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The book under review is an introduction to the numerical
simulation of stochastic differential equations (SDEs). In
recent years SDEs have become important modeling tools
in various application areas as, e.g., engineering, finance,
physics, chemistry, biology and social sciences. Loosely
speaking, SDEs extend the classical deterministic ordi-
nary differential equations (ODEs) by adding a noise term.
More precisely, in the one-dimensional case an SDE reads
as

dX(t) = f (X(t))dt + g(X(t))dW(t), t ∈ [0, T ],
X(0) = x0 ∈R,

(1)

where f,g : R → R and W = (W(t))t∈[0,T ] is a Brownian motion. The latter is a
stochastic process, which satisfies the following properties:

(i) W is a random variable with values in C([0, T ];R) and satisfies W(0) = 0, i.e.,
each path of W is a real-valued continuous function on [0, T ] which has the value
zero at t = 0;

(ii) for all n ∈ N and 0 ≤ t0 < t1 < t2 < · · · < tn ≤ T the law of the random variable

(W(t1) − W(t0),W(t2) − W(t1), . . . ,W(tn) − W(tn−1))
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is Gaussian with mean μ = 0 ∈ R
n and covariance matrix

� =

⎛
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0 t2 − t1
. . .

...
...

. . .
. . . 0

0 · · · 0 tn − tn−1

⎞
⎟⎟⎟⎟⎠

∈ R
n,n,

i.e., non-overlapping increments of Brownian motion are independent scalar
Gaussian random variables with mean zero and variance given by the length of
the time interval.

The name Brownian motion goes back to the Scottish botanist Robert Brown, who
in 1827 observed the erratic behavior of pollen grains in water. The development of
a mathematical theory for Brownian motion involves contributors as Albert Einstein,
Norbert Wiener and Paul Lévy.

The functions f and g in equation (1) are called drift and diffusion coefficient,
respectively. As mentioned above, for g = 0 one recovers an ODE. But what is the
mathematical meaning of equation (1)? This question was addressed by the Japanese
mathematician Itō Kiyoshi in the 1940s [3, 4] by transferring equation (1) into the
integral equation

X(t) = x0 +
∫ t

0
f (X(s))ds +

∫ t

0
g(X(s))dW(s), t ∈ [0, T ], (2)

and by developing a theory of stochastic integration to make sense of the object

“
∫ t

0
g(X(s))dW(s) ”.

In honor of his fundamental contributions, which pioneered the mathematical field of
stochastic analysis, this integration theory is now called Itō integration and equation
(1) is called an Itō SDE. A standard sufficient condition for existence of a unique
(strong) solution to equation (1) is that f and g are globally Lipschitz continuous
functions. However, various other (sufficient) conditions have been derived.

Similar to ODEs explicit solutions for SDEs are rarely known, so one has to rely
on numerical methods for their simulation. In this context, Maruyama Gishirō [5]
extended the Euler scheme for ODEs to SDEs and established its convergence under
suitable conditions on f and g. For a given grid 0 = t0 < t1 < · · · < tN = T with
N ∈ N, the Euler-Maruyama scheme for SDE (1) reads as

X0 = x0

and

Xk+1 = Xk + f (Xk)(tk+1 − tk) + g(Xk)(W(tk+1) − W(tk)), k = 0, . . . ,N − 1,

where Xk is an approximation of X(tk). Since the early work of Maruyama many
contributions followed, which can be roughly divided into two phases. The research
of the first phase culminated in the encyclopedic books [6] and [7].
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Since then, many new topics emerged as, e.g.,

• the numerical analysis of SDEs with an additional jump component (jump diffu-
sions),

• the numerical analysis of SDEs, whose coefficients do not satisfy the standard
smoothness assumptions (which quite often arises in real world applications),

• the efficient quadrature of SDEs, e.g., the efficient computation of the expected
value E(�(X(T ))) for test functions � : R → R by means of multi-level Monte
Carlo,

• the computation of mean exit times of SDEs,
• the application and simulation of SDEs in chemical kinetics.

These and other topics of this second phase are addressed in this book for the first
time outside research articles and monographs. This is a major contribution of the
present book. It provides an introduction and overview over these recent develop-
ments. After an introduction on random variables and computer simulations (Chap. 1
and 2), Brownian motion, SDEs and further required tools from stochastic analysis
are addressed in Chaps. 3–7. The following Chaps. 8–10 study the Euler-Maruyama
scheme and its convergence properties, while the remaining chapters deal with the
mentioned recent developments (Chaps. 11–16, 20) or more advanced (but classical)
topics as higher order schemes or systems of SDEs (Chaps. 17–19).

However, there is another major contribution, which is maybe even more important
and makes this book rather unique: It is an introduction to the numerical simulation
of stochastic differential equations that is accessible to undergraduate students.

The theory of SDEs is technically very challenging and is typically considered as a
topic for advanced graduate students. Additionally, the stochastic nature of SDEs car-
ries over to the numerics of SDEs. Various approximation tasks and concepts (strong
approximation, weak approximation, quadrature, approximation of the invariant mea-
sure, . . . ) exist and many approaches and ideas of the numerics of ODEs fail here. For
example, higher order methods are very challenging to construct or even do not exist
for particular approximation tasks: For the strong approximation of the Lévy area

∫ T

0
W(1)(t)dW(2)(t)

there are no methods, which rely on evaluations of the two independent Brownian
motions W(1) and W(2) at discrete time points and achieve a better convergence or-
der than the simple Euler scheme, see, e.g., [1]. As a further example, the stability
analysis of numerical methods has to deal with the stochastic nature of SDEs and
uses several stability concepts as mean-square or asymptotic stability, see, e.g., [2].

The authors achieve this accessibility by writing a “non-rigorous book” (using
their own words). Instead on technical details they focus on the main ideas and pro-
vide many theoretical and computational examples. In particular, each chapter has
a key computational topic, which is illustrated by simulations in MATLAB. This
hands-on-approach enables the authors to avoid filtrations or other technical details
of stochastic analysis and to focus instead on computationally important results. For
example, they provide a self-contained proof of the strong and weak convergence
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properties of the Euler-Maruyama scheme (under suitable assumptions on the SDE
coefficients f and g and the test functions �), i.e., of

sup
k=0,...,N

E|Xk − X(tk)| ≤ C1 sup
k=0,...,N−1

|tk+1 − tk|1/2

and

|E(�(XN)) −E(�(X(T )))| ≤ C2 sup
k=0,...,N−1

|tk+1 − tk|

with C1,C2 > 0.
Sometimes “lack of rigor” is used as a synonym for “carelessness” or “sloppiness”.

This does not apply to the present book. Many pointers are given to literature, which
can be used to fill in the gaps, and careful wording is used throughout the book to
remind the reader of its non-rigorous nature. In my opinion, this book is a wonderful
and lively introduction into the simulation of SDEs for undergraduate students, but
also for researchers, which do not have a background in stochastic analysis. More-
over, even experienced researchers in this field may find many ideas and examples of
this book enlightening.
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