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a b s t r a c t 

This paper investigates the efficacy of low-frequency transactions-based liquidity measures to describe ac- 

tual (high-frequency) liquidity. We show that the Corwin and Schultz (2012) and Abdi and Ranaldo (2017) 

estimators outperform other measures in describing time-series variations, irrespective of the observa- 

tion frequency, trading venue, high-frequency liquidity benchmark, and cryptocurrency. Both measures 

perform well during high and low return, volatility and volume periods. The Kyle and Obizhaeva (2016) 

estimator and the Amihud (2002) illiquidity ratio outperform when estimating liquidity levels. These two 

estimators also reliably identify liquidity differences between trading venues. Overall, the results suggest 

that there is not yet a universally best measure but there are reasonably good low-frequency measures. 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

Bitcoin and other cryptocurrencies are now firmly entrenched 

n the financial system. Bitcoin is becoming a widely accepted form 

f online payment and more than 35 million bitcoin wallets are in 

xistence. Trading in bitcoin exceeded $930 billion USD in January 

020. Bitcoin also forms a growing part of investment portfolios 

nd serves as the underlying for futures contracts, 1 recently ex- 

eeding $1 billion in open interest. 2 Originally designed as a de- 

entralized digital cash system using cryptographic hash functions 

o secure transactions, it is poised to overtake national fiat curren- 

ies and other financial assets in terms of global importance. 

Bitcoin and other cryptocurrencies are traded on numerous 

rading platforms around the globe. Bitcoin can be traded 24 h per 

ay, and seven days per week for US dollars, the Euro, Japanese 

en, as well as numerous other fiat and (crypto)currencies. 

onthly dollar trading volume on the New York Stock Exchange 
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as of similar magnitude to global bitcoin trading, with $1.03 tril- 

ion USD for the NYSE during December 2019. 3 

The growing importance of bitcoin for payments and invest- 

ents is dependent on an efficient transfer of bitcoin for other 

urrencies on cryptocurrency exchanges. The number of exchanges 

as exploded, making it difficult for investors to select an ex- 

hange for trading and hedging. While trading has become rela- 

ively frequent in cryptocurrencies the liquidity of these markets 

s difficult to determine. Cryptocurrency markets lack a regulated 

ata feed like the consolidated tape for U.S. equities. The lack of 

 consolidated feed, coupled with the high number of exchanges 

nd jurisdictions makes it difficult to calculate high-frequency bid- 

sk spreads thereby hampering the comparison of liquidity across 

ryptocurrency exchanges. The bid-ask spread is an important met- 

ic when assessing an exchange in that it represents the costs of 

mmediately buying or selling a security. Bid-ask spreads are usu- 

lly calculated using high-frequency intraday data that are both ex- 

ensive to purchase and time-consuming to process. We compare 
3 Data for bitcoin volume come from https://coinmarketcap.com/currencies/ 

itcoin/historical-data/ and NYSE volume data are from https://focus. 

orld-exchanges.org/issue/january-2020/market-statistics . Both sites were ac- 

essed on February 15, 2020. We note, though, that some cryptocurrency exchanges 

ppear to be overstating their reported volume (e.g. Hougan et al., 2019 ) and 

hat ranking websites like coinmarketcap.com may be tempted to report in- 

ated trading volume due to their revenue model which is largely dependent on 

rypto-exchanges ( Alexander and Dakos, 2019 ). 
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https://doi.org/10.1016/j.jbankfin.2020.106041
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jbf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jbankfin.2020.106041&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:alexander.brauneis@aau.at
mailto:roland.mestel@uni-graz.at
mailto:ryan.riordan@queensu.ca
mailto:theissen@uni-mannheim.de
http://www.aau.at/fin
https://banken-finanzierung.uni-graz.at
http://ryanriordan.ca/
https://www.bwl.uni-mannheim.de/theissen/
https://www.cmegroup.com/trading/bitcoin-futures.html
https://www.coindesk.com/bitcoin-futures-pass-1b-in-open-interest-on-bitmex-for-first-time-since-march-crash
https://coinmarketcap.com/currencies/bitcoin/historical-data/
https://focus.world-exchanges.org/issue/january-2020/market-statistics
https://doi.org/10.1016/j.jbankfin.2020.106041
http://creativecommons.org/licenses/by/4.0/


A. Brauneis, R. Mestel, R. Riordan et al. Journal of Banking and Finance 124 (2021) 106041 

h

f

v

(  

i

a

t

r

W

h

c

t

d

a

a

t

t

o

t

2

S

m

i

2

2

m

s

m

t

a

a

o

f

m

w

i

d

a

f

t

F

i

f

t

t

(

t

t

e

d

i

c

t

d

p

d

h

s

U

i

f

c

e

i

t

s

W

f

a

a

a

b

o

e

m

i

(

t

e

(

t

c

m

t

h

s

t

t

m

l

s

l

s

i

a

t

k

t

A

p

w

m

s

i

igh-frequency measures of liquidity with easy to compute low- 

requency measures. 

Characterising liquidity across exchanges is important for in- 

estors, traders, and hedging strategies that use cryptocurrencies 

 Hu et al., 2019 ) that can be negatively affected by the costs of

lliquidity. Additionally, cryptocurrency prices are not integrated 

cross exchanges ( Makarov and Schoar, 2020 ) and the decision to 

rade on an exchange is binding as orders cannot easily be re- 

outed to exchanges that are more liquid or offering better prices. 

ith little information about individual exchanges traders may 

ave to rely on transactions data such as the daily high, low and 

losing prices to evaluate market quality. 

We study the accuracy of liquidity measures derived from 

ransactions data. To this end we estimate low-frequency measures 

erived from aggregate transactions data 4 (prices and volumes) 

nd compare them to high-frequency measures of transaction costs 

nd price impact calculated from order book data. Our objective is 

o identify the transactions-based measure that best describes ac- 

ual liquidity on a cryptocurrency exchange. 

Data on best bid and ask prices and order books are hard to 

btain and process. 5 As such, few papers use full order book data 

o study the liquidity of cryptocurrency markets ( Brauneis et al., 

019; Dyhrberg et al., 2018; Hautsch et al., 2018; Makarov and 

choar, 2020 and Marshall et al., 2019 ). A number of low-frequency 

easures have been developed and used to assess bond, commod- 

ty, foreign exchange and equity market liquidity (e.g. Fong et al., 

017; Goyenko et al., 2009; Karnaukh et al., 2015; Johann, Theissen, 

020; Marshall et al., 2012; Schestag et al., 2016 ). Cryptocurrency 

arkets have characteristics that differ from traditional markets, 6 

uggesting that liquidity formation on cryptocurrency exchanges 

ay differ from those of other asset markets. 

We use a novel and comprehensive set of continuous transac- 

ions data and order book snapshots comprising the 50 best bids 

nd asks for two major cryptocurrencies (bitcoin and ethereum) 

nd three large exchanges (Bitfinex, Bitstamp and Coinbase Pro) 

ver a two-year period. First, we use these data to construct high- 

requency measures of transaction costs and price impact. These 

easures serve as our liquidity benchmarks. In a second step, 

e use transactions data (prices and volumes) and calculate var- 

ous liquidity proxies at lower frequencies (1 h, 1 day, and 15 

ays, 7 respectively). Data to compute the measures are collected 

t the 1-minute, 1-hour and 1-day frequency. 8 Individual low- 

requency measures have been used to describe liquidity in cryp- 

ocurrency markets (e.g. Brauneis and Mestel, 2018; Dimpfl, 2017; 

ink and Johann, 2014; Shi, 2018 ) but the relative benefits of each 

s not well understood. The most commonly used of these low- 

requency measures are the Roll (1984) serial covariance estima- 

or and the Amihud (2002) illiquidity ratio. We extend the analysis 

o include low-frequency measures based on high and low prices 

 Abdi and Ranaldo, 2017; Corwin and Schultz, 2012 ), the volatility- 

o-volume measure proposed by Kyle and Obizhaeva (2016) and 
4 Below, we use the term transactions-based measure synonymously with the 

erms low-frequency measure and liquidity proxy. 
5 It can be downloaded in real time from the REST APIs of each cryptocurrency 

xchanges or it can be purchased from vendors such as Kaiko. 
6 e.g. markets are highly fragmented and weakly regulated; they are open 365 

ays a year and 24 h each day, they allow direct market access for all traders; trad- 

ng platforms allow a direct transfer of fiat currency from and to bank accounts or 

redit cards, and transactions are cleared and settled by exchanges directly; margin 

rading and short-selling is uncommon. 
7 Providing results at the monthly frequency is infeasible because high-frequency 

ata for cryptocurrencies are limited to 24 months. 
8 In contrast to CRSP for equity markets that provides daily prices, cryptocurrency 

rices are available at higher than daily frequency. For example, the site cryptodata- 

ownload.com provides free data for many currency pairs and trading venues at the 

ourly frequency. 

p

m

m

A

S

s

n

v

u

v

2 
imple volume-based measures (the transaction frequency and the 

SD trading volume). Our goal is to evaluate these measures’ abil- 

ty to describe time-series variation in liquidity as well as level dif- 

erences across exchanges. This will allow us to recommend a spe- 

ific liquidity proxy using easy-to-access transactions data and an 

asy-to-compute proxy. Using such a proxy offers enormous sav- 

ngs compared to high-frequency order book measures. 

Our paper augments the literature on low-frequency 

ransactions-based liquidity measures by extending the analy- 

is to cryptocurrencies, an important and emerging asset class. 

e focus on results for bitcoin, the largest cryptocurrency. Results 

or ethereum, which are qualitatively similar in most respects, 

re discussed in Section 3.7 , the corresponding tables and figures 

re in the appendix. We use the cost of a roundtrip trade in 

ddition to quoted spreads, effective spreads and price impacts as 

enchmark measures. The round-trip measure provides estimates 

f the execution costs for large trades and is thus important for 

valuating some trading strategies ( Hu et al., 2019 ) and factor 

odels ( Liu et al., 2019 ). 

The results suggest that the proxies that use high, low and clos- 

ng prices, the Corwin and Schultz (2012) and Abdi and Ranaldo 

2017) ) estimators, best capture the time-series variation in cryp- 

ocurrency liquidity. These measures work for all data frequencies, 

xchanges (Bitfinex, Bitstamp, Coinbase Pro), benchmark measures 

quoted spread, effective spread, price impact, cost of a roundtrip 

rade) and for both bitcoin and ethereum. 9 Average time-series 

orrelations describe the average relationship between benchmark 

easures and proxies but do not capture the relationship for ex- 

reme liquidity events that may be important for investment and 

edging strategies. We use quantile dependence plots to under- 

tand how well transactions-based liquidity measures capture the 

ime-series properties of the benchmark measures across the dis- 

ribution. This is an important extension since the relative perfor- 

ance of liquidity proxies might be different depending on the 

iquidity regime. We also perform several sample splits and find 

imilar performance rankings of our liquidity proxies for high and 

ow volume and volatility periods. Given the extreme volatility as- 

ociated with bitcoin and cryptocurrency markets more generally, 

dentifying liquidity proxies that perform well in different volatility 

nd volume scenarios is an important contribution. 

The popular Amihud (2002) illiquidity ratio does not capture 

he time-series variability of liquidity in the cryptocurrency mar- 

ets. 10 The poor performance is driven by the relationship be- 

ween volume and liquidity that is assumed to be negative in 

mihud (2002) and is positive in cryptocurrency markets. The 

ositive relation between bid-ask spreads and volume is at odds 

ith most theoretical predictions but has recently also been docu- 

ented by Bogousslavsky and Collin-Dufresne (2020) for large US 

tocks. 11 

Similar to Hasbrouck and Seppi (2001) , we construct a compos- 

te estimator, the first principal component of the low-frequency 

roxies, and find that it does not generally improve on the perfor- 

ance of the best individual proxies. 

The measures that best describe the level of the bench- 

ark measures are the Kyle and Obizhaeva (2016) and 

mihud (2002) estimators. In this application the Corwin and 
9 Consistent with our results, Karnaukh et al. (2015) report the Corwin and 

chultz (2012) measure to have the highest correlation with high-frequency bid-ask 

preads in FX markets. 
10 Conceptually, the Amihud (2002) illiquidity ratio is a proxy for the price impact, 

ot for the spread. We find that it also performs poorly in tracking the time-series 

ariation of price impacts, a component of the effective spread. 
11 Amihud and Noh (forthcoming) present evidence of occasions where the illiq- 

idity ratio and the inverse of volume move in opposite directions, implying that 

olume increases while liquidity, as measured by the illiquidity ratio, decreases. 
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Table 1 

Number of transactions and order book snapshots for three exchanges and 

the two cryptocurrencies bitcoin (BTC) and ethereum (ETH), both traded 

against the USD. The sample period is 12/16/2017 to 12/16/2019. 

Number of transactions Number of order books 

BTC ETH BTC ETH 

Bitfinex 37,148,069 23,820,982 7,271,422 7,336,639 

Bitstamp 15,310,565 5,207,030 6,913,021 6,611,326 

Coinbase Pro 38,241,727 24,420,844 8,186,287 8,186,287 
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13 For Bitstamp and Coinbase Pro we have a 19 days lack of data in September 
chultz (2012) and Abdi and Ranaldo (2017) estimators perform 

oorly. We find that the values obtained for these two estimators 

nd for the Roll (1984) estimator are negatively related to the 

ata frequency, a finding that has been documented previously for 

he Roll estimator ( Roll, 1984; Harris, 1990 ) but has, to the best

f our knowledge, not been documented for the high-low spread 

stimators. 

An important application of liquidity proxies is to select an ex- 

cution venue among a number of alternatives. We use the low- 

requency estimators to rank trading venues according to their liq- 

idity. We find that the Amihud (2002) illiquidity ratio and the 

yle and Obizhaeva (2016) estimator best replicate the ’true’ rank- 

ng when compared to the ranking generated using high-frequency 

rder book measures. 12 

Our findings are useful for researchers, investors, traders, trad- 

ng venue operators and regulators to understand liquidity lev- 

ls and dynamics on cryptocurrency exchanges with relatively 

asy to acquire and process aggregate price and volume data. 

nvestors seeking the most liquid exchanges are best advised 

o use the Amihud (2002) illiquidity ratio or the Kyle and 

bizhaeva (2016) estimator. These two measures also provide good 

pproximations of the level of liquidity. They are the measures 

f choice for market participants attempting to estimate execu- 

ion costs to evaluate trading strategies. In contrast, traders seek- 

ng to time the liquidity of cryptocurrency markets and enter or 

xit when markets are liquid should use the Abdi and Ranaldo 

2017) and Corwin and Schultz (2012) estimator as they best cap- 

ure the time-series variability of the quoted and effective bid-ask 

pread. Regulators and trading venue operators can learn from our 

aper about how exchanges compare across time and use aggre- 

ate measures to study the impact on liquidity of regulatory or 

arket changes. Researchers can use our results to guide their 

hoice of liquidity measures in empirical studies on cryptocurrency 

arkets. Overall, our results suggest that the measure used should 

epend on the question being asked, as there is not (yet) a univer- 

ally best measure. 

The remainder of the paper is organized as follows. 

n Section 2 we describe our data and methodology, 

ection 3 presents the results, and Section 4 concludes. 

. Data and methodology 

.1. Data 

We compile a high-frequency data set that covers the two-year 

eriod from 12/16/2017 0 0:0 0 UTC to 12/16/2019 0 0:0 0 UTC, a to-

al of 730 trading days (17,520 h). Over this period we used Matlab 

o continuously access the public and freely accessible REST APIs 

f three large trading venues, Bitfinex, Bitstamp and Coinbase Pro 

formerly known as GDAX). These are among the largest cryptocur- 

ency spot trading platforms. All three venues operate an electronic 

entral limit order book with orders being matched based on price 

nd time priority. 

The REST APIs provide live information on transactions and the 

urrent state of the order book. All public endpoints at each of 

hese exchanges use GET requests for different types of informa- 

ion. We request records on ‘Trades’ / ‘Transactions’ and the ‘Order 

ook’. Depending on the venue, request parameters vary. For in- 

tance, Bitstamp only provides the full order book (with usually 

housands of entries) whereas order book requests at Bitfinex and 

oinbase Pro may be limited to the 50 best price levels on each 

ide of the market. 
12 The Corwin and Schultz (2012) estimator does very well for bitcoin but does 

oorly for ethereum. 

2

l

b

a

3 
A potential problem associated with transactions data from 

ryptocurrency exchanges are fake data. A widely cited report by 

ougan et al. (2019) argues that up to 95% of exchange-reported 

rading volume in bitcoin might not represent economically mean- 

ngful transactions or might even be plain fake. Collecting unique 

igh-frequency trade and order book data for bitcoin the authors 

ubject 83 cryptocurrency exchanges to several tests to identify ex- 

hanges that are likely to overstate trading volume. Only 10 ex- 

hanges passed all the tests and are characterized as “real vol- 

me” exchanges. The three trading venues that we consider in the 

resent study all belong to the latter group. 

From each trading venue we download data for two currency 

airs, bitcoin versus US dollar (BTCUSD) and ethereum against 

S dollar (ETHUSD). The data set includes the price and the cor- 

esponding dollar trading volume for each transaction, a UNIX 

ime stamp, a unique exchange-specific ID and a trade indica- 

or which indicates whether a transaction was buyer-initiated or 

eller-initiated. Table 1 lists the total number of transactions and 

rder book snapshots for both currencies and all three markets. A 

otal of 90.7 (53.4) million transactions were executed for bitcoin 

ethereum) during the investigation period, most of them on Coin- 

ase Pro while Bitstamp reports least transactions. 

We observe several time intervals with gaps in the data. These 

ay be due to actually missing trading activity, technical problems 

failure of the internet connection, no response from the server 

tc.), or exchange-specific trading halts (e.g. due to maintenance, 

pdates or hacker attacks). We identify between 6,329 (Coinbase 

ro - BTC) and 187,254 (Bitstamp - ETH) intervals without transac- 

ion data exceeding 60 s (1 min), between 2,641 and 5,920 inter- 

als exceeding 600 s (10 min) and between 1,573 and 2,199 inter- 

als exceeding 1,800 s (30 min). 13 . 

Table 2 provides descriptive statistics. Trading activity is 

arkedly higher for BTCUSD than for ETHUSD on all three ex- 

hanges. The differences are more pronounced for the USD trading 

olume than for the number of transactions, implying that the av- 

rage trade size is smaller for the currency pair ETHUSD. With re- 

pect to the number of transactions Coinbase Pro (Bitstamp) is the 

ost active (least active) exchange for both currencies. However, 

verage daily USD volume is highest on Bitfinex and lowest on 

itstamp. Concerning average USD trade size Bitstamp (Coinbase 

ro) has the highest (lowest) level for the pair BTCUSD, while for 

THUSD Bitfinex (Coinbase Pro) shows the highest (lowest) level. 

he standard deviation of ETHUSD returns is larger than that of 

TCUSD returns on all three venues. Across venues, price returns 

re most volatile on Bitstamp and least volatile on Coinbase Pro. 14 

Besides transactions data we retrieve order book data from the 

hree trading platforms. Specifically, we collect the 50 best bid 

nd best ask prices with corresponding volumes, resulting in a 

otal of 14.6 million (13.5 million, 16.4 million) order book snap- 
018 
14 We note that the differences in the standard deviation of returns may reflect 

iquidity differences because the return standard deviation is affected by bid-ask 

ounce. In fact, as shown in Table 3 below, bid-ask spreads are largest on Bitstamp, 

 result that has also been confirmed by Brauneis et al. (2019) . 
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Table 2 

Descriptive statistics for transactions data and the quote midpoint for the pairs BTCUSD and ETHUSD. Number of transactions and dollar volume refer to daily 

averages, the standard deviation of price returns σ (r) as well as the standard deviation of the quote midpoint returns σ (MQ ) refer to returns normalized to 

60 s. The sample period is 12/16/2017 to 12/16/2019. 

BTCUSD ETHUSD 

# TX [10 0 0] dollar vol [mio USD] σ (r) [bp] σ (MQ ) [bp] # TX [10 0 0] dollar vol [mio USD] σ (r) [bp] σ (MQ ) [bp] 

Bitfinex 51.15 149.87 13.44 13.51 32.74 57.46 16.88 15.87 

Bitstamp 21.67 66.93 15.19 12.28 7.36 11.68 26.44 14.53 

Coinbase Pro 54.05 87.73 12.78 13.23 34.61 40.17 15.22 15.27 

Table 3 

Descriptive data for benchmark liquidity measures for the pair BTCUSD used in the empirical analysis in the empirical analysis. Values are 

based on our complete record of all transactions and order book snapshots and represent averages at a daily resolution. The table reports 

descriptive statistics for the quoted spread (QS), the effective spread (ES), the price impact (PI) and the percentage cost of a roundtrip trade 

(CRT). Q1 (Q3) denotes the first (third) quartile. The unit of measurement is basis points. The sample period is 12/16/2017 to 12/16/2019. 

exchange mean std. dev. Q1 median Q3 num daily obs. 

Bitfinex QS 0.721 0.691 0.293 0.456 0.986 695 

ES 1.040 1.075 0.459 0.743 1.353 

PI 0.394 0.330 0.159 0.303 0.527 

CRT 3.833 1.927 2.351 3.649 4.677 

Bitstamp QS 6.553 3.270 3.888 6.377 8.163 663 

ES 6.992 3.332 4.451 6.675 8.456 

PI 0.492 0.415 0.214 0.363 0.644 

CRT 13.23 5.765 9.601 11.88 15.70 

Coinbase Pro QS 0.636 3.965 0.061 0.194 0.652 668 

ES 1.173 1.352 0.420 0.816 1.456 

PI 0.395 0.491 0.120 0.252 0.485 

CRT 3.407 4.202 2.272 2.945 3.911 
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15 When there is more than one transaction between two order book snapshots 

we only use the first of these transactions. We further require the transaction to 

happen within 60 sec after the order book record. 
hots for Bitfinex (Bitstamp, Coinbase Pro) for the two cryptocur- 

encies under investigation (see Table 1 ). As for the transactions 

ata we observe a considerable number of intervals without or- 

er book snapshots. There are between 13,038 (Coinbase Pro) and 

4,461 (Bitfinex) intervals without data exceeding 60 s. The num- 

ers of intervals without order book snapshots exceeding 600 s 

nd 1,800 s are roughly equal across the three exchanges and 

mount to approximately 3,300 and 2,200, respectively. The stan- 

ard deviations of quote midpoint returns are similar across trad- 

ng venues and are generally higher for ETHUSD than for BTCUSD 

see Table 2 ). 

.2. Measures of liquidity 

The purpose of our paper is to assess and compare the accuracy 

f transactions-based measures of liquidity. In doing so we take the 

erspective of a researcher who has access to data on open, high, 

ow and close prices and on the number of transactions and the 

ollar trading volume. 

For our analysis we need to specify (a) the frequency at which 

hese data are available (measured by the length of the subintervals 

 in the sequel) and (b) the frequency at which the transactions- 

ased measures are calculated (measured by the length of the in- 

ervals t). Unlike for other financial markets (e.g. stock markets), 

rice and volume data for cryptocurrencies are easily available for 

igher than daily frequencies. We therefore choose three distinct 

etups. 

• Data are available at the 1-minute frequency and are used to 

estimate transactions-based liquidity measures at the hourly 

frequency. 
• Data are available at the 1-hour frequency and are used to es- 

timate liquidity measures at the daily frequency. 
• Data are available at the daily level and are used to calculate 

liquidity measures at a 15-day frequency. 

To construct the data set we use our record of all transactions 

nd extract the open, high, low and close price as well as the num- 

er of transactions and the dollar volume at the respective fre- 

uencies of one minute, one hour and one day. These data are then 
4 
sed to calculate the transactions-based measures (to be described 

elow) at the hourly, daily and 15-day frequencies, respectively. 

ecause the three trading venues under investigation are located 

n different time zones we follow coinmarketcap.com and define a 

rading day as lasting from 0 0:0 0 UTC to 23:59 UTC. For an interval

o be included in the analysis we require that data are available for 

t least 80% of the subintervals. Thus, when we aggregate minute- 

y-minute (hour-by-hour, daily) data to the hourly (daily, 15-day) 

requency we require at least 48 min (19 h, 12 days) with valid 

ata. The final data set roughly comprises 12,500 hourly intervals, 

70 daily intervals and 46 15-day intervals, respectively. 

Besides the transactions-based measures we need to calculate 

enchmark measures. To this end we use the complete record of 

ll transactions and all order book snapshots and calculate average 

uoted and effective spreads, price impacts and cost of a roundtrip 

rade (to be defined below) at the hourly, daily and 15-day fre- 

uency. 

In the sequel we first describe the high-frequency measures 

hich we use as benchmark measures and then the transactions- 

ased measures that we wish to evaluate. 

.2.1. High-frequency benchmark measures 
• Percentage Quoted Spread ( QS) 

The percentage quoted spread is the difference between the 

best ask price P a and the best bid price P b of each order book 

snapshot, divided by the quote midpoint MQ = (P b + P a ) / 2 and

averaged over all observations in the interval 

QS t = 

1 
N t 

∑ N t 
j=1 

P a 
j 
−P b 

j 

MQ j 
. 

The subscript j denotes the j th order book snapshot in interval 

t and N t is the total number of order book snapshots in interval 

t . 
• Percentage Effective Spread ( ES) 

To estimate the effective bid-ask spread we combine order book 

snapshots with the first transaction that occurs after the snap- 

shot. 15 The price of this transaction is denoted P + . The average 
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quoted spread (effective spread) of 1.05 (0.31) basis points. USDCAD is the least 

liquid of the analyzed pairs with respect to the quoted spread (8.27 basis points) 

while AUDUSD has the highest effective spread (1.38 basis points. 
19 Because of the higher execution costs on Bitstamp traders may want to avoid 

Bitstamp. However, there are several reasons why we may still observe significant 

trading activity on Bitstamp. First, most transactions are small. The median trade 

size on Bitstamp is 354 USD (the corresponding values for Bitfinex and Coinbase 

Pro are 500 and 140 USD, respectively). Assuming a quoted spread of 6.6 bps (the 

median quoted spread on Bitstamp), the execution costs of a median-sized trade on 
percentage effective spread in interval t is then calculated as 

ES t = 

1 
N + t 

∑ N + t 
j=1 

2 ·| P + 
j 

−MQ j | 
MQ j 

N 

+ 
t is the number of order book snapshots that are followed by 

a transaction before the next order book snapshot is recorded. 
• Percentage Price Impact ( P I) 

To estimate the price impact we use data sequences consist- 

ing of an order book snapshot, the first transaction after the 

snapshot and the subsequent order book snapshot. The per- 

centage price impact is then calculated as the signed percent- 

age change in the quote midpoint from the pre-transaction or- 

der book snapshot to the post-transaction snapshot, 16 averaged 

over all data sequences (as defined above) in the interval 

P I t = 

1 

N 

+ 
t − 1 

N + t −1 ∑ 

j=1 

Q 

+ 
j 

· (M Q j+1 − M Q j ) 

MQ j 

where Q 

+ 
j 

denotes the trade indicator ( +1 for a buyer-initiated 

trade and −1 for a seller-initiated trade) of the transaction oc- 

curring after the order book snapshot j Conrad, Wahal (2020) . 17 

• Percentage cost of a roundtrip trade ( CRT (Y ) ) 

To assess the liquidity for larger trades we use the order book 

data to calculate the weighted average prices at which a buy 

and a sell order of a given size Y would execute. The weighted 

average price for executing a transaction of size Y USD given 

the current state of the order book is defined as 
∑ K 

k =1 
A k ·V k ∑ K 

k =1 
V k 

sub- 

ject to 
∑ K 

k =1 A k · V k = Y where A k and V k are the price and vol-

ume of the k th order, respectively. Note that the K 

th order may 

be subject to partial execution, depending on the outstanding 

dollar volume required to entirely fill the transaction volume Y . 

We set Y equal to the 99% quantile of the corresponding (aggre- 

gate) trade size distribution. For the currency pair BTCUSD this 

value is approximately equal to USD 32,100, while for ETHUSD 

Y roughly corresponds to USD 17,400. 

To estimate the cost of a roundtrip trade of size Y, CRT (Y ) , we

calculate the weighted average prices for a market buy order 

and a market sell order of size Y and then express the differ- 

ence between the two prices as a fraction of their midpoint. Fi- 

nally, we calculate an equally-weighted average across all order 

book snapshot in interval t . 

The CRT (Y ) measure is conceptually similar to the quoted bid- 

ask spread. However, while the quoted spread measures the 

transaction costs of a small trade (defined as a trade the size 

of which does not exceed the quoted depth), the CRT (Y ) mea- 

sure estimates the execution costs of a trade of size Y . 

Table 3 shows descriptive statistics for the benchmark measures 

or BTCUSD obtained from daily data (results at the hourly and 15- 

ay frequency are virtually identical and available upon request). 

verall, the percentage trading costs in the cryptocurrency markets 

re very low. Average quoted and effective spreads on Bitfinex and 

oinbase Pro are below 1.2 bps while the cost of a roundtrip trade 

f size USD 32,100 on these two venues are below 4 bps. 18 The 
16 From the numbers in Table 1 it follows that we observe an order book snapshot 

very nine seconds on average. Thus, the horizon over which we calculate the price 

mpact is slightly less than nine seconds on average. This is in line with Conrad and 

ahal (2020) who recommend to use a horizon of no more than 15 s for liquid 

tocks. 
17 As before, when there is more than one transaction between two order book 

napshots we only use the first of these transactions. Also, we discard order book 

bservations more than 60 sec apart. We lose one observation in each interval be- 

ause the last order book snapshot in an interval is discarded as it is not followed 

y another snapshot in the same interval. 
18 By way of comparison: Mancini et al. (2013) report liquidity for the 9 most 

raded exchange rates on the EBS platform over the period January 2007 to De- 

ember 2009. They find EURUSD to be the most liquid rate with a mean relative 
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5 
rice impact on these two exchanges amounts to approximately 

5% of the effective spread, implying that the suppliers of liquidity 

arn a small positive realized spread on average. Quoted spreads, 

ffective spreads and the cost of a roundtrip trade are much larger 

nd more volatile on Bitstamp than on the other two exchanges. 19 

he price impact, on the other hand, is only slightly larger on Bit- 

tamp than on the other two venues. Thus, suppliers of liquidity 

n Bitstamp appear to be earning significant realized spreads. 

We also calculated correlations between our benchmark liquid- 

ty measures (not tabulated). Using the daily data set for the pair 

TCUSD (results for other frequencies as well as for ETHUSD are 

imilar and available upon request) we find the highest correlation 

etween QS and CRT (exchange average: 0.89). Note that QS is a 

pecial case of CRT, measuring the cost of a roundtrip for trades 

ot exceeding the quoted inside depth. The high correlation be- 

ween QS and CRT is therefore not surprising and in line with sim- 

lar results from stock markets ( Irvine et al., 20 0 0 ). We take it as

vidence that QS is a good indicator for market liquidity not only 

t but also beyond the inside spread. PI has the lowest correla- 

ions with QS (exchange average: 0.49) and CRT (exchange aver- 

ge: 0.55). This confirms that PI captures a different dimension of 

arket liquidity than the spread measures. 

Fig. 1 shows the evolution of the hourly benchmark measures 

or the pair BTCUSD over time. Overall the patterns reveal strong 

imilarities in the liquidity measures, both within and between the 

hree exchanges. Starting from higher levels in December 2017, liq- 

idity measures continuously decrease until the end of Novem- 

er 2018 where they increase sharply. Throughout 2019 liquidity 

s lower and more volatile than during most of 2018. 

Corresponding to Table 3 , Table 9 in the appendix provides de- 

criptive statistics for the benchmark liquidity measures for the 

urrency pair ETHUSD at the daily frequency (again, results for the 

ther frequencies are essentially identical and are available upon 

equest). As for BTCUSD we find the levels of our four benchmark 

easures to be very similar on Bitfinex and Coinbase Pro. Aver- 

ge quoted spreads are about twice as high as those for the pair 

TCUSD. Average effective spreads for ETHUSD are below 2.2 bps 

n Bitfinex and Coinbase Pro, but again are higher than those for 

TCUSD. Average price impacts on both trading venues amount to 

oughly 30% of effective spreads , again implying that the suppliers 

f liquidity earn a small realized spread on average. 

As for BTCUSD, Bitstamp is substantially less liquid for ETHUSD 

han the other two exchanges. 20 The average quoted spread (effec- 

ive spread) amounts to 13.17 bps (13.45 bps). Again the average 
itstamp amount to 0.14 USD (354 USD multiplied by the half-spread), an amount 

hich traders may deem negligible. Second, there are frictions beyond the bid-ask 

pread. For example, trading venues differ in the ways how traders can transfer 

nd withdraw fiat money to and from their accounts. These differences can result 

n cost and speed differences between the exchanges. Third, not all traders are free 

o choose where to trade. For example, Bitfinex did not accept US residents as cus- 

omers during our sample period. Fourth, traders may prefer to trade on a venue 

n or close to their home country, e.g. because they are more familiar with the leg- 

slative regime. 
20 Evidently, ETHSUD is a rather infrequently traded pair on Bitstamp (roughly 5 

illion transactions over our investigation period, compared to roughly 24 million 

n Bitfinex and Coinbase Pro) which is why we only have 4410 observations of 

ourly data on Bitstamp that match the 80% data availability criterion (compared 

o more than 11,920 one hour intervals that match this criterion on Bitstamp for 

he pair BTCUSD. 
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Fig. 1. This figure plots a 72 h moving average of the benchmark liquidity measures for the pair BTCUSD at an hourly resolution. Quoted spread (gray solid line), effective 

spread (light gray dashed line) and price impact (black solid line) are shown on the left axis, the percentage cost of a roundtrip trade (black dashed line) is shown on the 

right axis. The unit of measurement is basis points. The sample period is 12/16/2017 to 12/16/2019. Note that for Bitstamp and Coinbase Pro we have a 19 days lack of data 

in September 2018. 

Table 4 

Descriptive data for proxy liquidity measures for the pair BTCUSD used in the empirical analysis at a 

daily resolution. The table reports descriptive statistics for the number of transactions (TX), the dollar 

volume ($ Vol, million USD), the Amihud measure (Amihud, values ∗1e6), Roll’s returns based mea- 

sure (Roll_r, basispoints), Roll’s price based measure (Roll_p), the Kyle and Obizhaeva measure (Kyle, 

values ∗1e3), the Corwin and Schultz measure (CS, basispoints) and the Abdi and Ranaldo measure 

(AR, basispoints). The sample period is 12/16/2017 to 12/16/2019. 

exchange mean std. dev. Q1 median Q3 no. daily obs 

Bitfinex TX 53,175 45,859 22,622 37,453 67,338 695 

$ Vol 155.1 186.9 38.01 83.25 190.3 

Amihud 0.015 0.186 0.001 0.002 0.004 

Roll_r 37.01 45.46 0 25.55 54.57 

Roll_p 30.71 46.28 0 17.03 40.27 

Kyle 0.077 0.024 0.060 0.073 0.090 

CS 21.63 19.49 9.158 15.67 27.45 

AR 23.60 21.23 10.62 17.02 28.81 

Bitstamp TX 22,873 18,369 9,705 17,697 30,353 663 

$ Vol 70.44 68.12 24.98 46.50 92.63 

Amihud 0.038 0.347 0.002 0.003 0.006 

Roll_r 37.03 45.66 0 25.69 52.68 

Roll_p 31.14 48.65 0 16.15 40.18 

Kyle 0.093 0.029 0.073 0.088 0.109 

CS 24.25 18.12 12.14 19.20 29.73 

AR 24.06 20.36 10.92 17.89 28.28 

Coinbase Pro TX 56,928 33,687 35,507 46,277 67,235 668 

$ Vol 91.78 96.97 30.50 61.93 115.1 

Amihud 0.006 0.059 0.001 0.002 0.003 

Roll_r 35.58 46.34 0 22.77 51.40 

Roll_p 29.82 48.65 0 13.73 38.51 

Kyle 0.085 0.026 0.067 0.081 0.098 

CS 19.44 16.91 8.527 14.64 24.10 

AR 22.74 20.02 10.13 16.66 26.74 

p

C

b

2

a

w

f

g

f

rice impact is not much larger on Bitstamp than on Bitfinex and 

oinbase Pro, implying substantial realized spreads to be earned 

y liquidity suppliers on Bitstamp. 

.2.2. Transactions-based proxy measures 

As noted previously, all transactions-based liquidity measures 

re calculated from data on open, high, low and closing prices as 

ell as the number of transactions and the dollar trading volume 

or each subinterval i . The data for the subintervals are then ag- 
6 
regated to one liquidity estimate for each interval t . We use the 

ollowing transactions-based measures. 

• Number of transactions ( T X) 

For each interval t we calculate the unweighted average of the 

number of transactions in the subintervals i, T X t = 

1 
I 

∑ 

i T X t,i , 

where I denotes the number of subintervals in interval t . 
• Dollar Volume ( $ V ol) 
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121 We note that the price-based Roll measure delivers an estimate of the dollar 

spread, not of the percentage spread. The numerical values are lower for ETHUSD 

than for BTCUSD because the dollar price of ethereum is only a fraction of the bit- 

coin price. 
Our second transactions-based measure is the unweighted 

average of the reported dollar transaction volume $ V ol t = 

1 
I 

∑ 

i $ V ol t,i in all subintervals i belonging to interval t . 
• The Amihud (2002) illiquidity ratio ( Amihud) 

Amihud (2002) illiquidity ratio for each subinterval is the ab- 

solute return (measured from the opening price to the clos- 

ing price of the subinterval) divided by the dollar trading vol- 

ume in the subinterval, Amihud t = 

1 
I 

∑ 

i 
| C t,i /O t,i −1 | 

$ Vol t,i 
, where O t,i 

and C t,i denote the opening and closing price in subinterval i 

in t, respectively. The illiquidity ratio for interval t is the un- 

weighted average of the ratios for the subintervals i in t . We 

note that conceptually the illiquidity ratio is a measure of price 

impact. However, in empirical applications it is routinely used 

as a proxy for liquidity at large. 
• The Roll (1984) serial covariance estimator ( Rol l ) 

The Roll (1984) estimator is based on the serial covariance of 

successive price changes. For each interval t we obtain one 

spread estimate from the closing prices of all subintervals i in 

t . If the serial covariance is positive we set the estimator to 0. 

We calculate two versions of Roll’s measure, one based on price 

changes and one based on returns. The formal expression for 

the return-based estimator is 

Roll t = 2 ·
√ 

− min (cov [ 
�C t,i 
C t,i −1 

, 
�C t,i −1 

C t,i −2 

] , 0) 

where � is the first difference operator. In the results section, 

Roll_p (Roll_r) refers to the price- (return-)based version, re- 

spectively. 
• The Kyle and Obizhaeva (2016) estimator ( Kyle ) 

Kyle and Obizhaeva (2016) derive an illiquidity index based on 

the ratio of volatility to dollar volume of an asset within a given 

interval. It is defined as 

Kyle t = 

[ 

σ 2 
t,i 

(r) ∑ 

i $ V ol t,i 

] 1 / 3 

where the volatility estimator σ 2 
t,i 

(r) is the mean of the squared 

returns of all subintervals i in interval t . 
• The Corwin and Schultz (2012) estimator ( CS). 

The CS estimator is calculated from the high and low prices of 

two adjacent subintervals i, i + 1 . It is defined as 

CS i,i +1 = 

2( exp (α) −1) 
1+ exp (α) 

α = 

√ 

2 β−
√ 

β

3 −2 
√ 

2 
−

√ 

γ

3 −2 
√ 

2 
, β = 

[ 
ln 

(
H i 
L i 

)] 2 
+ 

[ 
ln 

(
H i +1 
L i +1 

)] 2 
, γ = [ 

ln 

(
H i,i +1 

L i,i +1 

)] 2 
H i and L i denote the high and low prices, respectively, in subin- 

terval i, while H i,i +1 and L i,i +1 refer to the high and low price, 

respectively, of two adjacent subintervals i and i + 1 . We follow 

Corwin and Schultz (2012) and set negative values of the proxy 

to zero. The CS t estimator for period t is the unweighted aver- 

age of all CS estimators for adjacent subintervals in t . 

Corwin and Schultz (2012) propose a method to adjust their 

estimator for the overnight trading halt. We do not need to 

implement this modification because cryptocurrency exchanges 

operate 24 h a day and seven days a week. There are thus no 

regular trading halts. 
• The Abdi and Ranaldo (2017) estimator ( AR ) 

Abdi and Ranaldo (2017) propose an estimator based on the 

natural logarithms of high, low and closing prices in subin- 

terval i, denoted h i = ln (H i ) , l i = ln (L i ) and c i = ln (C i ) , respec-

tively. Further, denote by p̄ i = (h i + l i ) / 2 the midpoint between

the high and the low log prices in subinterval i . We use the 

‘two-day corrected’ version of the estimator which uses high 
7 
and low price data from two adjacent subintervals i and i + 1 . 

It is defined as 

AR i = 

√ 

max { 4(c i − p̄ i )(c i − p̄ i +1 ) , 0 } 
The AR t estimator for interval t is the average of the AR t,i mea- 

sures for all adjacent subintervals i in t, 

AR t = 

1 
I−1 

∑ I−1 
i =1 AR t,i . 

Table 4 reports descriptive statistics for our proxy liquidity 

easures at the daily frequency (results at the hourly and 15-day 

requency are again available upon request). When interpreting the 

umbers it should be kept in mind that several measures ( Abdi 

nd Ranaldo, 2017; Corwin and Schultz, 2012; Kyle and Obizhaeva, 

016; Roll, 1984 ) estimate the effective bid-ask spread while the 

mihud (2002) illiquidity ratio is a measure of price impact and 

he two volume metrics measure the number of trades and the 

ollar trading volume, respectively. However, even among those 

easures that estimate the effective spread there are large dif- 

erences. The Roll (1984) estimator delivers the largest and the 

yle and Obizhaeva (2016) estimator delivers the smallest spread 

stimates. We will compare the mean values shown in Table 4 to 

he effective spread calculated from high-frequency quote data in 

ection 3.5 below. 

For the currency pair ETHUSD descriptive statistics for our 

roxy liquidity measures are reported in Table 10 in the appendix. 

s for our benchmark measures the results indicate that the pair 

THUSD is less liquid than BTCUSD: volume-based proxy measures 

how lower values, while price-based measures are higher. 21 We 

ill discuss these results in more detail in Section 3.7 . 

. Results 

We present the results in six steps. We first report time- 

eries correlations between the transactions-based proxies and the 

enchmark measures. Correlations are a global measure of lin- 

ar dependence. To analyze whether the dependence structure is 

ifferent in the tails of the distribution we analyze, in step 2, 

uantile dependencies based on the empirical distribution func- 

ions. In a third step we aggregate the transactions-based measures 

nto a composite measure, the first principal component of the 

ransactions-based measures, and analyze whether it has higher 

ime-series correlation with the benchmark measures than the 

est of the individual transactions-based measures. In order to in- 

estigate whether the performance of the transactions-based mea- 

ures depends on the specific market environment we then, in step 

, split our sample along several dimensions. Specifically, we esti- 

ate time-series correlations between the proxies and the bench- 

ark measures for the first and the second half of our sample pe- 

iod, for high and low return periods, high and low volatility pe- 

iods and high and low volume periods. Next we report the mean 

bsolute errors and root mean squared errors of the transactions- 

ased measures. Finally, to capture the cross-sectional dimension, 

e analyze how frequently the liquidity ranking across the ex- 

hanges produced by the transactions-based measures is equal to 

he ranking produced by the benchmark measures. 

In Sections 3.1 –3.6 we present results for the currency pair BTC- 

SD in detail; qualitative results for the pair ETHUSD are similar in 

ost respects and are summarized in Section 3.7 . 

.1. Time-series correlations 

An accurate transactions-based measure should capture the 

ime-series variation in liquidity and should thus be positively cor- 
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Fig. 2. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the pair BTCUSD. Values represent simple 

averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily basis over the sample period 12/16/2017 to 12/16/2019. 
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elated with the benchmark measures. We therefore estimate time- 

eries correlations between the low-frequency measures and the 

igh-frequency measures. We do so separately for three exchanges 

Bitfinex, Bitstamp and Coinbase Pro) and three time frames (1- 

inute data (1-hour-data, daily data) aggregated to the hourly 

daily, 15-daily) frequency). As it turns out, the results for the three 

xchanges are very similar. We therefore report averages across 

he trading venues. 22 In the description of the results we empha- 

ize the findings for the daily data (i.e. hourly data aggregated 

o the daily frequency). We believe that most researchers using 

ransactions-based liquidity proxies will do so to obtain daily es- 

imates, and the hourly raw data required to calculate these daily 

stimates are easily and freely available, e.g. from cryptodatadown- 

oad.com. 

The results are presented in Figs. 2–4 . Focusing on the re- 

ults for the daily intervals ( Fig. 2 ) we find that the Abdi and

analdo (2017) and Corwin and Schultz (2012) estimators perform 

est. The Corwin and Schultz (2012) estimator exhibits the high- 

st time series correlation and the Abdi and Ranaldo (2017) esti- 

ator the second-highest correlation with the quoted spread, the 

ffective spread and the cost of a roundtrip trade, with correla- 

ions ranging from 0.54 to 0.75. The correlation with the price im- 

act is markedly higher, at 0.86 for both the Corwin and Schultz 

2012) and Abdi and Ranaldo (2017) estimator. 

Interestingly, the number of transactions and the dollar trading 

olume are highly correlated with the four benchmark measures, 

nd particularly so with the price impact (with correlation coef- 

cients of 0.82 and 0.80 for the number of transactions and the 

ollar volume, respectively. What is most surprising is the sign of 

he coefficients. Both measures are positively related to the bench- 

ark measures, implying that higher trading activity is associated 

ith higher execution costs. 

The other transactions-based proxies achieve much lower corre- 

ations. The measure that performs worst in our horse race is the 

mihud (2002) illiquidity ratio. It is virtually uncorrelated with the 

enchmark measures, and the sign of the correlation is even nega- 
22 Results for individual exchanges are available upon request. 

t

i

t

8 
ive. 23 The poor performance of the Amihud (2002) illiquidity ratio 

eserves discussion because this ratio is widely used as a measure 

f liquidity in empirical microstructure research. We argue that the 

ack of correlation between the illiquidity ratio and the benchmark 

easures is caused by the strong and positive relation between 

iquidity and trading activity discussed above. The illiquidity ra- 

io is based on the presumption that, in a less liquid market, a 

iven dollar trading volume will have a larger impact on prices 

nd will thus result in a larger price change. Put differently, for 

 given price change higher volume points to a more liquid market 

nd should thus be associated with lower execution costs accord- 

ng to the inherent logic of the measure. However, in the markets 

nder investigation volume is positively related to execution costs, 

 relation that runs counter the logic of the illiquidity ratio. We 

ish to reemphasize that the finding of a positive relation between 

rading activity and execution costs, even though at odds with the 

redictions of standard theory, is not confined to the cryptocur- 

ency markets under consideration here. Bogousslavsky and Collin- 

ufresne (2020) have recently documented a similar finding for 

arge US stocks. 

The results for the two alternative time frames (one-minute 

ata aggregated to the hourly frequency ( Fig. 3 ) and daily data 

ggregated to the 15-day frequency ( Fig. 4 ) are similar. The 

orwin and Schultz (2012) and the Abdi and Ranaldo (2017) es- 

imators yield higher correlations with the benchmark measures 

han the other transactions-based estimators. The strong and pos- 

tive correlations documented above for the daily data frequency 

etween the transaction frequency and dollar trading volume on 

he one hand and the benchmark measures on the other hand per- 

ist at the other data frequencies. In fact, at the 15-daily frequency 

he volume-based proxies perform better than the other proxies 

or three out of four benchmark measures. 

The performance of the Kyle and Obizhaeva (2016) estima- 

or is better at higher data frequencies while the Roll (1984) es- 

imator appears to perform better at lower frequencies. The 
23 In their study on the foreign exchange market Karnaukh et al. (2015) find that 

he Amihud (2002) illiquidity ratio performs reasonably well. When calculating the 

lliquidity ratio the authors use the number of transactions as a proxy for the dollar 

rading volume because they do not have access to volume data. 
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Fig. 3. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the pair BTCUSD. Values represent 

simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on an hourly basis over the sample period 12/16/2017 to 

12/16/2019. 

Fig. 4. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the pair BTCUSD. Values represent 

simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a 15-daily basis over the sample period 12/16/2017 to 

12/16/2019. 
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mihud (2002) illiquidity ratio continues to be the worst- 

erforming measure. As explained above, the most likely reason 

s the positive relation between trading activity and spreads in the 

ryptocurrency markets. 

So far we have documented differences in correlations across 

he different transactions-based measures, but we do not know 

hether the differences are significant. We therefore now perform 

 formal test based on the Fisher r-to-z transformation. Specifi- 

ally we test, separately for each of the four benchmark measures 

nd the three trading venues, whether the correlation between the 

est-performing proxy and the benchmark measure is significantly 

igher than the correlation between the second-best performing 

roxy and the benchmark. The results are reported in Table 5 . The 

vidence in favor of significant differences is limited to the two 

l

9 
ighest data frequencies. The Corwin and Schultz (2012) ) and the 

bdi, Ranaldo (2017) estimators perform best. Each of them sig- 

ificantly outperforms the second-ranking estimator in six cases. 

t the 15-daily data frequency there is no compelling evidence in 

avor of significant differences between the two best-performing 

ransactions-based measures. 

.2. Quantile dependence 

The correlation between the time series of transactions-based 

roxies and the benchmark measures of liquidity provides a global 

easure of dependence. However, it is conceivable that a proxy 

easure that fits the benchmark well in times of high liquidity 

i.e. in times of low bid-ask spreads) performs poorly in times of 

ow liquidity and vice versa. We therefore use quantile dependence 
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Table 5 

This table reports the best performing (in terms of correlation) proxy liquidity measure for each of the four benchmark liquidity measures 

(second best in parentheses) for the pair BTCUSD. ∗∗/ ∗ denote statistical significance of the difference between the best and second best 

measure’s correlation coefficient using Fisher r-to-z transformation at the 1%/5% level. For example, the entry CS (AR) ∗∗ for hourly data 

of Bitfinex in column QS indicates that CS features the highest correlation with the quoted spread, while AR is ranked second. These 

correlations are statistically different at the 1% level. The sample period is 12/16/2017 to 12/16/2019. 

QS ES PI CRT 

hourly Bitfinex CS (AR) ∗∗ AR (CS) ∗∗ AR (CS) ∗∗ Kyle (AR) 

Bitstamp AR (CS) ∗∗ AR (CS) ∗∗ TX ($Vol) ∗∗ AR (CS) ∗∗

Coinbase Pro CS (AR) ∗∗ CS (AR) ∗∗ AR (CS) ∗∗ CS (AR) 

daily Bitfinex CS (AR) CS (AR) CS (TX) CS (AR) 

Bitstamp CS (AR) ∗ CS (AR) ∗ CS (AR) CS (AR) ∗

Coinbase Pro $Vol (CS) $Vol (TX) ∗∗ AR (CS) CS (AR) 

15-daily Bitfinex TX ($Vol) TX ($Vol) TX ($Vol) CS (AR) 

Bitstamp $Vol (TX) $Vol (TX) $Vol (TX) TX ($Vol) 

Coinbase Pro Roll_p ($Vol) $Vol (Roll_p) $Vol (TX) CS (AR) 

Fig. 5. This figure plots the quantile dependence (averaged across the three trading venues) as a function of the quantile q in steps of 0.01 for the four benchmark liquidity 

measures and each of the 8 proxy measures for the pair BTCUSD for daily data. The sample period is 12/16/2017 to 12/16/2019. 
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o analyze the dependence structure between the benchmark and 

roxy measures in more detail. The quantile dependence of or- 

er q between two random variables ηp and ηb is generally de- 

ned as the conditional probability that F p (ηp ) is smaller (greater) 

han q given that F b (ηb ) is smaller (greater) than q for q ≤ 0 . 5

 q > 0 . 5 ): 24 

p,b 
q = 

{
P [ F p (ηp ) ≤ q | F b (ηb ) ≤ q ] , for q ∈ (0 , 0 . 5] 
P [ F p (ηp ) > q | F b (ηb ) > q ] , for q ∈ (0 . 5 , 1) . 

In our application the subscripts b and p refer to the bench- 

ark measures and the transactions-based proxies, respectively. q 

enotes a quantile and F denotes the cumulative distribution func- 

ion (CDF). An empirical estimate of λp,b 
q is given by 

 

p,b 
q = 

⎧ ⎨ ⎩ 

1 

T q 

∑ T 
t=1 1 [ ̂  F p ( ̂  ηp,t ) ≤q, ̂  F b ( ̂  ηb,t ) ≤q ] , for q ∈ (0 , 0 . 5] , 

1 

T (1 − q ) 

∑ T 
t=1 1 [ ̂  F p ( ̂  ηp,t ) ≤q, ̂  F b ( ̂  ηb,t ) ≤q ] , for q ∈ (0 . 5 , 1) . 

ˆ F j 
(

ˆ η j 

)
; j ∈ { b, p } denotes the empirical distribution functions of 

he benchmark and proxy measure, respectively. We estimate it us- 
24 See e.g. Duan et al. (2019) . 

r

e

10 
ng scaled ranks, i.e. we transform the data into ranks and then 

escale these ranks onto the unit interval. 

Intuitively, quantile dependence works as follows. For any q ≤
 . 5 consider the q · T smallest observations for the benchmark 

easure, where T is the total number of observations. Then con- 

ider the q · T smallest values for a transactions-based proxy and 

etermine the fraction of coinciding values. This fraction is the es- 

imate of the quantile dependence, ̂  λp,b 
q . 

We use data at the daily frequency 25 to estimate the quantile 

ependence separately for each trading venue and then calculate 

verages across venues. We present the results using quantile de- 

endence plots which show the quantile dependence as a func- 

ion of q . Higher quantile dependence implies a closer relation be- 

ween the benchmark measures and the transactions-based prox- 

es. The results for our four benchmark measures and eight proxies 

re shown in Fig. 5 . The dependence between the benchmark and 

roxy measures is generally stronger in the center of the distri- 

ution and weaker in the tails. The dependence in the tails ap- 
25 Results for the hourly frequency are qualitatively similar and are available upon 

equest. The number of observations at the 15-day frequency is too low to reliably 

stimate quantile dependence, particularly in the tails of the distributions. 
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Table 6 

This table reports mean correlations among the first principal component of 

proxy liquidity measures and the four benchmark measures for the pair BTCUSD. 

Column ‘expl. var’ shows the percentage of total variance explained by the first 

principal component. Rows denoted ’mean’ contain equally-weighted averages 

across exchanges. The sample period is 12/16/2017 to 12/16/2019. 

expl. var QS ES PI CRT 

hourly Bitfinex 56.34 0.761 0.707 0.773 0.576 

Bitstamp 49.75 0.725 0.789 0.718 0.724 

Coinbase Pro 57.15 0.582 0.815 0.780 0.630 

mean 54.41 0.689 0.770 0.757 0.643 

daily Bitfinex 56.38 0.818 0.741 0.859 0.657 

Bitstamp 57.87 0.702 0.760 0.885 0.767 

Coinbase Pro 57.87 0.078 0.764 0.844 0.253 

mean 57.37 0.533 0.755 0.863 0.559 

15-daily Bitfinex 53.10 0.765 0.787 0.896 0.539 

Bitstamp 54.09 0.702 0.724 0.875 0.723 

Coinbase Pro 56.78 0.489 0.778 0.810 0.594 

mean 54.65 0.652 0.763 0.860 0.619 
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ears to be asymmetric, it is higher for larger than for smaller 

alues. 26 

With respect to the ranking of the transactions-based liquid- 

ty measures the results from the quantile dependence analysis are 

onsistent with the results shown in Fig. 2 above. In particular, the 

bdi and Ranaldo (2017) and Corwin and Schultz (2012) estimators 

erform very well over the entire distribution, i.e. for high as well 

s low levels of liquidity. The two measures of trading activity, the 

umber of transactions and the dollar volume, also perform well. 

s before, the Amihud (2002) illiquidity ratio performs poorly. 

.3. Composite estimator 

The different transactions-based measures capture different as- 

ects of liquidity. It is, therefore, conceivable that a combination of 

hese measures better captures the time-series variation of liquid- 

ty. To test whether this is the case we construct a composite es- 

imator based on the eight low-frequency measures. We first stan- 

ardize all variables by subtracting the mean and dividing by their 

tandard deviation. We then extract the first principal component 

f the standardized data and estimate the time-series correlations 

etween the first principal component and the benchmark mea- 

ures. Table 6 shows the results for each time frame and each of 

he three exchanges. 

The first principal component explains roughly 55% of the vari- 

tion in the data. The time-series correlations are highest with the 

ffective spread and the price impact, with average values (across 

he three exchanges) ranging from 0.76 to 0.86. The time-series 

orrelations are lower (with values ranging from 0.53 to 0.69) 

hen one of the other benchmark measures is used. 

Comparing the results in Table 6 to those in Figs. 2–4 re- 

eals that the best performing individual estimators achieve higher 

ime-series correlations than the composite estimator for each 

enchmark measure at the hourly and 15-daily frequencies. At the 

aily frequency the composite estimator performs virtually equally 

ell as the Corwin and Schultz (2012) and Abdi and Ranaldo 

2017) estimators. We thus conclude that the benefit of calcu- 

ating all transactions-based proxies and aggregating them to a 

omposite estimator is limited, and is confined to specific data 

requencies. 
26 When interpreting the results note that a quantile dependence of 0.5 for q = 0 . 5 

s expected when the two distributions are independent. 
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.4. Sample splits 

It may be the case that some of the transactions-based liq- 

idity measures perform better under specific circumstances, e.g. 

arlier or later in the sample period or at times of high or 

ow volatility. To shed light on this issue we split our sample 

long several dimensions. The analysis is performed using the 

ourly data aggregated to the daily level. 27 We start by separately 

onsidering the first and the second half of the sample period, 

ith the resulting sub-samples covering 12/16/2017 0 0:0 0 UTC to 

2/15/2018 24:00 UTC and 12/16/2018 0 0:0 0 UTC to 12/16/2019 

 0:0 0 UTC, respectively. Subsequently we split the sample into 

erciles according to the signed return (measured by the average 

f the one-hour returns within a daily interval), return volatility 

measured by the standard deviation of the hour-by-hour returns 

ithin a one-day interval) and the dollar volume. We then cal- 

ulate separate time-series correlations for the first and the third 

ercile. 

For each sample split we present results for all four bench- 

ark measures. We first calculate time-series correlations for each 

rading venue and then average the correlations across venues. 

hese average correlations are shown in Figs. 6–9 . During the 

econd half of the sample period the correlations between the 

ransactions-based proxies and the benchmark measures are lower 

han those in the first half for most proxies ( Fig. 6 ). This reduc-

ion is much more pronounced for the quoted spread and the cost 

f a roundtrip trade than for the effective spread and the price 

mpact. These results allow the conclusion that the performance 

f the transactions-based proxies is sufficiently stable over time 

hen they are used to track the time-series variation of the ef- 

ective spread. 

The time series correlations between the transactions-based 

roxies and the benchmark measures do not differ much between 

igh and low return periods ( Fig. 7 ). The performance tends to be 

etter in low return periods. 

When we consider the sub-samples split by volatility and vol- 

me ( Figs. 8 and 9 , respectively) we find that the time series cor-

elations are higher in high volatility and high volume periods for 

ll benchmark measures. 

What is most important, though, is that our previous results 

oncerning the relative performance of the low-frequency liquid- 

ty proxies still hold. The Abdi and Ranaldo (2017) and Corwin and 

chultz (2012) estimators have the best overall performance un- 

er almost all conditions. The Kyle and Obizhaeva (2016) estimator 

erforms rather well in the low volume periods but is unable to 

rack liquidity across high volatility periods. 

.5. Mean absolute errors and root mean squared errors 

The previous analyses have focused on the ability of the 

ransactions-based proxies to capture the time-series variability 

f the benchmark liquidity measures. An alternative question is 

hether the proxy measures are able to accurately estimate the 

evel of the benchmark measures. Investors take the level of liq- 

idity into account in their trading strategies and portfolio al- 

ocations. Further, because the magnitude of the execution costs 

etermines whether a given price difference (e.g. for the same 

ryptocurrency at two different trading venues) can be prof- 

tably exploited, the level of liquidity is also related to market 

fficiency. 

We use as performance metrics the prediction error between 

he liquidity benchmark and the liquidity proxy as measured 
27 Results for the hourly frequency are qualitatively similar and are available upon 

equest. The number of observations at the 15-day frequency is too low to split the 

ample into terciles. 
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Fig. 6. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the first and second half of the sample 

for the pair BTCUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily basis 

over the sample period 12/16/2017 to 12/16/2019. 
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y the root mean squared error (RMSE) and the mean absolute 

rror (MAE). Table 7 reports the corresponding results for five 

ransactions-based measures (Amihud, Roll_r, Kyle, CS and AR) 

ith respect to the two benchmark measures ES and P I. We ex- 

lude as proxies the trading frequency, Roll’s price based estimator 

nd the dollar volume from the analysis because these measures 

re obviously unable to directly capture the percentage transaction 

osts. 

When it comes to capturing the level of the effective spread 

he Kyle and Obizhaeva (2016) estimator performs very well, par- 

icularly when data at lower frequencies are used. It has the low- 

st RMSE and MAE for two data frequencies (daily, and 15-daily). 

urprisingly, the Amihud (2002) illiquidity ratio comes close to 

yle and Obizhaeva (2016) . The Corwin and Schultz (2012) and 

bdi and Ranaldo (2017) proxies capture the level of the percent- 
12 
ge effective spread very well at the highest data frequency but 

ery poorly at lower frequencies. The Roll (1984) measure performs 

orst. 

When the price impact is used as benchmark measure the 

mihud (2002) illiquidity ratio and the Kyle and Obizhaeva 

2016) estimator yield the best results for all frequencies and both 

etrics for the prediction errors. The Roll (1984) estimator and the 

wo measures based on high and low prices, the Abdi and Ranaldo 

2017) and Corwin and Schultz (2012) estimators, are unable to 

apture the levels of the benchmark measures. 

One striking observation is that the levels of the Roll (1984) , 

bdi and Ranaldo (2017) and Corwin and Schultz (2012) estimators 

ppear to strongly depend on the data frequency. All three mea- 

ures deliver values which increase strongly as we move to lower 
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Fig. 7. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures in the subset of high and low return intervals 

for the pair BTCUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily basis 

over the sample period 12/16/2017 to 12/16/2019. 
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ata frequencies. This phenomenon as such is not new. Already in 

is original paper, Roll (1984) obtained much larger spread esti- 

ates from weekly than from daily data. Harris (1990) argued that 

he difference can partly be explained by a small sample bias in 

he estimator of the serial covariance. 28 The results in Table 7 sug- 

est that the high-low spread estimators developed by Corwin and 

chultz (2012) and Abdi and Ranaldo (2017) are subject to a similar 
ias. 

28 Specifically, he showed that the expected value of the serial covariance esti- 

ator is E(SCov ) = 

−s 2 

4 
− −σ 2 

n 
where s is the spread, σ 2 is the variance of price 

hanges and n is the number of observations. The bias in the serial covariance esti- 

ator, − −σ 2 

n 
, increases with the square of the observation interval. Under ideal con- 

itions (i.e. i.i.d. returns and continuous trading seven days a week, as is the rule in 

ryptocurrency markets), the variance of weekly price changes is seven times the 

ariance of daily price changes while the number of observations is one seventh. 

onsequently, the bias in weekly data is 49 times the bias in daily data. 
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.6. Cross-sectional analysis 

One potential application of transactions-based liquidity mea- 

ures is to compare the liquidity of different trading venues. A 

ood proxy measure should produce the same ranking of the 

enues as the benchmark measures. Therefore, in order to eval- 

ate the low-frequency measures we simply analyze how fre- 

uently the liquidity ranking across trading venues produced by 

he transactions-based measures is equal to the ranking produced 

y the benchmark measures. We perform the analysis separately 

or each exchange pair (Bitfinex/Bitstamp, Bitfinex/Coinbase Pro, 

nd Bitstamp/Coinbase Pro) and for each time frame. For each in- 

erval (one hour, one day, 15 days) and each exchange pair we 

ecord the corresponding liquidity ranking based on the bench- 

ark measures and based on the transactions-based proxies and 

hen simply count the fraction of identical rankings. By chance, this 
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Fig. 8. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures in the subset of high and low volatility 

intervals for the pair BTCUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily 

basis over the sample period 12/16/2017 to 12/16/2019. 
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29 Note that the Amihud (2002) illiquidity ratio does not capture the liquid- 

ity differences between Bitfinex and Coinbase well. However, as documented in 

Table 3 above, the liquidity differences between these two exchanges are small. 

When liquidity differences are small, ranking venues according to their liquidity is 
raction should be 50%. Therefore, we test whether the actual frac- 

ions are significantly larger than 50% using a simple binomial test. 

he results are presented in Table 8 . 

Two general patterns emerge. First, the results for the quoted 

pread, the effective spread and the cost of a roundtrip trade are 

etter than those for the price impact. Several of the transactions- 

ased measures (in particular the Amihud (2002) illiquidity ra- 

io, the Kyle and Obizhaeva (2016) measure, and the Abdi and 

analdo (2017) and Corwin and Schultz (2012) estimators) repli- 

ate the ranking of trading venues according to these three bench- 

ark measures well, with fractions of correct rankings ranging up 

o 97.3%. For the price impact, on the other hand, the percentage of 

atching rankings is lower and is often close to 50% even for the 

est-performing estimators. The liquidity proxies thus do not pro- 

ide valuable information on the ranking of price impacts across 

ifferent trading venues. 

l

14 
Second, the ability of some transactions-based measures to 

apture the cross-venue differences in liquidity depends on the 

ata frequency. In particular, the higher the data frequency 

and, correspondingly, the number of observations), the better 

he performance of the Abdi and Ranaldo (2017) estimator. The 

mihud (2002) illiquidity ratio, the Corwin and Schultz (2012) and 

he Kyle and Obizhaeva (2016) estimators, in contrast, are more 

onsistent. They perform well at all data frequencies. 29 

Overall, when considering all 36 comparisons (4 benchmark 

easures, 3 trading venue pairs, 3 data frequencies) of each 
ess important. 
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Fig. 9. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures in the subset of high and low volume 

intervals for the pair BTCUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily 

basis over the sample period 12/16/2017 to 12/16/2019. 
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30 We set the dollar trading volume Y to USD 17,400 which corresponds to the 

99% quantile of the aggregate trade size distribution for the currency pair ETHUSD. 
ransactions-based measure to the benchmark measures, the 

orwin and Schultz (2012) estimator achieves a rate of cor- 

ect rankings significantly more frequently than expected by pure 

hance (i.e., a rate of correct rankings significantly above 50%) in 

6 cases. The corresponding numbers for the Amihud (2002) illiq- 

idity ratio, the Kyle and Obizhaeva (2016) measure and the 

bdi and Ranaldo (2017) estimator are 26, 25 and 18, respectively. 

.7. Results for ethereum 

In this section we briefly discuss our results for the currency 

air ETHUSD which are in most respects qualitatively similar to 

hose for BTCUSD. As for BTCUSD, results for the three trading 

enues are very similar. We therefore report averages across the 
15 
enues. All tables and figures we are referring to are in the ap- 

endix. 

When considering the time-series correlations between our 

ow-frequency liquidity measures and the high-frequency bench- 

ark measures we mostly find correlation levels that are slightly 

ower for ETHUSD than for BTCUSD, particularly at the lowest data 

requency (see Figs. 10–12 ). The Corwin and Schultz (2012) and 

bdi and Ranaldo (2017) estimators yield the highest correlations 

or QS, ES and P I at the hourly and the daily frequency, with of- 

en almost identical correlation levels achieved by these two es- 

imators. When the cost of a roundtrip trade CRT (Y ) 30 is used 
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Table 7 

This table reports average root mean squared errors (RMSE) and average mean ab- 

solute errors (MAE) for the three exchanges for the pair BTCUSD. The panels in 

the table refer to hourly, daily and 15-daily results respectively. Lines depict proxy 

measures whilst columns in the table refer to the benchmark liquidity measures ef- 

fective spread (ES) and price impact (PI). Note that Amihud is conceptually a proxy 

for the price impact, while the other low-frequency measures Roll_r, Kyle, CS and 

AR estimate the spread. All values are multiplied by 10 0 0. The sample period is 

12/16/2017 to 12/16/2019. 

RMSE MAE 

Hourly ES PI ES PI 

Amihud 0.487 0.292 0.322 0.050 

Roll_r 0.585 0.738 0.340 0.452 

Kyle 0.346 0.050 0.267 0.036 

CS 0.224 0.296 0.161 0.182 

AR 0.231 0.436 0.149 0.319 

daily ES PI ES PI 

Amihud 0.367 0.059 0.306 0.042 

Roll_r 5.607 5.816 3.533 3.639 

Kyle 0.308 0.057 0.242 0.049 

CS 2.511 2.783 1.872 2.135 

AR 2.801 3.063 2.041 2.304 

15-daily ES PI ES PI 

Amihud 0.358 0.054 0.320 0.435 

Roll_r 31.23 31.44 21.71 21.81 

Kyle 0.284 0.074 0.244 0.067 

CS 15.46 15.74 13.49 13.77 

AR 15.36 15.64 13.23 13.51 
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s benchmark measure the Kyle and Obizhaeva (2016) estimator 

which performs rather poorly for the other benchmark measures) 

erforms best. As for the pair BTCUSD the volume proxy measures 

re surprisingly highly positively correlated with the benchmark 

easures, particularly with the effective spread. 

The quantile dependence plots for ETHUSD (see Figure 13 ) show 

hat, besides the Corwin and Schultz (2012) and the Abdi and 

analdo (2017) estimators, also the Kyle and Obizhaeva (2016) es- 

imator performs well. For two of the benchmark measures, and 

nly for low values of q , the Amihud (2002) illiquidity ratio also 

erforms well. When we construct a composite estimator from the 

ight proxy measures by means of a principal component analysis 

e find the time-series correlations between the composite esti- 

ator and our benchmark measures to be almost universally lower 

han the correlations between the benchmarks and the Corwin and 

chultz (2012) and the Abdi and Ranaldo (2017) estimators, respec- 

ively (see Table 11 ). 

We separately calculate the time-series correlations between 

he proxy liquidity measures and the benchmark measures for the 

rst and the second half of the sample period, for high and low re-

urn, high and low volatility, and high and low volume periods for 

he daily time frame. Results are reported in Figs. 14–17 . The time- 

eries correlations in the first and the second half of the sample 

eriods are roughly similar, especially when considering ES , PI and 

RT . Thus, and in contrast to the results for BTCUSD, we do not 

nd markedly lower correlations in the second half of the sample 

eriod. 

Correlations tend to be higher in high volume and high volatil- 

ty periods for all our benchmark measures while high and low re- 

urn intervals yield roughly similar correlations. Most importantly 

e find that the rankings of the proxy measures remain largely un- 

hanged in the sub-samples that result from our sample splits. The 

orwin and Schultz (2012) and Abdi and Ranaldo (2017) estimators 

ave the highest correlations with almost all benchmark measures 

nder almost all conditions. When the cost of a roundtrip trade is 

sed as the benchmark the Kyle and Obizhaeva (2016) estimator 

n some cases achieves better results than the Corwin and Schultz 

2012) and Abdi and Ranaldo (2017) estimators. 
16 
To summarize, our findings relating to time-series correlations 

etween proxy and benchmark measures for the pair ETHUSD are 

imilar to the results for BTCUSD. 

In a next step we investigate the ability of the low-frequency 

easures to capture the level of the high-frequency benchmarks. 

e use the same performance metrics as in Section 3.5 and ob- 

ain results for the pair ETHUSD that are again qualitatively sim- 

lar to those for BTCUSD (see Table 12 ), with one important ex- 

eption. The Amihud (2002) illiquidity ratio performs poorly at the 

ourly frequency because there are several one-hour intervals with 

ery little volume but considerable price changes. The Kyle and 

bizhaeva (2016) estimator performs best overall. The illiquidity 

atio does well at lower data frequencies, particularly when the 

rice impact is used as benchmark. As for the currency pair BT- 

USD we find the Roll (1984) , the Abdi and Ranaldo (2017) and the

orwin and Schultz (2012) estimators to perform poorly at lower 

ata frequencies. Again, the performance of these proxy measures 

ets worse the longer the time frame, probably because of the 

mall sample bias mentioned on page 31. 

Finally, we analyze the ability of the low-frequency measures to 

eplicate the ranking produced by the benchmark measures as in 

ection 3.6 above. Results are displayed in Table 13 . Two measures 

tand out, the Amihud (2002) illiquidity ratio and the Kyle and 

bizhaeva (2016) estimator. Both measures achieve a rate of cor- 

ect rankings significantly above 50% in 25 out of 36 cases. The 

orwin and Schultz (2012) estimator that performed well when 

pplied to BTCUSD, does poorly when applied to ETHUSD. 

. Conclusion 

In this paper we compare the performance of transactions- 

ased liquidity measures to benchmark measures derived from 

igh-frequency order book data. We use data for the two most 

ctively traded cryptocurrencies, bitcoin and ethereum, and from 

hree trading venues. We consider four benchmark measures, (a) 

he quoted and (b) the effective spread, (c) the price impact, and 

d) the cost of a roundtrip trade, and we consider the performance 

f the transactions-based measures across three dimensions, (i) 

heir ability to capture the time-series variation in liquidity, (ii) 

heir ability to capture the level of liquidity, and (iii) their ability 

o capture cross-exchange differences in liquidity. 

We find that no estimator performs well across all dimensions. 

he Corwin and Schultz (2012) and Abdi and Ranaldo (2017) es- 

imators best capture the time series variation in liquidity. This is 

rue overall, at different quantiles of the distribution, in the first 

nd the second half of the sample period, and in sub-samples of 

igh and low return, high and low volatility, and high and low vol- 

me periods. The measures that perform best in the cross-sectional 

nalysis are the Amihud (2002) illiquidity ratio and the Kyle and 

bizhaeva (2016) estimator because they do well at all data fre- 

uencies and for both currency pairs. When estimating the level of 

he benchmark measures again the Amihud (2002) illiquidity ratio 

nd the Kyle and Obizhaeva (2016) estimator perform best while 

he Corwin and Schultz (2012) and Abdi and Ranaldo (2017) esti- 

ators do poorly in this respect. 

Overall our results suggest that investors should use 

he Amihud (2002) illiquidity ratio or the Kyle and 

bizhaeva (2016) estimator to identify the most liquid exchange. 

he same recommendation holds for investors when estimating 

he level of execution costs in order to incorporate these into their 

rading strategies. On the other hand, researchers looking for a 

easure that captures the time-series variation of liquidity, or 

nvestors hoping to time the liquidity of cryptocurrency markets 

nd enter or exit when markets are liquid are best served by the 

orwin and Schultz (2012) and Abdi and Ranaldo (2017) liquid- 

ty measures because these estimators best capture time-series 
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Table 8 

This table reports the percentage of matching orders of proxy and benchmark liquidity measures for paired 

exchange-wise comparisons for the pair BTCUSD. Panels depict results for hourly, daily and 15-daily intervals 

respectively. Each panel reports results for the three respective pairs and the four benchmark measures. For 

instance, 96.84 in the hourly panel, for the pair Bitfinex / Bitstamp (BF / BS), for the quoted spread (QS) 

and the Abdi and Ranaldo estimator (AR) implies that the Abdi and Ranaldo estimator correctly matches the 

ranking of the quoted spread for this exchange pair in 96.84% of all intervals. An asterisk ( ∗) indicates that 

the corresponding value is significantly higher (at the 1% level) than 50% (the value that would obtain from 

guessing). The sample period is 12/16/2017 to 12/16/2019. 

Hourly BF / BS TX $Vol Amihud Roll_r Roll_p Kyle CS AR 

QS 5.32 24.19 91.78 ∗ 75.71 ∗ 75.65 ∗ 89.84 ∗ 92.64 ∗ 96.84 ∗

ES 4.35 19.55 76.06 ∗ 61.60 ∗ 61.56 ∗ 74.35 ∗ 78.01 ∗ 80.79 ∗

PI 32.46 37.11 50.13 43.92 43.91 49.80 53.04 ∗ 52.57 ∗

CRT 5.64 24.16 91.70 ∗ 75.54 ∗ 75.48 ∗ 89.84 ∗ 92.47 ∗ 96.60 ∗

BF / CB 

QS 55.80 ∗ 77.34 ∗ 46.97 38.61 38.60 30.12 69.26 ∗ 72.34 ∗

ES 53.52 ∗ 60.60 ∗ 45.48 37.86 37.79 39.60 67.57 ∗ 69.63 ∗

PI 38.60 50.71 57.81 ∗ 35.49 35.52 47.69 48.80 54.04 ∗

CRT 49.39 44.65 63.25 ∗ 37.10 37.13 59.65 ∗ 57.16 ∗ 58.93 ∗

BS / CB 

QS 4.03 32.90 97.32 ∗ 76.70 ∗ 76.70 ∗ 86.83 ∗ 87.86 ∗ 96.28 ∗

ES 4.09 29.24 84.31 ∗ 65.92 ∗ 65.92 ∗ 74.77 ∗ 78.46 ∗ 84.17 ∗

PI 24.96 37.60 63.18 ∗ 53.23 ∗ 53.23 ∗ 59.14 ∗ 58.98 ∗ 62.81 ∗

CRT 4.07 32.92 97.28 ∗ 76.67 ∗ 76.67 ∗ 86.86 ∗ 87.87 ∗ 96.27 ∗

daily BF / BS 

QS 0.30 20.36 81.00 ∗ 37.86 37.56 79.03 ∗ 75.72 ∗ 52.34 

ES 0.45 20.06 78.43 ∗ 36.50 36.20 76.47 ∗ 72.85 ∗ 50.98 

PI 21.42 35.29 61.09 ∗ 34.69 34.69 60.03 ∗ 65.16 ∗ 47.51 

CRT 0.30 20.36 81.00 ∗ 37.86 37.56 79.03 ∗ 75.72 ∗ 52.34 

BF / CB 

QS 56.22 ∗ 85.16 ∗ 21.89 42.43 42.88 17.99 75.11 ∗ 61.62 ∗

ES 59.07 ∗ 74.96 ∗ 30.73 41.98 41.98 26.24 68.97 ∗ 58.92 ∗

PI 30.43 54.57 45.58 39.88 40.03 45.88 57.87 ∗ 54.42 

CRT 44.23 44.38 59.07 ∗ 42.28 42.43 57.87 ∗ 53.52 52.62 

BS / CB 

QS 0.30 17.07 84.59 ∗ 42.90 42.45 83.08 ∗ 91.39 ∗ 61.18 ∗

ES 0.45 16.92 82.33 ∗ 41.24 40.79 80.21 ∗ 88.82 ∗ 59.82 ∗

PI 16.16 24.47 73.11 ∗ 40.33 39.88 72.51 ∗ 75.98 ∗ 56.95 ∗

CRT 0.30 17.07 84.59 ∗ 42.90 42.45 83.08 ∗ 91.39 ∗ 61.18 ∗

15-daily BF / BS 

QS 0.00 19.57 82.61 ∗ 32.61 28.26 78.26 ∗ 58.70 58.70 

ES 0.00 19.57 82.61 ∗ 32.61 28.26 78.26 ∗ 58.70 58.70 

PI 13.04 28.26 69.57 ∗ 32.61 32.61 69.57 ∗ 58.70 58.70 

CRT 0.00 19.57 82.61 ∗ 32.61 28.26 78.26 ∗ 58.70 58.70 

BF / CB 

QS 65.22 93.48 ∗ 8.70 39.13 43.48 15.22 78.26 ∗ 60.87 

ES 69.57 ∗ 84.78 ∗ 17.39 45.65 50.00 23.91 73.91 ∗ 60.87 

PI 17.39 50.00 52.17 39.13 36.96 50.00 56.52 43.48 

CRT 41.30 43.48 54.35 41.30 41.30 56.52 50.00 41.30 

BS / CB 

QS 0.00 13.04 86.96 ∗ 30.43 26.09 89.13 ∗ 84.78 ∗ 47.83 

ES 0.00 13.04 86.96 ∗ 30.43 26.09 89.13 ∗ 84.78 ∗ 47.83 

PI 10.87 15.22 84.78 ∗ 23.91 19.57 86.96 ∗ 82.61 ∗ 50.00 

CRT 0.00 13.04 86.96 ∗ 30.43 26.09 89.13 ∗ 84.78 ∗ 47.83 
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ariation in liquidity. These differing findings suggest that the the 

etting is important in determining the best liquidity proxy. 

Our results can be used by researchers, investors, traders, and 

egulators to understand liquidity levels and dynamics with rela- 

ively easy to acquire and process aggregate price and volume data. 

n many applications, the transactions-based aggregate measures 

erform adequately when describing high-frequency measures de- 

ived from order book data. The use of these low-frequency mea- 

ures is far less time-consuming and memory-intensive, offering 

 reasonable compromise between accuracy and computational 

orkload. Strategies that require more granular data such as tri- 

ngular arbitrage or market-making will of course require higher 

requency measures. 
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Table 9 

Descriptive data for benchmark liquidity measures for the pair ETHUSD used in the empirical analysis at a daily res- 

olution. The table reports descriptive statistics for the quoted spread (QS), the effective spread (ES), the price impact 

(PI) and the percentage cost of a roundtrip trade (CRT). The unit of measurement is basis points. The sample period is 

12/16/2017 to 12/16/2019. 

exchange mean std. dev. Q1 median Q3 num daily obs. 

Bitfinex QS 1.367 1.433 0.646 1.020 1.420 699 

ES 1.929 1.622 0.901 1.538 2.320 

PI 0.578 0.440 0.274 0.461 0.736 

CRT 7.224 3.809 3.854 7.634 9.885 

Bitstamp QS 13.17 4.681 10.11 12.04 15.31 651 

ES 13.45 4.806 10.32 12.39 15.43 

PI 0.770 0.584 0.411 0.624 0.929 

CRT 30.33 9.934 23.17 29.15 35.24 

Coinbase QS 1.232 0.928 0.647 0.979 1.475 676 

ES 2.177 2.294 1.157 1.790 2.580 

PI 0.601 0.587 0.227 0.458 0.769 

CRT 7.447 3.125 5.351 6.916 8.988 

Table 10 

Descriptive data for proxy liquidity measures for the pair ETHUSD used in the empirical analysis at a daily resolution. 

The table reports descriptive statistics for the number of transactions (TX), the dollar volume ($ Vol, million USD), the 

Amihud measure (Amihud, values ∗1e6), Roll’s returns based measure (Roll_r, basispoints), Roll’s price based measure 

(Roll_p), the Kyle and Obizhaeva measure (Kyle, values ∗1e3), the Corwin and Schultz measure (CS, basispoints) and the 

Abdi and Ranaldo measure (AR, basispoints). The sample period is 12/16/2017 to 12/16/2019. 

exchange mean std. dev. Q1 median Q3 no. daily obs 

Bitfinex TX 33,985 25,895 13,948 27,570 47,358 699 

$ Vol 59.24 72.87 13.88 33.20 77.84 

Amihud 0.044 0.436 0.003 0.006 0.016 

Roll_r 48.51 56.57 0 37.30 70.78 

Roll_p 2.006 3.882 0 0.725 1.906 

Kyle 0.131 0.041 0.101 0.124 0.156 

CS 26.82 21.74 13.16 20.58 34.00 

AR 30.32 24.20 15.60 23.83 36.51 

Bitstamp TX 7,889 8,127 2,947 5,451 10,075 651 

$ Vol 12.47 17.26 3.633 7.136 14.21 

Amihud 0.286 1.157 0.019 0.041 0.110 

Roll_r 49.01 54.73 0 36.74 69.82 

Roll_p 2.089 3.957 0 0.747 2.046 

Kyle 0.212 0.060 0.171 0.203 0.242 

CS 28.46 22.14 14.63 22.35 35.32 

AR 31.13 23.34 16.13 24.50 38.08 

Coinbase Pro TX 35,894 31,307 14,997 26,626 46,208 676 

$ Vol 41.60 63.87 10.11 21.31 45.18 

Amihud 0.568 10.38 0.005 0.009 0.017 

Roll_r 46.42 54.08 0 33.90 67.08 

Roll_p 1.919 3.715 0 0.659 1.826 

Kyle 0.143 0.040 0.116 0.137 0.163 

CS 26.10 20.54 13.13 20.65 32.34 

AR 29.80 23.62 15.07 23.43 36.01 

Table 11 

This table reports mean correlations among the first principal component of proxy liquidity measures and the four 

benchmark measures for the pair ETHUSD. Column ’expl. var’ shows the percentage of total variance explained by the 

first principal component. Rows denoted ’mean’ contain equally-weighted averages across exchanges. The sample period 

is 12/16/2017 to 12/16/2019. 

expl. var QS ES PI CRT 

hourly Bitfinex 50.98 0.696 0.660 0.752 0.414 

Bitstamp 50.23 0.636 0.687 0.692 0.548 

Coinbase Pro 51.80 0.533 0.438 0.836 0.359 

mean 51.00 0.621 0.595 0.760 0.440 

daily Bitfinex 52.35 0.679 0.626 0.820 0.231 

Bitstamp 54.05 0.660 0.719 0.823 0.536 

Coinbase Pro 52.24 0.345 0.457 0.838 0.177 

mean 52.88 0.561 0.600 0.827 0.315 

15-daily Bitfinex 56.29 0.475 0.295 0.725 −0.191 

Bitstamp 50.21 0.715 0.740 0.783 0.493 

Coinbase Pro 54.80 −0.032 0.137 0.851 −0.293 

mean 53.76 0.386 0.391 0.786 0.003 

18 
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Table 12 

This table reports average root mean squared errors (RMSE) and average mean absolute errors (MAE) for the 

three exchanges for the pair ETHUSD. The panels in the table refer to hourly, daily and 15-daily results re- 

spectively. Lines depict proxy measures whilst columns in the table refer to the benchmark liquidity measures 

effective spread (ES) and price impact (PI). Note that Amihud is conceptually a proxy for the price impact, 

while the other low-frequency measures Roll_r, Kyle, CS and AR estimate the spread. All values are multiplied 

by 1,0 0 0. The sample period is 12/16/2017 to 12/16/2019. 

RMSE MAE 

Hourly ES PI ES PI 

Amihud 63.14 63.05 2.013 1.447 

Roll_r 0.855 1.103 0.544 0.715 

Kyle 0.693 0.085 0.549 0.062 

CS 0.578 0.339 0.460 0.173 

AR 0.485 0.584 0.347 0.424 

daily ES PI ES PI 

Amihud 0.655 0.085 0.575 0.065 

Roll_r 6.873 7.246 4.556 4.774 

Kyle 0.532 0.117 0.431 0.103 

CS 2.914 3.380 2.159 2.647 

AR 3.311 3.778 2.479 2.977 

15-daily ES PI ES PI 

Amihud 0.641 0,077 0.599 0.068 

Roll_r 41.49 41.93 32.69 33.00 

Kyle 0.482 0.147 0.424 0.134 

CS 18.84 19.35 17.14 17.67 

AR 19.08 19.58 17.06 17.60 

Table 13 

This table reports the percentage of matching orders of proxy and benchmark liquidity measures for paired exchange-wise comparisons for the 

pair ETHUSD. Panels depict results for hourly, daily and 15-daily intervals respectively. Each panel reports results for the three respective pairs for 

Bitfinex (BF), Bitstamp (BS) and Coinbase Pro (CB). For instance, 84.62 in the hourly panel, for the pair Bitfinex / Bitstamp (BF / BS), for the quoted 

spread (QS) and the Abdi and Ranaldo estimator (AR) implies that the Abdi and Ranaldo estimator matches the order of the contemporaneous 

order of the quoted spread for this exchange pair in 84.62% of all intervals. An asterisk ( ∗) indicates that the corresponding value is significantly 

higher (at the 1% level) than 50% (the value that would obtain from guessing). The sample period is 12/16/2017 to 12/16/2019. 

Hourly BF / BS TX $Vol Amihud Roll_r Roll_p Kyle CS AR 

QS 0.34 4.99 93.75 ∗ 68.41 ∗ 68.21 ∗ 97.02 ∗ 57.29 ∗ 84.62 ∗

ES 0.16 1.35 38.91 26.64 26.54 39.76 27.28 36.55 

PI 11.65 12.54 28.02 20.99 21.03 28.34 25.98 27.95 

CRT 0.37 4.97 93.73 ∗ 68.39 ∗ 68.18 ∗ 97.05 ∗ 57.27 ∗ 84.60 ∗

BF / CB 

QS 51.52 ∗ 50.98 54.76 ∗ 40.24 40.26 54.25 ∗ 68.28 ∗ 68.81 ∗

ES 34.28 28.49 44.56 29.06 29.01 45.87 52.98 ∗ 53.45 ∗

PI 38.25 35.73 39.61 28.23 28.16 39.03 41.98 42.90 

CRT 46.87 31.08 69.00 ∗ 41.22 41.23 71.84 ∗ 65.22 ∗ 66.29 ∗

BS / CB 

QS 0.55 6.30 97.27 ∗ 66.39 ∗ 66.44 ∗ 96.98 ∗ 47.54 76.10 ∗

ES 0.36 1.91 40.90 26.53 26.53 40.70 24.17 34.77 

PI 16.05 16.87 25.28 20.37 20.37 25.22 23.01 24.19 

CRT 0.55 6.30 97.27 ∗ 66.39 ∗ 66.44 ∗ 96.98 ∗ 47.54 76.10 ∗

daily BF / BS 

QS 0.00 0.31 97.85 ∗ 37.23 36.92 99.69 ∗ 54.00 53.08 

ES 0.00 0.31 87.54 ∗ 31.69 31.54 88.77 ∗ 49.69 47.08 

PI 20.46 20.77 67.69 ∗ 32.77 33.38 68.31 ∗ 46.77 47.85 

CRT 0.00 0.31 97.85 ∗ 37.23 36.92 99.69 ∗ 54.00 53.08 

BF / CB 

QS 47.02 48.81 52.08 37.50 36.90 54.17 56.70 ∗ 51.49 

ES 50.30 41.96 55.80 ∗ 34.97 35.12 56.55 ∗ 57.29 ∗ 49.11 

PI 48.36 48.66 47.47 39.73 40.18 49.11 51.49 49.70 

CRT 38.54 27.53 73.96 ∗ 35.86 36.76 75.74 ∗ 50.00 52.23 

BS / CB 

QS 0.00 0.31 97.69 ∗ 44.31 44.77 99.69 ∗ 58.92 ∗ 54.62 ∗

ES 0.15 0.31 86.15 ∗ 38.92 39.38 88.15 ∗ 54.15 ∗ 48.46 

PI 19.85 20.00 66.92 ∗ 37.85 38.00 68.31 ∗ 48.46 51.38 

CRT 0.00 0.31 97.69 ∗ 44.31 44.77 99.69 ∗ 58.92 ∗ 54.62 ∗

15-daily BF / BS 

QS 0.00 0.00 100.00 ∗ 39.13 39.13 100.00 ∗ 45.65 45.65 

ES 0.00 0.00 100.00 ∗ 39.13 39.13 100.00 ∗ 45.65 45.65 

PI 17.39 17.39 82.61 ∗ 30.43 30.43 82.61 ∗ 50.00 32.61 

CRT 0.00 0.00 100.00 ∗ 39.13 39.13 100.00 ∗ 45.65 45.65 

BF / CB 

QS 43.48 50.00 50.00 43.48 32.61 54.35 43.48 50.00 

ES 52.17 45.65 54.35 43.48 36.96 58.70 33.78 54.35 

PI 58.70 43.48 56.52 52.17 52.17 52.17 45.65 39.13 

( continued on next page ) 
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Table 13 ( continued ) 

Hourly BF / BS TX $Vol Amihud Roll_r Roll_p Kyle CS AR 

CRT 34.78 28.26 71.74 ∗ 43.48 39.13 76.09 ∗ 39.13 45.65 

BS / CB 

QS 0.00 0.00 100.00 ∗ 30.43 34.78 100.00 ∗ 69.57 ∗ 56.52 

ES 0.00 0.00 100 ∗ 30.43 34.78 100.00 ∗ 69.57 ∗ 56.52 

PI 21.74 21.74 78.26 ∗ 32.16 36.96 78.26 ∗ 52.17 43.48 

CRT 0.00 0.00 100.00 ∗ 30.43 34.78 100.00 ∗ 69.57 ∗ 56.52 

Fig. 10. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the pair ETHUSD. Values represent 

simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on an hourly basis over the sample period 12/16/2017 to 

12/16/2019. 

Fig. 11. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the pair ETHUSD. Values represent simple 

averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily basis over the sample period 12/16/2017 to 12/16/2019. 
20 
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Fig. 12. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the pair ETHUSD. Values represent 

simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a 15-daily basis over the sample period 12/16/2017 to 

12/16/2019. 

Fig. 13. This figure plots the quantile dependence (averaged across the three trading venues) as a function of the quantile q in steps of 0.01 for the four benchmark liquidity 

measures and each of the 8 proxy measures for the pair ETHUSD for daily data. The sample period is 12/16/2017 to 12/16/2019. 
21 
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Fig. 14. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures for the first and second half of the sample 

for the pair ETHUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily basis 

over the sample period 12/16/2017 to 12/16/2019. 
22 
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Fig. 15. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures in the subset of high and low return intervals 

for the pair ETHUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily basis 

over the sample period 12/16/2017 to 12/16/2019. 
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Fig. 16. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures in the subset of high and low volatility 

intervals for the pair ETHUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily 

basis over the sample period 12/16/2017 to 12/16/2019. 

24 
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Fig. 17. This figure shows time series correlations between benchmark measures of liquidity and low-frequency proxy measures in the subset of high and low volume 

intervals for the pair ETHUSD. Values represent simple averages across the three exchanges Bitfinex, Bitstamp, and Coinbase Pro. Liquidity measures are calculated on a daily 

basis over the sample period 12/16/2017 to 12/16/2019. 
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