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1 Introduction

In view of the changing energy demands and supplies, the combined and intertwined energy net-
works are expected to play a prominent role in the future. Here, the additional but unpredictable
and volatile energy sources need to be complemented with traditional means of production as
well as possibly additional large-scale storage [51, 54]. Following previous approaches [17, 55,
57], we consider here energy storage through coupling power networks to gas networks. The lat-
ter are able to generate sufficient power at times when renewable energy might not be available or
vice versa convert energy to ramp up pressure in the gas networks, see for example [14, 31, 48].
A major concern when coupling gas and power networks is guaranteeing a stable operation even
at times of stress due to (uncertain) heavy loads. The propagation of possible uncertain loads on
the power network and its effect on the gas network has been subject to recent investigation, and
we refer to [17] and references therein. Contrary to the cited reference [17], we are interested
here in a full simulation of both the gas and the power network as well as the simulation of the
stochastic demand and, respectively, supply. This will allow for a prediction at all nodes as well
as study dynamic effects changing supplies and demands in the network.

Regarding the underlying models for simulation, we rely on established power flow (PF), gas
flow and stochastic demand models that will be briefly reviewed in the following. PF is typically
modelled through prescribing real and reactive power at nodes of the electric grid. Their values
are obtained through a nonlinear system of algebraic equations. Supply and demand can be time–
dependent requiring to frequently resolve the nonlinear system. For more details on the model,
we refer to [10, 15, 21, 25, 38, 39, 42] as well as to the forthcoming section where the equations
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are reviewed. While propagation of electricity is typically assumed to be instantaneous as in the
PF equations, the propagation of gas in networks has an intrinsic spatial and temporal scale. A
variety of models exist nowadays, and we follow here an approach based on hyperbolic balance
laws as proposed for example in [5, 6, 11, 12, 19]. This description allows the prediction of gas
pressure and gas flux at each point in the pipe as well as nodes of the network. Both quantities
are relevant to assess possible stability issues as well as allow for coupling towards the electricity
network. The numerical solution of the governing gas equations as well as their coupling towards
electricity and towards other gas pipelines is also detailed in the forthcoming section. Finally, we
recall recent results on modelling of the prediction of the electricity demand that will be used
to simulate the uncertain power fluctuations. Here, we follow models introduced in [1, 7, 34,
40, 47, 53] and the monograph [8] that prescribe the electricity demand as Ornstein–Uhlenbeck
processes (OUP). Let us emphasise that our approach is not limited to the particular application
of gas transportation but could eventually be applied to problems of traffic flow and supply chain
dynamics on networks.

Finally, we point to other existing numerical simulations with possibly similar objective. For
example, in [36] a solver for a gas network based on (general) hyperbolic balance laws has been
introduced. This implementation serves as foundation for the method introduced in the forth-
coming section. Our tool has the advantage of easier extensibility, an open source license and a
modern design approach featuring, for example, extensive software testing. In addition, we also
include stochastic power demands in the PF network setting. In [4], uncertainty in PF is computed
relying on approaches based on neural networks. A difference to the presented approach is the
restriction to linear PF problems and the absence of coupling to gas networks. A further concept
plan4res, see [9] has been presented to also address general renewable energy sources as well as
energy distribution based on discrete optimisation approaches, which focuses on energy system
modelling in more generality. Furthermore, there exists a software suite by Fraunhofer SCAI
called MYNTS, see [18], that also includes simulation and optimisation of inter-connected grid
operations with a focus on the design of suitable networks. The paper is organised as follows: In
Section 2, we introduce the model equations for the coupled network setting and the uncertain
demand. The numerical discretisation is then given in Section 3. Section 4 is concerned with the
presentation of our software suite and the numerical investigation of relevant scenarios.

2 Mathematical modelling

In this section, we introduce the mathematical models to be discretised in the forthcoming sec-
tion. We denote by G = (N , A) a directed graph with a set of nodes N and a set of arcs A. All
dynamics are either on nodes and/or on arcs of the graph. The whole graph is sub-divided into a
power network, a gas network and a set of arcs connecting these two:

G = GP ∪ GG ∪ GGP

N =NP ∪NG ∪NGP

A=AP ∪AG ∪AGP.

The different parts behave quite differently. In the power network, the arcs just carry two param-
eters and their topological information, that is their starting and ending node and the nodes carry
most of the physical information, namely active and reactive power, while the situation in the gas
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FIGURE 1. A schematic example of the kind of network under consideration. The upper right part is a
power network with blue slack nodes, green power plants and red load nodes. In the lower left, there is a
gas network with pipelines between junctions. The doubly pointed arc is a gas power connection.

network is reversed. Here the arcs carry a balance law describing gas dynamics while the nodes
only carry coupling information. Yet in all parts of the network, only the nodes have (possibly
stochastic) boundary conditions.1 The gas power connection part of the network consists only of
arcs which relate power demand and gas consumption or gas generation and power surplus. An
illustration of such a network can be found in Figure 1.

Next, we define model equations for each node and arc (where applicable) based on physical
models.

2.1 PF equations modelling electric PF on GP

The evolution of reactive and active power at nodes is modelled by the PF equations [28]. This
model can be used to describe the behaviour of power networks operating at sinusoidal alternat-
ing current (AC) [22]. The quantities modelled are the active or real power Pk = Pk(t) and the
reactive power Qk = Qk(t) present at each node k ∈NP at time t. Those are functions of the volt-
age magnitude Vk and angle φk . Further, we model the admittance of each component, denoted
by Y , which is written into real and imaginary part Y = G + iB. The admittance is the inverse of
the impedance which in turn is a complex extension of Ohmic resistance in the power network.

The admittance of a transmission line, that is, an arc a ∈AP connecting nodes i, k ∈NP, is
denoted by Yik = Gik + iBik , which we set to zero, if no arc connects i and k. The admittance of a
node k ∈NP is denoted by Ykk = Gkk + iBkk .

With this, we can write down the PF equations, a set of 2|NP| equations at any point t in time
of the type

Pk(t) =
∑
i∈NP

Vk(t)Vi(t)(Gki cos(φk(t) − φi(t)) + Bki sin(φk(t) − φi(t))),

Qk(t) =
∑
i∈NP

Vk(t)Vi(t)(Gki sin(φk(t) − φi(t)) − Bki cos(φk(t) − φi(t))),
(2.1)

for the unknowns (Pk(t), Qk(t), Vk(t), φk(t))k ∈NP. In order to obtain a unique solution, addi-
tional 2|NP| equality constraints have to be specified. We distinguish three different equality
constraints according to the type of node k ∈NP:

1In the power network these are rightfully called node specifications and we only call them boundary
conditions to unify the wording between gas and power networks.
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• Slack nodes k specify values for the voltage magnitudes and angles Vk , φk .

• Load nodes k specify values for the active and reactive power Pk , Qk .

• Generators k specify values for the active power and voltage magnitude Pk , Vk .

A necessary condition for uniqueness of the PF equations is to have at least one slack node,
because otherwise for a solution (Pk(t), Qk(t), Vk(t), φk(t))k ∈NP with r ∈R, a second solution
is given by (Pk(t), Qk(t), Vk(t), φk(t) + r)k ∈NP. Often only a single slack node is used, although
also multiple slack nodes can be used [16].

Instead of the described AC PF equations, it is possible to use so-called direct current (DC)
PF equations, which are a linear approximation, see [27, 6.10] for an overview. This approach
simplifies the numerical treatment greatly at the cost of some accuracy. Other linearisations are
subject of active research, see for example [37].

2.2 Mathematical modelling of gas flow on GG

We model the following quantities of the gas flow, namely the pressure p = p(t, x) as well as the
flux q = q(t, x). The units of those quantities are (bar) and m3 s−1. Note that we use the volumetric
flow as opposed to mass flow, as is customary in real-world gas networks. The pressure is given
by a function of the gas density ρ = ρ(t, x). An overview as well as recent results on gas flow
can be found for example in [5, 6, 11, 12, 19, 44, 45]

2.2.1 Transport of gas along pipelines

The direction of the arcs determines the positive direction of the flow. We distinguish two types
of arcs, pipelines and controlled arcs, which are described in the next Section 2.2.2. In contrast
to the power arcs, pipelines a ∈AG in the gas network are modelled as an interval [0, La] with
further structure. The gas flow in pipelines is modelled with the isentropic Euler equations as for
example proposed in [5].

The conservative variables are the gas density ρ and the flux q. Consider an arc a ∈AG

parametrised by x ∈ (0, La). Then, the density ρ = ρa(t, x) and q = qa(t, x) fulfil in the weak sense
the following system of hyperbolic balance laws for each t ≥ 0.

(
ρ

q

)
t

+
⎛
⎝ ρ0

A q

A
ρ0

p(ρ) + ρ0
A

q2

ρ

⎞
⎠

x

=
(

0

S(ρ, q)

)
. (2.2)

Here S is the source term modelling wall friction in the pipes detailed below, A is the cross-
section of the pipe, ρ0 is the (constant) density of the gas under standard conditions, and p is
the pressure function, which we describe in detail below. First we note that the system (2.2) is
accompanied by initial conditions

ρ(0, x) = ρ0,a(x), q(0, x) = q0,a(x) (2.3)

that may also dependent on the selected arc a and describe the initial state of density and flux.
Suitable boundary conditions at x = 0 and x = La will be discussed below when the coupling at
nodes of the network is introduced.
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Table 1. Gas net constants

ρ0 (kg m−3) cvac (m s−1) α (bar−1)

0.785 364.87 −0.00224

The pressure p is a function of the density given by

p(ρ) = c2
vacρ

1 − αc2
vacρ

, (2.4)

where cvac is the vacuum limit (ρ → 0) of the speed of sound and α is a measure of compress-
ibility of the gas. The relevant constants of the gas network are gathered in Table 1. It is possible
to express the density in terms of the pressure as

ρ = p

c2
vacz(p)

, (2.5)

where z(p) = 1 + αp is the so-called compressibility factor.
The source term S is given as

S(ρ, q) = λ(q)

2d

|q|
ρ

(−q) , (2.6)

where now d is the pipe diameter and λ(q) is the flux-dependent Darcy friction factor, see [13].
The friction is governed by the so-called Reynolds number,

Re(q) = d

Aη
ρ0|q| (2.7)

(here η = 10−5kg m−1s−1 is the dynamic viscosity of the gas). For Re < 2000, the friction is
dominated by laminar flow, and according to [41], we may assume

λ(q) = 64

Re(q)
. (2.8)

For Re > 4000, the friction is dominated by turbulent flow, see again [41], and the Swamee-Jain
approximation [50] is used, that is,

λ(q) = 1

4

1

ld( k
3.7d + 5.74

Re0.9 )2
. (2.9)

For Re in the intermediate regime, the numbers are interpolated using a cubic polynomial
differentiable at Re ∈ {2000, 4000}.

2.2.2 Controlled gas arcs

In addition to pipes, the considered gas network also contains a compressor and a control valve.
Both are modelled similarly and come equipped with a control function u that influences the
pressure.
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Both valves and compressors do not influence the flow rate of the gas inside them, so at every
time point t there must hold

qout(t) = qin(t). (2.10)

Yet for the pressure, we set in compressors

pout(t) = pin(t) + u(t), (2.11)

and in valves

pout(t) = pin(t) − u(t), (2.12)

such that the control can change the pressure. For other possible compressor models, see for
example [36]. In addition, we demand u(t) ≥ 0 for both component types. Also for the purpose
of optimisation, using the compressor comes with a cost, while using the valve is free. Note
that for the main part of this work, both valves and compressors are in-active meaning a control
function of u(t) = 0. Only in the optimisation example, a non-zero control is allowed.

2.2.3 Nodes of the gas network NG

The previous set of differential equations has to be accompanied by boundary conditions if La <

∞. For nodes n ∈NG the coupling of gas pipelines is typically described in terms of coupling
conditions [32]. Those yield an implicit description of the boundary values in terms of physical
relations. Several different conditions exist, see [33, 44, 45]. Yet, for the purpose of real-world
gas pipelines, [24] seems to indicate that coupling via equality of pressure is sufficient for the
expectable accuracy of the whole modelling approach. Therefore, consider a node n ∈NG with
K adjacent arcs. Let E ⊂A denote the set of adjacent arcs and let

s : E → {±1},

s(e) =
{

1 e starts in n

−1 e ends in n
(2.13)

distinguish arcs starting and ending in n. Also, let pe(t), qe(t) e ∈ E denote the boundary values at
time t of arc e in node n, that is, pe = pe(t, x = 0) if s(e) = 1 and pe(t) = pe(La, t) if s(e) = −1 and
similarly for qe. Then, the coupling and boundary conditions at node n read

pe(t) = pf (t) for all e, f ∈ E

qn(t) =
∑
e∈E

s(e)qe(t),
(2.14)

where qn : R+
0 →R a possibly time-dependent external and given demand or supply function.

These are in total |E| equations at node n at each point in time.
For a single node with K adjacent arcs extending to infinity and under subsonic condition for

the initial data existence of weak entropic solutions in BV has been shown for example in [19].
In [33], existence of weak integrable solutions on a graph has been established. Similar results
are also available for other choices of coupling conditions, and we refer to for example [12].
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2.3 Modelling of Gas-to-Power or Power-to-Gas nodes NGP

Gas power plants are also modelled as arcs in the graph connecting a power node and a gas node.
They transform gas into power at a linear rate and also power into gas at a (different) linear rate
as was done in [24]. At the switching point, we smooth the resulting kink with a polynomial. This
has no physical counterpart and is done purely for numerical reasons. Note that due to technical
reasons, our polynomial maps gas flow to power instead of the other way around as was chosen
in [24]. For the power output of the gas power plant, there holds

P =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

EPtG · q for q < −κ

pol(q) for − κ < q < κ

EGtP · q for κ < q

, (2.15)

where EPtG and EGtP are the efficiencies of the power-to-gas process and the gas burning respec-
tively, and pol is the interpolating polynomial. For κ , we choose κ = 60m3s−1. The power is
taken as the real power of the attached power node, which is a slack node and therefore provides
via the solution of the PF problem a real power demand.

2.4 Stochastic power nodes NP

In order to incorporate uncertain power demands into our model, we add a new kind of load
node, the stochastic PQ-node. The type of uncertainty employed, the OUP, has a long history in
modelling uncertain demands of various types and has also been used for electricity demand, see
[7, 26]. In [26], a setting similar to ours was examined but applied to the Telegrapher’s equations
instead of the PF equations.

The stochastic PQ-node, just like its deterministic cousin, prescribes a real and reactive power
demand as boundary conditions but now these demands are stochastic time-dependent quantities
modelling the uncertainty of demand at this node. Of course, this uncertainty is not total, as one
may expect the demand to follow historic timelines of demand or some other estimate derived
from knowledge about the season, weather or even current events like a sports tournament. This
structure of uncertain fluctuation about a deterministic estimate suggests using a mean reverting
stochastic process for the power demand, (Pt)t∈[0,T], that is, a process that is drawn back to
some deterministic function μ(t) over time. If we further assume that fluctuations around μ are
independent of the current time and also of the current value of P, a natural choice for the process
is the OUP. It is characterised by the following stochastic differential equation,

dPt = θ (μ(t) − Pt) dt + σdWt, Pt0 = p0, (2.16)

where Wt is a one-dimensional Brownian motion, θ , σ > 0 are the so-called drift and diffusion
coefficients, and p0 is the demand at the starting time t0.

Whenever the current demand Pt differs from μ(t), the drift term enacts a force towards the
deterministic demand estimate μ(t). This behaviour is called mean reversion. The size of this
force is characterised by the drift coefficient θ . In absence of diffusion (for σ = 0), the OUP
degenerates to a deterministic ordinary differential equation, that is drawn to the mean exponen-
tially. For σ > 0 on the other hand, this mean reversion is counteracted by fluctuations, whose
size is determined by σ . For images of OUP realisations, see Figure 2.

https://doi.org/10.1017/S0956792522000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000079


512 E. Fokken et al.

FIGURE 2. Ornstein-Uhlenbeck realisations for μ = 1.0, θ = 3.0, σ = 0.45 and different cut-off values c.

Both the real power demand P as well as the reactive power demand Q are realised as an OUP
in our setting.

Note that it is even possible to solve the stochastic differential equation (2.16) explicitly via

Pt = p0e−θ(t−t0) + θ

∫ t

t0

e−θ(t−s)μ(s)ds + σ

∫ t

t0

e−θ(t−s)dWs.

From this explicit expression, one can see that Pt is normally distributed with mean

μt = p0e−θ(t−t0) + θ

∫ t

t0

e−θ(t−s)μ (s) ds

and variance

V = σ 2

t∫
t0

e−2θ(t−s)ds .

The mathematical properties as well as the possibility to account for forecasts make the OUP a
prime candidate for modelling uncertainty in power demand, see also [8].

3 Discretisation

Having defined our model, we now need to discretise it in order to search solutions numerically.
This search will be carried out by Newton’s method at each time step. The discretisation is
different for pipelines (with their balance law) and stochastic PQ-nodes on the one hand and
all other components on the other hand. This is because only pipelines and stochastic PQ-nodes
couple the state of the model at different times, because only they contain time derivatives.

Therefore, we choose a time discretisation with uniform stepsize 
t for a time horizon
[tstart, tend] such that J = tend−tstart


t is an integer and henceforth consider only the discretised time
points j
t, where 0 ≤ j ≤ J . For all equations except the isentropic Euler equations and the OUP,
this means we simply evaluate them at the time steps.

https://doi.org/10.1017/S0956792522000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000079


Efficient simulation of coupled gas and power networks 513

3.1 Power discretisation

In the power network, this means we evaluate equations (2.1) at each time step j
t. Note that
therefore we must also evaluate the boundary conditions at each time step for each node.

3.2 Gas pipeline discretisation

For the isentropic Euler equations, we need a suitable numerical scheme. For a pipeline of
length La, we introduce a space discretisation with stepsize 
xa, such that K := La


xa
is an inte-

ger. We replace the continuous values of pressure (or density, see equations (2.4), (2.5)) and
flow with values at each x = xk := k
xl, 0 ≤ k ≤ K. The isentropic Euler equations themselves
are discretised with an implicit Box scheme due to Bales et. al. [35]. For a general hyperbolic
balance law

ut + f (u)x = g(u) (3.1)

with space discretisation xk , 
xa as above, we have for the time step between t and t∗ = t + 
t

u∗
k + u∗

k−1

2
= uk + uk−1

2
− 
t


xa

(
f (u∗

k ) − f (u∗
k−1)

)+ 
t
(
g(u∗

k ) + g(u∗
k−1)

)
, (3.2)

where uk = u(xk , t) and u∗
k = u(xk , t∗). In our case, uk has two components, density and flux, and

hence, we get 2K equations on a pipeline for 2K + 2 variables. Therefore for each pipeline, we
need an additional 2 equations for the possibility of a unique solution, namely one boundary
condition for u0 and one for uK .

Note that no diagonalisation is needed before a time step, and equation (3.2) can be used
directly. But an inverse CFL condition


t >

x

2�
,

where � = min{|λ(u)| |λ is an eigenvalue off ′(u)}, must be fulfilled, which also shows that the
scheme breaks down for transonic flow, where an eigenvalue approaches 0. We refer to [36, Prop
4.2, following remark] for a proof in the scalar case and [23, Section 4.1] for a numerical study
of systems of conservation laws.

The inverse CFL condition is well-suited for the task at hand, as large time steps are desirable
for numerical feasibility when simulating over many hours.

These are of course supplied by the nodes, which yield a single equation for each arc connected
to them2 from its starting node and one from its ending node.

We also remark that discretising the controlled gas arc equations (2.10), (2.11) and (2.12) is
straightforward.

3.3 Node discretisation

As was the case in the power network, the node equations (2.14) (with exception of the stochastic
nodes) have no time dependency and can therefore be evaluated at each time step j
t. Once
again, therefore we must evaluate the boundary conditions at each time step.

2
Note that this situation breaks down whenever the flow in pipes is supersonic, see for example [30].

https://doi.org/10.1017/S0956792522000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000079


514 E. Fokken et al.

3.4 Gas power discretisation

Again no further challenges arise in the discretisation in the gas power conversion plant equations
(2.15).

3.5 Stochastic process discretisation

The OUP is discretised with the explicit Euler-Maruyama method, see [46]. Due to the explicit
nature, the time steps for this method must usually be chosen much finer than the time steps
for the implicit box scheme, as we detail below. To make this distinction explicit, we call the
stepsize for the method 
tstoch. To choose the boundary condition at time t∗ = t + 
t, we make
steps of size 
tstoch according to

P(t + 
tstoch) = P(t) + θ (P̂(t) − P(t))
tstoch + σS(
tstoch), (3.3)

where P̂ takes on the role of the deterministic mean μ of equation (2.16) and S(p) is a sample
from a normal distribution with mean 0 and variance 
tstoch. The same process is applied to get
the discretised values of Q(t). For stability in the mean (see again [46]), this discretisation has
the stepsize constraint

|1 − θ
tstoch| < 1, (3.4)

which for θ > 0 yields

0 < 
tstoch <
2

θ
. (3.5)

In addition, we also restrict the stochastic power demand according to

(1 − c)P̂(t) ≤ P(t) ≤ (1 + c)P̂(t) if P̂(t) > 0

(1 − c)P̂(t) ≥ P(t) ≥ (1 + c)P̂(t) if P̂(t) < 0
(3.6)

for some cut-off c with 0 ≤ c ≤ 1. If the condition is violated, P(t) is set to the boundary of
the allowed interval. This cut-off prevents too great outliers that are probably unrealistic and
in addition prevent our numerical methods from converging. It may be argued that a stochastic
process, whose samples must sometimes be cast away to yield usable solutions, is a bad fit for
its purpose. Unfortunately, we are not aware of a process that has been shown to be especially
accurate for power fluctuations. However, an alternative might be the Jacobi process, as recently
proposed in [20], which stays within a pre-defined interval. Samples of the OUP for a couple of
choices for the cut-off can be found in Figure 2 and a zoomed in version in Figure 3. In these
figures, the influence of the cut-off is easily seen. The process for Q(t) is the same.

4 Software tool and computational results

4.1 Software tool

For the computations, we use the network simulation tool grazer3 written in C++. It is an
open source software suite developed at the Chair of Scientific Computing at the University

3https://github.com/eike-fokken/grazer.
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FIGURE 3. Zoomed-in version of Figure 2.

of Mannheim. For the purpose of long-term usability, the following design goals have
been chosen:

• Easy installation

• Full C++17-standard compliance with tested support for compilers GCC-9+, Clang-9+
and Visual Studio 2019+ (Other compilers are probably easy to use because of the standard
compliance.)

• Few external dependencies

• High test coverage

• Clean warning profile

• Open Source License (AGPL 3.0).

The dependencies we have are Eigen, see [29], N. Lohmanns json library,4 googletest,5 pcg-
random, see [43] and CLI11. 6

4.1.1 Installation

In order to build grazer, you need three pieces of software: CMake,7 Git8 and a C++17 capable
C++ compiler, for example clang,9 gcc10 or msvc.11 Installation can be done by executing

4https://github.com/nlohmann/json.
5https://github.com/google/googletest.
6https://github.com/CLIUtils/CLI11.
7https://cmake.org/.
8https://git-scm.com/.
9https://clang.llvm.org/.
10https://gcc.gnu.org/.
11https://visualstudio.microsoft.com/vs/.
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Listing 1: Installation

Afterwards there is a grazer binary in . . ./grazer/release/src/Grazer called grazer or grazer.exe
(on Windows).

4.1.2 Usage

Up to now, grazer is a command line application usable from any shell convenient, that is con-
trolled by a number of input json files. In the medium term future, it is planned to also support a
python interface.

Grazer is used by pointing it to a directory with input json files.

Listing 2: Calling grazer

for example will run the problem defined in the directory data/one pipeline. The problem direc-
tory contains a subdirectory problem, which holds the json files problem data.json, topology.json,
boundary.json, initial.json and control.json. Note that the layout of topology.json was heavily
inspired by the layout of GasLib files, see [49].

After solving the problem, an output file will be generated in data/one pipeline/output. This
again a json file, so it can be read with almost all software. For ease of use, some helper programs,
compiled alongside grazer, can be found in release/helper functions/ . For example calling

Listing 3: Calling grazer

will extract the json data into a csv file for usage with plotting tools. Helpers that import these
into native formats of python are planned.

In addition, json schemas can be generated and inserted into the jsons (Up to now with the
exception of problem data.json) with

Listing 4: Calling grazer

This has the advantage that json-aware editors help the users to only write jsons that are valid
inputs for grazer which cuts down on bug searches.

As a final note on the usage, be aware that although grazer runs only sequentially, the output
filename is chosen ’atomically’, meaning that two instances of grazer running in parallel will
not interfere with each other’s output. This is especially useful when executing many runs of
stochastic problems in a Monte-Carlo method as was done in the present work.
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Note that parts of the API are still subject to change. For an up-to-date explanation, check out
the userguide in docs/userguide.tex in the repository.

4.1.3 A rough overview of the inner workings

On execution, grazer will read those files, configure the Newton solver according to settings in
problem data.json, construct a representation of the network from topology.json, set initial and
boundary values from the respective files and then start solving the problem time step per time
step. In each time step, the model equations and their derivatives described above are evaluated
to find a solution of them with Newton’s method. If successful, the solution is saved and the next
time step is started. If no solution can be found, the user is notified and all data computed in prior
time steps are written to the output files. If all time steps can be solved, all data are written out.

If a stochastic component is present in the network, a pseudo random number generator must
be initialised with a seed. These are generated automatically or taken from the boundary.json
file, if a seed is present in there.

4.1.4 Optimisation

Grazer is also capable of computing optimal controls. To this end, certain components in a net-
work can supply cost and constraint functions as well as their first derivatives. This information
together with derivatives of the model equations with respect to states and controls is transformed
via the adjoint method (see e.g. [36] for an explanation) into derivatives with respect to the con-
trols only. The latter are then handed over by grazer to IPOPT (see [52]), that actually computes
the optimal controls. In our trials, we have used the linear solver MUMPS (see [2, 3]), yet any
other solver that can be interfaced with IPOPT could be used. Note that no second derivatives
are provided by grazer, which means that for the optimisation only quasi-Newton methods are
available. A short example of this optimisation is provided at the end of this work. It is proba-
bly noteworthy that grazer is capable of handling constraint and control discretisations, that are
coarser than the state discretisations detailed in Section 3. This is done by evaluating constraints
only every nth time step, where n can be chosen by the user. Of course, this can lead to constraint
violations in between and therefore any such solution should be checked for such an occurrence.
The coarser control discretisation is instead handled by interpolating controls linearly between
two control discretisation points.

4.2 Scenario description

Here we describe the considered scenario of a combined power and gas network. All data can be
found in the git repo https://github.com/eike-fokken/efficient_network-data.git.

4.3 Specification of the power network

As starting point for the power network, we use the ieee-300-bus system, as given in the
Matpowercase (see [56]) case300. It is a power network of 69 generator nodes, 231 load nodes
and 411 transmission lines. We alter the ieee-300 network in the following way.

• The power demand (real and reactive) is lowered by 10%.

• The former slack node N7049 is changed into a PV-node.
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FIGURE 4. Power network with green gas power plants, blue non-gas power plants and red loads.

• The old PV-nodes given in table Table 3 are turned into slack busses (Vφ-nodes).

• All PQ-nodes are turned into stochastic PQ-nodes described in Section 2.4 and Section 3.5.

At the new Vφ-nodes, power that is generated from gas burned in gas power plants is injected
into the power network according to equation (2.15). A picture of our power network can be
found in Figure 4.
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Table 2. Inflow into the gas network

Source node id Inflow (33 s−1)

1 105.32815527751042
20 280.6651734039139
80 170.46067131857555

FIGURE 5. The gas network with green sources, red sinks and black junctions.

4.4 Specification of the gas network

As starting point for the gas network we use the GasLib-134 system (see [49]). A picture an be
found in Figure 5.

It is a gas network of 86 pipelines, 3 inflow nodes (sources) and 45 outflow nodes (sinks). The
inflow of gas remains constant over time and is given in Table Table 2.

Here, 17 of the sinks, all gathered in table Table 3, draw gas to be converted into power. The
amount is set by the power network and is computed from the PF equations. All other sinks do
not consume gas.
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Table 3. Start and end nodes of gas power conversion plants
and the deterministic demands of real power

Gasnode Powernode P[100MW]

ld2 N7017 2.2890
ld6 N7057 1.3952
ld10 N7071 0.7217
ld12 N7024 2.7771
ld13 N230 2.5978
ld23 N119 19.2999
ld24 N221 -0.0892
ld27 N187 11.4020
ld29 N7061 2.7268
ld31 N213 2.01763
ld33 N9051 -0.3581
ld35 N186 11.4020
ld36 N7001 2.1409
ld37 N9002 -0.0420
ld38 N7166 5.5300
ld39 N7003 12.1000
ld42 N7039 4.6702

4.5 Specification of the Gas Power connections

The two networks are connected through gas power conversion plants, that turn gas into power,
when power is needed and power into gas, when surplus power is available. The gas power
conversion plants are arcs between the nodes listed in Table 3. For simplicity, they all share the
same efficiencies both for power generation and gas generation, namely they have

EPtG = 43.56729 MW s m−3

EGtP = 12.56 MW s m−3.
(4.1)

For the smoothing constant, we choose κ = 60 m3s−1. As κ has no role but to mollify the kink in
the switching from one conversion to the other, the choice is purely driven by numerical factors.
The choice of κ must depend on the time step size, where smaller time steps allow for smaller κ

and therefore more sudden switching behaviour.
All further data concerning these plants is gathered in Table 3. There a real power demand

is also given, which corresponds to the default demand in our setting, when no uncertainty is
present.

4.6 Specification of the stochastic power demand nodes

As mentioned, all PQ-nodes of the ieee-300-bus system are replaced by stochastic PQ-nodes. As
mean function, we choose the power demands given by the ieee-300-bus problem, but lowered
by 10%. In addition, we choose for the drift coefficient θ = 3, for the stability constraint we
choose


tstoch = 0.1

θ
, (4.2)
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FIGURE 6. Pressure evolution in p_br71 for deterministic and some realisations of stochastic demand.

which results in rather high numbers of stochastic time steps but is unfortunately needed for con-
vergence. For the cut-off, we use c = 0.4. The diffusion coefficient σ will be varied to compare
different values.

4.7 Computational results

In each run, we simulate the combined network over the course of 24h (86,400 s) with a time
stepsize of 0.5h (1800 s).

4.7.1 Steady state vs. stochastic example

At first, we simulate the network in a deterministic setting, which can be achieved by setting σ in
(3.3) to zero. To keep the scenario simple, we choose steady state initial conditions, which were
generated by using arbitrary initial conditions and integrating them for a long time. The resulting
end state is then used as initial conditions for our setting.

In this deterministic setting, we find the (constant) power demands in the gas plants given in
Table 3. To illustrate our results, we will usually picture the situation of pipe p_br71, which is
located to the lower right in Figure 5 connecting nodes 71 and 72. The steady state solution in
pipe p_br71 remains constant over time as is fitting for a steady state solution. The same is true
for the flow and also for all other pipes in the network.

Along with the deterministic setting, we simulate a scenario with θ = 3.0 and σ = 0.45 for all
PQ-nodes. The number of stochastic steps is set to at least 1000 which, due to stability constraints
mentioned in (3.5), was then automatically raised to 18,000.

A comparison of the steady state and stochastic pressure can be seen in Figure 6 while a
comparison of the fluxes is given in Figure 7.

In the power network, we find for the PQ-node N1 power demands over time like those in
Figures 8 and 9. Of course the situation is similar for all PQ-nodes.

4.7.2 Stochastic demand with variable noise

Now we examine repercussions of the uncertainty on the gas network. Therefore, we make
100 runs for each σ ∈ {0.05, 0.1, 0.3, 0.45} and compare the quantiles at 50%, 75% and 90%.
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FIGURE 7. Flow evolution in p_br71 for deterministic and some realisations of stochastic demand.

FIGURE 8. Real power demand in N1 for deterministic and stochastic demand with σ = 0.45.

FIGURE 9. Reactive power demand in N1 for deterministic and stochastic demand with σ = 0.45.
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FIGURE 10. Comparison of pressure quantile boundaries at different σ at t = 12 h in pipeline p_br71.

FIGURE 11. Comparison of flow quantile boundaries at different σ at t = 12 h in pipeline p_br71.

Taking an arbitrary point in time, t = 12 h, the quantiles for the pressure can be seen in
Figure 10.

For the flow the quantile comparison can be found in Figure 11.
For both quantities, we see the expected expansion of quantile boundaries with higher

diffusion σ .

4.7.3 Comparison of deterministic and stochastic pressure prediction

Now we give an overview of the impact of the volatility in power demand on the network.
Therefore, we revisit the scenario with the highest volatility, that is with σ = 0.45 and consider
again a time frame of 24 h. In Figure 12 one can see the maximal deviation of real power demand
from the steady state solution. At first glance, this looks similar to Figure 4, just with colours
cycled around. This is due to the fact, that the load nodes have defined volatility as they follow
their own Ornstein-Uhlenbeck process approximation defined in equation (3.3). The PV-nodes
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FIGURE 12. Heatmap of the maximal real power deviation over the course of 24 h, units are in 100 MW.

on the other hand have zero volatility in real power. Yet the Vφ-nodes must account for all
remaining power demand and as such have the highest volatility. A similar picture can be found
in Figure 13, where the deviation of the reactive power is depicted. Here the PV-nodes do not
have zero volatility, yet it seems that they also do not carry much volatility in Q.

At last, we consider the possible impact of the volatility in the power network on the gas
network. Therefore, we show the maximal pressure deviation from the steady state solution over
the course of 24h for σ = 0.45 in Figure 14. It is easily seen that the lower part of the network
experiences much higher pressure volatility than the upper part. This is expected, as on the one
hand the upper part has higher pressure as the three gas sources are located there and on the other
hand many more gas power conversion plants are located in the lower part, so that the volatility
can add up.
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FIGURE 13. Heatmap of the maximal reactive power deviation over the course of 24 h, units are in 100 MW.

4.7.4 Optimisation example

Finally, we show results of an optimisation task carried out with grazer. The Gaslib-134 network
actually contains two controllable components, a compressor between the nodes 29/30 and a
control valve between the nodes 65/66. We take the steady state solution from above but add
two continuous constraints in order to make the controllable components actually do some work.
At the sink ld_22, we impose a lower pressure bound of 70bar at t = 0, 90bar at t = 24 h and
interpolate linearly in between. In addition, we impose an upper pressure bound at sink ld_40 of
90bar at t = 0, 70 bar at t = 24 h and again interpolate linearly in between. As cost function we
choose ∫ 24

0
hucompressor(t)

2dt,
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FIGURE 14. Heatmap of the maximal pressure deviation over the course of 24 h, units are in bar.

so that using the valve is free but compressor costs should be minimised. The control is dis-
cretised with the same discretisation already used by the states, yielding 49 time points. Also,
the constraints are evaluated at every state time step. While grazer is capable of using coarser
resolutions of both constraints and controls, the problem at hand is small enough to compute a
solution in approximately a minute on a workstation. Using only 11 controls cut this time in half.
In addition, evaluating the constraints only every fifth step reduces the time again by half. The
control of the valve is constrained to not exceed 40 bar to keep the optimisation routine from
trying controls that are too high to yield a solution of the simulation. The compressor control is
capped at 120 bar, although this bound is never attained.

With this data grazer computes the optimal controls in Figures 15 and 16. The compressor
control in Figure 15 nicely ramps up as the lower pressure bound in ld_22 rises. On the other
hand, the valve control in Figure 16 stays at zero until this is not sufficient anymore to satisfy
the decreasing upper pressure bound in ld_40 at which point the control rises up to the maximal
value, staying there until the end. As the valve control incurs no cost, this is one of many possible
configurations.

A comparison of pressure evolution at the two sinks ld_22 and ld_40 is given in Figures 17
and 18. It can be seen that the compressor increases the pressure just enough to satisfy the lower
pressure bound as its usage is penalised, while the (free to use) valve at first matches the upper
pressure bound exactly but later on over-compensates it rather strongly.
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FIGURE 15. Computed optimal control of the compressor at nodes 29/30.

FIGURE 16. Computed optimal control of the valve at nodes 65/66.

FIGURE 17. Comparison of controlled and uncontrolled pressure at ld_22.
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FIGURE 18. Comparison of controlled and uncontrolled pressure at ld_40.

5 Summary and future work

We introduced the new open source software tool grazer that can be used to efficiently simulate
numerical problems that are defined on networks. We used grazer to simulate a coupled gas and
power network with uncertain power demand presented repercussions of the uncertain power
demand within the gas network.

Future work includes the extension of grazer to more complex optimisation problems and
other types of uncertainty.
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