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Abstract
Remembering an experienced event in a coherent manner requires the binding of the event’s constituent elements. Such
binding effects manifest as a stochastic dependency of the retrieval of event elements. Several approaches for modeling
these dependencies have been proposed. We compare the contingency-based approach by Horner & Burgess (Journal of
Experimental Psychology: General, 142(4), 1370–1383, 2013), related approaches using Yule’s Q (Yule, Journal of the
Royal Statistical Society, 75(6), 579–652, 1912) or an adjusted Yule’s Q (c.f. Horner & Burgess, Current Biology, 24(9),
988–992, 2014), an approach based on item response theory (IRT, Schreiner et al., in press), and a nonparametric variant
of the IRT-based approach. We present evidence from a simulation study comparing the five approaches regarding their
empirical detection rates and susceptibility to different levels of memory performance, and from an empirical application.
We found the IRT-based approach and its nonparametric variant to yield the highest power for detecting dependencies or
differences in dependency between conditions. However, the nonparametric variant yielded increasing Type I error rates with
increasing dependency in the data when testing for differences in dependency. We found the approaches based on Yule’s Q
to yield biased estimates and to be strongly affected by memory performance. The other measures were unbiased given no
dependency or differences in dependency but were also affected by memory performance if there was dependency in the
data or if there were differences in dependency, but to a smaller extent. The results suggest that the IRT-based approach is
best suited for measuring binding effects. Further considerations when deciding for a modeling approach are discussed.
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Storing information about experienced events in episodic
memory requires the events’ constituent elements to be
bound together. Such binding processes allow for a
coherent retrieval of the experienced event. An event’s
constituent elements may take very different forms such
as persons, objects, locations, actions, and sensations.
For example, imagine having bought bread at a bakery.
Later remembering this particular event requires different
elements such as the bakery (location), the bought bread
(object), and the vendor (person) to be bound together
in memory. If event elements are bound together, there
should be an increased likelihood of retrieving subsequent
events elements when a preceding element was successfully
retrieved, thus leading to a stochastic dependency of the
retrieval of event elements (e.g., Arnold et al., 2019; Boywitt
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& Meiser, 2012a, b; Horner et al., 2015; Horner & Burgess,
2013, 2014; Meiser and Bröder, 2002; Ngo et al., 2019;
Starns & Hicks, 2005, 2008).

Much of the past research on binding in episodic mem-
ory (e.g., Balaban et al., 2019; Boywitt & Meiser, 2012a,
b; Hicks and Starns, 2016; Meiser and Bröder, 2002;
Starns & Hicks, 2005, 2008; Utochkin and Brady, 2020;
Vogt and Bröder, 2007) investigated rather simple, item-
based representations. Item-based representations consist of
a single element with specific features, such as an object
with a certain shape or color. Thus, item-based represen-
tations are static (see also Hunt & Einstein, 1981). More
recently, research started to incorporate more complex,
event-based representations that may include several ele-
ments (e.g., Andermane et al., 2021, Horner et al., 2015,
2013, 2014; James et al., 2020, Joensen et al., 2020).
These elements may interact and thus, event-based repre-
sentations are, at least potentially, dynamic (see also Rubin
& Umanath, 2015). In this context, the presentation of dif-
ferent elements belonging to the same event may induce
relational encoding with features common to the same event
(Hunt & Einstein, 1981). Event-based representations can
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be considered to contain several item-based representa-
tions, with storage occuring in a hierarchical manner (i.e.,
item-based representations being nested in event-based rep-
resentations, see Andermane et al., 2021) or event- and
item-based representations can be distinguished based on
different degrees of discrimination, with item-based repre-
sentations containing more specific information than event-
based representations (Hunt & Einstein, 1981). Addition-
ally, event-based representations include a spatiotemporal
context, which is not the case for item-based representa-
tions (e.g., Andermane et al., 2021). Contrary to item-based
representations, event-based representations allow for the
construction of scenes (Robin, 2018; Rubin & Umanath,
2015). This scene construction does not necessitate the exact
remembering of the specific features of an event’s con-
stituent elements (Rubin & Umanath, 2015). Most research
on event-based representations has not considered specific
features of the events’ constituent elements, which however
have been a main focus of research on item-based repre-
sentations (e.g., Balaban et al., 2019; Horner and Burgess,
2013; Joensen et al., 2020; Utochkin and Brady., 2020).

Because event-based representations are more complex
than item-based representations, approaches for modeling
stochastic dependencies of the retrieval of event elements
developed for item-based representations can not be read-
ily applied to event-based representations. Instead, different
approaches have been proposed for event-based representa-
tions. The different approaches are first introduced before
reporting a simulation study comparing the approaches
regarding their power for detecting stochastic dependency
of the retrieval of event elements and differences in depen-
dency, Type I error rates, and susceptibility to variations
in memory performance. The approaches are then applied
to an empirical data example to evaluate the congru-
ence of empirical inferences drawn by using the different
approaches.

Approach by Horner and Burgess

Horner and Burgess (2013) proposed a contingency-based
approach that can be applied to data obtained from cued
recognition or cued recall tasks. The approach considers
items (i.e., test trials in a memory test) with a common
cue or target as a dependency pair. For example, if events
consist of the elements A, B, and C, the cue-target-pairs
A–B and A–C may be considered a dependency pair. For
each person i, event t, and dependency pair jj’ a contingency
table X showing the successful retrieval of the target of
a dependency pair can be constructed, with 1 denoting
successful retrieval and 0 a failure to retrieve the target:

Xjj’
it =

[
j = 1, j ′ = 1 j = 1, j ′ = 0
j = 0, j ′ = 1 j = 0, j ′ = 0

]
(1)

Summing over events, a contingency table for a given
person and dependency pair can be obtained:

Xjj’
i =

[
n11 n10
n01 n00

]
(2)

n11 is the frequency of both items of a dependency
pair being correctly retrieved across events, n10 is the
frequency of item j being correctly retrieved while item
j’ being incorrectly retrieved, n01 is the frequency of item
j being incorrectly retrieved while item j’ being correctly
retrieved, and n00 is the frequency of both items being
incorrectly retrieved. From these contingency tables (one
per dependency pair), Horner and Burgess (2013) calculate
a data-based measure of the dependency of the retrieval
of event elements. The measure is first calculated for each
dependency pair by summing the leading diagonal cells of
each contingency table per person and dividing the results
by the overall number of events T. Then the results are
averaged across the set of dependency pairs J:

Ddata
HB, i = 1

|J |
∑

jj ′∈J

n11 + n00

T
(3)

The measure reflects the mean proportion of items in
an event that were both successfully or unsuccessfully
retrieved. Because this measure necessarily increases if
many (or few) event elements are successfully retrieved due
to strong (or poor) overall memory performance, Horner
and Burgess (2013) contrast it with dependency estimates
from an “independent model,” which predicts a value of the
measure under the assumption of independence based on the
person’s mean performance for items of a dependency pair
across events:

Dind
HB, i = 1

|J |
∑

jj ′∈J

(
n11 + n10

T

n11 + n01

T

+
(
1 − n11 + n10

T

)(
1 − n11 + n01

T

))
(4)

The actual dependency measure DHB, i can then be
obtained by subtracting Dind

HB, i from Ddata
HB, i. The measure

can take values between -1 and 1. A value of 0 indicates
independence, positive values indicate dependency, and
negative values indicate negative dependency such that the
likelihood of retrieving an event element is smaller when a
preceding event element was successfully retrieved.

Yule’s Q

Similarly to the approach by Horner and Burgess (2013),
one can calculate a measure of dependency from the
contingency table in Eq. 2 using Yule’s Q (Yule, 1912; cf.
Horner and Burgess, 2014; see also Hayman and Tulving,
1989; Kahana, 2002; Kahana et al., 2005), a commonly
used measure of association in memory research. Yule’s Q
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is an odds ratio standardized to the value range of [-1, 1]
with the same interpretation as the dependency measure by
Horner and Burgess (2013). It is a special case of the gamma
coefficient (Goodman & Kruskal, 1954) for 2 × 2 matrices
and can be calculated as:

Q
jj’
i = n11n00 − n10n01

n11n00 + n10n01
(5)

As in the approach by Horner and Burgess (2013), one
can then average across dependency pairs:

Qi = 1

|J |
∑

jj ′∈J

Q
jj’
i (6)

Adjusted Yule’s Q

A known problem of Yule’s Q is that zero frequencies cause
it to become -1, 1, or undefined. One can circumvent this
problem by adding a constant such as 0.5 to each cell of the
contingency table in Eq. 2 (cf. Burton et al., 2019; Horner
and Burgess, 2014). One can then calculate the adjusted
Yule’s Q (Qa) as in Eqs. 5 and 6. However, as opposed to
the approach by Horner and Burgess (2013), the approaches
involving Yule’s Q do not attempt to correct for memory
performance.

All the approaches mentioned so far are contingency-
based, collapsing smaller contingency tables into a 2 ×
2 contingency table per participant and dependency pair.
Thus, the approaches may be prone to Simpson’s paradox
(Hintzman, 1972, 1980; Simpson, 1951), meaning that if
2 × 2 contingency tables are collapsed into a summary
one, the relationship of the two outcomes in the summary
table may differ from the one shown in any of the
original tables. This may occur due to confounding with
participant differences, item differences, or participant-item
interactions (Hintzman, 1972, 1980; see also Burton et al.,
2017). Since the approaches compute participant-specific
estimates, the problem of confounding with participant
differences is avoided. However, potential confounding
with item differences and, most notably, participant-item
interactions remains an issue. Consequently, the approaches
for estimating dependency using contingency analyses may
be subject to problems of confounding.

An IRT-based approach

Recently, Schreiner et al. (in press) proposed a measure
of the retrieval of event elements based on item response
theory (IRT, Lord, 1980; Lord and Novick, 1968). Contrary
to the approaches outlined before, this measure is not
contingency-based but operates on the level of individual
item responses (i.e., test trial outcomes in a memory test).
Thus, Simpson’s paradox does not apply. In addition, IRT

jointly models participant differences, item differences, and
participant-item interactions, thus avoiding confounding
with these covariates. By using the three-parameter logistic
model (Birnbaum, 1968), one can model the probability of
person i to give a correct response u to item j, given a latent
trait θ, which represents memory performance in the current
application of the model, an item difficulty β, an item-
specific discrimination parameter α, and an item-specific
guessing parameter γ:

P(uij = 1) = γj + (1 − γj)
eαj(θi−βj)

1 + eαj(θi−βj)
(7)

In experimental settings, events are often randomly gen-
erated. Thus, it is often appropriate to fix the discrimination
and guessing parameters. For example, when using cued
recognition tests, it may be appropriate to fix the guess-
ing parameter to the stochastic guessing probability derived
from the number of response options (e.g., 0.2 for five
response options). Discrimination parameters may be fixed
to 1, as is the case in the Rasch model (Rasch, 1960), assum-
ing all items having the same correlation or factor loading
with the latent trait. When fixing the discrimination param-
eters to 1 and the guessing parameters to a constant g, the
model is reduced to:

P(uij = 1) = g + (1 − g)
eθi−βj

1 + eθi−βj
(8)

This model assumes local independence (LI) of item
responses, which means that all inter-item relationships are
accounted for by the latent trait (de Ayala, 2009; Lazarsfeld
and Henry, 1968). If the LI assumption holds, item residual
correlations are zero. However, when binding of event
elements occurs there are additional event-specific effects
that violate the LI assumption. Consequently, item-residual
correlations within events deviate from zero. Item-residual
correlations can be estimated using the Q3 statistic (Yen,
1984), which is calculated for item pairs jj’ in four steps:
First, person and item parameters are estimated from the
model in Eqs. 7 or 8. Second, the probability of correctly
retrieving items j and j’ is predicted from the model
parameters. Third, the residuals for both items are calculated
by subtracting the model-implied probability of a correct
response from the observed response for each person.
Finally, Q3 is calculated as the correlation of the residuals
of both items. The Q3 statistic has an expected value of
−1
I−1 given LI, with I being the total number of items (Yen,
1993). Thus, Q3 is negatively biased and in an additional
step a bias correction should be applied by subtracting the
expected value from all Q3. Schreiner et al. (in press) then
constructed a measure of the dependency of the retrieval of
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event elements (DQ3) as the difference in mean within-event
and mean between-event Q3:

DQ3 = 1

K

∑
k>k′

Qkk′
3 − 1

L

∑
l>l′

Qll′
3 (9)

where kk’ are within-event item pairs, ll’ are between-
event item pairs, K is the total number of within-event
item pairs and L is the total number of between-event
item pairs. Given binding of event elements, within-event
residual correlations deviate from zero and between-event
residual correlations are close to zero. Consequently, DQ3

deviates from zero. Like DHB and Yule’s Q, DQ3 can take
values between -1 and 1 and its interpretation is equivalent
to the former measures.

Because the sampling distribution of Q3, and conse-
quently the one of DQ3, is unknown (Chen & Thissen,
1997) and DQ3 is an overall, not person-specific, mea-
sure of dependency, testing the dependency by means
of t-tests or linear mixed models, which can be applied
to the contingency-based approaches, is not possible.
Instead, parametric bootstrapping can be applied, which is
a simulation-based approach to generate data from esti-
mated parameters to simulate a distribution of a statistic
under the assumption that the data-generating model is
true. There are generally two tests that are of interest: test-
ing whether dependency is different from zero and testing
whether dependency differs between experimental condi-
tions or groups. For the first test, artificial response matrices
can be repeatedly sampled from the model in Eq. 8, with
item parameters and latent trait variance estimated from the
original response matrix. For each simulated sample one
can then calculate DQ3 to obtain distributions under the null
hypothesis of independence. From these distributions one
can then calculate p values for the observed DQ3. For the
second test, the parametric bootstrap requires estimates of
the event-specific effects, which can be obtained by fitting
a bifactor model (see Gibbons and Hedeker, 1992; Wainer
and Wang, 2000). This model extends the model in Eq. 7 by
including additional event-specific latent traits λ:

P(uij = 1) = γj + (1 − γj)
eαj(θi−βj)−αt(j)λit(j)

1 + eαj(θi−βj)−αt(j)λit(j)
(10)

with λ being the event-specific latent trait of person i for
event t(j) to which item j belongs. When applying the same
restrictions as in Eq. 8 the model reduces to:

P(uij = 1) = g + (1 − g)
eθi−βj−λit(j)

1 + eθi−βj−λit(j)
(11)

All latent traits in this model are mutually independent.
The event-specific latent traits exert their influence via
their variance. Higher variances indicate stronger event-
specific effects. In experimental settings this model requires

an additional latent trait for each event and thus quickly
becomes very high-dimensional. It is thus advisable to put
equality constraints on the event-specific trait variances
within experimental conditions. Using the estimates of
latent trait variances and item parameters one can then
repeatedly sample artificial response matrices from the
model in Eq. 11, while setting the latent trait variances equal
to the ones of a given experimental condition (a reference
condition). For example, when having two experimental
conditions, one may set the latent trait variance of the
second condition equal to the one of the first condition,
making the model assume no difference in dependency
between conditions. One can then calculate DQ3 for each
experimental condition and differences in DQ3 between
conditions to obtain distributions under the null hypothesis
of equal dependency between conditions relative to the
reference condition. From these distributions one can then
calculate p values for the observed differences in DQ3.

Nonparametric variant of the IRT-based approach

While the previously presented IRT-based approach
(Schreiner et al., in press) is parametric and requires the
estimation of item and person parameters, Debelak and
Koller (2020) recently proposed a nonparametric estima-
tion procedure forQ3, building on the nonparametric testing
framework by Ponocny (2001). Using a Markov-Chain
Monte-Carlo algorithm by Verhelst (2008), a bootstrap sam-
ple of artifical response matrices with the same marginal
sums as the original response matrix is generated. In the
Rasch model (Rasch, 1960), and also the restricted model
in Eq. 8, the marginal person sums are sufficient statistics
for the general latent trait. It is then possible to estimate
P(uij = 1) by averaging uij over all bootstrap samples. The
nonparametric variant of Q3 is then computed like its para-
metric counterpart, using the estimated P(uij = 1) as the
model-implied probability of a correct response. Based on
the obtained nonparametric variants of Q3 one can then cal-
culate a dependency measure (Dnp

Q3
) as in Eq. 9. Similarly as

in the parametric approach it is then also possible to calcu-
late D

np
Q3

for each bootstrap sample and to calculate p values

for D
np
Q3

and differences in D
np
Q3
.

Desirable properties for measures of binding effects in
episodic memory are: high power in detecting stochastic
dependency of the retrieval of event elements and differ-
ences in dependency, good maintenance of Type I error
rates, and non-sensitivity to variations in memory perfor-
mance. Type I error rates and power are central concepts
for statistical hypothesis testing (see e.g., Cohen, 1988) in
order to guarantee strict statistical tests and replicable find-
ings. In addition, binding effects should be dissociated from
memory performance, which requires measures of bind-
ing effects that are unaffected by memory performance,
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because otherwise it is unclear whether increased depen-
dency of the retrieval of event elements can be attributed
to actual binding effects or is due to higher levels of mem-
ory performance in the sample, which also increases the
likelihood that several elements from the same event are cor-
rectly retrieved. In a simulation study we compared the five
presented approaches regarding these criteria.

Simulation study

Methods

We conducted a Monte Carlo simulation. Responses were
generated from the bifactor model in Eq. 11 with a global
guessing parameter of g = 0.2, t = 30 events, and
6 items (i.e., test trials in a hypothetical memory test)
per event, resulting in a total of I = 180 items. In an
application, this scenario could be equivalent to testing
each association of events consisting of three elements
A, B, and C in both directions using a cued recognition
task (i.e. testing the cue-target pairs A–B, B–A, A–C, C–
A, B–C, and C–B). The different test trials represent the
items. The simulation mimicked 2 experimental within-
subjects conditions, resulting in 15 events and 90 items per
experimental condition.

Item parameters were drawn from a standard normal
distribution. Person parameters (i.e., latent memory profi-
ciency [θ] and event-specific latent trait scores [λt]) were
drawn from a multivariate normal distribution with zero
covariances, since the bifactor model assumes the general
and event-specific latent traits to be mutually independent
(e.g., Wang & Wilson, 2005). The mean of the general
latent trait, representing overall memory performance, var-
ied across simulation conditions the and variance was set to
5, based on empirical findings (cf. Schreiner et al., in press).
The means of the event-specific latent traits were set to
zero and the variances varied across simulation conditions.
Variances were constrained to be equal within experimental
conditions.

There were four design factors in the simulation: (a)
sample size (N = {25, 50, 75, 100}), (b) dependency (event-
specific trait variances, Dep. = {0, 0.5, 1}), (c) differences
in dependency (differences in event-specific trait variances,
Dep.diff = {0, 0.5, 1}), and (d) overall level of memory
performance (mean of the general latent trait θ, P = {-2,
0, 2}). Different levels of memory performance resulted in
proportions of 40%-42% (P = -2), 59%-60% (P = 0), and
75%-80% (P = 2) correct responses. The sample sizes are
normal to quite large for experimental studies of memory.
The simulation conditions resulted from the fully crossed
combination of the four design factors, resulting in 108
simulation conditions. For each of these, 1,000 response

matrices were generated. For differences in dependency
between conditions, the first experimental condition served
as the reference condition. For the second experimental
condition, the difference value was added to the dependency
value of the first condition (i.e., the baseline dependency).
Dependency values of zero indicate independence. For
values larger zero there is positive dependency in the data.
If the dependency difference is zero, the two experimental
conditions are identical. Consequently, regarding results
for testing against independence, only the results of the
first experimental condition are reported. One limitation
of DQ3 is that the corresponding IRT model can not be
estimated if there are items without variance because this
prevents the estimation of item parameters for these items.
To circumvent this problem in the simulation, the simulated
data was redrawn until all items had non-zero variances.

The five dependency measures (DHB, Q, Qa
1, DQ3

2,
and D

np
Q3
) were computed for each generated response

matrix. Empirical detection rates were determined with
the conventional significance level of α = 5% using
one-tailed testing3 (dependency larger than zero for tests
against independence and dependency lower in the first
experimental condition than in the second experimental
condition for tests of dependency differences). For DHB,
Q, and Qa one-sample t-tests against zero were conducted
for tests against independence and paired t-tests were
conducted for tests of dependency differences. For the
parametric bootstrap required for DQ3, the true parameter
values (for fixed parameters) and correct distributional
assumptions were used4. For each simulation condition,
1,000 bootstrap samples (cf. Davison & Hinkley, 1997)
were generated prior to the simulation to obtain critical
values for DQ3. Note that item and person parameters were
only drawn once per simulation condition for the parametric
bootstrap. ForDnp

Q3
, 1,000 bootstrap samples were generated

1Qa was computed by adding the constant 0.5 to each contingency
table.
2While it may conceptually often make sense to set the guessing
parameter to the stochastic guessing probability given some number
of response alternatives, the true guessing parameters in the sample
may deviate from this probability, for example due to participants
using strategies that increase their probability of a correct response.
Thus, we computed DQ3 with different degrees of misspecification
of the guessing parameter — g = 0.2 (no misspecification), g =
0.15 (underestimation), and g = 0.25 (overestimation). Over- or
underestimation of the guessing parameter did not substantially affect
the results and only the results with no misspecification of the guessing
parameter are reported.
3We used one-tailed testing because the data generation process does
not allow for negative dependencies (variances of the event-specific
latent traits can not be negative).
4In practice one would have to estimate item parameters and latent
trait variances from the data by initially fitting a unidimensional model
(for tests against independence) or a bifactor model (for tests for
differences between conditions).
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Fig. 1 Dependency estimates and mean trajectories obtained from the different measures by dependency and performance for N = 100. For DHB,
Q, and Qa the displayed values refer to the mean across participants within the different simulation conditions. Note the varying y scales for the
different measures.

from each generated response matrix. These were used for
the nonparametric estimation of Q3 (Debelak & Koller,
2020) and used to obtain critical values for D

np
Q3
.

The simulation was conducted in the R Programming
Environment (R Core Team, 2021) using the packages
SimDesign (version 2.2, Chalmers & Adkins, 2020), mirt
(version 1.33.2, Chalmers, 2012), and eRm (version 1.0-
1, Mair et al., 2020; Mair and Hatzinger, 2007)5, and
adapted functions from the package sirt (version 3.9-4,
Robitzsch, 2020). Data and code for the simulation study
are available via the Open Science Framework (OSF, https://
osf.io/25mzu/).

Results

Figures referring to the distribution of dependency estimates
(Figs. 1 and 4) show the values for a sample size of N
= 100. Results for other sample sizes showed identical
trends but distributions were more spread out due to larger
standard errors. Because DHB, Q, and Qa yield participant-
specific estimates, the values shown in the figures refer
to the respective means across participants. This applies
for both types of tests (i.e., tests against independence and
tests for differences in dependency between experimental
conditions).

5The eRm package was used for computing D
np
Q3
. To do this, some of

the package functions needed to be adjusted. The adjusted functions
are available via the OSF.

Testing Against Independence

Estimates Figure 1 shows the distribution of dependency
estimates yielded by the different approaches for the
different simulation conditions. Given no dependency in
the data, DHB, DQ3, and D

np
Q3

were distributed around zero
across performance conditions. Q on the other hand was
negatively biased and Qa was positively biased and both
biases increased strongly with performance. All estimates
increased with increasing dependency in the data. The
sensitivity of Q and Qa to performance was maintained
if there was dependency in the data. In such cases, DHB,
DQ3, and D

np
Q3

also showed sensitivity to performance and
this sensitivity increased with increasing dependency in
the data, suggesting an interaction effect of dependency
and performance on the estimates. DHB showed the least
sensitivity to performance and followed a curvilinear trend
across performance conditions. DQ3 and D

np
Q3

showed
similar sensitivity to performance with a monotonic increase
in estimates across performance conditions. Sensitivity to
performance was higher than for DHB but was still very
small compared to Q and Qa.

In summary, DHB, DQ3, and D
np
Q3

were robust against
different degrees of overall performance given that there
was no dependency in the data but were sensitive to
performance if there was dependency in the data. This
sensitivity increased with increasing dependency and was
less pronounced for mean values of DHB. Q and Qa were
negatively and positively biased respectively and means
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were strongly affected by performance, even if there was no
dependency in the data. Correlations between estimates of
the different measures are shown in Table 1 in the Appendix.

Type I error rates Figure 2 shows the Type I error rates
of the different approaches for the different simulation
conditions. Qa is not displayed because it yielded very high
Type I error rates (> .41), which strongly increased with
performance. This can be explained by its positive bias
(see Fig. 1) and the one-tailed testing applied. Q is also
not displayed because it yielded Type I error rates of zero
in all conditions, which can be explained by its negative
bias (see Fig. 1) and the one-tailed testing applied. DHB

tended to yield higher Type I error rates than DQ3 and D
np
Q3

except for smaller sample sizes. There was no clear trend of
Type I error rates across performance conditions, suggesting
that the three measures yield Type I error rates that are
unaffected by performance. DQ3 and D

np
Q3

yielded Type I
error rates close to 5%, suggesting good maintenance of the
nominal significance level by these measures.

Power Figure 3 shows the power of the different
approaches for detecting dependency for the different sim-
ulation conditions. Power increased with sample size and
increasing dependency in the data. Q yielded very low
power, which can again be explained by its negative bias
(see Fig. 1). Qa yielded very high power that is sensitive
to performance. This can be explained by the measure’s
positive bias (see Fig. 1). DQ3 and D

np
Q3

yielded compara-
ble power that was higher than the one yielded by DHB.
The power yielded by all three measures was sensitive to

performance but this sensitivity was comparable between
the three measures.

Testing for differences in dependency

Estimates Figure 4 shows the distribution of estimates of
dependency differences yielded by the different approaches
for the different simulation conditions. Given no difference
between conditions, all estimates were distributed around
zero, irrespective of performance and baseline dependency
(i.e., dependency in the reference condition). All estimates
decreased with increasing differences in dependency in
the data. If there were dependency differences in the
data, DHB showed the least sensitivity to performance and
followed a curvilinear trend across performance conditions.
Q and Qa were highly sensitive to performance. While Q

monotonically increased with increasing performance, Qa

followed a curvilinear trend across performance conditions.
DQ3 and D

np
Q3

showed similar sensitivity to performance
with a monotonic decrease in estimates across performance
conditions. Sensitivity to performance was higher than for
DHB but was smaller than for Q and Qa. Sensitivity to
memory performance increased with increasing differences
in dependency for all measures. Finally, all estimates shifted
closer to zero with an increasing baseline dependency.
Correlations between estimates of dependency differences
of the different measures are shown in Table 2 in the
Appendix.

Type I error rates Figure 5 shows the Type I error rates
of the different approaches when testing for differences in

Fig. 2 Type I error rates of the different measures for tests against independence by performance and sample size. Q and Qa are not displayed.
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Fig. 3 Power of the different measures for detecting dependency by performance, baseline dependency, and sample size

Fig. 4 Estimates and mean trajectories of dependency differences obtained from the different measures by baseline dependency, dependency
difference, and performance for N = 100. For DHB, Q, and Qa the displayed values refer to the mean differences across participants within the
different simulation conditions. Note the varying y scales for the different measures.
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Fig. 5 Type I error rates of the different measures for tests for differences in dependency by performance, baseline dependency, and sample
size

dependency for the different simulation conditions. Qa and
D

np
Q3

yielded the highest Type I error rates, whereas Type
I error rates for DHB, Q, and DQ3 were approximately
comparable. Overall, DQ3 showed the best maintenance of
the nominal significance level. For D

np
Q3
, Type I error rates

increased with increasing baseline dependency. This was
not the case for the other measures. There was no clear
trend of Type I error rates across performance conditions,
suggesting that the Type I error rates of the measures are
unaffected by performance, except for Qa for which Type
I error rates increased with performance for larger sample
sizes.

Power Figure 6 shows the power of the different
approaches for detecting differences in dependency for the
different simulation conditions. Power increased with sam-
ple size and increasing dependency differences in the data
and decreased with increasing baseline dependency for all
measures. Qa yielded the lowest power, followed by Q,
and both measures were highly sensitive to performance,
with a curvilinear trend across performance conditions.
DHB yielded higher power than Qa and Q but lower power
than DQ3 and D

np
Q3
. DHB was sensitive to performance,

either monotonically increasing with performance or show-
ing a curvilinear trend across performance conditions, but
the sensitivity to performance was lower than for Qa and
Q. DQ3 and D

np
Q3

yielded the highest power, with slightly

higher power for D
np
Q3

than DQ3. This difference increased
with increasing baseline dependency and may be explained

by the increased sensitivity of D
np
Q3

given a higher level of
dependency in the data, which also manifested in higher
Type I error rates (see Fig. 5). DQ3 and D

np
Q3

were simi-
larly sensitive to performance as DHB, either monotonically
increasing with performance or showing a curvilinear trend
across performance conditions.

Discussion

The simulation showed that Q yields negatively biased
and Qa yields positively biased estimates, even if there
is no dependency in the data. This also manifests in
very high Type I error rates for Qa and very low power
for detecting stochastic dependency of the retrieval of
event elements for Q. The measures perform somewhat
better when testing for differences in dependency between
experimental conditions but are still inferior to the other
measures. The two measures are also strongly affected
by varying levels of overall memory performance, since
they do not attempt to correct for memory performance
as do DHB, DQ3, and D

np
Q3
. The latter three measures

yield unbiased estimates and are unaffected by varying
levels of overall memory performance given no dependency
or no difference in dependency. However, if there is
dependency or there are differences in dependency, all
three measures are affected by memory performance,
although to a much smaller extent than Q and Qa. In
such cases, the power of DHB, DQ3, and D

np
Q3

is affected
to a similar degree, even though the mean estimates of
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Fig. 6 Power of the different measures for detecting differences in dependency by performance, baseline dependency, sample size, and dependency
difference

DHB across participants are least affected by memory
performance. Note however, that person-specific estimates
may be more strongly affected by memory performance.
DHB is affected by memory performance because the data-
based dependency estimate and the dependency estimate
from the independent model do not scale perfectly equal
with memory performance. For DQ3 this may be because
fitting a unidimensional IRT model to locally dependent
data leads to overestimation of measurement precision (Ip,
2010; Wainer and Wang, 2000) and worse recovery of
person parameters (Koziol, 2016). Similar problems may
arise for D

np
Q3
. While it does not require the estimation

of person parameters, it builds on the property of sum
scores as sufficient statistics in the Rasch model (Rasch,

1960), which assumes local independence. DQ3 and D
np
Q3

yield higher power than DHB, emphasizing the advantage
of running analyses on individual item responses rather
than aggregated contingency tables. However, when testing
for differences in dependency, D

np
Q3

yields increased
Type I error rates with increasing dependency in the
data. Since DHB and DQ3 are unbiased under the null
hypothesis and their Type I error rates are unaffected
by memory performance and baseline dependency (for
D

np
Q3

this holds for single parameter tests, but not for
tests of parameter differences), their susceptibility to
memory performance reduces to a power problem when
focusing on statistical inferences rather than descriptive
estimates.
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Overall, DQ3 performed best because it yields unbiased
estimates under the null hypothesis, provides good mainte-
nance of Type I error rates that tend to be better than that
of DHB and D

np
Q3
, especially when testing for differences in

dependency, and yields high power, although power is sim-
ilarly affected by memory performance as is the power of
DHB andD

np
Q3
. Next, we applied the different measures to an

empirical example to compare the congruence of inferences
drawn from empirical data.

Empirical application

Methods

As an empirical data example, a dataset by James
et al. (2020, Experiment 1), was used (the original data
is available at https://osf.io/cqm7v/). In this experiment 45
participants were presented events consisting of an animal,
an object, and a location. Event elements were presented as
cartoon illustrations, which were additionally named aloud
through headphones. There were 2 experimental condi-
tions, which were administered in a within-subjects design
and with 15 events presented in each condition. In the
simultaneous encoding condition all event elements were
presented together in a single learning trial. In the sepa-
rated encoding condition each pairwise association between
event elements was presented separately across three learn-
ing trials. After encoding, participants conducted a cued
recognition test with four response alternatives and six
test trials per event (all associations were tested in both
directions), resulting in 180 items. Mean memory per-
formance was .71 in the simultaneous encoding condi-
tion and .73 in the separated encoding condition, making
the setting similar to the simulation conditions with P =
2. Previous studies found a significant positive dependency
in both a simultaneous and a separated encoding condi-
tion, with no significant difference in dependency between
conditions (Bisby et al., 2018; Horner and Burgess, 2014).

The five dependency measures were computed based
on the data, using a significance level of α = 5%
(two-tailed testing). For computing DQ3, g was set to
the stochastic guessing probability of 0.25 given four
response alternatives6. The analysis scripts for the empirical
application are available via the OSF (https://osf.io/
25mzu/).

6Given that associations were tested in both directions, it may be
possible that guessing differed between the first and second test of an
association within an event. However, in the absence of more specific
information and also considering model parsimony, we considered
the stochastic guessing probability to be the most objective and
appropriate criterion.

Results

Results using the different dependency measures are shown
in Fig. 7. The results for DHB are in accordance with those
reported by James et al. (2020) — there was a significant
positive dependency in the simultaneous encoding condition
but not in the separated encoding condition, with a
significant difference between conditions. This contradicts
previous findings by Horner and Burgess (2014) and Bisby
et al. (2018), which found a significant positive dependency
also in the separated encoding condition and no difference
in dependency between conditions. DQ3 and D

np
Q3

yielded
similar results as DHB. However, using these measures
the dependency in the separated encoding condition was
also positive and significant, with the difference between
conditions still being significant. Since DQ3 and D

np
Q3

yield
higher power for detecting dependencies thanDHB it may be
the case that the power of DHB is insufficient for detecting
the weak dependency in the separated encoding condition.
The results using DQ3 and D

np
Q3

are also more consistent
with the findings by Horner and Burgess (2014) and Bisby
et al. (2018) in the sense that they also found a positive
dependency in the separated encoding condition. However,
they are consistent with the finding by James et al. (2020)
that there is a significant difference in dependency between
conditions, which was not found by Horner and Burgess
(2014) and Bisby et al. (2018).

Q and Qa yielded very different results than the other
measures. Using Q, there was no significant dependency
in the simultaneous encoding condition and a significantly
negative dependency in the separated encoding condition,
with a significant difference between conditions. Using
Qa there was a significant positive dependency in both
conditions but the difference between conditions was non-
significant. These divergent findings may be explained by
the negative bias of Q and the positive bias of Qa. The
results using Q are quite inconsistent with previous findings
and are only partially consistent with the findings by James
et al. (2020) in the sense that there is a significant difference
in dependency between conditions. While the results using
Qa are actually in accordance with the findings by Horner
and Burgess (2014) and Bisby et al. (2018), the results from
the simulation study and the incongruence with results using
the other measures indicate that this result is likely not a
correct representation of the given data.

General discussion

In the current research we compared five approaches for
measuring binding effects (i.e., stochastic dependencies of
the retrieval of event elements) in event-based episodic
representations regarding their empirical detection rates,
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Fig. 7 Results for the data of Experiment 1 by James et al. (2020) using the different approaches

susceptibility to memory performance, and congruence of
empirical estimates. The approaches based on Yule’s Q
(Q and Qa, Yule, 1912; cf. Horner & Burgess, 2014)
yield biased estimates, with Q being negatively and Qa

being positively biased. In addition, the measures are highly
susceptible to memory performance and applying them to
the empirical example lead to considerable deviations from
the results obtained by applying the other approaches. Thus,
Q and Qa are unsuitable for measuring binding effects
in event-based episodic representations. The approach by
Horner and Burgess (2013, DHB), the IRT-based approach
(DQ3, Schreiner et al., in press), and the nonparametric
variant of the IRT-based approach (Dnp

Q3
, cf. Debelak and

Koller, 2020; Schreiner et al., in press) are unbiased and
not susceptible to memory performance under the null
hypothesis of no dependency in the data or no differences in

dependency between conditions. They are however affected
by performance if there is dependency in the data or
there are differences in dependency between conditions.
This affects the power of all three measures to a similar
degree. Since memory performance affects the power but
not the Type I error rates of these measures, they do
not elicit artifactual binding results as a consequence of
base performance. This is because, when focusing on
statistical inferences, the sensitivity of the measures is
only affected if there is a true binding effect, reducing
the effect of memory performance to a power problem.
DQ3 and D

np
Q3

yield higher power than DHB. However,

D
np
Q3

yields increased Type I error rates with increasing
dependency in the data when testing for differences in
dependency between conditions. Compared to DQ3, D

np
Q3

yielded, on average, Type I error rates increased by 0.003
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if the baseline dependency was 0, 0.02 if the baseline
dependency was 0.5, and 0.05 if the baseline dependency
was 1. Applying DHB, DQ3, and D

np
Q3

to the empirical
example lead to similar results, but the results obtained by
applying DQ3 and D

np
Q3

were more consistent with previous
findings by Horner and Burgess (2014) and Bisby et al.
(2018). Given that memory performance in the empirical
example was relatively high and similar to the simulation
conditions with P = 2, the estimates for DQ3 and D

np
Q3

may be somewhat inflated, given that estimates for these
measures tend to increase with performance, and more so
than the mean values of DHB. However, Type I error rates of
the two measures do not increase with performance. Thus,
the statistical inference that there is a significant positive
dependency in the separated encoding condition can not
be attributed to inflated sensitivity of DQ3 and D

np
Q3

due to
high memory performance. Taking together the simulation
results and the results from the empirical application,
DQ3 performed best among the five measures. It provides
unbiased estimates under the null hypothesis, provides good
maintenance of Type I error rates that are unaffected by
memory performance and baseline dependency, yields high
power (subject to memory performance like DHB and D

np
Q3
),

and yielded results for the empirical example that are more
consistent with findings of previous studies (Bisby et al.,
2018; Horner and Burgess, 2014).

A potential limitation concerning the results may be that
both DQ3 and the data generation procedure were IRT-based
and we used the true discrimination parameters and distribu-
tional assumptions for computing DQ3. This may have pro-
vided DQ3 with some advantage over the other approaches.
However, we chose the data generation procedure because
it reflects well the actual psychological processes in mem-
ory retrieval given binding effects. In that sense, one could
argue that DQ3 is a better approximation of the psychologi-
cal processes that underlie binding effects than are the other
approaches. Further, DQ3 should be rather robust against
misspecifications of certain model parameters or distribu-
tional assumptions, since such misspecifications affect both
within- and between-event residual correlations, which are
contrasted in the computation of DQ3. The finding that
misspecification of the guessing parameter in the simu-
lation study did not substantially affect the results sup-
ports this notion. Nevertheless, the robustness of DQ3

against misspecifications of model parameters and dis-
tributional assumptions should be examined in future
research.

DQ3 provides some additional advantages. First, it oper-
ates on the level of individual item responses rather than
aggregate contingency tables as do DHB, Q, and Qa, and
the IRT model on which the measure is based considers
participant and item differences as well as participant-item

interactions. Thus, contrary to the contingency-based
approaches, DQ3 is not prone to Simpson’s paradox (Hintz-
man, 1972, 1980; Simpson, 1951; see also Burton et al.,
2017). Second, IRT-based measures enable established
and plausible modeling of meaningful psychological vari-
ables instead of running analyses on the basis of descrip-
tive contingency tables. Third, DQ3 can in principle be
applied to a greater variety of testing procedures than
the contingency-based approaches. The contingency-based
approaches require some common feature of items for
identifying the dependency pairs, such as items having a
common cue or target element. If testing situations do not
involve cueing, such identifying features are absent and con-
sequently, dependency pairs would be arbitrary. Since DQ3

does not require such identifying features (the assignment
of items to a common event is sufficient), it can in princi-
ple also be applied to testing situations not involving cueing
such as free recall or free recognition. For example, imag-
ine participants are presented three words in a joint temporal
context at a time, forming an event. Then, each word can
form a binary item that is assigned the value 1, if the word
has been successfully recalled or recognized, and 0 if not,
resulting in three items per event. One can then compute
DQ3 the same way as for cued recognition output, based on
the residual correlations between item pairs. Yet, evaluat-
ing the consistency of DQ3, and also the other approaches,
across different types of memory tests is an interesting
prospect for future research. This would likely require a sys-
tematic investigation of several empirical data sets, which
used various types of memory tests, or conducting an experi-
ment with a given paradigm and varying the type of memory
test between participants. Fourth, DQ3 can in principle be
extended to account for polytomous instead of dichotomous
item responses, for example by using the rating scale model
(Andrich, 1978) or the partical credit model (Masters, 1982)
as the basis for computing the Q3 statistics. Finally, the
approach yields estimated person and item parameters as
useful by-products of the dependency analysis. For exam-
ple, in applications with fixed event composition rather than
random assignment of elements to events, item parameters
may be used to identify problematic events with, for exam-
ple, very high or very low difficulty of the associated items
to improve the study material for subsequent experiments.
Person parameters may be used to compare participants
regarding their overall memory performance (but note that
estimation of person parameter may be negatively affected
by binding effects resulting in locally dependent data, see
Koziol, 2016). However, some further considerations have
to be taken into account when selecting a suitable measure
for a given setting.

First, DQ3 yields an overall or condition-specific
dependency estimate. In some cases it may be necessary to
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obtain person-specific dependency estimates, which are not
provided by DQ3 in its current implementation. These are
however provided by DHB and one may use this measure
in such cases. Second, if one wants to use DQ3 and there
are items without variance, item parameters for these items
can not be estimated. In such a case one would have
to exclude these items or reorder items if possible. The
risk of this to occur increases with smaller sample sizes,
increasing prevalence of missing values, and more extreme
levels of memory performance. In the simulation, this issue
was actively prevented by resampling until there were no
items without variance. Still, there were some convergence
issues for small sample sizes. Third, the bootstrap approach
for DQ3 is currently only designed for the comparison of
two conditions, thus only enabling pairwise comparisons
when using DQ3. Finally, power is not the only issue to
consider when determining sample size when using DQ3.
Parameter estimation becomes more stable with increasing
sample size. This leads to more reliable estimates and may
enable one to freely estimate parameters that may have to be
fixed for smaller sample sizes, for example discrimination
or guessing parameters, making the measure more flexible.
In summary, we recommend to use DQ3 as a measure of
binding effects in event-based episodic representations if the
mentioned considerations have been taken into account.
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Appendix: Correlations Between
Dependency Estimates

Table 1 Mean [Range] of Correlations Between Dependency Esti-
mates of the Different Measures Across Simulation Conditions

DHB Q Qa DQ3

DHB 1

Q .82 [.54, .94] 1

Qa .65 [.13, .93] .41 [-.19, .85] 1

DQ3 .78 [.44, .94] .64 [.23, .89] .50 [.12, .83] 1

D
np
Q3

.79 [.44, .94] .64 [.24, .89] .50 [.13, .84] .99 [.96,> .99]

Notes. For DHB, Q, and Qa correlations refer to the mean values of
the respective estimates. For computing the mean correlations, Fisher’s
Z-transformation was applied.

Table 2 Mean [Range] of Correlations Between Estimates of
Dependency Differences of the Different Measures Across Simulation
Conditions

DHB Q Qa DQ3

DHB 1

Q .78 [.65, .85] 1

Qa .85 [.60, .93] .64 [.19, .83] 1

DQ3 .60 [.41, .70] .44 [.31, .58] .50 [.25, .66] 1

D
np
Q3

.61 [.44, .71] .45 [.32, .58] .51 [.27, .67] .98 [.96, .99]

Notes. ForDHB,Q, andQa correlations refer to the mean values of the
respective difference estimates. For computing the mean correlations,
Fisher’s Z-transformation was applied.
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Arnold, N. R., Heck, D. W., Bröder, A., Meiser, T., & Boywitt,
C. D. (2019). Testing hypotheses about binding in context
memory with a hierarchical multinomial modeling approach: A
preregistered study. Experimental Psychology, 66(3), 239–251.
https://doi.org/10.1027/1618-3169/a000442

Balaban, H., Assaf, D., Arad Meir, M., & Luria, R. (2019). Different
features of real-world objects are represented in a dependent man-
ner in long-term memory. Journal of Experimental Psychology:
General, 149(7). https://doi.org/10.1037/xge0000716

Birnbaum, A. (1968). Some latent trait models and their use in
inferring an examinee’s ability. In Lord, F. M., & Novick,
M. R. (Eds.) Statistical theories of mental test scores: Addison-
Wesley.

Bisby, J. A., Horner, A. J., Bush, D., & Burgess, N. (2018). Negative
emotional content disrupts the coherence of episodic memories.
Journal of Experimental Psychology: General, 147(2), 243–256.
https://doi.org/10.1037/xge0000356

Boywitt, C. D., & Meiser, T. (2012a). Bound context features
are integrated at encoding. Quarterly Journal of Experimental
Psychology, 65(8), 1484–1501. https://doi.org/10.1080/17470218.
2012.656668

Boywitt, C. D., & Meiser, T. (2012b). The role of attention for
context-context binding of intrinsic and extrinsic features. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
38(4), 1099–1107. https://doi.org/10.1037/a0026988

Burton, R. L., Lek, I., & Caplan, J. B. (2017). Associative inde-
pendence revisited: Competition between conflicting associa-
tions can be resolved or even reversed in one trial. Quar-
terly Journal of Experimental Psychology, 70(4), 832–857.
https://doi.org/10.1080/17470218.2016.1171886

Burton, R. L., Lek, I., Dixon, R. A., & Caplan, J. B. (2019).
Associative interference in older and younger adults. Psychology
and Aging, 34(4), 558–571. https://doi.org/10.1037/pag0000361

Chalmers, R. P. (2012). mirt: A multidimensional item response theory
package for the R environment. Journal of Statistical Software,
48(6), 1–29. https://doi.org/10.18637/jss.v048.i06

Chalmers, R. P., & Adkins, M. C. (2020). Writing effective and
reliable Monte Carlo simulations with the SimDesign package.
The Quantitative Methods for Psychology, 16(4), 248–280.
https://doi.org/10.20982/tqmp.16.4.p248

Chen, W.-H., & Thissen, D. (1997). Local dependence indexes for
item pairs using item response theory. Journal of Educational
and Behavioral Statistics, 22(3), 265–289. https://doi.org/10.3102/
10769986022003265

Cohen, J. (1988). Statistical power analysis for the behavioral sciences,
2nd ed. Erlbaum.

Davison, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their
application. Cambridge University Press.

de Ayala, R. J. (2009). The theory and practice of item response theory.
Guilford Press.

Debelak, R., & Koller, I. (2020). Testing the local independence
assumption of the rasch model with Q3,-based nonparametric
model tests. Applied Psychological Measurement, 44(2), 103–117.
https://doi.org/10.1177/0146621619835501

Gibbons, R. D., & Hedeker, D. R. (1992). Full-information item bi-
factor analysis. Psychometrika, 57(3), 423–436. https://doi.org/10.
1007/bf02295430

Goodman, L. A., & Kruskal, W. H. (1954). Measures of association
for cross classifications. Journal of the American Statistical
Association, 49(268), 732–764. https://doi.org/10.1080/01621459.
1954.10501231

Hayman, C. G., & Tulving, E. (1989). Contingent dissociation
between recognition and fragment completion: The method of
triangulation. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 15(2), 228–240. https://doi.org/10.1037/
0278-7393.15.2.228

Hicks, J. L., & Starns, J. J. (2016). Successful cuing of gender source
memory does not improve location source memory. Memory
& Cognition, 44(4), 650–659. https://doi.org/10.3758/s13421-
016-0586-y

Hintzman, D. L. (1972). On testing the independence of associations.
Psychological Review, 79(3), 261–264. https://doi.org/10.1037/
h0032684

Hintzman, D. L. (1980). Simpson’s paradox and the analysis of mem-
ory retrieval 87(4), 398–410. https://doi.org/10.1037/0033-295x.
87.4.398

Horner, A. J., Bisby, J. A., Bush, D., Lin, W.-J., & Burgess,
N. (2015). Evidence for holistic episodic recollection via
hippocampal pattern completion. Nature Communications, 6(1),
7462. https://doi.org/10.1038/ncomms8462

Horner, A. J., & Burgess, N. (2013). The associative structure
of memory for multi-element events. Journal of Experimental
Psychology: General, 142(4), 1370–1383. https://doi.org/10.1037/
a0033626

Horner, A. J., & Burgess, N. (2014). Pattern completion in
multielement event engrams. Current Biology, 24(9), 988–992.
https://doi.org/10.1016/j.cub.2014.03.012

Hunt, R. R., & Einstein, G. O. (1981). Relational and item-specific
information in memory. Journal of Verbal Learning and Verbal
Behavior, 20(5), 497–514. https://doi.org/10.1016/S0022-5371
(81)90138-9

Ip, E. H. (2010). Interpretation of the three-parameter testlet response
model and information function. Applied Psychological Mea-
surement, 34(7), 467–482. https://doi.org/10.1177/01466216103
64975

James, E., Ong, G., Henderson, L., & Horner, A. J. (2020). Make or
break it: Boundary conditions for integrating multiple elements
in episodic memory. Royal Society Open Science, 7(9), 200431.
https://doi.org/10.1098/rsos.200431

Joensen, B. H., Gaskell, M. G., & Horner, A. J. (2020). United
we fall: All-or-none forgetting of complex episodic events.
Journal of Experimental Psychology: General, 149(2), 230–248.
https://doi.org/10.1037/xge0000648

Kahana, M. J. (2002). Associative symmetry and memory theory.
Memory & Cognition, 30(6), 823–840. https://doi.org/10.3758/
BF03195769

Kahana, M. J., Rizzuto, D. S., & Schneider, A. R. (2005). Theoretical
correlations and measured correlations: Relating recognition and
recall in four distributed memory models. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 31(5), 933–953.
https://doi.org/10.1037/0278-7393.31.5.933

Koziol, N. A. (2016). Parameter recovery and classification accuracy
under conditions of testlet dependency: a comparison of the tra-
ditional 2PL, testlet, and bi-factor models. Applied Measurement
in Education, 29(3), 184–195. https://doi.org/10.1080/08957347.
2016.1171767

Lazarsfeld, P. F., & Henry, N. W. (1968). Latent structure analysis.
Houghton Mifflin.

Lord, F. M. (1980). Applications of item response theory to practical
testing problems. Erlbaum.

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test
scores. Addison-Wesley.

Mair, P., & Hatzinger, R. (2007). Extended Rasch modeling: The eRm
package for the application of IRT models in R. Journal of Statis-
tical Software, 20(9), 1–20. https://doi.org/10.18637/jss.v020.i09

Mair, P., Hatzinger, R., & Maier, M. J. (2020). eRm: Extended Rasch
Modeling. 1.0-1, https://cran.r-project.org/package=eRm.

995Behavior Research Methods (2023) 55:981–996

https://doi.org/10.1016/j.conb.2020.08.004
https://doi.org/10.1016/j.conb.2020.08.004
https://doi.org/10.1007/bf02293814
https://doi.org/10.1007/bf02293814
https://doi.org/10.1027/1618-3169/a000442
https://doi.org/10.1037/xge0000716
https://doi.org/10.1037/xge0000356
https://doi.org/10.1080/17470218.2012.656668
https://doi.org/10.1080/17470218.2012.656668
https://doi.org/10.1037/a0026988
https://doi.org/10.1080/17470218.2016.1171886
https://doi.org/10.1037/pag0000361
https://doi.org/10.18637/jss.v048.i06
https://doi.org/10.20982/tqmp.16.4.p248
https://doi.org/10.3102/10769986022003265
https://doi.org/10.3102/10769986022003265
https://doi.org/10.1177/0146621619835501
https://doi.org/10.1007/bf02295430
https://doi.org/10.1007/bf02295430
https://doi.org/10.1080/01621459.1954.10501231
https://doi.org/10.1080/01621459.1954.10501231
https://doi.org/10.1037/0278-7393.15.2.228
https://doi.org/10.1037/0278-7393.15.2.228
https://doi.org/10.3758/s13421-016-0586-y
https://doi.org/10.3758/s13421-016-0586-y
https://doi.org/10.1037/h0032684
https://doi.org/10.1037/h0032684
https://doi.org/10.1037/0033-295x.87.4.398
https://doi.org/10.1037/0033-295x.87.4.398
https://doi.org/10.1038/ncomms8462
https://doi.org/10.1037/a0033626
https://doi.org/10.1037/a0033626
https://doi.org/10.1016/j.cub.2014.03.012
https://doi.org/10.1016/S0022-5371(81)90138-9
https://doi.org/10.1016/S0022-5371(81)90138-9
https://doi.org/10.1177/0146621610364975
https://doi.org/10.1177/0146621610364975
https://doi.org/10.1098/rsos.200431
https://doi.org/10.1037/xge0000648
https://doi.org/10.3758/BF03195769
https://doi.org/10.3758/BF03195769
https://doi.org/10.1037/0278-7393.31.5.933
https://doi.org/10.1080/08957347.2016.1171767
https://doi.org/10.1080/08957347.2016.1171767
https://doi.org/10.18637/jss.v020.i09
https://cran.r-project.org/package=eRm


Masters, G. N. (1982). A Rasch model for partial credit scoring. Psy-
chometrika, 47(2), 149–174. https://doi.org/10.1007/bf02296272
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structure of event elements in episodic memory and the role of
animacy. Quarterly Journal of Experimental Psychology.

Simpson, E. H. (1951). The interpretation of interaction in contingency
tables. Journal of the Royal Statistical Society, 13(2), 238–241.
https://doi.org/10.1111/j.2517-6161.1951.tb00088.x

Starns, J. J., & Hicks, J. L. (2005). Source dimensions are retrieved
independently in multidimensional monitoring tasks. Journal of
Experimental Psychology: Learning, Memory, and Cognition,
31(6), 1213–1220. https://doi.org/10.1037/0278-7393.31.6.1213

Starns, J. J., & Hicks, J. L. (2008). Context attributes in memory are
bound to item information, but not to one another. Psychonomic
Bulletin & Review, 15(2), 309–314. https://doi.org/10.3758/PBR.
15.2.309

Utochkin, I. S., & Brady, T. F. (2020). Independent storage of
different features of real-world objects in long-term memory.
Journal of Experimental Psychology: General, 149(3), 530–549.
https://doi.org/10.1037/xge0000664

Verhelst, N. D. (2008). An efficient MCMC algorithm to sample binary
matrices with fixed marginals. Psychometrika, 73(4), 705–728.
https://doi.org/10.1007/s11336-008-9062-3
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