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Abstract
Pretrained multilingual text encoders based on neural transformer architectures, such as 
multilingual BERT (mBERT) and XLM, have recently become a default paradigm for 
cross-lingual transfer of natural language processing models, rendering cross-lingual 
word embedding spaces (CLWEs) effectively obsolete. In this work we present a system-
atic empirical study focused on the suitability of the state-of-the-art multilingual encoders 
for cross-lingual document and sentence retrieval tasks across a number of diverse lan-
guage pairs. We first treat these models as multilingual text encoders and benchmark their 
performance in unsupervised ad-hoc sentence- and document-level CLIR. In contrast to 
supervised language understanding, our results indicate that for unsupervised document-
level CLIR—a setup with no relevance judgments for IR-specific fine-tuning—pretrained 
multilingual encoders on average fail to significantly outperform earlier models based on 
CLWEs. For sentence-level retrieval, we do obtain state-of-the-art performance: the peak 
scores, however, are met by multilingual encoders that have been further specialized, in a 
supervised fashion, for sentence understanding tasks, rather than using their vanilla ‘off-
the-shelf’ variants. Following these results, we introduce localized relevance matching for 
document-level CLIR, where we independently score a query against document sections. 
In the second part, we evaluate multilingual encoders fine-tuned in a supervised fashion 
(i.e., we learn to rank) on English relevance data in a series of zero-shot language and 
domain transfer CLIR experiments. Our results show that, despite the supervision, and due 
to the domain and language shift, supervised re-ranking rarely improves the performance 
of multilingual transformers as unsupervised base rankers. Finally, only with in-domain 
contrastive fine-tuning (i.e., same domain, only language transfer), we manage to improve 
the ranking quality. We uncover substantial empirical differences between cross-lingual 
retrieval results and results of (zero-shot) cross-lingual transfer for monolingual retrieval 
in target languages, which point to “monolingual overfitting” of retrieval models trained on 
monolingual (English) data, even if they are based on multilingual transformers.
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1 Introduction

Cross-lingual information retrieval (CLIR) systems respond to queries in a source language 
by retrieving relevant documents in another, target language. Their success is typically 
hindered by data scarcity: they operate in challenging low-resource settings without suf-
ficient labeled training data, i.e., human relevance judgments, to build reliable in-domain 
supervised models (e.g., neural matching models for pairwise retrieval Yu and Allan 2020; 
Jiang et al. 2020). This motivates the need for robust, resource-lean CLIR approaches: (1) 
unsupervised CLIR models and/or (2) transfer of supervised rankers across domains and 
languages, i.e., from resource-rich to resource-lean setups.

In previous work, Litschko et al. (2019) have shown that language transfer by means of 
cross-lingual embedding spaces (CLWEs) can be used to yield state-of-the-art performance 
in a range of unsupervised ad-hoc CLIR setups. This approach uses very weak cross-lin-
gual (in this case, bilingual) supervision (i.e., only a bilingual dictionary spanning 1–5 K 
word translation pairs), or even no bilingual supervision at all, in order to learn a mapping 
that aligns two monolingual word embedding spaces (Glavaš et al. 2019; Vulić et al. 2019). 
Put simply, this enables casting CLIR tasks as ‘monolingual tasks in the shared (CLWE) 
space’: at retrieval time both queries and documents are represented as simple aggregates 
of their constituent CLWEs. However, this approach, by limitations of static CLWEs, can-
not capture and handle polysemy in the underlying text representations, and captures only 
“static” word-level semantics. Contextual text representation models alleviate this issue 
(Liu et al. 2020) because they encode occurrences of the same word differently depending 
on its context.

Such contextual dynamic representations are obtained via deep neural models pre-
trained on large text collections through general objectives such as (masked) language 
modeling (Devlin et al. 2019; Liu et al. 2019b). Multilingual text encoders pretrained on 
100+ languages, such as multilingual BERT (mBERT) (Devlin et al. 2019) or XLM(-R) 
(Conneau and Lample 2019; Conneau et al. 2020a), have become a de facto standard for 
multilingual representation learning and cross-lingual transfer in natural language pro-
cessing (NLP). These models demonstrate state-of-the-art performance in a wide range of 
supervised language understanding and language generation tasks (Ponti et al. 2020; Liang 
et al. 2020): the general-purpose language knowledge obtained during pretraining is suc-
cessfully specialized using task-specific training (i.e., fine-tuning). Multilingual transform-
ers have been rendered especially effective in zero-shot transfer settings: a typical modus 
operandi is fine-tuning a pretrained multilingual encoder with task-specific data of a source 
language (typically English) and then using it directly in a target language. The effective-
ness of cross-lingual transfer with multilingual transformers, however, has more recently 
been shown to highly depend on the typological proximity between languages as well as 
the size of the pretraining corpora in the target language (Hu et al. 2020; Lauscher et al. 
2020; Zhao et al. 2021a).

It is unclear, however, whether these general-purpose multilingual text encoders can be 
used directly for ad-hoc CLIR without any additional supervision (i.e., cross-lingual rel-
evance judgments). Further, can they outperform unsupervised CLIR approaches based on 
static CLWEs (Litschko et al. 2019)? How do they perform depending on the (properties 
of the) language pair at hand? How can we encode useful semantic information using these 
models, and do different “encoding variants” (see later Sect.  3) yield different retrieval 
results? Are there performance differences in unsupervised sentence-level versus docu-
ment-level CLIR tasks? Can we boost performance by relying on sentence encoders that 
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are specialized towards dealing with sentence-level understanding in particular? Finally, 
can we improve ad-hoc CLIR in our target setups by fine-tuning multilingual encod-
ers on relevance judgments from different document collections (i.e., domains) and lan-
guages (e.g., by exploiting available monolingual English relevance judgments from other 
collections)?

In order to address all these questions, we present a systematic empirical study and pro-
file the suitability of state-of-the-art pretrained multilingual encoders for different CLIR 
tasks and diverse language pairs, across unsupervised, supervised, and transfer setups. We 
evaluate state-of-the-art general-purpose pretrained multilingual encoders (mBERT Devlin 
et al. 2019 and XLM Conneau and Lample 2019) with a range of encoding variants, and 
also compare them to provenly robust CLIR approaches based on static CLWEs, as well as 
to specialized variants of multilingual encoders fine-tuned to encode sentence semantics 
(Artetxe et al. 2019; Feng et al. 2020; Reimers and Gurevych 2020, inter alia). Finally, we 
compare the unsupervised CLIR approaches based on these multilingual transformers with 
their counterparts fine-tuned on English relevance signal from different domains/collec-
tions. Our key contributions and findings are summarized as follows:

(1) We empirically validate (Sect. 4.2) that, without any task-specific fine-tuning, mul-
tilingual encoders such as mBERT and XLM fail to outperform CLIR approaches based 
on static CLWEs. Their performance also crucially depends on how one encodes semantic 
information with the models (e.g., treating them as sentence/document encoders directly 
versus averaging over constituent words and/or subwords).

(2) We show that multilingual sentence encoders, fine-tuned on labeled data from sen-
tence pair tasks like natural language inference or semantic text similarity as well as using 
parallel sentences, substantially outperform general-purpose models (mBERT and XLM) 
in sentence-level CLIR (Sect. 4.3); further, they can be leveraged for localized relevance 
matching and in such a pooling setup improve the performance of unsupervised document-
level CLIR (Sect. 4.4).

(3) Supervised neural rankers (also based on multilingual transformers like mBERT) 
trained on English relevance judgments from different collections (i.e., zero-shot language 
and domain transfer) do not surpass the best-performing unsupervised CLIR approach 
based on multilingual sentence encoders, either as standalone rankers or as re-rankers of 
the initial ranking produced by the unsupervised CLIR model based on multilingual sen-
tence encoders (Sect. 5.1).

(4) In-domain fine-tuning of the best-performing unsupervised transformer (Reimers 
and Gurevych 2020) (i.e., zero-shot language transfer, no domain transfer)—yields con-
siderable gains over the original unsupervised ranker (Sect. 5.2). This renders fine-tuning 
with little in-domain data more beneficial than transferring models trained on large-scale 
out-of-domain datasets.

(5) Finally, we show that fine-tuning supervised CLIR models based on multilingual 
transformers on monolingual (English) data leads to a type of “overfitting” to monolingual 
retrieval (Sect. 5.3): We empirically show that language transfer in IR is more difficult in 
true cross-lingual IR settings, in which query and documents are in different languages, as 
opposed to monolingual IR in a different (target) language.

This manuscript is an extension of the article “Evaluating Multilingual Text Encod-
ers for Unsupervised Cross-Lingual Retrieval” published in the Proceedings of the 43rd 
European Conference on Information Retrieval (ECIR) (Litschko et  al. 2021), where we 
evaluated multilingual encoders exclusively in unsupervised CLIR. In this work we, first 
and foremost, extend the scope of the work to supervised IR settings, and investigate how 
(English, in-domain or out-of-domain) relevance annotations can be leveraged to fine-tune 



152 Information Retrieval Journal (2022) 25:149–183

1 3

supervised rankers based on multilingual text encoders (e.g., multilingual BERT). To this 
end, we evaluate document-level CLIR performance of (1) two standard pointwise learn-
ing-to-rank (L2R) models based on multilingual BERT and trained on large-scale English 
corpora and (2) a multilingual encoder fine-tuned via contrastive metric-based learning on 
small in-domain relevance dataset; we demonstrate that only the latter offers consistent 
performance gains over unsupervised CLIR with the same multilingual encoders. Point-
wise L2R and contrastive fine-tuning models are described in Sect. 3.4. Section 5 provides 
detailed experimental evaluation of those models on several document-level CLIR tasks.

We believe that this extensive empirical study offers plenty of valuable new insights for 
researchers and practitioners who work in the challenging landscape of cross-lingual infor-
mation retrieval tasks.

2  Related work

Self-Supervised Pretraining and Transfer Learning Recently, research on universal sen-
tence representations and transfer learning has gained much traction. InferSent (Conneau 
et al. 2017) transfers the encoder of a model trained on natural language inference to other 
tasks, while USE (Cer et al. 2018) extends this idea to a multi-task learning setting. More 
recent work explores self-supervised neural Transformer-based (Vaswani et al. 2017) mod-
els, all based on (causal or masked) language modeling (LM) objectives, such as BERT 
(Devlin et al. 2019), RoBERTa (Liu et al. 2019b), GPT (Radford et al. 2019; Brown et al. 
2020), and XLM (Conneau and Lample 2019).1 Results on benchmarks such as GLUE 
(Wang et al. 2019) and SentEval (Conneau and Kiela 2018) indicate that these models can 
yield impressive (sometimes human-level) performance in supervised Natural Language 
Understanding (NLU) and Generation (NLG) tasks. These models have become de facto 
standard and omnipresent text representation models in NLP. In supervised monolingual 
IR, self-supervised LMs have been employed as contextualized word encoders (MacA-
vaney et al. 2019), or fine-tuned as pointwise and pairwise rankers (Nogueira et al. 2019).

Multilingual Text Encoders based on the (masked) LM objectives have also been mas-
sively adopted in multilingual and cross-lingual NLP and IR applications. A multilingual 
extension of BERT (mBERT) is trained with a shared subword vocabulary on a single 
multilingual corpus obtained as concatenation of large monolingual data in 104 languages. 
The XLM model (Conneau and Lample 2019) extends this idea and proposes natively 
cross-lingual LM pretraining, combining causal language modeling (CLM) and transla-
tion language modeling (TLM).2 Strong performance of these models in supervised set-
tings is confirmed across a range of tasks on multilingual benchmarks such as XGLUE 
(Liang et  al. 2020) and XTREME (Hu et  al. 2020). However, recent work Reimers and 
Gurevych (2020) and Cao et  al. (2020) has indicated that these general-purpose models 
do not yield strong results when used as out-of-the-box text encoders in an unsupervised 

1 Note that self-supervised learning can come in different flavors depending on the training objective (Clark 
et al. 2020), but language modeling objectives still seem to be the most popular choice.
2 In CLM, the model is trained to predict the probability of a word given the previous words in a sentence. 
TLM is a cross-lingual variant of standard masked LM (MLM), with the core difference that the model is 
given pairs of parallel sentences and allowed to attend to the aligned sentence when reconstructing a word 
in the current sentence.
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transfer learning setup. We further investigate these preliminaries, and confirm this finding 
also for unsupervised ad-hoc CLIR tasks.

Multilingual text encoders have already found applications in document-level CLIR. 
Jiang et al. (2020) use mBERT as a matching model by feeding pairs of English queries 
and foreign language documents. MacAvaney et  al. (2020b) use mBERT in a zero-shot 
setting, where they train a retrieval model on top of mBERT on English relevance data and 
apply it on a different language.

Specialized Multilingual Sentence Encoders An extensive body of work focuses on 
inducing multilingual encoders that capture sentence meaning. In Artetxe et al. (2019), the 
multilingual encoder of a sequence-to-sequence model is shared across languages and opti-
mized to be language-agnostic, whereas Guo et al. (2018) rely on a dual Transformer-based 
encoder architecture instead (with tied/shared parameters) to represent parallel sentences. 
Rather than optimizing for translation performance directly, their approach minimizes 
the cosine distance between parallel sentences. A ranking softmax loss is used to classify 
the correct (i.e., aligned) sentence in the other language from negative samples (i.e., non-
aligned sentences). In Yang et al. (2019a), this approach is extended by using a bidirec-
tional dual encoder and adding an additive margin softmax function, which serves to push 
away non-translation-pairs in the shared embedding space. The dual-encoder approach is 
now widely adopted (Guo et  al. 2018; Yang et  al. 2020; Feng et  al. 2020; Reimers and 
Gurevych 2020; Zhao et  al. 2021b), and yields state-of-the-art multilingual sentence 
encoders which excel in sentence-level NLU tasks.

Other recent approaches propose input space normalization, and using parallel data to 
re-align mBERT and XLM (Zhao et al. 2021b; Cao et al. 2020), or using a teacher-student 
framework where a student model is trained to imitate the output of the teacher network 
while preserving high similarity of translation pairs (Reimers and Gurevych 2020). In Yang 
et al. (2020), authors combine multi-task learning with a translation bridging task to train a 
universal sentence encoder. We benchmark a series of representative sentence encoders in 
this article; their brief descriptions are provided in Sect. 3.3.

Neural Learning-to-Rank In the context of neural retrieval the vast majority of rankers 
can be broadly classified into the two paradigms of (1) Cross-Encoders (2) and Bi-Encod-
ers (Humeau et  al. 2020; Thakur et  al. 2021; Qu et  al. 2021). Cross-Encoders compute 
the full interaction between pairs of queries and documents and induce a joint representa-
tion for a query-document pair by means of cross-attention. Transformed representation 
of the query-document pair is then fed to a relevance classifier; the encoder and classifier 
parameters are updated jointly in an end-to-end fashion (Nogueira et al. 2019; MacAvaney 
et al. 2020b; Khattab and Zaharia 2020). This paradigm is usually impractical for end-to-
end ranking due to slow matching and retrieval. Recent work addresses this challenge by 
performing late interaction and by precomputing token-level representations (Khattab and 
Zaharia 2020; Gao et al. 2020). Nonetheless, neural rankers are still predominantly used for 
re-ranking the top-ranked results returned by some base ranker. The alternative paradigm—
the so-called Bi-Encoders—computes vector representations of documents and queries 
independently; it then relies on fast similarity computations in the vector space of precom-
puted query and document embeddings. All similarity-specialized multilingual encoders 
described in Sect. 3.3 belong to this category of Bi-Encoders. Contrary to most NLP tasks, 
document-level ad-hoc IR deals with much longer text sequences. For instance, one nota-
ble approach computes document scores as an interpolation between a pre-ranking score 
and a weighed sum of scores of the top-k highest scoring sentences (Akkalyoncu Yilmaz 
et al. 2019). Our approach scores local regions of documents independently (Sect. 4.4); this 
is most similar to the BERT-MaxP model which encodes and scores individual passages of 
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a document (Dai and Callan 2019). For further discussion on long document matching we 
refer the reader to Chapter 3.3 of Lin et al.’s handbook (Lin et al. 2021).

A related recent line of research targets cross-lingual transfer of (monolingual) rankers, 
where such rankers are typically trained on English data and then applied in a monolingual 
non-English setting (Shi et al. 2020, 2021; Zhang et al. 2021). This is different from our 
cross-lingual retrieval evaluation setting where queries and documents are in different lan-
guages. A systematic comparative study focused on the suitability of the multilingual text 
encoders for diverse ad-hoc CLIR tasks and language pairs is still lacking.

CLIR Evaluation and Application The cross-lingual ability of mBERT and XLM has 
been investigated by probing and analyzing their internals (Karthikeyan et  al. 2020), as 
well as in terms of downstream performance (Pires et al. 2019; Wu and Dredze 2019). In 
CLIR, these models as well as dedicated multilingual sentence encoders have been evalu-
ated on tasks such as cross-lingual question-answer retrieval (Yang et al. 2020), bitext min-
ing (Ziemski et al. 2016; Zweigenbaum et al. 2018), and semantic textual similarity (STS) 
(Hoogeveen et al. 2015; Lei et al. 2016). Yet, the models have been primarily evaluated 
on sentence-level retrieval, while classic ad-hoc (unsupervised) document-level CLIR has 
not been in focus. Further, previous work has not provided a large-scale comparative study 
across diverse language pairs and with different model variants, nor has tried to understand 
and analyze the differences between sentence-level and document-level tasks, or the impact 
of domain versus language transfer. In this work, we aim to fill these gaps.

3  Multilingual text encoders

We first provide an overview of all pretrained multilingual models in our evaluation. We 
discuss general-purpose multilingual text encoders (Sect. 3.2), as well as specialized multi-
lingual sentence encoders in Sect. 3.3. Finally, we describe the supervised rankers based on 
multilingual encoders (Sect. 3.4). For completeness, we first briefly describe the baseline 
CLIR model based on CLWEs (Sect. 3.1).

3.1  CLIR with (static) cross‑lingual word embeddings

We assume a query QL1
 issued in a source language L1 , and a document collection of N 

documents Di,L2
 , i = 1,… ,N in a target language L2 . Let d = {t1, t2,… , t|D|} ∈ D be a 

document with |D| terms ti . CLIR with static CLWEs represents queries and documents 
as vectors ��⃗Q, ��⃗D ∈ ℝ

d in a d-dimensional shared embedding space (Vulić and Moens 2015; 
Litschko et al. 2019). Each term is represented independently with a pre-computed static 
embedding vector �⃗ti = emb

(
ti
)
 . There exist a range of methods for inducing shared embed-

ding spaces with different levels of supervision, such as parallel sentences, comparable 
documents, small bilingual dictionaries, or even methods without any supervision (Ruder 
et al. 2019). Given the shared CLWE space, both query and document representations are 
obtained as aggregations of their term embeddings. We follow Litschko et al. (2019) and 
represent documents as the weighted sum of their terms’ vectors, where each term’s weight 
corresponds to its inverse document frequency (idf):3

3 Only document term embeddings are idf-scaled.
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Documents are then ranked in decreasing order of the cosine similarity between their 
embeddings and the query embedding.

3.2  Multilingual (transformer‑based) language models: mBERT and XLM

Massively multilingual pretrained neural language models such as mBERT and XLM(-R) 
can be used as a dynamic embedding layer to produce contextualized word representa-
tions, since they share a common input space on the subword level (e.g. word-pieces, byte-
pair-encodings) across all languages. Let us assume that a term (i.e., a word-level token) 
is tokenized into a sequence of K subword tokens ( K ≥ 1 ; for simplicity, we assume that 
the subwords are word-pieces (wp)): ti =

{
wpi,k

}K

k=1
 . The multilingual encoder then pro-

duces contextualized subword embeddings for the term’s K constituent subwords �������⃗wpi,k , 
k = 1,… ,K , and we can aggregate these subword embeddings to obtain the representa-
tion of the term ti : �⃗ti = 𝜓

(
{�������⃗wpi,k}

K
k=1

)
 , where the function �() is the aggregation function 

over the K constituent subword embeddings. Once these term embeddings �⃗ti are obtained, 
we follow the same CLIR setup as with CLWEs in Sect. 3.1. We illustrate three different 
approaches for obtaining word and sentence representations from pretrained transformers 
in Fig. 1 and describe them in more detail in what follows.

Static Word Embeddings from Multilingual Transformers We first use multilingual 
transformers (mBERT and XLM) in two different ways to induce static word embedding 
spaces for all languages. In a simpler variant, we feed terms into the encoders in isolation 
(ISO), that is, without providing any surrounding context for the terms. This effectively 
constructs a static word embedding table similar to what is done in Sect. 3.1, and allows 
the CLIR model (Sect. 3.1) to operate at a non-contextual word level. An empirical CLIR 
comparison between ISO and CLIR operating on traditionally induced CLWEs (Litschko 

(1)�⃗d =

Nd∑

i=1

idf (td
i
) ⋅ ��⃗td

i

Fig. 1  CLIR Models based on Multilingual Transformers. Left: Induce a static embedding space by encod-
ing each vocabulary term in isolation; then refine the bilingual space for a specific language pair using the 
standard Procrustes projection. Middle: Aggregate different contextual representations of the same vocabu-
lary term to induce static embedding space; then refine the bilingual space for a specific language pair using 
the standard Procrustes projection. Right: Direct encoding of a query-document pair with the multilingual 
encoder
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et al. 2019) then effectively quantifies how well multilingual encoders (mBERT and XLM) 
capture word-level representations (Vulić et al. 2020).

In the second, more elaborate variant we do leverage the contexts in which the terms 
appear, constructing average-over-contexts embeddings (AOC). For each term t we collect 
a set of sentences si ∈ St in which the term t occurs. We use the full set of Wikipedia sen-
tences S to sample sets of contexts St for each vocabulary term t. For a given sentence si let 
j denote the position of t’s first occurrence. We then transform si with mBERT or XLM as 
the encoder, enc(si) , and extract the contextualized embedding of t via mean-pooling, i.e., 
by averaging embeddings of its constituent subwords, 𝜓

�
{ �������⃗wpj,k}

K
k=1

�
= 1∕K ⋅

∑K

k=1
�������⃗wpj,k . 

Here, the function �() is implemented as mean-pooling, i.e., we obtain the contextualized 
representation of the term as the average of contextualized vectors of its constituent sub-
words. For each vocabulary term, we obtain Nt = min(|St|, �) contextualized vectors, with 
|St| as the number of Wikipedia sentences containing t and � as the maximal number of 
sentence samples for a term. The final static embedding of t is then simply the average over 
the Nt contextualized vectors.

The obtained static AOC and ISO embeddings, despite being induced with multilin-
gual encoders, however, did not appear to be lexically well-aligned across languages 
(Liu et  al. 2019a; Cao et  al. 2020). We evaluated the static ISO and AOC embeddings 
induced for different languages with multilingual encoders (mBERT and XLM), on the 
bilingual lexicon induction (BLI) task (Glavaš et al. 2019). We observed poor BLI perfor-
mance, suggesting that further projection-based alignment of respective monolingual ISO 
and AOC spaces is warranted. To this end, we adopted the standard Procrustes method 
(Smith et al. 2017; Artetxe et al. 2018) for learning an orthogonal linear projection from 
the embedding (sub)space of one language to the embedding space of the other language 
(Glavaš et al. 2019). Let D = {(wk

L1
,wk

L2
)}K

k=1
 be the word translation dictionary between 

the two languages L1 and L2, containing K word translation pairs. Let �S = {�k
L1
}K
k=1

 and 
�T = {�k

L2
}K
k=1

 be row-aligned matrices containing stacked embeddings of {wk
L1
}K
k=1

 and 
{wk

L2
}K
k=1

 , respectively. We then obtain the projection matrix � by minimizing the Euclid-
ean distance between the projection of �S and the target matrix �T (Mikolov et al. 2013): 
� = argmin

�
‖�L1� − �L2‖2 . If we constrain � to be orthogonal, the above optimi-

zation problem becomes the famous Procrustes problem, with the following closed-form 
solution (Schönemann 1966):

In our experiments, for each language pair, we always project the AOC (ISO) embeddings 
of the query language to the AOC (ISO) embedding space of the document collection lan-
guage, using the learned projection matrix �.

Direct Text Embedding with Multilingual Transformers In both AOC and ISO, we 
exploit the multilingual (contextual) encoders to obtain the static embeddings for word 
types (i.e., terms): we can then leverage these static word embeddings obtained from con-
textualized encoders in exactly the same ad-hoc CLIR setup (Sect. 3.1) in which CLWEs 
had previously been evaluated (Litschko et al. 2019). In an arguably more straightforward 
approach, we also use pretrained multilingual Transformers (i.e., mBERT or XLM) to 
directly semantically encode the whole input text similar to encoding sentences into Sen-
tence EMBeddings (SEMB). To this end, we encode the input text by averaging the con-
textualized representations of all terms in the text (we again compute the weighted average, 
where the terms’ IDF scores are used as weights, see Sect. 3.1). For SEMB, we take the 

(2)
� = ��

⊤, with

���
⊤ = SVD(�T�S

⊤).



157Information Retrieval Journal (2022) 25:149–183 

1 3

contextualized representation of each term ti to be the contextualized representation of its 
first subword token, i.e., �⃗ti = 𝜓

(
{�������⃗wpi,k}

K
k=1

)
= �������⃗wpi,1.

4

3.3  Specialized multilingual sentence encoders

Off-the-shelf multilingual Transformers (mBERT and XLM) have been shown to yield 
sub-par performance in unsupervised text similarity tasks; therefore, in order to be success-
ful in semantic text (sentences or paragraph) comparisons, they first need to be fine-tuned 
on text matching (typically sentence matching) datasets (Reimers and Gurevych 2020; Cao 
et al. 2020; Zhao et al. 2020). Such encoders specialized for semantic similarity are sup-
posed to encode sentence meaning more accurately, supporting tasks that require unsu-
pervised (ad-hoc) semantic text matching. In contrast to off-the-shelf mBERT and XLM, 
which contextualize (sub)word representations, these models directly produce a semantic 
embedding of the input text. We provide a brief overview of the models included in our 
comparative evaluation.

Language Agnostic SEntence Representations (LASER) Artetxe et  al. (2019) adopts a 
standard sequence-to-sequence architecture typical for neural machine translation (MT). 
It is trained on 223M parallel sentences covering 93 languages. The encoder is a multi-
layered bidirectional LSTM and the decoder is a single-layer unidirectional LSTM. The 
1024-dimensional sentence embedding is produced by max-pooling over the outputs of the 
encoder’s last layer. The decoder then takes the sentence embedding as additional input 
at each decoding step. The decoder-to-encoder attention and language identifiers on the 
encoder side are deliberately omitted, so that all relevant information gets ‘crammed’ 
into the fixed-sized sentence embedding produced by the encoder. In our experiments, we 
directly use the output of the encoder to represent both queries and documents.

Multilingual Universal Sentence Encoder (m-USE) is a general purpose sentence 
embedding model for transfer learning and semantic text retrieval tasks (Yang et al. 2020). 
It relies on a standard dual-encoder neural framework (Chidambaram et  al. 2019; Yang 
et al. 2019b) with shared weights, trained in a multi-task setting with an additional transla-
tion bridging task. For more details, we refer the reader to the original work. There are two 
pretrained m-USE instances available—we opt for the 3-layer Transformer encoder with 
average-pooling.

Language-agnostic BERT Sentence Embeddings (LaBSE) Feng et al. (2020) is another 
neural dual-encoder framework, also trained with parallel data. Unlike LASER and m-USE, 
where the encoders are trained from scratch on parallel data, LaBSE starts its training from 
a pretrained mBERT instance (i.e., a 12-layer Transformer network pretrained on the con-
catenated corpora of 100+ languages). In addition to the multi-task training objective of 
m-USE, LaBSE additionally uses standard self-supervised objectives used in pretraining 
of mBERT and XLM: masked and translation language modeling (MLM and TLM, see 
Sect. 2). For further details, we refer the reader to the original work.

DISTILReimers and Gurevych (2020) is a teacher-student framework for injecting the 
knowledge obtained through specialization for semantic similarity from a specialized 
monolingual transformer (e.g., BERT) into a non-specialized multilingual transformer 
(e.g., mBERT). It first specializes for semantic similarity a monolingual (English) teacher 

4 In our preliminary experiments taking the vector of the first term’s subword consistently outperformed 
averaging vectors of all its constituent subwords.
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encoder M using the available semantic sentence-matching datasets for supervision. In the 
second, knowledge distillation step a pretrained multilingual student encoder M̂ is trained 
to mimic the output of the teacher model. For a given batch of sentence-translation pairs 
B = {(sj, tj)} , the teacher-student distillation training minimizes the following loss:

The teacher model M is Sentence-BERT (Reimers and Gurevych 2019), BERT specialized 
for embedding sentence meaning on semantic text similarity (Cer et al. 2017) and natural 
language inference (Williams et al. 2018) datasets. The teacher network only encodes Eng-
lish sentences si . The student model M̂ is then trained to produce for both sj and tj the same 
representation that M produces for sj . We benchmark different DISTIL models in our CLIR 
experiments, with the student M̂ initialized with different multilingual transformers.

3.4  Learning to (re‑)rank with multilingual encoders

Finally, we consider another common setup, in which some relevance judgments (typically 
in English) are available and can be leveraged as supervision for fine-tuning multilingual 
encoders for ad-hoc retrieval. We consider two common scenarios: (1) an abundance of 
relevance annotations from other retrieval tasks and collections (but none for the target col-
lection on which we want to perform ad-hoc retrieval) and (2) a small number of relevance 
judgments for the target collection. As an example of the former, we apply pointwise rank-
ers pretrained on large-scale data (and based on multilingual encoders) in document-level 
CLIR on the CLEF benchmark. For the latter, we use a small number of CLEF relevance 
judgments to fine-tune, via contrastive metric-based learning, the representation space of 
the multilingual encoder. These two fine-tuning approaches are described in what follows.

Pointwise Ranking with Multilingual Transformers A common learning-to-rank (L2R) 
approach with pretrained neural text encoders is the pointwise classification of query-
document pairs (Nogueira et al. 2019; MacAvaney et al. 2020b). In this so-called Cross-
Encoder approach, the input to the pretrained encoder is a query-document concatenation. 
More specifically, let query q consist of the query (subword) tokens tq

1
,… t

q
n and document 

d consist of the document (subword) tokens td
1
,… td

m
 . The input to the pretrained encoder 

is then [CLS] tq
1
,… t

q
n [SEP] td

1
,… td

m
 [SEP], with [CLS] and [SEP] being the special 

sequence start and segment separation tokens of the corresponding pretrained encoder, e.g., 
BERT (Devlin et al. 2019). When needed, the documents are truncated in order to meet the 
maximum input length constraint of the respective pretrained transformer. This setup—i.e., 
concatenation of two texts—is common for various sentence-pair classification tasks in 
natural language processing (e.g., natural language inference or semantic text similarity). 
The encoded representation of the sequence start token ([CLS]), taken from the last layer 
of the Transformer-based encoder is then fed into a feed-forward classifier with a single 
hidden layer, which outputs the probability of the document being relevant for the query. 
The parameters of the feed-forward classifier are (fine-)tuned together with the encoder’s 
parameters in an end-to-end fashion, by means of minimizing the standard cross-entropy 
loss. The positive training instances are simply the available relevance judgments (i.e., que-
ries paired with documents indicated as relevant); the non-trivial negative instances are 
commonly created by pairing queries with irrelevant documents that are ranked highly by 
some baseline ranker (e.g., BM25) (Nogueira et al. 2019).

J(B) =
1

|B|
∑

j∈B

[(
M(sj) − M̂(sj)

)2

+
(
M(sj) − M̂(tj)

)2
]
.
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Pointwise neural rankers have been shown both ineffective (many false positive) and ineffi-
cient (at inference, one has to feed the query paired with each document through the classifier) 
when used to rank the entire document collection from scratch. In contrast, they have been 
very successful in re-ranking the top of the ranking produced by some baseline ranker, such as 
BM25. In CLIR, however, due to the very limited lexical overlap between languages, one can-
not use base rankers based on lexical overlap such as BM25 or the vector space model (VSM). 
In our re-ranking experiments (see Sect. 5.1) we thus employ our unsupervised CLIR rankers 
based on multilingual encoders from Sect. 3.3 as base rankers.

Contrastive Metric-Based Learning The above pointwise approach which cross-encodes 
each query-document pair (by concatenating the query with each document and passing them 
jointly to the encoder) is computationally heavy. Therefore, as mentioned before, it is primar-
ily used for re-ranking. Further, it introduces additional trainable parameters of the classifier: 
their reliable estimation requires a large amount of training instances. In contrast, in most ad-
hoc retrieval setups, one at best has a handful of relevance judgments for the test collection of 
interest. An alternative approach in such low-supervision settings is to use the few available 
relevance judgments to reshape the representation space of the (multilingual) text encoder, 
without training a dedicated relevance classifier (i.e., no additional trainable parameters). In 
this so called Bi-Encoder paradigm, the objective is to bring representations of queries, pro-
duced independently by the pretrained encoder, closer to the representations of their relevant 
documents (produced again independently by the same encoder) than to the representations of 
irrelevant documents. The objectives of contrastive metric-based learning push the instances 
that stand in a particular relation (e.g., query and relevant document) closer together according 
to a predefined similarity or distance metric (e.g., cosine similarity) than corresponding pairs 
that do not stand in the relation of interest (e.g., the same query and some irrelevant docu-
ment). It is precisely the approach used for obtaining multilingual encoders specialized for 
sentence similarity tasks covered in Sect. 3.3 (Reimers and Gurevych 2019; Feng et al. 2020; 
Yang et al. 2020).

We propose to use contrastive metric-based learning to fine-tune the representation space 
for the concrete ad-hoc retrieval task, using a limited amount of relevance judgments avail-
able for the target collection. To this end, we employ a popular contrastive learning objec-
tive referred to as Multiple Negative Ranking Loss (MNRL) (Thakur et al. 2021). Given a 
query vector qi , a relevant document d+

i
 and a set of in-batch negatives {d−

i,j
}m
j=1

 we fine-tune 
the parameters of a pretrained multilingual encoder by minimizing MNRL, given as:

 Each document, the relevant d+
j
 and each of the irrelevant d−

i,j
 , receives a score that 

reflects their similarity to the query qi : for this, we rely on cosine similarity, i.e. 
sim(qi, dj) = cos(qi, dj) . Document scores, scaled with a temperature factor � , are then con-
verted into a probability distribution with a softmax function. The loss is then, intuitively, 
the negative log likelihood of the relevant document d+

j
 . In Sect. 5.2, we fine-tune in this 

manner the best-performing multilingual encoder (see Sect. 4.2).

L

�
qi, d

+
i
, {d−

i,j
}m
j=1

�
= − log

e�⋅sim(qi,d
+
i
)

e�⋅sim(qi,d
+
i
) +

∑m

j=1
e
�⋅sim(qi,d

−
i,j
)
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4  Unsupervised CLIR

We first present the experiments demonstrating the suitability of pretrained multilingual 
models as text encoders for ad-hoc unsupervised CLIR (i.e., we evaluate models described 
in Sects. 3.2 and 3.3).

4.1  Experimental setup

Evaluation Data We follow the experimental setup of Litschko et al. (2019), and compare 
the models from Sect. 3 on language pairs comprising five languages: English (EN), Ger-
man (DE), Italian (IT), Finnish (FI) and Russian (RU). For document-level retrieval we run 
experiments for the following nine language pairs: EN-{FI, DE, IT, RU}, DE-{FI, IT, RU}, 
FI-{IT, RU}. We use the 2003 portion of the CLEF benchmark (Braschler 2003),5 with 
60 queries per language pair. For sentence-level retrieval, also following Litschko et  al. 
(2019), for each language pair we sample from Europarl (Koehn 2005) 1K source language 
sentences as queries and 100K target language sentences as the “document collection”. We 
refer the reader to Table 1 for summarystatistics.6

Baseline Models In order to establish whether multilingual encoders outperform 
CLWEs in a fair comparison, we compare their performance against the strongest CLWE-
based CLIR model from the recent comparative study (Litschko et al. 2019), dubbed Proc-
B. Proc-B induces a bilingual CLWE space from pretrained monolingual fastText embed-
dings7 using the linear projection computed as the solution of the Procrustes problem given 
the dictionary of word-translation pairs. Compared to simple Procrustes mapping, Proc-B 
iteratively (1) augments the word translation dictionary by finding mutual nearest neigh-
bours and (2) induces a new projection matrix using the augmented dictionary. The final 
bilingual CLWE space is then plugged into the CLIR model from Sect. 3.1.

Our document-level retrieval SEMB models do not get to see the whole document but 
only the first 128 word-piece tokens. For a more direct comparison, we therefore addition-
ally evaluate the Proc-B baseline (Proc-BLEN) which is exposed to exactly the same amount 
of document text as the multilingual XLM encoder (i.e., the leading document text cor-
responding to first 128 word-piece tokens) Finally, we compare CLIR models based on 

Table 1  Basic statistics of 
CLEF 2003 and Europarl 
test collections: number of 
documents (#doc); average 
number of tokens produced by 
the XLM/mBERT tokenizer 
(#xlm, #mbert); average number 
of relevant documents per query 
(#rel)

Lang. CLEF 2003 Europarl

#doc #rel #mbert #xlm #doc #rel #mbert #xlm

EN 169k 18.6 700.4 746.6 – – – –
DE 295k 32.6 490.9 518.7 100k 1 35.6 38.3
IT 158k 15.9 482.8 491.8 100k 1 41.4 38.2
FI 55k 10.7 648.7 623.7 100k 1 37.6 38.1
RU 17k 5.4 557.8 536.3 – – – –

5 http:// catal og. elra. info/ en- us/ repos itory/ browse/ ELRA- E0008/.
6 Russian is not included in Europarl and we therefore exclude it from sentence-level experiments. Fur-
ther, since some multilingual encoders have not seen Finnish data in pretraining, we additionally report the 
results over a subset of language pairs that do not involve Finnish.
7 https:// fastt ext. cc/ docs/ en/ pretr ained- vecto rs. html.

http://catalog.elra.info/en-us/repository/browse/ELRA-E0008/
https://fasttext.cc/docs/en/pretrained-vectors.html
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multilingual Transformers to a baseline relying on machine translation baseline (MT-IR). 
In MT-IR, 1) we translate the query to the document language using Google Translate and 
then 2) perform monolingual retrieval using a standard Query Likelihood Model (Ponte 
and Croft 1998) with Dirichlet smoothing (Zhai and Lafferty 2004).

Model Details For all multilingual encoders we experiment with different input 
sequence lengths: 64, 128, 256 subword tokens. For AOC we collect (at most) � = 60 con-
texts for each vocabulary term: for a term not present at all in Wikipedia, we fall back to the 
ISO embedding of that term. We also investigate the impact of � in Sect. 4.5. In all cases 
(SEMB, ISO, AOC), we surround the input with the special sequence start and end tokens 
of respective pretrained models: [CLS] and [SEP] for BERT-based models and ⟨s⟩ and ⟨∕s⟩ 
for XLM-based models. For vanilla multilingual encoders (mBERT and XLM) and all 
three variants (SEMB, ISO, AOC), we independently evaluate representations from differ-
ent Transformer layers (cf. Sect. 4.5). For comparability, for ISO and AOC—methods that 
effectively induce static word embeddings using multilingual contextual encoders—we opt 
for exactly the same term vocabularies used by the Proc-B baseline, namely the top 100K 
most frequent terms from respective monolingual fastText vocabularies. We additionally 
experiment with three different instances of the DISTIL model: (i) DISTILXLM-R initial-
izes the student model with the pretrained XLM-R transformer (Conneau et  al. 2020b); 
DISTILUSE instantiates the student as the pretrained m-USE instance (Yang et al. 2020); 
whereas DISTILDistilmBERT distils the knowledge from the Sentence-BERT teacher into a 
multilingual version of DistilBERT (Sanh et al. 2019), a 6-layer transformer pre-distilled 
from mBERT.8 For SEMB models we scale embeddings of special tokens (sequence start 
and end tokens, e.g., [CLS] and [SEP] for mBERT) with the mean IDF value of input 
terms.

4.2  Document‑level CLIR results

We show the performance (MAP) of multilingual encoders on document-level CLIR tasks 
in Table 2. The first main finding is that none of the self-supervised models (mBERT and 
XLM in ISO, AOC, and SEMB variants) outperforms the CLWE baseline Proc-B. How-
ever, the full Proc-B baseline has, unlike mBERT and XLM variants, been exposed to the 
full content of the documents. A fairer comparison, against Proc-BLEN, which has also been 
exposed only to the first 128 tokens, reveals that SEMB and AOC variants come reason-
ably close, albeit still do not outperform Proc-BLEN. This suggests that the document-level 
retrieval could benefit from encoders able to encode longer portions of text, e.g., Beltagy 
et  al. (2020) and Zaheer et  al. (2020). For document-level CLIR, however, these mod-
els would first have to be ported to multilingual setups. Scaling embeddings by their idf 
(Proc-B) effectively filters out high-frequent terms such as stopwords. We therefore experi-
ment with explicit a priori stopword filtering in DISTILDistilmBERT , dubbed DISTILFILTER . 
Results show that performance deteriorates which indicates that stopwords provide impor-
tant contextualization information. While SEMB and AOC variants exhibit similar perfor-
mance, ISO variants perform much worse. The direct comparison between ISO and AOC 
demonstrates the importance of contextual information and seemingly limited usability of 

8 Working with mBERT directly instead of its distilled version led to similar scores, while increasing run-
ning times.
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off-the-shelf multilingual encoders as word encoders, if no context is available, and if they 
are not further specialized to encode word-level information (Liu et al. 2021).

Similarity-specialized multilingual encoders, which rely on pretraining with parallel 
data, yield mixed results. Three models, DISTILDistilmBERT , DISTILUSE and m-USE, gen-
erally outperform the Proc-B baseline.9 LASER is the only encoder trained on parallel 
data that does not beat the Proc-B baseline. We believe this is because (a) LASER’s recur-
rent encoder provides text embeddings of lower quality than Transformer-based encoders 
of m-USE and DISTIL variants and (b) it has not been subjected to any self-supervised 
pretraining like DISTIL models. Even the best-performing CLIR model based on a mul-
tilingual encoder ( DISTILDistilmBERT ) overall falls behind the MT-based baseline (MT-IR). 
However, it is very important to note that the performance of MT-IR critically depends on 
the quality of MT for the concrete language pair: for language pairs with weaker MT (e.g., 
FI-RU, EN-FI, FI-RU, DE-RU), DISTILDistilmBERT can substantially outperform MT-IR 
(e.g., 9 MAP points for FI-RU and DE-RU). In contrast, the gap in favor of MT-IR is, as 
expected, largest for the pairs of large typologically similar languages, for which also the 
most reliable MT systems exist: EN-IT, EN-DE. In other words, the feasibility and robust-
ness of a strong MT-IR CLIR model seems to diminish with more distant language pairs 
and lower-resource languages.

The variation in results with similarity-specialized sentence encoders indicates that: (a) 
despite their seemingly similar high-level architectures typically based on dual-encoder 
networks (Cer et al. 2018), it is important to carefully choose a sentence encoder in docu-
ment-level retrieval, and (b) there is an inherent mismatch between the granularity of infor-
mation encoded by the current state-of-the-art text representation models and the docu-
ment-level CLIR task.

4.3  Sentence‑level cross‑lingual retrieval

We show the sentence-level CLIR performance in Table 3. Unlike in the document-level 
CLIR task, self-supervised SEMB variants here manage to outperform Proc-B. The better 
relative SEMB performance than in document-level retrieval is somewhat expected: sen-
tences are much shorter than documents (i.e., typically shorter than the maximal sequence 
length of 128 word pieces). All purely self-supervised mBERT and XLM variants, how-
ever, perform worse than the translation-based baseline.

Multilingual sentence encoders specialized with parallel data excel in sentence-level 
CLIR, all of them substantially outperforming the competitive MT-IR baseline. This how-
ever, does not come as much of a surprise, since these models (a) have been trained using 
parallel data (i.e., sentence translations), and (b) have been optimized exactly on the sen-
tence similarity task. In other words, in the context of the cross-lingual sentence-level task, 
these models are effectively supervised models. The effect of supervision is most strongly 
pronounced for LASER, which was, being also trained on parallel data from Europarl, 
effectively subjected to in-domain training. We note that at the same time LASER was the 
weakest model from this group on average in the document-level CLIR task.

9 As expected, m-USE and DISTILUSE perform poorly on language pairs involving Finnish, as they have 
not been trained on any Finnish data.
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The fact that similarity-specialized multilingual encoders perform much better in sen-
tence-level than in document-level CLIR suggests viability of a different approach to doc-
ument-level retrieval: instead of obtaining a single encoding for the document, one may 
(independently) encode its sentences (or larger windows of content) and (independently) 
measure their semantic correspondence to the query. We investigate this localized rele-
vance matching approach to document-level CLIR with similarity-specialized multilingual 
encoders in the next section (Sect. 4.4).

4.4  Localized relevance matching

Contrary to most NLP tasks, in ad-hoc document retrieval we face the challenge of seman-
tically representing long documents. According to Robertson et  al. (1994), documents 
can be viewed either as a concatenation of topically heterogeneous short sub-documents 
(“Scope Hypothesis”) or as a more verbose version of a short document on the same topic 
(“Verbosity Hypothesis”). Under both hypotheses, the source of relevance of the document 
for the query is localized, i.e., there should exist (at least one) segment (relatively short 
w.r.t. the length of the whole document) that is the source of relevance of the document 
for the query. Furthermore, a query may represent an information need on a specific aspect 
of a topic that is simply not discussed at the beginning, but rather somewhere later in the 
document: the maximum input sequence length imposed by neural text encoders directly 
limits the retrieval effectiveness in such cases. Even if we assume that we can encode the 
complete document with our multilingual encoders, these document representations would 

Table 3  Sentence-level CLIR results (MAP)

Bold: Best model for each language-pair
*: Difference in performance with respect to Proc-B, significant at p = 0.05 , computed via paired two-tailed 
t-test with Bonferroni correction

EN-FI EN-IT EN-DE DE-FI DE-IT FI-IT AVG w/o FI

Baselines
MT-IR .659 .803 .725 .541 .694 .698 .687 .740
Proc-B .143 .523 .415 .162 .342 .137 .287 .427
Models based on multilingual Transformers
SEMB

XLM
.309* .677* .465 .391* .495* .346* .447 .545

SEMB
mBERT

.199* .570 .355 .231* .481* .353* .365 .469
AOC

XLM
.099 .527 .274* .102* .282 .070* .226 .361

AOC
mBERT

.095* .433* .274* .088* .230* .059* .197 .312
ISO

XLM
.016* .178* .053* .006* .017* .002* .045 .082

ISO
mBERT

.010* .141* .087* .005* .017* .000* .043 .082
Similarity-specialized sentence encoders (with parallel data supervision)
DISTIL

XLM-R
.935* .944* .943* .911* .919* .914* .928 .935

DISTIL
USE

.084* .960* .952* .137 .920* .072* .521 .944
DISTIL

DistilmBERT
.847* .901* .901* .811* .842* .793* .849 .882

LaBSE .971* .972* .964* .948* .954* .951* .960 .963
LASER             .974* .976* .969* .967* .965* .961* .969 .970
m-USE .079* .951* .929* .086* .886* .039* .495 .922
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likely become semantically less precise (i.e., fuzzier) as they would aggregate contextual-
ized representations of many more tokens; in Sect.  4.5 we validate this empirically and 
show that simply increasing the maximum sequence length of multilingual encoders does 
not improve their retrieval performance.

Recent work proposed pretraining procedures for encoding long documents (Zaheer 
et al. 2020; Dai et al. 2019; Beltagy et al. 2020). These models have been pretrained only 
for English. Pretraining their multilingual counterparts, however, would require extremely 
large and massively multilingual corpora and computational resources of the scale that we 
do not have at our disposal. In the following, we instead experiment with two resource-
lean alternatives: we represent documents either as (1) sets of overlapping text segments 
obtained by running a sliding window over the document or (2) a collection of docu-
ment sentences, which we then encode independently similar to Akkalyoncu Yilmaz et al. 
(2019). For a single document, we now need to store multiple semantic representations 
(i.e., embeddings), one for each text segment or sentence. While these approaches clearly 
increase the index size as well as the retrieval latency (as the query representation needs to 
be compared against embeddings of all document segments or sentences), sufficiently fast 
ad-hoc retrieval for most use cases can still be achieved with highly efficient approximate 
search libraries such as FAISS (Johnson et al. 2017). Representing documents as multiple 
segments or sentences allows for fine-grained local matching against the query: a setting in 
which sentence-specialized multilingual encoders are supposed to excel, see Table 3.

Localized Relevance Matching: Segments. In this approach, we slide a window of size 
128 word tokens over the document with a stride of 42 tokens, creating multiple overlap-
ping 128-word segments from the input document. Each segment is then encoded sepa-
rately, leveraging the encoders from Sect. 3. We then score for relevance each segment by 
comparing its respective embedding with the query embedding. We then compute the final 
relevance score by averaging the relevance scores of the top-k highest-scoring segments.

Table  4 displays the results of all multilingual encoders in our comparison, for 
k ∈ {1, 2, 3, 4}.10 For most encoders (with the exception of LaBSE and the Proc-B baseline) 
we observe gains from segment-based localized relevance matching: we observe the larg-
est average gain of 3.25 MAP points for DISTILXLM-R (from 0.177 for document encoding 
to 0.209 for segment-based localized relevance matching). Most importantly, we observe 
gains for our best-performing multilingual encoder DISTILDmBERT : localized relevance 
matching (for k = 2 ) pushes its performance by 1.6 MAP points (the base performance 
of 0.28 is shown in Table 2). We suspect that applying IDF-Sum in Proc-B (see Sect. 3.1) 
has a similar (albeit query-independent) soft filtering effect to localized relevance matching 
and that this is why localized relevance matching does not yield any gains for this competi-
tive baseline.

For all five multilingual encoders for which we observe gains from localized relevance 
matching, these gains are the largest for k = 2 , i.e., when we average the relevance scores 
of the two highest-scoring segments. In 63.7% of the cases, the two highest-scoring seg-
ments are mutually consecutive, overlapping segments: we speculate that in those cases 
it is the span of text in which they overlap that contains the signal that makes the docu-
ment relevant for the query. These findings are in line with similar observations from previ-
ous work Akkalyoncu Yilmaz et al. (2019) and Dai and Callan (2019): aggregating local 
relevance signals yields strong retrieval results. Matching queries with the most similar 

10 For k = 1 , the relevance of the document is exactly the score of the highest scoring segment.
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segment embedding effectively filters out the rest of the document. Our results suggest 
that improvements are mostly consistent across language pairs: we only fail to observe 
gains when Russian is the language of the target document collection. Localized relevance 
matching can in principle decrease the performance if segmentation produces (many) false 
positives (i.e., irrelevant segments with high semantic similarity with the query). We sus-
pect this to more often be the case for Russian than for the other languages. We further 
investigate this by comparing positions of high-scoring segments across document collec-
tion languages. We look at the distributions of document positions among the top-ranked 
100 segments (gathered from all collection documents): the distributions of top-ranked 
segment results per positions in respective documents (i.e., 1 indicates the first segment 
of the document, 2 the second, etc.) are shown for each of the four collection languages 
(aggregated across all multilingual encoders from Table 4) in Fig. 2.

The distributions of positions of high-scoring segments confirms our suspicion that 
something is different for Russian compared to other languages: we observe a much larger 
presence of high-scoring segments that appear later in the documents, i.e., at positions 
larger than 10 (>10): while there is between 2% and 5% of such “late” high-scoring seg-
ments in Italian, German, and Finnish collections, in the Russian collection there is 13% of 
such segments. Our manual inspection confirmed that these late segments are indeed most 

Fig. 2  Comparison of within-document positions of top-ranked segments in segment-based localized rel-
evance matching for different collection languages. Proportions aggregated across all multilingual CLIR 
models from Table 4

Fig. 3  Comparison of within-document positions of top-ranked segments in segment-based localized rel-
evance matching for different multilingual text encoders. Proportions aggregated across all multilingual 
CLIR models from Table 4
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often false positives (i.e., irrelevant for the query, yet with representations highly similar to 
those of the queries): this presumably causes the lower performance on *-RU benchmarks.

Figure 3 compares the individual multilingual encoders along the same dimension: doc-
ument positions of the segments they rank the highest. Unlike for collection languages, we 
do not observe major differences across multilingual encoders—for all of them, the top-
ranked segments seem to have similar within-document position distributions, with “early” 
segments (positions 1 and 2) having the highest relative participation at the top of the rank-
ing. In general, the analysis of positions of high-scoring segments empirically validates 
the intuition that the most relevant content is often localized at the beginning of the target 
documents within the newswire CLEF corpora, which in turn reflects the writing style of 
the news domain.

Localized Relevance Matching: Sentences. The selection of the segmentation strategy 
can have a profound effect on the effectiveness of localized relevance matching. Instead of 
(overlapping 128-token) segments, one could, for example, measure the relevance of each 
document sentence for the query and (max-)pool the sentence relevance scores. Sentence-
level segmentation and relevance pooling is particularly interesting when considering mul-
tilingual encoders that have been specialized precisely for sentence-level semantics (i.e., 
produce accurate sentence-level representations; see Sect.  3.3). In Table  5 we show the 
results of sentence-level localized relevance matching for all multilingual encoders. Unlike 
with segment-based localized relevance matching (see Table 4), here we see improvements 
for all multilingual encoders: what is more important, improvements over the baseline per-
formance of the same encoders (see Table  2) are substantially larger than for segment-
based localized relevance matching (e.g., 10 and 3.8 MAP-point improvements from sen-
tence matching for LASER and LaBSE, respectively, compared to 2-point improvement 
for LASER and an 1-point MAP drop for LaBSE from segment matching). Sentence-level 
matching with the best-performing base multilingual encoder DISTILDmBERT and pooling 
over two highest-ranking sentences (i.e., k = 2 ) yields the best unsupervised CLIR score 
that we observed overall (31.4 MAP points). For all encoders, averaging the scores of k = 2 
or k = 3 highest-scoring sentences gives better results than considering only the single best 
sentence (i.e., k = 1)—this would indicate that the query-relevant content is still not overly 
localized within documents (i.e., not confined to a single sentence).

Finally, it is important to note that the gains in retrieval effectiveness (i.e., MAP gains) 
obtained with localized relevance matching (segment-level and sentence-level) come at the 
expense of reduced retrieval efficiency (i.e., increased retrieval time): the query represen-
tation now needs to be compared with each of the segment or sentence representations, 
instead of with only one aggregate representation for the whole document. The slowdown 
factor is proportional to the average number of segments/sentences per document in the 
document collection. Table 6 summarizes the approximate slowdown factors (i.e., average 
numbers of segments and sentences) for CLEF document collections in different languages.

4.5  Further analysis

We now further investigate three aspects that may impact CLIR performance of multilin-
gual encoders: (1) layer(s) from which we take vector representations, (2) number of con-
texts used in AOC variants, and (3) sequence length in document-level CLIR.

Layer Selection All multilingual encoders have multiple layers and one may in 
principle choose to take (sub)word representations for CLIR at the output of any of 
them. Figure 4 shows the impact of taking subword representations after each layer for 
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self-supervised mBERT and XLM variants. We find that the optimal layer differs across 
the encoding strategies (AOC, ISO, and SEMB; cf. Sect. 3.2) and tasks (document-level 
vs. sentence-level CLIR). ISO, where we feed the terms into encoders without any con-
text, seems to do best if we take the representations from lowest layers. This makes intu-
itive sense, as the parameters of higher Transformer layers encode compositional rather 
than lexical semantics (Ethayarajh 2019; Rogers et  al. 2020). For AOC and SEMB, 
where both models obtain representations by contextualizing (sub)words in a sentence, 
we get the best performance for higher layers—the optimal layers for document-level 
retrieval (L9/L12 for mBERT, and L15 for XLM) seem to be higher than for sentence-
level retrieval (L9 for mBERT and L11/L12 for XLM).

Table 6  Increase in 
computational complexity (i.e., 
decrease in retrieval efficiency) 
due to localized relevance 
matching via segments and 
sentences

#Documents Segmentation Sentence Splitting

#Segments Factor #Sentences Factor

DE 294,809 1,281,993 4.35 5,385,103 18.27
IT 157,558 749,855 4.76 2,225,069 14.12
FI 55,344 224,390 4.05 1,286,702 23.25
RU 16,715 72,102 4.31 289,740 17.33

Fig. 4  CLIR performance of mBERT and XLM as a function of the Transformer layer from which we 
obtain the representations. Results (averaged over all language pairs) shown for all three encoding strategies 
(SEMB, AOC, ISO)

Fig. 5  CLIR performance of AOC variants (mBERT and XLM) w.r.t. the number of contexts used to obtain 
the term embeddings
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Number of Contexts in AOC We construct AOC term embeddings by averaging contex-
tualized representations of the same term obtained from different Wikipedia contexts. This 
raises an obvious question of a sufficient number of contexts needed for a reliable (static) 
term embedding. Figure 5 shows the AOC results depending on the number of contexts 
used to induce the term vectors (cf. � in Sect. 3). The AOC performance seems to plateau 
rather early—at around 30 and 40 contexts for mBERT and XLM, respectively. Encoding 
more than 60 contexts (as we do in our main experiments) would therefore bring only neg-
ligible performance gains.

Input Sequence Length Multilingual encoders have a limited input length and they, 
unlike CLIR models operating on static embeddings (Proc-B, as well as our AOC and 
ISO variants), effectively truncate long documents. This limitation was, in part, also the 
motivation for localized relevance matching approaches from the previous section. In our 
main experiments we truncated the documents to first 128 word pieces. Now we quantify 
(Table 7) if and to which extent this has a detrimental effect on document-level CLIR per-
formance. Somewhat counterintuitively, encoding a longer chunk of documents (256 word 
pieces) yields a minor performance deterioration (compared to the length of 128) for all 
multilingual encoders. We suspect that this is a combination of two effects: (1) it is more 
difficult to semantically accurately encode a longer portion of text, which leads to seman-
tically less precise embeddings of 256-token sequences; and (2) for documents in which 
the query-relevant content is not within the first 128 tokens, that content might often also 
appear beyond the first 256 tokens, rendering the increase in input length inconsequen-
tial to the recognition of such documents as relevant. These results, combined with gains 
obtained from localized relevance matching in the previous section render localized match-
ing (i.e., document relevance pooled from segment- or sentence-level relevance scores) as 
a more promising strategy for retrieving long documents than attempts to increase the input 
length of multilingual transformers. Our findings from localized relevance matching seem 
to indicate that the relevance signal is highly localized: in such a setting, aggregating rep-
resentations of very many tokens (i.e., across the whole document), e.g., with long-input 
transformers (Beltagy et al. 2020; Zaheer et al. 2020), is poised to produce semantically 
fuzzier (i.e., less precise) representations, from which it is harder to judge the document 
relevance for the query.

5  Supervised (re‑)ranking

We next evaluate, on the same document-level collection from CLEF, the CLIR effec-
tiveness of the multilingual encoders that have been exposed to some amount of supervi-
sion, i.e., fine-tuned using certain amount of relevance judgments, described in Sect. 3.4. 
We first discuss in Sect. 5.1 the performance of pointwise (re-)rankers based on mBERT 

Table 7  Document-level unsupervised CLIR results w.r.t. the input text length

Scores averaged over all language pairs not involving Finnish

Length SEMB
mBERT

SEMB
XLM

DIST
use

DIST
XLM-R

DIST
DmBERT

mUSE LaBSE LASER

64 .104 .128 .235 .167 .237 .254 .127 .089
128 .137 .178 .258 .162 .280 .247 .125 .068
256 .117 .158 .230 .146 .250 .197 .096 .027
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trained on large-scale out-of-domain collections; we then analyse (Sect. 5.2) how contras-
tive in-domain fine-tuning affects CLIR performance. In both cases, we exploit annotated 
English data for model fine-tuning: the transfer to other languages is directly enabled by 
the multilingual nature of the encoders.

5.1  Re‑ranking with pointwise rankers

Transferring (re-)rankers across domains and/or languages is a promising method when 
in-language and in-domain fine-tuning data is scarce (MacAvaney et al. 2019). We experi-
mented with two pointwise rankers, both based on mBERT, pretrained on English rele-
vance data. The first model11 was trained on the large-scale MS MARCO passage retrieval 
dataset (Nguyen et  al. 2016), consisting of approx. 400M tuples, each consisting of a 
query, a relevant passage and a non-relevant passage. Transferring rankers trained on MS 
MARCO to various ad-hoc IR settings (i.e., domains) has been shown successful (Li et al. 
2020; MacAvaney et al. 2020a; Craswell et al. 2021). Here, we investigate the performance 
of this supervised ranker trained on MS MARCO in simultaneous domain and language 
transfer. The second multilingual pointwise ranker (MacAvaney et al. 2020b) is trained on 
TREC 2004 Robust dataset (Voorhees 2005). Although TREC 2004 Robust is substantially 
smaller than MS MARCO (528K documents and 311K relevance judgments), by cover-
ing newswire documents it is domain-wise closer to our target CLEF test collection. As 
discussed in Sect.  3.4, pointwise neural rankers are typically used to re-rank the top of 
the ranking produced by some base ranker, rather than to rank the whole collection from 
scratch. Accordingly, we use the two above-described mBERT-based pointwise re-rankers 
to re-rank the top 100 documents from the initial rankings produced by each of the similar-
ity-specialized multilingual encoders from Sect. 3.3).12

Table 8 summarizes the results of our domain and language transfer experiments with 
the two pointwise mBERT-based re-rankers. For clarity, at the top of the table, we repeat 
the reference unsupervised CLIR performance of the similarity-specialized multilingual 
encoders (i.e., without any re-ranking) from Table  2. Intuitively, re-ranking—both with 
the MS MARCO-trained model and TREC-trained model—brings the largest gains for the 
weakest unsupervised rankers: mUSE, LaBSE, and LASER. The gains are somewhat larger 
when transferring the model trained on MS MARCO. However, re-ranking the results of 
the best-performing unsupervised ranker—DISTILDmBERT—brings no performance gains; 
in fact, re-ranking with the TREC-trained model reduces the quality of the base ranking by 
7 MAP points. The transfer performance of the better-performing MS MARCO re-ranker 
in our CLIR benchmarks from CLEF depends on (1) the performance of the base ranker 
and (2) the target language pair. MS MARCO re-ranker improves the performance of our 
best-performing initial ranker, DISTILDmBERT , only for EN-DE and EN-IT, two language 
pairs in our evaluation for which the query language (EN) and collection language (DE, 
IT) are the closest to the source language of MS MARCO (EN) on which the re-ranker was 
trained; conversely, the MS MARCO re-ranking yields the largest performance drop for 
FI-RU, i.e., the pair of languages in our evaluation that are typologically most distant from 

11 https:// huggi ngface. co/ amber oad/ bert- multi lingu al- passa ge- reran king- msmar co.
12 We also experimented with re-ranking top 1000 documents, but the results were slightly worse for all 
base multilingual encoders than when re-ranking only the top 100 results.

https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
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EN. These results suggest that, assuming a strong multilingual encoder as the base ranker, 
supervised re-ranking does not transfer well to distant language pairs. Overall, our results 
are in line with the most recent findings from Craswell et al. (2021), which also suggests 
that a ranker trained only on the large dataset like MS MARCO (i.e., without any fine-
tuning on the target collection) yields mixed ad-hoc retrieval results.

5.2  Contrastive in‑domain fine‑tuning

We now empirically investigate the second common scenario in ad-hoc retrieval: a limited 
amount of “in-domain” relevance judgments that can be leveraged for fine-tuning of text 
encoders (as opposed to a large amount of “out-of-domain” training data sufficient to train 
full-blown learning-to-rank classifiers, covered in the previous subsection). To this end, 
we use the relevance judgments in the English portion of the CLEF collection to fine-tune 
our best-performing multilingual encoder ( DISTILDmBERT ), using the contrastive metric-
based learning objective (see Sect. 3.4) to refine the representation space of the encoder. 
We carry out fine-tuning and evaluation in a 10-fold cross-validation setup (i.e., we carry 
out fine-tuning 10 different times, each time training on different nine-tenths of the queries 
and evaluating on the remaining one-tenth) in order to prevent any information leakage 
between languages: in the CLEF collection, queries in languages other than English are 
simply translations of the English queries. This resulted (in each fold) with a fine-tuning 
training set consisting of merely 800–900 positive instances (in English). We trained in 
batches of 16 positive instances and for each of them created all possible in-batch nega-
tives13 for the Multiple Negative Ranking Loss objective (see Sect. 3.4). With cross-val-
idation in place, for each language pair, we obtain predictions for all queries without any 
information leakage, which makes the results of contrastive fine-tuning fully comparable 
with all previous results.

The CLIR results of the ranking with the contrastively fine-tuned DISTILDmBERT are 
shown in Fig.  6. Unlike re-ranking with full-blown pointwise learning to rank models 

Fig. 6  The effects of “in-domain” fine-tuning: comparison of CLIR performance with DISTIL
DmBERT

 on the 
CLEF CLIR collections: (a) without any fine-tuning (i.e., an unsupervised CLIR approach; see Sect. 4.2) 
and (b) after in-domain fine-tuning on English CLEF data via contrastive metric-based learning (see 
Sect. 3.4): here we have only zero-shot language transfer, but no domain transfer (as was the case with L2R 
models from the previous section)

13 This means at most 15 in-batch negatives created from the other query-document pairs in the batch; 
there is less than 15 negatives only if there are other positive instances for the same query in the batch.
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from the previous section, contrastive in-domain reshaping of the representation space 
of the multilingual encoder yields performance gains for all language pairs (2.5 MAP 
points on average). It is important to emphasize again that—because contrastive metric-
based fine-tuning only updates the parameters of the original multilingual transformer 
( DISTILDmBERT ) and introduces no additional parameters (i.e., no classification head on top 
of the encoder, as in the case of L2R models trained on MS MARCO and TREC ROBUST 
from the previous section)—we can, in exactly the same manner as with the base model 
before fine-tuning, fully rank the entire document collection for a given query, instead of 
restricting ourselves to re-ranking the top results of the base ranker.

Summarizing the results from this section and the previous one, it appears that—at least 
when it comes to zero-shot language transfer for cross-lingual document retrieval—special-
izing the representation space of a multilingual encoder with few(er) in-domain relevance 
judgments is more effective than employing a neural L2R ranker trained on large amounts 
of “out-of-domain” data.

5.3  Cross‑lingual retrieval or cross‑lingual transfer for monolingual retrieval?

At first glance, our negative CLIR results for the mBERT-based pointwise L2R rankers 
(Sect. 5.1)—i.e., the fact that using them for re-ranking does not improve the performance 
of our best-performing unsupervised ranker ( DISTILDmBERT)—seem at odds with their 
solid cross-lingual transfer results reported in previous work MacAvaney et  al. (2020b). 
It is, however, important to notice the fundamental difference between two evaluation set-
tings: what was previously evaluated (MacAvaney et  al. 2020b) was the effectiveness of 
(zero-shot) cross-lingual transfer of a monolingual retrieval model, trained on English data 
and transferred to a set of target languages. In other words, both in training and at infer-
ence time the models deal with queries and documents written in the same language. Our 
work here, instead, focuses on a fundamentally different scenario of cross-lingual retrieval, 
where the language of the query is different from the language of document collection. We 
argue that, in a supervised setting, in which one trains on monolingual English data only, 
the latter (i.e., CLIR) represents a more difficult transfer setup.

To validate the above assumption, we additionally evaluate the two mBERT-based 
re-rankers from Sect. 5.1 trained on MS MARCO and TREC ROBUST, respectively, on 
monolingual portions of the CLEF collection. We use them to re-rank two strong mono-
lingual baselines: (1) Query Likelihood Model (QLM, based on unigrams) Ponte and 
Croft (1998) with Dirichlet smoothing Zhai and Lafferty (2004), which we also used for 
the machine-translation baseline (MT-IR) in our base evaluation (see Sect.  4.1); and (2) 
a retrieval model based on aggregation of IDF-scaled static word embeddings (Sect. 3.1; 
Eq. (1)).14 For the latter, we used the monolingual FastText embeddings trained on Wikipe-
dias of respective languages,15 with vocabularies limited to the 200K most frequent terms.

The results of mBERT-based re-rankers in cross-lingual transfer for monolingual 
retrieval are summarized in Table 9. We see that, unlike in CLIR (see Table 8), mBERT-
based re-rankers do substantially improve the performance of the base retrieval models, 
even despite the fact that the base performance of the monolingual baselines (QLM and 

14 This corresponds to the Proc-B baseline in CLIR evaluations; only here we use monolingual embeddings 
of the target language (instead of a bilingual word embedding space, as in CLIR).
15 https:// fastt ext. cc/ docs/ en/ pretr ained- vecto rs. html.

https://fasttext.cc/docs/en/pretrained-vectors.html
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FastText) is significantly above the best CLIR performance we observed with unsupervised 
rankers (see DISTILDmBERT in Table 2). This is in line with the findings from MacAvaney 
et  al. (2020b): multilingual encoders (e.g., mBERT) do seem to be a viable solution for 
(zero-shot) cross-lingual transfer of learning-to-rank models for monolingual retrieval. But 
why are they not as effective when transferred to CLIR settings (as shown in 5.1)? We 
hypothesize that monolingual English training on large-scale datasets like MS MARCO or 
TREC ROBUST leads to a sort of “overfitting” to monolingual retrieval (e.g., the model 
may implicitly learn to assign a lot of importance to exact term matches)—such (latent) 
features will, in principle, transfer reasonably well to other monolingual retrieval settings, 
regardless of the target language; with queries in different language from documents, how-
ever, CLIR instances are likely to generate out-of-training-distribution values for these 
latent features (e.g., if the model learned to value exact matches during training, at predict 
time in CLIR settings, it would need to recognize word-level translations between the two 
languages), confusing the pointwise classifier.

6  Conclusion

Pretrained multilingual encoders have been shown to be widely useful in natural language 
understanding (NLU) tasks, when fine-tuned in supervised settings on some task-specific 
data; their utility as general-purpose text encoders in unsupervised settings, such as the ad-
hoc cross-lingual IR, has been less investigated. In this work, we systematically validated 
the suitability of a wide spectrum of cutting-edge multilingual encoders for document- and 
sentence-level CLIR across diverse languages.

We first profiled the popular self-supervised multilingual encoders (mBERT and XLM) 
as well as the multilingual encoders specialized for semantic text matching on semantic 
similarity datasets and parallel data as text encoders for unsupervised CLIR. Our empiri-
cal results show that self-supervised multilingual encoders (mBERT and XLM), without 
exposure to task supervision, generally fail to outperform CLIR models based on static 
cross-lingual word embeddings (CLWEs). Semantically-specialized multilingual sentence 

Table 9  Cross-lingual zero-shot transfer for monolingual retrieval: results on the monolingual CLEF por-
tions.

Base rankers (top third of the table)—QLM with Dirichlet Smoothing and aggregation of static monolin-
gual word embeddings (FastText) and re-ranking with pointwise mBERT-based models trained on English 
MS MARCO (middle third) and TREC ROBUST data (bottom third), respectively

EN-EN FI-FI DE-DE IT-IT RU-RU AVG Δ AVG

No re-ranking (reference)
QLM .471 .376 .400 .463 .325 .407 –
FastText .310 .327 .314 .314 .214 .296 –
Re-ranker trained on MS MARCO
QLM .520 .469 .424 .488 .359 .452 +4.53
FastText .434 .430 .384 .468 .359 .415 +11.90
Re-ranker trained on TREC ROBUST
QLM .481 .520 .420 .454 .303 .436 +1.98
FastText .375 .462 .367 .429 .299 .386 +8.76
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encoders, on the other hand, do outperform CLWEs; the gains, however, are pronounced 
only in sentence retrieval, while being much more modest in document retrieval.

Acknowledging that sentence-specialized multilingual encoders are not designed for 
encoding long documents, we proposed to exploit their strength—precise semantic encod-
ing of short texts—in document retrieval too, by means of localized relevance matching, 
where we compare the query with individual document segments or sentences and max-
pool the relevance scores; we showed that such localized relevance matching with sen-
tence-specialized multilingual encoders yields substantial document-level CLIR gains.

Finally, we investigated how successful supervised (re-)rankers based on multilingual 
encoders are in ad-hoc CLIR evaluation settings. We show that, while rankers trained 
monolingually on large-scale English datasets (e.g., MS-MARCO) can be successfully 
transferred to monolingual retrieval tasks in other languages by means of multilingual 
encoders, their transfer to CLIR setups, in which the query language differs from the lan-
guage of the document collection, is much less successful. Furthermore, we introduced an 
alternative supervised approach, based on contrastive metric-based learning, designed for 
fine-tuning the representation space of a multilingual encoder when only a limited amount 
of “in-domain” relevance judgments is available. We show that such small-scale in-domain 
fine-tuning of multilingual encoders yields better CLIR performance than rankers trained 
on large external collections (i.e., out-of-domain).

While state-of-the-art multilingual text encoders excel in so many seemingly more com-
plex language understanding tasks, our work renders ad-hoc CLIR in general and docu-
ment-level CLIR in particular a serious challenge for these models. We believe that our 
systematic comparative evaluation of a multitude of multilingual encoders (as both unsu-
pervised and supervised rankers) offers a multitude of insights for practitioners dealing 
with (ad-hoc) cross-lingual retrieval task. While there are scenarios in which multilingual 
encoders can substantially improve CLIR performance, our work identifies potential pit-
falls and emphasizes conditions needed for solid CLIR performance with multilingual text 
encoders. We make our code and resources available at https:// github. com/ rlits chk/ Encod 
erCLIR.
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