
cases demonstrates UMD-CTIS can deliver survey-weighted
responses from a meaningful subsample of the test-positive
cases in a country/territory over time. Indeed, for many coun-
tries and territories, UMD-CTIS respondent demographics are
consistent from week to week, and respondent demographics
are similar to the census. Taken together, these findings provide
good evidence UMD-CTIS can track relevant public health
trends and may be more reliable for certain measures than
those often used in opt-in surveillance without a clear sampling
frame.

The surveillance signal most consistent with benchmark case
data was the answer to a single question: “Do you personally
know anyone in your local community who is sick with a fever
and at least one other symptom?” This simple signal, created as
a human social sensor (24), performs in regions with lower sur-
vey coverage, effectively scaling up the sample size through
respondents reporting CLI on behalf of their local community.

This syndromic surveillance signal does not require the respon-
dent to have been sampled during their own, possibly brief,
symptomatic period, nor does it require testing infrastructure
and capacity. Furthermore, this signal does not require the
respondents to have a representative risk profile but rather to
be connected to, and thus represent, their local community’s
risk profile. This proof of concept has been demonstrated in
other settings (41). In contrast, more specific symptom-based
signals may be more relevant at higher COVID-19 incidence or
when transmission is falling. For example, narrow CLI ranked
the best for identifying the epidemic peak. Further studies
could evaluate how these signals perform in the absence of
benchmark cases (e.g., benchmark case data flat and CCLI sig-
nal surge), but this was beyond the scope of this analysis.

Syndromic surveillance relies on syndrome definitions such
as CLI and CCLI to derive signals informative of disease activ-
ity (42). Early surveillance-based models can rapidly identify
relevant symptoms of interest, and it is expected that the symp-
toms for tracking transmission and guiding self-isolation may
evolve over time. Having shown UMD-CTIS respondents who
reported having tested positive provide a potentially informa-
tive subsample of benchmark cases (and, possibly, their respec-
tive syndromes), we predicted positive results using respondent
symptoms and demographics in a simple machine learning
model. While this model performed well when tested on hold-
out data, we acknowledge the model is only a starting point.
The test result data were drawn from selected populations (i.e.,
among those tested and reporting in UMD-CTIS) and were
pooled across locales with variable testing access. However,
despite these limitations, the global model performed better
than most individual country/territory models. Training on
pooled global data identified the classic CLI symptoms (e.g.,
self-reported loss of smell or taste, cough, fever, and chest
pain) (10, 11, 25, 33) even when limiting data to the first 2 wk
of the study period. A symptom-based syndromic signal devel-
oped from this predictive model performed better than the
reported positive test signal. Thus, we demonstrate it is feasible
to use a “crowdsourced” global model to enhance local syn-
dromic surveillance. UMD-CTIS enables the rapid identification
of predictive symptoms and the development of a syndromic
signal, both of which can be applied to countries/territories even
when and where UMD-CTIS reported tests results in these
locales might be sparse.

Remote syndromic surveillance platforms, including UMD-
CTIS, may have confounding, selection, and measurement biases.
Generally, health-engaged subjects participate and continue to
participate over time, data are self-reported, digital interface
access is necessary, and outbreaks may skew epidemiological
parameter estimates (29, 43, 44). Designed as a repeated cross-
sectional survey without linkage of repeated user responses,
UMD-CTIS cannot directly evaluate individual-level effects or
disease trajectories. Ecological bias must be considered; though,
in this study, the outcome of interest is primarily population-level
trends, not individual-level causal effects. The FAUB sampling
frame is large, and through the survey weights, it adjusts for the
known probability of selection into the analytic sample. We show,
even in locales with age–gender skewed samples, that UMD-
CTIS signals rise and fall similarly to local case trajectories. How-
ever, the powerful and efficient strategy of combining user-based
sampling of a defined cohort and survey weights to improve rep-
resentativeness is unique among existing syndromic surveillance
tools.

We attempted to and were able to benchmark four signals
derived from different questions and question types with mini-
mal data manipulations. Additional important considerations
are the relatively high baseline of many metrics, perhaps
because of nonresponse patterns, low-quality response patterns
because of distracted respondents, poor internet quality, or
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so-called “trolling” behavior. Survey response biases for indi-
vidual questions did not appear to obscure time trends; locales
that benchmarked well for one more often benchmarked well
for them all. The four signals were generally equally noisy in
the locales that benchmarked poorly. We observed some demo-
graphic shifts away from younger and male respondents over
time to a lesser or greater extent across all locales despite vari-
able COVID-19 waves and other factors. Thus, rising and fall-
ing locale-specific signals are not likely from the ebb and flow
of nonresponse patterns. In fact, over the course of a wave of a
few months’ duration, the demographic shifts are relatively
small for most locales. Thus, we showcase that a strength of
this survey strategy is in time trends of syndromic surveillance
signals at a global scale (22). We acknowledge that there can be
trend breaks with survey versions (e.g., questions on testing
were fielded to those symptomatic initially and then to all
respondents), though these can be mitigated with sensitivity
analyses (e.g., stratified by version), nonparametric correlations
methods of trends rather than the use of the specific point esti-
mates (as we implemented in this analysis), and benchmarking
of other demographic features to track changes in representa-
tiveness. Other outputs such as estimation of absolute burden,
cumulative incidence of an event, or Rt would require methods
to deconvolute cross-sectional responses and adjust for the
baseline response rate.

The purpose of the UMD-CTIS is not to provide exact and
unbiased on-time point estimates but instead to allow for the
analysis of time trends. Despite acknowledged limitations, the
potential value of the UMD-CTIS is substantial. Compared to
the Gallup World Poll (45), one of the largest global surveys,
the UMD-CTIS survey is conducted on a daily (not annual)
basis by leveraging a social-media–based instrument instead of
telephone and in-person interviews (46). Gallup World Poll
interviews about 1,000 subjects per country per year and has
with its tested methodology a higher chance of unbiased point
estimates. UMD-CTIS, in contrast, sampled 5 to 10 times that
per country or territory per week and is better suited for meas-
urements that change quickly over time. In addition, it is lean
on local infrastructure and human resources. UMD-CTIS is the
largest ongoing real-time, remote, global health survey ever
conducted.

Given its rapid sampling mechanism, the UMD-CTIS survey
can adapt to on-demand public health needs and provide
insights for a large segment of the global population. With each
survey version, new questions have been added in conjunction
with epidemiologists, local government input, and research
partners. Other studies have used these data to investigate a
range of insights, including masking effectiveness, testing prac-
tices, and vaccine hesitancy, and there is potential to further
understand knowledge, attitudes, and practices through this
high-density data stream (30, 47–50). Indeed, the survey has
most recently incorporated items to survey social impacts, vac-
cine uptake, and vaccine hesitancy (31). With the expected
return of seasonal respiratory infections (51) and the possibility
that the influenza burden may be much more severe (52), as
well as the possible emergence of other known or novel patho-
gens of significance, the sampling strategy developed for this
global health tool may be invaluable, especially in conjunction
with government reporting, viral surveillance, and region-
specific syndromic surveillance methods (21, 23). For example,
UMD-CTIS could rapidly deploy new survey questions to col-
lect respondent test results for a novel variant or virus, where
and when these tests become available and accessible, or to track
an emerging “community viral-like illness” as the syndromic defi-
nition evolves. In conclusion, UMD-CTIS has shown to be a valid
and powerful means of monitoring waxing and waning impacts of
COVID-19 in a range of settings including underrepresented
locales.

Materials and Methods
UMD-CTIS Survey. This study was approved by the Boston Children Hospital
Institutional Review Board (IRB, P00023700). This research is based on survey
results from UMD-CTIS, approved by the UMD IRB (1587016-10) and described
previously (22). Briefly, each day, starting on April 23, 2020, a subset of the 2.6
billion-person global FAUB was sampled and invited to participate via a spe-
cial banner on the top of their news feed (summarized in Fig. 1A). Both
respondents and nonrespondents might be sampled and invited again to take
the survey (a few weeks or months after the initial request, depending on the
population density of their area). Designed as a repeated cross-sectional sur-
vey, there is no linkage of responses of resampled users in the UMD-CTIS data.
Facebook users were pushed to a web-survey platform utilizing a token sys-
tem. UMD’s Qualtrics license was used to collect the web survey data. All
respondents must self-report age ≥18 y and provide consent before participat-
ing in the survey. All survey items were collected by UMD using a web-based
questionnaire translated into commonly spoken languages within each of the
250 countries and territories surveyed. The survey instrument was updated
periodically with input from survey methodologists, epidemiologists, and pub-
lic health specialists to address timely public health questions (e.g., masking
behaviors and vaccine hesitancy). UMD-CTIS survey data span inception
through the present and include responses from 12 survey versions. UMD com-
piled daily, real-time microdata, such as those used in this study, as well as
publicly available survey-weighted aggregated data (25).

Survey Weights. Facebook provided UMD with survey weights for respond-
ents in 114 of the 250 countries and territories. The weighting methodology
has been described in greater detail previously (53). Briefly, survey weights
adjust for sampling bias, nonresponse bias, and country/territory-level demo-
graphics from the United Nations Population Division 2019 World Population
Projections. The weights adjust for known sampling bias in the form of base
weights and nonresponse bias in the form of inverse propensity score weight-
ing (IPSW). There are 71 locales where the weights are ranked using age-by-
gender and administrative level-1 region population totals as well as 43where
the weights are poststratified using age-by-gender only. However, demo-
graphic data reported to UMD via the Qualtrics web survey may differ from
the demographic data derived from respondents’ Facebook user profiles that
were used to develop base weights that adjust for sampling biases. Further-
more, the weights may not account for coverage biases. For example, the
Facebook population may differ from the country or territory population on
more features than just age, gender, or administrative level-1 region, and/or
the IPSW nonresponsemodel may suffer from omitted variable bias.

Study Design. This study uses UMD-CTIS microdata from the 114 countries and
territories with survey weights from the first 34 full ISO weeks from UMD-CTIS
inception through just before COVID-19 vaccine rollout (weeks 18 to 51, April
27, 2020, to December 20, 2020). Surveys for versions 1 through 6 that were in
use during this study period are available online (25) and are summarized in SI
Appendix, Table 1. The data were accessed on January 21, 2021. All analyses
are retrospective using self-reported cross-sectional survey responses and the
provided survey weights. We compared UMD-CTIS demographics to census
demographics over countries/territories and time, developed a basic machine
learning model for predicting COVID-19 positive test result from symptoms
and demographics, and benchmarked UMD-CTIS signals to COVID-19 cases.

Demographic Distributions and Consistency. The number of UMD-CTIS surveys
per capita (34) was compared. For each locale (i.e., country or territory) and
locale week, we compared UMD-CTIS respondents to census demographics.
First, we computed the proportion (Pg,UMD-CTIS) of UMD-CTIS respondents in
demographic groups (g) defined by gender (male and female) and age
(young, 18 to 34; middle, 35 to 54; and elderly, ≥55 y) for each country/terri-
tory. The denominator was the sum of all surveys in the six age–gender groups
for that locale. Surveys with missing demographic data or nonbinary gender
were not included. We then computed the proportion (Pg,Census) of the census
population in each group (27). Age bins for census data were consistent with
those in the UMD-CTIS survey response options except that the young age cor-
responded to the 20- to 34-y census age category. The denominator of the
census proportion was the sum of the population in all six age–gender groups
for that locale. The population outside of these age ranges or with nonbinary
gender was not included. For each locale, we calculated the difference in the
proportion for that age–gender group in UMD-CTIS versus census (Dg =
Pg,UMD-CTIS � Pg,Census). For each locale, the mean absolute difference (δ) across
all groups was calculated by taking the average of the absolute value of the
age–gender differences for the six groups (δ = Σg jDgj/6). We specified that
<0.1 difference would be a reasonable variation based on previously pub-
lished data on demographic skew in a preexisting internet-based syndromic
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surveillance platform (29). To evaluate for variation in demographic distribu-
tions over the study period, we calculated the above two measures for each
week (w) and locale (i.e., Dg,w and δw). For each locale, week, and measure,
we then calculated the difference of the locale–week measure versus the
median [i.e., ΔX,w = Xw – median(Xw)], giving ΔDg,w and Δδ,w for the change in
the weekly difference of proportion measures and the change in the weekly
mean absolute differencemeasures, respectively.

Prediction of Global and Local COVID-19–Positive Test. To enable evaluation
of COVID-19 case trends with minimal testing data, we conducted a retrospec-
tive diagnostic classification analysis by training a gradient-boosting decision
tree binary classifier. Four base-modelingmethods (Logistic Regression, Gauss-
ian Naive Bayes, Support Vector Machine, and Light Gradient Boosting
Machine) were compared to identify the Light Gradient Boosting Machine
(LightGBM) as the highest performing at a moderate time cost. Therefore, this
method was used for all analyses and is presented throughout (LightGBM in
Python 3.8 with Shapley values visualization package for predictor visualiza-
tion). Since we aimed to build a reasonable model with a limited feature set,
the input features were self-reported age–gender categories (four using
demographic groups noted above (Demographics Distributions and Consis-
tency) but collapsing the middle to elderly ages and creating a fifth strata
with missing age, nonbinary gender, or missing gender) and responses to 12
symptoms asked of survey participants in versions 1 through 6. Symptoms
without responses were assumed to be “no” if at least one symptom response
was provided. The data used for model building and analytical evaluation
were obtained by filtering the surveys containing these selected data fields
and splitting them into training and holdout sets as shown in SI Appendix, Fig.
3A. When preparing the two sets, each of the five covariate-specific strata for
each locale was split 3:1. Since the test negative and positive data were
inherently imbalanced (median [IQR] negative/positive 4 [2, 10]) and to
limit overfitting, the training set was down- or up-sampled to ensure bal-
anced classes before 10-fold stratified cross-validation. Stratified cross-
validation ensured training and test sets across each cross-validation fold
had approximately matched proportion of positive and negative classes.
The outcome variable was the self-reported positive versus negative recent
COVID-19 test result (missing responses excluded). Models were trained on
each locale and a pooled global data set applied to unweighted training
data with balanced classes and 10-fold stratified cross-validation. We then
tested the global model on each individual locale and vice versa. See SI
Appendix, Fig. 3 for secondary and sensitivity analyses using the outcome
of testing, excluding early survey versions of the highest F1 countries/terri-
tories, or stratification by illness duration or study period. The global model
was hyperparameter turned (parameters in SI Appendix, Table 2).

Benchmarking Syndromic Surveillance Signals. UMD-CTIS trends over time
were compared to benchmark data from the publicly available Our World in
Data (OWID) case trends (34) accessed April 23, 2021. Survey-weighted (53)

proportions were calculated by locale and day for 7-d windows. Seven-day
smoothing was applied to the time series by taking the survey-weighted sum
of respondents endorsing the signal criteria (e.g. symptom present) d over the
survey-weighted sum of all respondents for the prior week day by day. Survey
questions without responses were coded as “not present,” “no,” or “false”
except when noted (though some survey versions differentiate missing as
seen but not answered versus not seen and not answered). We defined the
peak day as the day with the highest signal value. The difference in peak day
(φ = signal � benchmark) was used to compare signal to benchmark. Spear-
man correlations (ρ, corr.test from psych library in R) of OWID benchmark
data versus UMD-CTIS signals were calculated and categorized by strength.
We compared the top-ranked signals across countries/territories with more
negative φ and higher ρ, giving higher ranks for these similarity measures. We
also compared the median similarity measure between signals. To identify
optimal syndromic surveillance signals for each country/territory, we specified
a stringent threshold of �14 d ≤ φ ≤ 7 d and 0.7 ≤ ρ. We reasoned that lag
times of 0 to 7 d could still be worthwhile in regions with some benchmark
case reporting delays (we do not consider severe delays or potentially absent
benchmark case data), that lead times more than 14 d might be from time
series with multiple peaks (i.e., not informative), and that lower ρ would filter
out noisier signals. The primary UMD-CTIS signals were recent positive test
results reported per survey (i.e., positive test), CCLI, broad CLI (i.e., loss of
smell/taste, cough, or fever in prior 24 h), and narrow CLI (loss of smell/taste
and illness duration of<14 d). For trend visualization, smoothed daily country/
territory trends (Xc,t) were normalized to range from 0 to 1 using the mini-
mum andmaximum over the study period (T) for each locale [i.e., Yc,t = (Xc,t �
min(Xc,t over all T)/max(Xc,t�min(Xc,t over all T) over all T))] andwere grouped
into four geographic regions. Benchmark data were used for clustering in the
visualization (using row clustering method=”complete” in Heatmap from
ComplexHeatmap 2.3.4, R 3.6.3, https://www.R-project.org/) within geo-
graphic regions of the world.

Data Availability. Access to the CTIS data can be can be requested from Face-
book Data for Good website (https://dataforgood.facebook.com/dfg/docs/
covid-19-trends-and-impact-survey-request-for-data-access). The UMD Global
CTIS Open Data API, Microdata Repository, and contingency tables are avail-
able from The University of Maryland Social Data Science Center Global
COVID-19 Trends and Impact Survey website (https://covidmap.umd.edu). Pro-
tocols, code, and materials are available via GitHub (https://github.com/BCH-
IDHA/CTIS).
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