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Summary

Supply scarcity, due to demand or supply fluctuations, is a common issue in make-to-
stock production systems. To increase profits when customers are heterogeneous, firms
need to decide whether to accept a customer order or reject it in anticipation of more
profitable orders, and if accepted, which supplies to use in order to fulfill the order.
Such issues are addressed by solving demand fulfillment problems. In order to provide a
solution, firms commonly divide their customers into different segments, based on their
respective profitability. The available supply is first allocated to the customer segments
based on their projected demand information. Then, as customer orders materialize,
the allocated quotas are consumed. The customer segments commonly have a multi-
level hierarchical structure, which reflects the structure of the sales organization. In this
thesis, we study the demand fulfillment problem in make-to-stock production systems,
considering such customer hierarchies with stochastic demand.

In the hierarchical setting, the available supply is allocated level by level from top
to bottom of the hierarchy by multiple planners on different levels. The planners on
higher levels of the hierarchy need to make their allocation decisions based on aggregated
information, since transmitting all detailed demand information from the bottom to the
top of the hierarchy is not generally feasible. In practice, simplistic rules of thumb are
applied to deal with this decentralized problem, which lead to sub-optimal results. We
aim to provide more effective approaches that result in near optimal solutions to this
decentralized problem.

We first consider the single-period problem with a single supply replenishment and
focus on identifying critical information for good, decentralized allocation decisions. We
propose two decentralized allocation methods, namely a stochastic Theil index approx-
imation and a clustering approach, which provide near optimal results even for large,
complicated hierarchies. Both methods transmit aggregated information about profit
heterogeneity and demand uncertainty in the hierarchy, which is missing in the current
simplistic rules.

Subsequently, we expand our analysis to a multi-period setting, in which periodic
supply replenishments are considered and periods are interconnected by inventory or
backlog. We consider a periodic setting, meaning that in each period we allow multiple
orders from multiple customer segments. We first formalize the centralized problem
as a two-stage stochastic dynamic program. Due to the curse of dimensionality, the
problem is computationally intractable. Therefore, we propose an approximate dynamic
programming heuristic. For the decentralized case, we consider our proposed clustering
method and modify it to fit the multi-period setting, relying on the approximate dynamic
programming heuristic. Our results show that the proposed heuristics lead to profits very
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close to the ex-post optimal solution for both centralized and decentralized problems.
Finally, we look into the order promising stage and compare different consumption

functions, namely partitioned, rule-based nested, and bid price methods. Our results show
that nesting leads to performance improvements compared to partitioned consumption.
However, for decentralized problems, the improvement resulting from nesting cannot
mitigate the profit loss from considerable mis-allocations made by simplistic rules, except
for cases with high demand uncertainty or low profit heterogeneity. Moreover, among the
nested consumption functions, the bid price approach, which integrates the allocation
and consumption stages, leads to a higher performance than the rule-based consumption
methods.

Altogether, our proposed decentralized methods lead to drastic profit improvements
compared to the current simplistic rules for demand fulfillment in customer hierarchies,
except for cases with very low shortage or for largely homogeneous customers, where
simplistic rules perform similarly well. Applying our advanced methods is especially
important when the shortage rate is high or customers are more heterogeneous. Regarding
order promising, nesting is more crucial when demand uncertainty is high.

The research presented in this thesis was undertaken as part of the project “demand
fulfillment in customer hierarchies”. It was funded by the German Research Foundation
(DFG) under grant FL738/2-1.
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Chapter I

Introduction1

1.1. Research motivation

An important planning task in manufacturing environments is matching customer or-
ders with available resources. This problem is especially challenging when demand is
uncertain, supply is scarce, and customers are heterogeneous regarding their profitability
or importance to the firm. Moreover, firms often have multilevel hierarchical customer
structures that reflect the structure of the sales organization. In such hierarchies, instead
of a central planner with detailed information about customer demand, there are mul-
tiple local planners on different levels of the hierarchy, each making decisions based on
aggregated information. The hierarchical structure adds to the complexity of the prob-
lem, since in the top-down demand fulfillment (DF) problem, bottom-up aggregation of
demand-related information needs to be taken into account. This thesis addresses this
hierarchical DF problem in make-to-stock (MTS) production systems so as to maximize
profitability. The problem connects the supply chain planning task of profit-oriented DF
to the business reality of multilevel customer hierarchies. Parts of this thesis have been
published in Fleischmann et al. (2020).

In MTS production systems, DF comprises fulfilling customer orders from inventory.
Since acceptable customer response times are shorter than production lead times, in this
setting, supply is essentially fixed when demand materializes (Fleischmann and Meyr
2004). Therefore, firms face the risk of short-term supply shortages, especially when
demand is uncertain. Under a first-come-first-served (FCFS) fulfillment approach, any
customer may suffer from such shortages. However, customers commonly differ in their
importance and profitability. FCFS approach ignores these differences and, therefore,
performs poorly under heterogeneous demand (Ketikidis et al. 2006, Meyr 2009, Barut
and Sridharan 2005).

Revenue management (RM) approaches to DF address this deficiency (Quante et al.
2009b). Such approaches divide the overall customer base into different segments based
on profitability or strategic importance. The DF problem is then solved in a two-stage
process. First, in the allocation planning stage, available-to-promise (ATP) quantities
are determined and allocated as quotas to different customer segments. Second, in the

1Some of the material presented in this chapter appeared in “Fleischmann M, Kloos K, Nouri M,
Pibernik R (2020) Single-period stochastic demand fulfillment in customer hierarchies. European
Journal of Operational Research 286(1):250-266.”
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I. Introduction

Figure 1.1.: Centralized planning Figure 1.2.: Decentralized planning
(Vogel 2012)

order promising stage, these quotas are consumed by fulfilling realized orders from the
corresponding customer segments (Ball et al. 2004, Kilger and Meyr 2008). Orders ex-
ceeding the corresponding quota are lost or deferred to less constrained periods. This
process prioritizes more profitable orders and avoids depleting scarce supplies by fulfilling
less profitable orders.

Available RM approaches to DF rely on a one-dimensional ranking of customer seg-
ments. In reality, however, customer segments commonly have a multilevel hierarchical
structure. A typical customer hierarchy includes different geographies, different distribu-
tion channels, and different customer groups, similar to that shown in Figure 1.2. Roitsch
and Meyr (2008) study an example of such a hierarchy in the downstream business of
the European oil industry. The industry faces long lead times, and after deciding crude
oil supply, quantities cannot easily be changed. The available supply is then iteratively
allocated to different business units in 14 different countries, producing different products
for different customers and yielding different profits.

In such hierarchies, there is no complete ranking of individual customer segments. In-
stead, allocation planning is an iterative and decentralized process in which higher-level
sales quotas are disaggregated one level at a time by multiple local planners. This hier-
archical problem, although practically relevant, has barely been studied in the academic
literature. Vogel and Meyr (2015) are the first to address the problem, assuming deter-
ministic demand. In practice, simplistic rules of thumb are applied to determine sales
quotas, which lead to suboptimal results (Vogel 2014).

This thesis investigates the stochastic hierarchical DF problem. Specifically, we study
the use of information in making DF decisions in the sales hierarchy. In the allocation
planning stage, information about the base customers’ heterogeneity and their individual
projected demand distributions defines the optimal allocations. In the order promis-
ing stage, considering information about projected versus realized demand distinguishes
different order fulfillment policies.

In Chapters II and III we focus on the allocation planning stage and address the ques-
tion of what information is required at the individual levels of the hierarchy to allow

2



I. Introduction

for an effective allocation. While technically feasible, sharing fine-grained information
across the levels of the decision-making hierarchy is undesirable from a managerial per-
spective because it overloads higher-level decision makers with potentially insignificant
details and makes the resulting allocation decisions difficult to communicate. Therefore,
companies commonly aggregate the demand information propagated along the levels of
the hierarchy. While aggregation simplifies the decision-making process, overly coarse
information may result in ineffective decisions. To strike the right balance, it is crucial to
identify those pieces of information that yield the greatest benefits in terms of steering
the consecutive allocation steps toward an overall optimum. We aim to provide insight
into this information-performance trade-off.

As a starting point, Chapter II considers the single-period problem. To deal with
the decentralized problem, information aggregation and supply allocation functions are
defined and analyzed. Then, Chapter III expands the analysis to a multi-period setting,
based on assumptions that are more realistic in manufacturing environments. The multi-
period information aggregation and decentralized allocation methods are defined based on
the outcomes of Chapter II. The proposed methods are then analyzed through extensive
numerical experiments, focusing mainly on the allocation planning stage.

Chapter IV concentrates on the order promising stage. The allocated quotas defined
in the allocation planning stage are determined based on projected demand information.
In the partitioned consumption policy, the amount of fulfilled orders from each customer
segment is limited to the predefined allocations, and information about realized orders
from other segments does not change how the allocated quotas are consumed in the
order promising stage. On the contrary, in nested consumption policies, more profitable
orders can be fulfilled using the allocations to less profitable customer segments. The
allocated quotas are consumed taking into account information about realized orders
from all customer segments. This can potentially improve the total profit by accepting
more profitable orders. In order to derive insights regarding the extent to which nesting
improves performance, different consumption functions combined with centralized and
decentralized allocation functions are compared.

The next section includes a literature review on supply chain planning and DF in
MTS environments. The research gap motivating this thesis is demonstrated and the
contributions with respect to previous research are explained.

3



I. Introduction

Figure 1.3.: Supply chain planning matrix
(Fleischmann and Meyr 2003)

1.2. Theoretical background

1.2.1. Supply chain planning and demand fulfillment

Supply chain planning includes a series of long-term, mid-term, and short-term planning
activities through which information, material, and funds flow between the stakeholders,
aiming to fulfill customer orders. Advanced planning systems (APS) play a significant
role in supporting the planning activities in supply chains (Stadtler et al. 2015). We use
the traditional definitions of the supply chain planning matrix to structure and explain
the planning activities in supply chains. Recent developments in information and com-
munication technologies have also led to the application of big data analytics and new
data-driven systems in supply chain management (Nguyen et al. 2018).

Figure 1.3 shows the typical planning activities in supply chain management. Stadtler
et al. (2015) provide a detailed study about concepts, methods, and implementations for
supply chain planning. Strategic network planning is a long-term planning activity that
considers strategic decisions across all business functions, including facility locations and
capacities, as well as distribution channel choice and network design. Master planning
is a mid-term planning activity that uses the future demand estimations provided by
demand planning to conduct material, capacity, and personnel planning, taking into
account shortage situations and seasonality on a mid-term basis (Fleischmann and Meyr
2003). Short-term planning activities are based on the capacities already defined by
master planning. Thus, shortage situations due to demand or supply uncertainties may
be inevitable.

DF is the most downstream planning activity in supply chains. It matches customer
orders with available resources (Lin and Shaw 1998, Stadtler and Kilger 2008) and thereby
provides an additional short-term lever to maximize performance for the given supply

4



I. Introduction

and demand. Croxton (2003) provides an introduction to DF, including an analysis of
its components, requirements, and goals. He explains the important role DF plays in
deciding what to do when an order cannot be fulfilled using current resources, and what
rules need to be considered in order to decide whether to accept or reject an order or
which resources to use for fulfilling an order.

The potential of DF to increase profitability has attracted a growing stream of research
(Chen and Dong 2014). The relevant literature can be subdivided by the type of produc-
tion system considered. In this thesis, an MTS system is considered; thus, inventory is
the relevant resource for supply-and-demand matching. For DF in make-to-order (MTO)
systems, we refer to Chiang and Wei-Di Wu (2011), and for assemble-to-order (ATO)
systems, we refer to Guhlich et al. (2015).

Pibernik (2005) and Kilger and Meyr (2008) discuss multiple operating modes for DF:
single order processing (SOP), batch order processing (BOP), and hybrid order process-
ing. In SOP, also referred to as real-time order processing, the decision about each cus-
tomer order is made in real-time, thus an immediate response to the customer is possible.
This can, however, result in profit loss due to depleting the available supply by accepting
less profitable orders before more profitable orders arrive (Meyr 2009). In BOP the plan-
ning horizon is divided into batch horizons. At the end of each batch horizon, arrived
customer orders are processed together, thus more information about realized demand is
available for decision making, which can lead to larger profits (Pibernik 2005). This comes
with longer customer response times, which may not be acceptable in all cases, especially
for MTS systems where short customer response times are expected (Fleischmann and
Meyr 2004). In hybrid order processing, orders are temporarily promised in real time.
Subsequently, BOP is applied to finalize order promising. In this thesis we consider SOP.

Quante et al. (2009b) further classify DF models based on demand management levers
and the degree of supply flexibility. The authors use a two-dimensional framework and
examine the demand/price consideration as well as the replenishment consideration of
the respective model. Demand is either exogenous with given prices, or it is managed by
deciding prices offered in every period. On the replenishment side, models either have
an exogenously given replenishment, referred to as ATP systems, or the replenishment
quantity is endogenous as part of the model’s decision variables. In this thesis, exogenous
prices and exogenous supply are assumed. The latter assumption differentiates our setting
from the inventory rationing literature (Kleijn and Dekker 1999, De Véricourt et al. 2002).
At the same time, while inventory rationing models typically assume a very simple supply
process, our analysis is geared toward more complex production systems where supply
decisions result from a dedicated production plan. Under these circumstances, DF relies
on segmenting the customer base and optimizing the supply quotas allocated to the
individual customer segments.

5



I. Introduction

Table 1.1.: Literature on DF in MTS production systems
Deterministic Stochastic

Single-period Multi-period Single-period Multi-period

Flat Jeong et al. (2002) Ketikidis et al. (2006) traditional RM Quante et al. (2009a)
Vogel (2014) Meyr (2009) Talluri and Van Ryzin (2004) Pibernik and Yadav (2009)

Jung (2010) Samii et al. (2012) Tiemessen et al. (2013)
Alemany et al. (2013) Yang (2014)

Caldentey and Wein (2006)
Kloos and Pibernik (2020)

Hierarchy Vogel and Meyr (2015) Cano-Belmán and Meyr (2019) Kloos et al. (2018)
Chapter II Chapter III

1.2.2. DF in MTS production systems

Table 1.1 summarizes the relevant literature on DF in MTS production systems. The
literature is categorized as deterministic or stochastic, depending on the assumptions
regarding customer demand. Further, whether single or multiple supply replenishments
are considered, distinguishes single-period and multi-period models. A consideration of
flat or hierarchical customer structures defines the third classification dimension of the
table. Single-period models consider a single replenishment cycle, analogous to traditional
RM in service industries. Corresponding deterministic demand models essentially rank
customer segments by unit profit (Jeong et al. 2002, Vogel 2014). Stochastic demand
models estimate opportunity costs to balance current sales revenues and future sales
opportunities (Talluri and Van Ryzin 2004, Samii et al. 2012). Multi-period models
consider multiple exogenous replenishments simultaneously and thus are faced with a
multi-commodity allocation task. Inventory holding and backorder costs differentiate the
profitability of different replenishments for fulfilling a given customer order. Deterministic
models typically use linear programming (LP) to optimize these allocations (Ketikidis
et al. 2006, Meyr 2009, Jung 2010, Alemany et al. 2013), whereas stochastic models
commonly rely on stochastic dynamic programming (Quante et al. 2009a, Pibernik and
Yadav 2009, Tiemessen et al. 2013, Yang 2014, Gössinger and Kalkowski 2015).

A major distinction between our work and that discussed above is that we consider
multilevel hierarchical customer structures, whereas all the aforementioned literature as-
sumes a “flat” customer structure, that is, a single allocation level. We indicate the
research gaps, which are the focus of Chapters II and III of this thesis in Table 1.1.
We intend to address stochastic single-period and multi-period hierarchical DF problems
with profit maximization objectives. Vogel and Meyr (2015) are the first to investigate
advanced methods for hierarchical DF. They consider a single replenishment cycle and de-
terministic demand. Their work devises an aggregate measure of customer heterogeneity,
which approximates the profit curve and results in a decentralized allocation rule. The
authors show that their rule performs very well when demand is deterministic. Demand
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uncertainty, however, degrades the performance relative to the considered benchmarks.
Cano-Belmán and Meyr (2019) extend Vogel and Meyr’s (2015) result to a multi-period
setting. Kloos et al. (2018) analyze hierarchical DF under demand uncertainty. They
consider customer segments that are differentiated by different α-service-level targets and
seek to determine allocations that minimize deviation from these targets.

In this thesis we investigate the hierarchical DF problem under demand uncertainty,
but unlike Kloos et al. (2018), we consider profit maximization objectives. We develop
and analyze new approaches to hierarchical DF, focusing on the use of information in
both allocation planning and order promising stages. Chapter II of this thesis considers
a single replenishment cycle, and Chapter III considers multiple replenishment cycles,
focusing mainly on information aggregation and allocation planning in the hierarchy. In
Chapter IV, we focus on the consumption stage and compare the use of realized versus
projected demand information in order promising.

1.3. Thesis outline

This section provides the outline for the remainder of this thesis. Chapter II addresses the
single-period DF problem in customer hierarchies with stochastic demand. Material from
this chapter appeared in Fleischmann et al. (2020). We investigate the sequential alloca-
tion process, including multiple planners on different levels of the hierarchy. Specifically,
we identify crucial information for making allocation decisions and propose decentralized
allocation methods, which lead to near-optimal results while respecting the requirements
for information aggregation. The performance of the proposed methods is evaluated in
extensive numerical experiments and compared with benchmarks commonly applied in
APS. The methods are evaluated by comparing their information requirements, reflecting
on the role of information sharing in hierarchical allocation decisions.

We expand the analysis to a multi-period setting in Chapter III, considering periodic
supply replenishments. To maximize profits, we consider an RM approach to deal with
the centralized problem. However, scheduled replenishments, the possibility of order
backlogging, and inventory holding differentiate the problem from traditional RM prob-
lems in service industries. We formalize the problem as a two-stage stochastic dynamic
program (SDP). The optimal solution balances the expected marginal profits of the cus-
tomers in different demand periods. However, due to the curse of dimensionality and the
complexity of the model, the exact problem is computationally intractable. Therefore,
we propose an approximate dynamic programming heuristic. The proposed method pro-
vides a basis for decentralized approaches in customer hierarchies. For that, we extend
the decentralized method proposed in Chapter II, taking into account the approximate
dynamic programming heuristic, so that it is applicable to multi-period problems. The
presented approach consistently demonstrates profits very close to the centralized case,
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in our numerical experiments.
Chapters II and III focus mainly on the allocation planning stage and information

aggregation in customer hierarchies. Chapter IV complements the analysis by focusing
on the order promising stage. We define different consumption functions, including nested
and partitioned consumption, and study their impact on the performance of decentralized
methods. Chapter V discusses conclusions and ideas for future research.
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Chapter II

Single-Period Stochastic Demand
Fulfillment in Customer Hierarchies1

with Moritz Fleischmann, Konstantin Kloos and Richard
Pibernik

2.1. Introduction

This chapter addresses the problem of allocating scarce supply to hierarchically structured
customer segments, so as to maximize profitability, considering a single supply replen-
ishment. The allocation decisions are made iteratively by multiple planners on different
levels of the hierarchy based on aggregated information. DF modules of APS use simple
rules of thumb in order to deal with this decentralized problem (Kilger and Meyr 2008).
These rules have minimum information requirements, but result in sub-optimal profits
(Vogel and Meyr 2015). The focus of this chapter is on identifying decentralized allocation
methods that determine the right allocations, taking into account the requirements for
information aggregation. To this end, we propose information aggregation functions that
provide the necessary information input for planners at different levels of the hierarchy.

We consider stochastic demand. Therefore, potentially relevant information about
customer segments can be broadly divided into information on expected demand, demand
uncertainty, and unit profits. We investigate the role each of these dimensions play in
hierarchical allocation planning.

To provide insight into the information-performance trade-off, the proposed methods
are compared to two benchmarks: centralized allocation with full information sharing
and per-commit allocation with minimum information sharing.

In summary, this chapter makes the following contributions:

• We formalize the allocation planning problem in customer hierarchies by defining
information aggregation and allocation functions;

1The research presented in this chapter appeared as “Fleischmann M, Kloos K, Nouri M, Pibernik
R (2020) Single-period stochastic demand fulfillment in customer hierarchies. European Journal of
Operational Research 286(1):250-266.”
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• We characterize the optimal centralized solution to the stochastic allocation prob-
lem;

• We develop robust and near-optimal decentralized allocation methods for the hier-
archical stochastic DF problem;

• We compare the numerical performance of the proposed methods with benchmarks
commonly applied in APS and investigate the parameters driving the respective
gaps;

• We reflect on the role of information sharing in hierarchical DF and identify crucial
information for good decentralized allocation decisions.

The chapter proceeds as follows. In Section 2.2, we review the related literature and
position our contribution. In Section 2.3, we formalize the hierarchical DF problem.
In Section 2.4, we explain the best-case and worst-case benchmarks for the problem,
including the optimal centralized solution. We present our new decentralized heuristics
in Section 2.5 and evaluate their performance in extensive numerical experiments in
Section 2.6. In Section 2.7, we provide our conclusions and managerial insights.

2.2. Literature review

DF problems with heterogeneous customers have similarities with RM problems. Thus
it is insightful to look at the RM literature for applicable approaches. This chapter deals
with the single-period DF problem in MTS systems. Therefore we concentrate on the
single-resource capacity control problem. For the latter, we can distinguish static versus
dynamic models. In static models, static booking limits or bid prices are defined as control
policies at the beginning of the booking period, in order to maximize revenue, given the
limited resource. Static models make the following assumptions (Talluri and Van Ryzin
2004): orders from different customer segments arrive in a low-before-high sequence;
demand of each customer segment is independent of the other customer segments’ demand
and of the remaining capacity; demand is treated as an aggregated quantity for each
segment. Static single-resource capacity control models and related heuristics are found
in for example Curry (1990), Belobaba (1989), Brumelle and McGill (1993).

Static models define booking limits which are fixed during the booking period. Thus,
the booking control policy is not adjusted in response to observed actual demand. Dy-
namic models, on the other hand, decide on order acceptance at its time of arrival, based
on the current capacity and demand state, and no booking limits are defined beforehand.
Thus, the dynamic booking control policy adjusts to unexpected demand variations. Dy-
namic models make similar assumptions as static models except that they do not assume
a low bfore high order arrival, but require the assumption of Markovian order arrivals
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(Talluri and van Ryzin 2004). Examples of such dynamic models are seen in Brumelle
and Walczak (2003), Zhao and Zheng (2001).

In this chapter, we consider a single replenishment cycle and assume stochastic demand.
We determine the allocations to customer segments before actual orders materialize. So,
our setting is closer to the static models. In the absence of transshipments, dedicated
allocations are required in the hierarchy. Thus, no assumptions regarding the order arrival
sequence are required, and order quantities larger than one can also be processed.

In this section we review the literature categorized in the single-period columns of Table
1.1. Corresponding flat deterministic demand models essentially rank customer segments
by unit profit and use LP in order to determine the allocations to each customer segment
(Jeong et al. 2002, Vogel 2014). Stochastic models with profit maximization objectives
resemble traditional RM problems (Talluri and Van Ryzin 2004). Samii et al. (2012), on
the other hand, consider service-level objectives and compare different consumption poli-
cies. Literature on applications of RM approaches in MTS systems additionally consider
periodical supply replenishments (e.g. Meyr (2009), Quante et al. (2009a)) and are more
extensively reviewed in Chapter III.

We consider multi-level hierarchical allocations, while all the aforementioned literature
assumes a single allocation level. A first description of multi-level allocation planning
in customer hierarchies is provided by Kilger and Schneeweiss (2002). Kilger and Meyr
(2008) explain three rules which are implemented in DF modules of APS for the decen-
tralized allocation problem namely per-commit, rank based and fixed split. Per commit
allocates the available supply to the customer segments proportional to their average
forecasted demand. The rank based rule determines the allocations based on ranks or
priorities defined by the user for each customer segment. For the fixed split rule, the user
defines percentage numbers for each customer segment in advance, based on which the
available supply is allocated. These simplistic rules require minimum information sharing
in the hierarchy and are easy to implement and comprehend. But they do not take infor-
mation about customers’ demand and profitability into account, which adversely affects
their performance.

Vogel and Meyr (2015) are the first to investigate profit-based approaches for hierar-
chical DF. Assuming deterministic demand, their work devises an aggregate measure of
customer heterogeneity, which enables the hierarchical problem to be decomposed into
a sequence of single-stage continuous knapsack problems. Vogel and Meyr (2015) pro-
pose using Theil index for this purpose, thereby approximating the cumulative revenue
function by a Lorenz curve. Their approach results in a decentralized allocation rule
with a nonlinear objective function. The authors show that their rule performs very well
when demand is deterministic. Demand uncertainty, however, degrades the performance
relative to the considered benchmarks.

Analogies with inventory management and RM suggest that stochastic planning has
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the potential to significantly improve performance. The work presented in this chapter
intends to overcome the limitations of the aforementioned approaches by developing and
analyzing new approaches to hierarchical DF that account for demand uncertainty and
profit heterogeneity. In addition, we address the question of which information has to be
shared to obtain effective decentralized allocation decisions.

Related hierarchical allocation processes have also been studied outside of the field of
supply chain management, in particular, in the economics literature. Similar decentral-
ized problems arise, for example, in capital budgeting and in the regulation of public
utilities. Van Zandt (1995) and Van Zandt (2003) consider information processing from
an organizational theory perspective and explain the upward flow of information and the
downward disaggregation of allocations in hierarchies. Van Zandt and Radner (2001)
show the effects of decentralized information processing on returns to scale of organi-
zations. Mookherjee (2006) provides a review of the costs and benefits of decentralized
decision making in hierarchical organizations, focusing mainly on incentives and coor-
dination. The above literature considers information aggregation methods as given and
does not compare different information aggregation alternatives. What distinguishes our
research is that we explicitly consider information aggregation functions and evaluate
different decentralization methods.

2.3. Problem definition

We addresses the DF problem of a manufacturer operating an MTS system and seeking
to maximize expected profits by serving demand from hierarchically structured customer
segments. We formalize this problem as follows.

Figure 2.1.: Hierarchical customer structure
(adapted from Vogel and Meyr 2015)
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Let N denote the set of nodes in a customer hierarchy encompassing M + 1 levels, as
depicted in Figure 2.1. Im denotes the set of all nodes on levelm ∈ 1, . . . ,M . Specifically,
0 ∈ N denotes the root node on Level 0, and L = IM denotes the set of leaf nodes, which
represent the base customer segments, that is, the most disaggregated type of customer
segment considered. Moreover, for each node n ∈ N , let Sn be the set of successor nodes.
Given the hierarchical structure of the segments, each successor node has a unique parent
node.

As Vogel and Meyr (2015), we consider a single replenishment cycle and assume that
the available supply of inventory S is exogenous to the fulfillment problem and known.
The supply quantity results from the company’s production planning, which has a lead
time longer than the accepted customer response time. Therefore, the supply quantity
cannot be adjusted once demand materializes.

Demand is stochastic and materializes at the leaf node level, that is, it originates from
base customer segments. Let Dl denote the demand from customer segment l ∈ L with
cdf Fl, pdf fl, mean dl, and standard deviation σl. As in classical RM problems (Talluri
and Van Ryzin 2006), demands from different segments are mutually independent and
independent of S. Unit profits are heterogeneous across segments. Let pl denote the unit
profit generated by serving the demand of customer segment l.

The available supply is allocated sequentially, level by level, top-down, from the root
node to the base customer segments. That is, at each node n, a planner decides how to
allocate the supply available at that node, xn, to the respective successor nodes in Sn. At
the leaf node level, the amount of supply allocated to a given base customer segment is the
quantity available for satisfying demand from that segment. Excess demand is lost. We do
not consider nesting since it may require transshipments between different geographical
regions and complicates communication in the decentralized allocation process by not
providing firm commitments of quota availability.

To make the allocation decision, each planner uses demand information provided by the
corresponding successor nodes. Let the information vector In describe the demand-related
information available for the allocation decision at node n. The most detailed demand
information is available on the leaf node level and concerns the demand distributions (fl)

and unit profits (pl) of the base customer segments. This information is then transmitted
in an aggregated fashion bottom-up across the hierarchy; that is, the planner at a given
node aggregates the information available from all direct successors and transmits the
information to the predecessor node.

The question of how to aggregate the relevant demand information and how to use the
aggregated information in an effective allocation rule is at the heart of this chapter. To
formalize this question, we introduce the concepts of an information aggregation function
and an allocation function.

Definition 2.1 (Information aggregation function). The information aggregation func-
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tion Fk maps the information vector (Ik) of node k ∈ Sn to the information vector In of
node n, such that In = (Fk(Ik))k∈Sn. Let F denote the set of feasible aggregation functions.

Definition 2.2 (Allocation function). The allocation function An maps the supply xn
and information vector In available at node n to the allocations xk of the successor nodes
k ∈ Sn, such that (xk)k∈Sn = An(xn, In). Let A denote the set of feasible allocation
functions.

The functions Fn and An describe the bottom-up aggregation of demand information
and the top-down disaggregation of the available supply in the hierarchical fulfillment
process. By means of these concepts, we can express the company’s hierarchical DF
problem as follows.

Problem 2.1 (Decentralized hierarchical allocation problem).

maximize
F1,...,F|N|∈F

A1,...,A|N\L|∈A

∑
l∈L

pl · E[min(xl, Dl)] (2.1)

s.t.

x0 = S (2.2)

xn ≥ 0 ∀n ∈ N (2.3)

xn ≥
∑
k∈Sn

xk ∀n ∈ N\L (2.4)

In = (Fk(Ik))k∈Sn ∀n ∈ N\L (2.5)

(xk)k∈Sn = An(xn, In) ∀n ∈ N\L (2.6)

The company seeks to maximize the total expected profit (2.1), which is equal to the
sum of the expected profits generated at the leaf nodes. Constraint (2.4) ensures that the
amount allocated to the successor nodes does not exceed the allocation to the respective
parent node. Constraint (2.5) defines the information available to node n dependent on
the information aggregation function, and Constraint (2.6) describes how allocations on
level n are transformed into allocations on level k, given information vector In.

Problem 2.1 provides a formal description of the fulfillment problem outlined in Section
2.1. However, note that this formulation optimizes over two sets of interrelated functions;
it is thus an infinite-dimensional problem and therefore does not easily lend itself to
computational approaches. In addition, the formulation requires a specification of the
feasible sets F and A, which raises conceptual issues beyond what we deem meaningful
for the purpose of our investigation. Therefore, we do not seek to solve Problem 2.1, but
rather use it as a framework for a unified description of potential approaches. Specifically,
we characterize several fulfillment approaches in terms of their underlying information
aggregation and allocation functions and evaluate and compare their performance. We
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start by investigating two benchmark approaches in Section 2.4 and then present two new
heuristics in Section 2.5.

2.4. Full and minimum information-sharing

benchmarks

We seek to investigate the information-performance trade-off in hierarchical DF. To as-
sess the effectiveness of our proposed methods, we introduce two benchmarks based on
full and minimum information sharing. To this end, we investigate centralized alloca-
tion planning, which optimizes allocated quotas based on full demand information and
per-commit allocation, which is a simple heuristic requiring very limited information
sharing. These methods represent upper and lower bounds for the degree of informa-
tion aggregation in the customer hierarchy. Their relative performance provides insights
into the dependence of effective DF on information availability. Moreover, they serve as
benchmarks for heuristics that use some intermediate level of information aggregation.

2.4.1. Full information: Centralized allocation

Although transmitting full information on all base customer segments through the levels
of the hierarchy is practically infeasible, this approach does provide an insightful bench-
mark. The corresponding information aggregation function Fcn is an identity function
for all n. Thus, starting at the leaf nodes, the demand distributions and unit profits of
all underlying customer segments are transmitted from any node to its respective parent
node. In this case, the total available supply S can be directly allocated to the leaf nodes.
Allocations to intermediate nodes do not matter. If desired, they can be determined by
simply summing the allocations to the respective successor nodes. Thus, full information
transmission results in a single-level allocation planning problem, which we denote as
centralized allocation. For this case, Problem 2.1 reduces to the following.

Problem 2.2 (Centralized allocation problem).

maximize
(xl)l∈L

P =
∑
l∈L

pl · E[min(xl, Dl)] (2.7)

s.t. ∑
l∈L

xl ≤ S (2.8)

xl ≥ 0, ∀l ∈ L (2.9)

This is a nonlinear continuous knapsack problem. We can easily characterize its solution
using known results from the literature.
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Lemma 2.1. The objective function (2.7) is concave and increasing in xl.

Proof of Lemma 2.1. dP
dxl

= pl(1−Fl(xl)) ≥ 0 therefore the objective function is increasing
in xl. E[min(xl, Dl)] is concave, and thus (2.7) is concave as a weighted sum of concave
functions.

Proposition 2.1 (Optimal allocation). There exists a constant γ ≥ 0, such that the
following set of equations yields an optimal solution to Problem 2.2.

xl =

0 if Sl > S

Fl
−1(1− γ

pl
) if Sl ≤ S

∀l ∈ L

∑
l∈L

xl = S

where Sl is defined by:

Sl =
∑

{i∈L | pl(1−Fl(0))≤pi(1−Fi(0))}

Fi
−1
(

1− pl(1− Fl(0))

pi

)
(2.10)

If Fl(·) is strictly increasing for all l, the solution is unique.

Proof of Proposition 2.1. According to Lemma 2.1, Problem 2.2 is a convex continuous
knapsack problem. Letting γ denote the Lagrange multiplier for

∑
l∈L xl ≤ S, Bretthauer

and Shetty (2002) use the Karush–Kuhn–Tucker conditions to show that the optimal
solution satisfies:

xl =

0 if Fl
−1(1− γ

pl
) ≤ 0

Fl
−1(1− γ

pl
) if 0 < Fl

−1(1− γ
pl

)
(2.11)

Thus, marginal expected profits are balanced for all nodes that receive a non-zero
allocation. Moreover, Zipkin (1980b) proves that for increasing capacity, the non-zero
variables appear in the optimal solution consecutively, in decreasing order of pl(1−Fl(0)),
which is the marginal expected profit of starting to allocate supply to node l. Thus, for
each node l, we can define a supply threshold Sl which implies a non-zero allocation to that
node. For S = Sl, it follows from (2.11) that γ = pl(1−Fl(0)). Again (2.11) and Zipkin’s
result then imply xi = Fi

−1(1− pl(1−Fl(0))
pl

) for all i with pi(1− Fi(0)) ≥ pl(1− Fl(0)), as
in (2.10).

Since the objective function is increasing, it is always optimal to allocate all available
supply to the leaf nodes. Thus, we can assume constraint (2.8) to be binding. Hence, γ
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and consequently the optimal allocations can be determined by solving∑
{l∈L|Sl≤S}

Fl
−1(1− γ

pl
) = S. (2.12)

The uniqueness result follows from the monotonicity of Fl.

Proposition 2.1 shows that for each node l, there is a supply threshold value beyond
which that node receives a nonzero quota under optimal centralized allocation and that
marginal expected profits are equal for all nodes receiving a nonzero quota.

These properties implicitly define the allocation functions Ac
n for the centralized al-

location approach. Because this approach maximizes the expected profit under full in-
formation transmission, it provides an upper bound on the expected profits that can be
achieved under aggregated information.

We conclude this subsection by illustrating the relationship between the maximum
expected profit and available supply. This perspective is instructive because the de-
centralized methods introduced in Section 2.5 can be associated with different ways of
approximating this profit curve. We denote by Pk(S) the maximum objective value of
Problem 2.2 dependent on the available supply S, with L restricted to the set of leaf
nodes in the subtree below node k.

Consider the customer hierarchy consisting of six nodes on two levels displayed in
Figure 2.2(a). The leaf nodes have identical demand distributions but differ in their
unit profits. We define the supply rate as the available supply quantity, scaled by total
expected demand. Figure 2.2(b) then shows the quantities allocated to the five base
customer segments by the centralized approach as a function of the supply rate. The
allocation curves reflect the aforementioned properties of Fcn. In particular, we observe
the threshold supply values at which we start supplying another node. The solid line
in Figure 2.2(c) shows the corresponding expected profits, that is, P0(S). The curve
is piecewise nonlinear, concave and increasing, with breakpoints at the aforementioned
supply threshold levels. The two remaining curves in Figure 2.2(c) reflect the per-commit
allocation method, which we introduce in the next subsection.

2.4.2. Minimum information: Per-commit allocation

Per-commit allocation is a decentralized allocation method commonly used in DF modules
of APS (cf. Kilger and Meyr 2008). This method allocates scarce supply to the successor
nodes proportional to their expected demand, which is the only information transmitted
across the levels of the hierarchy. Information on demand uncertainty and unit profits
is disregarded. We formally define this method in terms of the previously introduced
aggregation and allocation functions.
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(a) Customer configuration
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Figure 2.2.: Illustration of the optimal allocation and profit function approximation
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Definition 2.3 (Per Commit). Per-commit allocation uses the information aggregation
functions Fpcn and allocation functions Apc

n , defined as

Fpcn (In) =

Fpcn ((Fk, pk)k∈Sn) =
∑

k∈Sn dj = dn for n ∈ IM−1
Fpcn ((dk)k∈Sn) =

∑
k∈Sn dj = dn for n ∈ Im, m < M − 1

Apc
n (xn, In) = Apc

n (xn, (dk)k∈Sn) =

(
dk∑
k∈Sn dk

· xn
)
k∈Sn

Per commit ignores demand uncertainty and unit profit heterogeneity and can thus be
interpreted as assuming deterministic demand from homogeneous customers. The corre-
sponding assumed profit curve is a simple linear line, as shown in Figure 2.2(c). The figure
also displays the actual expected profits of a per-commit allocation under heterogeneous
stochastic demand. The fact that the per commit method is based on a simplistic profit
approximation results in a performance gap relative to the optimal centralized alloca-
tion. This gap defines the improvement potential of the smarter decentralized allocation
heuristics presented in the next section. In our example, the maximum absolute profit
gap is given at a supply rate of 36.7% and amounts to 33.4%. Not surprisingly, the ab-
solute profit gap diminishes for high supply rates. If supply is not scarce, the allocation
problem disappears. Note, however, that even for a supply rate of 100%, a per-commit
allocation still results in a profit gap of 5.3%.

2.5. Decentralized allocation heuristics

In the previous section, we have seen that the popular yet simplistic per-commit allocation
method may yield poor performance for relevant supply rates. In this section, we propose
two novel allocation heuristics that aim to overcome this deficit while respecting the
decentralized and iterative nature of the allocation process. The first method, presented in
Subsection 2.5.1, uses the concept of a heterogeneity index; the second method, presented
in Subsection 2.5.2, relies on clustering. Unlike per commit, both of these methods
transmit and use information on profit heterogeneity and demand uncertainty, albeit in
an aggregated manner. Specifically, both methods approximate the piecewise nonlinear
profit curve of the centralized problem (see Figure 2.2(c)) and then use an optimal
allocation given that approximation.
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2.5.1. Stochastic Theil index method

In a deterministic setting, Vogel and Meyr (2015) introduce the idea of transmitting
information on unit profit heterogeneity by means of a heterogeneity index. Specifically,
they use Theil index, established in the economics literature for approximating a single-
parameter Lorenz curve by Chotikapanich (1993). In the deterministic hierarchical DF
problem, the profit function at each intermediate node k is piecewise linear and concave.
Theil index approximates this function by means of a smooth nonlinear flipped Lorenz
curve. Formally, Theil index at node k is calculated recursively as

Tk =
∑
j∈Sk

dj
dk
· pj
pk
· Tj +

∑
j∈Sk

dj
dk
· pj
pk
· ln
(
pj
pk

)
, with Tj = 0 ∀j ∈ L. (2.13)

The Theil index (Tk) implies a Lorenz curve parameter (θk) through

ln

(
θk

(eθk − 1)

)
+

θk
(eθk − 1)

+ θk − 1− Tk = 0. (2.14)

The resulting Lorenz curve approximation of the profit function at node k is then

πk(xk, θk) =
e
θk·

xk
dk − 1

eθk − 1
· dk · pk. (2.15)

Vogel and Meyr (2015) use these concepts to define a decentralized allocation method that
transmits aggregated mean demand (dk), weighted average unit profit (pk) and Theil’s
index (Tk) along the hierarchy. Given these inputs, they determine the optimal allocation
under the assumption of profit functions, as in (2.15).

Vogel and Meyr (2015) show that this method performs very well for deterministic
demand but degrades for stochastic demand. To understand this observation, consider
the deterministic versus stochastic profit curves in Figure 2.3 for the same example as
in Figure 2.2. While the Lorenz curve introduced in Vogel and Meyr (2015) (denoted as
deterministic Lorenz curve in Figure 2.3) approximates the piecewise linear deterministic
profit curve, it systematically deviates from the piecewise nonlinear stochastic profit curve
and therefore may result in an inefficient allocation in the latter case.

We build on this observation and construct a Theil index-based approximation of the
stochastic profit curve (denoted as stochastic Lorenz curve in Figure 2.3). Note that
all stochasticity arises at the leaf nodes. This suggests that if we capture the effects of
uncertainty appropriately at the leaf node level, we can proceed as in the deterministic
problem at the higher levels of the hierarchy. To implement this idea, we approximate
the expected profit curve of any leaf node l by a piecewise linear function. We then apply
the method in Vogel and Meyr (2015) to approximate these piecewise linear functions by
Lorenz curves and to propagate the corresponding parameters upwards in the hierarchy.
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Figure 2.3.: Illustration of Lorenz curve approximation

Different methods can be used to create the initial piecewise linear functions. We asses
several options in our numerical study in Section 2.6. Figure 2.3 shows the resulting
Lorenz curve in our example when using three equidistant points on the expected profit
curves of the leaf nodes.

We conclude this section by defining the stochastic Theil method in terms of its aggre-
gation and allocation functions.

Definition 2.4 (Stochastic Theil method). The stochastic Theil method uses the infor-
mation aggregation functions FThn and allocation functions ATh

n , defined as follows.
For k ∈ IM−1, the information aggregation function is based on a piecewise linear

approximation of the expected profit function Pk(S). To this end, let xkj = j · loc·dk
n

for
j ∈ {0, . . . , n} with exogenous parameters loc and n. Furthermore, let dkj = xkj − xkj−1
and pkj = (Pk(xkj)− Pk(xkj−1))/dkj for j = 1, ..., n. Then

Fk
Th((Fk, pk)k∈Sn) =

(
n∑
j=1

dkj,

∑n
j=1 dkj · pkj∑n

j=1 dkj
,

n∑
j=1

dkj
dk
· pkj
pk
· ln
(
pkj
pk

))
=: (dk, pk, Tk)

For any node k ∈ Im, withm < M−1, the available information vector is (dj, pj, Tj)j∈Sk .
The stochastic Theil method then further aggregates this information as follows:

Fk
Th((dj, pj, Tj)j∈Sk) =(∑
j∈Sk

dj,

∑
j∈Sk dj · pj∑
j∈Sk dj

,
∑
j∈Sk

dj
dk
· pj
pk
· Tj +

∑
j∈Sk

dj
dk
· pj
pk
· ln
(
pj
pk

))
=: (dk, pk, Tk)

Given these information vectors, the allocation functions ATh
n for n < M−1 are defined

implicitly through the solution of the following nonlinear optimization problem, using πk
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defined in (2.15):

maximize
(xk)k∈Sn

∑
k∈Sn

πk(xk, θk)

s.t. ∑
k∈Sn

xk ≤ xn

xk ≥ 0, ∀k ∈ Sn

Since the planners at level M − 1 have detailed information about the leaf nodes, allo-
cations to the leaf nodes are determined by solving Problem 2.2.

Note that this method considers stochasticity explicitly only in the information ag-
gregation function on level M − 1, namely, through the piecewise linearization of the
expected profit functions on that level. For levels higher in the hierarchy, the method is
identical to Vogel and Meyr’s original approach. However, the resulting parameter values
and allocations are different because they depend on the values propagated upwards from
level M − 1 (comp. Figure 2.3).

Furthermore, note that the definition does not specify how to choose the parameters n
and loc that determine the break points of the piecewise linear approximation. We asses
different alternatives for setting these parameters in our numerical study in Section 2.6.

2.5.2. Clustering method

Clustering is a very general approach for aggregating information that is commonly ap-
plied, for example, in market segmentation (Sarstedt and Mooi 2019). Closer to our con-
text, Zipkin (1980a) proposes a clustering method for solving large linear optimization
problems. Instead of the large original problem, the method solves a smaller aggregated
problem based on clustered variables and then disaggregates the outcome over the origi-
nal variables. Meyr (2008) proposes models and heuristic solution methods for clustering
customers for DF purposes.

In our hierarchical DF problem, we apply clustering by grouping the successor nodes
of a given node into C clusters and by transmitting aggregated information about each
cluster to the next higher level in the hierarchy. In this case, the information aggregation
function Fk

cl is a clustering function that receives the unit profits (pk) and demand
distributions (Fk) of the successor nodes as input and returns the aggregated unit profits
and aggregated demand distribution parameters of C clusters.

To define a clustering heuristic for our hierarchical DF problem, we need to specify the
clustering attributes, the number of clusters, and the evaluation metric.

The clustering attributes define which data determine whether two customer segments
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will be regarded as similar, and thus potentially clustered together, or as different. In
Section 2.4.1, we saw that in the full-information benchmark, customer segments enter the
solution in the order of their unit profits; therefore, we use unit profits as our clustering
attribute. In this way, we intend to preserve relevant information on profit heterogeneity
in the aggregation process.

We treat the number of clusters C as an input parameter. Its choice is linked to
a trade-off between complexity and performance. Clustering with C = |L| results in
the full-information case. Decreasing the number of clusters reduces the complexity but
conveys a less fine-grained image of customer heterogeneity, thereby potentially resulting
in inferior allocation decisions. For the special case of C = 1, unit profits are aggregated
into a single parameter. Thus, information on profit heterogeneity will be lost, while the
aggregated demand distribution of the successor nodes will be transmitted. We assess
the impact of different values of C in our numerical study in Section 2.6.

The general goal of clustering is to create clusters that are homogeneous within but
heterogeneous between each other. Different clustering approaches use different metrics
to operationalize this goal. Many criteria rely on some type of distance measure. The
popular K-means clustering approach minimizes the sum of the distances between the
objects in each cluster and the empirical cluster centers (Jain 2010). We adopt the
K-means approach to define the aggregation function for our clustering heuristic.

Definition 2.5 (Clustering method). The clustering method for hierarchical DF uses the
information aggregation functions Fcln and allocation functions Acl

n , which are defined as
follows.
The information vector In available at node n is ((dkj, σkj, pkj))k∈Sn,j=1,...,C, where

(dkj, σkj, pkj) denotes the aggregated mean and standard deviation of demand and the
aggregated unit profit of customer cluster j of successor node k and C is an exogenous
parameter. We use the same number of clusters on all levels of the hierarchy, except for
the leaf node level, where we set C = 1. The information aggregation function further
aggregates the available information as follows.

Fn
cl((dkj, σkj, pkj))k∈Sn,j=1,...,C = ∑
k∈Sn

j=1,...,C

vckj · dkj,
∑
k∈Sn

j=1,...,C

vckj · σkj,
∑
k∈Sn

j=1,...,C

vckj ·
dkj · pkj
dcn


c=1,...,C

=: (dcn, σcn, pcn)c=1,...,C ,

where vckj = 1 when cluster j of node k belongs to cluster c of node n and is zero otherwise.
Given the information vector In = ((dkj, σkj, pkj))k∈Sn,j=1,...,C and available supply xn

at node n, the allocation function Acl
n allocates a quantity

∑C
c=1 xck to node successor
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Figure 2.4.: Illustration of the clustering approximation

k ∈ Sn, where xck solves

maximize
(xck)k∈Sn,c∈{1,...,C}

∑
k∈Sn

c=1,...,C

pck · E[min(xck, Dck)]

s.t. ∑
k∈Sn

c=1,...,C

xck ≤ xn

xck ≥ 0, ∀k ∈ Sn, c ∈ {1, . . . , C}

and Dck is a random variable with mean dck and standard deviation σck.

A few comments are in order. First, the allocation function Acl
n solves Problem 2.2 to

determine the allocations to the clusters. Each successor node k then receives the sum
of the amounts allocated to its underlying clusters. Second, in the definition of Fcln , we
aggregate demand uncertainty within a cluster by summing the standard deviations of
the underlying lower-level clusters, rather than by taking the square root of the summed
variances. This is because of the partitioned consumption of supply, which means that
excess supply to one child node is not available to serve demand in another child node,
that is, there is no risk pooling within a cluster. Third, the definition of Acl

n specifies only
the first two moments of the probability distribution of the cluster demands Dck. In our
numerical study in Section 2.6, we assume normal distributions.

By relying on Problem 2.2, the cluster allocation function is optimal if the cluster
information is exact. In general, clustering provides a piecewise nonlinear approximation
of the centralized profit function, and the number of clusters determines the number
of pieces. Figure 2.4 displays the approximated profit function using 2 clusters for the
example introduced in Section 2.4.

We conclude this section by summarizing the decentralized allocation methods intro-
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Table 2.1.: Information shared in decentralized allocation methods

Method
Demand uncertainty Profit Parametersper node
Homog. Heterog. Homog. Heterog.

Per commit, §2.4.2 7 7 7 7 1
Deterministic Theil, §2.5.1 7 7 7 3 3
Stochastic Theil, §2.5.1 7 3 7 3 3
Clustering (C = 1), §2.5.2 3 7 3 7 3
Clustering (C ≥ 2), §2.5.2 7 3 7 3 3 · C

duced in Sections 2.4 and 2.5. Table 2.1 indicates the information transmitted across
the hierarchy by each of these methods. As discussed, per-commit allocation represents
the minimum information benchmark in that it uses only expected demand information.
The deterministic Theil approximation of Vogel and Meyr (2015) complements this in-
formation with information on profit heterogeneity, but it ignores demand uncertainty.
Conversely, clustering with C = 1 ignores profit heterogeneity but captures demand un-
certainty. Both our modified stochastic Theil approximation and clustering with C ≥ 2

transmit and use information about all three attributes of the customer segments, albeit
in an aggregated manner. In the following section, we assess and compare the perfor-
mance of the various methods and relate the performance differences to the information
shared and used by the various methods, as described in Table 2.1.

2.6. Numerical analysis

In this section, we present the results of an extensive numerical study conducted to eval-
uate the performance of the decentralized allocation heuristics proposed in Section 2.5
in comparison to the full-information benchmark (central allocation) and the minimum-
information benchmark (per commit) from Section 2.4. Beyond mere performance com-
parisons, we also want to shed light on the role of information sharing, as discussed in the
previous section. We want to provide a conclusive answer to the question of which infor-
mation depicted in Table 2.1 should be shared and utilized to ensure effective allocation
planning.

In Section 2.6.1, we first describe our experimental setup and how we evaluated the
performance of the different allocation methods. Subsequently, in Section 2.6.2, we ex-
plain how we implemented and parameterized both the stochastic Theil method and the
clustering method in our experiments. In Section 2.6.3, we report, compare, and dis-
cuss the performance of the four different allocation methods for a baseline scenario. We
provide an extensive evaluation and discussion of the performance differences across the
different allocation methods and derive insights into the role of information sharing. In
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2. Customer Parameterization1. Hierarchy Generation

3. Calculate Allocations 

4. Evaluation

Figure 2.5.: Overview of the simulation procedure
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Figure 2.6.: Hierarchy in the baseline scenario

Section 2.6.4, we assess the robustness of our results by extending our analysis to other
scenarios, including different customer hierarchies and different input parameters.

2.6.1. Experimental setup

In this section, we explain the simulation procedure and the data used to evaluate the
decentralized allocation methods from Section 2.5 and to compare their performance with
the full-information and minimum-information benchmarks from Section 2.4.

Our simulation procedure follows the four-step process depicted in Figure 2.5. In
the first step, we generate the hierarchy for a specific set of experiments. We restrict
our experiments to symmetric hierarchies. Therefore, a hierarchy is fully defined by the
number of nodes on each level. Figure 2.6 illustrates the hierarchy of the baseline scenario
with M = 4 levels and |I2| = 2, |I3| = 6 and |L| = 30.

In the second step, we assign unit profits (pl), mean demand (dl) and coefficients of
variation of demand (CVl) to the leaf nodes. We assume normal demand distributions
throughout. For the baseline scenario, we draw |I| = 100 realizations of pl from a
uniform distribution with support [1, 10] for each leaf node l ∈ L and set the mean
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Table 2.2.: Hierarchy Parameterization

Parameter Baseline Variations

|I2| 2

|I3| 6 -

|I4| - 12

Number of Customers |L| 30 18, 60

Number of Levels M 4 3 (18 customers), 5 (60 customers)

Profits pl U [1, 10] U [1, 5], U [1, 20]

Coefficient of Variation CVl 0.2 0.1, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, U [0.1, 0.5]

Mean demand dl 10 U [5, 15]

demand to 10 and the CV to 0.2 for all leaf nodes. This process provides 100 instances
((pil)l∈L, (d

i
l)l∈L, (CV

i
l )l∈L)i∈I . In the additional experiments of our robustness analysis,

we vary the support of pl, the mean demand dl and the CV of the different leaf nodes
(see Table 2.2 for details).

The specification of the hierarchy and the instances generated in Step 2 constitute
the input to the third step of our procedure. For each instance i ∈ I, we compute the
optimal allocations x∗i of the centralized full-information benchmark and the allocations
xa,i of the allocation methods a ∈ A = {per commit, deterministic Theil, stochastic
Theil, clustering}. We vary the supply levels x0 in 50 equal steps from 0.5 · d0 to 1.5 · d0,
where d0 =

∑
l∈L dl is the expected total demand.

In Step 4 of our procedure, we assess the performance of the different allocation meth-
ods. To this end, we evaluate the profit function in (2.7) for the different allocation
methods. We compute this function using the normal loss integral, thereby avoiding the
need for sampling. We then consider three performance measures, namely the relative
profit gap (rpg), the average relative profit gap (arpg) and the relative allocation error
(rae), defined as follows.

Definition 2.6 (Relative profit gap). The relative profit gap (rpg) of allocation method
a with allocation xai for a supply of x0 is

rpga(x0) =
1

|I|
∑
i∈I

(
1− P (xai (x0))

P (x∗(x0))

)

Definition 2.7 (Average relative profit gap). The average relative profit gap (arpg) of
method a evaluated for supply interval S is
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arpgS =
1

|I|
∑
i∈I

(
1−

∑
x0∈S Pi(x

a
i (x0))∑

x0∈S Pi(x
∗
i (x0))

)
Definition 2.8 (Relative allocation error). The relative allocation error (rae) of method
a for a supply of x0 is

raeT (x0) =
1

|I|
∑
i∈I

∑
l∈T (xai,l(x0)− x∗i,l(x0))

x0

where T = Th, Ta, Tl ⊂ L is the set of customers belonging to the tercile with high, average
and low profits, respectively.

2.6.2. Implementation and parametrization of the allocation

approaches

In this section, we explain how we implemented and parametrized the stochastic Theil
method and the clustering method introduced in Section 2.5.

To determine the Theil index for node k ∈ IM−1, we have to choose the parameters
loc and n that determine the break points of the piecewise linear approximation of the
expected profit function.
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Figure 2.7.: arpg of the stochastic Theil index method

The graphs plot for different number of sample, R, and location parameter, loc, under overall (x0 ∈
[0.5d0, 1.5d0]), scarce (x0 ∈ [0.5d0, 1.0d0]) and ample supply (x0 ∈ [1.0d0, 1.5d0]) for the baseline scenario.

To this end, we performed various pretests and found that the number of points n has
a negligible effect on performance for n > 2 but that the optimal choice of the location
parameter loc is affected by the supply rate. However, within a certain range of loc,
the performance differences remain very small (cf. Figure 2.7). On the basis of these
observations, we set n = 3 and loc = 1.5 throughout our numerical experiments. We note
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that, according to our observations, the loc parameter may require some adjustment for
different hierarchy structures, including for example asymmetric trees.

When implementing the clustering method, we use the K-means algorithm as imple-
mented in scipy to determine the clusters. As discussed in Section 2.5.2, the performance
of the clustering method depends on the number of clusters C. More clusters capture
customer heterogeneity in greater detail and thus should enable a more effective alloca-
tion.
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Figure 2.8.: arpg of the clustering method

The graphs plot for different number of clusters, C, under overall (x0 ∈ [0.5d0, 1.5d0]), scarce (x0 ∈
[0.5d0, 1.0d0]) and ample supply (x0 ∈ [1.0d0, 1.5d0]) for the baseline scenario.

We again performed some pretests to assess the impact of C in our context. Specifically,
we ran the baseline experiment for different numbers of clusters and found that the
improvement from C = 3 to C = 4 is minimal (cf. Figure 2.8). Therefore, we consider
the clustering method with one, two and three clusters in the remainder of our numerical
analysis.

2.6.3. Results for the baseline scenario

In this section, we evaluate the performance of the different allocation methods for the
baseline scenario. We structure our discussion according to Table 2.1. In Figure 2.9,
we plot the relative performance (measured by rpg) of the considered allocation meth-
ods, that is, the per-commit method, the deterministic and stochastic Theil methods,
and the clustering methods, at different levels of supply. To help explain the observed
performance gaps, we also consider the rae of the different methods. Figure 2.10 depicts
the rae of the considered allocation methods for different customer groups and varying
supply levels. Recall that rae captures deviations from the optimal quantities allocated
to different customer groups. Therefore, any deviation from rae = 0 in Figure 2.10 can
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Figure 2.9.: rpg of the allocation rules depending on the supply rate

be interpreted as a “misallocation”. In the following, we discuss the observed performance
of each allocation method.
Per commit, our minimum-information sharing benchmark, leads to a substantial per-

formance gap when supply is scarce (rpg=8.9% for a supply rate of 0.8), which decreases
with increasing supply availability (rpg=2.4% (0.3%) for a supply rate of 1.0 (1.2)). This
behavior is intuitive since per commit transmits and uses only the aggregated mean
demands of the customer segments and ignores (the heterogeneity of) unit profits and
demand uncertainty. By not prioritizing customers based on profitability, per commit
consistently overserves low-profit customers while underserving high-profit customers (see
Figure 2.10). This misallocation disappears only once supply is sufficient to essentially
serve all demand.

The deterministic Theil method explicitly shares and uses information on profit hetero-
geneity but not on demand uncertainty. Because of its deterministic nature, the method
does not allocate more than the respective mean demand to each customer segment.
Therefore, we report the rpg only for supply rates up to 1.0. At a supply rate of 1.0, the
deterministic Theil method coincides with the per commit approach. For scarce supply,
however, the deterministic Theil method clearly outperforms per commit (rpg consis-
tently below 2%). This result reflects the benefit of sharing and using information on
profit heterogeneity in the allocation process, albeit in a deterministic fashion.

The clustering method with a single cluster (“clustering [1]”) shares and uses aggregated
(i.e., homogeneous) information on profitability and demand uncertainty at each node of
the customer hierarchy but ignores heterogeneity between customer segments within a
node. From Figure 2.9, we observe that clustering [1] performs reasonably well as long
as supply is not highly constrained (rpg ≤ 1% for supply rates ≥ 0.78). Under high
scarcity, however, the performance rapidly degrades. As highlighted in Figure 2.10, this
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Figure 2.10.: rae of the allocation methods depending on the supply rate

method again insufficiently prioritizes high-profit customers under these circumstances.
This result reflects the strong information aggregation within the nodes. Yet, the fact
that clustering [1] substantially outperforms the per commit approach proves even this
highly aggregated information to be valuable.

It is instructive to compare the performance of clustering [1] to that of the determinis-
tic Theil method. Both approaches use complementary information in the sense that the
deterministic Theil method captures profit heterogeneity within a node but ignores de-
mand uncertainty, whereas clustering [1] acknowledges demand uncertainty but assumes
homogeneous profits within a node (see Table 2.1). In our results, the former (latter)
approach is superior for supply rates below (above) 0.76, which suggests that for allo-
cations under low supply rates, information on profit heterogeneity is crucial, whereas
demand uncertainty becomes more important in the allocation decision for higher supply
rates. A potential explanation is that for highly scarce supply, it is optimal to strongly
prioritize the most profitable customer segments. This prioritization requires information
on profit differences between customer segments. At the same time, when supply is low,
demand uncertainty is less of an issue since supply, rather than demand, is the constrain-
ing factor. For higher supply rates, it becomes optimal to allocate quantities larger than
expected demand to high-profit customers. This requires an allocation approach that
uses stochastic demand information.

The stochastic Theil method shares and uses information on both profit heterogeneity
and (the heterogeneity of) demand uncertainty. By doing so, the stochastic Theil method
significantly outperforms all the previously discussed methods. The corresponding rpg
is consistently below 1% (see Figure 2.9). In particular, comparison of the deterministic
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and stochastic variants of the Theil method (see Figures 2.9 and 2.10) illustrates the
benefit of basing the method on expected profit curves at the leaf node level rather than
on expected demand. Thus, this process shows how to make the idea of Vogel and Meyr
(2015) of a decentralized allocation method available for stochastic demand.

The clustering methods with more than one cluster also use information on both profit
heterogeneity and demand uncertainty, but in a different way. While under the stochas-
tic Theil method, the Theil index captures the effects of both profit heterogeneity and
demand stochasticity, clustering [2] and [3] share and use aggregated profits, aggregated
mean demand, and the standard deviation of demand for two or three clusters, respec-
tively (cf. Table 2.1).

We observe that for low supply rates, the stochastic Theil method outperforms cluster-
ing [2]. However, the performance differences are small and, as shown in Figure 2.10, the
allocations have a similar structure. The performance difference is rooted in the fact that
the Theil index provides a more accurate representation of the true profit heterogeneity
across customers than does clustering [2], which accounts only for the aggregated profits
of customers that are grouped into two clusters—that is, high- and low-profit customers.
The more accurate information about customer heterogeneity enables the stochastic Theil
method to better prioritize high-profit customers. As we can see in Figure 2.10, and for
the reasons explained above, this benefit decreases as supply increases.

Compared to clustering [3], the stochastic Theil method no longer benefits from its par-
ticular measure of customer heterogeneity. At least for the baseline scenario, it appears
to be sufficient to consider three customer clusters (with high, medium and low prof-
itability) and to base allocations on aggregated information per cluster. Clustering [3]
outperforms all other allocation approaches, and its rpg is consistently below 0.5% in our
baseline scenario.

From a practical perspective, these results are remarkable because they suggest that
a relatively simple clustering logic with three clusters (high-, average- and low-profit
customers) is sufficient to obtain solutions that lead to virtually the same profit as a cen-
tralized full-information approach, which typically cannot be implemented in practice.
The stochastic Theil method leads to similar, albeit slightly lower, performance. How-
ever, because this method aggregates information on profit heterogeneity and demand
uncertainty into a single parameter (i.e., the Theil index), it requires less information to
be shared and processed in the sales hierarchy (see Table 2.1). Following our arguments
in Section 2.5, this is an advantage in terms of the complexity-performance trade-off.
This advantage, however, comes at a cost. First, expected profits are slightly lower than
those for clustering [3]. Second, from a practical perspective, the Theil index is more
difficult to interpret for different (local) planners in the sales hierarchy than are clusters
of high-, medium-, and low-profit customers. Our results suggest that both the stochastic
Theil method and clustering ([2] or [3]) yield effective allocations; companies can choose
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among these approaches based on the respective implementation effort in their particular
organizational context.

In summary, our results indicate that information on both profit heterogeneity and
demand uncertainty must be shared and used in the sales hierarchy to enable good de-
centralized allocation decisions. The relative value of either of these pieces of information
depends on the level of supply. Under severely constrained supply, it is more important
to use accurate information about profit heterogeneity to correctly prioritize customer
allocations. In situations of moderate scarcity, information about customer demand un-
certainty gains importance. However, our results suggest that a relatively low level of
granularity of this information, in conjunction with fairly straightforward allocation logic,
is sufficient to obtain very good allocations and close to optimal performance.

2.6.4. Robustness analysis

In this subsection, we assess the robustness of our results obtained for the baseline sce-
nario. To provide a conclusive answer, we conducted extensive additional numerical
analyses. Specifically, we evaluated and compared the performance of the different allo-
cation methods in 23 additional experiments in which we varied both the setup of the
hierarchy and all the relevant input parameters, as displayed in Table 2.2.

In these experiments, we explore various combinations of profit heterogeneity (achieved
by varying the support of the uniform distribution from which we draw the profits) and
CVs of demand; we also analyze the effect of heterogeneous CVs and demands by ran-
domly drawing values of these parameters for each customer from a uniform distribution
with the support specified in Table 2.2. In these experiments, we use the same 100 in-
stances of random profits as in our baseline scenario and combine them with 20 randomly
drawn CVs/demands, resulting in |I| = 2000 individual instances. Finally, we explore
whether the structure of the hierarchy has an impact on the performance and modify the
number of levels and the number of customers in the hierarchy.

In Figure 2.11, we report the arpg for the different allocation methods averaged across
all 23 scenarios of our robustness analysis. The whiskers denote the best and worst
results. The detailed results by scenario are listed in Table A.1 in Appendix A across all
supply rates and in Tables A.2 and A.3 for scarce supply (supply rate ≤ 1.0) and ample
supply (supply rate ≥ 1.0), respectively.

The summarized results presented in Figure 2.11 are consistent with the results we
obtained for the baseline scenario: clustering [3] leads to the lowest performance gaps
and strictly outperforms its contenders in all experiments. The stochastic Theil method
also produces very good results. Even though the performance slightly trails that of
clustering [3], the stochastic Theil method achieves, on average, performance gaps of less
than 0.5% for overall, scarce and ample supply.
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Figure 2.11.: arpg of the allocation rules for the scenarios of the robustness analysis

(Whiskers denote the lowest/highest arpg observed)

In addition to this high-level evaluation, we also assessed and compared the perfor-
mance of the different allocation methods for each individual experiment at different
levels of supply. We found the results to be perfectly in line with the structural insights
we derived from our analysis of the baseline scenario.
As highlighted in Section 2.1 and 2.2, our research is the first to address hierarchical
allocation planning under demand uncertainty. Therefore, it is particularly interesting to
observe, how demand uncertainty impacts the performance of the different (deterministic
and stochastic) allocation methods. As displayed in Tables A.1-A.3 in Appendix A, we
carried out experiments for different levels of demand uncertainty—that is, CVs varying
from 0.1 to 1. Figure 2.12 plots the corresponding arpg of the different allocation meth-
ods for the case of medium profit heterogeneity, homogeneous demand and scarce supply
(Experiments 2, Bl., 7, 10 13, 15, 16 and 17 in Table A.2). The results illustrate that both
Clustering [3] and the stochastic Theil method are very robust to an increase in demand
uncertainty—in fact, they achieve an arpg of close to zero, even for very high levels of
demand uncertainty (i.e. CV=1). Our numerical results suggest that both Clustering [3]
and the stochastic Theil method lead to similar (average) performance gaps, even when
demand uncertainty is high. On the contrary, the performance of the deterministic Theil
method degrades, as demand uncertainty increases. At a CV=1, the deterministic Theil
method leads to an arpg of more than 5%. In our individual experiments, the rpg for the
deterministic Theil method is more than 11% for a high CV of 1.0 and a supply rate of 1.
These results highlight the importance of explicitly accounting for demand uncertainty.
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Figure 2.12.: arpg of the allocation rules under various CVs of demand for scarce supply

2.7. Conclusion

This chapter addresses the problem of allocating scarce supply to hierarchically struc-
tured customer segments. In such hierarchies, allocation planning is an iterative and
decentralized process, in which higher-level sales quotas are disaggregated one level at a
time by multiple local planners. Optimal allocations depend on the demand distributions
and unit profits of all customer segments. However, sharing such detailed information
across the levels of the hierarchy is undesirable from a managerial perspective. There-
fore, companies commonly aggregate the demand information that is propagated through
the hierarchy. By using very coarse information, however, common information aggre-
gation approaches, such as per commit, result in ineffective allocations. In this chapter,
we address the question of what information is required on the individual levels of the
hierarchy to achieve effective allocations. We propose two corresponding decentralized
allocation methods, namely a stochastic Theil index approximation and a clustering ap-
proach. Both methods approximate the profit curve of the centralized problem and then
solve an allocation optimization problem, given that approximation.

To evaluate the performance of our proposed methods, we consider two benchmarks:
full information sharing, that is, centralized allocation, and minimum information sharing,
that is, per-commit allocation. These methods represent upper and lower bounds for the
degree of information aggregation in the customer hierarchy. Our proposed heuristics
represent an intermediate level of information aggregation.

Our results allow us to assess the importance of transmitting different types of infor-
mation. We observe that to obtain good decentralized allocations, information on both
profit heterogeneity and demand uncertainty must be shared and used in the hierarchy.
However, a relatively coarse representation of this information turns out to be suffi-
cient. In addition, information about profit heterogeneity is more important for correctly
prioritizing customer allocations in situations of scarcity, while information on demand
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uncertainty is more important in situations of moderate scarcity.
Our results suggest that both the stochastic Theil index method and clustering with

two or three customer clusters yield effective allocations; companies can choose among
these approaches based on the respective implementation effort in their particular orga-
nizational context. The stochastic Theil index method requires less information to be
shared and processed in the sales hierarchy while resulting in slightly lower expected
profits than clustering with three clusters. Additionally, the Theil index method is more
difficult to interpret for the different (local) planners in the sales hierarchy than are clus-
ters of high-, medium-, and low-profit customers. The results also show that even for
large complicated hierarchies, a relatively simple clustering logic with three clusters is
sufficient to obtain solutions that lead to virtually the same profit as a centralized full-
information approach. In addition, the performance of the clustering method can always
be improved by adding more clusters, which makes this method even more appealing for
practical applications.
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Chapter III

Multi-Period Stochastic Demand
Fulfillment in Customer Hierarchies1

3.1. Introduction

In this chapter, we expand the analysis of Chapter II, regarding DF in customer hier-
archies, to a multi-period setting. A multi-period approach is more appropriate for a
manufacturing context than the single-period approach from Chapter II. Manufacturing
provides periodic supply replenishments, products are storable, and orders can be back-
logged to future periods. These assumptions differentiate the multi-period DF problems
in manufacturing systems from the single-period problems in service industries. Basically,
Chapter II serves as a building block for this chapter.

The centralized problem with a central planner having detailed information about
all customer segments’ demand, although not practically applicable, provides a starting
point for approaches in a corresponding hierarchical setting (see Table 1.1). Centralized
multi-period problems in manufacturing environments have also been studied by Quante
(2009) and Yang (2014). What substantially differentiates our problem, is that we con-
sider a periodic setting, that is, we allow multiple orders from multiple customer classes
in each period. Considering single transactions per period, as done by Quante (2009),
requires very short time intervals, making the problem computationally intractable. On
the contrary, the periodic setting complicates the problem because it requires an addi-
tional decision, regarding the consumption of the allocated quotas. Consequently, we
formalize the centralized multi-period problem as a two-stage SDP. In the first stage, the
allocation decision is made, prior to demand realizations. The second stage specifies how
the allocated quantities are consumed, based on realized demand.

To determine an optimal allocation, we define a search procedure that compares the
expected marginal profits generated by accepting an order in a given period with the
expected opportunity cost of the available supply replenishments. However, determining
the opportunity costs exactly is computationally intractable. We therefore develop an
approximate dynamic programming heuristic to estimate the opportunity costs and define
a search procedure assuming time-phased consumption.

1Some of the material presented in this chapter appeared in the report of Cano-Belman et al. (2019),
submitted to the German Research Foundation (DFG)
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To take into account the requirements for information aggregation in the hierarchi-
cal setting, we apply a clustering method, combined with the centralized approximate
dynamic programming heuristic. As shown in Chapter II, clustering transmits crucial
information regarding profit heterogeneity and demand uncertainty in the hierarchy and
improves allocation planning in a single-period setting.

To analyze the performance of the proposed centralized and decentralized multi-period
methods, we consider the ex-post optimal solution as the (upper bound) benchmark.
Extensive numerical experiments show the superior performance of the proposed multi-
period methods, relative to single-period methods and the simplistic rules currently em-
ployed in APS.

In summary, the contributions of this chapter are:

• introducing the new problem of profit-maximizing multi-period DF in customer
hierarchies with stochastic demand;

• proposing a new two-stage SDP formulation for the centralized DF problem, con-
sidering a periodic setting with partitioned consumption;

• developing an approximate dynamic programming heuristic to determine the allo-
cations for the centralized problem that results in small profit gaps compared to
the ex-post solution;

• proposing a clustering method for the hierarchical multi-period DF problem, relying
on the approximate dynamic programming heuristic, that consistently results in
profits very close to the centralized case;

• comparing the performance of the proposed multi-period methods against repeated
single-period allocations and common rules of thumb to reflect the performance
improvement.

The outline of this chapter is as follows: in Section 3.2, we review the related literature
and position our contributions. In Section 3.3, we define the multi-period problem. In
Sections 3.4 and 3.5 we explain our solution methods to centralized and decentralized
problems, respectively. Section 3.6 evaluates the methods through extensive numerical
experiments. We explain the results and the managerial insights in Section 3.7.

3.2. Literature review

To deal with capacity restrictions in production systems, ATP systems are commonly
applied. ATP systems provide information about available capacity that can be used to
fulfill customer orders (Chen et al. 2001). Framinan and Leisten (2010) present a review
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and classification of ATP-related decision problems and applied models in literature. Al-
located available-to-promise (aATP) models in MTS systems have characteristics similar
to traditional RM problems, as they both allocate scarce resources to different customer
segments. However, unlike in service industries, the products in MTS systems are not
perishable and can be stored over multiple periods. Also, in some cases, customer orders
may be backlogged, with a penalty, to be fulfilled using future replenishments. In this
chapter we deal with this multi-period problem, considering hierarchical customer struc-
tures with stochastic demand. This section reviews the relevant literature, listed in the
multi-period columns of Table 1.1.

Ketikidis et al. (2006) analyze different order promising mechanisms in MTS systems.
They show that partial order fulfillment leads to higher performance in shortage situa-
tions, albeit at the expense of lower customer satisfaction. Their proposed optimization-
based order promising method outperforms FCFS and rank-based methods. However
they do not consider pre-allocating the ATP quantities, which limits the holding of ATP
quantities for future periods. Meyr (2009) considers two stages for ATP allocation and
consumption to deal with the DF problem in MTS systems and proposes deterministic
linear programming (DLP) models for each stage. He compares his method with or-
der promising models without customer segmentation. He shows that segmenting the
customers and pre-allocating the ATP also pay off in MTS systems, if customers are het-
erogeneous. His method, however, requires reliable information about customer demand.

Jung (2010) considers customers with different priorities and proposes an ATP model
using LP to generate delivery dates, with the objective of minimizing penalty costs. Both
Jung (2010) and Alemany et al. (2013) consider batch order processing, while here we
assume real-time order promising.

Quante et al. (2009a) are the first to apply RM for DF in an MTS system, considering
stochastic demand. They extend the deterministic model of Meyr (2009) to a stochastic
RM-based fulfillment model. Their study shows that taking uncertainty into account
can improve the performance significantly, compared to deterministic models, if forecast
accuracy is limited. Considering periodic supply replenishments differentiates the work
of Quante et al. (2009a) from the traditional RM literature. They provide the optimal
solution to the SDP which decides on order fulfillment in real time. However, their
approach is computationally intractable and cannot be applied to real-sized problems.
Yang (2014) and Eppler (2015) develop heuristics for this problem. To make the problem
tractable, Yang (2014) considers two stages for allocation planning and consumption. She
applies an LP to define the allocations, but includes safety margins, analogous to safety
stocks in inventory systems, to account for imperfect forecasts. Additionally, she applies
a bid price approach to deal with the problem. Eppler (2015) models the allocation
and consumption stages of DF as a two-stage stochastic linear program. She considers
partitioned and nested consumption rules, which are taken into account in the allocation
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planning stage. She shows that this anticipation improves the profit, especially if demand
is uncertain.

Pibernik and Yadav (2009), Tiemessen et al. (2013) and Kloos and Pibernik (2020) con-
sider service contracts with service level objectives or penalty costs. Pibernik and Yadav
(2009) consider uncertain due date preferences of customers and propose an algorithm
for real-time order promising based on the time structure in order arrivals and supply re-
plenishments to determine supply allocations to high priority customers. Tiemessen et al.
(2013) propose a dynamic allocation rule for real-time order fulfillment, minimizing deliv-
ery cost and penalty cost, in a multi-location setting. They solve small problem instances
optimally and propose an estimated policy for larger problems. They show that their
dynamic approach outperforms the commonly applied static rules. Kloos and Pibernik
(2020) tackle the allocation planning problem under service level contracts by proposing
an SDP. They analyze the structural properties of the SDP to derive the requirements
for a good approximation policy to deal with the curse of dimensionality. Accordingly,
they propose new heuristics that provide near optimal results.

Our centralized (flat) problem is closest to the work of Quante et al. (2009a). What
substantially differentiates our model is that we consider a periodic setting, that is, we
allow multiple orders from multiple customer classes in each period. Besides, we do not
allow transshipments. Therefore, we determine partitioned rather than nested allocations.
We formalize the centralized problem as a two-stage SDP and characterize its optimal
policy. Due to the curse of dimensionality, solving the problem exactly is computationally
intractable. Thus, we develop an approximate dynamic programming heuristic based on
randomized linear programming (RLP).

Using bid prices is common in RM. Due to the curse of dimensionality, different approx-
imation methods for calculating the bid prices are proposed in literature. DLP, based on
the expected demand, is one of the first such approximation methods (Williamson 1992).
To improve the DLP method, Talluri and Van Ryzin (1999) proposed the RLP method
in which samples of demand realizations are used to solve the LP repetitively. The corre-
sponding results to different samples are then averaged to create the bid prices. Topaloglu
(2009a) shows that the RLP method is asymptotically optimal and leads to higher rev-
enues compared to DLP. Chapter IV includes a more extensive review of literature on
bid price approaches.

While all of the above literature assumes flat customer structures, we consider hierarchi-
cal sales organizations. The hierarchical multi-period DF problem, like the single-period
one, has barely been addressed in literature. Cano-Belmán and Meyr (2019) build on
Vogel and Meyr (2015)’s approach and provide heuristics using Theil index for multi-
period deterministic hierarchical DF, while addressing multi-period interdependencies.
In this chapter, we build on the insights from Chapter II and transfer the analysis to the
multi-period setting. We choose clustering as our decentralization method and adapt it
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for the multi-period problem, incorporating the RLP heuristic.

3.3. Problem definition

We tackle the DF problem in customer hierarchies with stochastic demand, considering
periodic supply replenishments. We define the hierarchy, as in Chapter II, with M + 1

levels and N nodes, as shown in Figure 3.1. Let Im denote the set of all nodes on level
m. Node 0 ∈ N denotes the root node and L = IM denotes the set of leaf nodes,
representing the base customer segments. For each node n ∈ N , let Sn be the set of
its successor nodes, with each node having a unique parent node. We consider a finite-
horizon problem with T time periods. To differentiate supply and demand periods, we
use indices t and τ for them, respectively. Let St be the supply quantity arriving in period
t and define S = (S1, ..., ST ). Further, let Dl,τ be the random demand from customer
segment l in period τ , with a known probability distribution fl,τ , with mean dl,τ and
standard deviation σl,τ . Let pl,τ denote the unit profit of customer segment l in demand
period τ . In such a setting, besides deciding about accepting or rejecting an order,
the possibility of order backlogging and inventory holding are considered. Therefore, in
the allocation phase, multiple supply buckets from different supply replenishments are
allocated to each node. Accordingly, in the consumption phase, we need to decide for
each order how much of which supply bucket to consume. Allocation planning and order
promising considering multiple supply buckets differentiates the multi-period problems
from single-period problems of Chapter II. We consider a common unit holding cost per
period, h, and a segment-specific unit backlogging cost bl.

Aggregated demand information is transmitted from the bottom to the top of the
hierarchy. In each period, the supply allocations to the nodes are determined from the
top to the bottom of the hierarchy, based on the aggregated information. The decision
variables xn,t,τ define the allocations to node n from supply arriving in period t for
consumption in period τ . If t < τ , xn,t,τ indicates inventory holding from supply of period
t for consumption in the future period τ ; conversely, if τ < t it indicates backlogging of
orders of period τ to be fulfilled using the supply available in period t, as illustrated in
Figure 3.1.

We allow multiple orders from different customer segments to arrive in each period.
Consequently, an additional decision, regarding the consumption of the allocated quotas
needs to be made in real time for each arriving order. The allocation decision is made
based on the projected demand information, before orders materialize. Given the allo-
cations xl,t,τ , and based on the materialized orders at the leaf nodes, the consumption
variables, ul,t,τ , are determined which define the quantity from supply of period t con-
sumed to fulfill the demand of the customer segment l in period τ . Transshipments are
not allowed in the hierarchy. Due to the required commitment, only partitioned con-
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sumption is considered. At the end of each period, unconsumed supply might remain at
each node. We assume that these leftovers can be freely reallocated in the next period.

Figure 3.1.: Multi-period hierarchical customer structure

Based on the above assumptions, we first investigate the centralized problem, with full
demand information in Section 3.4. In Section 3.5, we then use the resulting solution
method to solve the iterative allocation problems, based on aggregated information, for
decentralized planning.

3.4. Centralized planning

In the centralized case, a central planner, with full information about the leaf nodes’
demand distributions, determines the supply allocations to the base customer segments
directly. At the beginning of each period, the allocations to the leaf nodes are determined
before orders materialize. During the period, orders from different leaf nodes arrive, which
consume allocated supply in real time. Thus, besides the allocation decision, consumption
decisions regarding order promising need to be made, to determine the generated profit.
We formalize the centralized multi-period problem as a two-stage SDP. In general, in two-
stage stochastic programs, decisions regarding the first-stage variables are made before
the values of uncertain parameters are observed. Subsequently, based on these decisions,
the second-stage recourse variables are determined after a realization of the uncertain
parameters is observed. In our proposed SDP, the first stage variables are xl,t,τ which
specify the allocations. The second stage concerns the consumption decision, with ul,t,τ
as the recourse variables.

Given ul,t,τ , Equation 3.1 shows the profit contribution generated from demand from
customer segment l in period τ , which equals the income generated from supply of dif-
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ferent periods, pl,τ
∑

t ul,t,τ , minus the backlogging cost for the part of the order fulfilled
using future supply, bl

∑
t ul,t,τ (t− τ)(1− δt,τ ), plus the inventory holding cost savings of

the part of the order fulfilled using supply of previous periods, h
∑

t ul,t,τδt,τ .

Pl,τ = pl,τ
∑
t

ul,t,τ − bl
∑
t

ul,t,τ (t− τ)(1− δt,τ ) + h
∑
t

ul,t,τδt,τ (3.1)

where

δt,τ =

1 if t ≤ τ

0 if t > τ
(3.2)

We define pl,t,τ as the marginal profit generated from fulfilling an order from customer
segment l in period τ using supply replenishment St as:

pl,t,τ = pl,τ − bl(t− τ)(1− δt,τ ) + hδt,τ (3.3)

We can then rewrite:

Pl,τ =
∑
t

pl,t,τul,t,τ (3.4)

Letting uτ = (ul,t,τ )l∈L,t∈[1,...,T ], we then formalize the centralized problem as below.

Problem 3.1 (Two-stage multi-period centralized allocation).

Pτ (S) = maximize∑
l,τ xl,t,τ≤St
0≤xl,t,τ

E[maximize
ul,t,τ≤xl,t,τ∑
t ul,t,τ≤Dl,τ
0≤ul,t,τ

{
∑
t

(
∑
l

pl,t,τ · ul,t,τ − hStδt,τ ) + Pτ+1(S − uτ )}]

with boundary condition PT+1(S) = 0

The optimal allocations maximize the expected value of the profit generated in the
consumption stage, subject to the supply constraints. The consumption variables maxi-
mize the total profit generated in the current period, minus the inventory holding cost of
supply of previous periods, plus the profit-to-go of future periods, considering the current
fulfillment decision.

Due to the curse of dimensionality, the SDP is computationally intractable. Besides,
the two-stage problem is complicated to investigate. Thus, in the next section we offer a
heuristic approach.
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3.4.1. Heuristic solution approach

To simplify the complexity of the two-stage problem, we use time-phased consumption
as a heuristic method at the second stage and transform the problem into a single-stage
problem. Then, to deal with the curse of dimensionality, we apply RLP.

Time-phased consumption would be optimal if we only considered a single period.
In a multi-period setting, this approach ignores the effects of the current decision on
future profits. Leftovers from the current replenishment may be more valuable in the
future periods, so orders in the current period may be backlogged, despite having supply
at hand. However, for similar multi-period problems in MTS systems, Quante et al.
(2009a) and Yang (2014) show that time-phased consumption is optimal, and results
in nested protection levels for each customer segment from each supply replenishment.
What differentiates our problem from theirs is that instead of a single order per period,
we allow orders from multiple segments per period. Thus, time-phased consumption
no longer guarantees to be optimal but seems a reasonable heuristic, given the right
allocations to each customer segment. The right allocations, besides profit maximization
in the current period, need to take the effects on profit in future periods into account.
In our heuristic, we use a myopic consumption approach and change the model into a
single-stage dynamic allocation model. The resulting model is a multi-segment version
of Quante et al.’s (2009a) model.

Considering time-phased consumption, the second stage variable equals:

ul,t,τ = min(xl,t,τ ,max(0, Dl,τ −
t−1∑
t′=1

xl,t′,τ )) (3.5)

Dl,τ −
∑t−1

t′=1 xl,t′,τ is the remaining demand of segment l in period τ that is not fulfilled
using earlier supply replenishments. ul,t,τ , is zero if the remaining demand is zero. Other-
wise, if the allocation xl,t,τ to segment l in period τ is larger than the remaining demand,
all the remaining demand is fulfilled, else ul,t,τ equals xl,t,τ .

Letting et denote the t-th unit vector, we can rewrite Problem 3.1 as follows.

Problem 3.2 ( Single-stage multi-period centralized allocation).

Pτ (S) = maximize∑
l,τ xl,t,τ≤St
0≤xl,t,τ

E
[ ∑
τ ′=τT

∑
t

(
∑
l

pl,t,τ ·min(xl,t,τ ,max(0, Dl,τ −
t−1∑
t′=1

xl,t′,τ ))− hStδt,τ )+

Pτ+1(S −
(∑

τ

∑
t

∑
l

et ·min(xl,t,τ ,max(0, Dl,τ −
t−1∑
t′=1

xl,t′,τ ))
)
)
]

with the boundary condition PT+1(S) = 0
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Definition 3.1.

Let ∆tPτ (S) = Pτ (S)− Pτ (S − et) for St ≥ 1

∆tPτ (S) defines the expected marginal value in period τ of a unit of supply arriving
in period t. Using Definition 3.1 and letting xτ = (xl,t,τ )l∈L,t∈[1,...,T ] we have:

Pτ (S − xτ ) = Pτ (S − xτ + e1)−∆tPτ (S − xτ + e1) =

Pτ (S − xτ + 2e1)−∆tPτ (S − xτ + 2e1)−∆tPτ (S − xτ + e1) = ... =

Pτ (S)−
∑
t

∑
l

xl,t,τ∑
z=1

∆tPτ (S − xτ +
t∑

t′=1

L∑
l′=1

T∑
τ ′=τ+1

etxl,t,τ ′ +
t−1∑
t′=1

L∑
l′=1

et′xl′,t′,τ + etz) (3.6)

Using the above equation, we decompose the fulfilled orders into single unit steps,
similar to Quante et al. (2009a), and rewrite the value function of Problem 3.1, as follows.

Pτ (S) = maximize∑
l,τ xl,t,τ≤St
0≤xl,t,τ

E
[∑

t

(
∑
l

pl,t,τxl,t,τ − hStδt,τ ) + Pτ+1(S)−

∑
t

∑
l

xl,t,τ∑
z=1

∆tPτ+1(S − xτ +
t∑

t′=1

L∑
l′=1

T∑
τ ′=τ+1

etxl,t,τ ′ +
t−1∑
t′=1

L∑
l′=1

et′xl′,t′,τ + etz)
]

=

Pτ+1(S)− h
τ∑
t=1

St + maximize∑
l,τ xl,t,τ≤St
0≤xl,t,τ

E
[∑

t

∑
l

xl,t,τ∑
z=1

(
pl,t,τ−

∆tPτ+1(S − xτ +
t∑

t′=1

L∑
l′=1

T∑
τ ′=τ+1

etxl,t,τ ′ +
t−1∑
t′=1

L∑
l′=1

et′xl′,t′,τ + etz)
)]

(3.7)

In the above formulation, the total profit in period τ with supply S is equal to the
total profit in the next period with the same amount of supply, plus the expected profit
generated from fulfilling each demand unit in period τ minus the opportunity cost of that
unit of supply in period τ + 1.

The above formulation, presents the maximization problem as a trade-off between allo-
cating a unit of supply to a node in the current period, and the corresponding opportunity
cost. The maximization problem in each demand period is a stochastic continuous multi-
knapsack problem. The decision variables are the allocations to the customer segments in
the current period, τ , and the quotas preserved for future periods. The optimal solution
balances the expected marginal profits (EMP) of all the segments in the current period
and the opportunity costs. Definition 3.2 shows how the EMPs are calculated.

Definition 3.2 (EMP). The EMP of fulfilling a unit of an order from customer segment
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l in demand period τ using available supply of period t equals:

EMPl = pl,t,τP (Dl,τ ≥
t∑

m=1

xl,m,τ )

The RLP method

Due to the curse of dimensionality, finding the exact opportunity costs is computationally
intractable. Thus, we propose a heuristic method based on RLP, which is a commonly
used heuristic in RM literature for defining control policies to make accept or reject
decisions (Talluri 2008). In this method, the value function is approximated and then
the gradient of the approximated function is considered as a vector of bid prices. To
provide the value function approximation, we consider perfect information approximation
(Talluri and Van Ryzin 1999), in which a random vector of demand realizations is used, to
incorporate demand uncertainty. Here, we use the random demand vector to approximate
Pτ+1(S) and calculate ∆tPτ+1(S) as defined in Definition 3.1.

We consider I independent samples of the random demand vector, Di∈I , including
demand realizations for a planning horizon of T periods, and solve Problem 3.2 for each
sample. Let Piτ (S,Di) denote the total profit in period τ with supply S for the ith

demand sample, Di = (di,l,τ )l∈L,τ∈[1,...,T ]. Considering Di, for demand realizations in
periods τ + 1 to T , the allocation problem reduces to the deterministic linear program in
Problem 3.3 which we solve to optimality, using common linear solvers to find the values
of Piτ+1(S,Di) and Piτ+1(S − et, Di).

Problem 3.3 ( Deterministic linear program).

Piτ (S,Di) = maximize∑
t xl,t,τ ′≤di,l,τ ′ ∀l,τ ′∑
l,τ ′ xl,t,τ ′≤St ∀t∈T

0≤xl,t,τ ′

∑
t

∑
l

p′l,t,τ ′ · xl,t,τ ′

with p′l,t,τ = pl,τ − bl(t− τ)(1− δt,τ )− h(τ − t)δt,τ

We then estimate the opportunity cost of each unit of supply as:

∆tPτ+1(S) :≈ 1

I

∑
i

{Piτ+1(S,Di)− Piτ+1(S − et, Di)} (3.8)

To balance the EMP of customer segments and the opportunity costs, we define a
search procedure starting from the earliest supply replenishment. The customer segment
with the highest EMP receives an allocation as long as the segment’s EMP is larger than
the opportunity cost. This procedure will be iterated for each supply replenishment until
a stopping criterion is met. Talluri and van Ryzin (2004) show that the opportunity costs
are increasing in allocations for the single-resource capacity control problem. Intuitively,
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this property also holds for our setting. On the contrary, the EMPs in each period are
decreasing in allocations. Thus, the search can be stopped as soon as the opportunity cost
exceeds the maximum EMP in the current period. Moreover, to reduce the search space,
instead of considering the opportunity costs of all available supply replenishments, only
a time-phased line search in order of supply availability is considered, which performs
well in the related models of Quante et al. (2009a) and Yang (2014). In summary, the
allocations are determined based on the following algorithm. We assume that there are L
nodes in the current period and the index L+ 1 shows the allocations for future periods
as a dummy node.

Algorithm 3.1. Line search to define the allocations to customer segments in period τ :

• for t = 1, ..., T :

• for l = 1, ..., L:
xl,t,τ = 0

• let continue = true

• for t = 1, ..., T :

• while continue == ”true” and St > 0:

• For l = 1, ..., L :

EMPl = pl,t,τP (Dl,τ ≥
∑t

m=1 xl,m,τ )

• EMPL+1 = ∆tPτ+1(St −
∑

k∈L
∑t

m=1 emxk,m,t)

• i = argmax(EMPj for j = 1, ..., L+ 1)

• if i 6= L+ 1:

· xi,t,τ = xi,t,τ + 1

· St = St − 1

• else:

· continue = false

Return xl,t,τ

3.5. Decentralized planning

In the decentralized case, there is no central planner, and the allocation decisions are made
iteratively by multiple planners on different levels of the hierarchy based on aggregated
demand information. This problem was investigated for a single period in Chapter II. In
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this chapter, we expand the analysis to a multi-period setting. To this end, we modify and
apply the clustering approach, introduced in Chapter II, as the information aggregation
function.

We apply K-means clustering based on unit profits in order to determine C clusters for
each demand period in the planning horizon. We use the same number of clusters C on
all levels of the hierarchy, except for the leaf nodes where we set C = 1, meaning that all
information will be transmitted from leaf nodes to their parent nodes. The information
vector ((dkτj, σkτj, pkτj))k∈Sn,τ∈planning horizon,j=1,...,C is available for the planner at node
n, which includes the information about C clusters per successor node, for each demand
period in the planning horizon. (dkτj, σkτj, pkτj) denote the aggregated mean and standard
deviation of demand and average unit profit of cluster j of successor node k in the demand
period τ . This information is further aggregated by the planner at node n by building C
new clusters out of C ∗|Sn| received clusters for each demand period τ , applying K-means
clustering repetitively, as explained in Chapter II. For each new cluster, the aggregated
demand distribution and weighted average unit profit will be transmitted from node n to
its parent node in the hierarchy.

The clustered information will be transmitted level by level from the bottom to the top.
Then, the available supply will be allocated from the top to the bottom of the hierarchy.
Starting from the root node, the planner determines the allocations, taking into account
the multi-period information. Thus, the amount of supply preserved for future periods
and the limits on back-ordering for the current demand period are determined. Figure
3.2 depicts the allocations made by the planner at the root node by blue lines, considering
two clusters per node. These allocated quantities will then be reallocated level by level
by the intermediate planners. Multi-period inter-dependencies have already been taken
into account in the first level allocations, and the amount of supply preserved for future
periods is determined on that level. Therefore, future demand periods are only taken
into account on the first-level allocations, and the intermediate planners reallocate the
received supply buckets from different periods to their successors for consumption in the
current demand period, as shown with red lines in Figure 3.2.

3.5.1. Allocation planning at the root node

Having received the clustered information for the periods of the planning horizon, in-
cluding aggregated demand distribution and unit profit, the planner at the root node
allocates the available supply to the nodes on level 1, as illustrated with blue lines in
Figure 3.2. The problem is similar to the centralized problem, but the decision variables
are the allocations to the clusters. Thus, Algorithm 3.1 is applied. The allocations de-
termine the quotas from different supply replenishments, which can be consumed in the
current demand period.
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Figure 3.2.: Multi-period decentralized allocations with two clusters

3.5.2. Iterative allocation planning at intermediate levels

Allocations in intermediate levels of the hierarchy are determined for single-period con-
sumption in each demand period, with multiple supply buckets. For each demand period
τ , the planner reallocates the supply buckets among his successors, with the objective of
maximizing the total expected profit in the current demand period, as shown in Problem
3.4. The available supply bucket from period t to be reallocated in period τ , denoted by
Xn,t,τ , is equal to the sum of allocations to different clusters of the parent node n, from
available supply of period t. Xn,τ denotes the vector of available supply buckets allocated
to node n in demand period τ . xl,t,τ,c is the decision variable, defining the allocation to
cluster c of node l in demand period τ from supply replenishment of period t. pl,t,τ,c is
the unit profit of cluster c of node l in demand period τ using supply of period t, and
Dl,τ,c is the demand of cluster c of node l in period τ .

Problem 3.4 (Allocation planning in intermediate node n for demand period τ).

maximize Pτ (Xn,τ ) = EDl,τ,c [
C∑
c=1

∑
l∈Sn

∑
t

pl,t,τ,c ·min(xl,t,τ,c,max(0, Dl,τ,c −
t−1∑
t′=1

xl,t′,τ,c))]

s.t.
C∑
c=1

∑
l∈Sn

xl,t,τ,c ≤ Xn,t,τ ∀n, t

0 ≤ xl,t,τ,c ∀l, t, τ, c
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with

Xn,t,τ =
C∑
c=1

xn,t,τ,c ∀n, t

and

pl,t,τ,c =

pl,τ,c − (t− τ) · bl,c if t > τ

pl,τ,c − (τ − t) · h if t ≤ τ

Problem 3.4 is a stochastic continuous multi-knapsack problem. The optimal solution
balances the expected marginal profits of allocating to the nodes in period τ . Therefore,
the line search heuristic of Algorithm 3.1 is applied, considering a single demand period.
In each iteration, the node with the highest EMP receives an allocation. The iterations
continue until all the available supply buckets are reallocated to the successors.

3.6. Numerical experiments

In this section, we evaluate the performance of the multi-period allocation methods,
proposed in this chapter, by means of a rolling-horizon simulation and compare them to
the single-period methods of Chapter II, through a large-scale numerical experiment.

Further, we show the performance improvement resulting from our proposed methods
by comparing them to per-commit allocation, which is a common rule currently used in
APS. The details of per-commit allocation are explained in Chapter II.

The ex-post optimization provides the upper bound for the total profit, which is based
on a full knowledge of materialized orders. The optimization problem is a determinis-
tic linear program as in Problem 3.3, in which the realized demand values are used as
the vector Di. This is our benchmark for analyzing the performance of our proposed
centralized and decentralized methods.

As our main performance measure, we average the relative profit gap of each method
under consideration (denoted with A) from the ex-post optimization (P expost

i (S)) with
supply of S over i ∈ I instances, as shown in (3.9).

gap(S) = 1− 1

|I|
∑
i∈I

PA
i (S)

P expost
i (S)

(3.9)

3.6.1. Simulation environment

A simulation scenario consists of a problem instance, an allocation function, and a con-
sumption function. Each instance can be replicated by randomly drawing the stochastic
parameters from their probability distributions.
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For each problem instance, a customer hierarchy with M levels and L base customer
segments is defined. Orders from each base customer segment are characterized by a
demand period and an order quantity. To define the order quantities, first, total demand
for each customer segment and period, dl,τ , is generated using a negative binomial dis-
tribution, parameterized to have a mean demand, d, of 10 and a standard deviation, σ.
To control the level of dispersion of demand around the mean, we choose σ such that the
demand values have a coefficient of variation of CV S (σ = 10 n√

n
CV S, where n is the

number of base customer segments). The order quantities from each customer segment,
l, are then obtained by dividing the generated total demand per period by the number
of orders in each period from that segment. The number of orders per period, ol,τ , is
Poisson-distributed with λ = 10. So, all orders from customer segment l in period τ have
the same size of:

ok,l,τ = dl,τ/ol,τ ∀k ∈ [1, ..., ol,τ ] (3.10)

This process is repeated for all customer segments. Orders from different customer
segments in each period arrive with a random sequence, that is, a more profitable order
may be followed by a less profitable order or vice versa. The generated orders in each
period are first saved in a matrix, in order of their corresponding customer segments. To
obtain a random arrival sequence of orders, the elements of the matrix are shuffled by
modifying their sequence in place using a function called “shuffle”, included in the Numpy
library.

To generate supply values, the total demand during the whole simulation horizon is
taken into account, which is reduced considering the shortage rate. The resulting value is
the total available supply over the whole simulation horizon, which is then divided among
the periods. This way, the supply replenishment amounts are equal in all periods, while
demand fluctuates. In our experiments, the coefficient of variation of the total demand
(CV S) acts as a measure to create a dissimilarity of the supply/demand ratio across
periods.

The simulation procedure is based on a rolling-horizon approach, with a simulation
horizon, H, of 50 periods, a planning horizon, T , of three periods in the base case, and a
re-planning frequency of one period. At the beginning of each period, allocations are de-
termined for all periods of the planning horizon. For single-period allocation approaches,
the allocations are determined separately for each period of the planning horizon. Dur-
ing each period, the orders arrive with a random sequence and they are processed in
the sequence of their arrival. We assume that all orders arrive with zero demand lead
time and are due in the current period. Orders are fulfilled according to the specified
time-phased consumption method: First the corresponding customer’s allocation in the
current period is consumed; and if it is exhausted, demands are backlogged, up to the
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Figure 3.3.: Hierarchy size for the base case

level determined by the allocation approach. Note that this is only the case for our multi-
period allocation approaches—single period approaches do not “plan” for backlogging. If
no allocated supply is found, orders are rejected, and the profit is lost. The total profit
over the simulation horizon is returned for each method. The simulation environment is
implemented in Python (2.7).

3.6.2. Experimental setup

For the base case, we consider a balanced and symmetric four-level hierarchy with a total
of 27 base customer segments as shown in Figure 3.3. For all base customer segments,
we assume a mean demand of 10 units and a coefficient of variation (CV ) of 20%. For
each base customer segment, three cost parameters should be defined: the unit profit,
back-ordering cost and inventory holding cost. We draw the profits from a uniform
distribution with the interval [pmin, pmax]. pmin and pmax are chosen to provide the desired
profit-heterogeneity which we measure with the “relative range” RR = 2(pmax−pmin)

pmax+pmin
.

For the base-case, we consider the unit back-ordering cost (K) per period equal to 10%

of the unit profit of each customer segment. Further, we set the annual unit inventory
holding cost, h, for storing an item equal to 30% of the minimum unit profit of all
customers. We consider one week as one period. Thus, the simulation horizon of 50
periods is equivalent to one year. The unit inventory holding cost per period is equal to
0.6% of the minimum unit profit. Thus, unit back-ordering costs are set larger than unit
inventory holding costs per period.

All our experiments are run for 50 periods and 20 instances. For each problem instance,
we determine the supply replenishments so as to create a shortage rate of 10% over
the whole simulation horizon. We use the parameter CV S to control the coefficient
of variation of shortage rates in different periods. Therefore, the higher the CV S, the
more fluctuation in different periods. The parameter settings for the base case and
variations for our experiments are included in Table 3.1. Similar experiments considering
deterministic demand have been conducted by Cano-Belmán and Meyr (2019) to evaluate
their proposed deterministic allocation methods.
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Table 3.1.: Hierarchy Parameterization

Parameter Base case Variations

Forecast error (CV ) 20% 10%, 30%, 40%

Shortage rate 10% 0%, 20%, 30%

CVS 10% 20%, 40%, 60%

Planning horizon (T ) 3 1, 5, 7

Profit-Heterogeneity (RR) 164 0, 30, 90, 133, 180

Mean demand (d) 10

Backorder cost (K) (per period) 10% 1%, 5%, 20%, 40%

Holding cost (h) (annual) 30%

(per period) 0.6%

Simulation horizon (H) 50

Hierarchy levels (M) 4 3, 5

Number of customers (L) 27 9, 81

3.6.3. Results for the base case

Figure 3.4 shows the base case results, that is, the average profit gap of the centralized and
decentralized methods from the ex-post optimal. At first glimpse, we see that as expected,
per commit results in the highest profit gap. In comparison, the single-period profit-based
methods considerably improve the performance, yet the multi-period methods improve
the performance further and lead to the lowest profit gap. Per commit has an average
profit gap of 7.3%. Single-period decentralized planning with only one cluster already
improves the performance by 4.1%. This is because besides average demand, average unit
profits and demand uncertainty of successors are considered in defining the allocations.
Next, in line with the results of Chapter II, we see the performance improvement resulting
from increasing the number of clusters in the single-period methods. This is due to the
increase in the amount of transmitted information regarding customers’ heterogeneity
in the hierarchy, leading to better prioritization of customers. Changing the number
of clusters from one to two results in an almost one percent performance improvement;
whereas, the performance improvement resulting from increasing the number of clusters
from two to three is marginal. Intuitively, the centralized single-period method leads
to the best performance among the other single-period methods, with a profit gap of
2.22%. Nonetheless, decentralized methods with two or three clusters provide results
only marginally different from that.
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To see the effects of multi-period planning on performance, we compare the multi-
period methods to the single-period methods. Multi-period centralized and clustering
methods provide 0.8% and 0.6% improvement compared to their single-period counter-
parts, respectively. This is resulting from consideration of the information about future
periods in allocation planning and shows the importance of multi-period anticipation.
Single-period methods do not consider backlogging options, but multi-period methods
plan for backlogs, which increases the total generated profit. The clustering method for
decentralization also works for the multi-period case and leads to results very close to the
centralized method, with the number of clusters having marginal effects on performance.

Figure 3.4.: Average profit gap of methods from ex-post optimal in the base case

3.6.4. Sensitivity analysis

To evaluate the impact of different parameters on the performance of the proposed meth-
ods we vary them, one at a time, as detailed in Table 3.1. For the base case, cluster-
ing with two clusters provides near optimal results for decentralized planning for both
single-period and multi-period methods. Thus, in the following experiments, we consider
decentralized planning with two clusters and compare the methods. Figure 3.5 depicts
the results of the experiments.

As seen in Figure 3.5, the more advanced profit-based methods always outperform per-
commit allocation, except for cases with no shortage (Figure 3.5-(a)) or for low customer
heterogeneity (Figure 3.5-(c)). When the shortage rate is low or customers are largely

54



III. Multi-Period Stochastic Demand Fulfillment in Customer Hierarchies

homogeneous, all methods have a similarly good performance, because prioritizing the
customers is less crucial in such cases. Increasing the profit heterogeneity or the shortage
rate affects the performance of per commit and the difference between the profit-based
methods and per commit increases drastically. This is because per-commit allocation
is based only on average demand, and information regarding profit heterogeneity and
demand uncertainty is ignored; thus, it cannot sufficiently prioritize the customers when
needed. These results are in line with the insights from Chapter II, showing that good
profit function approximation in the allocation stage, based on the right aggregated in-
formation, leads to considerable improvement in total generated profits. For the other
experiments, per commit results in a relatively stable average profit gap of around 7.5

percent, which is not considerably affected by the varying parameters. The performance
difference between the profit-based methods and per commit also remains fairly con-
stant in these cases, except for increased demand uncertainty, which results in decreased
performance difference (Figure 3.5-(b)), and that is due to the reduced performance of
profit-based methods if demand uncertainty is high.

Moreover, in all cases, except for cases with no shortage or with homogeneous cus-
tomers, multi-period planning outperforms single-period planning. Next, we compare
these methods in more detail.

Multi-period versus single-period planning

Multi-period planning is computationally more demanding than single-period planning.
Here, we compare both methods in more detail to find out in which cases multi-period
planning pays off, compared to repeated single-period planning. To this end, Figure 3.6
complements the results from Figure 3.5 by showing the absolute difference in average
profits between the centralized multi-period and single-period methods and also between
decentralized methods in each case.

Figure 3.6-(a) shows the influence of shortage rate on performance difference. If there
is no shortage, all single-period and multi-period methods perform similarly, but an in-
creased shortage rate results in a higher performance difference between the multi-period
and single-period methods. For a shortage rate of 30%, the profit difference between
centralized methods is almost 1.5% and almost 1.9% between the decentralized methods.
The main difference between single-period and multi-period methods is the availability
of backlogging in multi-period methods. If the shortage rate is low, almost all orders
will be accepted, so both single-period and multi-period methods will perform similarly
well. However, when the shortage rate is high, backlogging becomes more important, as
it prevents lost sales from more profitable customer segments, leading to increased profits
in the multi-period approach.

As seen in Figure 3.5-(b), the performance of all single-period and multi-period meth-
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ods is decreased for increased demand uncertainty, as higher uncertainty makes planning
more difficult. The total generated profit is dependent on predefined allocations, which
are determined based on distributional demand information. When demand uncertainty
is high, realized demand may deviate more considerably from projected demand, which
affects the performance. Figure 3.6-(b) shows the profit difference between the multi-
period and single-period methods, which is slightly decreased for higher demand uncer-
tainty. The reason is that holding inventory in the multi-period model is riskier when
demand uncertainty is high. Thus, single-period and multi-period methods perform more
similarly in this case.

Figure 3.6-(c) shows that the profit difference between the multi-period and single-
period methods increases for higher profit heterogeneity. When customers are more
heterogeneous, prioritization has a more considerable effect on profit. In single-period
planning, the amount of fulfilled orders in each period are limited to the available supply
in the current period, which may cause lost sales. In multi-period planning, the availabil-
ity of backlogging leads to a lower amount of lost sales from more profitable customers.

In Figure 3.6-(d), the planning horizon for multi-period methods is increased from
one to seven periods, thus more information regarding future periods is provided for
the planner, and more backlogging options will be available. This results in a higher
performance for multi-period methods and, hence, increases the profit gap between single-
period and multi-period methods in both centralized and decentralized cases. However,
the performance increase of the multi-period methods has a higher rate when changing
the planning horizon from 1 to 3 compared to changing it from 5 to 7 periods. Clearly,
because of inventory holding and backlogging costs, reserving inventory or backlogging
demand is only beneficial over a limited time horizon. Thus, considering an even longer
planning horizon does not further improve profits.

Figure 3.6-(e) shows the effect of shortage-rate fluctuations on performance difference.
The higher the fluctuations, the larger the difference between multi-period and single-
period planning. When shortage-rate fluctuations are high, the difference between the
periods is bigger, making multi-period planning more crucial, because it leads to lower
lost sales from more profitable customer segments compared to single-period planning.

Figure 3.6-(f) illustrates that the performance difference between single-period and
multi-period methods is not considerably influenced by the unit backlogging cost. The
slight decrease for high unit backlogging costs is because in that case the multi-period
methods backlog less orders, performing more similarly to the single-period methods.

Figure 3.5-(g) shows that the performance of the profit-based methods is not consid-
erably influenced by the size of the hierarchy. Moreover, decentralized allocations with
two or three clusters provide near optimal results even for larger hierarchies, confirming
the insights from Chapter II. We see a slight performance decrease for the decentral-
ized single-period method, as the number of levels of the hierarchy increases. In such
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cases, the clustered demand information deviates slightly more from the base customer
segments’ demand, causing a small decrease in performance. This effect is less consider-
able in the decentralized multi-period method, as the possibility of inventory holding and
backlogging mitigates the effects of information aggregation to some extent. This explains
the slightly increased difference between decentralized methods for larger hierarchies in
Figure 3.6-(g).

Overall, multi-period planning outperforms single-period planning, except for extreme
cases with no shortage, or for homogeneous customers. Considering multi-period planning
is especially more important for cases with a high shortage rate or high shortage-rate
fluctuation in different periods, or for strongly heterogeneous customers.

3.7. Conclusion

In this chapter we studied the multi-period DF problem in MTS manufacturing systems,
considering hierarchically structured customer segments with stochastic demand. Two
characteristics make this problem setting practically relevant for production systems.
First is the consideration of periodic supply replenishments and the possibility of holding
inventory and backlogging. Second is the consideration of hierarchically structured cus-
tomer segments and requiring decentralized planning. In such hierarchies, DF decisions
are made iteratively by multiple planners in different levels of the hierarchy, based on
aggregated information.

To address this problem, we first characterized the centralized problem as a two-stage
SDP problem. Due to the curse of dimensionality, this problem is computationally not
tractable. Thus, we proposed a heuristic solution method using approximate dynamic
programming. For the decentralized problem, we then applied a clustering method, rely-
ing on the approximate dynamic programming heuristic.

Our numerical experiments confirm that our proposed approximate dynamic program-
ming heuristic for the centralized problem provides results very close to the ex-post
optimal solution. Moreover, applying clustering for decentralization results in almost the
same profits as the centralized case for the multi-period problems and drastically out-
performs per commit, which is a common allocation rule currently applied in practice.
The decentralized methods result in similarly good performance for an increased number
of customers or levels of the hierarchy. This confirms that few number of clusters lead
to near optimal profits, even for larger customer hierarchies. These outcomes are in line
with the results of Chapter II.

Comparing the performance of the proposed multi-period methods against repeated
single-period allocations highlights the importance of considering the periodic inter-
dependencies in allocation planning. For all cases, except for cases with no shortage
or for homogeneous customers, multi-period methods out-perform single-period methods.
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Multi-period planning is especially more important when prioritizing more profitable cus-
tomers becomes more crucial, that is for the cases with considerable shortage rate, high
shortage-rate fluctuations, or for more heterogeneous customers.
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Figure 3.5.: Sensitivity of profit gap of single-period and multi-period methods relative
to ex-post optimal
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Figure 3.6.: Absolute difference between profit gap of multi-period and single-period
methods
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Chapter IV

Impact of the Consumption Function
on Total Profit

4.1. Introduction

In the previous chapters of this thesis, we primarily concentrated on the allocation plan-
ning stage of the DF problem, in which available supply is allocated to different customer
segments based on distributional demand information. In this chapter, we focus on the
consumption stage, which determines how materialized customer orders are fulfilled. De-
cisions regarding whether to accept or reject a customer order and which available supply
buckets to use to fulfill an order are made in the consumption stage. As a point of
reference, we look at how such decisions are made in traditional RM problems.

Solution methods to RM problems can be divided into static and dynamic categories.
Static methods assume a low-before-high arrival sequence for customer orders. Under
this assumption, as shown by Bretthauer and Shetty (2002), the optimal solution can
be defined in terms of booking limits for each customer segment, determined based on
demand distribution information. Defined booking limits are consumed based on various
consumption rules as orders materialize. Dynamic methods, however, do not consider
a specific order arrival sequence and they do not determine static booking limits at
the start of the booking period. Instead, dynamic programming techniques are applied
to monitor the state of the system over time and decide on order acceptance at its
time of arrival, based on the current state. Due to the computational intractability of
the dynamic models (Jasin and Kumar 2013), static models are applied to approximate
them. Static models are resolved at different times during the booking process. The
resulting heuristics differ in terms of their control policy, which is commonly in the
form of booking limits or bid prices. In the partitioned consumption policy, booking
limits indicate the maximum amount of capacity that is available to a certain customer
segment. In the nested policy, booking limits are not isolated quotas allocated to just
one segment. More profitable customer segments can also consume the allocations to
other customer segments. However, no customer segment can access the allocations of
more profitable segments (Talluri and van Ryzin 2004). This way, more profitable orders
are accepted even if their allocated quotas are depleted. Bid prices implement nesting
naturally. In this approach, a bid price is set for the available supply, which reflects the
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opportunity cost of losing a unit of supply. A customer order is accepted if the generated
profit exceeds the bid price.

Integrated dynamic programming approaches for allocation and consumption are also
computationally expensive in MTS production systems (Quante et al. 2009a). Therefore,
we consider separated allocation and consumption stages, as in Meyr (2009). First, in
the allocation stage, the allocations to different customer segments are determined based
on demand distribution information, by applying an allocation function. Then, in the
consumption stage, as customer orders materialize, orders are fulfilled using the allocated
quotas, by applying a consumption function.

Chapters II and III propose single-period and multi-period allocation functions for DF
in customer hierarchies. In this chapter, we focus on the second stage and investigate
the impact of different consumption functions on fulfillment performance, both for single
and multi-period settings.

Vogel (2012) explains three search dimensions for fulfilling orders from different cus-
tomer segments with predefined sales quotas in MTS systems. Search in customer seg-
ments allows more profitable orders to be fulfilled from quotas reserved for less profitable
customer segments. Search in time allows orders to be fulfilled from quotas that are allo-
cated to the same customer segment for earlier or later periods, which is possible through
inventory holding and backlogging in multi-period problems. Search in substitute prod-
ucts allows orders to be fulfilled using similar or more valuable products. However, it is
not applicable in our setting since we consider single-commodity models. Search in time
dimension is applicable for multi-period models only, while search in segments dimension
is applicable for both single and multi-period models. We consider these search dimen-
sions by defining rule-based consumption functions. Rule-based functions determine how
the allocated quotas are consumed based on predefined rules, which may allow consuming
other segments’ allocations.

In single-period settings, partitioned consumption policy allows order fulfillment using
only the allocations to each customer segment from the current available supply. In
multi-period settings, it searches in time and limits the amount of fulfilled orders from
each customer segment to predefined allocations from different supply replenishments.
Thus, information about the realized demand of other customer segments does not affect
how the allocated quotas are consumed. Rule-based nested consumption functions use
predefined rules that allow orders from more profitable segments to access other less
profitable segments’ allocations. In single-period settings, rule-based nested consumption
functions search only in segments, while in multi-period settings they search both in time
and segments. The search in single-period cases is more limited compared to multi-period
cases. In both cases however, if nested consumption functions are applied, information
about realized demand of all customer segments will be taken into account in choosing
the quotas for order fulfillment. However, the consumption function is still based on
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predefined allocations.
Allocation planning based on projected demand information is a result of separating

the DF problem into allocation and consumption stages. Using an integrated approach
to define bid prices, nesting is applied with no need to determine allocations beforehand
and realized demand information is already taken into account in defining the bid prices.

We aim to evaluate the extent to which nesting improves the performance of allocation
functions in the hierarchical DF problem. However, we limit nesting to the bottom
level of the customer hierarchy, because transshipment between geographically dispersed
customers is not allowed in our hierarchical setting. We also investigate the relative
impact of allocation versus the consumption decision on overall performance. To this
end, we compare simplistic and profit-based allocation functions with partitioned and
nested consumption functions through extensive numerical experiments.

We designed two sets of numerical experiments for multi-period and single-period prob-
lems to evaluate nesting with and without the possibility of inventory holding and back-
logging. For single-period experiments we consider the allocation functions defined in
Chapter II and for multi-period experiments we consider the allocation functions defined
in Chapter III. Centralized allocation functions are also included in the experiments to let
us evaluate the effects of nesting independent of information aggregation in the hierarchy.

In summary, the contributions of this chapter are:

• Defining partitioned and nested consumption functions for the hierarchical stochas-
tic DF problem;

• Evaluating the effects of nesting with and without inventory holding and backlog-
ging possibilities in single-period and multi-period problems;

• Comparing the effects of nesting with and without information sharing in the hier-
archical DF problem, by comparing profit-based methods to per commit;

• Shedding light on the role of realized demand information in the order fulfillment
process by comparing bid-price approaches to allocation-based approaches.

4.2. Literature review

In this section we investigate the order promising problem in previous literature and
look into different consumption functions and their performance comparison in MTS
production systems. As a point of reference, we also look at RM literature. In traditional
RM problems, the decision regarding whether or not to accept an order is made by
comparing the revenue generated by accepting the order to the opportunity costs of losing
the required supply. Based on this comparison, solution methods for RM problems define
booking control policies such that expected future revenues are maximized. The booking
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control policies should account for the stochastic nature of demand and should not reject
orders from the most profitable customer segments when supply is still available.

Booking control policies are either partitioned or nested. In the partitioned policy,
booking limits define the maximum amount of orders which can be accepted from each
customer segment separately. In a nested policy, however, orders from more profitable
customers can be fulfilled using the quotas of less profitable customer segments. In the
airline or railway industry, if customers from different classes use different sections of
cabins, the RM problem is to partition the seats for different classes, but when customers
from different classes use the same seats, the problem is nested (Wollmer 1992, Ciancimino
et al. 1999). Nesting potentially results in more accepted orders from more profitable
customers segments compared to a partitioned policy. Thus, partitioned control in RM
problems hardly exists in the literature (Boyd and Bilegan 2003).

The consumption policies are operationalized either in form of allocated quotas or bid
prices. Allocated quotas are defined in the allocation planning phase and are consumed
based on some consumption rules in the order promising stage. Using bid prices, on the
contrary, there is no need to define allocations beforehand and the bid prices are deter-
mined as demand materializes. Accordingly, the relevant literature has been classified in
the following sections.

4.2.1. Allocation-based control

When orders are fulfilled based on pre-defined allocations, two approaches for nested
consumption should be distinguished: standard nesting and theft nesting (Talluri and
Van Ryzin 2004). In standard nesting orders are first fulfilled using the allocated quota
of the respective customer segment. After this allocated amount is depleted, the alloca-
tions of less profitable segments will be consumed. In contrast, in theft nesting first the
allocations to less profitable segments are consumed, starting from the allocations to the
least profitable segment. Thus, in this approach, orders from more profitable segments
withdraw units of capacity from less profitable segments, before actually consuming their
own protected amount. Theft nesting and standard nesting lead to the same result if
orders from less profitable segments arrive before orders from more profitable segments,
that is, the so-called low-before-high setting (McGill and Van Ryzin 1999). However, if
orders from all customer classes arrive in a random sequence, theft nesting can lead to
an over-protection of capacities for more profitable segments, unless the allocations are
adjusted based on the consumption function. This could imply a lower overall capacity
utilization level than desired (Talluri and van Ryzin 2004, Bertsimas and De Boer 2005).
In this study, we apply standard nesting.

As a third approach, Vogel (2012) integrates standard and theft nesting to a combined
nesting policy: When an order comes in, it is fulfilled using the allocations of the respec-
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tive customer segment. If these allocations are exhausted, the orders are fulfilled using
the allocations of less profitable customer segments in ascending order, beginning with
the least profitable segment.

Samii (2016) compares standard nesting and theft nesting for a two-class news ven-
dor problem. He compares the underage costs for different values of reserved quantity
considering arrival rates, in order to decide on a policy that results in minimum costs.

de Boer et al. (2002) analyze different nesting approaches in the network RM prob-
lem in the airline industry, including bid-price approach and standard nesting with given
allocations from deterministic and probabilistic allocation models. Comparing these al-
location models, in line with Ciancimino et al. (1999), they conclude that partitioned
models benefit more from considering uncertainty compared to rule-based nested con-
sumption. They argue that the stochastic profit-based allocation models over-protect
more profitable customers. The models provide distinct allocations to different customer
segments, but they are consumed in a nested mode. Thus, to accept more profitable cus-
tomer orders, it is not necessary to allocate large quantities to those segments. Further,
their results regarding the bid-price approach does not show a considerable difference
from standard nesting. However they point out that the performance of the bid-price
approach depends on the recalculation frequency.

Application of partitioned and nested consumption policies for order promising in MTS
production systems has been studied by different authors. Fischer (2001) conducts one
of the first studies on exploiting customer heterogeneity in MTS settings (Vogel 2012).
When stock-out situations occur, he uses a fixed split rule to allocate the scarce ATP
quantity. He implements a nested consumption function in the order promising step and
tests this approach against a partitioned order promising approach and a batch order
promising approach.

Pibernik and Yadav (2009) introduce an allocation planning approach with service
level objectives, considering two customer classes with uncertain demand. The authors
formulate partitioned and nested inventory reservation models. But, they do not allow
for backlogging. The results of their numerical analysis suggest a positive correlation
between the number of inventory receipts during the planning horizon and the effect of
nesting. A similar correlation is highlighted between the amount of total available supply
and the effect of nesting; however, the effect of nesting only occurs for an amount higher
than a specific threshold level and decreases again for the case of high supply. Also, for a
very high desired service level, the analysis does not show significant benefits of nesting.

Samii et al. (2011) develop a fill-rate-based single-period model for inventory reservation
with two customer classes. They analyze the trade-off between reservation effects and
nesting effects. They show that the effect of nesting decreases with an increasing amount
of protected inventory and quantify the expected overall fill-rate loss.

Quante et al. (2009a) introduce an SDP formulation with nested protection levels for
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DF in MTS systems. They compare their results to an FCFS approach and to the single
order processing after allocation planning (SOPA) model of Meyr (2009). They show that
their dynamic model outperforms FCFS as well as two-stage deterministic optimization
models. However, the SDP model is computationally expensive and therefore hardly
scalable (Yang 2014).

In literature, RLP is commonly used for defining bid prices. However, Quante (2009)
applies an RLP approach to determine the allocations to different customer segments, in
order to account for random demand. He applies nested consumption rules based on the
SOPA model of Meyr (2009). His numerical analysis shows that the allocations resulting
from the RLP approach lead to profits which are very close to the profits generated using
the SOPA model of Meyr (2009). As the RLP requires more effort to gather information
on demand distributions, he concludes that the RLP approach should not be preferred
to Meyr’s model for defining the allocations.

Yang (2014) and Eppler (2015) introduce approaches that account for demand un-
certainty while being efficient in computation. Yang (2014) presents quantity-based and
price-based models, including safety margin models with nested booking limits, and three
bid price control models based on DLP, RLP and dynamic modelling.

Eppler (2015) defines a two-stage stochastic linear program which includes allocation
planning and consumption stages. The linear programming procedure makes the model
scalable for real-life situations. The two stages allow for an anticipation of the partitioned
or nested consumption rule in the allocation planning step. In the numerical experiments,
she quantifies the benefits of anticipating nested and partitioned consumption rules in
allocation planning and shows that anticipation pays off for more uncertain demand.

Vogel (2012) compares partitioned and nested consumption based on standard nest-
ing, theft nesting, and his combined nested policy for hierarchical DF in deterministic
single-period problems. In his numerical experiments, he tests whether different nested
consumption methods can mitigate the effect of forecast errors in his deterministic ap-
proach. The results confirm that standard nesting and the combined nesting perform
better than theft nesting and partitioned consumption. He concludes that his combined
nesting strategy, used in connection with his decentralized allocation planning approach,
results in higher performance in customer hierarchies. Further, he allows nesting in dif-
ferent levels of the hierarchy by defining the degree of kinship as a metric. Higher degrees
of kinship, as expected, result in higher profits due to more flexible consumption possi-
bilities.

Here, we also investigate the effects of partitioned and nested consumption in customer
hierarchies; however, unlike Vogel (2012), we consider stochastic demand in both multi-
period and single-period problems. In the allocation stage, we apply the centralized and
decentralized allocation functions defined in previous chapters to determine the allocated
quotas. Then, in the consumption stage, we apply partitioned and nested consumption

66



IV. Impact of the Consumption Function on Total Profit

functions and analyze the results. By comparing centralized and decentralized methods,
we evaluate the effects of nesting for both flat and hierarchical customer structures and
identify possible differences. Further, by comparing simplistic and profit-based allocation
methods, we analyze the extent to which nesting mitigates the effects of information
aggregation in the hierarchy.

4.2.2. Bid price control

The idea of bid prices was first formalized by Williamson (1992) and further analyzed
by Talluri and Van Ryzin (1998), and is mostly applied to network RM problems. In
this approach, a bid price is set for the available supply, that reflects the opportunity
cost of losing a unit of supply. A customer order is accepted, if the generated profit
exceeds the bid price. The optimal solution requires bid price calculations for all state
and time combinations by recursively solving Bellman’s equation. However, due to the
curse of dimensionality, calculation of such bid prices is computationally intractable.
Therefore, various approximation methods are proposed in literature, including but not
limited to DLP (Williamson 1992), RLP (Talluri and Van Ryzin 1999), affine functional
approximation (Adelman 2007) and Lagrangian relaxation (Topaloglu 2009b).

Williamson (1992) proposed using DLP for constructing bid prices, using the dual
price of the capacity constraint in the model. The DLP is formed by replacing stochastic
demand with its expected value. Hence, the stochastic nature of demand is ignored. To
overcome this problem, Talluri and Van Ryzin (1999) proposed RLP, which incorporates
more stochastic information in the DLP by replacing the expected demand by random
realization values. For each demand realization, they determine the dual values of the
DLP. The bid prices are then approximated by the average over the calculated sets of
dual values.

Both DLP and RLP provide static bid prices. That is, based on the current supply
and time, a set of bid prices is calculated, that is used for some periods, until the model
is re-optimized based on new demand information. Within the re-optimization periods,
bid prices are independent of the observed demand. This simplification bears risks if
demand realizations deviate from expectations, especially if frequent re-optimization is
not possible. To overcome this issue, methods for deriving dynamic bid prices are pro-
posed, that create bid prices dependent on available supply and time. For example,
Adelman (2007) plugs in an affine functional approximation of the value function in the
dynamic programming model and solves the dual problem which gives a time trajectory
of dual prices at once. Topaloglu (2009b) uses Lagrangian relaxation for decomposing
the network problem into single-leg problems and generates bid prices which are capacity
dependent. However, due to the complexity of dynamic methods, static methods are
more commonly applied. In many cases, the static methods are reasonable and provide
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close approximations, if recalculated sufficiently frequently (Talluri and Van Ryzin 2004).
In literature, bid price controls are also applied to DF problems in MTS manufacturing

systems. Yang (2014) analyzes the performance of three models for calculating bid price
in MTS setting: the DLP (based on Meyr (2009)), the RLP (based on Quante (2009)) and
dynamic bid prices (based on Adelman and Mersereau (2008)). She shows that frequent
re-calculation considerably improves the performance of the bid price heuristics. She
also concludes that with frequent re-calculation the results for DLP and RLP approaches
converge. The dynamic model, although more complex, provides close to optimal results
without requiring re-calculation.

Eppler (2015) also considers bid prices as a nested control policy in MTS manufac-
turing systems. In order to calculate the bid prices, she applies the RLP heuristic. She
investigates the relationship between the primal models, which determine the allocations,
and the dual models, which determine the bid prices.

In this chapter, we also apply a bid-price approach for order promising at the leaf node
level of the hierarchical DF problem. We calculate the bid prices using the RLP heuris-
tic, which is commonly applied in literature and provides a reasonable approximation
(Talluri and Van Ryzin 2004). The bid prices are determined based on realized demand
information, while the allocations in the rule-based consumption methods are determined
based on projected demand information. We then numerically compare the approaches
to provide insights regarding the role of realized demand information in the fulfillment
process. Such a comparison has not been the focus of previous literature.

4.3. Consumption functions

In customer hierarchies, demand originates from the base customer segments which are
the leaf nodes of the hierarchy. This is where consumption functions are applied. In the
allocation stage, various allocation functions can be applied to determine the allocations
to the leaf nodes. Given these allocations, we apply partitioned or nested consumption
functions in the order promising stage.

In this section we formally define the different consumption functions included in our
numerical experiments and explain how they fulfill the orders in the order promising
stage. Similar to the previous chapter, we assume that order are due in the period that
they arrive.

4.3.1. Partitioned consumption

In partitioned consumption, demand from each customer segment is fulfilled using only
the allocations to that customer segment. These allocations are determined based on
projected demand information. Orders are fulfilled either from the current supply or
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backlogged to be fulfilled using future supply. If demands from different customer seg-
ments are independent, and partitioned consumption is considered, making assumptions
regarding the sequence of order arrivals is not required. Because fulfilling orders from
each customer segment has no impact on the allocations of other customer segments.
In this consumption function, allocations to the customer segment are searched in or-
der of replenishment time. If all allocations to the corresponding customer segment are
consumed, excess demand will be lost.

Definition 4.1 (Partitioned consumption function). Given the allocations xl,t,τ to cus-
tomer segment l in demand period τ from supply replenishment of periods t ∈ T , a
customer order dl,τ from this segment in demand period τ is accepted and fulfilled using
xl,t,τ in ascending order of t as long as there is at least one xlt,τ > 0 and is lost otherwise.
Let ul,t,τ be the amount consumed from supply replenishment of period t to fulfill dl,τ .

ul,t,τ = min(xl,t,τ ,max(0, dl,τ −
t−1∑
t′=1

xl,t′,τ )) ∀t ∈ T.

The same consumption function can be applied for both single-period and multi-period
problems, considering that the planning horizon is one period for single-period problems.

4.3.2. Rule-based nested consumption

Rule-based functions use predefined rules to choose from the allocated quotas for ful-
filling each materialized order. Rule-based nested consumption functions, similar to the
partitioned consumption function, are based on predefined allocations to the leaf nodes.
But, nested consumption functions allow orders to be fulfilled using the allocations of
less profitable customer segments. Thus, information regarding realized demand of other
segments affects how the allocated quotas to each customer segment are consumed. We
apply standard nesting. That is, to fulfil orders, first allocations to the corresponding
customer segment are consumed. Then if orders exceed those quotas, allocations to less
profitable customer segments, in order of decreasing unit profits, are used.

If nested consumption functions are applied, the sequence of order arrivals should be
taken into account in the model. The low-before-high assumption in traditional RM
problems does not necessarily hold for production systems. We assume that orders from
different customer segments arrive randomly at different points of time, following no
specific sequence. So an order from a more profitable customer segment may be followed
by an order from a less profitable customer segment or vice versa. Moreover, orders may
include different product quantities.

Depending on whether the problem is single-period or multi-period, different consump-
tion functions are applicable. In single-period problems, the nesting rule can only search
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in the allocations to different customer segments. Thus, considering standard nesting, we
define one nested consumption rule, in which first the allocations to the same customer
segment are consumed, and then if orders exceed this amount, the allocations to the next,
less profitable customer segment are used. Orders will be lost if all allocations to less
profitable customer segments are consumed. In multi-period problems, besides searching
in the allocations to other customer segments, we can also search in time, which means
that orders can be backlogged to be fulfilled from future supply replenishments. Thus,
we define two different nested consumption rules, depending on the search order. Defini-
tion 4.2 explains a rule-based consumption function in which first the allocations to the
corresponding customer segment in the current period are consumed, then backlogging
possibilities based on the allocations determined by the allocation function are used. If
the order is still not completely fulfilled, allocations to the less profitable customer classes
are consumed.

Definition 4.2 (Rule-based nested consumption function 1 (time then segments)). Con-
sidering L′ as the set of customer segments with the same parent node as node l′ and with
unit profits less than or equal to the unit profit of l′, and T as the planning horizon, an
order dl′,τ from customer segment l′ in demand period τ is fulfilled first using the alloca-
tions {xl′,t,τ |t ∈ T} in ascending order of t and then using {xl,τ,τ |l ∈ L′} in descending
order of l as long as there are allocations remaining and is lost otherwise. Let ul′,l,t,τ
denote the amount consumed from xl,t,τ to fulfill the order dl′,τ .

ul′,l′,t,τ = min(xl′,t,τ ,max(0, dl′,τ −
∑
t′≤t−1

ul′,l′,t′,τ )) ∀t ∈ T

ul′,l,τ,τ = min(xl,τ,τ ,max(0, dl′,τ −
∑
t

ul′,l′,t,τ −
∑
l<l”<l′

ul′,l”,τ,τ )) ∀l ∈ L′, l 6= l′

Another possible nested consumption rule first consumes the allocation to the customer
segment in the current period from the current supply replenishment. It then consumes
the allocations to the less profitable customer segments in the current period, before
backlogging possibilities based on the allocations determined by the model are used.

Definition 4.3 (Rule-based nested consumption function 2 (segments then time)). Con-
sidering L′ and T as defined in Definition 4.2, an order dl′,τ from customer segment l′ in
demand period τ is fulfilled first using the allocations {xl,τ,τ |l ∈ L′} in descending order
of l and then using {xl′,t,τ |t ∈ T} in ascending order of t as long as there are remaining
allocations and is lost otherwise. Letting ul′,l,t,τ denote the amount consumed from xl,t,τ
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to fulfill the order dl′,τ , we have:

ul′,l,τ,τ = min(xl,τ,τ ,max(0, dl′,τ −
∑
l<l”≤l′

ul′,l”,τ,τ )) ∀l ∈ L′

ul′,l′,t,τ = min(xl′,t,τ ,max(0, dl′,τ −
∑
l”≤l′

ul′,l”,τ,τ −
∑
t′≤t−1
t′ 6=τ

ul′,l′,t′,τ )) ∀t ∈ T, t 6= τ

For single-period problems one of the search dimensions vanishes, because the planning
horizon is one period and there is no backlogging possibility. Thus, both of the above
nesting approaches coincide.

4.3.3. Bid-price based consumption function

Using bid prices is a common way of nesting in RM problems, which can also be applied
to DF problems in manufacturing systems. In this approach, bid prices are determined
for the available supply buckets, which reflect the opportunity cost of losing a unit of
supply. Orders are accepted as long as the profit generated from accepting the order
exceeds the bid price. This way, no predefined allocations are required, and allocation
and consumption are combined in one phase. Orders can be fulfilled using supply buckets
from different replenishments. Thus, a bid price for each supply bucket should be defined.

We allow nesting only in the last level of the hierarchy. Thus, we apply bid prices
only in the leaf nodes level and determine the allocations to the intermediate nodes
decentrally using clustering. Instead of defining allocations to the leaf nodes, we use
bid prices for order promising. The rule-based consumption functions, in contrast, use
predefined allocations to the leaf nodes. These allocations are determined, considering
a partitioned consumption policy in the allocation planning stage. Thus, they are not
adapted and optimized for a nested consumption policy. Using bid prices on the contrary,
takes nesting into account in defining the control parameters. We compare the bid-price
approach to rule-based nested and partitioned consumption functions with allocations
defined by clustering to see whether and to what extent eliminating the limits caused by
using predefined allocations can increase the total profit.

Due to the curse of dimensionality, we cannot compute the bid prices exactly. There-
fore, in order to approximate them we apply RLP, which consists of solving deterministic
linear programs for making allocations to the leaf nodes based on a number of random
demand realizations. The LPs are as in Problem 4.1, in which xl,t,τ is the allocation to
segment l in period t from supply of period τ , pl,t,τ is the unit net profit of an order from
segment l in period τ if it is fulfilled from the supply replenishment of period t, and St
is the supply replenishment of period t. Di

l,τ is the ith random demand realization of
customer segment l in period τ . The optimal dual prices of the set of supply constraints
in these LPs are then averaged to form the bid prices for each supply bucket (Talluri and
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Van Ryzin 1999).

Problem 4.1. LP for the ith random demand realization

maximize
∑
τ

∑
t

∑
l

pl,t,τ · xl,t,τ

s.t.∑
l

∑
τ

xl,t,τ ≤ St ∀t ∈ T∑
t

xl,t,τ ≤ Di
l,τ ∀τ ∈ T ∀l ∈ L

0 ≤ xl,t,τ ∀τ ∈ T ∀t ∈ T ∀l ∈ L

The consumption function compares the unit net profit of each order with the bid
prices of the supply buckets to make the fulfillment decision, as described in Definition
4.4.

Definition 4.4 (Bid-price based consumption function). Given the bid prices BPt,τ for
each available supply bucket from supply period t, in demand period τ , the order dl,τ from
customer segment l in demand period τ with unit net profit pl,t,τ is accepted if there is a
supply bucket for which pl,t,τ−BPt,τ > 0 and is lost otherwise. The order is fulfilled using
the supply bucket that generates the highest positive profit difference between the unit net
profit and the bid price among all not yet depleted supply buckets.

The disadvantage of the bid price policy is that there is no limit to the number of
orders fulfilled using a supply bucket once the unit profit exceeds the bid price. Therefore,
frequent recalculation of the bid prices based on real-time demand and supply information
is necessary.

4.4. Numerical experiments

The possibility of inventory holding and backlogging distinguishes multi-period problems
from single-period ones. This could potentially influence the extent to which nesting
improves the fulfillment process. Therefore, we designed two separate sets of numerical
experiments for multi-period and single-period problems. For the single-period exper-
iments, we apply the allocation functions defined in Chapter II and for multi-period
experiments, we apply the allocation functions defined in Chapter III.

For both experiments we consider a three-level customer hierarchy with a total of 9
customer segments, which is shown in Figure 4.1. Apart from the size of the hierarchy, the
setting is similar to the experimental setup of Chapter III. In this section, we consider
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a smaller hierarchy than in Chapter III and we do not vary the hierarchy size in the
numerical experiments. We saw in previous chapters that the size of the hierarchy does
not considerably affect the performance of our proposed allocation methods.

Figure 4.1.: Hierarchy size for numerical experiments

As our main performance measure, we average the relative profit gap of each combi-
nation of allocation (denoted with A) and consumption (denoted with C) function under
consideration from the ex-post optimal over i ∈ I instances, as shown in (4.1).

gapAC = 1− 1

|I|
∑
i∈I

PA
C i

P expost
i

(4.1)

To evaluate the effects of nesting more thoroughly, we analyze the absolute differ-
ence between the profit gap resulting from nested and partitioned consumption for each
allocation method (A) as shown in (4.2).

Absolute differenceA = gapAnested − gapApartitioned (4.2)

The experiments are conducted in the simulation environment introduced in Section
3.6.1.

4.4.1. Single-period experiments

Experimental setup

In the single-period experiments we simulate one period with a single supply replenish-
ment. The experimental setup is similar to Chapter III. At the beginning of the period,
allocations to all customer segments are defined using an allocation function. During
the period, orders from different customer segments arrive, with the number of orders
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per period following a Poisson distribution with expected value of 10. The orders are
processed in the sequence of their arrival, according to the defined consumption function.
The parameter settings for the base case and variations for our experiments are included
in Table 4.1.

Table 4.1.: Hierarchy parameterization for single-period experiments

Parameter Base case Variations

Forecast error (CV ) 20% 10%, 30%, 40%

Shortage rate 10% 0%, 20%, 30%

Profit-heterogeneity (RR) 1.64 0.3, 0.6, 0.9, 1.20, 1.80

Mean demand (d) 10

The goal is to evaluate the effects of various consumption functions on performance.
Both centralized and decentralized allocation functions, combined with nested and par-
titioned consumption functions are included in the experiments, as shown in Table 4.2.
The centralized allocation function is the full information case. For decentralized allo-
cation, clustering with two clusters is considered. We also consider nested consumption
with a simplistic decentralized allocation function, to compare the effects of nesting with
and without information sharing in the hierarchy, and to figure out the extent to which
nesting can mitigate the performance deficiency of simplistic allocation methods. In our
experiments, we consider per commit as a simplistic allocation function.

Table 4.2.: Allocation and consumption functions for single-period experiments

Problem type Allocation function Consumption function

Single-period Centralized Partitioned

Rule-based nested

Per commit Partitioned

Rule-based nested

Clustering Partitioned

Rule-based nested

Base case results

Figure 4.2 shows the base case results, including the average profit gap of the centralized
and decentralized allocation functions with partitioned and nested consumption functions,
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relative to the ex-post optimal. The labels in the legend indicate the allocation function
and the consumption functions are indicated in parentheses. As expected, nesting results
in lower profit gaps for all the methods. The improvement is 2.3 percent for per commit
and 1.3 percent for clustering and centralized allocation. In line with results of Chapters
II and III, profit gap of clustering is very close to the centralized approach, both with
partitioned and nested consumption function. This is because the allocations defined
by both allocation functions are similar; thus, the extents of improvement with nested
consumption are also very close for both methods.

Despite the improvement in performance of per commit with a nested consumption
function, it still results in higher profit gap compared to the profit-based allocation meth-
ods with partitioned consumption for the base case. The profit-based methods use in-
formation about demand uncertainty and profit heterogeneity. Nesting, on the contrary,
takes information about realized demand into account and also benefits from resource
pooling. Higher performance of profit-based methods with partitioned consumption ap-
proves the importance of using information regarding demand uncertainty and profit
heterogeneity. We allow nesting only at the leaf nodes level. At higher levels of the hi-
erarchy, dedicated allocations are still considered. As seen in Chapter II, misallocations
made by per commit are more considerable compared to profit-based allocation methods,
which also limit the extent to which nesting improves the performance.

Figure 4.2.: Average profit gap of single-period methods from ex-post optimal in the
base case
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Figure 4.3.: Sensitivity of profit gap of single-period methods relative to ex-post optimal
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Figure 4.4.: Absolute difference between profit gap of single-period methods with parti-
tioned and nested consumption
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Sensitivity analysis

To evaluate the performance of the consumption functions for different parameter set-
tings, in the following experiments we vary the parameters one at a time, as detailed
in Table 4.1. Figure 4.3 includes the results, showing that in all scenarios and for all
allocation functions, nesting outperforms partitioned consumption. However, relative
improvement varies for different scenarios. Further, similar to the base case, in all sce-
narios clustering and centralized allocation lead to similar results, both with partitioned
and nested consumption. This is because allocations in both methods are similar. Thus,
nesting improves the performance to almost the same extent for both methods. However,
decentralized clustering with nested consumption outperforms centralized allocation with
partitioned consumption, because, as seen in Chapter II, allocations made by clustering
are very similar to centralized allocations and, given similar allocations, nested consump-
tion leads to more fulfilled orders from more profitable customer segments, compared to
partitioned consumption.

Figure 4.3-(a) shows the influence of shortage-rate variation on performance. As ex-
pected, profit-based allocation methods outperform per commit with both partitioned
and nested consumption functions, except for zero shortage rate, for which they per-
form similarly well. Because, as seen in Chapter III, when the shortage rate is low,
misallocations are less considerable. In this scenario, per commit allocation with nested
consumption outperforms clustering and centralized allocation with partitioned consump-
tion. Because given similar allocations, nesting leads to more fulfilled orders. Thus, for
zero shortage rate, using information about realized demand of other customer segments
adds more value to the DF decision, compared to information about demand uncertainty
and profit heterogeneity. An increased shortage rate results in larger profit gaps, be-
cause misallocations become larger. This misallocation effect is more considerable for per
commit.

To show the effect of nesting on performance for different shortage rates, the absolute
performance difference between nested and partitioned consumption functions for differ-
ent allocation functions are analyzed. Figure 4.4-(a) illustrates the differences. The per-
formance difference is larger for per commit compared to profit-based methods, because
per commit bears more misallocations, and the effect is mitigated by nesting through
fulfilling more orders from more profitable customers. The allocations resulting from
profit-based methods already protect more profitable customer segments, leading to less
unfulfilled orders from those segments. The performance difference becomes larger for
all the methods as the shortage rate increases. A higher shortage rate causes more lost
sales. Through nesting, more profitable orders can be fulfilled using other less profitable
segments allocations, if their dedicated allocations are depleted. This way, nesting leads
to more accepted orders from more profitable segments than partitioned consumption and
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shifts the lost sales to less profitable segments. Thus, considering nested consumption
is more beneficial when shortage rate is higher. However, for very high shortage rates,
the centralized and clustering allocation functions already allocate most of the supply
to more profitable customer segments, thus the performance improvement resulting from
nesting is marginal, causing almost constant improvement for shortage rates of 0.2 and
0.3.

Figure 4.3-(b) illustrates how the performance changes by CV of demand. Increased
demand uncertainty results in a higher profit gap for all the methods, except for per
commit with nested consumption. The reason is that the profit-based methods over-
protect more profitable customer segments when demand uncertainty is higher (de Boer
et al. 2002), which results in less overall fulfilled orders and thus reduced total profit.
However, the allocations made by per commit are not affected by changes in CV; thus,
nesting leads to more fulfilled orders from different customer segments. The reduced profit
gap of per commit with nested consumption for higher standard deviations results in its
superior performance compared to clustering and centralized allocation with partitioned
consumption for a CV of 0.4.

As shown in Figure 4.4-(b), performance improvement resulting from nesting for profit-
based functions and per commit increases for increased demand uncertainty. As seen in
Chapter III, the performance of the allocation methods with partitioned consumption is
degraded for increased demand uncertainty. Nesting, however, allows a decision based on
realized rather than projected demand; this is more beneficial if forecast errors are high,
to mitigate the reduced performance of the allocation methods in such cases.

Nesting also leads to lower profit gaps for various levels of profit heterogeneity, as
illustrated in Figure 4.3-(c). If profit heterogeneity is low, per commit with nested con-
sumption outperforms the profit-based methods with partitioned consumption. In such
cases, the allocations made by profit-based methods are more similar to per-commit allo-
cations, and information regarding profit heterogeneity is less valuable. The allocations
are made based on projected demand, while via nesting information about realized or-
ders is taken into account in the fulfillment decision, leading to superior performance of
per commit with nested consumption compared to profit-based methods with partitioned
consumption. However, profit-based methods with nested consumption result in the best
performance, since information about realized demand together with information about
demand uncertainty and profit heterogeneity is used in decision making.

Figure 4.4-(c) shows almost constant improvement resulting from nesting for centralized
and clustering allocation methods for increased profit heterogeneity. The profit-based al-
location methods use information regarding profit heterogeneity already in the allocation
phase; thus, the difference between partitioned and nested consumption is due to us-
ing realized demand information of other customer segments. Therefore, changing profit
heterogeneity does not affect the extent to which nesting improves the total profit. For
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very high profit heterogeneity; however, the difference is decreased because the allocation
methods over-protect more profitable customers. For per commit, though, the difference
increases for higher levels of profit heterogeneity. Because per commit does not use the in-
formation regarding profit heterogeneity in the allocation phase, resulting in considerable
misallocations, which together with partitioned consumption result in considerable profit
loss. However, through nesting, using information on realized orders from all customer
segments in the fulfillment decision together with resource pooling, lead to more fulfilled
orders from more profitable customer segments.

To summarize, nesting improves the performance of per commit and profit-based allo-
cation methods. Evaluating the performance of per commit with a nested consumption
function clarifies the extent to which the lack of information sharing in the decentral-
ized case is mitigated by using information about the realized demand of all customer
segments via nesting. This mitigation is more considerable when demand uncertainty
is high or when profit heterogeneity is low or for zero shortage rate. In such cases, per
commit with the nested consumption function outperforms clustering with partitioned
consumption, although requiring less information transmission in the hierarchy. However,
profit-based methods with the nested consumption function show the best performance
in all scenarios, but with more information requirement.

4.4.2. Multi-period experiments

Experimental setup

The experimental setup for multi-period experiments is similar to the ones in Chapter
III. Here, we aim to evaluate different consumption functions. Table 4.3 displays the
parameter settings for the base case and variations for the multi-period experiments.

At the beginning of each period, allocations are determined for all periods of the
planning horizon. For the bid-price approach, however, no allocations are determined
on the leaf nodes level. Instead, at the beginning of each period, bid prices for the
available supply buckets are calculated. During each period the orders are processed
by the consumption function in the sequence of their arrival. We conduct numerical
experiments with both centralized and decentralized allocation functions with partitioned
and nested consumption functions as shown in Table 4.4.

Rule-based nested consumption functions

As explained earlier, in multi-period problems, rule-based consumption functions can
search in two dimensions, that is, in less profitable segments’ allocations and in time
(backlogging). Thus, two different nested consumption functions can be considered de-
pending on the search order. Definition 4.2 describes the “time then segments” version.

80



IV. Impact of the Consumption Function on Total Profit

Table 4.3.: Hierarchy parameterization for multi-period experiments

Parameter Base case Variations

Forecast error (CV ) 20% 10%, 30%, 40%

Shortage rate 10% 0%, 20%, 30%

CVS 10% 20%, 40%, 60%

Planning horizon (T ) 3 1, 5, 7

Profit-Heterogeneity (RR) 1.64 0, 0.3, 0.9, 1.3, 1.8

Mean demand (d) 10

Backorder cost (K) (per period) 10% 1%, 5%, 20%, 40%

Holding cost (h) (annual) 30%

Simulation horizon (H) 50

It first consumes the allocations to a customer segment in the current demand period.
Then, it considers backlogging and consumes future supply to the extent defined in the
allocation model. If demand exceeds these quotas, allocations to less profitable customer
segments in the current period are consumed. The search order is vice versa in the “seg-
ments then time” version defined in Definition 4.3, which first consumes the allocations
to less profitable customer segments in the current period. Then, it considers backlogging
possibilities. This leads to less backlogs from more profitable segments compared to the
“time then segments” version. Thus, the two nested search rules differ in the way orders
are backlogged. This effect, however, has not been considered in the allocation planning
phase, in which allocations are determined based on projected demand. Thus, the alloca-
tions and the extent of backlogging already defined in the allocation phase may limit the
performance. Figure 4.5 shows the profit gap resulting from both nested consumption
functions for centralized allocation.

The two functions perform very similarly in almost all cases. However, for high back-
logging costs, the “segments then time” version performs slightly better, because having
less backlogs of more profitable segments has a more visible effect when backlogging costs
are high. Thus, in the following experiments, we only consider the “segments then time”
version.

Base case results

Figure 4.6 shows the base case results for multi-period experiments, including the aver-
age profit gap of the centralized and decentralized allocation methods with partitioned
and nested consumption functions (“segments then time”) relative to the ex-post optimal.
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Table 4.4.: Allocation and consumption functions for multi-period experiments

Problem type Allocation function Consumption function

Multi-period Centralized Partitioned

Rule-based nested (segments then time)

Rule-based nested (time then segments)

Per commit Partitioned

Rule-based nested (segments then time)

Clustering Partitioned

Rule-based nested (segments then time)

Bid-prices Bid-prices

Nesting results in lower profit gaps compared to partitioned consumption for all methods.
The improvement is 1.3 percent for per commit and 0.6 percent for both clustering and
centralized allocation. The relative improvement in multi-period experiments is lower
compared to single-period experiments. This is because the possibility of inventory hold-
ing and backlogging in multi-period problems already leads to more fulfilled orders and a
lower portion of orders are fulfilled by nesting. Despite the improvement in performance
of per commit with a nested consumption function, it still results in a higher profit gap
compared to the profit-based allocation methods in the base case. Thus, in general, using
information about demand uncertainty and profit heterogeneity adds more value to the
fulfillment decision compared to information regarding realized orders of other customer
segments.

The profit gap of the bid-price approach is 0.46 percent from the ex-post optimal,
which is the lowest among all the methods and 1.2 percent lower than the profit gap of
clustering with partitioned consumption. Using bid-prices, allocation and consumption
are done in one phase, based on realized demand information. Bid prices are recalculated
after each order. Other methods use pre-defined allocations, which are determined based
on projected demand information. This leads to a lower profit gap compared to rule-based
searches. The profit-based allocation models may over protect more profitable customers,
which can result in profit loss. Using bid-prices prevents such mis-allocations.

Sensitivity analysis

The sensitivity of profit gap resulting from different consumption functions with respect
to various parameter settings is analyzed through additional numerical experiments. For
these experiments, the parameters are varied one at a time as shown in Table 4.3. Figure
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4.7 illustrates the profit gaps. The labels in the legend indicate the allocation function,
and the consumption functions are indicated in parentheses. Figure 4.8 complements the
results of Figure 4.7 by showing the absolute difference between the profit gap of parti-
tioned and nested consumption functions for different multi-period allocation methods.

For all considered allocation methods, nesting leads to lower profit gaps compared to
partitioned consumption. Centralized and clustering allocation functions lead to similar
profit gaps either with partitioned or nested consumption functions. However, the decen-
tralized clustering allocation with nested consumption outperforms centralized allocation
with partitioned consumption. To explain the reason, note that the allocations deter-
mined by centralized and clustering approach are similar. Given the similar allocations,
nesting improves the performance compared to partitioned consumption by fulfilling more
profitable orders. Also, in all scenarios, using bid-prices leads to the lowest profit gap
compared to the rule-based nested and partitioned consumption functions. The sensitiv-
ity, however, varies for different settings.

As shown in Figures 4.7-(a), (b), and (c), the experiments regarding the sensitivity
of the multi-period methods to varying the shortage rate, CV, and profit heterogeneity
(RR) provide results similar to the single-period experiments, elaborated in Section 4.4.1.
However, there are exceptions regarding the comparison of the profit-based methods to
per-commit allocation with the nested consumption function. Although nesting improves
the performance of per-commit allocation, unlike the single-period experiments, it does
not outperform the profit-based methods for the range of CV considered in our experi-
ments, which is as high as 0.4. The reason is that the difference between performance
of per commit and profit based methods is larger in multi-period experiments, since the
possibility of inventory holding and backlogging lead to a lower profit gap of multi-period
methods. Moreover, per commit with nested consumption out performs profit-based
methods only for very low profit heterogeneity, with an RR of 0.3. This is also because
of the lower profit gap of the profit-based methods in multi-period problems.

The bid-price method is additionally included in multi-period experiments. For higher
shortage rates, the profit gap of the bid-price method is slightly increased, as displayed
in Figure 4.7-(a). Bid prices are only applied for DF on the leaf node level, and dedicated
allocations determined by clustering are considered on higher levels of the hierarchy.
Thus, although bid prices improve the performance, the trends seen for the clustering
method are also seen for the bid-price method. Figure 4.8 shows the profit gap between
the bid-price approach and the partitioned clustering method. The profit gap of the
bid-price approach increases to a lower extent, compared to the partitioned method for
higher shortage rates, causing an increasing trend in profit difference between partitioned
consumption and the bid-price approach shown in Figure 4.8-(a). The reason is that
the fulfillment decision in the bid-price approach is not limited by predefined allocations,
which leads to fulfilling more profitable orders.
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Similar to rule-based nesting, the profit gap of the bid-price method increases as de-
mand uncertainty is increased, as shown in Figure 4.7-(b). This is partly due to par-
titioned allocations in the upper levels of the hierarchy and partly because higher un-
certainty affects the calculation of bid prices. However, this leads to larger performance
improvements compared to allocation-based methods.

As explained in Chapter III, longer planning horizons lead to better allocations through
profit-based allocation methods. A similar improvement trend is also seen when nested
consumption functions are applied, as displayed in Figure 4.7-(d). The difference between
nested and partitioned functions for profit-based methods decreases for longer planning
horizons, as seen in Figure 4.8-(d), because longer planning horizons provide more back-
logging possibilities and less orders are fulfilled through nesting. Per commit allocations
are not influenced by changing the planning horizon, thus the difference between nested
and partitioned consumption functions for per commit allocations remain unchanged.

Figure 4.7-(e) shows how the performance is degraded for higher shortage-rate varia-
tions. Although nesting leads to profit improvements, the difference resulting from nesting
decreases as variations of shortage rate increase, as displayed in Figure 4.8-(e). In case
of higher shortage-rate variations, in periods with higher shortage rate, more orders can
be backlogged. Therefore, even without nesting, lost sales from more profitable customer
segments can be prevented through backlogging.

Figure 4.7-(f) illustrates that the performance of all methods is not considerably in-
fluenced by the unit backlogging cost. The difference between nested and partitioned
consumption for clustering decreases for very high values of backlogging cost, because
less orders are backlogged and instead are fulfilled through nesting.

In summary, nesting leads to higher profits for all allocation methods. The simple
per commit allocation rule, although combined with a nested consumption function, still
results in a considerable profit gap compared to profit-based methods, except for zero
shortage rate or very low profit heterogeneity, for which the methods perform more simi-
larly. Thus, information regarding demand uncertainty and profit heterogeneity are more
crucial for the DF decision. The bid-price approach leads to the lowest profit gap com-
pared to other methods. This shows that integrated nested allocation and consumption
outperform rule-based consumption methods, which are based on predefined allocations.

4.5. Summary

In this chapter, we investigated the impact of different consumption functions, namely
partitioned, rule-based nested, and bid-prices, on DF in customer hierarchies with stochas-
tic demand. DF problems are commonly separated into allocation and consumption
stages, due to the intractability of integrated approaches. The allocation phase is based
on projected demand information. The defined allocated quotas are then consumed in
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the consumption phase, as orders materialize. Partitioned consumption functions limit
the amount of fulfilled orders to the predefined allocations. With rule-based nested con-
sumption functions, information about realized orders from all the customer segments is
used in making the fulfillment decision, however the consumption function is still based
on predefined allocations. Using bid prices, allocation and consumption are performed
simultaneously, both taking nesting into account.

The performance of the defined consumption functions is evaluated in two sets of nu-
merical experiments for single-period and multi-period problems, respectively. To assess
the performance with and without information sharing in the hierarchical problem, both
profit-based and per-commit allocation functions are considered in the experiments. In
general, nesting leads to lower profit gaps compared to partitioned consumption for all
the methods. In single-period problems, profit-based methods with the nested consump-
tion function lead to the lowest profit gap in all cases. However, if demand uncertainty is
high or profit heterogeneity is low, or for zero shortage rate, per commit with the nested
consumption function outperforms profit-based allocation methods with partitioned con-
sumption, implying that in such cases, using the information about realized demand of
other customer segments is more crucial than information about demand uncertainty and
profit heterogeneity for the overall performance.

In multi-period experiments, improvement resulting from nesting is lower compared
to single-period experiments. This is because the possibility of inventory holding and
backlogging in multi-period problems already leads to more fulfilled orders compared to
single-period problems, and a lower portion of orders is fulfilled through nesting. Profit-
based methods outperform per commit in all multi-period cases and nesting cannot mit-
igate the low performance of the simplistic allocation method, except for cases with zero
shortage or low profit heterogeneity, in which all the methods perform similarly. The
bid-price approach has additionally been evaluated in the multi-period experiments. It
leads to the lowest profit gap compared to the rule-based consumption functions, since
the DF decision is made in one phase, based on realized demand information.
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Figure 4.5.: Comparison of rule-based nested consumption functions
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Figure 4.6.: Average profit gap of multi-period methods from ex-post optimal in the base
case

87



IV. Impact of the Consumption Function on Total Profit

Figure 4.7.: Sensitivity of Profit gap of multi-period methods relative to ex-post optimal
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Figure 4.8.: Absolute difference between profit gap of multi-period methods with parti-
tioned and nested consumption
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Chapter V

Conclusion

5.1. Results

In this thesis, we addressed the DF problem in MTS production systems considering cus-
tomer hierarchies with stochastic demand, with the objective of maximizing profitability.
DF aims to match customer orders with available resources. To maximize profits when
customers are heterogeneous, RM approaches are applied, in which the overall customer
base is segmented based on their profitability. The available supply is first allocated to
these customer segments based on the projected demand information. Then, the alloca-
tions are consumed as customer orders materialize. Therefore, the DF problem is broken
into allocation planning and order promising stages, respectively.

In customer hierarchies, allocation planning is a decentralized process in which the
available supply is allocated level-by-level by multiple local planners from the top to the
bottom of the hierarchy. Demand materializes at the base customer segments, which are
the leaf nodes of the hierarchy. It is not desirable to transmit all the detailed information
about base customer segments’ demand to the top levels of the hierarchy. Therefore,
higher-level planners make their allocation decisions based on aggregated information.

In Chapter II, we addressed the question of what information is required on individual
levels of the hierarchy to achieve effective allocations. We proposed two decentralized
allocation methods, namely a stochastic Theil index approximation and a clustering ap-
proach. The Theil index method transmits total demand and the calculated Theil index
of the successor nodes to higher levels. Clustering transmits aggregated demand distri-
bution information of clusters created using a K-means approach. Although these meth-
ods have different information requirements, they both transmit aggregated information
about profit heterogeneity and demand uncertainty in the hierarchy and use this informa-
tion to create an approximated profit curve in order to solve the allocation optimization
problem.

A comparison of the proposed methods to the simplistic rules currently applied in prac-
tice demonstrates that information on both profit heterogeneity and demand uncertainty
are required to obtain good decentralized allocations, and reveals that the simplistic
rules do not transmit sufficient information in the hierarchy. However, a relatively coarse
representation of this information, such as considering two or three clusters, turns out
to be sufficient. In addition, information about profit heterogeneity is more important
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for correctly prioritizing customer allocations during high scarcity, while information on
demand uncertainty is more important during moderate scarcity.

Both the clustering and the Theil index method lead to near optimal results. In com-
parison, clustering is more appealing for practical applications, because it is easier to
interpret for the local planners in the hierarchy and its performance can be easily im-
proved by adding more clusters. The results also show that even for large, complicated
hierarchies, decentralized planning with three clusters leads to profits close to the cen-
tralized full-information approach.

In Chapter II, we addressed a single-period setting, whereas in most applications, allo-
cation decisions have to be made repeatedly, and periods are interconnected by inventory
or backlog. In Chapter III, we expanded our analysis to such a multi-period setting.

We formalized the centralized full-information multi-period problem as a two-stage
SDP. We considered allocations as the first-stage variables, which are determined based
on the projected demand information, and consumption decision as the second-stage
recourse variables, which are determined after a realization of demand is observed. Due
to the curse of dimensionality, this problem is computationally not tractable. Thus, we
developed a heuristic method by presenting the problem as a trade-off between allocating
a unit of supply to a node in the current period, and the corresponding opportunity cost.
To determine the allocations, we defined a line search that balances the expected marginal
profit of customer segments and the opportunity costs. To estimate the opportunity costs,
we applied RLP to deal with the curse of dimensionality.

For the decentralized problem, we applied our proposed clustering method from Chap-
ter II to transmit demand information in the hierarchy. The allocations are then deter-
mined level by level. Multi-period planning is conducted by the planner at the root node
only, determining the allocations and backlogs for each period. Intermediate planners
then reallocate the received supply buckets from different supply replenishments for con-
sumption in a single period. To solve the allocation problem at each level, the proposed
approximate dynamic programming heuristic is applied.

Our numerical experiments confirm that our proposed heuristic for the centralized
problem provides results very close to the ex-post optimal solution. Moreover, applying
clustering for decentralization results in almost the same profits as the centralized case
for multi-period problems, and drastically outperforms per commit, which is a simplistic
allocation rule commonly applied in practice. The outcomes are in line with the results
of Chapter II.

Furthermore, we applied the single-period allocation policies from Chapter II to serve
as a heuristic in a multi-period setting. Comparing the performance of the proposed
multi-period methods against repeated single-period allocations confirms the importance
of considering the multi-period inter-dependencies in allocation planning. For all cases,
except for cases with no shortage or for homogeneous customers, multi-period methods
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out perform single-period methods. Multi-period planning is especially important for
cases with a considerable shortage rate, high shortage-rate fluctuations, or more hetero-
geneous customers.

To complete the analysis, in Chapter IV, we focused on the order promising stage.
In the allocation planning stage, allocations are defined based on the projected demand
information. The allocated quotas are then consumed in the consumption stage, as orders
materialize. Various consumption functions can be considered for order promising. A
partitioned consumption function limits the amount of fulfilled orders to the predefined
allocations. Rule-based nested consumption functions allow more profitable orders to be
fulfilled using less profitable segments’ allocations. However, the consumption function
is still based on predefined allocations. Using bid prices, allocation and consumption
are integrated and conducted in real time, leading to an appropriately adapted nested
approach.

We evaluated the performance of these consumption functions for single-period and
multi-period problems, considering both profit-based and simplistic allocation functions.
In general, our results confirm that nesting leads to lower profit gaps compared to par-
titioned consumption for all methods. In single-period experiments, the profit-based
methods with the nested consumption function lead to the lowest profit gap in all cases.
Per commit allocation with the nested consumption function outperforms profit-based
allocation methods with partitioned consumption if demand uncertainty is high or profit
heterogeneity is low or for a zero shortage rate, implying that in these cases, nesting is
more crucial than using information about demand uncertainty and profit-heterogeneity.

Similarly, in multi-period experiments, nesting results in profit improvements, but the
extent is lower compared to single-period experiments. This is because the possibility
of inventory holding and backlogging already leads to more fulfilled orders. Nesting
cannot mitigate the low performance of per commit allocation, except for cases with zero
shortage or low profit heterogeneity, in which all the methods perform similarly. The bid-
price approach leads to a lower profit gap than rule-based consumption functions, showing
the importance of considering the consumption approach in defining control parameters.

5.2. Further research

Our research presented in this thesis opens opportunities for future research in multiple
directions. First, we disregard the effects of the strategic behavior of individual planners.
For example, planners may seek to manipulate the allocation process to their advantage
by transmitting distorted information. It would be interesting to analyze how different
allocation approaches encourage or discourage such strategic behavior. Vogel and Meyr
(2015) point out that one advantage of their Theil index approach in the deterministic
setting is that false reporting of the Theil parameters is not beneficial, as it does not
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guarantee a larger allocation. Our research provides a starting point for addressing these
issues in a stochastic setting and for different allocation methods.

Another potential is to analyze how holding safety stock at intermediate levels of the
hierarchy affects the overall performance. Yang (2014) proposed using virtual safety
stocks for the centralized multi-period DF problem. Methods for calculating the required
safety stock quantities in hierarchical problems and new consumption functions for such
settings need to be defined and analyzed.

We assumed that orders are due in their period of arrival. However, in reality, orders
may have different due dates. Including this assumption in the model and the impact on
performance can be studied in future research.

In the consumption stage, we allowed nesting only at the last level of the hierarchy.
Taking into account transshipment costs, one can further investigate whether and to what
extent allowing nesting in upper levels of the hierarchy improves total profit.

In this thesis, we considered customer hierarchies in MTS manufacturing environments.
Consideration of customer hierarchies in other manufacturing environments such as MTO
is another research potential. Our proposed information aggregation methods can po-
tentially be applied in other manufacturing environments, but required adaptations to
provide the necessary information in each case need to be identified.
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A. Numerical Results of Chapter II

Appendix A

Numerical Results of Chapter II
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