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Abstract
A paper of the first author and Zilke proposed seven combinatorial problems around
formulas for the characteristic polynomial and the exponents of an isolated quasihomo-
geneous singularity. Themost important of themwas a conjecture on the characteristic
polynomial. Here, the conjecture is proved, and some of the other problems are solved,
too. In the cases where also an old conjecture of Orlik on the integral monodromy
holds, this has implications on the automorphism group of the Milnor lattice. The
combinatorics used in the proof of the conjecture consists of tuples of orders on sets
{0, 1, . . . , n} with special properties and may be of independent interest.
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1 Introduction

The paper [10] proposed seven combinatorial problems around formulas for the char-
acteristic polynomial and the exponents of an isolated quasihomogeneous singularity.
Problem 6 was a conjecture on the characteristic polynomial. It was an amendment to
an old conjecture of Orlik on the integral monodromy (which is recalled below). Here
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the conjecture on the characteristic polynomial is proved, and also some of the other
combinatorial problems are solved.

The combinatorics which is used in the proof of the conjecture was found in [9]
and was used there for a partial proof of Orlik’s conjecture. It is described in detail in
Sect. 2. It may be of independent interest.

In this introduction the conjecture and some background are explained. This con-
tains problem 6 in [10]. Problem 7 in [10] is treated in Sect. 3. Section 4 sets some
notations and notions. Section 5 solves problem 1. Section 6 discuss the combinatorics
of the weight systems and of the characteristic polynomial of an isolated quasihomo-
geneous singularity. It solves problem 4 and discusses the problems 2, 3 and 5.

We start with the notion of an Orlik block and a result on its automorphisms. Then,
we introduce isolated quasihomogenous singularities. Finally, we give Theorem 1.5,
which solves problem 6 in [10], and Orlik’s conjecture.

Definition 1.1 Let M ⊂ N = {1, 2, 3, . . .} be a finite nonempty subset. ItsOrlik block
is a pair (HM , hM )with HM aZ-lattice of rank

∑
m∈M ϕ(m) and hM : HM → HM an

automorphism with characteristic polynomial
∏

m∈M Φm (Φm is the m-th cyclotomic
polynomial) and with a cyclic generator e1 ∈ M , i.e.,

HM =
rkM⊕

j=1

Z · h j−1
M (e1). (1.1)

The pair (HM , hM ) is unique up to isomorphism. AutS1(HM , hM ) denotes the group
of all automorphisms of HM which commute with hM and which have all eigenvalues
in S1.

Remark 1.2 Consider an Orlik block (HM , hM ).
(i) Each endomorphism of (HM , hM ) (so each endomorphism of HM which com-

mutes with hM ) is of the form c(hM ) with c(t) ∈ Z[t] because of the cyclic
structure. Consider such an endomorphism c(hM ), and consider an eigenspace in
HM,C := HM ⊗Z C of hM with eigenvalue λ with ord (λ) ∈ M (this eigenspace
is one-dimensional). c(hM ) acts on it as c(λ) · id. If c(hM ) ∈ AutS1(HM , hM ), then
c(λ) ∈ Z[λ] ∩ S1 = {±λk | k ∈ Z}. Therefore, each element of AutS1(HM , hM ) is of
finite order, and the group AutS1(HM , hM ) is finite.

(ii) Theorem 1.4 states when AutS1(HM , hM ) = {±hkM | k ∈ Z}. In general, this
does not hold. Here is one example. Other examples are in [5, Examples 1.4 (iv) and
(v)]. Consider M := {3, 5}. Then, in fact (see e.g., Lemma 6.1 in [5])

(HM , hM ) ∼= (H{3}, h{3}) ⊕ (H{5}, h{5})
AutS1 (HM , hM ) ∼= AutS1(H{3}, h{3}) × AutS1(H{5}, h{5})

∼= {±hk{3} | k ∈ {0, 1, 2}} × {±hk{5} | k ∈ {0, 1, 2, 3, 4}} (60 elements)

� {±hkM | k ∈ {0, 1, . . . , 14}} (30 elements).
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Definition 1.3 A finite set M ⊂ N is enriched as follows to a directed graph
(M, E(M)) with set of vertices M and set of oriented edges E(M) ⊂ M × M .
An edge goes from m1 ∈ M to m2 ∈ M if m1

m2
is a power of a prime number p. Then,

it is called a p-edge.

The main result in [5] is as follows.

Theorem 1.4 [5, Theorem 1.2] Let (HM , hM ) be the Orlik block of a finite nonempty
subset M ⊂ N. Then, AutS1(HM , hM ) = {±hkM | k ∈ Z} if and only if condition (I)
or condition (II) in Definition 2.8 (c) and (d) are satisfied. They are conditions on the
graph (M, E(M)).

The conditions (I) and (II) inDefinition 2.8 (c) and (d) are quite technical. AfterDef-
inition 2.8, it is discussed why they are both not satisfied in the example in Remark 1.2
(ii), and examples where condition (I) is satisfied are given.

Aweight systemw = (w1, . . . , wn; 1)withwi ∈ Q>0∩(0, 1) equips anymonomial
xj = x j1

1 . . . x jn
n with a weighted degree degw xj := ∑n

i=1 wi ji . A polynomial f ∈
C[x1, . . . , xn] is an isolated quasihomogeneous singularity if for some weight system
w each monomial in f has weighted degree 1 and if the functions ∂ f

∂x1
, . . . ,

∂ f
∂xn

vanish

simultaneously only at 0 ∈ Cn . Then, the Milnor lattice HMil := Hn−1( f −1(1),Z)

(resp. the reduced homology in the case n = 1) is a Z-lattice of some rank μ ∈ N

[14], which is calledMilnor number. It comes equipped with a natural automorphism
hMil : HMil → HMil of finite order, the monodromy. Its characteristic polynomial
has the shape

pch,hMil = ∏

m∈N
Φ

ψ(m)
m

for a function ψ : N → N0 with finite support M1 := {n ∈ N | ψ(n) 	= 0}. Denote
lψ := max(ψ(m) |m ∈ N) and for j = 1, . . . , lψ

Mj := {m ∈ N | ψ(m) ≥ j}.

The tuple (M1, . . . , Mlψ ) is called standard covering of ψ . It satisfies (and is deter-
mined by this)

M1 ⊃ M2 ⊃ · · · ⊃ Mlψ 	= ∅, ψ(m) = |{ j ∈ {1, . . . , lψ } |m ∈ Mj }|.

The most important result in this paper is Theorem 1.5.

Theorem 1.5 Consider an isolated quasihomogeneous singularity f as above and the
sets M1, . . . , Mlψ as above.

(a) Each set M j satisfies condition (I) in Definition 2.8 (c).
(b) AutS1(HMj , hMj ) = {±hkMj

| k ∈ Z}.
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Proof Part (b) follows from part (a) and Theorem 1.4. Part (a) follows from
Lemma 2.10 and Theorem 6.7. Lemma 2.10 says that a finite set M ⊂ N which
is compatible with a tuple of excellent orders (Definition 2.5 (d)) satisfies condition
(I). Theorem 6.7 says that in the case of an isolated quasihomogeneous hypersur-
face singularity each set Mj is compatible with a certain tuple of excellent orders. It
was proved in [9]. There it is Theorem 12.1. Its proof uses two classical results on
isolated quasihomogeneous singularities, Theorems 6.1 and 6.4 (a). Kouchnirenko’s
Theorem 6.1 characterizes combinatorially those weight systemsw for which generic
polynomials of weighted degree 1 have an isolated singularity. Theorem 6.4 (a) ofMil-
nor and Orlik gives in this case a formula for the characteristic polynomial pch,hMil of
the monodromy in terms of the weight system w. More on the proof of Theorem 6.7
is said directly before Theorem 6.7. 
�

Problem 6 in [10] asked precisely about part (a) of Theorem 1.5. The notion of an
excellent order and the notion of compatibility of a finite set M ⊂ N with a tuple of
excellent orders were first used in [9, Sect. 9]. We found them when we searched for
a partial proof of Orlik’s conjecture. They are recalled in Sect. 2.

Theorem 1.5 is independent of Orlik’s conjecture. But it is useful only in the cases
where Orlik’s conjecture holds. 
�
Conjecture 1.6 (Orlik’s conjecture, [16, conjecture 3.1]) For any isolated quasihomo-
geneous singularity, there is an isomorphism

(HMil , hMil) ∼=
lψ⊕

j=1

(HMj , hMj ).

A direct sum of Orlik blocks (HMj , hMj ) with sets Mj which satisfy M1 ⊃ · · · ⊃
Mlψ is called a standard decomposition into Orlik blocks [9, Definition 1.1(e)]. Orlik’s
conjecture says that the pair (HMil , hMil) of an isolated quasihomogeneous singularity
allows a standard decomposition into Orlik blocks.

The papers [8] and [9] give partial positive results. They are cited in Theorem 1.7.
They surpass all known cases.

Theorem 1.7 [9, Theorem 1.3] (a) Orlik’s conjecture holds for the chain-type singu-
larities.

(b) (Also [8, Theorem 1.3]) Orlik’s conjecture holds for the cycle-type singularities.
(c) Let f = f (x1, . . . , xn f ) and g = g(xn f +1, . . . , xn f +ng ) be two isolated quasi-

homogeneous singularities in different variables, which both satisfyOrlik’s conjecture.
Then, also f + g satisfies Orlik’s conjecture.

(d) Orlik’s conjecture holds for all iterated Thom–Sebastiani sums of chain-type
singularities and cycle-type singularities.

The notions chain-type singularity and cycle-type singularity are explained for
example in [7, ch. 3] [10, ch. 4] [9, ch. 10+11]. The notion Thom–Sebastiani sum is
discussed in Sect. 3. The iterated Thom–Sebastiani sums of chain-type singularities
and cycle-type singularities form a large and important family of isolated quasihomo-
geneous singularities, but by far not all.
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In those isolated quasihomogeneous singularities, where Orlik’s conjecture holds,
(HMil , hMil) decomposes (not uniquely in general) into Orlik blocks (HMj , hMj ), and
Theorem 1.5 says that the group of automorphisms with eigenvalues in S1 of each of
these blocks is the smallest possible, it is {±hkMj

| k ∈ Z}. This is very helpful also in
determining the group of all automorphisms of the triple (HMil , hMil , LMil) where
LMil : HMil ×HMil → Z is the Seifert form. This group is important for period maps
and Torelli conjectures for singularities (e.g., [4]).

Problem 7 in [10] is a strengthening of problem 6 and is also solved by Lemma 2.10
and the results in [9, Sect. 9]. This is explained in Sect. 3. The other problems 1–5 in
[10] are discussed in Sects. 5 and 6.

Notations 1.8 N = {1, 2, 3, ..}, N0 = {0, 1, 2, ..}. Always m ∈ N and n ∈ N. For
I ⊂ R, ZI := Z ∩ I . The support of a map ψ : N → Q is the set supp (ψ) := {m ∈
N | ψ(m) 	= 0}. We will consider only maps ψ : N → Q with finite support. Most
often, ψ will be a map ψ : N → N0 with finite support.

The set of all prime numbers is P ⊂ N. For p ∈ P and m ∈ N, vp(m) ∈ N0 is
the unique number with m = ∏

q∈P qvq (m). Also the projection

πp : N → {n ∈ N | p 	 |n}, m �→ m · p−vp(m),

will be used.

2 Compatibility of a finite set of natural numbers with a tuple of
excellent orders

This section proposes and discusses a condition for a finite set M ⊂ N of natural
numbers and a condition for a map ψ : N → N0 with finite support. They are given
in Definition 2.5 (d) and (e). They have a number of good properties, which are given
in Lemma 2.6, Lemma 2.10, and Theorems 3.2 and 3.6. This is prepared by several
definitions. Definitions 2.1, 2.3 and 2.5, Lemma 2.6, and Theorems 3.2 and 3.6 are
recalled from [9, Sect. 9]. Definition 2.8 is recalled from [5]. Lemma 2.10 is new. It
connects the condition in Definition 2.5 (d) for a finite set M ⊂ N with condition (I)
(in Theorem 1.4 and Definition 2.8 (c)).

Definition 2.1 [9, 9.1] (a) An excellent order � on a set Z[0,s(�)] for some bound
s(�) ∈ N0 is a strict order (so transitive and for all a, b ∈ Z[0,s(�)] either a = b or
a � b or b � a) which is determined by the set

S(�) := {k ∈ Z[0,s(�)] | k � 0} (2.1)

in the following way:

� equals > on S(�) ∪ {0},
� equals < on Z[0,s(�)] − S(�).

}

(2.2)
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(S(�) = ∅ is allowed.) The maximal element of Z[0,s(�)] with respect to � is called
s+(�), so s+(�) � k for any other element k ∈ Z[0,s(�)].

(b) The trivial excellent order is �0 with s(�0) := 0, so it is the empty order on
Z[0,s(�0)] = {0} (and, of course S(�0) = ∅).

(c) The tensor product of two excellent orders �1 and �2 is the excellent order
�1 ⊗ �2 with

s(�1 ⊗ �2) := max(s(�1), s(�2)) and (2.3)

S(�1 ⊗ �2) := (S(�1) ∪ S(�2)) − (S(�1) ∩ S(�2)). (2.4)

Example 2.2 [9, 9.2] (i) The excellent order�1 with s(�1) = 7 and S(�1) = {6, 4, 1}
is given by

s+(�1) = 6 �1 4 �1 1 �1 0 �1 2 �1 3 �1 5 �1 7.

(ii) The excellent order �2 with s(�2) = 6 and S(�2) = {6, 5, 2, 1} is given by

s+(�2) = 6 �2 5 �2 2 �2 1 �2 0 �2 3 �2 4.

(iii) The excellent order �3:= (�1 ⊗ �2) for �1 and �2 in (i) and (ii) satisfies
s(�3) = 7, S(�3) = {5, 4, 2} and is given by

5 �3 4 �3 2 �3 0 �3 1 �3 3 �3 6 � 7.

(iv) For any excellent order �, the tensor product with the trivial excellent order is �
itself, � ⊗ �0=�.

Definition 2.3 [9, 9.3] (a) A path in a finite directed graph (V , E) (so V is a finite
non-empty set and E ⊂ V × V ) is a tuple (v1, . . . , vl) for some l ∈ Z[2,∞) with
v j ∈ V and (v j , v j+1) ∈ E for j ∈ Z[1,l−1]. It is a path from v1 to vl , so with source
v1 and target vl .

(b) A finite directed graph (V , E) has a center vV ∈ V if it has no path from any
vertex to itself and if it has at least one path from vV to any other vertex v ∈ V . (The
center is unique, which justifies the notation vV .)

(c) Consider a tuple (�p)p∈P of excellent orders for a finite set P ⊂ P of prime
numbers. It defines a finite directed graph (V , EV ) with center vV as follows. Its set
V = V ((�p)p∈P ) of vertices is the quadrant inN

V :=
⎧
⎨

⎩

∏

p∈P

pkp | kp ∈ Z[0,s(�p)]

⎫
⎬

⎭
. (2.5)
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Its set of edges EV = E((�p)p∈P ) is the set

EV :=
⋃

p∈P

EV ,p with

EV ,p := {(ma,mb) ∈ V × V | πp(ma) = πp(mb), vp(ma) �p vp(mb)}. (2.6)

The edges in EV ,p are called p-edges. So, the underlying undirected graph coincides
with the undirected graph which underlies the directed graph (V , E(V )) in Defini-
tion 1.3.But the directions of edgesmayhave changed. The graph (V , EV ) is obviously
centered with center

vV =
∏

p∈P

ps
+(�p). (2.7)

Example 2.4 Consider the tuple (�3,�5) of excellent orders with s(�3) = s(�5) = 2
and S(�3) = {2}, S(�5) = {1}, so 2 �3 0 �3 1 and 1 �5 0 �5 2. Here P =
{3, 5} and V = {3i5 j | i, j ∈ {0, 1, 2}} = {1, 3, 9, 5, 15, 45, 25, 75, 225}. The graphs
(V , E(V )) from Definition 1.3 and (V , EV ) from Definition 2.3 (c) are as follows:

(V , E(V )) (V , EV )

25 75 225

5 15 45

1 3 9

25 75 225

5 15 45

1 3 9

The underlying undirected graphs coincide. The center of (V , EV ) is vV = 45.

Definition 2.5 [9, 9.4] (a) Let � be an excellent order on the set Z[0,s(�)]. A set
K ⊂ N0 is subset compatible with � if a bound kK ∈ Z[0,s(�)] with

K = {k ∈ Z[0,s(�)] | k � kK } (2.8)

exists or if K = Z[0,s(�)]. (The bound kK = s+(�) gives K = ∅, which is allowed.)
(b) For a finite non-empty set M ⊂ N, let

P(M) := {p ∈ P | M 	= πp(M)}
= {p ∈ P | ∃ m ∈ M with vp(m) > 0} (2.9)

be the set of prime numbers which turn up as factors of some numbers in M .
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(c) For a finite non-empty set M ⊂ N, a prime number p ∈ P , and a number
m0 ∈ πp(M), define the finite set KM,p,m0 ⊂ N0 by

(πp|M )−1(m0) = {m0 · pk | k ∈ KM,p,m0}. (2.10)

(d) A finite non-empty set M ⊂ N is compatiblewith a tuple (�p)p∈P of excellent
orders for a finite set P ⊃ P(M) of prime numbers if

M ⊂ V ((�p)p∈P ) (2.11)

and if for any prime number p ∈ P(M) and any m0 ∈ πp(M) the set KM,p,m0 is
subset compatible with �p. (So, here the excellent orders �p for p ∈ P − P(M)

are irrelevant. But considering P ⊃ P(M) instead of P = P(M) will be useful.)
(e) A map ψ : N → N0 with finite support supp (ψ) ⊂ N is compatible with a

tuple (�p)p∈P of excellent orders for a finite set P ⊃ P(supp (ψ)) of prime numbers
if

supp (ψ) ⊂ V ((�p)p∈P ) (2.12)

and if for any edge (ma,mb) ∈ EV

ψ(ma) ≥ ψ(mb). (2.13)

(f) A covering of a map ψ : N → N0 with finite support is a tuple (M1, . . . , Ml)

(l ∈ N0) of finite non-empty sets Mj ⊂ N with

ψ(m) = |{ j ∈ {1, . . . , l} |m ∈ Mj }| for any m ∈ N. (2.14)

Here, obviously l ≥ max(ψ(m) |m ∈ N0) =: lψ . In the case supp (ψ) = ∅, we have
l = 0 and an empty tuple. The standard covering of ψ is the tuple (M (st)

1 , . . . , M (st)
lψ

)

with

M (st)
j = {m ∈ supp (ψ) | ψ(m) ≥ j} for j ∈ {1, . . . , lψ }. (2.15)

It is the unique covering with M1 ⊃ · · · ⊃ Ml , and it satisfies M (st)
1 = supp (ψ).

(g) Let ψ : N → N0 have finite support, let P ⊃ P(supp (ψ)) be a finite set of
prime numbers, and let (�p)p∈P be a tuple of excellent orders with (2.12). A covering
(M1, . . . , Ml) of ψ is called compatible with (�p)p∈P if each set Mj is compatible
with (�p)p∈P .

The following lemma expresses the compatibility conditions in Definition 2.5 (d)
and (e) in a different way, and it shows their relationship. The proof is not difficult. It
is given in [9].
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Lemma 2.6 [9, 9.5] (a)Let M ⊂ N be a finite non-empty set, let P ⊃ P(M) be a finite
set of prime numbers, and let (�)p∈P be a tuple of excellent orders with (2.11). (Recall
the definition of (V , EV , vV ) in Definition 2.3 (c).) The following three conditions are
equivalent:

(i) M is compatible with (�)p∈P .
(ii) (M, EV ∩ M × M) is a directed graph with center vV (so vV ∈ M), and if M

contains the target of a path in (V , EV ), it contains all vertices in this path.
(iii) If mb ∈ M and (ma,mb) ∈ EV , then ma ∈ M.

(b) Letψ : N → N0 be a map with finite support, let P ⊃ P(supp (ψ)) be a finite
set of prime numbers, and let (�p)p∈P be a tuple of excellent orders with (2.12). The
following three conditions are equivalent.

(i) ψ is compatible with (�p)p∈P .
(ii) ψ has a covering (M1, . . . , Ml) which is compatible with (�p)p∈P .
(iii) The standard covering of ψ is compatible with (�p)p∈P .

Example 2.7 The graph (V , EV ) in Example 2.4 can also be shown as in the following
left picture. The middle picture shows the set V , and the right picture is a graphical
description of V . A subset M ⊂ V is described in a similar way, with bullet points for
its elements and small circles for the elements of V − M .

(V , EV ) V

15 5 45

3 1 9

75 25 225

15 5 45
3 1 9
75 25 225

∼
• • •
• • •
• • •

The following 19 pictures describe the subsets M ⊂ V which are compatible with the
tuple (�3,�5) of excellent orders.One seesDefinition 2.5 (d) and the characterizations
in Lemma 2.6 (a).

◦ ◦ •
◦ ◦ ◦
◦ ◦ ◦

◦ ◦ •
◦ ◦ •
◦ ◦ ◦

◦ ◦ •
◦ ◦ •
◦ ◦ •

◦ • •
◦ ◦ ◦
◦ ◦ ◦

◦ • •
◦ ◦ •
◦ ◦ ◦

◦ • •
◦ ◦ •
◦ ◦ •

◦ • •
◦ • •
◦ ◦ ◦

◦ • •
◦ • •
◦ ◦ •

◦ • •
◦ • •
◦ • •

• • •
◦ ◦ ◦
◦ ◦ ◦

• • •
◦ ◦ •
◦ ◦ ◦

• • •
◦ ◦ •
◦ ◦ •

• • •
◦ • •
◦ ◦ ◦

• • •
◦ • •
◦ ◦ •

⎛

⎝
15 5 45

1 9
25 225

∼
⎞

⎠
• • •
◦ • •
◦ • •

• • •
• • •
◦ ◦ ◦

• • •
• • •
◦ ◦ •

• • •
• • •
◦ • •

• • •
• • •
• • •
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Lemma 2.6 (a) allows to prove in Lemma 2.10 that any finite non-empty setM ⊂ N

which is compatible with a tuple (�p)p∈P of excellent orders satisfies condition (I) in
Definition 2.8 (c) and in Theorem 1.4. Before, we recall some necessary definitions
from [5].

Definition 2.8 [5, Definition 1.1 and Theorem 1.2] Let M ⊂ N be a finite non-empty
set. Recall the definition of the graph (M, E(M)) in Definition 1.3.

(a) For any prime number p, the components of the graph (M, E(M) − Ep(M))

are called the p-planes of the graph. A p-plane is called a highest p-plane if no p-edge
ends at a vertex of the p-plane. A p-edge from m1 ∈ M tom2 ∈ M is called a highest
p-edge if no p-edge ends at m1.

(b) Two properties (Tp) and (Sp) are defined for any prime number p:

(Tp) : The graph (M, E(M)) has only one highest p-plane. (2.16)

(Sp) : The graph (M, E(M) − {highest p-edges})
has only 1 or 2 components. (2.17)

(c) Condition (I) says: The graph (M, E(M)) is connected. It satisfies (S2). It
satisfies (Tp) for any prime number p ≥ 3.

(d) Condition (II) says: The graph (M, E(M)) has two components M1 and M2.
They are 2-planes. They satisfy (Tp) for any prime number p ≥ 3. Furthermore,

gcd(lcm(M1), lcm(M2)) ∈ {1, 2}, (2.18)

v2(lcm(M2)) > v2(lcm(M1)) ∈ {0; 1}. (2.19)

Lemma 2.10 is new. Part (b) is used in the proof of Theorem 1.5.

Example 2.9 (i) In Remark 1.2 (ii), for M = {3, 5}, it was stated AutS1(HM , hM ) �
{±hkM | k ∈ Z}}. By Theorem 1.4, this means that the graph (M, E(M)) satisfies
neither condition (I) nor condition (II). This is true, indeed. The graph (M, E(M))

consists of the two vertices 3 and 5 and no edges. Therefore, it is is not connected, so
it does not satisfy condition (I). It has the two components {3} and {5}. They satisfy
Tp for each prime number p ≥ 3, and also gcd(3, 5) = 1. But v2(3) = v2(5) = 0, so
the graph (M, E(M)) does not satisfy condition (II).

(ii) The following example is related to the isolated quasihomogeneous singularity
f = x1(x41 + x62). This will be shown in Example 6.5. Consider M1 = {1, 3, 5, 15}
and M2 = {1, 3, 15} ⊂ M1, so ψ : M1 → N0 with ψ(1) = ψ(3) = ψ(15) = 2,
ψ(5) = 1. Here P(M1) = {3, 5}. The tuple (�3,�5) of excellent orders with s(�3
) = s(�5) = 1 and 1 �3 0, 0 �5 1, is compatible with ψ , so with M1 and M2. Here
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are the graphs (M1, EM1), (M2, EM2), (M1, E(M1)) and (M2, E(M2)):

(M1, EM1) (M2, EM2) (M1, E(M1)) (M2, E(M2))

5 153

1

5

33

5

15

1 33

5

5

5

153

5

1 33

15

5

1 33

Thegraph (M1, E(M1))has the highest 3-plane {3, 15} and the highest 5-plane {5, 15}.
The graph (M2, E(M2)) has the highest 3-plane {3, 15} and the highest 5-plane {15}.
Both graphs are connected. Both satisfy T3 and T5. Both satisfy trivially S2, because
both have no 2-edges and are connected. Therefore, both satisfy condition (I).

Lemma 2.10 Let M ⊂ N be a finite non-empty set.
(a) (Sp) �⇒ (Tp) for any prime number p if the graph (M, E(M)) is connected.
(b) Let (�p)p∈P be a tuple of excellent orders with which M is compatible. Then,

the graph (M, E(M)) is connected. M satisfies (Sp) for any prime number p. M
satisfies condition (I).

Proof (a) Suppose that the graph (M, E(M)) is connected and satisfies (Sp), but
has at least two highest p-planes. Any highest p-plane is a component of the graph
(M, E(M) − {highest p-edges}). Therefore, this graph consists of exactly two high-
est p-planes. But then the graph (M, E(M)) has no p-edges and has the same two
components, so it is not connected, a contradiction.

(b) By Lemma 2.6 (a), (M, EV ∩ M × M) is a directed subgraph of (V , EV )

with center vV . Therefore, it is connected. As the underlying undirected graphs of
(V , E(V )) and (V , EV ) coincide, also the graph (M, E(M)) is connected.

Fix a prime number p.Wewill prove (Sp) in the next three paragraphs. Letm1 ∈ M
be arbitrary. There is a path in (V , EV ) from πp(vV ) · pvp(m1) to m1 which consists
completely of edges which are not p-edges. Because of Lemma 2.6 (a) (i)⇒(ii), it is a
path in (M, EV ∩ M × M). Therefore, the set {m ∈ M | vp(m) = vp(m1)} is a single
p-plane in the graph (M, E(M)). Furthermore, the set {πp(vV )· pk | k ∈ KM,p,πp(vV )}
intersects each p-plane in one element.

In particular, there is only one highest p-plane, and it intersects the set above in
ṽV := πp(vV ) · pk(max)

where k(max) := max(vp(m) |m ∈ M). This highest p-plane
is one component of the graph (M, E(M) − {highest p-edges}).

The edges in E(M) with both vertices in the set {πp(vV ) · pk | k ∈ KM,p,πp(vV ) −
{k(max)}} are all p-edges, but not highest p-edges. Therefore, the second component
(if M does not consist only of one p-plane) is the union of all other p-planes. The
property (Sp) holds.

Because (M, E(M)) is connected and because of part (a), (M, E(M)) satisfies
condition (I). 
�
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3 Tensor product and Thom–Sebastiani sum

The following is a reformulation of Problem 7 in [10]:
(a) Find a natural condition for a map ψ : N → N0 with finite support which

implies that each set Mst
j ⊂ N in the standard covering of ψ satisfies condition (I)

and which is stable under tensor product.
(b) Prove that in the case of an isolated quasihomogeneous singularity the map ψ :

N → N0 satisfies this condition, where pch,hMil = ∏
m∈N Φ

ψ(m)
m is the characteristic

polynomial of the monodromy.
Problem 7 is motivated by the facts (which are discussed in [10]) that condition

(I) is not stable under tensor product and that it is too difficult to prove Theorem 1.5
directly.

Here, we propose as solution the natural condition that a tuple of excellent orders
exists, with which ψ is compatible (Definition 2.5 (e)). The first half of part (a) is
true because of Lemmas 2.10 (b) and 2.6 (b). Part (b) is true because of Theorem 6.7,
which is [9, Theorem 12.1]. The second half of part (a) is also true. It follows from
Theorem 3.2, which is a main result of [9]. Before, Definition 3.1 explains what is
meant here by tensor product.

Definition 3.1 (a) Let f (t) = ∏n
i=1(t − κi ) ∈ C[t] and g(t) = ∏m

j=1(t − λ j ) ∈ C[t]
be unitary polynomials of degrees n,m ≥ 1. Their tensor product is the unitary
polynomial

( f ⊗ g)(t) :=
n∏

i=1

m∏

j=1

(t − κiλ j ) ∈ C[t] (3.1)

of degree nm.
(b) Let ψ1 : N → N0 and ψ2 : N → N0 be two maps with finite supports M =

supp (ψ1) and N = supp (ψ2). Their tensor product is the map ψ1 ⊗ ψ2 : N → N0
with

( ∏

m∈M
Φψ1(m)

m

)

⊗
(∏

n∈N
Φψ2(n)

n

)

=
∏

l∈N
Φ

(ψ1⊗ψ2)(l)
l . (3.2)

It has also finite support.

The beginning of Sect. 7 in [9] (namely Definition 7.1, Lemma 7.2 and Definition
7.3) gives more information onψ1 ⊗ψ2. Theorem 3.2 is a main result of [9]. The long
and difficult proof is built up from several intermediate results in Sects. 7–9 in [9]. Its
part (a) solves the second half of part (a) of Problem 7.

Theorem 3.2 [9, Theorem 9.10] Let ψ1 : N → N0 and ψ2 : N → N0 be two maps
with finite supports M = supp (ψ1) and N = supp (ψ2). Write ψ3 := ψ1 ⊗ ψ2.
Denote L := supp (ψ3). It satisfies P(L) ⊂ P(M) ∪ P(N ).

Let P ⊃ P(M) ∪ P(N ) be a finite set of prime numbers. Let (�M
p )p∈P and

(�N
p )p∈P be two tuples of excellent orders such that ψ1 is compatible with (�M

p )p∈P

and ψ2 is compatible with (�N
p )p∈P . Write �L

p := (�M
p ⊗ �N

p ) for any p ∈ P.
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(a) ψ3 is compatible with the tuple (�L
p)p∈P of excellent orders.

(b)Let (M (st)
1 , . . . , M (st)

lψ1
), (N (st)

1 , . . . , N (st)
lψ2

)and (L(st)
1 , . . . , L(st)

lψ3
)be the standard

coverings of ψ1, ψ2 and ψ3. Then,

( lψ1⊕

i=1

Or(M (st)
i )

)

⊗
( lψ2⊕

j=1

Or(N (st)
j )

)
∼=

lψ3⊕

k=1

Or(L(st)
k ), (3.3)

so the tensor product of the sums of Orlik blocks on the left hand side admits a standard
decomposition into Orlik blocks.

Example 3.3 Here, two examples are given, where the hypotheses and the conclusions
in Theorem 3.2 are not satisfied. In the examples, we write HM instead of the pair
(HM , hM ).

(i) Consider M = {3} and N = {2, 3}. Then, the following is shown in [9, Exam-
ple 7.7. (iii)].

H{3} ⊗ H{2,3} ∼= H{3,1} ⊕ H{6,1} � H{6,3,1} ⊕ H{1}. (3.4)

So, here the tensor product H{3} ⊗H{2,3} is isomorphic to a direct sum of Orlik blocks,
but not to a standard decomposition into Orlik blocks. The set M = {3} is compatible
with the excellent order �M

3 on the set {0, 1} with 1 �M
3 0. But there is no tuple

(�N
2 ,�N

3 ) of excellent orders on {0, 1} which is compatible with the set N = {2, 3}:
Else by Lemma 2.10, the graph (N , E(N )) would be connected which it is not.

(ii) Similarly to the example in (iii), one can show

H{4} ⊗ (H{4,1} ⊕ H{1}) ∼= H{4,2,1} ⊕ H{2,1} ⊕ H{4} � H{4,2,1} ⊕ H{4,2,1}. (3.5)

So, also here the tensor product is isomorphic to a direct sum of Orlik blocks, but not
to a standard decomposition into Orlik blocks. Here,

M = {4}, ψ1(4) = 1, N = {1, 4}, ψ2(1) = 2, ψ2(4) = 1,

L = {1, 2, 4}, ψ3(1) = ψ3(2) = ψ3(4) = 2. (3.6)

The set M = {4} is compatible with the excellent order �M
2 on the set {0, 1, 2} with

2 �M
2 1 �M

2 0. But the map ψ2 is not compatible with any excellent order �N
2 on the

set {0, 1, 2}: Because the set N = {1, 4} and the set {1} must be compatible with �N
2 ,

we must have 0 �N
2 2. Now the compatibility of N with �N

2 requires 0 �N
2 2 �N

2 1.
But this is not an excellent order on {0, 1, 2}.

Thom and Sebastiani proved a result which specializes to the case of isolated
quasihomogeneous singularities as follows.

Theorem 3.4 [21] Let f = f (x1, . . . , xn f ) and g = g(xn f +1, . . . , xn f +ng ) be two
isolated quasihomogeneous singularities in different variables. Then, their Thom–
Sebastiani sum f + g is an isolated quasihomogeneous singularity, and there is a
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canonical isomorphism

(HMil , hMil)( f + g) ∼= (HMil , hMil)( f ) ⊗ (HMil , hMil)(g). (3.7)

This theorem, Theorem 6.7 and part (b) of Theorem 3.2, implies part (c) of Theo-
rem 1.7. This is the way how Theorem 1.7 (c) is proved in [9].

Remark 3.5 The search for Theorem 3.2 led us in the following way to the excel-
lent orders and the compatibility of a finite set M ⊂ N with a tuple of excellent
orders. We found a condition sdiOb-sufficient [9, Definition 7.3 (d)] (short for stan-
dard decomposition into Orlik blocks) for a pair (M, N ) of finite subsets M, N ⊂ N

which implies (and probably is equivalent to) the property that the tensor product
(HM , hM ) ⊗ (HN , hN ) of two Orlik blocks allows a standard decomposition into
Orlik blocks [9, Theorem 7.4]. Lemma 9.12 in [9] says especially that the following
conditions (i) and (ii) are equivalent. Here, M ⊂ N is a finite non-empty set.

(i) For any nN ∈ N, the pair (M, {n ∈ N | n|nN }) is sdiOb-sufficient.
(ii) A tuple (�p)p∈P(M) of excellent orders exists such that M is compatible with it.

Another interesting result from [9] which complements Theorem 3.2 (and which,
in fact, is used in its proof) is the following.

Theorem 3.6 [9, Theorem 9.6] Let (�p)p∈P be at tuple of excellent orders for a finite
set P of prime numbers, and let ψ : N → N0 be a map with finite support which
is compatible with (�p)p∈P . Let (M (1)

1 , . . . , M (1)
l1

)) and (M (2)
1 , . . . , M (2)

l2
) be two

coverings of ψ which are both compatible with (�p)p∈P . Then, the corresponding
sums of Orlik blocks are isomorphic,

l1⊕

i=1

Or(M (1)
i ) ∼=

l2⊕

j=1

Or(M (2)
j ), (3.8)

and l1 = l2 = lψ(:= max(ψ(m) |m ∈ N)).

4 Maps on the group ring generated by unit roots

This section collects notations and classical formulas which will be needed in the later
sections.

Notations 4.1 (a)Denote byμ(C) ⊂ S1 the group of all unit roots. Denote byQ[μ(C)]
and Z[μ(C)] the group rings of elements

∑l
j=1 b j [ζ j ] where ζ j ∈ μ(C) and where

b j ∈ Q respectively Z, with multiplication [ζ1][ζ2] = [ζ1ζ2]. The unit element is [1].
The trace and the degree of an element b = ∑l

j=1 b j [ζ j ] ∈ Q[μ(C)] are

tr(b) :=
l∑

j=1

b jζ j ∈ C, deg(b) :=
l∑

j=1

b j ∈ Q.
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The trace map tr : Q[μ(C)] → C and the degree map deg : Q[μ(C)] → Q are
ring homomorphisms. For k ∈ N0, the k-th Lefschetz number Lk(b) of an element
b = ∑l

j=1 b j [ζ j ] is

Lk(b) :=
l∑

j=1

b jζ
k
j = tr

⎛

⎝
∑

j=1

b j [ζ k
j ]

⎞

⎠ ∈ C. (4.1)

(b) The divisor of a unitary polynomial f = ∏n
i=1(t − κi ) with κi ∈ μ(C) is

div f :=
n∑

i=1

[κi ] ∈ Z[μ(C)].

The divisor of the constant polynomial 1 is div 1 = 0.
(c) The order ord (ζ ) ∈ N of a unit root ζ ∈ μ(C) is the minimal number m ∈ N

with ζm = 1. For m ∈ N, the m-th cyclotomic polynomial is

Φm :=
∏

ζ : ord (ζ )=m

(t − ζ ).

Define

Λm := div (tm − 1), Ψm := divΦm . (4.2)

Then, λ1 = Ψ1 = [1]. The Möbius function μMoeb is [1]

μMoeb : N → {0, 1,−1},

m �→
⎧
⎨

⎩

(−1)r if m = p1 · . . . · pr with p1, . . . , pr
different prime numbers,

0 else

(here r = 0 is allowed, so μMoeb(1) = 1).

The next lemma collects well-known facts.

Lemma 4.2 (a) Let f = ∏n
i=1(t − κi ) and g = ∏m

j=1(t −λ j ) be unitary polynomials
with κi and λ j ∈ μ(C). The tensor product ( f ⊗ g)(t) = ∏n

i=1
∏m

j=1(t − κiλ j ) in
(3.1) satisfies

div ( f ⊗ g) = (div f ) · (div g).
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(b)The cyclotomic polynomialΦm is inZ[t], it has degreeϕ(m), and it is irreducible
in Z[t] and Q[t].

tn − 1 =
∏

m|n
Φm(t), Λn =

∑

m|n
Ψm, (4.3)

Φm =
∏

m|n
(tn − 1)μMoeb(m

n ), Ψm =
∑

n|m
μMoeb

(m

n

)
· Λn . (4.4)

The traces of Λm and Ψm are

trΛm =
{
1 if m = 1
0 if m ≥ 2,

(4.5)

trΨm = μMoeb(m). (4.6)

The product ΛmΛn is

ΛmΛn = gcd(m, n) · Λlcm(m,n). (4.7)

For the product ΨmΨn, see [10, (2.19)–(2.21)] or [9, Lemma 7.2].
(c) Let ψ : N → Q be a map with finite support, and consider the element

b :=
∑

m∈N
ψ(m) · Ψm ∈ Q[μ(C)]. (4.8)

There is a unique map χ : N → Q with finite support and

b =
∑

n∈N
χ(n) · Λn . (4.9)

The four data ψ , b, χ and (Lk(b))k∈N0 determine one another, by (4.8)–(4.9) and

ψ(m) =
∑

n:m|n
χ(n), χ(n) =

∑

m: n|m
ψ(m) · μMoeb

(m

n

)
, (4.10)

Lk(b) =
∑

n: n|k
nχ(n), nχ(n) =

∑

k|n
Lk(b) · μMoeb

(n

k

)
. (4.11)

Denote dχ := lcm(n | n ∈ supp (χ)). The Lefschetz numbers Lk(b) are rational. They
are determined by the values Lk(b) for k ∈ N with k|dχ , because of the (extended)
periodicity property

Lk(b) = Lgcd(k,dχ )(b) for any k ∈ N. (4.12)

Proof (a) Trivial. (b) The statements on Φm are classical. The formulas (4.4) follow
from the formulas (4.3) by Moebius inversion [1]. The trace of Λm is obvious, the
trace of Ψm follows with (4.4). The product ΛmΛn is obvious.
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(c) Formula (4.10) is a consequence of (4.3) and (4.4). The first formula in (4.11)
can be seen as follows:

Lk(Λn) = tr

(
n−1∑

a=0

[e2π iak/n]
)

= tr
(
gcd(k, n)Λn/ gcd(k,n)

) =
{
n if n|k,
0 if n 	 |k,

Lk(b) =
∑

n∈N
χ(n) · Lk(Λn) =

∑

n: n|k
nχ(n).

The first formula in (4.11) gives the second formula in (4.11) by Moebius inversion
[1]. It also implies Lk(b) ∈ Q and the periodicity property (4.12). 
�

5 Basic properties of weight systems and induced objects

In this section, problem 1 in [10] will be solved as part of Lemma 5.4. It is elementary.
Before, notations from [10, Sect. 3] are recalled. In this section, we fix a number
n ∈ N and denote N := {1, 2, . . . , n}.

Definition 5.1 (a) Aweight system is a tuple (v1, . . . , vn; d) ∈ (Q>0)
n+1 with vi < d.

Another weight system is equivalent, if the second one has the form q ·(v1, . . . , vn; d)

for some q ∈ Q>0. A weight system is integer if (v1, . . . , vn; d) ∈ Nn+1. It is reduced
if it is integer and gcd(v1, . . . , vn, d) = 1. It is normalized if d = 1.

Any equivalence class contains a unique reduced weight system and a unique nor-
malized weight system. From now on, the letters (v1, . . . , vn; d) will be reserved
for an integer weight system, and the letters (w1, . . . , wn; 1) will be the equivalent
normalized weight system, i.e., wi = vi/d.

(b) Let (v1, . . . , vn; d) be an integer weight system (not necessarily reduced). For
J ⊂ N and k ∈ N0 define

(ZJ )k :=
{

α ∈ Zn | αi = 0 for i /∈ J ,
∑

i∈J

αi = k

}

,

(NJ
0 )k := Nn

0 ∩ (ZJ )k . (5.1)

(c) Two conditions for an integer weight system (v1, . . . , vn; d) (or, equivalently,
for the equivalent normalized weight system ( v1

d , . . . , vn
d ; 1)) are defined as follows:

(C2) : ∀ J ⊂ N with J 	= ∅ ∃ K ⊂ N with |K | = |J |
and such that ∀ k ∈ K we have (ZJ )d−vk 	= ∅.

(C2) : ∀ J ⊂ N with J 	= ∅ ∃ K ⊂ N with |K | = |J |
and such that ∀ k ∈ K we have (NJ

0 )d−vk 	= ∅.
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Remark 5.2 (i) Often for a given set J , the set {k ∈ N | (NJ
0 )d−vk 	= ∅} has more

elements than J . Then, the set K in (C2) is not unique. If for at least one J , this set
has less elements than J , then (C2) does not hold. The same is true for condition (C2).

(ii) Of course (C2) implies (C2). Lemma 2.1 in [7] gives four conditions (C1),
(C1)′, (C2)′ and (C3) which are equivalent to (C2). They all have versions (C1),
(C1)′, (C2)′ and (C3), which are equivalent to (C2). Theorem 6.1 shows the relevance
of (C2).

(iii) Let (v1, . . . , vn; d) be an integer weight system. For J ⊂ N with J 	= ∅ define
the semigroup

SG(J ) :=
∑

j∈J

N0 · v j ⊂ N0,

and observe
∑

j∈J Z · v j = Z · gcd(v j | j ∈ J ). Therefore,

(NJ
0 )k 	= ∅ ⇐⇒ k ∈ SG(J ), (5.2)

(ZJ )k 	= ∅ ⇐⇒ gcd(v j | j ∈ J )|k. (5.3)

(C2) is equivalent to the condition

(GCD) ∀ J ⊂ N gcd(v j | j ∈ J ) divides at least |J |
of the numbers d − vk for k ∈ N .

Definition 5.3 Let (v, d) = (v1, . . . , vn, d) ∈ Nn+1 be an integer weight system.
(a) Define unique numbers s1, . . . , sn, t1, . . . , tn ∈ N by

vi

d
= si

ti
and gcd(si , ti ) = 1. (5.4)

They depend only on the normalizedweight systemw = (w1, . . . wn) = ( v1
d , . . . , vn

d ).
Define

dw := lcm(t j | j ∈ N ). (5.5)

Of course dw|d. If (v, d) is reduced and gcd(v1, . . . , vn)|d (which holds for example
if (C2) holds), then gcd(v1, . . . , vn) = 1 and then dw = d.

(b) For k ∈ N define

M(k) := { j ∈ N | t j |k}, (5.6)

and μ(k) :=
∏

j∈M(k)

(
1

w j
− 1

)

=
∏

j∈M(k)

d − v j

v j
∈ Q>0 (5.7)

(By definition, the empty product has value 1).
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(c) Define a quotient of polynomials

ρ(v,d)(t) := tv1+···+vn ·
n∏

j=1

td−v j − 1

tv j − 1
∈ Q(t) (5.8)

and an element of Q[μ(C)]

Dw :=
n∏

j=1

(
1

s j
Λt j − Λ1

)

∈ Q[μ(C)]. (5.9)

Lemma 5.4 ([10, Lemma 3.7] for (a)–(c)) Let (v; d) = (v1, . . . , vn; d) ∈ Nn+1 be an
integer weight system.

(a) Then, M(k) = M(gcd(k, dw)) and μ(k) = μ(gcd(k, dw)).
(b) The Lefschetz numbers Lk(Dw) are

Lk(Dw) = (−1)n−|M(k)|μ(k) (5.10)

= Lgcd(k,dw)(Dw). (5.11)

(c) (v; d) satisfies (C2) ⇐⇒ ρ(v;d) ∈ Z[t].
(d) Suppose that (v; d) satisfies (C2). Write

ρ(v;d) =
∑

α∈d−1N0

σ(α) · td·α

with a unique map σ : d−1N0 → Z with finite support. Then,

Dw =
∑

α∈d−1N0

σ(α) · [e2π iα]. (5.12)

and μ(k) ∈ N.

Proof (a) All t j divide dw. Therefore, t j |k ⇐⇒ t j | gcd(k, dw).
(b) For completeness sake, the calculation in [10] is copied.

Lk(Dw) = tr

⎛

⎝
n∏

j=1

(
gcd(k, t j )

s j
Λt j / gcd(k,t j ) − Λ1

)
⎞

⎠

=
n∏

j=1

(
gcd(k, t j )

s j
· tr (Λt j / gcd(k,t j )

) − 1

)

=
∏

j∈M(k)

(
t j
s j

− 1

)

·
∏

j /∈M(k)

(−1)

= (−1)n−|M(k)| · μ(k).
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Formula (5.11) follows from part (a).
(c) The conditions (C2) and (GCD) in Remark 5.2 (iii) are equivalent. Condition

(GCD) says that any cyclotomic polynomial in the denominator of ρ(v;d) turns up
with at least the same multiplicity in the numerator. Therefore, (GCD) is equivalent
to ρ(v;d) ∈ Z[t].

(d) The formulas (5.10) and (5.12) imply μ(k) ∈ N. For (5.12), it is because of
Lemma 4.2 (c) sufficient to show

Lk(Dw) = Lk

⎛

⎝
∑

α∈d−1N0

σ(α) · [e2π iα]
⎞

⎠ for all k ∈ N0. (5.13)

The right-hand side of (5.13) is

tr

⎛

⎝
∑

α∈d−1N0

σ(α) · [e2π ikα]
⎞

⎠ =
∑

α∈d−1N0

σ(α) · e2π ikα = ρ(v;d)(e
2π ik/d)

= lim
t �→e2π ik/d

⎛

⎝
∏

j∈M(k)

td − tv j

tv j − 1
·

∏

j /∈M(k)

td − tv j

tv j − 1

⎞

⎠

=
⎛

⎝
∏

j∈M(k)

d − v j

v j

⎞

⎠ · (−1)n−|M(k)| = (−1)n−|M(k)|μ(k) = Lk(Dw).

Here, we used j /∈ M(k) ⇐⇒ k
d v j /∈ Z ⇐⇒ (e2π ik/d)v j 	= 1. 
�

Remark 5.5 Problem 1 in [10] asked whether (5.12) holds. In [10], the first author had
missed the calculation in the proof of part (d).

6 Isolated quasihomogeneous singularities

Finally, we come to the discussion of weight systemswhich allow isolated quasihomo-
geneous singularities and of associated objects. The following Theorems 6.1 and 6.4
are crucial. As in Sect. 5, n ∈ N and N = {1, . . . , n} are fixed.
Theorem 6.1 (Kouchnirenko [11, Remarque 1.13 (ii)]) Let (v; d) = (v1, . . . , vn; d)

be an integer weight system. The following conditions are equivalent.

(IS3): There exists a quasihomogeneous polynomial f with weight system (v; d)

and an isolated singularity at 0.
(IS3)’: A generic quasihomogeneous polynomial with weight system (v; d) has an
isolated singularity at 0.
(C2): The weight system (v; d) satisfies condition (C2).

Remark 6.2 (i) The reference [11, Remarque 1.13 (ii)] does not give a detailed proof,
but the reference [12] (in russian) does. The theorem was rediscovered and reproved
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several times, in [13, 17] and [3]. More general results are given in [22] (without
proof) and [25] (with proof). The paper [7] discussed the history of Theorem 6.1, but
it missed the reference [3].

(ii) Lemma 2.1 in [7] shows combinatorially the equivalence of (C2) with several
other conditions (C1), (C1)’, (C2)’ and (C3). Some of the references above prove the
equivalence of (IS3) with some other of these conditions.

(iii) The implication (IS3)⇒(C1) is already shown in [18].

Remark 6.3 The paper [7] made good use of the part of condition (C2) which concerns
subsets J ⊂ N with |J | = 1. Problem 3 in [10] asked about making good use of the
conditions in (C2) for sets J ⊂ N with |J | ≥ 2. Of course, the proofs of Theorem 6.1
in the references in Remark 6.2 (i) make such good use, as they need the full condition
(C2). We do not have other solutions of problem 3 in [10].

Theorem 6.4 Let (v; d) = (v1, . . . , vn; d) be an integer weight system which satisfies
condition (C2), and let w = ( v1

d , . . . , vn
d ; 1) be the equivalent normalized weight

system.
(a) (Milnor and Orlik [15]) Dw is the divisor of the characteristic polynomial of the

monodromy on the Milnor lattice of an isolated quasihomogeneous singularity with
weight system (v; d). In particular, Dw ∈ N0[μ(C)].

(b) (Many people, e.g., [2]) t−v1−...−vnρ(v;d) is the generating function of the
weighted degrees of the Jacobi algebra

C[x1, . . . , xn]/
( ∂ f

∂x1
, . . . ,

∂ f

∂xn

)

of an isolated quasihomogeneous singularity f with weight system (v; d). Especially
ρ(v;d) ∈ N0[t].
Example 6.5 The polynomial f (x1, x0) = x1(x41 + x62) is an isolated quasihomoge-
neous singularity with normalized weight system w = (w1, w2; 1) = ( 15 ,

2
15 ; 1). In

particular, (s1, t1, s2, t2) = (1, 5, 2, 15). The divisor of the characteristic polynomial
of its monodromy is

Dw = (
Λ5 − Λ1

)(1

2
Λ15 − Λ1

)

= 2Λ15 − Λ5 + Λ1 = 2Ψ15 + Ψ5 + 2Ψ3 + 2Ψ1,

so here pch,Mil = ∏
m∈M1

Φ
ψ(m)
m with M1 = {1, 3, 5, 15} and ψ(15) = ψ(3) =

ψ(1) = 2, ψ(5) = 1. The standard covering (Definition 2.5 (f)) of ψ consists of
M1 and M2 = {1, 3, 15} ⊂ M1. Theorem 6.7 shows here that ψ and M1 and M2 are
compatible with the tuple (�w

3 ,�w
5 ), where s(�w

3 ) = 1 = s(�w
5 ) and 1 �w

3 0, 0 �w
5 1.

We had observed this already in Example 2.9.

Remark 6.6 (i) By Lemma 5.4 (d), ρ(v;d) and Dw are related by

ρ(v;d) =
∑

α∈d−1N0

σ(α) · td·α, Dw =
∑

α∈d−1N0

σ(α) · [e2π iα], (6.1)
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where σ : d−1N0 → N0 has finite support.
(ii) If we write ρ(v;d) = ∑μ

i=1 t
d·αi for suitable αi ∈ Q, then these numbers

(α1, . . . , αμ) are the exponents of the singularity, and e2π iα1 , . . . , e2π iαμ are the eigen-
values of the monodromy.

(iii) Problem 2 in [10] asked for a combinatorial proof of the fact ρ(v;d) ∈ N0[t]
for a weight system (v; d) with condition (C2). (The other two parts of Problem 2 in
[10] would follow from this and from Lemma 5.4 (d).) Theorem 6.4 (b), which was
rediscovered by many people, contains this statement. The classical proof uses that
the tuple of partial derivatives (

∂ f
∂x1

, . . . ,
∂ f
∂xn

) is a regular sequence. We do not know
a proof which does not use the Jacobi algebra and this regular sequence. So we do not
have a solution of problem 2 in [10].

The following theorem is proved in [9]. It is one ingredient of the proof in [9] of
Theorem 1.7 (c). It is also an ingredient in the proof of Theorem 1.5. Its proof in [9]
uses Theorems 6.1 and 6.4 (a) and especially that certain subsystems w(p) of w (for
certain prime numbers p) also satisfy condition (C2) and thus that Dw(p) ∈ N0[μ(C)]
holds.

Theorem 6.7 Consider a normalized weight system w = (w1, . . . , wn; 1) which
satisfies condition (C2), and consider the numbers si , ti ∈ N with wi = si

ti
and

gcd(si , ti ) = 1. Write Dw = ∑
m∈Mw

ψw(m) · Ψm where the map ψw : Mw → N0
has finite support Mw ⊂ N. The map ψw is compatible with the tuple (�w

p )p∈P(Mw)

of excellent orders which is defined as follows:

s(�w
p ) := max(vp(m) |m ∈ Mw), (6.2)

S(�w
p ) := {k ∈ Z[1,s(�p)] | |{ j ∈ N | pk |t j }| is odd.} (6.3)

Finally, we solve problem 4 in [10] in Remark 6.9 and discuss problem 5 in [10] in
Remark 6.10.

Remark 6.8 An isolated quasihomogeneous singularity f ∈ C[x1, . . . , xn] has mul-
tiplicity ≥ 3 if all monomials in it have degree ≥ 3 (the standard degree, not the
weighted degree). A result in [18] says first that the weight system w of any isolated
quasihomogeneous singularitywithmultiplicity≥ 3 is unique and satisfieswi ∈ (0, 1

2 )

for all i , and second that any quasihomogeneous singularity can be transformed by a
coordinate change to a Thom–Sebastiani sum f (x1, . . . , xk) + x2k+1 + · · · + x2n of an
isolated quasihomogeneous singularity f of multiplicity ≥ 3 and the A1-singularity
x2k+1 + · · · + x2n . Because of Theorem 3.4, one can often restrict to (isolated quasiho-
mogeneous) singularities of multiplicity ≥ 3.

Remark 6.9 Let f be an isolated quasihomogeneous singularity of multiplicity ≥ 3
with weight system w = (w1, . . . , wn; 1). If n ≤ 3, (C2) ⇐⇒ (C2). This was first
proved in [19, Theorem 3]. A short combinatorial proof is given in [7, Lemma 2.5]. For
n ≥ 4, (C2) is stronger than (C2). Though only oneweight systemwwith n = 4which
satisfies (C2), but not (C2), is published, the weight system (58, 33, 24, 1; 265). It is
due to Ivlev [2]. It is also discussed in [10, Example 5.1]. There problem 4 is posed.
It asks for other weight systems w with n = 4 which satisfy (C2), but not (C2).
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Table 1 All reduced weight systems (v1, v2, v3, v4; d) with d ≤ 200, d
2 > v1 ≥ v2 ≥ v3 ≥ v4, and

condition (C2), but not condition (C2)

(v1, v2, v3, v4) d μ L [a1, a2, a3, a4, a5, a6]
(27, 16, 10, 1) 81 4615 22,598 [2, 2, 4, 1, 4, 4]
(29, 14, 12, 3) 87 1825 26,464 [2, 2, 4, 1, 4, 2]
(31, 18, 10, 3) 93 2075 31,738 [2, 2, 4, 1, 2, 4]
(35, 26, 8, 1) 105 7663 42,215 [2, 2, 4, 1, 4, 4]
(41, 30, 8, 3) 123 3565 61,217 [2, 2, 4, 1, 2, 4]
(43, 34, 8, 1) 137 14,523 78,151 [2, 3, 4, 1, 4, 4]
(49, 22, 15, 12) 147 1125 92,880 [2, 2, 2, 3, 1, 2]
(43, 20, 14, 9) 149 2385 94,336 [3, 2, 4, 1, 3, 4]
(51, 28, 13, 10) 153 1375 100,171 [2, 2, 2, 3, 1, 4]
(49, 38, 8, 3) 155 6201 102,969 [2, 3, 4, 1, 4, 4]
(53, 26, 12, 3) 159 6517 108,079 [2, 2, 4, 1, 4, 2]
(43, 32, 10, 1) 161 26,727 112,336 [3, 2, 4, 1, 4, 4]
(55, 21, 18, 16) 165 1043 117,928 [2, 2, 2, 2, 3, 1]
(59, 42, 9, 8) 177 2535 138,768 [2, 2, 2, 2, 1, 4]
(57, 36, 10, 1) 181 26,970 149,200 [2, 3, 4, 1, 4, 4]
(49, 36, 10, 3) 183 11,591 151,842 [3, 2, 4, 1, 2, 4]
(61, 20, 18, 3) 183 8965 152,011 [2, 2, 4, 1, 4, 2]
(61, 22, 16, 7) 183 3841 152,019 [2, 2, 2, 1, 4, 4]
(57, 26, 14, 3) 185 10,176 154,800 [2, 3, 2, 1, 4, 4]
(61, 38, 10, 3) 193 10,230 169,630 [2, 3, 4, 1, 4, 4]
(65, 46, 11, 8) 195 2533 172,715 [2, 2, 2, 3, 1, 4]
(59, 22, 18, 1) 199 38,010 180,617 [3, 2, 4, 1, 4, 4]
(61, 23, 22, 16) 199 1593 180,630 [3, 2, 3, 4, 4, 1]

We used the software PARI/GP [23] in order to check all reduced integer weight
systems (v; d) = (v1, v2, v3, v4; d) with d

2 > v1 ≥ v2 ≥ v3 ≥ v4 and d ≤ 360
(reduced means gcd(v1, v2, v3, v4, d) = 1). We found 654077 such weight systems
which satisfy (C2). Only 103 of them do not satisfy (C2). Up to d = 200, there are
185,013 weight systems as above with (C2), and only 23 of them do not satisfy (C2).
Table 1 lists these 23 weight systems (v1, v2, v3, v4; d) in the lexicographic ordering
with respect to (d, v1, v2, v3, v4). It also gives the Milnor number μ, the number L of
the weight system in the lexicographic ordering with respect to (d, v1, v2, v3, v4) of
all weight systems as above which satisfy (C2), and a tuple [a1, a2, a3, a4, a5, a6] ∈
{0, 1, 2, 3, 4}6 which says the following. Write

(J1, J2, J3, J4, J5, J6) = ({1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}).

Then, ai = |{k ∈ N | (NJi
0 )d−vk 	= ∅}|. That (C2) is not satisfied implies that for at

least one i ∈ {1, 2, 3, 4, 5, 6} the number ai is ≤ 1.

123



952 Journal of Algebraic Combinatorics (2022) 56:929–954

The table does not contain Ivlev’s example (58, 33, 24, 1; 265) because 265 > 200.
Ivlev’s example has Milnor number 66516. All examples in Table 1 have smaller
Milnor numbers. We checked also with PARI/GP for all 103 reduced weight systems
with d ≤ 360 and (C2), but not (C2), that ρ(v;d) ∈ N0[t] holds. It is not clear whether
there are weight systems with larger d which satisfy (C2) and ρ(v;d) ∈ Z[t] −N0[t].

Arnold [2] associated with each reduced weight system (v1, . . . , vn; d) which sat-
isfies (C2) one type or several types in the following way. A type is a conjugacy
class with respect to the symmetric group Sn of a (not necessarily bijective) map
σ : N → N . Here, σ is a map which satisfies v j |(d − vσ( j)) for j ∈ N . For each
j ∈ N such a σ( j) exists because of condition (C2) for sets J ⊂ N with |J | = 1.
The number of types is 3 for n = 2, 7 for n = 3 [2], 19 for n = 4 [24], 47 for n = 5
and 128 for n = 6 [7, Examples 3.2]. In [24], the types for n = 4 are numbered
I , I I , . . . , X I X . (This is reproduced in [7, Example 3.2 (iii)].) At most 9 of the 19
types allow weight systems which satisfy (C2), but not (C2), the weight systems
V , V I I I , X I , X I I , X I I I , XV , XV I , XV I I and X I X . The other ten types allow
only weight systems of Thom–Sebastiani sums of cycle-type singularities and chain-
type singularities. The 23 weight systems in Table 1 realize seven of the nine types,
and they do not realize X I I I and X I X .

Remark 6.10 (i) K. Saito conjectured [20, (3.13) and (4.2)] that the weight system
w = (w1, . . . , wn; 1) of an isolated quasihomogeneous singularity with multiplicity
≥ 3 satisfies ψw(dw) > 0. Here, d = dw for the equivalent reduced integer weight
system (v1, . . . , vn; d), because condition (C2) for the set J = N implies v j |d for any
j . Counter-exampleswith n = 4 to this conjecture are given in [10, Examples 5.5]. The
tables in [6] show that for n = 4 and μ ≤ 500, the only counter-examples are those in
[10, Examples 5.5]. Problem 5 (b) asked for an answer to the question whether in the
case n = 4 and μ ≥ 501, the only counter-examples are those in [10, Examples 5.5].
We did not settle this.

(ii) With the software PARI/GP [23], we checked that for n = 5 and d ≤ 200,
only ten counter-examples to the conjecture in part (i) exist. They are all obvious
generalizations of the examples in [10, Examples 5.5]. They are given in the following
table. They are Thom–Sebastiani sums of singularities of type Ak , Dk (with odd k),
and/or a chain-type singularity with one of the three normalized weight systems

K1 :
(1

4
,
3

20
,
17

40
; 1

)
, K2 :

(1

4
,
3

20
,
25

56
; 1

)
, K3 :

(1

6
,
5

18
,
13

36
; 1

)
.

(See [10, ch. 4 and 5] for formulas around the singularities Ak , Dk and the chain-type
singularities.) The number L has the same meaning as in Remark 6.9. We calculated
with PARI/GP also the number of all reduced weight systems (v1, v2, v3, v4, v5; d)

with (C2) and d ≤ 200 and d
2 > v1 ≥ · · · ≥ v5. It is 1176435.

(iii) K. Saito posed also the weaker conjecture [20, (3.13) and (4.2)] that the weight
system w of any isolated quasihomogeneous singularity satisfies ψw(dw) > 0 or
ψw(dw/2) > 0. Problem 5 (a) in [10] rephrases this conjecture. If the only counter-
examples to the stronger conjecture in part (i) are the obvious generalizations of the
examples 5.5 in [10], the weaker conjecture is true. But this is not clear.
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Table 2 All reduced weight systems (v1, v2, v3, v4, v5; d) with d ≤ 200, d
2 > v1 ≥ · · · ≥ v5, condition

(C2), and ψw(dw) = 0

Thom–Sebastiani sum (v1, v2, v3, v4, v5) d μ L

D13 ⊗ K1 (55, 51, 30, 18, 10) 120 299 305,495

D13 ⊗ D21 ⊗ A3 (57, 55, 30, 10, 6) 120 819 307,654

D13 ⊗ K2 (77, 75, 42, 18, 14) 168 403 740,415

D11 ⊗ D29 ⊗ A3 (81, 77, 42, 14, 6) 168 1131 744,420

D11 ⊗ K3 (81, 65, 50, 30, 18) 180 253 903,983

D11 ⊗ D19 ⊗ A5 (85, 81, 30, 18, 10) 180 1045 907,794

D11 ⊗ D19 ⊗ A2 (85, 81, 60, 18, 10) 180 418 907,798

D31 ⊗ K3 (87, 65, 50, 30, 6) 180 713 909,833

D19 ⊗ D31 ⊗ A5 (87, 85, 30, 10, 6) 180 2945 909,911

D19 ⊗ D31 ⊗ A2 (87, 85, 60, 10, 6) 180 1178 909,915
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