
https://doi.org/10.3758/s13428-019-01283-5

lab.js: A free, open, online study builder

Felix Henninger1 · Yury Shevchenko3 ·Ulf K. Mertens4 · Pascal J. Kieslich1 · Benjamin E. Hilbig2

© The Author(s) 2021

Abstract
Web-based data collection is increasingly popular in both experimental and survey-based research because it is flexible,
efficient, and location-independent. While dedicated software for laboratory-based experimentation and online surveys
is commonplace, researchers looking to implement experiments in the browser have, heretofore, often had to manually
construct their studies’ content and logic using code. We introduce lab.js, a free, open-source experiment builder that
makes it easy to build studies for both online and in-laboratory data collection. Through its visual interface, stimuli can be
designed and combined into a study without programming, though studies’ appearance and behavior can be fully customized
using HTML, CSS, and JavaScript code if required. Presentation and response times are kept and measured with high
accuracy and precision heretofore unmatched in browser-based studies. Experiments constructed with lab.js can be run
directly on a local computer and published online with ease, with direct deployment to cloud hosting, export to web servers,
and integration with popular data collection platforms. Studies can also be shared in an editable format, archived, re-used
and adapted, enabling effortless, transparent replications, and thus facilitating open, cumulative science. The software is
provided free of charge under an open-source license; further information, code, and extensive documentation are available
from https://lab.js.org.

Keywords Experiment · Online data collection · Software · Open source · JavaScript · Open science

Introduction

The meteoric rise of the Internet over the past decades (The
World Bank, 2016) has provided vast opportunities for
behavioral science. Thanks to the access to larger, more
diverse samples, it promises more flexible and economical
research, and more robust findings as a result (e.g., Reips,
2007; Woods, Velasco, Levitan, Wan, & Spence, 2015).
Because the browser is now a ubiquitous communication
tool, data collection can take place in a multitude of
settings, ranging from mobile devices in the field to the
comfort of participants’ sofas, as well as the more controlled
context of established laboratories. In addition, the ease

� Felix Henninger
mailbox@felixhenninger.com

1 Mannheimer Zentrum für, Europäische Sozialforschung
(MZES), University of Mannheim, A5, 6 (section A),
68159 Mannheim, Germany

2 University of Koblenz-Landau, Landau, Germany

3 University of Konstanz, Konstanz, Germany

4 Heidelberg University, Heidelberg, Germany

with which data can be shared over the Web holds the
potential to transform science by enabling the free exchange
of materials and data and the transparent documentation of
studies (Nelson et al., 2017; Nielsen, 2011).

The potential of browser-based and online data collec-
tion, despite these strong arguments in their favor, has yet
to be realized to its full extent: The specialized knowledge
required to construct and deploy online studies has limited
their adoption—researchers had to program studies from
scratch or rely on pre-made templates. Technical restric-
tions limited the accuracy of presentation and response
times; proprietary tools hampered the exchange, re-use and
extension of paradigms.

Our goal herein is to make available this untapped
potential, and to increase the accessibility and usefulness of
browser-based and online research by providing an open,
general-purpose study builder—lab.js—in the spirit of
widely used laboratory-based software (Mathôt et al., 2012;
Peirce, 2007). It is designed to be easy to use without prior
technical knowledge, but fully customizable and extensible
by advanced users. It is built to integrate with the existing
ecosystem of tools for online research, and to make use of
the full capabilities of modern browsers for interactivity. It
also provides excellent timing performance across systems,

Published online: 28 July 2021

Behavior Research Methods (2022) 54:556–573

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-019-01283-5&domain=pdf
http://orcid.org/0000-0002-7730-9511
https://lab.js.org/
mailto: mailbox@felixhenninger.com

addressing a major concern in online experimental research
(Hilbig, 2016; Semmelmann & Weigelt, 2017a; de Leeuw
& Motz, 2015). Our software is available free of charge,
enabling the open archival, sharing, and replication of
studies. Indeed, it is designed to facilitate and encourage
the exchange and re-use of tasks and paradigms. Thus, we
have endeavored to meet the practical needs of researchers
as well as the requirements of a modern, open, transparent,
and reproducible scientific practice.

In doing so, we extend previous work that has identified
and partially addressed these issues. In particular, libraries
such as jsPsych (de Leeuw, 2014) and QRTEngine
(Barnhoorn et al., 2015) have greatly facilitated manual cod-
ing of studies by providing programming frameworks that
automate stimulus display and response collection for many
common paradigms. The QRTEngine in particular pio-
neered new methods for more accurate experimental timing,
and jsPsych was the first to provide a set of templates for
common research scenarios, making in-browser experimen-
tation much more accessible. All of these previous libraries,
however, require programming skills. JATOS (Lange et al.,
2015) and Tatool Web (von Bastian et al., 2013) offer
easy-to-use interfaces that vastly simplify the assembly and
deployment of task batteries, though the paradigms them-
selves are still constructed manually. PsyToolkit (Stoet,
2017) presents yet another perspective, using a custom text-
based syntax to generate questionnaires and experiments.

Our software combines and augments these previous
technical advances, providing an easy-to-use graphical
interface that follows familiar conventions established by
many laboratory-based, offline study builders. Most typical
paradigms can be constructed using a what-you-see-is-
what-you-get approach, without requiring programming or
relying on a set of pre-made templates. At the same time,
this ease of use does not place restrictions upon researchers
looking to customize studies in full: The technical founda-
tion of all studies is exposed, and can be accessed to adapt
a study’s appearance and behavior: In principle, any content
that can be included on a website can also be used within a
study. Thus, while the graphical interface provides an acces-
sible means of designing studies, customizability of the
underlying logic vastly expands its capabilities and enables
arbitrarily complex stimuli and experimental designs.

The software is the result of our own requirements and
experience, and in constructing it, we have endeavored
to meet the demands of modern experimental research:
lab.js is freely available, and thus accessible regardless
of resources. It is open as code, thereby amenable to
inspection, customization, and extension. Because of its
open nature, studies created with it can likewise be shared
freely, re-used, and adapted, facilitating cumulative, open
science. It is flexible, in that it accommodates the full
range of behavioral research, from psychophysical studies

to questionnaires. Finally, it can be applied across contexts,
in a laboratory setting as well as directly on participants’
devices; there need only be a browser present.

Building experiments in lab.js

The following sections are adapted from the online reference
and tutorial, which provide more in-depth information about
the library as well as extensive introductory videos. The full
documentation is available from the project homepage at
https://lab.js.org/.

Studies in lab.js are assembled from components,
building blocks that, together, make up a study. These can
be screens that present stimuli, sequences thereof, or more
complex blocks that combine and repeat parts of a study.
The lab.js study builder provides a visual interface for
designing individual components and combining them into
a larger experiment. The builder can be used in any recent
browser without installation. It, too, is linked from the
project homepage, or can be accessed directly by navigating
to https://lab.js.org/builder.

For the purposes of this tutorial, we will focus on a
variant of the classic Stroop paradigm, introduced by Stroop
(1935). The most common version of the task presents
color words in different hues, and instructs participants to
identify the hue and disregard the semantic content of the
word itself (see also MacLeod, 1991; Strauss, Sherman, &
Spreen, 2006 for variants and more recent applications). The
Stroop effect refers to the stable finding that this judgment
takes longer when the two stimulus dimensions conflict, for
example when the word red is shown in the color blue.
This paradigm will serve as an example for the remainder
of this tutorial, as its trial structure with crossed factors can
readily be adapted to many other experimental tasks.

Using the interface

A first-time visitor to the interface will find an empty study
waiting to be filled (Fig. 1). The welcome screen offers
a variety of examples and templates to build upon, which
we warmly invite users to explore; for the purpose of this
tutorial, we demonstrate the construction of a study from
scratch. Our first task, therefore, will be to add the initial
content to the nascent study.

The interface is divided into two panes: The pane to
the left represents the study’s overall structure, providing
access to the study’s constituent components, whereas the
right represents the details and settings of any selected
component. New components are added to the study’s
structure using the plus button on the left-hand side of
the interface. Clicking this button reveals a dialog offering
a selection of various component types to add (Fig. 2).

557Behav Res (2022) 54:556–573

https://lab.js.org/
https://lab.js.org/builder

Fig. 1 Initial view of the builder interface. After opening it for the first time, the study is empty

We revisit the different options below; for now, our first
selection will be the leftmost: A screen of the canvas type.

Designing screens

Having added the new screen component, its settings
become visible on the right-hand side of the builder (Fig. 3).

Canvas-based screens are designed using a visual editor
that provides a direct preview of the later display. Through
the toolbar below the editor, text, images, and other visual
content can be added using the button with the plus symbol
and then moved and re-sized directly within the preview.
The toolbar also provides access to an element’s precise
location, color and (if applicable) further options. For the

Fig. 2 Adding a new component. The dialog box offers different types of component to be added, with four frequent choices directly accessible,
and additional component types sorted by family in the drawers below. The tabs at the top provide additional capabilities: Duplicating an existing
component, adding a new component based on a template, or importing one from a local study file (see ‘re-using components’ below)

558 Behav Res (2022) 54:556–573

Fig. 3 The visual editor in action, assigning a color to a piece of text. To the left of the interface, the Stroop screen has been selected for editing;
its contents are visible on the right. Using the toolbar toward the top, the component’s name can be modified, and the editor below provides a
preview of the later stimulus. The blue border indicates that the text has been selected; any changes made using the toolbar below are applied to it

purpose of our Stroop task, we might add a single word in
the center of the screen, select a color for it, and increase
the font size and weight. With this basic screen complete, a
click on the blue preview button in the top left toolbar shows
the task as a participant will experience it, and provides a
first glimpse of the study in progress.

Working towards a single trial, our next step is to extend
the study by adding further screens of the same type: A
screen with a centered plus sign prior to the Stroop screen
serves as a fixation cross, and an empty inter-stimulus
interval follows it. As before, new components are added
to the study structure on the left-hand side, where their
vertical order represents the temporal succession during the
study. Briefly hovering the cursor in the intended location
of the new component, in this case above and below the
existing screen, once more reveals the button for inserting
components. Previewing the study at this point, however,
shows that the task never progresses beyond the initial
fixation cross; clearly another change is in order.

Changing components’ behavior

Beyond their contents, further options for any selected
component can be set through the different tabs listed at the
top right of the interface. The behavior tab determines its
behavior during the study: Here, the topmost set of options
provides a visual representation of the component timeline
on which additional events and stimuli can be scheduled
(e.g., sounds), as well as a timeout after which the study

moves on to the next component. For the fixation cross and
the inter-trial interval, we would like screens to disappear
after a fixed amount of time (we might choose, for example,
a 500-ms duration for the fixation cross and 1000 ms for
the inter-stimulus interval). For the Stroop screen itself, the
participant’s response triggers the transition; therefore, the
set of permissible responses must be defined (Fig. 4). In
the responses grid, the first column, label, represents the
qualitative meaning applied to any response. In our case, the
available options are the different colors in which the word
might be shown. The next columns request that we select
between different actions that a participant might take
to make their response. In our study, participants indicate
their answer by pressing one of several keys. Thus, the event
that corresponds to a response is the keydown. This is
not the only option: mouse-based response modes are also
available, and responses can be triggered specifically when
a button or key is pressed or released. The next column,
target, would allow us to limit responses to specific parts
of the screen, for example by restricting mouse clicks to
predefined content or screen areas. By leaving the field
empty, we allow responses anywhere onscreen. The final
column allows us to filter events further, in this case
by key: Entering a single letter assigns the corresponding
key to the response in question (multiple alternative buttons
can also be mapped onto the same response, by separating
the keys with commas). With timeouts and responses
in place, the study now runs through a single trial when
previewed.

559Behav Res (2022) 54:556–573

Fig. 4 The possible responses available on the Stroop screen, with each color represented using a different key. Below, the correct response has
been defined using a placeholder (see text for a detailed description)

Flow control

A single trial is, of course, only the first step toward a
useful study: A complete Stroop experiment will contain
many trials, each repeating the screens we have just built
while varying word and hue. We could duplicate our screens
and change their content manually to create a longer study,
however this would be an effortful and tiresome endeavor,
and limit the study to a static order of stimuli. To more
easily create an experimental task, flow control components
allow us to go beyond the linear sequence of screens
we have encountered so far. We will use this type of
component, first, to group the existing screens into one
unit. The software can then repeat this grouped set of
screens to create a recurring trial structure automatically.
Our final task will then be to add variation between these
repetitions.

The most basic flow control component is the sequence,
which combines a set of successive components. A
sequence is added to the study structure in the same way
the screens were (cf. Fig. 2), and other components can be
nested within by drag and drop. When this is complete, a
slight indentation indicates that multiple screens have been
combined into a larger unit, in our case into a single trial
(as in Fig. 3). Though it is required for the next step, at this
point, the grouping is for our convenience only, and invisible
to participants.

A loop repeats a single component (a screen, sequence, or
another loop) multiple times. Like the sequence, it accepts
nested content. Its main options concern the number of
repetitions and the attributes that define each one. These are
represented as a grid (Fig. 5), with every row representing
a repetition of the loop’s contents, and every column a

parameter that varies across iterations. In the most basic
case, we might name one column repetition and assign
a number to every cycle. Previewing the study at this point
shows that the trial is repeated the requested number of
times—but it is repeated verbatim, without variation in
either color name or hue, thus lacking the manipulation at
the core of the Stroop paradigm.

Defining parameters

To add meaningful variation across loop iterations, we can
define parameters that change between repetitions, and set
their respective levels. For the Stroop task, these are the
presented word and its color. To implement this design,
we might name two columns in the loop’s grid word and
color and fill them with the desired combinations (Fig. 6).
The plus button at the bottom of the grid can be used to add
further rows as needed, generate a larger grid from a given
design, or to load and save the entries to a csv file. Lastly,
as the option below the grid indicates, the software will run
through all repetitions in random order, though this could be
changed by limiting the number of trials or switching to one
of the other available randomization schemes.

Even with this addition, the screen remains constant:
We’ll need to include the varying parameters in the
screen content so that the display and behavior reflect the
experimental manipulation.

Using placeholders

To mark insertion points for varying content, lab.js
uses placeholders, temporary stand-ins that are replaced
by other data during the study. Placeholders are defined

560 Behav Res (2022) 54:556–573

Fig. 5 Minimal settings for a loop that only counts repetitions

using a dollar sign and curly braces, ${}, where an
expression between the brackets represents the data that
is substituted as the component is prepared. To make use
of the previously defined parameters, for example, we can
insert ${ this.parameters.word } in place of the
fixed screen content, as a placeholder for the currently
static word shown during every trial (Fig. 7). Similarly,
by replacing the color code in the toolbar’s fill option
with ${ this.parameters.color }, we can vary the
word’s color. As a result, color and content now change
dynamically across trials. At this point, we have constructed
a complete within-subjects experimental paradigm, entirely
without code. Many like it can be assembled with similar
ease.

Placeholders are central to studies in lab.js, and can
be used in most options throughout the builder interface.

For example, because the goal of the task is to name the
color, we might insert ${ this.parameters.color
} in the correct response field on the behavior tab (cf. Fig. 4).
Here too, the corresponding value is substituted, and the
accuracy of the response coded accordingly.

Previewing data

Data are collected automatically as the study progresses. In
the study preview, the accumulated data can be accessed
through the small button in the lower right-hand screen
corner. The button reveals a data grid (Fig. 8) where
different variables are collected in columns; rows represent
a single component each. Every screen, sequence or loop
adds a line the instant a participant moves beyond it. In the
preview (but not the final dataset), the rows are reversed, so

Fig. 6 Loop parameters for the Stroop task (abridged). In the columns, the presented word and its hue are defined as two string variables; each row
represents the set of values that determine one iteration. Rows are shuffled before presentation, resulting in a random ordering during the study

561Behav Res (2022) 54:556–573

Fig. 7 Final version of the Stroop screen, including placeholders in place of the text content and hue (at the bottom of the color selector)

Fig. 8 The study preview mode, showing a trial running in the background, with the data overlay visible at the bottom of the screen. In the table,
the study’s progress is reflected in reverse order: The previous screen was the fixation cross; before it, the participant completed a trial sequence.
The columns contain metadata, timestamps, and parameters as well as the collected response. The topmost row (shaded) represents the study’s
current ‘state‘, and repeats the last entry in every column: Even though the fixation cross did not elicit a response and terminated after a timeout,
the last trial’s decision is still available, and will remain so until replaced by the upcoming response

562 Behav Res (2022) 54:556–573

that the latest entries are added on top, where they can be
compared directly to the current screen content.

The entries in the sender column reflect the origin of
the data through the name of the corresponding component;
the column sender type indicates its type. Further
columns include timing information, the response given by
the participant, and the parameters set by the design. If a
correct response has been defined, it is included, as is an
indication of whether the recorded response matches this
standard (as a Boolean value, true or false).

Experiment state and feedback

The topmost, shaded row in the data preview represents
the latest entry in each column, or the study’s current
state. Through the state, data from previous components
is accessible until overwritten by a new entry in the same
column. For example, in our task, the last observed response
persists until the next stimulus is shown, because the
intervening components do not accept or store responses.
This is often useful, particularly when providing feedback
regarding previous answers.1

The study’s state can be used within placeholders, in a
manner analogous to the parameters introduced above. For
example, we might include ${ this.state.correct
} on the inter-trial screen to show the accuracy of the last
response and provide feedback to participants. However, if
we were to try this, the screen would remain empty. This
is because lab.js, in order to maximize performance,
attempts to prepare and render all screen content as early as
possible, ideally as the page is loading.2 Thus, by default,
screen content is fixed entirely before participants start
interacting with the study, and data generated later is not
available for inclusion in components. To remedy this,
individual components can be set to tardymode by checking
the corresponding box on the behavior tab. Activating this
option on a component means that it is prepared only
just prior to its presentation, allowing it to reflect the
latest collected data, though at the expense of some further
processing (and potentially a minuscule delay) during the
study. Activating tardy mode on the inter-trial screen makes
the feedback visible—the screen now indicates the veracity
of the response through the values true and false.
Admittedly, this Boolean value is not the most friendly
feedback, but thankfully, it is also not difficult to replace.

1Earlier data can, of course, also be accessed, for example to calculate
aggregate performance. The data storage mechanism is described in
the documentation at https://labjs.readthedocs.io/en/latest/reference/
data.html
2This corresponds to the prepare-run-strategy introduced by Mathôt
et al. (2012)

Logic in placeholders

Placeholders can contain any JavaScript expression, so
that it is possible to include small programs directly in
the screen content, or in any other option that supports
placeholders. So far, we have retrieved values from vari-
ables and included them verbatim, but expressions give
us the opportunity to perform further computations based
on state and parameters. For our example, we might want
to translate the binary values into more helpful feedback
by replacing the Boolean values with friendlier messages.
A ternary expression helps us achieve this, by switch-
ing between two outcomes based on a binary variable. It
consists of three parts, a binary criterion, and two values
that are substituted depending on whether the condition is
met or not. For example, ${ this.state.correct ?
’Well done!’ : ’Please try again.’ } eval-
uates into the message ‘Well done!’ after correct responses,
whereas the message ‘Please try again.’ is shown following
incorrect answers.

This use of expressions is not limited to substituting
content; it can be used within any placeholder. For
example, we might provide graphical feedback by switching
the color of a circle between green and red depending
on the participant’s response. Nor is accuracy the only
possible switching criterion: We could similarly instruct
participants to respond faster by comparing the value of
this.state.duration to a fixed threshold. Thus,
combined with expressions, placeholders provide a very
general and flexible mechanism for varying all of a study’s
content and behavior.

Using HTML

Although the visual interface is undoubtedly convenient, the
browser offers more options for defining content. Indeed,
most information on the Web is not defined as a fixed visual
layout, but using the Hypertext Markup Language, HTML.
This technology allows studies built with lab.js to draw
upon the manifold options and resources for content and
interaction design available to any web page, which extend
far beyond the capabilities of many classical experimental
tools. lab.js supports HTML-based screens through a
dedicated component type (second from the left in Fig. 2),
and studies can combine both as required.

Defining screens using HTML does not fix their layout
precisely as the visual editor does; instead, screen content
is represented as text, and augmented by tags that reflect
the semantic purpose of any part of the page. To provide
a more concrete example, indicates
that the main content of a screen is the word blue.
The tags, enclosed in angle brackets, are not shown to
the user. Instead, the browser takes into account the

563Behav Res (2022) 54:556–573

https://labjs.readthedocs.io/en/latest/reference/data.html
https://labjs.readthedocs.io/en/latest/reference/data.html

additional semantic information they provide, and chooses
an appropriate visual representation. Content defined using
HTML may consequently vary in its exact layout across
different devices and browsers, adapting to screen sizes,
zoom settings, resolutions, and aspect ratios. In comparison
to the visual editor, the code-based nature of HTML takes a
small amount of time to learn, which its flexibility quickly
repays. To support users, the built-in editor completes
tags as they are entered, highlights potential mistakes and
suggests remedies.

Screen design presents another common hurdle for
beginning online experimenters, since it requires formatting
instructions defined in the CSS language. In this regard,
too, lab.js assists researchers by providing built-in
defaults for commonly used layouts. For example, a
three-tiered vertical structure can be designed quickly
by adding , and tags to a
screen and placing the respective content within them; the
built-in styles will automatically provide an appropriate
screen layout (e.g., Fig. 9). To facilitate placement
and alignment of content, the library also provides a
range of convenience CSS classes.3 As an example, the
content-vertical-center class centers content on
the vertical axis (alternatively, content can be moved to the
top and bottom vertically, and horizontally to the left,
right and center).

Dynamically generated content can also be embedded
into the HTML syntax using placeholders. Thus, a minimal
HTML equivalent to the graphically constructed screen we
constructed above might be the following:

The free combination of HTML- and canvas-based
screens allows researchers to mix different content types

3The documentation provides an overview of the available styling
options at https://labjs.readthedocs.io/en/latest/reference/style.html

at their convenience. For example, we have found it useful
to define instructions using HTML so that their content
can adapt to the screen size, while designing stimuli
using the canvas for maximum performance and consistent
presentation across devices.

HTML forms

An additional advantage of HTML is its ability to
represent forms and questionnaires, making lab.js useful
beyond purely experimental research. This is supported
through form components, which capture and process
data collected in forms.4 Their content is also defined
using HTML,5 so that a minimal questionnaire might be
represented by the following snippet:

The above code translates to a basic form onscreen,
containing a single text-based input field and a button to
submit the data. The form component extracts all data
automatically upon submission: In this case, the entry is
saved in the participant id column; any additional
fields would likewise be included in the participants’
datasets.

To ensure consistency of the collected information,
validation logic can be applied. In our example, the
required attribute dictates that the field contain a value,
and a participant will only be able to move further after
filling it. Beyond the mere presence of a value, more
complex validation is possible within the HTML code, for
example by constraining entries to a given input type
(e.g., number, email, date, etc.) or comparing them to
a predefined pattern.

Study deployment, archival, and re-use

With the construction of the study, of course, the scientific
work has only just begun. Data collection and the archival of
a study’s materials are further, central steps in the scientific
process that lab.js makes easier and more efficient.

4The idea of generic form processor goes back to Göritz and Birnbaum
(2005) and Reips and Neuhaus (2002).
5A visual questionnaire builder for lab.js is currently under
development

564 Behav Res (2022) 54:556–573

https://labjs.readthedocs.io/en/latest/reference/style.html

Fig. 9 Three-tiered HTML-based instruction screen using , and elements

Saving a study to disk

As with most other experimental software, studies con-
structed in lab.js can be saved to a single file that
contains all content, settings, stimuli and auxiliary files.
This file can be downloaded using the corresponding button
in the toolbar (Fig. 1), and is best suited for development
and public archival. Using the dropdown menu next to the
save button, an experiment file can be re-opened later for
inspection and further modification.

Deploying a study for data collection

For a study to be truly useful, it must run beyond the
confines of the builder and the experimenter’s device, and
be made accessible within a laboratory or publicly on
the Internet. This, too, previously demanded specialized
technical knowledge, and therefore presented a challenge
for researchers considering online data collection. Depend-
ing on the project goals and the available infrastructure,
lab.js offers a wide and growing range of options for data
collection, all designed to vastly simplify the previously
complex task of hosting studies. All deployment options are
likewise available from the dropdown menu next to the save
button.

The most basic option is offline data collection, which
bundles all necessary files to run the study entirely without
external infrastructure. This export option results in a zip
archive that contains the study as visible in the builder
preview, pre-configured to save all collected data as a csv

file at the end of the study. Besides facilitating local testing
and data collection, this type of bundle can easily be shared
in a preregistration or archived alongside data and other
materials, so that the exact appearance and behavior of a
study are preserved and documented.

Data collection over the Internet is the common feature
of all further export options. Researchers looking for an
effortless hosting option might opt for a cloud deployment,
placing hosting and data storage in the hands of a highly
reliable external service. Studies can be transferred to an
external provider6 directly from the builder in a matter of
seconds, and data collection can start immediately.

Where full control over the data collection process is
required, the PHP backend bundle can be used to install
a survey on most, if not all, common web servers. This
option produces a zip archive which, extracted on a PHP-
enabled webspace, fully automates data collection: Data are
continuously sent from the client and gathered in a database
as participants complete the study.7

Studies created with lab.js also integrate with exter-
nal tools as part of a larger data collection project. Another
export option creates the code required for integration in
survey tools such as the proprietary services Qualtrics
(Qualtrics, 2016) or SoSci Survey (Leiner, 2014), and

6At the time of writing, lab.js provides direct export to the Netlify
hosting service (https://netlify.com).
7The idea of a generic server-side data collection script was introduced
by Birnbaum (2000) and Göritz and Birnbaum (2005).

565Behav Res (2022) 54:556–573

https://netlify.com

open-source alternatives like the powerful survey frame-
works Formr (Arslan et al., 2020) or LimeSurvey (Limesur-
vey GmbH, 2018). Beyond that, the builder provides a
direct export to The Experiment Factory (Sochat et al.,
2016; Sochat, 2018), which is an open-source framework
for assembling and hosting batteries of tasks in fully
reproducible containers, as well as JATOS (Lange et al.,
2015), Open Lab (Shevchenko & Henninger, 2019), and
Pavlovia (https://pavlovia.org). These easy-to-use, compre-
hensive, open-source study hosting platforms not only make
study hosting, recruitment and data collection easy, but
provide further features such as (in the case of JATOS)
real-time interaction between participants and coordination
with crowdsourcing services such as Amazon’s Mechanical
Turk.

Through all of these deployment options, we aim to
support a wide range of data collection scenarios, so that
lab.js can be used by researchers regardless of their
technical experience and the infrastructure at their disposal.
Across all alternatives, we automatically implement best
practices for online research wherever possible, with the
least amount of effort on part of the user. For example, cloud
and server deployment options are configured to support
the multiple site entry technique, through which participant
populations can be distinguished by the URL through which
they access the study (Reips, 2002). Likewise, the software
automatically captures information provided by external
recruitment services, such as worker and task IDs generated
by Amazon Mechanical Turk (cf. Stewart, Chandler, &
Paolacci, 2017). Where external files are used, their paths
are obfuscated so as not to reveal the experiment’s structure.

Re-using components directly

Beyond the publication and re-use of entire studies,
lab.js is built to facilitate the recombination, extension,
and exchange of individual components or larger parts of an
experiment. Screens, forms, or entire tasks are designed to
be self-contained and easily transferable between studies.

Every part of an experiment can be independently
exported as a stand-alone file and re-imported into a new
study, preserving all content and settings. This option is
available from the drop-down menu next to any selected
component in the study overview. The resulting file can be
imported into a study from the dialog box for adding new
components, or used as starting point for an entirely new
project.

Creating task templates

To facilitate the re-use of more complex paradigms, parts
of a study can also be designated templates. This reduces
a set of nested components into one unit, creating a single

component that encapsulates an entire task, and can be
easily dropped into other studies. For example, the Stroop
task we constructed earlier could, once completed, be
condensed into a single template component, making it
much easier to reuse it, for example as part of a larger test
battery.

If a component is marked as a template, all of its
contents and options are hidden and thereby protected from
inadvertent modification. In their place, a much simpler
interface provides access to only the settings relevant to the
task. For example, template authors can allow users to adapt
the number of trials, response buttons, instruction texts, and
other parameters without requiring them to delve into the
details of the task. Any values set by users are available
inside a template through the parameter mechanism outlined
above, and can be inserted inside placeholders.

Through the template mechanism, lab.js bridges the
gap between manual programming, which offers control
over every aspect of a study, and entirely template-focused
tools that limit researchers to a set of predefined tasks or
stimuli. Using templates, more advanced users can package
technically complex paradigms into easy-to-use units that
can be reapplied without the expertise and effort that were
necessary to create them. This, however, does not hinder
customization and adaptation—by exposing the relevant
settings, a task can be adjusted to match the needs of a
research project without requiring detailed knowledge of
its innermost workings. Because the template setting is
reversible, the accessibility of a task bundled as a template
does not preclude in-depth inspection and modification:
Paradigms can be handled and modified at multiple levels
of abstraction or technical detail, suiting the needs of the
individual researcher.

Timing performance

A common concern of researchers considering online
data collection has been the accuracy and precision of
presentation and response timing, especially for fast-paced
experimental paradigms. Empirical validation studies have
found that browser-based stimulus display and response
collection incurred lags and variability both within a given
browser and across different combinations of browser
and operating system (e.g., Reimers & Stewart, 2014).
Though many phenomena are demonstrably robust to any
measurement inaccuracy introduced both by moving from
dedicated experimental software to browser-based data
collection and gathering data outside of the controlled
laboratory setting (Semmelmann & Weigelt, 2017a; de
Leeuw & Motz, 2015; Hilbig, 2016; Crump et al.,
2013; Simcox & Fiez, 2014), considerable room for
improvement has remained with regard to both accuracy

566 Behav Res (2022) 54:556–573

https://pavlovia.org/

(denoting freedom from bias or lag) and precision (freedom
from measurement noise, Plant & Turner, 2009). With
lab.js, we build and improve upon previous approaches
to browser-based experimentation, reducing both lags
and measurement noise, and further approaching the
performance of native experimental software (see also
Henninger, Schuckart, & Arslan, 2019).

The first prerequisite for precise time measurement is
exact timekeeping. Our framework consistently uses high-
resolution timers that provide sub-millisecond precision for
all measurements, following Barnhoorn et al. (2015). This
is a simple, but effective improvement over previous in-
browser timing methods that truncate timestamps at the
millisecond level by default.8

A second imperative for precise timing is that mea-
surements are synchronized to the display refresh. Failing
to do so results in added noise because time measure-
ment might start before or even after a stimulus has been
presented. Therefore, frame synchronization is common-
place in dedicated, native experimental software (cf. Mathôt
et al., 2012). In lab.js, all timer onsets are aligned to
the browser’s animation frame cycle, which closely tracks
the underlying graphics hardware (Barnhoorn et al., 2015).
Presentation times are likewise synchronized to browser’s
screen update rate: An adaptive algorithm monitors the cur-
rent rendering performance and presents new content with
the frame that most closely matches the intended display
duration. This provides a considerable improvement over
the typically used setTimeout function, which is prone
to overshooting any specified duration and thereby adding
lag.

The final element to high-performance timing is an
optimized rendering engine that minimizes delays in
stimulus presentation. Here again, lab.js improves upon
previously available tools, adopting strategies formerly
found only in native experimental software: It reduces
computation during the study as much as possible, pre-
loading and preparing stimuli prior to their presentation
(a prepare-run-strategy, cf. Mathôt et al., 2012). For
screens constructed using the visual editor, the canvas-
based rendering engine provides flexible, high-performance
graphics capabilities by removing the computationally
expensive layout calculations required for HTML content.
Users can further minimize the amount of content that

8At the time of writing, some browsers add a small amount of
artificial jitter—2 ms in the case of Firefox—to all time measurements
for security reasons, limiting the potential timing precision of any
browser-based data collection project. Having resolved the underlying
security issues, the Chrome developers have proceeded to remove this
artificial source of noise, and we expect the other browsers to follow
suit.

the browser needs to re-render during the study through
Frame components, which provide a constant frame of
HTML content around a changing stimulus, thereby avoiding
large changes to the document and the corresponding costly
layout recalculations. For example, in our Stroop task, we
might extract those parts of the screen that remain constant
during the task into a frame and place the stimulus loop
inside, varying only the main content between screens
while leaving its surroundings (e.g., instructions) in place.
Thereby, only the actual stimulus is exchanged between
screens instead of re-drawing the entire display with
every change, however minor. Using the canvas.Frame
component to enclose a set of canvas-based screens provides
a common element across all screens. This
eliminates changes to the HTML document entirely, further
increasing rendering performance.

With all of these features in place, the practical
performance of the library remains to be demonstrated
empirically. To this end, we conducted a technical validation
study similar to that reported by Mathôt et al. (2012)
and Reimers and Stewart (2014). In particular, to capture
the software’s performance in isolation, we measured the
actual duration of stimuli output by the computer, and used
external hardware to simulate precisely timed responses,
which we then compared to the response interval measured
by our software. In our tests, we created a continuous series
of rapidly changing screen content, creating a load that
likely exceeds the demands of many typical experiments
(Garaizar & Vadillo, 2014). This we repeated across a range
of common browsers and operating systems to evaluate the
consistency of results (further details regarding our method
are provided in the Appendix).

Figures 10 and 11 summarize our validation results.
In a nutshell, presentation intervals were consistently met
across browsers and operating systems. Chrome and Safari
always matched the intended stimulus duration exactly.
Firefox met this criterion in more than 98% of our
measurements on Windows and MAC OS, with somewhat
reduced performance on Linux. However, Firefox never
deviated more than a single frame from the target interval.
Internet Explorer Edge showed a considerable increase in
single-frame deviations, and 0.3% of measurements two or
more frames off the preset duration. However, the excellent
performance across all other browsers demonstrates that
this is specific to IE, and one might expect this browser
to catch up with its competitors as it matures.9 The
overall result thus demonstrates that lab.js offers
extremely precise stimulus timing capabilities, with the
best-performing browsers approaching the level of popular

9At the time of writing, Internet Explorer is slated for replacement by
a new browser with the same technical foundation as Chrome

567Behav Res (2022) 54:556–573

Fig. 10 Timing validation results for stimulus presentation, in percent of target frames hit across simulated durations, browsers, and systems. The
green areas represent the proportion of exact matches, orange areas are one frame to early or to late, and red areas two frames or more (only
the case for Internet Explorer Edge, in less than 1% of the two longest presentation intervals). See also https://lab.js.org/performance for the most
recent timing results

native experimental software (Mathôt et al., 2012; Garaizar
et al., 2014; Garaizar & Vadillo, 2014).

Regarding response times, our results show somewhat
greater variability across browsers. Most consistently
overestimate response latencies by between one and two
frames (16.7 to 33.4 ms), with fairly little noise (the
maximum SD we observed was 7.4 ms, in Internet Explorer
Edge at 1000-ms response latency). Chrome stands out
not only for its small measurement variability across
operating systems, but also for its consistent lag of almost
exactly a frame on Linux and MAC OS, and around
1.5 ms on Windows. We fully anticipate that this result
will improve further with browsers’ future development,
and provide more detailed and up-to-date information at
https://lab.js.org/performance.

All this being said, we would like to emphasize that
the standard of absolute timing accuracy and precision
applied above, while well worth pursuing, is a very high
one. In practice, the measurement noise for response
times we report above is negligible in many common
paradigms: Even for between-subject experimental compar-
isons, Reimers and Stewart (2014) show through simula-
tions that a small increase in the number of participants
makes up for any loss of power due to between-browser
variations and a timing noise larger than the one we
observed (see also Ulrich & Giray, 1989; Damian, 2010;
Brand & Bradley, 2012). Similarly, within-subjects designs
that focus on differences in response times between con-
ditions (which we intuit are already common in paradigms
that rely on response times) are insensitive to any consistent

Fig. 11 Timing validation results for response time measurement across browsers and systems. Dots represent the mean difference between
simulated and captured response times in frames, and bars the observed standard deviation. See also https://lab.js.org/performance for the most
recent timing results

568 Behav Res (2022) 54:556–573

https://lab.js.org/performance/
https://lab.js.org/performance/
https://lab.js.org/performance/

lag introduced in timing (see also Reimers & Stewart 2014,
for an in-depth discussion). Our sole caution is that correla-
tions between individual differences and absolute response
times might be mediated by participants’ choice of browser
(Buchanan & Reips, 2001), but again, compared to common
variation in response times, we observe only very small dif-
ferences between browsers. Should such concerns, however,
become pressing, studies built in lab.js also translate
naturally to a laboratory setting, which provides the oppor-
tunity to run the study in a browser with the desired timing
characteristics, and on consistent hardware.

In sum, reviewing this pattern of results and particularly
the timing performance that lab.js offers in combination
with the most powerful browsers, we cautiously predict that
further improvements are unlikely to stem from browser-
based experimental software itself, but will result from
browser and operating system advancements. Finally, we
would like to note that all of these measurements are
exclusively concerned with, and therefore purposefully
isolate, our software’s performance: Beyond any timing
inaccuracy introduced by the software, common peripheral
hardware such as off-the-shelf keyboards and displays is
likely to introduce further lags and measurement noise
(e.g., Garaizar et al., 2014; Plant & Turner, 2009; Lincoln
& Lane, 1980). These, however, apply not only to online
data collection but also most laboratory settings, unless
specialized response hardware is used.10 Though the
variability of peripherals outside of the laboratory is likely
to introduce a slight amount of additional variance, this is
unlikely to affect qualitative findings except for the smallest
of effects (Hilbig, 2016; Semmelmann & Weigelt, 2017a;
Brand & Bradley, 2012).

Technical underpinnings

The workhorse of stimulus display and data collection
in lab.js is a custom JavaScript framework that
governs all interaction with participants. In the workflow
demonstrated above, the builder interface generates a
JavaScript representation of the study, which is read and
executed by the framework within participants’ browsers.
The entire study logic thus runs on the client side, reacting
immediately to participant input and eliminating network
latency which would be introduced by loading new page
content from the server between screens.

10Whenever a research question requires exact, absolute interpretation
of time measurements, we recommend that the hardware and software
setup be subjected to careful timing validation. Having performed
such a validation and replicated our results, for example, a researcher
might confidently subtract any consistent browser-specific lag from all
measured response times.

All components in a study can be customized through
JavaScript code to fit the requirements of the scientific
endeavor at hand. In the builder’s scripts tab, custom
instructions can be attached to every component, to be
run at specific points during its lifecycle. For example,
when it is prepared, a component’s options might be
adjusted depending on participants’ previous performance,
enabling adaptive experimentation. When a component is
run, the presentation can be extended beyond the default
behavior, enabling, for example, interaction patterns within
a single screen that go far beyond the standard stimulus-
response pattern. In addition, code can be executed when
the presentation comes to an end, for example to compute
indices based on the collected responses. Similarly, because
the library exposes the stimulus canvas and the HTML

document directly via standardized browser interfaces, any
content or library that can be included on a regular web page
can also be added to an experiment built with lab.js. This
ability to add custom logic during the study, and to draw
from the rich ecosystem of the web, greatly increases the
flexibility of our tool, allowing it to cater to applications yet
to be envisioned, and to complete tasks we have not foreseen
or implemented directly in the interface.

Programming studies in pure JavaScript

Researchers interested in defining studies directly in code
can use the underlying library independently of the builder
for maximum flexibility. It exposes the same building blocks
through a declarative, object-oriented interface which mir-
rors the graphical builder. To give a brief example, a basic
canvas-based Stroop screen would be defined as follows:

569Behav Res (2022) 54:556–573

As in the builder interface, these basic stimuli can also be
combined into superordinate components:

All of these components provide a consistent JavaScript
interface. For example, a developer might write stroop
Screen.run() to trigger the preparation and dis-
play of the screen defined above, which would show
the stimulus and wait for one of the predefined
responses. The exact same method can be applied to
the stroopTrial to present a slightly more involved
sequence of events. To include custom logic, instruc-
tions can be added to any component for execu-
tion at a later point in time through the command

.11

On a technical level, all different components are linked
through JavaScript’s inheritance mechanism, and adopt the
vast majority of their behavior from the general-purpose
lab.core.Component, extending it only as required by
their specific use. For example, the lab.html.Screen
component only inserts its HTML content into the page when
it is run; most other logic, including the substitution of
placeholders, is provided by the library core. In a similar
way, and with very little effort, new functionality can be
added to the library itself by creating custom components
that perform specific tasks. In addition, a pluginmechanism
exists to attach logic to any component in a study, regardless
of its type. This is, for example, used to provide the data
preview for all parts of the study.

We have taken great care to follow best practices for
scientific software (Wilson et al., 2014) while developing
lab.js: The code is available under an open-source
license which allows for free extension and modification.
All changes are tracked in the project repository, and a
set of automated tests run across multiple browsers are
applied to every one, ensuring continued stability and
compatibility. We are confident that this infrastructure will
greatly facilitate sustained development. Experiment files
are automatically upgraded to the latest library version,
incorporating changes and updates, while exported studies
include all necessary files to support continued use and
long-term archival.

11A full code-based Stroop task is available from our repository at
https://github.com/felixhenninger/lab.js/tree/master/tasks

Discussion

lab.js provides an easy-to-use, visual interface for
building browser-based studies, enabling efficient data
collection both in the laboratory and online. The graphical
builder makes the design of studies easy, while HTML, CSS,
and JavaScript integration give researchers full control over
their studies’ presentation and behavior. Its present focus is
on experimental paradigms, for which it provides powerful,
high-performance stimulus and response timing methods,
but our library supports the full gamut of behavioral
research, and can make full use of the powerful capabilities
of modern browsers.

We believe that the advantages of a platform like
lab.js are not limited to more efficient data collection:
Because the web is an almost ubiquitous medium, and
lab.js freely available, studies can easily be shared with
colleagues before they are used in the field, facilitating
collaboration within a project. Following publication,
studies can be publicly archived, viewed, modified and
adapted by interested researchers, who can build upon
previous efforts and customize or extend existing studies
without having to re-implement a paradigm in its entirety.
Our software makes it easy to export parts of studies
in an editable format for sharing and re-use, facilitating
collaboration and cumulative science (Nielsen, 2011; Ince
et al., 2012); completed studies can be similarly shared
in archivable form, so that paradigms can be viewed and
potentially replicated directly without additional software.

Of course, some lines of research may require dedicated
native experimental software, particularly if they involve
specialized external hardware. That being said, browser-
based experimental software supplements and may in
many cases supplant native experimental software, and
its capabilities are continuously expanding (for example,
physiological measurements and basic eye-tracking are
already possible, see Semmelmann & Weigelt, 2017b).

Through lab.js, we have aimed to make available
the power and flexibility offered by dedicated laboratory-
based data collection software in the browser and on the
web. We hope that it will enable a more efficient (and,
keeping with the spirit of Mathôt et al., 2012, perhaps even
fun) realization of behavioral science, and we would be
proud to support the ingenuity and creativity of our fellow
researchers. The internet has been the medium with the
fastest growth in the history of humanity, and it continues
to evolve rapidly. We hope to track these developments and
incorporate future best practices in the library, benefiting all
users. As an open and freely available project, we would
be thrilled to serve as a foundation for future browser-based
research.

Acknowledgements The authors would like to express their sincere
gratitude to all colleagues and students who have made this project

570 Behav Res (2022) 54:556–573

https://github.com/felixhenninger/lab.js/tree/master/tasks

possible. The students and teaching assistants in the University of
Landau cognition module have accompanied our software over several
years and through as many incarnations, have patiently pointed out
its rough edges and provided outstanding feedback that has shaped its
design; our TAs and RAs have likewise been instrumental in shaping
this software: Ronja Frölich, Theresa Honervogt, Luisa Horsten, Felix
Ludwig, Kevin E. Tiede and Vanessa Wiench. Michael Kriechbaumer
and Felix Ludwig worked tirelessly to build our repository of example
tasks. Heartfelt thanks are due to Christine Blech and Robert Gaschler
at the FernUniversität Hagen, Sophie Scharf at the University of
Mannheim, Merle Schuckart and Julian Keil at the University of Kiel,
and the members of the University of Landau Cognition Lab, who
bravely applied this software in their research from a very early stage,
and provided invaluable feedback. Katja Heuer and Priyanka Nag
patiently and expertly guided it into the open-source world as part
of the Mozilla Open Leaders mentorship; Pablo Garaizar and Teon
Brooks provided fantastic technical feedback; Jakob Voß counseled us
on how to better support open science, and Wikimedia Germany e.V.
supported our efforts through an Open Science fellowship.

This work was made possible through the University of
Mannheim’s Graduate School of Economic and Social Sciences as
well as the research-training group ‘Statistical Modeling in Psychol-
ogy’ (GRK 2277) and project KR2211/5-1, all of which are funded by
the German Research Foundation.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in
this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://
creativecommonshorg/licenses/by/4.0/.

Appendix: Validation studymethods

For many experimental paradigms, the accuracy of stimu-
lus’ presentation durations and the measurement of response
times is paramount. To rigorously assess the performance
of lab.js, we therefore captured the generated stimulus
durations and simulated response times of different lengths
precisely using external hardware.

A simple experiment alternated screens of dark and light
stimuli. To test display durations, 100 stimuli of either
brightness were shown in succession, set to a timeout of
either 50, 100, 250, 500, or 1000 ms. For response time
validation, we conducted a second experiment with the same
setup that waited for keyboard input on every screen, and
we simulated a keypress after each of the aforementioned
intervals. We ran this experiment through all presentation
and response durations across the most recent versions of all
major browsers (Firefox, Chrome, Safari, Internet Explorer

Table 1 Hardware used in the timing validation study

PC MAC

Processor Intel Core i3 Intel Core i5

Clock frequency 3.5 GHz 2.7 GHz

Memory 8GB 16GB

Graphics adapter Intel Iris Graphics

Screen resolution 1280 x 720, 60Hz refresh rate

Operating System Windows 10 Mac OS 10.14

Ubuntu 18.10

Edge) and operating systems (Windows, Ubuntu Linux,
Mac OS), on modest hardware (Table 1).

Specialized video analysis hardware (Nexys Video;
Digilent Inc.) decoded the screen content as output by the
computer via its HDMI port. We monitored and recorded
the brightness of the center pixel, as well as the onset of
every frame (vertical sync). To generate responses, a USB
development board (Teensy 3.5; PJRC) connected to the
computer simulated key presses following an increase in
brightness. To verify the software’s frame synchronization,
response intervals were timed starting from the frame
onset. We captured screen content, frame onsets, and
USB data using a logic analyzer (Logic Pro 8; Saleae,
Inc.) sampling every 20 ns (50 MHz sampling rate).
The complete data and analysis scripts are available via
https://lab.js.org/performance.

References

Arslan, R. C., Walther, M. P., & Tata, C. S. (2020). Formr:
A study framework allowing for automated feedback gen-
eration and complex longitudinal experience-sampling stud-
ies using R. Behavior Research Methods, 52, 376–387.
https://doi.org/10.3758/s13428-019-01236-y

Barnhoorn, J. S., Haasnoot, E., Bocanegra, B. R., & Steenbergen, H. v.
(2015). QRTEngine: An easy solution for running online reaction
time experiments using Qualtrics. Behavior Research Methods,
47(4), 918–929. https://doi.org/10.3758/s13428-014-0530-7

Birnbaum, M. H. (2000). SurveyWiz and FactorWiz: JavaScript Web
pages that make HTML forms for research on the Internet.
Behavior Research Methods, Instruments and Computers, 32(2),
339–346. https://doi.org/10.3758/BF03207804

Brand, A., & Bradley, M. T. (2012). Assessing the effects of
technical variance on the statistical outcomes of Web experiments
measuring response times. Social Science Computer Review,
30(3), 350–357. https://doi.org/10.1177/0894439311415604

Buchanan, T., & Reips, U.-D. (2001). Platform-dependent biases in
online research: Do Mac users really think different? In Jonas,
K. J., Breuer, P., Schauenburg, B., & Boos, M. (Eds.) Perspectives
on internet research: Concepts and methods. Retrieved December
16, 2018, from http://www.unikonstanz.de/ iscience/reips/pubs/
papers/Buchanan Reips2001.pdf .

Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M.
(2013). Evaluating Amazon’s Mechanical Turk as a tool for
experimental behavioral research. PLOS One, 8(3), e57410.
https://doi.org/10.1371/journal.pone.0057410

571Behav Res (2022) 54:556–573

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/
https://lab.js.org/performance/
https://doi.org/10.3758/s13428-019-01236-y
https://doi.org/10.3758/s13428-014-0530-7
https://doi.org/10.3758/BF03207804
https://doi.org/10.1177/0894439311415604
http://www.unikonstanz.de/iscience/reips/pubs/papers/Buchanan_Reips2001.pdf
http://www.unikonstanz.de/iscience/reips/pubs/papers/Buchanan_Reips2001.pdf
https://doi.org/10.1371/journal.pone.0057410

Damian, M. F. (2010). Does variability in human performance
outweigh imprecision in response devices such as com-
puter keyboards? Behavior Research Methods, 42(1), 205–211.
https://doi.org/10.3758/BRM.42.1.205

de Leeuw, J. R. (2014). jsPsych: A JavaScript library for creating
behavioral experiments in a Web browser. Behavior Research
Methods, 1(47), 1–12. https://doi.org/10.3758/s13428-014-0458-y

de Leeuw, J. R., & Motz, B. A. (2015). Psychophysics in a Web
browser? Comparing response times collected with JavaScript
and Psychophysics Toolbox in a visual search task. Behavior
Research Methods, 48(1), 1–12. https://doi.org/10.3758/s13428-
015-0567-2

Garaizar, P., & Vadillo, M. A. (2014). Accuracy and pre-
cision of visual stimulus timing in PsychoPy: No tim-
ing errors in standard usage. PLOS One, 9(11), e112033.
https://doi.org/10.1371/journal.pone.0112033

Garaizar, P., Vadillo, M. A., López-de-Ipiña, D., & Matute, H. (2014).
Measuring software timing errors in the presentation of visual
stimuli in cognitive neuroscience experiments. PLOS One, 9(1),
e85108. https://doi.org/10.1371/journal.pone.0085108

Göritz, A. S., & Birnbaum, M. H. (2005). Generic HTML Form
Processor: A versatile PHP script to save Web-collected data into
a MySQL database. Behavior Research Methods, 37(4), 703–710.
https://doi.org/10.3758/BF03192743

Henninger, F., Schuckart, M. M., & Arslan, R. C. (2019). Who said
browser-based experiments can’t have proper timing? Manuscript
in preparation.

Hilbig, B. E. (2016). Reaction time effects in lab- versus Web-based
research: Experimental evidence. Behavior Research Methods,
48(4), 1718–1724. https://doi.org/10.3758/s13428-015-0678-9

Ince, D. C., Hatton, L., & Graham-Cumming, J. (2012). The
case for open computer programs. Nature, 482, 485–488.
https://doi.org/10.1038/nature10836

Lange, K., Kühn, S., & Filevich, E. (2015). Just another tool for online
studies (JATOS): An easy solution for setup and management
of web servers supporting online studies. PLOS One, 10(6),
e0130834. https://doi.org/10.1371/journal.pone.0130834

Leiner, D. J. (2014). SoSci Survey. Retrieved from https://www.
soscisurvey.com.

Limesurvey GmbH (2018). LimeSurvey: An open source survey tool.
Retrieved from http://www.limesurvey.org.

Lincoln, C. E., & Lane, D. M. (1980). Reaction time measurement
errors resulting from the use of CRT displays. Behavior Research
Methods and Instrumentation, 12(1), 55–57. https://doi.org/10.
3758/BF03208326

MacLeod, C. M. (1991). Half a century of research on the Stroop
effect: An integrative review. Psychological Bulletin, 109(2), 163–
203. https://doi.org/10.1037/0033-2909.109.2.163

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An
open-source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44(2), 314–324. https://doi.org/10.
3758/s13428-011-0168-7

Nelson, L. D., Simmons, J., & Simonsohn, U. (2017). Psychology’s
renaissance. Annual Review of Psychology. https://doi.org/10.
1146/annurev-psych-122216-011836.

Nielsen, M. (2011). Reinventing discovery. Princeton: University Press.
Peirce, J. W. (2007). PsychoP—Psychophysics software in

Python. Journal of Neuroscience Methods, 162(1–2), 8–13.
https://doi.org/10.1016/j.jneumeth.2006.11.017

Plant, R. R., & Turner, G. (2009). Millisecond precision psychological
research in a world of commodity computers: New hardware,
new problems? Behavior Research Methods, 41(3), 598–614.
https://doi.org/10.3758/BRM.41.3.598

Qualtrics. (2016). Qualtrics. Provo: Qualtrics. Retrieved from: https://
www.qualtrics.com.

Reimers, S., & Stewart, N. (2014). Presentation and response
timing accuracy in Adobe Flash and HTML5/JavaScript Web
experiments. Behavior Research Methods, 47(2), 309–327.
https://doi.org/10.3758/s13428-014-0471-1

Reips, U.-D. (2002). Internet-based psychological experimenting: Five
dos and five don’ts. Social Science Computer Review, 20(3),
241–249. https://doi.org/10.1177/089443930202000302

Reips, U.-D. (2007). The methodology of Internet-based experiments.
In Joinson, A. N., McKenna, K. Y. A., Postmes, T., & Reips, U.-
D. (Eds.) The Oxford Handbook of Internet Psychology, (pp. 373–
390). Oxford: University Press.

Reips, U.-D., & Neuhaus, C. (2002). WEXTOR: AWeb-based tool for
generating and visualizing experimental designs and procedures.
Behavior Research Methods, Instruments and Computers, 34(2),
234–240. https://doi.org/10.3758/BF03195449

Semmelmann, K., & Weigelt, S. (2017a). Online psychophysics:
Reaction time effects in cognitive experiments. Behavior Research
Methods, 49(4), 1241–1260. https://doi.org/10.3758/s13428-016-
0783-4

Semmelmann, K., & Weigelt, S. (2017b). Online webcam-based eye
tracking in cognitive science: A first look. Behavior Research
Methods, 1–15. https://doi.org/10.3758/s13428-017-0913-7.

Shevchenko, Y., &Henninger, F. (2019). Open Lab: Aweb application
for running and sharing online experiments. Manuscript in
preparation.

Simcox, T., & Fiez, J. A. (2014). Collecting response times using Ama-
zon Mechanical Turk and Adobe Flash. Behavior Research Meth-
ods, 46(1), 95–111. https://doi.org/10.3758/s13428-013-0345-y

Sochat, V. V. (2018). The experiment factory: Reproducible exper-
iment containers. The Journal of Open Source Software.
https://doi.org/10.21105/joss.00521.

Sochat, V. V., Eisenberg, I. W., Enkavi, A. Z., Li, J., Bissett,
P. G., & Poldrack, R. A. (2016). The experiment factory:
Standardizing behavioral experiments. Frontiers in Psychology, 7.
https://doi.org/10.3389/fpsyg.2016.00610.

Stewart, N., Chandler, J., & Paolacci, G. (2017). Crowdsourcing
samples in cognitive science. Trends in Cognitive Sciences,
21(10), 736–748. https://doi.org/10.1016/j.tics.2017.06.007

Stoet, G. (2017). PsyToolkit: A novel Web-based method for running
online questionnaires and reaction-time experiments. Teaching of
Psychology, 44(1), 24–31. https://doi.org/10.1177/009862831667
7643

Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of
neuropsychological tests: Administration, norms and commentary.
Oxford: University Press.

Stroop, J. R. (1935). Studies of interference in serial verbal
reactions. Journal of Experimental Psychology, 18(6), 643–662.
https://doi.org/10.1037/h0054651

The World Bank (2016). Individuals using the internet. Data retrieved
from World Development Indicators, https://data.worldbank.org/
indicator/IT.NET.USER.ZS.

Ulrich, R., & Giray, M. (1989). Time resolution of clocks: Effects on
reaction time measurement—Good news for bad clocks. British
Journal of Mathematical and Statistical Psychology, 42(1), 1–12.
https://doi.org/10.1111/j.2044-8317.1989.tb01111.x

von Bastian, C. C., Locher, A., & Ruflin, M. (2013). Tatool: A
Java-based open-source programming framework for psycho-
logical studies. Behavior Research Methods, 45(1), 108–115.
https://doi.org/10.3758/s13428-012-0224-y

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C.,
Davis, M., Guy, R. T., & Wilson, P. (2014). Best practices

572 Behav Res (2022) 54:556–573

https://doi.org/10.3758/BRM.42.1.205
https://doi.org/10.3758/s13428-014-0458-y
https://doi.org/10.3758/s13428-015-0567-2
https://doi.org/10.3758/s13428-015-0567-2
https://doi.org/10.1371/journal.pone.0112033
https://doi.org/10.1371/journal.pone.0085108
https://doi.org/10.3758/BF03192743
https://doi.org/10.3758/s13428-015-0678-9
https://doi.org/10.1038/nature10836
https://doi.org/10.1371/journal.pone.0130834
https://www.soscisurvey.com
https://www.soscisurvey.com
http://www.limesurvey.org
https://doi.org/10.3758/BF03208326
https://doi.org/10.3758/BF03208326
https://doi.org/10.1037/0033-2909.109.2.163
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.3758/s13428-011-0168-7
https://doi.org/10.1146/annurev-psych-122216-011836
https://doi.org/10.1146/annurev-psych-122216-011836
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.3758/BRM.41.3.598
https://www.qualtrics.com
https://www.qualtrics.com
https://doi.org/10.3758/s13428-014-0471-1
https://doi.org/10.1177/089443930202000302
https://doi.org/10.3758/BF03195449
https://doi.org/10.3758/s13428-016-0783-4
https://doi.org/10.3758/s13428-016-0783-4
https://doi.org/10.3758/s13428-017-0913-7
https://doi.org/10.3758/s13428-013-0345-y
https://doi.org/10.21105/joss.00521
https://doi.org/10.3389/fpsyg.2016.00610
https://doi.org/10.1016/j.tics.2017.06.007
https://doi.org/10.1177/0098628316677643
https://doi.org/10.1177/0098628316677643
https://doi.org/10.1037/h0054651
https://data.worldbank.org/indicator/IT.NET.USER.ZS
https://data.worldbank.org/indicator/IT.NET.USER.ZS
https://doi.org/10.1111/j.2044-8317.1989.tb01111.x
https://doi.org/10.3758/s13428-012-0224-y

for scientific computing. PLOS Biology, 12(1), e1001745.
https://doi.org/10.1371/journal.pbio.1001745

Woods, A. T., Velasco, C., Levitan, C. A., Wan, X., & Spence, C.
(2015). Conducting perception research over the Internet: A tuto-
rial review. PeerJ, 3, e1058. https://doi.org/10.7717/peerj.1058

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

573Behav Res (2022) 54:556–573

https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.7717/peerj.1058

	lab.js: A free, open, online study builder
	Abstract
	Introduction
	Building experiments in lab.js
	Using the interface
	Designing screens
	Changing components' behavior
	Flow control
	Defining parameters
	Using placeholders
	Previewing data
	Experiment state and feedback
	Logic in placeholders
	Using html
	html forms

	Study deployment, archival, and re-use
	Saving a study to disk
	Deploying a study for data collection
	Re-using components directly
	Creating task templates

	Timing performance
	Technical underpinnings
	Programming studies in pure JavaScript

	Discussion
	Appendix : Validation study methods
	References

