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Abstract
We propose a space mapping-based optimization algorithm for microscopic interact-
ing particle dynamics which are infeasible for direct optimization. This is of rele-
vance for example in applications with bounded domains for which the microscopic 
optimization is difficult. The space mapping algorithm exploits the relationship of 
the microscopic description of the interacting particle system and a corresponding 
macroscopic description as partial differential equation in the “many particle limit”. 
We validate the approach with the help of a toy problem that allows for direct opti-
mization. Then we study the performance of the algorithm in two applications. A 
pedestrian flow is considered and the transportation of goods on a conveyor belt is 
optimized. The numerical results underline the feasibility of the proposed algorithm.

Keywords Model hierarchy · Optimization · Space mapping · Interacting particle 
systems

Mathematics Subject Classification 35Q93 · 49K15 · 90C30

1 Introduction

In the recent decades interacting particle systems attracted a lot of attention from 
researchers of various fields such as swarming, pedestrian dynamics and opinion 
formation (cf.  Albi and Pareschi 2013; Helbing and Molnár 1995; Toscani 2006; 
Totzeck 2020 and the references therein). In particular, a model hierarchy was 
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established Carrillo et  al. 2010; Golse 2003. The main idea of the hierarchy is to 
model the same dynamics with different accuracies, each having its own advantages 
and disadvantages. The model with the highest accuracy is the microscopic one. It 
describes the positions and velocities of each particle explicitly. For applications 
with many particles involved, this microscopic modelling leads to a huge amount of 
computational effort and storage needed. Especially, when it comes to the optimiza-
tion of problems with many particles Burger et al. 2020 2020.

There is also an intermediate level of accuracy given by the mesoscopic descrip-
tion, see Albi and Pareschi 2013; Carrillo et al. 2010; Totzeck 2020. We do not want 
to give its details here, instead, we directly pass to the macroscopic level, where the 
velocities are averaged and a position-dependent density describes the probability of 
finding a particle of the dynamics at a given position. Of course, we lose the explicit 
information of each particle, but have the advantage of saving a lot of storage in the 
simulation of the dynamics. Despite the lower accuracy many studies Albi and Pare-
schi 2013; Burger et al. 2020; Mahato et al. 2018 indicate that the evolution of the 
density yields a good approximation of the original particle system, see also Weis-
sen et  al. (2021), which proposed a limiting procedure that is considered in more 
detail below.

Moreover, the macroscopic description naturally involves boundary conditions 
which play a crucial role in many engineering experiments with interacting particles, 
see for example the pedestrian dynamics data archive by the Civil Safety Research 
of the Forschungszentrum Jülich Seyfried and Boltes (2021).

This observation motivates us to exploit the aforementioned relationship of 
microscopic and macroscopic models and propose a space mapping-based optimiza-
tion scheme for interacting particle dynamics which are inappropriate for direct opti-
mization. This might be the case for particle dynamics that involve a huge number 
of particles for which traditional optimization is expensive in terms of storage, com-
putational effort and time. Another example is the optimization of particle dynam-
ics in bounded domains, where the movement is restricted by obstacles or walls. In 
fact, systems based on ordinary differential equations (ODEs) do not have a natural 
prescription of zero-flux or Neumann boundary data, but those conditions are often 
critical in applications.

An exemplary application is the movement of large crowds Göttlich and Pfirsch-
ing 2018; Helbing et al. 2000; Helbing and Molnár 1995 which includes the com-
bination of individual behavior with a herding instinct leading to collective motion. 
Systematic studies analyze the behavior of human crowds in crowded buildings or at 
event venues with a high number of participants such as in concerts Johnson 1987 
or religious gatherings  Haase et  al. 2019. Dangerous overcrowding and jamming 
might occur at bottlenecks Helbing et al. 2000. The herding instinct entails that all 
individuals move in the same direction of probably blocked pathways. Their move-
ment becomes uncoordinated and since paths are clogged, jams build up. If people 
get too close together they start to push and interact with each other. The interac-
tion between two pedestrians is modeled using an interaction force which pushes 
the pedestrians apart if they touch each other. It becomes the dominant force in this 
case and the physical interaction within these crowds might even become danger-
ous Helbing et al. 2000. The interactions with walls is also modeled with a similar 
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interaction force Helbing et al. 2000 and the geometry of the domain strongly influ-
ences the behavior of the crowd. Interesting scenarios are the evacuation of peo-
ple from a hotel or an office building Okazaki and Matsushita 1993, football sta-
dia Elliott and Smith 1993, passenger ships Klüpfel et al. 2001 or aircrafts Miyoshi 
et  al. 2012. All of the described settings naturally involve bounded domains and 
the pedestrian flows depend on the geometry of the domain  Helbing et  al. 2002. 
Simulations show the regions where congestion and stagnation in the movement 
occur. This information can help designers to examine and verify evacuation routes. 
Another useful application is the transport of material flow on conveyor belts Göt-
tlich et al. 2014; Göttlich and Pfirsching 2018. Conveyor belts are often used in fac-
tories to transport large amounts of goods, e.g. in bottling plants Festa et al. 2019. 
The goods are transported on the belts and redirected by obstacles such as diverter 
equipment Prims et al. 2019. When parts are too close together they exhibit repelling 
forces on each other. The same holds true for the interaction with obstacles or walls 
through which parts experience forces that allow to alter their transport direction.

While boundary interaction can be included in the ODE dynamics, their treatment 
is not self-evident. The same holds for optimization algorithms based on these simu-
lations. To the authors’ knowledge, alternatives to black box optimization algorithms 
that allow for convenient optimization of ODE systems within bounded domains do 
not exist. In contrast to the microscopic ones, models based on partial differential 
equations (PDEs) require boundary conditions. Often zero-flux or Neumann type 
boundary conditions are prescribed. Further, numerical schemes naturally integrate 
these boundary conditions and optimization algorithms can be directly formulated. 
The approach discussed in the following allows us to approximate the optimizer of 
microscopic dynamics with additional boundary behavior while only optimizing 
the macroscopic model with an adjoint based scheme. It is therefore a sophisticated 
alternative to black box optimization approaches.

1.1  Modeling equations and general optimization problem

We begin with the general framework and propose the space mapping technique to 
approximate an optimal solution of the interacting particle system. In general, the 
interacting particle dynamics for N ∈ ℕ particles in the microscopic setting is given 
by the ODE system

where xi ∈ ℝ
2, vi ∈ ℝ

2 are the position and the velocity of particle i supplemented 
with initial condition xi(0) = x0

i
, vi(0) = v0

i
 for i = 1,… ,N . Here, F denotes an 

interaction kernel which is often given as a gradient of a potential D’Orsogna et al. 

(1)

dxi

dt
= vi,

m
dvi

dt
= G(xi, vi) + A

∑
j≠i

F(xi − xj),

xi(0) = x0
i
, vi(0) = v0

i
,

i = 1,…N
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2006a. For notational convenience, we define the state vector y = (xi, vi)i=1,…,N 
which contains the position and velocity information of all particles.

Remark 1 Note that there are models that include boundary dynamics with the help 
of soft core interactions, see for example Helbing and Molnár 1995. In general, these 
models allow for direct optimization. Nevertheless, for N ≫ 1 the curse of dimen-
sionality applies and the approach discussed here may still be useful.

Sending N → ∞ and averaging the velocity, we formally obtain a macroscopic 
approximation of the ODE dynamics given by the PDE

where � = �(x, t) denotes the particle density in the domain Ω ⊆ ℝ
2 . The veloc-

ity v is the averaged velocity depending on the position and k(�) is the diffusion 
coefficient.

We consider constrained optimization problems of the form

where J is the cost functional, Uad is the set of admissible controls and y are the 
state variables with E(u, y) = 0 . In the following, for a given control u ∈ Uad , the 
constraint E(u, y) contains the modeling equations for systems of ODEs or PDEs. 
With the additional assumption that for a given control u , the model equations have 
a unique solution, we can express y = y(u) and consider the reduced problem

This is a nonlinear optimization problem, which we intend to solve for an ODE 
constraint E(u, y(u)) . To do this, one might follow a standard approach Hinze et al. 
2009 and apply a gradient descent method based on adjoints Tröltzsch 2010 to solve 
the microscopic reduced problem iteratively. In contrast, the space mapping tech-
nique employs a cheaper, substitute model (coarse model) for the optimization of 
the fine model optimization problem. Under the assumption that the optimization of 
the microscopic system is difficult and the optimization of the macroscopic system 
can be computed efficiently, we propose space mapping-based optimization. The 
main objective is to iteratively approximate an optimal control for the microscopic 
dynamics. To get there, we solve a related optimal control problem on the macro-
scopic level in each iteration.

1.2  Literature review and outline

Space mapping was originally introduced in the context of electromagnetic optimiza-
tion Bandler et al. 1994. The original formulation has been subject to improvements 

(2)
�t� + ∇ ⋅

(
�v(x) − k(�)∇�

)
= 0, (x, t) ∈ Ω × [0, T]

�(x, 0) = �0(x), x ∈ Ω

min
u∈Uad

J(u, y)

subject to E(u, y) = 0,

(3)min
u∈Uad

J(u, y(u)).



399

1 3

Space mapping‑based optimization with the macroscopic limit…

and changes Bandler et  al. 2004 and enhanced by classical methods for nonlinear 
optimization. The use of Broyden’s method to construct a linear approximation of 
the space mapping function, so-called aggressive space mapping (ASM) was intro-
duced by Bandler et al. Bandler et al. (1995). We refer to Bakr et al. (2000); Bandler 
et al. (2004) for an overview of space mapping methods.

More recently, space mapping has been successfully used in PDE based optimi-
zation problems. Banda and Herty Banda and Herty (2011) presented an approach 
for dynamic compressor optimization in gas networks. Göttlich and Teuber Göttlich 
and Teuber (2018) use space mapping based optimization to control the inflow in 
transmission lines. In both cases, the fine model is given by hyperbolic PDEs on 
networks and the main difficulty arises from the nonlinear dynamics induced by 
the PDE. These dynamics limit the possibility to efficiently solve the optimization 
problems. In their model hierarchy, a simpler PDE serves as the coarse model and 
computational results demonstrate that such a space mapping approach enables to 
efficiently compute accurate results.

Pinnau and Totzeck Totzeck and Pinnau (2020) used space mapping for the opti-
mization of a stochastic interacting particle system. In their approach the determinis-
tic state model was used as coarse model and lead to satisfying results.

Here, we employ a mixed hyperbolic-parabolic PDE as the coarse model in the 
space mapping technique to solve a control problem on the ODE level. Our opti-
mization approach therefore combines different hierarchy levels. As discussed, the 
difficulty on the ODE level can arise due to boundaries in the underlying spatial 
domain or due to a large number of interacting particles. In contrast, the macro-
scopic equation naturally involves boundary conditions and its computational effort 
is independent of the particle number.

The outline of the paper is as follows: We introduce the space mapping tech-
nique in Sect 2 together with the fine and coarse model description in the Sects. 2.1 
and  2.2. Particular attention is paid to the solution approach for the discretized 
coarse model in Sect. 2.2.2, which is an essential step in the space mapping algo-
rithm. The discretized fine model optimal control problem is presented in Sect. 3. 
We give an example where we can compare and validate our approach to a stand-
ard optimization approach for the fine model. We provide numerical examples in 
bounded domains in Sect. 4. In the Sects. 4.1 and 4.2, the microscopic optimization 
approach cannot be applied due to the additional boundary interaction. However, 
the space mapping algorithm can still be applied and properly includes the bound-
ary interaction. Various controls such as the source of an eikonal field in evacuation 
dynamics, cf. Sect. 4.1, and the conveyor belt velocity in a material flow setting, cf. 
Sect. 4.2, demonstrate the diversity of the proposed space mapping approach. In the 
conclusion in Sect. 5 our insights are summarized.

2  Space mapping technique

Space mapping considers a model hierarchy consisting of a coarse and a fine model. 
Let Gc ∶ U

c
ad

→ ℝ
nc ,Gf ∶ U

f

ad
→ ℝ

nf denote the operators mapping a given control u 
to a specified observable Gc(u) in the coarse and Gf (u) in the fine model, respectively. 
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The idea of space mapping is to find the optimal control uf∗ ∈ U
f

ad
 of the compli-

cated (fine) model control problem with the help of a coarse model, that is simple to 
optimize.

We assume that the optimal control of the fine model

where �∗ ∈ ℝ
n is a given target state, is inappropriate for optimization. In contrast, 

we assume the optimal control uc
∗
∈ U

c
ad

 of the coarse model control problem

can be obtained with standard optimization techniques. While it is computationally 
cheaper to solve the coarse model, it helps to acquire information about the optimal 
control variables of the fine model. By exploiting the relationship of the models, 
space mapping combines the simplicity of the coarse model and the accuracy of the 
more detailed, fine model very efficiently Bakr et al. 2001; Echeverría and Hemker 
2005.

Definition 2.1 The space mapping function T ∶ U
f

ad
→ U

c
ad

 is defined by

The process of determining T(uf ) , the solution to the minimization problem in 
Definition 2.1, is called parameter extraction. It requires a single evaluation of the 
fine model Gf (uf ) and a minimization in the coarse model to obtain T(uf ) ∈ U

c
ad

 . 
Uniqueness of the solution to the optimization problem is desirable but in general 
not ensured since it strongly depends on the two models and the admissible sets of 
controls Uf

ad
,Uc

ad
 , see Echeverría and Hemker 2005 for more details.

The basic idea of space mapping is that either the target state is reachable, i.e., 
G
f (u

f
∗) ≈ �∗ or both models are relatively similar in the neighborhood of their 

optima, i.e., Gf (u
f
∗) ≈ G

c(uc
∗
) . Then we have

compare  Echeverría and Hemker 2005. In general, it is very difficult to establish 
the whole mapping T  , we therefore only use evaluations. In fact, the space map-
ping algorithms allow us to shift most of the model evaluations in an optimization 
process to the faster, coarse model. In particular, no gradient information of the fine 
model is needed to approximate the optimal fine model control  Bakr et  al. 2001. 
Figure 1 illustrates the main steps of the space mapping algorithm, see also Bandler 
et al. (2004); Koziel et al. (2011).

In the literature, many variants of the space mapping idea can be found Bandler 
et al. 2004. We will use the ASM algorithm, see algorithm 1 in "Appendix A" or 
the references Bandler et al. 1995; Göttlich and Teuber 2018 for algorithmic details. 
Starting from the iterate u1 = uc

∗
 , the descent direction dk is updated in each itera-

tion k using the space mapping evaluation T(uk) . The algorithm terminates when the 

uf
∗
= argmin

u∈U
f

ad

‖Gf (u) − �∗‖,

uc
∗
= argmin u∈Uc

ad
‖Gc(u) − �∗‖,

T(uf ) = argmin u∈Uc
ad
‖Gc(u) − G

f (uf )‖.

T(uf
∗
) = argmin u∈Uc

ad
‖Gc(u) − G

f (uf
∗
)‖ ≈ argmin u∈Uc

ad
‖Gc(u) − �∗‖ = uc

∗
,



401

1 3

Space mapping‑based optimization with the macroscopic limit…

parameter extraction maps the current iterate uk (approximately) to the coarse model 
optimum uc

∗
 , such that ‖T(uk) − uc

∗
‖ is smaller than a given tolerance in an appropri-

ate norm ‖ ⋅ ‖ . The solutions uc
∗
 and T(uk) are computed using adjoints here and will 

be explained in Sect. 2.2.2.

2.1  Fine model

We seek to control a general microscopic model for the movement of N particles 
with dynamics given by (1). We choose the velocity selection mechanism

which describes the correction of the particle velocities towards an equilibrium 
velocity v(x) with relaxation time � . Such systems describe the movements of bio-
logical ensembles such as school of fish, flocks of birds  Armbruster et  al. 2017; 
Chuang et  al. 2007; D’Orsogna et  al. 2006b, ants  Boi et  al. 2000 or bacterial 
colonies Koch and White 1998 as well as pedestrian crowds Göttlich et  al. 2018; 

G(x, v) = −
(v − v(x))

�
,

Fig. 1  Schematic representation 
of a space mapping algorithm
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Helbing and Molnár 1995 and transport of material Göttlich et  al. 2014, 2015. In 
general, the force F occuring in (1) is a pairwise interaction force between particle i 
and particle j. We choose to activate it whenever two particles overlap and therefore 
‖xi − xj‖2 < 2R . For ‖xi − xj‖2 ≥ 2R , the interaction force is assumed to be zero. In 
the following, we restrict ourselves to forces described by

where bF > 0.
We consider the optimization problem (3) and set E(u, y) = 0 if and only if the 

microscopic model equations (1) are satisfied to investigate various controls u. For 
example, u being the local equilibrium velocity v(x) of the velocity selection mecha-
nism or u being the factor A scaling the interaction force between the particles. The 
objective function under consideration in each of the scenarios is the squared devia-
tion of the performance evaluation j(u, y(u)) from the target value �∗ ∈ ℝ, that is

In the following, we discuss the macroscopic approximation which is used as a 
coarse model for the space mapping.

2.2  Coarse model

Reference Weissen et  al. 2021 shows that in the many particle limit, N → ∞ , the 
microscopic system (1) can be approximated by the advection-diffusion Eq. (2) with 
diffusion coefficient

 The density �crit = 1 is a density threshold, above which diffusion in the macro-
scopic model is activated. H denotes the Heaviside function

At the boundary, we apply zero-flux boundary conditions for the advective and the 
diffusive flux

where n⃗ = (n(1), n(2))T is the outer normal vector at the boundary �Ω.
The advection-diffusion Eq. (2) serves as the coarse model in the space mapping 

technique. To solve optimization problems in the coarse model, we pursue a first-
discretize-then-optimize approach. In the following, we discretize the macroscopic 

(4)F(xi − xj) =

�
bF

�‖xi − xj‖2 − 2R
�2 xi−xj

‖xi−xj‖2 if ‖xi − xj‖2 ≤ 2R,

0 otherwise.

(5)J(u, y(u)) =
1

2

(
j(u, y(u)) − �∗

)2
.

k(𝜌) = C𝜌H(𝜌 − 𝜌crit), C > 0.

H(x) =

{
0 if x < 0,

1 otherwise .

(6)
(v𝜌) ⋅ n⃗ = 0, x ∈ 𝜕Ω,

(k(𝜌)∇𝜌) ⋅ n⃗ = 0, x ∈ 𝜕Ω,
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model and derive the first order optimality system for the discretized macroscopic 
system.

Remark 2 We recommend to choose the optimization approach depending on the 
structure of the macroscopic equation. Here, the PDE is hyperbolic whenever no 
particles overlap, we therefore choose first-discretize-then-optimize. If the macro-
scopic equation would be purely diffusive, one might employ a first-optimize-then-
discretize approach instead.

2.2.1  Discretization of the macroscopic model

We discretize a rectangular spatial domain (Ω ∪ 𝜕Ω) ⊂ ℝ
2 with grid points 

xij = (x
(1)

ij
, x

(2)

ij
)T , (i, j) ∈ IΩ = {1,… ,Nx} × {1,…Nx} on a grid with step size Δx in 

both coordinate directions. The boundary �Ω is described with the set of indices 
I𝜕Ω ⊂ IΩ . The time discretization of the coarse model is Δtc and the grid constant is 
� = Δtc∕Δx . We compute the approximate solution to the advection-diffusion 
Eq. (2) as follows

where

The discretization of the initial density in (2) is obtained from the microscopic initial 
positions using a kernel density approach, see e.g. Fan and Seibold (2013); Parzen 
(1962); Rosenblatt (1956). This means that the initial density is constructed from the 
microscopic positions which are smoothed with a Gaussian filter such that the initial 
density reads

 To compute 𝜌s
ij
, s > 0 , we solve the advection part with the Upwind scheme and 

apply dimensional splitting. The diffusion part is solved implicitly

where the following short notation is used

�(x, t) = �s
ij
for

{
x ∈ Cij,

t ∈ [ts, ts+1),

Cij =

[
x
(1)

i−
1

2
,j
, x

(1)

i+
1

2
,j

)
×

[
x
(2)

i,j−
1

2

, x
(2)

i,j+
1

2

)
,

ts = sΔtc for s = 1,… ,Nc
t
.

(7)�0(x) =
�R2

2�

N�
i=1

exp
�
−
1

2
‖x − x0

i
‖2
2

�
.

(8)

�̃�s
ij
= 𝜌s

ij
−

Δtc

Δx

(
F

(1),s,+

ij
− F

(1),s,−

ij

)
,

𝜌
s

ij
= �̃�s

ij
−

Δtc

Δx

(
F

(2),s,+

ij
− F

(2),s,−

ij

)
,

𝜌s+1
ij

= 𝜌
s

ij
+

Δtc

(Δx)2
Bs+1
ij

,
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Moreover, the fluxes F(1),F(2) and B are given by

where v(xij) = vij ,  vij = 0 ∀(i, j) ∈ I�Ωand  bs+1
ij

= b(�s+1
ij

) with  
b(�) = ∫ �

0
CzH(z − �crit) dz . The Heaviside function H is smoothly approximated and 

the time step restriction for the numerical simulations is given by the CFL condition 
of the hyperbolic part

compare Holden et al. 2000; Weissen et al. 2021. We denote the vector of density 
values � = (�s

ij
)(i,j,s)∈IΩ×{0,…Nc

t }
 . It is the discretized solution (8) of the macroscopic 

Eq.  (2) which depends on a given control u . The vectors containing intermediate 
density values �̃�,𝝆 and Lagrange parameters 𝝁, �̃�,𝝁 used below are defined 
analogously.

2.2.2  Solving the coarse model optimization problem

Next, we turn to the solution of the coarse-scale optimization problem. The con-
struction of a solution to this problem is paramount to the space mapping algorithm. 
We provide a short discussion on the adjoint method for the optimization prob-
lem (3) before we specify the macroscopic adjoints.

First order optimality system Let J(u, y(u)) be an objective function which 
depends on the given control u . We wish to solve the optimization problem (3) and 
apply a descent algorithm. In a descent algorithm, a current iterate uk, is updated in 
the direction of descent of the objective function J until the first order optimality 
condition is satisfied. An efficient way to compute the first order optimality condi-
tions is based on the adjoint, which we recall in the following. Let the Lagrangian 
function be defined as

F
(1),s,+

ij
= F

(1)(𝜌s
ij
, 𝜌s

i+1j
), F

(1),s,−

ij
= F

(1)(𝜌s
i−1j

, 𝜌s
ij
),

F
(2),s,+

ij
= F

(2)(�̃�s
ij
, �̃�s

ij+1
), F

(2),s,−

ij
= F

(2)(�̃�s
ij−1

, �̃�s
ij
),

Bs+1
ij

= B
(
𝜌s+1
i−1j

, 𝜌s+1
i+1j

, 𝜌s+1
ij

, 𝜌s+1
ij−1

, 𝜌s+1
ij+1

)
.

F
(1)(𝜌s

ij
, 𝜌s

i+1j
) =

⎧
⎪⎨⎪⎩

𝜌s
ij
v
(1)

ij
if v

(1)

ij
≥ 0, (i + 1, j) ∈ IΩ ⧵ I𝜕Ω,

𝜌s
i+1j

v
(1)

ij
if v

(1)

ij
< 0, (i, j) ∈ IΩ ⧵ I𝜕Ω,

0 otherwise,

F
(2)(�̃�s

ij
, �̃�s

ij+1
) =

⎧
⎪⎨⎪⎩

�̃�s
ij
v
(2)

ij
if v

(2)

ij
≥ 0, (i, j + 1) ∈ IΩ ⧵ I𝜕Ω,

�̃�s
ij+1

v
(2)

ij
if v

(2)

ij
< 0, (i, j) ∈ IΩ ⧵ I𝜕Ω,

0 otherwise,

B(𝜌s+1
i−1j

, 𝜌s+1
i+1j

,𝜌s+1
ij

, 𝜌s+1
ij−1

, 𝜌s+1
ij+1

) = bs+1
i−1j

+ bs+1
i+1j

− 4bs+1
ij

+ bs+1
ij−1

+ bs+1
ij+1

,

(9)
Δtc ≤ min

(i,j)

1

|v(1)
ij
|

Δx
+

|v(2)
ij
|

Δx

,
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where � is called the Lagrange multiplier.
Solving dL = 0 yields the first order optimality system 

 (i) E(u, y(u)) = 0,
 (ii) (�yE(u, y(u))

T )� = −(�yJ(u, y(u))
T,

 (iii) d

du
J(u, y(u)) = �uJ(u, y(u)) + �T�uE(u, y(u)) = 0.

For nonlinear systems it is difficult to solve the coupled optimality system (i)–(iii) all 
at once. We therefore proceed iteratively: for the computation of the total derivative 
d

du
J(u, y(u)) , the system E(u, y(u)) = 0 is solved forward in time. Then, the information 

of the forward solve is used to solve the adjoint system (ii) backwards in time. Lastly, 
the gradient is obtained from the adjoint state and the objective function derivative.

Nonlinear conjugate gradient method We use a nonlinear conjugate gradient 
method Dai and Yuan 1999; Fletcher and Reeves 1964 within our descent algorithm to 
update the iterate as follows

The step size �k is chosen such that it satisfies the Armijo-Rule Hinze et al. (2009); 
Nocedal and Wright (2006)

and the standard Wolfe condition Nocedal and Wright 2006

with 0 < c1 < c2 < 1 . We start from �k = 1 and cut the step size in half 
until (11)–(12) are satisfied. The parameter 𝛽k is given by

which together with conditions  (11)–(12) ensures convergence to a minimizer Dai 
and Yuan 1999. We refer to this method as adjoint method (AC). In the following we 
apply this general strategy to our macroscopic equation.

Macroscopic Lagrangian We consider objective functions depending on the density, 
i.e., Jc(u,�) . The discrete Lagrangian L = L(u,𝝆, �̃�,𝝆,𝝁, �̃�,𝝁) is given by

L(u, y(u)) = J(u, y(u)) + �TE(u, y(u)),

(10)dk = −∇J
(
uk, y(uk)

)
+ 𝛽k−1d̂k−1, uk+1 = uk + 𝜎kdk.

(11)J
(
uk + �kdk, y(uk + �kdk)

)
− J(uk, y(uk)) ≤ �kc1∇J(uk, y(uk))

Tdk,

(12)∇J(uk + �kdk, y(uk + �kdk))
Tdk ≥ c2∇J(uk, y(uk))

Tdk,

𝛽k =
‖∇J(uk+1, y(uk+1))‖2

dT
k
d̂k

with d̂k = ∇J(uk+1, y(uk+1)) − ∇J(uk, y(uk)),
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We differentiate the Lagrangian with respect to �s
ij

Rearranging terms yields

Using ��s
ij
Bs
i−1j

= ��s
ij
Bs
i+1j

= ��s
ij
Bs
ij−1

= ��s
ij
Bs
ij+1

= k(�s
ij
) and ��s

ij
Bs
ij
= −4k(�s

ij
) on the 

left-hand side and (17)–(18), see "Appendix B", on the right-hand side, leads to

(13)

L = Jc(u,�)+

Nc
t�

s=0

Nx�
i=1

Nx�
j=1

𝜇s
ij

⎛
⎜⎜⎝
�̃�s
ij
− 𝜌s

ij

Δtc
+

F
(1),s,+

ij
− F

(1),s,−

ij

Δx

⎞
⎟⎟⎠

+

Nc
t�

s=0

Nx�
i=1

Nx�
j=1

�̃�s
ij

⎛
⎜⎜⎝
𝜌
s

ij
− �̃�s

ij

Δtc
+

F
(2),s,+

ij
− F

(2),s,−

ij

Δx

⎞
⎟⎟⎠

+

Nc
t�

s=0

Nx�
i=1

Nx�
j=1

�̄�s
ij

�
𝜌s+1
ij

− 𝜌
s

ij

Δtc
−

Bs+1
ij

(Δx)2

�
.

𝜕𝜌s
ij
L = 𝜕𝜌s

ij
Jc(u,�)

− 𝜇s
ij

⎛
⎜⎜⎝

1

Δtc
−

𝜕𝜌s
ij
F

(1),s,+

ij

Δx
+

𝜕𝜌s
ij
F

(1),s,−

ij

Δx

⎞
⎟⎟⎠

+ 𝜇s
i−1j

𝜕𝜌s
ij
F

(1),s,+

i−1j

Δx
− 𝜇s

i+1j

𝜕𝜌s
ij
F

(1),s,−

i+1j

Δx

+ �̄�s−1
ij

�
1

Δtc
−

𝜕𝜌s
ij
Bs
ij

(Δx)2

�
− �̄�s−1

i−1j

𝜕𝜌s
ij
Bs
i−1j

(Δx)2

− �̄�s−1
i+1j

𝜕𝜌s
ij
Bs
i+1j

(Δx)2
− �̄�s−1

ij−1

𝜕𝜌s
ij
Bs
ij−1

(Δx)2
− �̄�s−1

ij+1

𝜕𝜌s
ij
Bs
ij+1

(Δx)2

= 0.

Ti,j(�
s−1

) = �
s−1

ij
−

Δtc

(Δx)2

(
�
s−1

i−1j
��s

ij
Bs
i−1j

+ �
s−1

i+1j
��s

ij
Bs
i+1j

+ �
s−1

ij
��s

ij
Bs
ij
+ �

s−1

ij−1
��s

ij
Bs
ij−1

+ �
s−1

ij+1
��s

ij
Bs
ij+1

)

= −Δtc��s
ij
Jc(u,�) + �s

ij

(
1 − ���s

ij
F

(1),s,+

ij
+ ���s

ij
F

(1),s,−

ij

)

− �s
i−1j

���s
ij
F

(1),s,+

i−1j
+ �s

i+1j
���s

ij
F

(1),s,−

i+1j
.
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This is solved backward in time to obtain the Lagrange parameter (�s−1
ij

)(i,j)∈IΩ . Note 
that the above expression T(�s−1

) =
(
Ti,j(�

s−1
)
)
(i,j)∈IΩ

 defines a coupled system for 
the Lagrange parameter of time step s − 1 in space and has to be solved in each time 
step. This system arises from the implicit treatment of the diffusion term in the for-
ward system (8). It is the main difference to adjoints for purely hyperbolic equations 
where the Lagrange parameters in step s − 1 in the backward system are simply 
obtained as a convex combination of those from step s, see Erbrich et al. 2018. Pro-
ceeding further, we differentiate the Lagrangian with respect to �̃�s

ij
 to get

Again, rearranging terms yields

Finally, we differentiate the Lagrangian with respect to �s
ij
 to obtain

The equality of the Lagrange parameters �̃�,𝜇 stems from the fact that the diffusion 
is solved implicitly in the forward system (8)1. In the next section, we consider the 
diffusion coefficient C as control for the macroscopic system, u = C . In this case, the 
derivative of the Lagrangian with respect to the control reads

Ti,j(�
s−1

) = �
s−1

ij
−

Δtc

(Δx)2
k(�s

ij
)

(
�
s−1

i−1j
+ �

s−1

i+1j
− 4�

s−1

ij
+ �

s−1

ij−1
+ �

s−1

ij+1

)

(17),(18)
= −Δtc��s

ij
Jc(u,�) + �s

ij

− �
((

�s
ij
− �s

i+1j

)
��s

ij
F

(1),s,+

ij
−
(
�s
ij
− �s

i−1j

)
��s

ij
F

(1),s,−

ij

)
.

𝜕�̃�s
ij
L =

𝜇s
ij

Δtc
− �̃�s

ij

⎛
⎜⎜⎝

1

Δtc
−

𝜕�̃�s
ij
F

(2),s,+

ij

Δx
+

𝜕�̃�s
ij
F

(2),s,−

ij

Δx

⎞⎟⎟⎠

+ �̃�s
ij−1

𝜕�̃�s
ij
F

(2),s,+

ij−1

Δx
− �̃�s

ij+1

𝜕�̃�s
ij
F

(2),s,−

ij+1

Δx

= 0.

𝜇s
ij
= �̃�s

ij

(
1 − 𝜆𝜕�̃�s

ij
F

(2),s,+

ij
+ 𝜆𝜕�̃�s

ij
F

(2),s,−

ij

)

− �̃�s
ij−1

𝜆𝜕�̃�s
ij
F

(2),s,+

ij−1
+ �̃�s

ij+1
𝜆𝜕�̃�s

ij
F

(2),s,−

ij+1

(19),(20)
= �̃�s

ij
− 𝜆

((
�̃�s
ij
− �̃�s

ij+1

)
𝜕�̃�s

ij
F

(2),s,+

ij
−
(
�̃�s
ij
− �̃�s

ij−1

)
𝜕�̃�s

ij
F

(2),s,−

ij

)
.

𝜕𝜌s
ij
L =

�̃�s
ij

Δtc
−

𝜇
s

ij

Δtc
= 0 ⇒ �̃�s

ij
= 𝜇

s

ij
.

1 Note that these parameters would be different if the diffusion was solved explicitly using values of �s 
instead of �s+1 in the diffusion operator B of (8).



408 J. Weißen et al.

1 3

3  Validation of the approach

To validate the proposed approach, we consider a toy problem and compare the 
results of the space mapping method to optimal solutions computed directly on the 
microscopic level. For the toy problem, we control the potential strength A of the 
microscopic model. The macroscopic analogue is the diffusion coefficient C.

3.1  Discrete microscopic adjoint

Let Nf

t ∈ ℕ and Δtf ∈ ℝ be the number of time steps and the time step size, respec-
tively. For simplicity, we normalize the particle mass in our example, i.e. m = 1 . We 
discretize the fine, microscopic model (1) in time to obtain

for s = 1,… ,N
f

t  . We denote

Furthermore, let Jf (u, x) be the microscopic objective function. The microscopic 
Lagrange function L(u, x, v,𝝁, �̃�,𝝁, �̂�) is then given by

where

𝜕CL =

Nc
t∑

s=0

Nx∑
i=1

Nx∑
j=1

−
1

C

�̄�s
ij

(Δx)2

(
bs+1
i−1j

+ bs+1
i+1j

− 4bs+1
ij

+ bs+1
ij−1

+ bs+1
ij+1

)
.

xs+1
i

= xs
i
+ Δtf vs

i
, vs+1

i
= vs

i
+ Δtf

(
G(xs+1

i
, vs+1

i
) + A

∑
j≠i

F(xs+1
i

, xs+1
j

)

)

x = (xs
i
)
(i,s)∈{1,…,N}×{0,…,N

f
t }

and v = (vs
i
)
(i,s)∈{1,…,N}×{0,…,N

f
t }
.
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N
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+

N
f
t∑

s=0

N∑
i=1

�̃�s
i

(
x
(2),s+1

i
− x

(2),s

i

Δtf
− v

(2),s

i

)

+

N
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for l = 1, 2 . The details of the derivatives of the force terms and the computation 
of the adjoint state can be found in "Appendix C". Moreover, the derivative of the 
Lagrangian with respect to the control u = A reads

3.2  Comparison of space mapping to direct optimization

We apply ASM and the direct optimization approach AC to the optimization prob-
lem (3). In each iteration k of the adjoint method for the fine model, a computation 
of the gradient ∇Jf  for the stopping criterion as well as several objective function 
and gradient evaluations for the computation of the step size �k are required. These 
evaluations are (mostly) shifted to the coarse model in ASM. Let Ω = [−5, 5]2 be the 
domain and v(x) = −x the velocity field of our toy example. We investigate whether 
the macroscopic model is an appropriate coarse model in the space mapping tech-
nique. For the microscopic interactions, we use the force term (4) with bF = 1∕R5 . 
Without interaction forces, A = 0 , all particles are transported to the center of the 
domain 

(
x(1), x(2)

)
= (0, 0) within finite time. Certainly, they overlap after some 

time. With increasing interaction parameter, i.e., increasing A , particles encounter 
stronger forces as they collide. Therefore, scattering occurs and the spatial spread 
increases. We penalize the spatial spread of the particle ensemble at t = T  in the 
microscopic model, leading to a cost

and the objective function derivative with respect to the state variables xi is given by

We choose A , the scaling parameter of the interaction force, as microscopic control. 
The coarse, macroscopic model is given by (2) and the spatial spread of the density 
at t = T  is given by

G
(l),s

i
(xs

i
, vs

i
) = −

v
(l),s

i
− v

(l)
(xs

i
)

𝜏
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F
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i
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j
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⎪⎨⎪⎩

bF

�
‖xs

i
−xs

j
‖2−2R

�2

‖xs
i
−xs

j
‖2

�
x
(l),s

i
− x

(l),s

j

�
if ‖xs

i
− xs

j
‖2 < 2R,

0 otherwise,
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0 otherwise.
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where M is the total mass, i.e., M =
∑

(i,j) �
0
ij
(Δx)2 . We consider the parameters in 

Table  1. The macroscopic model requires spatial and time step sizes. Here, we 
choose a large spatial step size Δx such that the macroscopic model can be com-
puted sufficiently fast. The time step size Δtc satisfies the CFL condition  (9). The 
simulation of the microscopic model is more involved. For the simulation of pedes-
trian dynamics, compare e.g. Helbing et al. 2000, the parameter � is chosen small 
such that deviations of individual velocities from the velocity field v are corrected 
fast and the parameter bF in the interaction force is chosen large such that the inter-
action force becomes dominant when pedestrians are close together. Since the parti-
cles move to the center of the domain and the interaction force gets dominant, when 
particles are close together, we have to choose a small time step size Δtf  . (Fig. 2)

Two particle collectives with N∕2 = 100 particles are placed in the domain, 
see Fig.  3a. The macroscopic representation  (7) of the particle groups is shown 
in Fig.  3b. We set box constraints on the controls 0 ≤ A,C ≤ 10 and compare 
the number of iterations of the two approaches to obtain a given accuracy2 of 
‖Jf (uk, x)‖2 < 10−5 . The step sizes �k for AC are chosen such that they satisfy the 
Armijo Rule and standard Wolfe condition (11)–(12) with c1 = 0.01, c2 = 0.9 . If an 
iterate violates the box constraint, it is projected into the feasible set.

In the space mapping algorithm, the parameter extraction T(uk) is the solution 
of an optimization problem in the coarse model space, see Definition 2.1. In each 
iteration, the parameter extraction identifies the coarse model control C which 
matches best the microscopic model with control A by solving an optimization 
in the coarse model. The optimization is solved via adjoint calculus with c1, c2 as 
chosen above and ustart = T(uk−1) , which we expect to be close to T(uk) . Further, 
to determine the step size �k for the control update, we consider step sizes such 
that uk+1 = uk + �kdk satisfies ‖T(uk+1) − uc

∗
‖2 < ‖T(uk) − uc

∗
‖2 and thus decreases 

the distance of the parameter extraction to the coarse model optimal control 
from one space mapping iteration to the next. The optimization results and com-
putation times (obtained as average computation time of 20 runs on an Intel(R) 
Core(TM) i7-6700 CPU 3.40 GHz, 4 Cores) for target values �∗ ∈ {1, 2, 3} are 

jc(C,�) =
1

M

�
(i,j)

�
Nc
t

ij
⟨xij, xij⟩,

��s
ij
Jc(C,�) =

� ⟨xij,xij⟩
M

��
1

M

∑
(i,j) �

Nc
t

ij
⟨xij, xij⟩

�
− �∗

�
if s = Nc

t
,

0 otherwise,

Table 1  Model parameters T R N Δx Δtc Δtf m bF �

3 0.2 200 0.5 0.05 0.00125 1 1/R5 1/ 15

2 To ensure comparability of the two optimization approaches, we use the same stopping criterion 
‖Jf (uk , x)‖2 < tolerance = 10−5.
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compared in Table 2. Both optimization approaches start far from the optima at 
u0 = 8 . Optimal controls uAC

∗
 and uASM

∗
 closely match. The objective function eval-

uations Jf (uAC
∗
, x) , Jc(uc

∗
,�) describe the accuracy at which the fine and coarse 

model control problem are solved, respectively. Jf (uASM
∗

, x) denotes the accuracy 
of the space mapping optimal control when the control is plugged into the fine 
model and the fine model objective function is evaluated. Note that the ASM 
approach in general does not ensure a descent in the microscopic objective func-
tion value Jf (uk, x) during the iterative process and purely relies on the idea to 
reduce the distance ‖T(uk) − uc

∗
‖2 . However, ASM also generates small target 

values Jf (uASM
∗

, x) and therefore validates the proposed approach. Moreover, the 
model responses of the optimal controls illustrate the similarity of the fine and 
the coarse model, see Fig. 3c–d.

Table 2  Aggressive Space 
Mapping (ASM) vs. Adjoint 
Calculus (AC)

�∗ = 1 �∗ = 2 �∗ = 3

u0 8 8 8
uAC
∗

0.1851 0.8884 3.6720

uASM
∗

0.1829 0.8855 3.6262

uASM
1

= uc
∗

0.1218 0.8740 3.8211

uASM
2

0.1767 0.8994 3.6262

uASM
3

0.1829 0.8855 -

Jf
(
uAC
∗
, x
)

8.31 ⋅ 10−6 5.00 ⋅ 10−7 4.40 ⋅ 10−6

Jc
(
uc
∗
,�

)
3.78 ⋅ 10−7 7.51 ⋅ 10−7 1.12 ⋅ 10−7

Jf (uASM
∗

, x) 8.18 ⋅ 10−7 2.49 ⋅ 10−6 1.36 ⋅ 10−6

tAC [s] 93.27 103.18 101.21
tASM [s] 84.51 62.49 238.57

Fig. 2  Objective function value of iterates
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The space mapping iteration finishes within two to three iterations and there-
fore needs less iterations than the pure optimization on the microscopic level 
here, see Fig.  2. Note that each of the space mapping iterations involves the 
solution of the coarse optimal control problem. Hence, the comparison of the 
iterations may be misleading and we consider the computation times as addi-
tional feature. It turns out that the iteration times vary and therefore this data 
does not allow to prioritize one of the approaches based on computational time. 
Obviously, the times depend on the number of particles, the space and time dis-
cretizations. However, very few iterations within the space mapping approach 
are needed to obtain the results. We see that the space mapping technique is 
validated, because we can compare ASM solutions to solutions computed with 
the microscopic adjoints. Next, we apply ASM to scenarios in bounded domain, 
where solutions cannot be computed on the microscopic level anymore due to 
the boundary interactions.

4  Space mapping in bounded domains

In the following, we consider problems with dynamics restricted to a spa-
tial domain with boundaries. For the microscopic simulations we add artificial 
boundary behaviour, tailored for each application, to the ODEs.

(a) (b)

(c) (d)

Fig. 3  Initial conditions and space mapping solution for �∗ = 3
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4.1  Crowd dynamics

Interesting dynamics evolve in the modeling of pedestrian dynamics, when pedes-
trian groups cross at intersections, crowds pass through corridors or a bottleneck, 
or they try to reach the location of a staircase, an elevator or escalators in case of 
an emergency. People trying to move can be injured when they are pushed into 
obstacles in their way Helbing et al. 2002. To apply the space mapping technique 
to pedestrian dynamics, we consider a scenario similar to the evacuation of N indi-
viduals from a domain with obstacles. The goal is to gather as many individuals 
as possible at an assembly point xs ∈ Ω ⊂ ℝ

2 up to the time T. The control is the 
assembly point xs = (x(1)

s
, x(2)

s
) . We model this task with the help of the following 

cost functions

for the fine and coarse model, respectively. They measure the spread of the crowd at 
time t = T  with respect to the location of the source.

The velocity v(x) is based on the solution to the eikonal equation with point 
source xs . In more detail, we solve the eikonal equation

where T(x) is the minimal amount of time required to travel from x to xs and f (x) is 
the speed of travel. We choose f (x) = 1 and set the velocity field to

In this way, the velocity vectors point into the direction of the gradient of the solu-
tion to the eikonal equation and the speed depends on the distance of the particle to 
xs . The particles are expected to slow down when approaching xs and the maximum 
velocity is bounded ‖v(x)‖2 ≤ 1 . The solution to the eikonal equation on the 2-D 
cartesian grid is computed using the fast marching algorithm implemented in C with 
Matlab interface3. The travel time isoclines of the eikonal equation and the corre-
sponding velocity field are illustrated in Fig. 4. Note that we have to set the travel 
time inside the boundary to a finite value to obtain a smooth velocity field.

The derivative of the macroscopic Lagrangian (13) with respect to the location of 
the point source, u = xs , is given by

jf (xs, x) =
1

N

�
(i)

⟨xNf
t

i
− xs, x

N
f
t

i
− xs⟩,

jc(xs,�) =
1

M

�
(i,j)

�
Nc
t

ij
⟨xij − xs, xij − xs⟩,

|∇T(x)| = 1

f (x)
, x ∈ Ω, T(xs) = 0,

(15)v(x) =
∇T(x)

‖∇T(x)‖2 min{‖x − xs‖2, 1}.

3 http:// www- m3. ma. tum. de/ Softw are/ FMWeb Home# Fast_ Eikon al_ Solver_ in_ 2D_ and_ 3D__ 40with_ 
MATLAB_ inter face_ 41 by Volkmar Bornemann and Christian Ludwig.

http://www-m3.ma.tum.de/Software/FMWebHome#Fast_Eikonal_Solver_in_2D_and_3D__40with_MATLAB_interface_41
http://www-m3.ma.tum.de/Software/FMWebHome#Fast_Eikonal_Solver_in_2D_and_3D__40with_MATLAB_interface_41
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where

and �
x
(l)
s
F

(2),s,+

ij
, �

x
(l)
s
F

(2),s,−

ij
 are defined analogously.

To obtain the partial derivatives �
x
(l)
s
v
(k)

ij
 , the travel-time source derivative of the 

eikonal equation is required. It is approximated numerically with finite differences

where e(1) = (1, 0)T , e(2) = (0, 1)T denote the unit vectors.

4.1.1  Discussion of the numerical results

To investigate the robustness of the space mapping algorithm, we consider dif-
ferent obstacles in the microscopic and macroscopic setting. Let Ω = [−8, 8]2 

𝜕
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Nx∑
i=1

Nx∑
j=1
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)
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s=0

Nx∑
i=1

Nx∑
j=1
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Δx
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𝜕
x
(l)
s
F

(2),s,+

ij
− 𝜕

x
(l)
s
F

(2),s,−

ij

)
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𝜌s
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𝜕
x
(l)
s
v
(1)

ij
if v

(1)

ij
≥ 0, (i + 1, j) ∈ IΩ ⧵ I𝜕Ω,

𝜌s
i+1j

𝜕
x
(l)
s
v
(1)

ij
if v

(1)

ij
< 0, (i, j) ∈ IΩ ⧵ I𝜕Ω,

0 otherwise,

l = 1, 2,

𝜕
x
(l)
s
F

(1),s,−

ij
=

⎧
⎪⎨⎪⎩

𝜌s
i−1j

𝜕
x
(l)
s
v
(1)

i−1j
if v

(1)

i−1j
≥ 0, (i, j) ∈ IΩ ⧵ I𝜕Ω,

𝜌s
ij
𝜕
x
(l)
s
v
(1)

i−1j
if v

(1)

i−1j
< 0, (i − 1, j) ∈ IΩ ⧵ I𝜕Ω,
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l = 1, 2,

�
x
(l)
s
v
(k)

ij
≈

v
(k)

ij
(xs + Δxe(l)) − v

(k)

ij
(xs − Δxe(l))

2Δx
, k = 1, 2,

Fig. 4  Solution of the eikonal equation in a bounded domain
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be the domain. For the microscopic model we define an internal boundary 
2 ≤ x(1) ≤ 3, 1 ≤ x(2) ≤ 8 , see Fig.  6a. For the macroscopic setting the obstacle is 
shifted by gap ≥ 0 in the x(2)-coordinate. Additionally, we shift the initial density 
with the same gap, see Fig. 6b. It is interesting to see whether the space mapping 
technique is able to recognize the linear shift between the microscopic and the mac-
roscopic model. This is not trivial due to the non-linearities in the models and the 
additional non-linearities induced by the boundary interactions. Macroscopically, 
we use the zero flux conditions  (6) at the boundary. Microscopically, a boundary 
correction is applied, that means, a particle which would hypothetically enter the 
boundary is reflected into the domain, see Fig. 5.

For computational simplicity, we restrict the admissible set of the controls

i.e., the point source is located to the left-hand side of the obstacle.
The velocity v(x), given by  (15), is restricted to the grid with spatial step sizes 

Δx = 0.5 for the macroscopic model. To obtain the velocity field on the grid, the 
source location xs ∈ Cij is thereby projected to the cell center of the corresponding 
cell

The continuous velocity field of the microscopic model is approximated by the eiko-
nal solution on a grid with smaller grid size. (Fig. 6)

U
f

ad
= U

c
ad

= [−8, 2] × [−8, 8],

(16)P(xs) = xij, xs ∈ Cij.

Fig. 5  Reflection at the bound-
ary

(a) (b)

Fig. 6  Initial conditions with gap = 2
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We choose the parameters from Sect.  3.2, Table 1 except for T which is set to 
T = 5 . Moreover, we consider A,C = 0.87 for which the macroscopic and micro-
scopic model behavior match well in the situation without boundary interactions, 
see Table 1 in Sect. 3.1.

We apply the space mapping method to the described scenario with 
gap ∈ {0, 1, 2, 3} . Due to the grid approximation, we formally move from con-
tinuous optimization problems to discrete ones which we approximately solve by 
applying ASM (and AC for the parameter extraction within ASM) for continuous 
optimization and project each iterate to the grid using  (16). In general, due to the 
grid approximation we cannot ensure that arbitrarily small stepsizes �k ≥ 0 exist 
for which the Armijo condition is satisfied in the parameter extraction with c1 > 0 . 
Therefore, we choose c1 = 0, c2 = 0.9 and formally lose the convergence of our 
descent algorithm to a minimizer. Nevertheless, it is still ensured that the distance 
to the coarse model optimum in ASM is nonincreasing since the step size is chosen 
such that

holds.
As starting point for the parameter extraction, we choose ustart = uc

∗
 and tolerance 

is set to 10−5 . We remark that the parameter extraction does not have a unique solu-
tion here, therefore, providing ustart = uc

∗
 as starting value is used to stipulate the 

parameter extraction identifying a solution T(uk) near uc
∗
.

The macroscopic optimal solution with the corresponding gap is given by 
uc
∗
= [1.5,− − 0.5 + gap] , compare Table  3. For gap = 0 , we have T(uc

∗
) = uc

∗
 and 

the space mapping is finished at k = 1 since the model optima coincide. For gap > 0 , 
the parameter extraction identifies a shift between the modeling hierarchies since the 
coarse model optimum is not optimal for the fine model. Indeed, the application of 
the coarse model optimal control leads to collision of the particles with the bound-
ary and therefore delays gathering of the particles around the source location uc

∗
 , see 

Fig. 7b. The particles are spread more widely, because the boundary as a physical 
obstacle prevents that the crowd gathers circularly shaped around the source loca-
tion uc

∗
 as it is the case for the macroscopic model, compare Fig. 7a . Space map-

ping for gap ∈ {1, 3} finishes within one iteration since the parameter extraction of 

‖T(uk + �kdk) − uc
∗
‖2 ≤ ‖T(uk) − uc

∗
‖2

Table 3  Iterates of ASM gap Iteration uk jf (uk, x) T(uk) jc(T(uk),�)

0 k = 1 [1.5, –0.5] 3.0652 [1.5, –0.5] 3.0218
1 k = 1 [1.5, 0.5] 3.5725 [1.5, 1.5] 3.7905

k = 2 [1.5, –0.5] 3.0652 [1.5, 0.5] 3.0218
2 k = 1 [1.5, 1.5] 4.8059 [1.5, 3] 4.4370

k = 2 [1.5, 0] 3.2800 [1.5, 2] 3.3058
k = 3 [1.5, –0.5] 3.0652 [1.5, 1.5] 3.0218

3 k = 1 [1.5, 2.5] 7.1550 [1.5, 5.5] 8.2927
k = 2 [1.5, –0.5] 3.0652 [1.5, 2.5] 3.0218
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u1 is given by T(u1) = u1 + [0, gap] and T(u2) = uc
∗
 . For gap = 2 , the first parame-

ter extraction underestimates the shift in x(2)-direction and thus, two iterations are 
needed to obtain the optimal solution, see Table 3.

We investigated the need for additional iterations in more detail. It turned out 
that the behavior is caused by the discretization of the optimization problem on the 
macroscopic grid. We have jc([1.5, 3.0],�) = 4.4370 and jc([1.5, 3.5],�) = 5.3451 , 
which indicates that the true (continuous) value T([1.5, 1.5]) lies between the two 
grid values. However, the discrete optimization for the parameter extraction termi-
nates with T([1.5, 1.5]) = [1.5, 3.0] , because it is closer to the microscopic simula-
tion result jf ([1.5, 1.5], x) . The microscopic optimal solution is shown in Fig. 7c. In 
comparison to the result with the control uc

∗
 shown in Fig. 7b, we observe in Fig. 7c 

that the crowd is gathered together more closely and has a smaller spread, i.e., 
jf (u3, x) < jf (u1, x) , compare Table 3.

4.2  Material flow

In the following, the control of a material flow system with a conveyor belt is con-
sidered. Similar control problems have been investigated in  Erbrich et  al. (2018). 
We use the microscopic model proposed in  Göttlich et  al. (2014) that describes 
the transport of homogeneous parts with mass m and radius R on a conveyor belt 
Ω ⊂ ℝ

2 with velocity vT = (v
(1)

T
, 0)T ∈ ℝ

2 . The bottom friction

with bottom damping parameter �b ≥ 0 corrects deviations of the parts’ velocities 
from the conveyor belt velocity. The interaction force F modelling interparticle 
repulsion is given by

where cm > 0 scales the interaction force and depends on the material of the parts.
We investigate the control of the material flow via the conveyor belt velocity v(1)

T
 . 

The particles (goods) are redirected at a deflector to channel them. A common way 
to describe such boundary interactions is to apply obstacle forces which are modeled 

G(v) = −�b(v − vT ),

F(x) =

�
cm(2R − ‖x‖2) x

‖x‖2 if ‖x‖2 ≤ 2R,

0 otherwise,

Fig. 7  Solutions of the space mapping iterates at t = T  with gap = 2
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similar to the interaction force between particles Helbing and Molnár 1995. Here, 
we consider

where x is the distance to the closest point of the boundary. Note that this is a slight 
variation of Helbing and Molnár (1995) as the interaction takes place with the clos-
est boundary point only, see also Remark 3. Further note that the computation of 
adjoint states analogous to Sect. 3.1 can become very complicated for this boundary 
interaction. We therefore avoid the computation of the microscopic optimal solution 
u
f
∗ and use the proposed space mapping approach instead.

The performance evaluation used here is the number of goods in the domain Ω at 
time T given by

The transport is modeled macroscopically with the advection-diffusion Eq. (2). The 
corresponding macroscopic performance evaluation is given by

We apply zero-flux boundary conditions (6) for the advective and the diffusive flux 
at the deflector.

Remark 3 Note that if the boundary was discretized with stationary points and 
boundary interaction was modeled with the help of soft core interaction forces in 
the microscopic setting, as for example in Helbing and Molnár (1995), the model 
would allow for direct optimization. Nevertheless, many applications involve a huge 
number of (tiny) goods, for example the production of screws. The pairwise micro-
scopic interactions would blow up the computational effort, hence it makes sense to 
consider a macroscopic approximation for optimization tasks.

4.2.1  Dependency on the diffusion coefficient

We investigate the robustness of the space mapping technique for different diffusion 
coefficients C and investigate whether variations in the diffusion coefficient affect 
the performance of the space mapping algorithm or the accuracy of the final result. 
We set Ω = [0, 0.64] × [0, 0.4] , N = 100 , �∗ = 25 . The parameters R , m , cm , cobst , �b 

Fobst(x) =

�
cobst(R − ‖x‖2) x

‖x‖2 if ‖x‖2 ≤ R,

0 otherwise,

jf (v
(1)

T
, x) =

N∑
i=1

1(
x
N
f
t

i
∈Ω

).

jc(v
(1)

T
,�) =

N

M

∑
(i,j)∶xij∈Ω

�
Nc
t

ij
(Δx)2.

Table 4  Model parameters T R N Δx Δtc Δtf m cm cobst �b

1 0.012 100 0.02 5 ⋅ 10−3 5 ⋅ 10−3 0.01 200 1000 0.5
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are given in Table 4 and are validated with a classical Runge-Kutta method of fourth 
order against real data Göttlich and Pfirsching 2018[Section 4.1]. We set u0 = 0.5 
and compute the space mapping solution with the ASM algorithm and stopping cri-
terion ‖T(uk) − uc

∗
‖2 < 10−3 . The diffusion constants C ∈ {0, 0.1, 0.5, 1} are tested 

to see whether the space mapping approach is successful for all values of C . The 
results of our space mapping approach are summarized in Table 5. Each parameter 
extraction uses ustart = T(uk−1) and has an optimality tolerance of 10−5.

For every diffusion coefficient, space mapping finishes in less than seven iter-
ations and Table  5 shows that a microscopic optimal solution is obtained for 
u
f
∗ ∈ [0.6093, 0.6185] . In all cases, space mapping generates optimal solutions. Even 

for the case with C = 0 , which is pure advection (without diffusion) in the macro-
scopic model, the ASM algorithm is able to identify a solution. This underlines the 
robustness of the space mapping algorithm and emphasizes that even a very rough 
depiction of the underlying process can serve as coarse model. However, the advec-
tion-diffusion equations with C > 0 clearly match the microscopic situation better 
and portray the spread of particles in front of the obstacle more realistically, see 
Fig. 8 for C = 0.5.

5  Conclusion

We proposed space mapping-based optimization algorithms for interacting particle sys-
tems. The coarse model of the space mapping is chosen to be the macroscopic approxi-
mation of the fine model that considers every single particle. The algorithm is validated 

Table 5  Space mapping with 
different diffusion coefficients C

C 0 0.1 0.5 1

uc
∗

0.6893 0.6604 0.6612 0.6615
uASM
∗

0.6160 0.6163 0.6093 0.6185

jf
(
uASM
∗

, x
)

25 25 25 25
Iterations 3 4 2 7

(a) (b)

Fig. 8  Density with u = 0.6612 and particles with u = 0.6093 at t = 0.7
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with the help of a toy problem that allows for the direct computation of optimal controls 
on the particle level. Further, the algorithm was tested in scenarios where the direct 
computation of microscopic gradients is infeasible due to boundary conditions that do 
not naturally appear in the particle system formulation. Numerical studies underline 
the feasibility of the approach and motivate to use it in further applications and more 
intricate domains.

Appendix A

The aggressive space mapping algorithm used to obtain the numerical results is given 
by

Appendix B

We provide more details on the derivatives in the macroscopic Lagrangian (13).

(17)
𝜕𝜌s

ij
F

(1),s,−

ij
=

{
v
(1)

i−1j
if v

(1)

i−1j
< 0, (i − 1, j) ∈ IΩ ⧵ I𝜕Ω,

0 otherwise,

= 𝜕𝜌s
ij
F

(1),s,+

i−1j
,

(18)
��s

ij
F

(1),s,+

ij
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{
v
(1)

ij
if v

(1)

ij
≥ 0, (i + 1, j) ∈ IΩ ⧵ I�Ω,

0 otherwise,

= ��s
ij
F

(1),s,−

i+1j
,
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Appendix C

We provide more details on the derivatives of the microscopic Lagrangian (14). The 
derivatives of the terms G,F for k, l ∈ {1, 2} are defined in the following. The deriva-
tives of the velocity selection mechanism with respect to the state variables are

The derivatives of the interaction force F are

and more specifically

Now, we differentiate the Lagrangian with respect to the state variables. First, we 
differentiate with respect to x(1),s

i
 to obtain

(19)
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Second, we differentiate with respect to x(2),s
i

 to obtain

Third, we differentiate with respect to v(1),s
i

 and obtain

Lastly, we differentiate with respect to v(2),s
i

 and obtain

Note that due to (22), the terms with �̂�s−1
i

 (resp. �s−1

i
 ) vanish in the last two equa-

tions and we can directly compute �s−1

i
 and �̂�s−1

i
.
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