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1 Introduction

1.1 Research topic and contributions

The inventory management problem for products with a seasonal and uncertain demand

has long been a subject of interest in the operations research literature, the newsvendor

model (Arrow et al., 1955) being not only the central model of this specific stream of

operations research literature, but also a core model of operations research in general.

This interest is due to the high practical relevance of the problem, since many products

in a common make-to-stock setting have a demand that is both seasonal and subject to

some degree of uncertainty. In this thesis, we study inventory management in a seasonal

demand setting. Inspired by the experience acquired conducting a real-world case study

in the agrochemical industry, our focus is on addressing the dynamics of the selling

season.

Using the terminology of Mitchell (1927), demand seasonality can be caused by either

climate or convention. Naturally, climatic seasons are a driver of seasonality for the

demand for many products: for example, the demand for skis and ski apparel is heavily

concentrated in the late autumn and winter, whereas the demand for grilling equipment

increases in spring and summer. In comparison, the demand for these products in the

remainder of the year is negligible. Conventions, which can have many origins, namely

religious holidays, fashions and business practices, can also be the source of seasonal

variations in demand: for example, the demand for Christmas trees and decorations

peaks in December, whereas the demand for costumes is highest before festivities such

as Carnival and Halloween. Even with limited or no uncertainty, demand seasonality is an

important inventory driver for many companies. Indeed, the need for seasonal inventory

could in principle be eliminated by building a production capacity large enough to meet

the peak season’s demand just in time. However, such a large capacity would require

a substantial investment and be inefficient in the low season when it is not needed.

Therefore, companies build up inventory during the low season periods to meet the peak

season’s demand and maximize their profits.

Similarly, demand uncertainty, a ubiquitous characteristic of demand, is an important

inventory driver in an make-to-stock environment, even in the absence of seasonality.

To maximize expected profits or to reach service-level targets, companies create buffers

against demand uncertainty with safety stock. The optimal safety stock quantity is the

one which strikes the optimal balance between expected underage and overage costs,

i.e. the costs of producing less and more than the demand, respectively, or the quantity

which meets the required service level at minimum cost.

When a product’s demand is both seasonal and uncertain, the inventory problem faced

by the company becomes significantly more intricate, especially when the demand’s
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seasonality is driven by climatic seasons. In these cases, it is important to explicitly

consider and manage two types of demand uncertainty: quantity and timing (Schlapp

and Fleischmann, 2020). Not only the total volume of demand during the selling season

is uncertain, but also the start and duration of the season. In addition, customers’

demand patterns during the season can also significantly fluctuate between seasons.

These two uncertainty types imply that the firm needs to make two related inventory

decisions – a quantity and timing decision, respectively. Similar to the quantity decision,

the timing decision involves finding the optimal balance between two types of expected

costs – those of making the product available for sale before and after the start of the

selling season. Making the product available too early causes the firm to incur costs

of holding inventory until the product is demanded. In contrast, making the product

available too late, to avoid these costs, causes the firm to lose out on demand and

profits in the early part of the season. Moreover, the quantity and timing decisions

are clearly interconnected, and cannot be made independently of each another. Making

the product available early allows to potentially capture the entire season’s demand,

justifying holding a large inventory, whereas with a later inventory timing the expected

demand in the remainder of the season is lower, incentivizing holding a smaller inventory.

As a result, when the demand for a product is seasonal and subject to quantity and timing

uncertainty, the firm must build up inventory to meet the peak season’s demand without

knowing its exact volume and, especially when the seasonality is caused by climatic

seasons, timing. Because of limited production capacities, an investment in seasonal and

safety inventory must be made in advance, despite the firm’s information on the quantity

and timing of demand possibly improving as the peak season approaches, under certain

circumstances, thereby diminishing the uncertainty.

Although there is substantial literature on inventory management for products with sea-

sonal and uncertain demand, the focus has been on the quantity uncertainty of demand

and the related inventory quantity decision, while the timing uncertainty of demand and

the inventory timing decision have not received much attention. The newsvendor model,

the starting point of this stream of operations research literature, assumes that the sea-

son is instantaneous (has a length of zero) and that its start is known with certainty. A

number of extensions to this central model do consider either the timing uncertainty of

demand (e.g. Hadley, 1962, Nahmias, 1977) or the inventory timing decision (e.g. Choi

et al., 2004 and Ravindran, 1972), however, they do not consider both elements simul-

taneously. To the best of our knowledge, Schlapp and Fleischmann (2020) are the only

authors to consider both uncertainties and both decisions simultaneously. These authors

are the first to analytically characterize a firm’s optimal inventory timing and quantity

decisions, and the relationship between them, when the seasonal demand for the firm’s

product is subject to both quantity and timing uncertainty. Moreover, in the literature,

a method to efficiently manage this specific inventory problem in practical settings is

also lacking, as are case studies. Real-world settings are more complex than the ones
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considered in the – mostly – analytical studies found in the literature, because of factors

such as multiple products sharing the same production resources, and more complex pro-

duction processes, both of which give rise to additional inventory trade-offs. To capture

these complexities, a multi-period discrete time view appears most appropriate.

In this thesis, we study the inventory problem of a firm selling products with seasonal

and uncertain demand, with the properties of the season itself being stochastic. We

contribute to the literature in several ways. First, we build on the findings of Schlapp

and Fleischmann (2020) to show how the problem’s parameters influence the firm’s in-

ventory strategy – the combination of quantity and timing – and how considering incor-

rectly or neglecting altogether the timing uncertainty affects the firm’s profits. Second,

to capture the aforementioned complexities found in practice, we go beyond a stylized

newsvendor-like modeling approach. Specifically, we develop a reformulation of the sce-

nario approximation of the stochastic capacitated lot-sizing model (SCLSP), which is a

planning model widely used in practice. The stochastic model adopts a discrete multi-

period view, and allows to make production and inventory decisions for multiple products

sharing the same production resources’ capacity and to manage three common and im-

portant inventory drivers – demand seasonality, demand uncertainty and economies of

scale. Our reformulation is able to significantly simplify the demand distribution estima-

tion and scenario-generation procedures in the case of demand dependencies over time

and across products, which naturally characterize the seasonal inventory problem setting

considered in this dissertation. Indeed, when demand is uncertain, seasonality implies

that the demand in different time intervals is linked by the shape of the season (the de-

mand pattern), thus leading to demand autocorrelation. Moreover, cross-correlation also

naturally occurs in this setting, because some products may be demanded in the same

(climatic) season or in distinct consecutive seasons. Third, we adapt this newly proposed

methodology and apply it in analyzing a real-world inventory management problem faced

by an agrochemical producer. Agrochemicals, or crop-protection products, are perfect

examples of products with a highly seasonal and uncertain demand, both in terms of

quantity and timing. Indeed, these products’ demand follows the highly seasonal agri-

cultural and pests’ life cycles, whose exact timing, which depends on weather conditions,

is difficult to predict. The uncertainty of the demand for these products is exacerbated

by its dependence on crops’ prices, as well as the availability and price of substitute

agrochemicals in the market. Moreover, the complexity, costs and long lead times of

the production processes of agrochemicals make it necessary for inventory decisions to

be made well ahead of the start of the selling season. Therefore, correctly managing

the inventory quantity and timing decisions is crucial for the success of agrochemical

producers.

3



1.2 Structure of the thesis

The remainder of this thesis is structured as follows:

In Chapter 2, we provide an in-depth description of the inventory management prob-

lem that agrochemical producers confront. This chapter serves two purposes. First, it

provides a practical, concrete example of the inventory problem analyzed throughout

this thesis and thereby serves as a motivation. Second, it introduces the setting of the

real-world case study presented in Chapter 5.

In Chapter 3, we build on the results of Schlapp and Fleischmann (2020), complementing

their analysis in two ways. First, we show how, and to what extent, the problem’s pa-

rameters affect the optimal inventory quantity and timing decisions, and the company’s

profits. Second, we quantify the benefits of considering both the timing and quantity

uncertainties of demand when setting the inventory strategy. This is in comparison to

using a common näıve inventory policy which neglects timing uncertainty and the role

of inventory timing in managing the economic trade-offs arising from the combination of

both aforementioned types of demand uncertainties. To achieve this, we vary the values

of a set of parameters of the problem within a specific practically relevant range and

conduct the resulting full factorial numerical study. We solve each of the total 5, 283

instances of the problem using both a näıve approach based on the classical newsvendor

model and a (near) optimal approach, which consists of a grid-search procedure to solve a

scenario approximation of the stochastic inventory problem. We use analysis of variance

(ANOVA) techniques to analyze the results. First, we show that the effect of varying

the problem’s parameters related to the stochastic properties of the product’s selling

season, within the specified ranges, is larger on the optimal inventory timing decision

than on the quantity component of the inventory strategy of the firm. Furthermore,

the opposite is true for the cost-related parameters of the problem. We then show that

the näıve inventory policy, which neglects the timing uncertainty of demand, leads to

substantially lower expected profits than the optimal policy. This is especially true when

the timing-related properties of the season are subject to a higher degree of uncertainty,

the inventory costs are higher and the season lasts longer on average.

In Chapter 4, we continue the study of the inventory problem central to this thesis by

focusing on its practical application. We make four important modifications to the more

stylized problem setting of Chapter 3. First, we consider the case of a company with

limited production capacity that produces multiple products, each with a potentially dif-

ferent stochastic selling season. Second, we assume a more complex production process,

in which setups are necessary before the production of a product can start. Third, we

consider more complex demand patterns, modeling, to this end, the problem in discrete

time, a common approach employed in practice, as opposed to continuous time. Fourth,

we allow backlogs and consider the problem of determining the production and inven-
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tory strategy that minimizes expected costs while meeting a desired service-level target,

instead of maximizing expected profits. To solve this problem, we develop a reformula-

tion of the scenario approximation of the SCLSP, using a method that we named the

cumulative demand scenario (CDS) approach, which is based on building scenarios for

the cumulative demand of the products, as opposed to the standard approach used in the

literature of building scenarios that are complete paths in so-called scenario fans or trees.

We show that this approach can significantly simplify the demand distribution estima-

tion and sampling procedures in the case of demand dependencies over time and across

products. As previously explained, this is especially useful in settings where demand is

seasonal and the properties of the season are stochastic, because demand dependencies

are naturally present and complex. Moreover, we conduct a numerical study under the

more general assumption of dynamic stochastic demand which shows that, compared

to previously proposed scenario-approximation methods, the newly proposed approach

is more computationally efficient and more robust to changes in the parameters of the

problem, such as the coefficient of variation of demand.

In Chapter 5, we study the real-world mid-term inventory problem for crop protection

products faced by an agrochemical company. As it is common in the agrochemical in-

dustry, the demand for these products is highly seasonal and uncertain, both in terms of

quantity and timing. We model the inventory problem as a stochastic general lot-sizing

and scheduling problem (SGLSP), because this enables us to capture the main charac-

teristics of the company’s complex production processes, and, based on the nature of

the demand for the products, we use the newly developed CDS approach, presented in

Chapter 4, to approximate and solve it. Using this model and solution approach, we

provide the agrochemical company with valuable insights into their inventory planning

problem. First, we show that demand uncertainty is the company’s dominant inventory

driver. This emphasizes the importance of investing resources into improving the man-

agement of demand uncertainty, for example by improving demand forecast accuracy.

Second, through a simulation using actual data from three past seasons, we show that our

stochastic model and solution approach outperforms the planning method currently used

by the company and clearly identify the source of the latter’s shortcomings. Third, we

provide the company with multiple tools to support and possibly improve their planning

process in the future.

Finally, in Chapter 6, we conclude by providing a summary of the work done, the results

achieved, and the opportunities for future research.

5



2 Inventory management at agrochemical produc-

ers: a motivating example

To illustrate the relevance of the problem of managing the inventory of products with a

stochastic seasonal demand, in this chapter we present and discuss in detail the inven-

tory management challenges faced by agrochemical producers. These companies face a

highly seasonal and uncertain demand for most of their products and, therefore, making

accurate inventory quantity and timing decisions is crucial to their economic perfor-

mance. The discussion in this chapter also serves as an introduction to Chapter 5, where

we present the results of a mid-term inventory problem case study conducted at an

agrochemical company.

The remainder of this chapter is organized as follows. In Section 2.1 we present a general

introduction to agrochemicals and the agrochemical industry. In Section 2.2 we describe

the supply chain (SC) of agrochemical producers and discuss the inventory planning

problem they face. To conclude, in Section 2.3 we present a literature review on SC

planning in the agrochemical industry.

2.1 Agrochemicals and the agrochemical industry

Agrochemicals, also known as crop protection products (CPPs), or pesticides, are chem-

ical products used in the agricultural sector to protect crops from harmful organisms

(pests) or diseases (European Commission, 2020), and mainly include herbicides, fungi-

cides and insecticides. The main benefit to applying CPPs is to preserve the crops on

which they are applied and thereby improve productivity. CPPs are manufactured and

sold in the form of formulations. The formulation process combines the active ingredi-

ents (AI) of the CPP, i.e. the chemicals which actively control the pests, with inactive

ingredients, which make the product safer, more effective and easier to use. The primary

end-users of CPPs are typically micro and small agricultural enterprises, which directly

apply the products to their crops. The right product to apply, as well as the timing and

quantity of its application depend on which stage of their life-cycles the crops and/or

the pests are in, the severity and spread of the infestation, and the weather and soil

conditions before, during and after application. These are the factors that influence the

efficacy of CPPs (Bouma, 2003).

When used inappropriately, agrochemicals can negatively impact the environment, as

well as the health of the users of the products and of the consumers of the food derived

from the crops on which they are applied. Therefore, the agrochemical industry is highly

regulated. Accordingly, products are required to undergo a complex and strict approval

procedure before they are allowed to be distributed in any country. This procedure, which

differs by region, is usually lengthy and must be regularly repeated. For example, in the
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(a) Market share by company

Source: Mooney (2018)

(b) Market share by region

Source: AgbioInvestor as cited in Phillips (2020)

Figure 1: The agrochemical industry in 2018

European Union, the approval process of a new active ingredient lasts on average three

years and seven months, and if successful, the active ingredient is approved for use for a

maximum of 15 years (European Commission, 2020). New CPPs, i.e. formulations, must

also be authorized by each individual member state in which they are to be distributed,

with the authorization requiring periodic renewal as well. Moreover, the requirements

for approval and authorization are constantly changing and have globally become more

stringent in recent decades. Currently, approvals might be reconsidered before their

expiration and further restrictions can be placed on the use of the products after they

have been approved (see European Commission, 2016).

The progressively complex regulatory environment has increased the average time needed

for a new product to enter the market after being discovered, which in 2014 took on av-

erage 11 years (Sparks and Lorsbach, 2017). This is an increase of about 36% over

the course of the previous two decades. Coupled with a low probability of success in

the discovery and development process of agrochemical compounds, which is currently

estimated as one in 160 thousand, this has caused the monetary investment necessary

to discover and develop a new agrochemical to rise significantly. Recent estimates sug-

gest that it now costs on average around $286 million to discover and develop a new

agrochemical (Sparks and Lorsbach, 2017). Considering the necessity to develop new

products due to the growing resistance of pests to agrochemicals, these increasingly high

research and development (R&D) costs are one of the factors which contributed to a

consolidation of the agrochemical industry in recent decades, with companies investing

7% to 10% of their sales in R&D yearly (Nishimoto, 2019; Sparks and Lorsbach, 2017).

At present, the five leading agrochemical producers in the global market are Syngenta,

Bayer, BASF, Corteva and FMC and in 2018 their total market share was nearly 75%.

These producers are big multinational companies characterized by a high degree of ver-

tical integration (Fritz and Hausen, 2009), and, given that they operate and sell globally,

they have large and complex SC networks. In Figures 1a and 1b we report the share of

the CPP market by company and region, respectively, as of 2018.
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In addition, regulations affect agrochemical companies by imposing strict rules on the

production, transportation and storage of agrochemicals, complicating SC planning ac-

tivities and operations. For example, the country of origin of the active ingredients of

a CPP might decide where the product can be sold and the amount of sales taxes ap-

plied to it (Bassett and Gardner, 2013). Moreover, some countries might have special

formulation and packaging requirements for CPPs (Fritz and Hausen, 2009).

2.2 Agrochemical companies’ supply chains and planning chal-

lenges

In Figure 2 we present a simplified scheme of the typical SC of CPPs. The first part of

the network, up to warehousing, is a typical agrochemical company’s SC, whereas the

second part, shown for completeness, is the remaining part of the SC until the product

reaches its end-users. The general SC structure shown and, therefore, many of the

planning problems presented later in this section are shared by all the major players in

the agrochemical industry. Indeed, as previously stated, the market is dominated by

large multinational companies from the process industry which share many similarities

and are active in the same markets.

Figure 2: Typical supply chain of crop protection products. Adapted from Fritz and
Hausen (2009)

The first step in the chain is raws synthesis and refers to producing raw materials that

are necessary to produce AIs. The suppliers of raw materials are generally companies

belonging to the process industry. The raw materials are then synthesized into AIs in

the next stage of the SC process. AI production is typically performed in a single and

sometimes dedicated plant. The production processes in these plants are carried out

either continuously or in campaigns (Fritz and Hausen, 2009), i.e. long periods of time

in which multiple batches are produced successively to cover the demand for a long time

horizon (even an entire season), which are then followed by a downtime period until the

next campaign starts. Moreover, AI synthesis can take between a few months and up to

two years (Shah, 2004). Therefore, this step of the production process of agrochemicals

has an important impact on the SC, as it causes a high replenishment time for the
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next stages and creates substantial inventory. It is also clear that AI synthesis is a

“push” activity, i.e. it is based on demand forecasts rather than actual customers’

orders, because AI production decisions (both timing and quantity) must be taken long

before the selling season. The AI production planning problem, especially in the case

of campaign production, therefore, resembles the classic newsvendor problem. Once AIs

are produced, they are transported to formulation plants, where the final agrochemical

products are produced. Formulation plants usually produce a wide range of products,

which in some cases could belong to different product families, i.e. herbicides, fungicides

or insecticides. The formulation process can be complex and is usually performed in

batches, with potentially long changeover operations in order to avoid contamination

issues between different products produced successively on the same resource, depending

on the production sequence (Shah, 2004). Although more flexible than AI production,

formulation is still largely a push activity, due to demand seasonality, time-consuming

changeover operations and limited capacity. This means that the production schedule

and quantities must be decided in advance of the selling season when the demand for

the product is not fully known. Flexibility in this production stage is also limited to

avoid planning nervousness. Packaging and labeling, which conclude the production

process, can be performed either at formulation sites or dedicated sites (Sousa et al., 2008;

Elimam, 1995). In general, formulation, packaging and labeling are organized in either

a centralized or decentralized structure (Fritz and Hausen, 2009). Finally, packaged

formulations are sent to regional or local warehouses, where they are stored before being

sold. Agrochemical companies’ direct customers are not the end users of CPPs, but

typically medium-sized distributors (Fritz and Hausen, 2009). These distributors then

manage the distribution and sale of the products to the ultimate users, i.e. agricultural

enterprises.

We note that pharmaceutical companies have similar SCs to that described in Figure 2,

due to the similarities between the production processes of pharmaceuticals and agro-

chemicals. In addition, considering the multiple similarities between the industries, for

example the strong impact of regulations and the significant R&D expenditures, phar-

maceutical and agrochemical companies face many similar planning problems (see, e.g.,

Shah, 2004).

One of the major challenges faced by agrochemical companies is production and in-

ventory planning. This is due to the strong demand seasonality, the high degree of

demand uncertainty and the complex nature of SC processes, as previously illustrated,

that require most activities to be performed based on demand forecasts. The demand

for agrochemicals is discontinuous and seasonal (Fritz and Hausen, 2009), as it depends

on the growing season of the crops on which they are applied. Due to the limited pro-

duction capacity and the costs of matching supply with demand, agrochemicals must be

produced in the off-season, when there is almost no demand for them, in order to build
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up the inventory needed to meet the demand during the main selling season. To com-

plicate matters further, different agrochemicals have different selling seasons, in terms

of timing, and the selling season of a given agrochemical differs from region to region.

Overall, seasonality leads to substantial inventory quantities and costs in the SC. Apart

from being strongly seasonal, demand is also difficult to predict, both in terms of timing

and quantity. Indeed, the right timing and quantity of CPPs to apply to a certain crop

are exceedingly difficult to predict, because the damage caused by pests depends on the

complex interaction of two or more living organisms (Rosenzweig et al., 2001). Many

CPPs are designed to be applied at a certain stage of the growth cycle of the crop and/or

of the life cycle of the pests, and the exact timing of these stages can vary across seasons

because of weather conditions. In general, the appearance, spread and severity of pest

infestations depend on factors such as temperature, precipitation, humidity, radiation

and many other difficult-to-predict weather conditions (Rosenzweig et al., 2001).

For some products, special weather conditions might shift the yearly peak demand period

by as much as one or two months (Bloemen and Maes, 1992). Weather conditions also

affect the productivity of crops, as well as the performance of CPPs (Bouma, 2003). The

uncertainty of demand for agrochemicals is exacerbated by other factors. For example,

farmers’ demand depends also on the value of the crops, as the investment in CPPs is

justified only if the value of the additional yield obtained by its application is larger

than its price, and this value is uncertain itself (Böcker and Finger, 2017; Desai, 1970).

Moreover, the demand for a company’s products is influenced by the availability and

prices of the products’ substitutes from competitors (Fritz and Hausen, 2009), which are

challenging to predict. As a result of the strong uncertainty in demand, the amount of

safety stocks required in agrochemical companies’ SCs to meet customers’ high service

level requirements can be considerable.

This discussion emphasizes that agrochemical companies face challenging production and

inventory planning decisions for each CPP in their product portfolios. They must decide

when and how much AIs and formulated products to manufacture for the season(s)

ahead based on insecure forecasts of the start and duration of the selling season and of

the demand quantity. Making the product available early allows a company to serve the

demand of customers in case of an early start of the season, thus enabling it to capture

a larger share of the season’s total demand. However, early availability also results in

a higher risk of incurring unnecessary inventory costs before the start of the season.

Because an early timing decision increases the potential demand that a firm can satisfy,

the optimal quantity decision is clearly dependent on the timing decision and vice versa,

thus making it necessary to manage both these decisions simultaneously. Moreover, the

inventory problem of agrochemical companies is complicated by the fact that the timing

and quantity decisions for different products are also closely interconnected, because

of the shared limited production capacity, the potentially long and costly sequence-
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dependent setup operations and the interrelation between the products’ selling seasons.

2.3 Literature review of SC planning in the agrochemical in-

dustry

Despite their variety and complexity, the SC planning challenges, including inventory

management, faced by agrochemical companies have not received much academic atten-

tion. Some of these challenges are shared by companies in other industries, for example

the pharmaceutical industry, and therefore approaches developed to solve similar SC

planning problems in other settings could also be useful and relevant to SC planning

for agrochemical companies. However, other challenges are unique to the agrochemical

industry and call for tailored solution approaches. In this section, we present a review of

the operations research literature on the specific topic of SC planning in the agrochemi-

cal industry. This is the literature that the case study of Chapter 5 contributes to. We

organize the literature review into long-term (strategic), mid-term (tactical) and short-

term (operational) planning problems according to the typical classification of planning

problems (see e.g. Fleischmann et al., 2015).

2.3.1 Long-term planning literature

Most of the literature on SC planning in the agrochemical industry focuses on strategic

problems, specifically supply chain network design and capacity planning.

Sousa et al. (2008) present a case study conducted at a multinational agrochemical

company whose goal is to simultaneously solve a strategic and tactical planning problem.

The problems are to redesign the global formulation and distribution SC network of a set

of herbicides derived from the same two AIs, and to define an annual cyclic production

and distribution schedule for the SC, respectively, with the objective of maximizing

profits. Uncertainty of demand is not considered. The need for a cyclic plan is due

to the yearly seasonality of demand for the formulated products considered. To solve

these problems, the authors develop a hierarchical planning approach, because of the

size of the problem. In the upper level of the hierarchy, a mathematical model is used

to optimize the configuration of the SC and the aggregate production and distribution

plan with a planning horizon of one year, which corresponds to one seasonal demand

cycle. In the lower level, multiple detailed production planning models with a time

horizon of one month are used to check the feasibility and accuracy of the decisions of

the aggregate upper-level model. Feedback from the lower level is provided to the upper

level in an iterative fashion to improve the design and planning decisions. The feedback

from the detailed model to the aggregate high-level one is given in the form of modified

capacity, utilization and demand coverage constraints. Importantly, one of the additional

11



details of the production processes captured by the lower-level model, compared to the

higher-level model, is the need for changeover operations. The authors show that the

developed iterative hierarchical approach provides more realistic and reliable results than

a classical hierarchical approach in which feedback of the detailed planning model is not

incorporated into the aggregate model.

Bassett and Gardner (2013) present a large-scale MILP developed to optimize the design

of the SC of a group of products having a common AI at Dow AgroSciences. Because of

the characteristic seasonality of demand for agrochemicals, the production schedule of

the facilities and the distribution schedule within the SC are also modeled and optimized,

despite the strategic nature of the project. The main contribution of the paper is the

development of a modeling approach that can track the origin of the products sold (down

to the raw material level), which, due to the highly regulated nature of the agrochemical

industry, determines whether the product can be sold in a given market or not and the

amount of duties and taxes applied to it. This ensures that the resulting design and

schedule of the SC network is both feasible and profit-optimal. The authors present a

case study conducted at the company, which shows that correctly tracking the origin of

the products has a significant impact on the solution and corresponding profits.

Bassett (2018) discusses different SC design planning problems faced by Dow Agro-

Sciences. The author presents the different software they typically use to solve them and

the input required. Then, he provides a high-level description of three exemplary plan-

ning problems. Although the mathematical models used to solve them are not provided,

the main features of the problems and the procedure followed to obtain the solutions are

presented. The first problem analyzed is that of designing the SC of a newly-developed

AI. Even at this strategic level, the author states that seasonality of demand is the main

issue to address in the model. Seasonality causes the optimal production schedule to be

highly intermittent, whereas usually the company prefers to operate plants in a cam-

paign mode; however, campaigns cause an increase in the inventory within the SC. This

makes it necessary to make a decision on the operating mode of the plants before the

SC network design model is solved. The second problem analyzed is that of finding the

optimal SC design and schedule for multiple products sold in the Asian market. Here the

author focuses on the importance and challenges of correctly calculating the duties and

taxes which apply to the products sold. The third and last problem presented is a rail

fleet optimization problem for the transportation of materials between three plants in

the U.S. The author emphasizes again the importance of considering the seasonal nature

of demand, and, additionally, the need of considering the uncertainty of demand, which

is done using a sensitivity analysis.

Schnelle (2000) studies the smaller-scale problem of designing AI plants at Dow Agro-

Sciences in the 1990’s. The author uses a hierarchical approach inspired by Subrah-

manyam et al. (1994). The upper-level model is an aggregate design model whose aim
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is to find the design of the plant, including the number of production resources to buy

and the timing of their installation, and the production schedule of the equipment that

optimize the expected net present value. Uncertainty in both prices and demand for the

AIs is considered and modeled with the use of scenarios. To ensure that the resulting

optimal production schedule is feasible, lower-level scheduling subproblems are solved.

The solution method used is a heuristic that considers the important changeover times

of the resources which produce multiple products, among other aspects. After present-

ing the approach, the author discusses its application in a real-world project at Dow

AgroSciences.

Another important topic studied in the long-term planning literature is that of capacity

planning. Liu and Papageorgiou (2013) consider the capacity, distribution and produc-

tion planning problem of the global SC of an agrochemical company. The main goal

is to provide support for capacity expansion decisions at a set of formulation plants,

given that demand is forecasted to be larger than the current production capacity of the

plants. Demand is assumed to be deterministic. The problem is modeled as an MILP

with multiple (conflicting) objectives: minimize total costs, which include raw material,

production, transportation and inventory costs, and duties; minimize the total flow time,

which measures the responsiveness of the SC; minimize the lost sales, which measure the

customer service level of the company. Two methods for solving multiobjective prob-

lems are considered: the ε-constraint and the lexicographic minimax methods. A new

approach is developed to transform the lexicographic minimax problem into a minimiza-

tion problem. Finally, the authors present the results of a numerical analysis in which

they compare two different expansion strategies using the developed models.

Liu and Papageorgiou (2018) study the problem of fair distribution of profits among

members of a three-echelon agrochemical SC for one AI. The authors first present a

MILP for production, distribution and capacity planning that optimizes the total prof-

its of the SC, and subsequently develop different approaches to additionally optimize

transfer prices, i.e. prices charged for the sale of final and intermediate products among

members of the SC, considering two fairness criteria and different bargaining powers of

the members. The developed solution approaches are tested on two examples, including

a real-world case study, which show that they can achieve a fairer profit distribution

than the one obtained by simply optimizing total profits.

Apart from supply chain design and capacity planning, the long-term planning problem

of new product development (NPD) has also attracted significant academic attention.

Maravelias and Grossmann (2001) study the problem of simultaneous planning of testing

activities in NPD and designing and planning of production facilities at agrochemical

and pharmaceutical companies. The authors present a two-stage stochastic program-

ming model whose main goal is to find the most promising NPD projects in the R&D

portfolio of the company to pursue. The uncertainty of the outcome of different testing
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tasks is captured through scenarios. Because the net present value of different investment

opportunities is closely linked to the time to market, the design of production facilities

where the new products will be manufactured must be decided well before it becomes

clear whether the product is successful or not. In addition, the right investment in man-

ufacturing assets depends on the production schedule of the new and existing products

which should be followed to serve the uncertain future demand. As a result, the model

developed by the authors optimizes not only the NPD decisions, but also the decisions

of opening new plants or expanding existing ones, and the production schedule of these

facilities. Due to the size of the resulting MILP, the authors propose a heuristic solution

approach and test its quality in three illustrative examples.

Bassett (2000) studies another aspect of the NPD problem. The author presents a

mathematical program developed for Dow AgroSciences to optimally assigns employees

to projects in the current R&D pipeline of the company. The objective of the model is to

best utilize the employees’ expertise and minimize the use of external contractors in the

R&D process. To obtain solutions of good quality in acceptable time for what-if analysis,

the author further develops a heuristic solution approach. Given that it is outside of the

scope of this thesis, we do not survey the NPD literature further; for additional reference,

we refer the interested reader to the studies by Subramanian et al. (2000) and Schmidt

and Grossmann (1996).

2.3.2 Mid-term planning literature

The mid-term planning literature focuses mostly on production and inventory planning.

Bloemen and Maes (1992) present a linear programming (LP) model developed to sup-

port mid-term production planning at a Monsanto’s plant producing herbicides, in which

both AI synthesis and formulation are performed. To account for the seasonality of the

demand and the limited production capacity, the planning horizon of the problem is

12-18 months. The objective of the model is to find the optimal balance between inven-

tory costs and the costs of alternative production resources to serve the highly seasonal

demand, considering production and storage constraints, as well as the availability of

containers used to store or transport products to the demand zones. Demand uncer-

tainty is not considered and the model is kept deterministic. The level of detail of the

production processes is limited to keep the model linear, but their multiple-stage nature

is reflected. Moreover, the model also considers transportation flows between the plant

under consideration and other plants of the company, with a particular focus on the

decision of renting containers used to store or transport the products. After presenting

the model formulation, the authors discuss the successful implementation of the tool at

the company.

Similarly to Bloemen and Maes (1992), Elimam (1995) presents a case study on the
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application of an LP model to support mid-term production and procurement planning

at a US pesticide manufacturing plant. AI and raw materials are procured from ven-

dors, and the plant only performs the formulation step of the production process. The

planning horizon considered is 18 months, and the goal of the model is to find the cost-

minimizing production plan to meet the highly seasonal future demand. To consider

the high variability of demand, safety stock targets for every product and period are

exogenously defined. Finally, the authors present the results of the application of the

developed decision support system that uses the LP model, which led to tangible savings

for the company.

2.3.3 Short-term planning literature

We conclude the review by presenting the studies on short-term planning problems,

specifically production scheduling. Based on a case study at an agrochemical plant in

the Middle East, Dessouky et al. (1999) develop a mixed integer nonlinear programming

model (MINLP) to solve a short-term production planning and scheduling problem.

The plant needs to schedule the production of multiple products produced in a set of

resources. Setup times are considered, but assumed to be independent of the production

sequence, and all batches are assumed to have an identical processing time. The goal

of the model is to simultaneously allocate customers’ orders to production batches and

determine the production schedule that minimizes earliness and tardiness costs. The

authors reformulate the problem as a MILP and additionally propose a heuristic to solve

the problem. Finally, they compare the performance of the two solution approaches in

a numerical study.

McGraw and Dessouky (2001) extend the model developed by Dessouky et al. (1999) to

consider sequence-dependent setup costs. The authors also present different heuristics

for different variants of the problem, and subsequently asses their performance.

Batching, scheduling and other similar operational production planning problems have

been the subject of many studies with applications in the general process industry;

although we do not review this literature in further detail, we note that a significant

number of these studies could be relevant for short-term production planning in the

agrochemical industry.

To summarize, we see that many of the unique characteristics and challenges of the

agrochemical industry mentioned in the previous sections are reflected in the literature on

all SC planning levels. First, seasonality of demand is considered in nearly all long-term

and mid-term planning problems. In mid-term planning problems, seasonality makes it

necessary to consider a planning horizon which lasts at least a complete seasonal cycle,

because capacity in off-season periods are required to build up stock for the peak season.

In long-term planning problems, demand seasonality must be considered in order to
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obtain correct and accurate estimates of the effects of network design decisions, such as

the capacity of the facilities in the SC network. Second, the complexity of the production

process of agrochemicals, especially the need for costly and time-consuming changeover

operations, is also considered in all planning levels. Indeed, different authors stress the

importance of using detailed production planning models to determine the feasibility

of, and provide feedback to, more aggregate higher-level models, in order to obtain

realistic and accurate results from the latter. Third, the importance of R&D in the

industry has led to the development of detailed models to aid companies in selecting and

scheduling research and testing activities. Finally, we note that, in most studies, despite

its importance, uncertainty of demand is either disregarded or considered only through

sensitivity analyses. As noted by Bassett (2018), the uncertainty of the timing and

length of growing seasons in different regions can potentially have a significant effect on

the economic performance of an agrochemical company. The stochasticity of the selling

season and its impact on the optimal production and inventory decisions of the firm is

precisely what we focus on in this thesis. In Chapter 5 we contribute to the literature on

SC planning in the agrochemical industry by developing a mid-term inventory planning

model that explicitly considers demand timing and quantity uncertainty, and applying

it in a real-world inventory analysis case study.
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3 Inventory decisions for a stochastic season: a nu-

merical study

3.1 Introduction

In this chapter, we start to analyze the problem introduced in the previous chapters

which is central to this thesis – the inventory management problem faced by a firm that

manufactures products with a seasonal and uncertain demand in a common make-to-

stock production environment. The starting point of our analysis in this chapter is the

study by Schlapp and Fleischmann (2020). The authors developed a theoretical model

to examine the inventory problem of a firm selling products over a limited selling season,

facing uncertainty about the timing of the season, i.e. its start and end, the total demand

over the season, and the temporal distribution of this demand over the season. They

analytically derived the firm’s optimal inventory policy, which consists of an inventory

quantity and an inventory timing decision, providing a detailed analysis of the interplay

between these two decisions. We contribute to the inventory management literature by

complementing the analysis by Schlapp and Fleischmann (2020) with a numerical study

of the problem to investigate how and to what extent the parameters of the problem

influence the optimal inventory decisions and the profits of the firm.

The analyzed inventory problem is of high practical relevance, as many goods have

seasonal demands, and in a make-to-stock setting demand is always subject to some

degree of uncertainty. Either climate or convention can drive the seasonality of demand

(Mitchell, 1927). Climatic seasons are the source of seasonality in the demand for many

goods: for example, demand for ice cream peaks in the hot summer months, whereas

demand for hot chocolate peaks in cold winter months. Conventions, which can have

many origins, e.g. religious holidays, fashions and business practices, can also be the

driver of seasonal variations in demand for many products: for example, the demand for

fireworks is highest in the weeks preceding New Year’s Eve celebrations, and the demand

for confectionery peaks before festivities such as Halloween and Easter.

When demand for its products is seasonal, the company faces two types of demand un-

certainty: uncertainty in demand quantity and in demand timing. Quantity uncertainty

refers to the stochasticity of the total demand for a product during its selling season,

whereas timing uncertainty refers to the stochasticity of the properties of the actual

selling season such as its start and duration. Clearly, the latter is more severe in case

the seasonality of demand is due to climate, because weather conditions are difficult to

forecast with accuracy. Given these two types of uncertainty, the company must make

two related inventory decisions (Schlapp and Fleischmann, 2020): an inventory quantity

and an inventory timing decision, i.e. the quantity to stock for the selling season, and

when to make the stock available for sale to the customers, respectively. As shown by
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Schlapp and Fleischmann (2020), both decisions affect the company’s expected profits,

and must be made in conjunction with each other. The larger the inventory quantity,

the larger the potential sales, but also the larger the potential leftovers, giving rise to

the well-known newsvendor trade-off between underage and overage costs. The timing

of this quantity being made available for sale also affects underage and overage costs.

Indeed, the later the inventory timing is, the higher the risk of losing early demand in

the season and of ending the season with more leftovers; however, importantly, a later

timing also decreases the inventory holding costs which are incurred until the products

are either sold or salvaged. This, in turn, increases the profit margin and decreases the

overage cost per unit of the product, making the inventory timing and quantity decisions

dependent on each other.

The agrochemical industry, presented in Chapter 2, is a perfect example of a setting

in which demand seasonality is driven by climate, and both the inventory quantity and

timing decisions significantly impact the companies’ profitability.

Due to its practical relevance, the inventory problem for products with seasonal and

uncertain demand has attracted significant attention in the operations research literature.

However, although demand quantity uncertainty has been extensively studied, timing

uncertainty has received little to no attention despite being of equal importance. The

newsvendor model and its extensions studied in the literature mainly provide managerial

guidelines for the inventory quantity decision, whereas they neglect the inventory timing

decision. Indeed, usually the start of the season is assumed to be known with certainty,

and the length of the season and its effects on inventory costs are disregarded. To the

best of our knowledge, the only study which considers both decisions and uncertainties

simultaneously is Schlapp and Fleischmann (2020). In this chapter, we build on those

authors’ analysis and conduct a numerical study with the following objectives: First, we

investigate how the parameters of the problem affect the two key inventory decisions.

Second, we assess the effects on the firm of neglecting, or incorrectly considering, the

timing uncertainty when setting its inventory policy.

The remainder of this chapter is structured as follows. In Section 3.2, we conduct a review

of the literature most closely related to the inventory problem. In Section 3.3, we present

the details of the analyzed problem setting and briefly summarize the properties of the

optimal inventory policy of the firm following the results of Schlapp and Fleischmann

(2020). In Section 3.4, we present the setup of the numerical study that is performed

to answer our research questions, and in Section 3.5 we show and interpret the results.

Finally, in Section 3.6, we discuss the main managerial insights obtained and identify

further research opportunities.
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3.2 Literature review

With the study presented in this chapter, we contribute to the literature on inventory

management for products with seasonal and uncertain demand, which is a very rich

field of operations research. The central model in this stream of literature is the clas-

sic newsvendor model (Arrow et al., 1955). This model determines the optimal, i.e.

expected-profit-maximizing, inventory quantity for a single product with a single selling

season and uncertain demand. The classic newsvendor model makes many simplifying

assumptions, but a large body of literature focuses on extending the basic model. How-

ever, one important assumption has received close to no attention in the literature – that

of of an instantaneous season (i.e. a season with deterministic length of zero) with a

start which is known with certainty. As a result, the model ignores the inventory timing

decision and its role in managing the trade-offs that arise under realistic circumstances

in which the properties of the season are stochastic. The inventory timing decision and

the stochasticity of the season are the focus of the current chapter.

The stream of literature originating from the classic newsvendor model that is most

closely connected to the topic of our research is the one studying the benefits of delaying

the production/ordering decision in the newsvendor setting. Given that most other

assumptions of the newsvendor model are not modified in this literature stream, the

main reason for delaying production is to obtain progressively better demand forecasts

as the season’s start approaches and thereby decrease the quantity uncertainty. However,

later production is typically assumed to lead to higher production costs, thus creating a

clear trade-off to be managed by the timing of production. These studies can be broadly

classified according to the number of lots that can be produced. Under the assumption

of a single production lot, whose timing can be dynamically chosen by the firm, Choi

et al. (2004) study the potential benefits of delaying production when forecasts improve

over time, and Wang and Tomlin (2009) study the same problem under production lead

time uncertainty, with later production having a higher degree of lead time uncertainty.

In many other studies, the number of lots is limited to two and, in most cases, the

size of the second lot is also limited by capacity constraints (e.g. Zheng et al., 2015).

Finally, certain studies consider the possibility of producing more than two lots, e.g.

Wang et al. (2012). The main difference between our study and this stream of literature

is that, although in the latter the inventory timing decision is considered, the start and

duration of the season are assumed to be known. It is considered beneficial to delay

production only because improved demand forecasts may be obtained, whereas the role

of the inventory timing decision in limiting inventory costs is neglected. Late production

is assumed to be more expensive, which could be interpreted as a method to take into

account the cost of adding the necessary capacity to produce the desired quantity at a

later point in time. However, as recognized by Lau and Lau (1997) in this very stream of

research, this assumption might not always be valid, as delaying production can also lead
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to inventory cost savings. This effect of inventory timing on inventory costs is the central

focus of the current chapter. Moreover, in contrast to many studies in this stream of

literature, in the problem setting we analyze, the inventory timing decision is completely

endogenous.

Another extension of the newsvendor model which is closely related to our research is

that of Ravindran (1972). The author presents an inventory model for seasonal products

with uncertain and “contagious” demand, i.e. products for which demand early in the

season influences demand later in the season, for example due to word of mouth. In this

study, importantly, the length of the selling season is modeled as a decision variable.

The start of the season is assumed to be known, and its duration positive but known.

The decision maker, therefore, decides not only on the production quantity, but also

on the length the selling season, i.e. how long to make the product available for sale.

A shorter selling season entails a higher risk of losing late demand, whereas a longer

selling season might result in high inventory costs and leftovers to be disposed of. In

addition, the author develops an algorithm for finding the optimal selling season’s length

and production quantity. Deciding the length of the selling season can be seen as an

inventory timing decision, which is used to manage the trade-offs arising from the fact

that, unlike the classic newsvendor model, the length of the season is positive, which

makes it necessary to consider the costs of carrying inventory during the selling season.

However, there are two important distinctions between this study and ours. Instead of

the end of the selling season, in the problem we analyze in this chapter the inventory

timing-decision variable is the time at which the product is first made available for sale.

Moreover, in our problem setting, the start and duration of the selling season are assumed

to be uncertain.

The studies presented thus far are related to our research because they consider the

inventory timing decision apart from the classic inventory quantity decision. However,

they do not consider the uncertainty in the properties of the season, such as its start

and length. Two streams of literature which go in the latter direction are the one on

inventory management for products subject to random obsolescence and the one on

inventory management for perishable products with a random lifetime. The former

stream was initiated by Hadley (1962) and the latter by Nahmias (1977). When there

is a certain probability that the product will become obsolete in the future, which will

lead to an end of customers’ demand (the selling season), the firm producing the product

must decide at any given point in time how much inventory to keep in order to balance

inventory, shortage and obsolescence costs. A larger inventory will reduce the risk of

shortages until obsolescence occurs, however, it will increase the inventory holding costs

in the interim, and the risk of incurring obsolescence costs for leftovers once the product

becomes obsolete. Similarly, when a perishable product’s limited lifetime is random,

the producer must decide at any given point in time how much inventory to keep to

20



balance inventory, shortage, deterioration and discarding costs. Both literature streams

essentially study a newsvendor-like setting in which the length of the season is uncertain

and the start of the season is known: the start of the season is the time at which the

production/ordering decision is made, and the length of the season is the time until the

product becomes obsolete or reaches the end of its lifetime. However, as opposed to the

problem setting analyzed in this study, the inventory timing decision is exogenous.

To the best of our knowledge, Schlapp and Fleischmann (2020) are the only authors

to study the role of inventory timing when the properties of the product’s season are

stochastic. To this end, the authors develop their model setup based on the fundamental

elements of the classic newsvendor model. They use a continuous-time framework and

characterize the timing-related properties of the selling season with three parameters:

the start of the season, the length of the season, and the shape of the customers’ de-

mand pattern over the season. In this problem setting, with the additional uncertainty

of the total demand over the selling season, they define the inventory policy of the firm

using two variables: the inventory quantity and the inventory timing decisions. After

modeling the firm’s profit-maximization problem, the authors define the necessary op-

timality conditions that the inventory quantity and timing decisions must satisfy. The

former is found to resemble the typical critical fractile (CF) optimality condition of the

classic newsvendor model, and the latter reflects the trade-off between inventory costs

and lost sales costs. Next, they analyze the relationship between the two decisions and

the effect of the inventory timing decision on the firm’s service-level performance in de-

tail. Finally, the authors study two special cases, one with instantaneous demand (i.e.

the season has a length of zero) and one where the start and length of the season are

known with certainty, which help to isolate and demonstrate the effects on the optimal

inventory policy of the uncertainty in the season’s start and of different possible demand

patterns, respectively.

In this chapter of the dissertation, we consider the problem analyzed by Schlapp and

Fleischmann (2020), building on their modeling setup and analytical results. We con-

tribute to the literature by conducting an extensive numerical study with the goal of

providing clear managerial insights for firms facing this inventory planning problem.

Specifically, our contribution is twofold. First, we show and quantify the effect of the

different problem’s parameters on the optimal inventory policy of the firm. Second,

we identify the settings in which a careful inventory timing decision is crucial for the

economic performance of the firm, and thus taking the common-practice approach of

making the product available as early as possible is especially inappropriate.
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3.3 Problem setting and optimal inventory policy

In the description of the problem setting analyzed in this chapter, we follow for the

most part the notation, assumptions and model setup used by Schlapp and Fleischmann

(2020). The firm under consideration produces a single product with an uncertain sea-

sonal demand, both in terms of quantity and timing. To serve the uncertain demand in

the stochastic selling season, the firm needs to decide its production/inventory quantity

x, i.e. the quantity to produce and stock ahead of the season, and its inventory timing

t, i.e. the earliest time when the inventory quantity x is made available to customers.

The firm’s inventory policy is thus defined by the pair (x, t). In the model, time is

measured continuously. The product’s stochastic market environment is characterized

by the product’s market potential, Q, i.e. the random total cumulative demand in the

season, and its non-deterministic selling season. The selling season is described by a

collection of three stochastic elements: B, L and A(τ |Q,B,L), where B is a continuous

random variable representing the start of the selling season, L is a continuous random

variable representing the length of the selling season, and A is a (deterministic) function

that, for each (Q,B,L) tuple, defines the fraction of the market potential of the prod-

uct that will be realized between time τ and the end of the selling season B + L. Qτ

denotes the market potential of the product at time τ , defined as Qτ = A(τ |Q,B,L)Q,

and by Dτ = −Q′
τ ≥ 0 the stochastic customer demand rate at time τ , where Q′

τ is the

derivative of Qτ with respect to time. The production costs per unit of the product are

c, and its selling price is p, and p > c. Inventory costs per unit of the product per unit of

time are denoted by h. In accordance with the standard newsvendor model, the firm can

only produce a single lot of the product. However, this lot may be partially produced

within the selling season, because the season’s start is uncertain and the season is not

instantaneous. Also, the inventory decisions must be made before the quantity and tim-

ing uncertainty is realized and cannot be revised at a later point in time. Additionally,

production capacity constraints are ignored. Finally, unmet demand is lost and at the

end of the season the product has a salvage value of v, with v < c.

Before presenting the firm’s optimization problem, to better illustrate the model’s setup

and notation, and to build intuition on the trade-offs faced by the company in its inven-

tory problem, in Figure 3 we depict the development over time of the market potential

(solid line) and the inventory position of the firm (dashed line) under two different in-

ventory policies in a given realization of the stochastic selling season. We denote the

inventory at time τ ≥ t by Ix,t(τ) = [x− (Qt −Qτ )]
+, where [Z]+ = max{0, Z}.

In the setting illustrated in Figure 3a, the firm makes inventory available before the

season starts. Additionally, given that the firm chooses an inventory quantity that is

lower than the market potential at time t, the availability period, i.e. the interval of

time in which customers can buy the product, starts and ends earlier than the selling

season. In this setting, the firm carries significant unnecessary pre-season inventory,
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(a) Early inventory timing (b) Late inventory timing

Figure 3: Illustrative example of two seasons (cf. Schlapp and Fleischmann, 2020)

represented by the area of the rectangle of base B − t and height x. Although the firm

is able to satisfy the demand of the earliest customers in the selling season, it loses

Q − x demand after the inventory is depleted. The in-season inventory is represented

by the area under the inventory function to the right of τ = B, and no items must be

salvaged at the end of the season. In the example depicted in Figure 3b, the firm instead

makes inventory available after the season starts. Because the firm chooses an inventory

quantity that is above the market potential at time t, the availability period starts later

than and ends at the same time as the selling season. In this setting, the firm carries

no pre-season inventory. The late inventory timing leads to a substantial loss of early

demand amounting to Q−Qt, and to large left-over inventory at the end of the selling

season, equal to x − Qt. These units are needlessly carried in inventory for the whole

availability period and are salvaged at the end of the selling season.

The optimization problem faced by the company can be expressed as follows (Schlapp

and Fleischmann, 2020):

max
(x,t)≥0

Π = E
[
(p− c)x− hx(B − t)+ − h

∫ B+L

max{B,t}
I(x,t)(τ)dτ − (p− v)(x−Qt)

+
]
. (1)

The expectation is taken with respect to the joint distribution of B, L and Q. The

first and last term within the expectation operator jointly represent the revenue from

the sale of the product minus the cost of producing the product and the cost of salvage.

The second term represents pre-season inventory holding costs, and the third term the

in-season inventory holding costs.

We now characterize the firm’s optimal inventory policy following the main results of

the analysis presented in Schlapp and Fleischmann (2020). This will serve as a starting

point when designing the numerical study reported in this chapter and when interpreting

its results.
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The optimal inventory quantity decision x∗(t) for any given inventory timing t can be

specified as follows. If the expected profit margin of the first unit sold within the avail-

ability period is negative, i.e. if p− c− h
∫ bu
t

P(B ≥ b)db ≤ 0, then the optimal decision

x∗(t) is to set x∗(t) equal to zero; otherwise x∗(t) satisfies the following condition (Schlapp

and Fleischmann, 2020):

P(Qt ≤ x∗(t))

=
p− c− h[

∫ bu
t

P(B ≥ b)db+
∫ bu+lu
0

P(Qt −Qτ ≤ x∗(t),max{t, B} ≤ τ ≤ B + L)dτ ]

p− v
.

(2)

This condition is closely related to the CF condition of the standard newsvendor model,

because the optimal inventory quantity is found by striking the right balance between

underage and overage costs. However, two important differences can be readily observed,

as noted by Schlapp and Fleischmann (2020). First, the CF relates to the distribution

of the market potential (or future demand) at time t, Qt, and not to that of the total

market potential Q. Second, although the CF is still expressed as the ratio of underage

costs to the sum of underage and overage costs, these two cost components are different

from their counterparts in the newsvendor model due to the presence of inventory costs.

Indeed, because the units must be held in inventory until they are sold or salvaged, the

profit margin of the units sold decreases, and the revenue of the salvaged units is essen-

tially decreased by the same amount. Consequently, the numerator of (2), representing

underage costs, is lower compared to the newsvendor setting, and the denominator, rep-

resenting the sum of underage and overage costs, is equal to that of the newsvendor’s

setting due to the decrease in underage costs and increase in overage costs offsetting

each other. The net result is that the optimal inventory quantity is lower than the one

obtained by applying the newsvendor model to the future demand at time t, Qt.

Given that the inventory quantity at any time is chosen optimally according to condition

(2), and letting dτ (Z) = E[Dτ1{Z}] denote the expected demand rate at time τ in event

Z, the optimal inventory timing t∗ of the firm can be shown to satisfy the following

condition (Schlapp and Fleischmann, 2020):

h
(
x∗(t∗)P(t∗ ≤ B + L)−

∫ bu+lu

t∗
dt∗(Qt∗ −Qτ ≤ x∗(t∗), τ ≤ B + L,B ≤ t∗)dτ

)
= (p− v)dt∗(Qt∗ ≤ x∗(t∗)). (3)

The left-hand side of (3) represents the marginal expected (potential) savings in inven-

tory costs obtained by delaying the product’s availability period, whereas the right-hand

24



side represents the marginal expected lost revenues caused by losing the immediate de-

mand when inventory timing is delayed. The optimal inventory timing is that which

equates these two marginal effects of delaying the availability of the products. More

precisely, the first term of the left-hand side measures the marginal savings in inventory

costs generated by choosing a later timing, because the optimal inventory quantity must

be stored for a shorter time before it is sold. However, choosing a later timing also has

an opposite effect on inventory costs, represented by the second term on the left-hand

side. The portion of the optimal inventory quantity corresponding to the immediate de-

mand that is lost by delaying the availability period now needs to be stored longer until

it is sold. The sum of these two terms, i.e. the entire left-hand side, measures the net

effect of a later timing on inventory costs. In contrast, the right-hand side represents the

marginal increase in expected lost sales due to the possibility that the aforementioned

portion of inventory that is not immediately sold due to a later timing will remain unsold

in the remaining part of the selling season.

As can be seen from (2) and (3), the inventory quantity and timing decisions are used to

manage two different trade-offs. The inventory quantity manages the trade-off between

the classic newsvendor model’s underage and overage costs, although both costs are

adjusted based on inventory costs. In contrast, inventory timing is used to manage the

trade-off between inventory costs and lost revenues. For a more detailed analysis of the

problem setting and the optimal inventory policy, readers are referred to Schlapp and

Fleischmann (2020).

3.4 Numerical study design

In this section, we present the design of our numerical study in detail. As stated, the goal

is twofold: first, we want to analyze how the optimal inventory policy of the firm changes

with the parameters of the problem, and second, we want to compare the performance

of the optimal inventory policy with that of a näıve classic-newsvendor-like policy which

does not optimize the inventory timing decision. We start by defining the parameter

settings we consider in our numerical study. Thereafter, we describe the method used

to solve the inventory problem instances. Finally, we define the näıve policy used as a

benchmark to understand the effects of neglecting the timing uncertainty of demand and

the role of inventory timing in managing the trade-offs arising from this uncertainty.

3.4.1 Parameters

In the numerical study, each problem instance solved is defined by a different combination

of values of the following parameters:

1. The mean length of the season L;

25



2. The level of uncertainty in the forecast of the length of the season L;

3. The level of uncertainty in the forecast of the start of the season B;

4. The level of uncertainty in the forecast of the market potential Q;

5. The statistical dependence between the three stochastic parameters defining the

season – B, Q and L;

6. The shape of the demand pattern over the season, A;

7. The inventory costs per unit of time and product, h;

8. The critical fractile of the product, CF .

The only two parameters we do not modify across instances of the problem are the means

of Q and B, because changing them would effectively only scale up or down the optimal

inventory quantity and inventory timing decisions, respectively.

For all numerical parameters, except A and the dependence between B, Q and L, we

consider three possible values (or levels, as they are named in ANOVA terminology)

that vary across instances. This choice allows us to consider a meaningful range of

possible values that the parameter can take while limiting the computational efforts of

the study, Moreover, using three levels enables us to verify whether the relationship

between the decision variables defining the inventory policy (or the difference in profits

between the optimal and näıve policies) and the parameters is monotonic or not. We seek

to define parameter levels that lead to problem instances that are practically relevant,

and, therefore, offer valid managerial insights.

We now discuss our choice of the levels for each of the parameters listed.

The length of the season

We assume that the stochastic parameter L follows a normal distribution with known

mean µL and standard deviation σL. Due to the symmetric nature of the normal dis-

tribution, the normality assumption implies that it is as likely for the selling season to

end later than the mean length as it is to end earlier. We believe that this assumption

is valid for the purpose of our study and interesting from a theoretical point of view.

Naturally, in some practical settings, the symmetric property might not hold, however,

the key takeaways derived from our results should be transferable to such settings. We

leave the study of other distributional assumptions for future research. We note that, as

opposed to Schlapp and Fleischmann (2020), we do not define a lower and upper bound

for this parameter in our numerical study.

We assume that the unit of measurement of time is one week, and we consider three

possible mean lengths of the season: µL = {3, 6, 12}. The lowest level corresponds to a
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short season which lasts less than a month, whereas the highest level corresponds to a

season which lasts approximately an entire climatic season. We are of the opinion that

this range is representative of selling season lengths. To vary the level of uncertainty

in the forecast of the length of the season, we consider three levels for the coefficient of

variation of L, CVL = {0.1, 0.3, 0.5}, which correspond to three levels of the standard

deviation of L for each level of µL; these values represent low, medium and high levels

of uncertainty, respectively.

We also assume that, for any given realization of the length of the selling season L,

customer demand follows the instance-specific demand pattern A such that the total

demand over the season is equal to the realization of the market potential Q.

The start of the season

Following the same reasoning described for L, we assume that the stochastic parameter

B follows a normal distribution with known mean µB and standard deviation σB. Also

for this parameter, as opposed to Schlapp and Fleischmann (2020), we do not define a

lower and upper bound.

As mentioned, the mean start of the season is assumed to be fixed across instances,

because its influence on optimal inventory timing is trivial. Because by convention the

present is assumed to be t = 0, we choose a positive number for this parameter and

consider the problem where a firm must decide on its inventory policy for a season which

is expected to start µB weeks from the present. Specifically, we set µB = 100. This

choice, combined with a low standard deviation (relative to the mean), avoids possible

computational issues with negative values for the potential start of the season. To

represent the level of uncertainty in the forecast of the start of the season, we consider

three levels for the standard deviation of B: σB = {2, 5, 8}. Because time is measured

in weeks, we believe that this is a meaningful range of values to consider. The lowest

level corresponds to a situation in which the season’s start is relatively easy to predict,

whereas the highest corresponds to a very unpredictable start of the season. The latter

is not uncommon in the agrochemical industry, where the start of a season can shift by

as much as two months from one year to the next (see, e.g. Bloemen and Maes, 1992).

The market potential

Similar to B and L, we assume that the stochastic parameter Q follows a normal distri-

bution with known mean µQ and standard deviation σQ, a common assumption in the

newsvendor literature.

We do not vary the mean total demand in the season, because this would only cause a

predictable change in the optimal inventory policy, as explained earlier. Therefore, we

set µQ = 100. As for the other stochastic parameters considered in the numerical study,

we vary the accuracy of the forecast of the market potential across instances. Specifi-

cally, we consider three levels for the coefficient of variation of Q, CVQ = {0.1, 0.3, 0.5},
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corresponding to three values of the standard deviation of Q, σQ = {10, 30, 50}. We

measure Q in general units, because the unit of measurement is inconsequential.

The statistical dependence between the stochastic parameters

In practice, the stochastic parameters of the problem can potentially be correlated with

varying degrees of strength, and this correlation could have an important effect on the

firm’s optimal inventory policy. Therefore, apart from a setting characterized by mutual

independence of the parameters (named indep), we consider a single additional setting

we believe to be of practical relevance. Specifically, we assume that the pairs (B,L)

and (Q,B) are perfectly negatively correlated, and the pair (Q,L) is perfectly positively

correlated. In this setting (named pdep), an early start of the season is associated with

a longer selling season which accordingly leads to a larger total demand. It is plausible

to assume that the end of a climatic season, for example summer, corresponding to the

selling season of a product, is uncorrelated with its start, so that the length of the season

can depend on its start. In other words, a season that starts early may last longer and

still end at the same expected time. If the season lasts longer, it is also plausible that the

total quantity demanded would be larger, for example because the value of the product

increases if it can be used longer. The correlations in practical settings might not be

perfect as assumed, but the results obtained using the assumption of perfect correlation

are instructive nonetheless. We denote the statistical dependence between the stochastic

parameters by dp, and, as discussed, consider two levels for this parameter, dp = {indep,
pdep}. We defer the study of how other potentially practically relevant dependence

structures influence the firm’s optimal inventory policy to future research.

The shape of the demand pattern

In accordance with studies on inventory problems for items with seasonal demand, we

consider four possible seasonal demand patterns (corresponding to four customer demand

rates/functional forms of A) in our numerical study: constant, increasing, decreasing and

triangular (i.e. first increasing and then decreasing) demand rates. The decreasing and

triangular demand patterns are, for example, analyzed by Groebner and Merz (1990)

when studying the inventory problem of a retailer of sporting goods facing seasonal

demand for its products. The authors state that a decreasing demand pattern may be

seen for fishing equipment, while a triangular demand pattern for skis. Similarly, Gupta

et al. (2003) develop ordering policies for items with a deterministic seasonal demand

which is assumed to be either constant or increasing over the selling season. Although

we consider only these four cases, many other plausible demand patterns, such as a

trapezoidal demand rate, can be thought of as minor modifications or combinations of

the analyzed patterns. We now present the specific model formulation of the analyzed

inventory problem for each of these demand patterns; these four sets of formulations -

equations (9), (15), (22) and (31) - are special cases of (1).
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Constant demand rate

In this case (named const), the assumption is that the demand rate remains constant

throughout the entire selling season. For a given scenario s (a realization of the random

variables of the problem), we define the cumulative demand function CDs(τ), i.e. the

cumulative demand that has occurred from the start of the season in scenario s, Bs, to

time τ > Bs as

CDs(τ) =
Qs

Ls

(τ −Bs). (4)

To simplify the notation, in what follows we drop the subscript s. Moreover, to simplify

the calculations and for ease of exposition, only for the purpose of calculating the in-

season inventory, we translate the season to obtain B = 0. Therefore the cumulative

demand function is

CD(τ) =
Q

L
τ. (5)

The market potential at time τ is defined as

Qτ = CD(L)− CD(τ) = Q
(
1− τ

L

)
. (6)

Figure 4 shows the market potential Qτ (solid line) and the demand rate Dτ (dashed

line) functions for the constant demand rate pattern.

Figure 4: Shape of the demand pattern – constant demand rate

The in-season inventory function for τ ∈ [max{t, B}, B + L] can be expressed as

I(x,t)(τ) = (x− (Qt −Qτ ))
+ =

(
x−Q

(τ − t

L

))+

. (7)

The total in-season inventory, denoted by SI(x,t), can then be derived as follows:

SI(x,t) =

∫ u

l

I(x,t)(τ)dτ =

∫ u

l

(
x−Q

(τ − l

L

))
dτ = x(u−l)+

Q

L

(
− 1

2
u2+lu− 1

2
l2
)
, (8)

where l = min{L,max{0, t − B}} and u = min{L, L
Q
x + l}. If t > L, then SIx,t = 0

because l = u = L. If t < L, then the lower limit of integration must be equal to t if
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the product is introduced after the start of the season, and equal to B otherwise. The

upper limit of integration must be equal to either the time at which the season ends, L,

or the time at which the inventory function reaches zero.

Therefore, for a given inventory policy (x, t) we can calculate the profit of the firm in a

given scenario as:

Π(x, t) =(p− c)x− hx(B − t)+ − h
(
x(u− l) +

Q

L

(
− 1

2
u2 + lu− 1

2
l2
))

− (p− v)
(
Q
(
1− l

L

))+

. (9)

Increasing demand rate

In this case (named incr), we assume that the demand rate is zero at the start of the

selling season and increases constantly over the duration of the season. For a given

scenario s, the cumulative demand function CDs(τ) is assumed to be a parabola facing

upward defined as

CDs(τ) =
Qs

L2
s

(τ −Bs)
2. (10)

Again, in what follows we drop the subscript s and translate the season so that B = 0.

Therefore, the cumulative demand function becomes

CD(τ) =
Q

L2
τ 2. (11)

The market potential at time τ is defined as

Qτ = CD(L)− CD(τ) = Q
(
1− τ 2

L2

)
. (12)

Figure 5 shows the market potential Qτ (solid curve) and the demand rate Dτ (dashed

line) functions for the increasing demand rate pattern.

Figure 5: Shape of the demand pattern – increasing demand rate
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The in-season inventory function for τ ∈ [max{t, B}, B + L] can be expressed as

I(x,t)(τ) = (x− (Qt −Qτ ))
+ =

(
x−Q

(τ 2 − t2

L2

))+

. (13)

The total in-season inventory, SI(x,t), can be derived as follows:

SI(x,t) =

∫ u

l

(
x−Q

(τ 2 − l2

L2

))
dτ = x(u− l) +

Q

L2

(
− 1

3
u3 + l2u− 2

3
l3
)
, (14)

where l = min{L,max{0, t−B}} and u = min{L,
√

L2

Q
x+ l2}. If t > L, then SI(x,t) = 0

because l = u = L. If t < L, then the lower limit of integration must equal t if the

product is introduced after the start of the season, and equal to B otherwise. The upper

limit of integration must equal either the time at which the season ends, L, or the time

at which the inventory function reaches zero.

Therefore, for a given decision (x, t) we can calculate the profit of the firm in a given

scenario as:

Π(x, t) =(p− c)x− hx(B − t)+ − h
(
x(u− l) +

Q

L2

(
− 1

3
u3 + l2u− 2

3
l3
))

− (p− v)
(
Q
(
1− l2

L2

))+

. (15)

Decreasing demand rate

The assumption in this case (named decr) is that the demand rate is largest at the start

of the season and decreases constantly during the selling season until it reaches zero at

the end of the season. For a given scenario s, the cumulative demand function CDs(τ)

is a parabola facing downward defined as

CDs(τ) = Qs −
Qs

L2
s

(τ −Bs − Ls)
2. (16)

Again, in what follows we drop the subscript s and translate the season so that B = 0.

The cumulative demand function therefore becomes

CD(τ) = Q− Q

L2
(τ − L)2. (17)

The market potential at time τ is defined as

Qτ = CD(L)− CD(τ) =
Q

L2
(τ − L)2. (18)

Figure 6 shows the market potential Qτ (solid curve) and the demand rate Dτ (dashed

line) functions for the decreasing demand rate pattern.
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Figure 6: Shape of the demand pattern – decreasing demand rate

The in-season inventory function for τ ∈ [max{t, B}, B + L] can be expressed as

I(x,t)(τ) = (x− (Qt −Qτ ))
+ =

(
x− Q

L2

(
t2 − τ 2 + 2L(τ − t)

))+

. (19)

The total in-season inventory, SI(x,t), can be derived as follows:

SI(x,t) =

∫ u

l

(
x− Q

L2

(
l2−τ 2+2L(τ−l)

))
dτ = x(u−l)+

Q

L2

(
−l2u+

1

3
u3+

2

3
l3
)
−Q

L
(u−l)2,

(20)

where l = min{L,max{0, t−B}} and u is

u =

L−
√

L2 + l2 − 2Ll − L2

Q
x, if x < Q

L2 (l − L)2

L, otherwise.
(21)

If t > L, then SIx,t = 0 because l = u = L. If t < L, then the lower limit of integration

must equal t if the product is introduced after the start of the season, and equal B

otherwise. The upper limit of integration must equal either the time at which the season

ends, L, or the time at which the inventory function reaches zero (in this case u is

defined with a conditional equation because the inventory function might not reach zero,

in which case the square root is undefined).

Therefore, for a given decision (x, t) we can calculate the profit of the firm in a given

scenario as:

Π(x, t) =(p− c)x− hx(B − t)+ − h
(
x(u− l) +

Q

L2

(
− l2u+

1

3
u3 +

2

3
l3
)
− Q

L
(u− l)2

)
− (p− v)

( Q

L2
(l − L)2

)+

. (22)

Triangular demand rate

In this case (named tri), the assumption is that the demand rate is zero at the start

of the season and increases constantly until the middle of the season (L/2), and then
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decreases constantly until the end of the season, where it reaches zero again (we call this

case “tri” in short). For a given scenario s, the cumulative demand function CDs(τ)

is the combination of a parabola facing upward for the first half of the season and a

parabola facing downward for the second half of the season (as for the other demand

rates, we drop the subscript s and translate the season so that B = 0):

CD(τ) =

2 Q
L2 τ

2, if τ ≤ 1
2
L

−2 Q
L2 τ

2 + 4Q
L
τ −Q, otherwise.

(23)

The market potential at time τ is defined as

Qτ = CD(L)− CD(τ) =

Q
(
1− 2

L2 τ
2
)
, if τ ≤ 1

2
L

2Q
(
1− τ

L

)2

, otherwise.
(24)

Figure 7 shows the market potential Qτ (solid curve) and the demand rate Dτ (dashed

line) functions for the triangular demand rate pattern.

Figure 7: Shape of the demand pattern – triangular demand rate

The in-season inventory function for τ ∈ [max{t, B}, B + L] can be expressed as

I(x,t)(τ) =

(x− (Qt −Qτ ))
+ =

(
x− 2 Q

L2 (τ
2 − t2)

)+

, if τ ≤ 1
2
L

(x− (Qt −Qτ ))
+ =

(
x− 2 Q

L2 (t
2 − τ 2) + 4Q

L
(t− τ)

)+

, otherwise.
(25)

The total in-season inventory for the first part of the season, SI1,(x,t), can be derived as

follows:

SI1,(x,t) =

∫ u1

l1

(
x− 2

Q

L2
(τ 2 − l21)

)
dτ = x(u1 − l1) +

Q

L2

(
− 2

3
u3
1 + 2l21u1 −

4

3
l31

)
, (26)

where l1 = min{L/2,max{0, t−B}} and u1 is min{L/2,
√

1
2
L2

Q
x+ l21}. If t > L/2, then

SI1,(x,t) = 0 because l = u = L. If t < L/2, then the lower limit of integration must

equal t if the product is introduced after the start of the season, and equal B otherwise.

The upper limit of integration must equal either the time at which the first half of the
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season ends, L/2, or the time at which the inventory function reaches zero.

The total in-season inventory for the second part of the season, SI2,(x,t), can be derived

as follows:

SI2,(x,t) =

∫ u2

l2

(
y − 2

Q

L2
(l22 − τ 2) + 4

Q

L
(l2 − τ)

)
dτ = (27)

= y(u2 − l2) +
Q

L2

(
− 2l22u2 +

2

3
u3
2 +

4

3
l32

)
+

Q

L

(
4u2l2 − 2u2

2 − 2l22

)
, (28)

where y is the leftover inventory from the first half of the season, defined as

y =

max{0, x− 2 Q
L2

((
L
2

)2

− l21

)
}, if t−B < L

2

x, otherwise,
(29)

l2 = min{L,max{L/2, t−B}}, and u2 is defined as

u2 =

L−
√

(L− l2)2 − 1
2
L2

Q
y, if (L− l2)

2 > 1
2
L2

Q
y ⇐⇒ y < Q2,l2

L, otherwise.
(30)

Therefore, for a given decision (x, t), we can calculate the profit of the firm in a given

scenario as:

Π(x, t) =(p− c)x− hx(B − t)+ − h
(
I1,(x,t) + I2,(x,t)

)
− (p− v)

(
y − 2

Q

L2
l22 + 4

Q

L
l2 − 2Q

)+

. (31)

The inventory costs

Both in theory and in practice, it is common to define inventory costs as a carrying

charge per unit of product and time as a percentage of the manufacturing costs of the

product, c. This is because one of the major components of a product’s inventory costs

is the opportunity cost of the capital used to manufacture it. Accordingly, we use this

parametrization for inventory costs. We denote this carrying charge by h̃ and define dif-

ferent levels of this parameter. This leads to different levels of the original inventory costs

parameter of the model, h; specifically, h is defined as h = h̃c. As for the other numeri-

cal parameters, we consider three levels of h̃, specifically h̃ = {0.1/52, 0.25/52, 0.5/52},
representing low, medium and high inventory costs. A range from 10% to 30% per year,

and therefore 0.1/52 to 0.3/52 per week, is usually assumed in practice, depending on

the application, i.e. the considered product, industry, firm, etc. A high yearly inventory

cost level of 50% can apply to products that require special storing conditions, such as

certain food products, agrochemicals or pharmaceuticals. Alternatively, this high level

can be interpreted as reflecting the decrease in the price of the product as the season
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approaches its end, which is a common occurrence, for example, in the fashion indus-

try. We note that the different inventory costs levels can also be interpreted as different

levels of the unit of measurement of time. For example, assuming that 0.1/52 is the

weekly inventory carrying charge, we can interpret the medium and high levels of h̃ as

representing a setting wherein the time units of L and B are defined as 2.5 and 5 weeks,

respectively.

The critical fractile

We use the classic newsvendor definition of the critical fractile, i.e. CF = p−c
p−v

, and

we consider three levels for this parameter. In accordance with Schweitzer and Ca-

chon (2000), we define products with high and low profit margins as having a CF of

0.75 and 0.25, respectively, and additionally define a medium profit margin product

as having a CF of 0.5. Therefore, the three levels considered for this parameter are

CF = {0.25, 0.5, 0.75}. We note that, for all levels, both v and c are kept constant and

p is adjusted to obtain the desired critical fractile. This ensures that the CF parameter

only controls the profit margin of the product and does not play a role in the determi-

nation of the product’s inventory costs, which are then controlled by the parameter h̃

alone.

Table 1 summarizes the parameters that are varied across problem instances and the

levels considered. We use a full factorial design for our numerical study, solving a total

of 5,832 instances of the problem.

Table 1: Parameters of the test instances – inventory management for a stochastic season

Mean length of the season µL = {3, 6, 12}
Coefficient of variation of the length of the season CVL = {0.1, 0.3, 0.5}
Standard deviation of the start of the season σB = {2, 5, 8}
Coefficient of variation of the market potential CVQ = {0.1, 0.3, 0.5}
Statistical dependence between stochastic parameters dp = {indep, pdep}
The shape of the demand pattern A = {const, incr, decr, tri}
Inventory costs h̃ = {0.1/52, 0.25/52, 0.5/52}
Critical fractile CF = {0.25, 0.5, 0.75}

3.4.2 Solution method

Optimization problem (1) is highly complex due to the expectation operator and the

nonlinearity of the profit function for a given realization of the stochastic season; no

closed-form solution is available, and we are unaware of a method to solve the problem

directly. To reduce the complexity of the problem, we first approximate it by representing

the uncertainty in the parameters defining the stochastic season – B, L and Q – using

a discrete number of scenarios S, a common procedure used in stochastic programming.
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Denoting the scenario counterparts of the uncertain parameters and functions of the

problem with a subscript s, we can formulate the scenario approximation of problem (1)

as

max
(x,t)≥0

Π =
S∑

s=1

[
(p− c)x− h

∫ Bs+Ls

t

I(x,t,s)(τ)dτ − (p− v)(x−Qt,s)
+
]
prs, (32)

where prs is the probability of occurrence of scenario s, I(x,t,s)(τ) = [x− (Qt,s −Qτ,s)]
+,

Qτ,s = A(τ |Qs, Bs, Ls)Qs, and Qs is the market potential in scenario s.

However, despite this simplification, the problem remains complex to solve. Therefore,

for the purpose of the numerical study conducted in this chapter, we use a grid-search

procedure to obtain an estimate of the optimal solution to the scenario approximation

of the inventory problem of the firm. The basic structure of the grid-search algorithm is

outlined in Algorithm 1.

Algorithm 1: Grid-search algorithm

Define N grid-points for t, tn, by dividing the interval [mins(Bs),maxs(Bs + Ls)]
into N − 1 intervals of equal length;
Define M grid-points for x, xm, by dividing the interval [0,maxs(Qs)] into
M − 1 intervals of equal length;
t∗ = 0;
x∗ = 0;
Π∗ = 0;
for t = t1, . . . , tN−1 do

Define mUB = argminm xm|xm ≥ maxs Qt,s;
for x = x2, . . . , xmUB do

Calculate Π = 1
S

∑S
s=1Πs(x, t);

if Π > Π∗ then
x∗ = x;
t∗ = t;
Π∗ = Π;

end

end

end

In the grid search, we consider N − 1 equidistant values/points of the variable t in the

interval [mins(Bs),maxs(Bs + Ls)], because introducing the product earlier or later is

always suboptimal. We then define M values/points of the variable x in the interval

[0,maxs(Qs)]. In the grid search, however, only for t = t1 all M values are considered,

because for t > t1 only a subset of them is relevant: x = 0 always results in zero profits, so

it is unnecessary to evaluate the objective function value at this point; making available

a quantity x that exceeds the maximum demand that can be realized before the end

of season across all scenarios is also suboptimal, because this will create unnecessary

leftovers at the end of the season for every scenario. For a given (x, t) pair, the profit
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function value is estimated by taking the average of the profit in all scenarios.

The number of points for t, N , and for x, M , and the number of scenarios S influence

both the computational time required to solve the problem instances considered and the

quality of the solution. Although the computational time increases linearly in all three

parameters, the relationship between the quality and the value of the parameters is not as

straightforward. To find the right balance between solution time and quality we tested

different combinations of values for the three parameters. For each combination, we

solved the scenario approximation of the inventory problem and estimated the optimality

gap of the solution, as defined in Shapiro (2003). We observed that increasing the value

of M and N above 200 resulted in only insignificant improvements in the optimality gap,

therefore, we decided to set M = N = 200. Of the three parameters, S is the one whose

value has the biggest impact on the quality of the solution, as expected in stochastic

programming, with the decrease in the optimality gap in S being significant even for

large values of S. We took a pragmatic approach and chose to set S = 150, which

resulted in good quality solutions while limiting the computational effort to a reasonable

level.

To obtain the desired number of scenarios S of the three stochastic parameters defining

the season for each instance, we use descriptive sampling (DS), first introduced by Saliby

(1990), who illustrated the superiority of the method over the standard simple random

sampling (SRS) method when solving the classic newsvendor problem. Using DS, in the

dp = indep case, we obtain scenarios using the following procedure. First, a set of S

values for each stochastic parameter P (with P = {B,L,Q}) is independently obtained

by applying the formula

Ps = F−1
P

(s− 0.5

S

)
s = 1, . . . , S, (33)

where F−1
P is the inverse cumulative distribution function of P . Second, for each P , the

sampled values are randomly assigned to specific scenario numbers s = 1, . . . , S. At the

end of this two-step process, each scenario s represents a realization of the stochastic

season, with the probability of occurrence of each scenario set equal to 1/S.

For the dp = pdep case, the first step of the scenario-generation process is the same as

for the dp = indep case. However, in the second step, scenarios of the stochastic season

are obtained by matching the values of the stochastic parameters obtained in the first

step according to their dependence structure.
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3.4.3 A näıve inventory policy

As mentioned, to achieve our second research goal, we must define an appropriate bench-

mark policy, which we name näıve policy. In real-world settings, a common practice is

to make the inventory available “as early as possible” to avoid losing sales. Therefore,

in each instance of the problem considered, we choose to define the inventory timing of

the näıve policy, tn, as the earliest scenario of B obtained by the DS scenario-generation

method in the solution procedure described in Section 3.4.2; formally:

tn = min
s
(Bs). (34)

Moreover, given the early timing, we calculate the inventory quantity of the näıve policy,

xn, by applying the classic newsvendor model on the distribution of the (total) market

potential Q:

xn = F−1
Q (CF ). (35)

This näıve inventory policy neglects demand timing uncertainty and the effects of the

inventory timing decision on inventory holding costs and, thus, profits.

3.5 Numerical study results

After solving all problem instances with the methods described in Section 3.4, thus

obtaining the optimal and näıve inventory policies for each parameter combination, we

use ANOVA techniques to analyze and present the results. We divide this section into

two parts: in the first part, we describe in detail the methodology used to analyze and

visualize the results in order to achieve the research goals set out at the beginning of the

chapter; in the second part, we present the results obtained.

3.5.1 Assessment procedure

Our first goal is to determine how the values of the parameters of the inventory problem

influence the optimal inventory policy, which is defined by two decisions, the inventory

timing and inventory quantity decisions. To this end, for each parameter-decision com-

bination, we first use one-way ANOVA. In this analysis, the dependent (or response)

variable is the inventory decision, whereas the independent variable (or factor) is the pa-

rameter. ANOVA involves calculating the mean of the response variable for each factor’s

level over all instances of the problem, and determining the statistical significance of the

differences between those means. Formally, ANOVA is used to test the null hypothesis

that the mean of the response variable for all levels of the factor is equal against the
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alternative hypothesis that the mean is different for at least a pair of levels. Defining a

significance level of α, an F-test is conducted, and the null hypothesis is rejected if the

F statistic obtained from the data is below the threshold value for F corresponding to α.

We set α = 0.05, which is the significance value commonly used in practice. If the null

hypothesis is not rejected, it is concluded that the factor does not have a statistically

significant influence on the response variable. In case the null hypothesis is rejected,

ANOVA does not provide any information on precisely which means differ from each

other. Therefore, to determine which levels have a different mean response, a Tukey’s

honestly significant difference (HSD) test can be performed, which tests the significance

of the difference in the mean of the response variable for all pairs of levels. When infor-

mative, we also discuss the results of Tukey’s HSD test. In addition, for this test, we use

the same significance level as for the ANOVA, i.e. α = 0.05.

In our numerical study, multiple factors influence the dependent variables, therefore, a

one-way ANOVA is appropriate and informative only if no interaction effects with other

factors exist, i.e. if the magnitude and/or direction of the effect of changing the level

of one parameter does not depend on the level of other parameters. To assess this, for

each parameter-decision combination, we additionally conduct a two-way ANOVA with

an interaction effect for each of the other parameters varied in the numerical study. This

analysis calculates the mean effect of moving from one level to another of the param-

eter of interest (“main parameter”) for each level of the second (“control”) parameter,

and then tests the null hypothesis that all these mean effects are equal. To this end,

similarly to one-way ANOVA, an F-test is performed (we choose the same significance

level as in the one-way ANOVA). We discuss the results of the two-way ANOVAs only

if the interaction effect is statistically significant and the interaction modifies the direc-

tion of the effect of the main parameter on the inventory decision under consideration,

because in this case the results of the one-way ANOVA may be misleading. Moreover,

we note that in principle we could also conduct k-way ANOVAs (where k is at most

the total number of parameters), as there could be interaction effects between three or

more parameters. However, we do not investigate these higher-order interactions, in

accordance with the commonly held assumption in practice that these interactions are

negligible when the number of factors is moderately large (Montgomery, 2017). For a

more detailed explanation of ANOVA techniques, the reader is referred to Montgomery

(2017).

To measure the dependent variables in the ANOVAs, i.e. the inventory decisions, we do

not use an absolute scale – that is, the unit of measurement of t and x – but a relative one,

as we believe this to be more informative. Specifically, for a given instance, we measure

the optimal inventory timing as the value of the cumulative distribution function of the

start of the season B at t (which is denoted by R(t) to avoid confusion with t), and the

optimal inventory quantity as the value of the cumulative distribution function of the
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total market potential Q at x (which is denoted by R(x)); mathematically:

R(t) = FB(t) (36)

R(x) = FQ(x). (37)

For each factor considered, we also determine which inventory decision changes the most

when the level of the factor is changed (in the range of levels considered). This informa-

tion can provide practitioners with valuable insight on which decision should be managed

more closely depending on the characteristics of the product and of the selling season.

To this end, for each parameter-decision combination, we first determine the largest and

smallest mean value of R(t) over all the levels, denoted by R(t)+ and R(t)−, respectively.

We then calculate the difference between these two values, denoted by ∆R(t):

∆R(t) = R(t)+ −R(t)−. (38)

This value measures the strength of the effect that the parameter has on the inventory

timing decision. After repeating the same procedure for the inventory quantity decision,

we compare ∆R(t) and ∆R(x) and determine which inventory decision the parameter

affects the most.

Our second goal is to compare the effectiveness of the optimal and näıve inventory poli-

cies. To this end, we start by simulating the expected performance of the two policies in

each instance of the numerical study. We measure the difference in expected performance

between the two policies in terms of relative profit, denoted by ∆rΠ and defined as

∆rΠ =

∑S′

s=1Π
∗
s −

∑S′

s=1Π
n
s∑S′

s=1Π
∗
s

, (39)

where Π∗
s and Πn

s are the profits of the optimal inventory policy and the näıve policy

in the simulation scenario s in the considered problem instance, respectively, and S ′ is

the number of scenarios used in the simulation. In the simulation we can use a much

larger number of scenarios than that used when determining the optimal inventory policy,

because the calculation of the simulated expected profits requires an evaluation of the

profit function for each scenario for a single inventory policy, (x∗, t∗) or (xn, tn), instead

of for all the feasible inventory policies considered in the grid-search procedure, described

in Section 3.4.2, therefore the computational effort required for each instance is much

lower. Moreover, the larger S ′ is, the more accurate the estimate of ∆rΠ is. We set

S ′ = 20, 000 in our analysis. Using this value for S ′, we conducted a test to check the

statistical significance of ∆rΠ and found that it was significantly different from zero in
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93.11% of the test instances.

We present the results of the performance comparison by focusing on each of the pa-

rameters of the problem in turn and show how changing their values from one level to

another influences the difference in expected performance of the two policies. This al-

lows us to provide detailed and practically relevant insights. To do this, we apply the

ANOVA techniques and procedure, previously described, used to reach the first research

goal of this study. In this case, the response variable of the ANOVAs is the difference

in expected performance of the two inventory policies, whereas the factors are still the

parameters of the problem.

3.5.2 Results

In the results, we focus on one parameter at a time. For each parameter, we present

the effect of changing the level of the parameter first for the two optimal inventory

decisions, and then for the difference in expected performance between the optimal and

näıve inventory policies. We emphasize that our conclusions and interpretations in this

section only apply to the specific combinations of levels of the parameters considered in

our numerical study.

Mean length of the season – µL

Figure 8 shows, for each inventory decision, the main effects plot of the mean length of

the season factor on the optimal decision in fuchsia, and, for reference, the näıve policy

in black.
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Figure 8: Main effects plots – mean length of the season

We note that the scale of the y-axis (the response variable axis) of the plots presented

in this section is different for each graph, to ensure that the relationship between the

factors and the response variables are clearly portrayed.

Focusing on the inventory timing decision, we see that as the mean length of the season

increases, the inventory timing is delayed. Importantly, this relationship is monotonic.
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The F-test is highly significant and Tukey’s HSD test shows that the difference between

all pairs of levels is also significant. The larger the mean length of the season, the higher

the in-season inventory costs and, by design, the lower the demand rate in the earlier

part of the season. This makes it beneficial to delay timing, because few sales are lost

by doing so, however, substantial inventory costs are saved. In contrast, delayed timing

in a short season is more expensive, because the firm loses out on a lot more demand in

the same time interval, while not achieving significant in-season inventory costs savings.

Considering the inventory quantity decision, as the mean length of the season increases,

the optimal inventory quantity decreases, and this relationship is also monotonic. The

F-test is significant, but Tukey’s HSD test reveals that only the difference in the mean

response between µL = 3 and µL = 12 is significant. A careful examination of the main

effects plot reveals that the magnitude of the effect is also negligible. Our interpretation

is that the inventory timing decision is very effective in managing the trade-off between

early-season lost sales and inventory costs, therefore a significant inventory quantity

adjustment is unnecessary. Also, although delaying the inventory timing decreases the

future demand, if the length of the season increases simultaneously, the future demand

increases by design because the demand rate at each point in time is smaller, thus making

it unnecessary to considerably decrease the inventory quantity to account for the reduced

future demand.

For this parameter, we obtain ∆R(t) = 0.1665 > ∆R(x) = 0.0234. The analysis shows

that a firm should choose a different inventory policy for the products in its portfo-

lio which have selling seasons of different mean lengths. Specifically, the firm should

differentiate between these products by using different inventory timings.

Figure 9 shows the main effects plot for the mean of the length of the season factor on

the relative profit difference between the näıve and optimal policies, ∆rΠ.
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Figure 9: Main effects plot – mean length of the season on relative profit difference

The larger the mean length of the season is, the higher the relative profits difference

between the optimal and the näıve policies is. The F-test and Tukey’s HSD test for all

pairs of levels are statistically significant. As shown in Figure 8a, the optimal inventory
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timing increases in µL, therefore the näıve policy of making the inventory available as

soon as possible becomes increasingly inappropriate, leading to a larger relative difference

between the two inventory policies. Moreover, the later timing of the optimal policy also

leads to a relatively lower future demand and thus a lower optimal quantity compared

to the näıve policy, as depicted in Figure 8b.

Coefficient of variation of the length of the season – CVL

Figure 10 shows, for each inventory decision, the main effects plot of the coefficient of

variation of the length of the season factor on the optimal decision in fuchsia, and the

näıve policy in black by comparison.

0.1 0.2 0.3 0.4 0.5
CVL

0.0000

0.0500

0.1000

0.1500

0.2000

R(
t)

Opt. policy - indep
Opt. policy - pdep
Opt. policy
Na. policy

(a) Inventory timing

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
CVL

0.4500

0.4600

0.4700

0.4800

0.4900

0.5000

R(
x) Opt. policy

Na. policy

(b) Inventory quantity

Figure 10: Main effects plots – coefficient of variation of the length of the season

Concerning inventory timing, although the one-way ANOVA and Tukey’s HSD test are

significant, the conducted two-way ANOVA tests show that there is a significant and

important interaction with the factor dp, i.e. the statistical dependence between the

stochastic parameters of the problem. Therefore, the results of the two-way ANOVA

with the control factor dp are shown in Figure 10a.

The direction of the effect of CVL on timing depends on the level of dp: specifically, the

optimal inventory timing increases in CVL when dp = pdep and decreases when dp =

indep. Our proposed interpretation for this result is as follows. In general, when CVL

increases, the risk of both a shorter and longer season increases. A shorter season is

problematic because a late timing is more costly, since by design the demand rate within

the season is higher, thus leading to larger lost sales within the same time interval;

this makes an early inventory timing more attractive. A longer season is problematic

because it causes larger (in-season) inventory costs; this makes late inventory timing

more attractive. The net change in the optimal inventory timing caused by an increase

in CVL depends on the ratio of lost sales to inventory costs. In the indep case, the net

effect is an earlier timing, due to the lost sales costs being much higher than inventory

costs in the problem instances considered. In the pdep case, the consequences of a shorter

season are not as problematic as in the indep case, because a short season statistically
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starts later, has a lower total demand, and has a lower demand rate at its start compared

to the indep case. This leads to a smaller decrease in lost sales than in the indep case

if the timing is brought forward. An earlier timing, however, leads to a considerable

increase in pre-season inventory costs. In contrast, a higher risk of a longer season leads

to a substantial increase of in-season inventory costs, thus making later timing more

attractive. As a result, the net effect on inventory timing of a higher risk of both a

shorter and an earlier season is delayed timing.

Although the main effects graph for the inventory quantity decision shows an increase of

the latter in CVL, this increase is very weak and the F-test shows that it is statistically

insignificant. Therefore, we do not further analyze it. Moreover, there is not a significant

interaction effect with dp.

Because the main effect of CVL on the inventory quantity decision is insignificant, and

that ∆R(t) = 0.0133 > ∆R(x) = 0.0014 for the dp = indep case and ∆R(t) = 0.0993 >

∆R(x) = 0.0014 for the dp = pdep case, we can conclude that a change in CVL causes

a larger change in the inventory timing decision. The analysis shows that a firm should

have different inventory timing policies for products with different degrees of uncertainty

regarding the length of their seasons. However, the firm should also consider that the

optimal timing for each degree of uncertainty depends on the statistical dependence

between the start, length and total demand of the season.

Figure 11 shows the main effects plot for CVL on the absolute profit difference ∆Π. We

use the absolute difference because the effect of CVL on the relative profit difference is

statistically insignificant, for the given sample size. However, we note that the direction

of the effect is the same for both response variables. As for the effect of the parameter

on the optimal inventory decisions, the two-way ANOVA tests show that there is a

significant interaction effect with the factor dp. Therefore, we add the results of the

two-way ANOVA with the control factor dp in Figure 11.

0.1 0.2 0.3 0.4 0.5
CVL

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000

10.0000

11.0000 indep
pdep
One-way

Figure 11: Interaction plot absolute profit difference – coefficient of variation of the
length of the season and statistical dependence between the stochastic parameters

The interpretation of the results is based on the difference in timing between the two
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inventory policies, which can be observed in Figure 10a. The difference in timing, and

therefore profits, increases in CVL for the dp = pdep case, and decreases for the dp =

indep case.

Standard deviation of the start of the season – σB

Figure 12 shows, for each inventory decision, the main effects plot of the standard devia-

tion of the start of the season factor on the optimal decision in fuchsia, and, for reference,

the näıve policy in black.
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Figure 12: Main effects plots – standard deviation of the start of the season

Focusing on inventory timing, the main effects plot shows that the optimal inventory

timing decreases in σB, and that this relationship is monotonic. The F-test is highly

significant and Tukey’s HSD test indicates that the difference in the mean optimal timing

is significant for all pairs of levels. When σB increases, the risk of an earlier and later

start of the season are both higher. In the problem instances analyzed in this numerical

study, the negative consequences of a late timing, i.e. lost sales, are much more severe

than those of an early timing, i.e. inventory costs. As a result, the optimal timing is

earlier, to avoid the lost sales from a possible earlier start of the season.

The effect of σB on the inventory quantity decision is significant but weak. Tukey’s HSD

test reveals that only the differences in the mean optimal quantity between the pairs

(σB = 2,σB = 5) and (σB = 2,σB = 8) are significant. The optimal inventory quantity

decreases in σB. Although earlier inventory timing leads to increased future demand,

it also leads to increased expected inventory costs per unit, which decrease the profit

margin of the product, thus the optimal decision is to slightly decrease the inventory

quantity.

For this parameter, we obtain ∆R(t) = 0.1375 > ∆R(x) = 0.0338. The analysis indicates

that a firm should manage the inventory policies of products with different degrees of

uncertainty concerning the start of their selling season differently. Specifically, as can

be intuitively expected, the inventory policies of such products should be differentiated

along the inventory timing dimension.
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Figure 13 shows the main effects plot for the standard deviation of the start of the season

factor on the relative profit difference ∆rΠ.
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Figure 13: Main effects plot – standard deviation of the start of the season on relative
profit difference

The plot shows that the relative profit difference increases monotonically in σB. The

F-test and Tukey’s HSD test are both significant. Because that the optimal timing,

measured by R(t), decreases in σB, thus decreasing the difference in the timing between

the optimal and näıve policies, the direction of the effect of σB at first glance appears

to be counterintuitive. However, a more careful analysis of the results reveals that,

although the difference in R(t) between the optimal and näıve policies decreases in

σB, the absolute difference in timing t between them increases (this happens because

of the larger standard deviation of B), with the optimal policy always being delayed

inventory timing. Therefore, the relative profit difference increases in σB, due to the

larger inventory costs savings achieved by the delayed timing of the optimal policy.

Coefficient of variation of the market potential – CVQ

Figure 14 shows, for each inventory decision, the main effects plot of the coefficient of

variation of the market potential factor on the optimal decision in fuchsia, and the näıve

policy in black by comparison.

Considering the timing decision, the optimal inventory timing increases monotonically

in CVQ. Both the F-test and Tukey’s HSD test are significant. Our intuition for this

result is as follows. For any given timing, the absolute optimal quantity increases if

CF > 0.5 and decreases if CF < 0.5, since the optimality condition for the inventory

quantity decision is a newsvendor-like condition adjusted for inventory costs, as shown

in eq. (2). If CF > 0.5, a larger optimal quantity for any timing should lead to a later

inventory timing, because a delay allows to save inventory costs for a larger quantity.

This is indeed what the main effects plot shows. In contrast, if CF < 0.5, a lower

optimal quantity for any timing should lead to earlier timing, because a delay allows

to save inventory costs for a lower quantity and, simultaneously, increases expected lost

sales. However, this is not what we observe in the results. The two-way ANOVA with
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Figure 14: Main effects plots – coefficient of variation of the market potential

the interaction effect between CVQ and CF shows that the direction of the effect of CVQ

on the optimal inventory timing does not depend on the level of CF , i.e. it is optimal

to have a later inventory timing even when CF < 0.5. We leave this interpretation open

for future research to examine.

The main effects plot for the inventory quantity shows an increase in the quantity in the

coefficient of variation of the market potential. However, the effect is weak and Tukey’s

HSD test reveals that only the difference in the mean optimal quantity between the

lowest and highest level, the pair (CVQ = 2,CVQ = 5), is significant.

We obtain ∆R(t) = 0.0570 > ∆R(x) = 0.0214. This indicates that the inventory policy

of products with a different degree of uncertainty of their total demand over the selling

season should be managed differently. Similar to the standard newsvendor model, and

thus, the näıve policy, the optimal absolute inventory quantity changes in CVQ, but

the percentile rank of the optimal quantity remains relatively constant. However, the

inventory timing differs for different levels of CVQ, emphasizing the importance of this

often neglected component of the inventory policy.

Figure 15 shows the main effects plot for the coefficient of variation of the market po-

tential factor on the relative profit difference ∆rΠ.

The results show that the relative profit difference increases monotonically in CVQ, with

both the F-test and Tukey’s HSD test being significant. This increase follows directly

from the difference in the inventory timing between the optimal and näıve policies, which

increases in CVQ, as shown in Figure 14a. The optimal inventory timing increases,

whereas the näıve timing is always the earliest possible one.

Statistical dependence between the stochastic parameters – dp

Figure 16 shows, for each inventory decision, the main effects plot of the statistical

dependence between the stochastic parameters factor on the optimal decision in fuchsia,

and, for reference, the näıve policy in black.
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Figure 15: Main effects plot – coefficient of variation of the market potential on relative
profit difference
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Figure 16: Main effects plots – statistical dependence between the stochastic parameters

The main effects plot for timing shows that the optimal timing in the pdep case is

substantially larger than in the indep case. The F-test indicates that the difference

between the two means is highly significant. In the pdep case, starting from a given

inventory timing, further decreasing the timing reduces the lost sales as in the indep

case, but this reduction is not as strong: an earlier timing reduces lost sales costs in the

scenarios in which the season starts early; however, in these scenarios, the demand rate

at the start of the season is lower due to the longer season, and the future demand is

higher due to the extended season, therefore, the earlier timing does not result in many

additional sales. Instead, the increase in inventory costs caused by the earlier timing is

more substantial, because in these scenarios, as mentioned, the season lasts longer. As

a result, in the pdep case, for a given timing, a marginal decrease in inventory timing is

less attractive than in the indep case, leading to delayed inventory timing being optimal.

The main effects plot for quantity shows that the inventory quantity is larger in the pdep

case, but this difference is small and statistically insignificant. Consequently, we do not

further discuss the effect of the statistical dependence between the stochastic parameters

defining the season on the optimal inventory quantity decision.
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Given that the main effect of dp on the inventory quantity decision is insignificant, and

that ∆R(t) = 0.1381 > ∆R(x) = 0.0026, we can conclude that a change in dp causes a

larger change in the inventory timing decision. As a result, a firm producing products

with different dependence structures between the stochastic parameters defining the

season should differentiate the inventory policies of such products in terms of timing.

Figure 17 shows the main effects plot for the statistical dependence between the stochas-

tic parameters factor on the relative profit difference ∆rΠ.
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Figure 17: Main effects plot – statistical dependence between the stochastic parameters
on relative profit difference

The main effects plot shows that the relative profit difference is higher in the pdep case,

with the F-test being significant. Also in this case, the difference in expected relative

profits follows directly from the difference in timing between the optimal and näıve

policies: indeed, as can be seen in Figure 16a, this inventory timing difference is larger

in the pdep case.

The shape of the demand pattern – A

Figure 18 shows, for each inventory decision, the main effects plot of the shape of the

demand pattern factor on the optimal decision in fuchsia, and the näıve policy in black

by comparison.

Concentrating on the inventory timing decision, the F-test indicates that, as the main

effects plot suggests, the demand rate has a statistically significant effect on the optimal

inventory timing. Tukey’s HSD test shows that the difference in optimal timing for all

pairs of levels, apart from (const,tri), is significant. The significance of the effect clearly

confirms the results of the theoretical analysis presented by Schlapp and Fleischmann

(2020), who conclude that the shape of the season plays an important role in determining

for how long the inventory timing should be postponed.

For the decreasing, increasing and triangular demand rate cases, there is a clear peak in

demand, as illustrated in Figures 5 to 7. In these settings, it is advantageous to make the

inventory available at the peak demand time, because this allows the firm to avoid losing
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Figure 18: Main effects plots – the shape of the demand pattern

a significant amount of potential sales, and to get rid of a large portion of inventory

quickly, since the higher demand rate leads to more products leaving inventory quicker.

The optimal inventory timing is the earliest in the decreasing demand rate case and the

latest in the increasing case. Earlier timing is preferred if there is a decreasing demand

rate because the peak in demand happens very early, whereas with an increasing demand

rate, a later timing is preferred because the peak happens very late in the season. When

the demand rate is triangular, demand peaks in the middle of the season, therefore the

optimal inventory timing is between the two extreme cases of decreasing and increasing

demand rates. The constant demand rate case is the only one in which there is no peak

in demand to take advantage of. Our intuition for the optimal timing being between the

decreasing and increasing demand rate ones, similar to the triangular rate, is that, once

the optimal portion of demand to be served is determined, it is beneficial to serve this

portion of the demand in the later part of the season to save inventory costs. This way

the products produced in excess of demand, that thus would remain unsold, are salvaged

immediately, rather than remaining in inventory waiting for the season to end.

The main effects plot for quantity shows that the effect of A on the inventory quantity

decision is rather weak and that, as confirmed by the F-test and Tukey’s HSD test, the

only statistically significant differences in quantity are the ones between the triangular

demand rate and each of the other demand rates. Specifically, for the triangular case,

the optimal inventory quantity is smaller than for all the other levels of A. Our intuition

for this result is as follows. It is beneficial to delay inventory timing to avoid inventory

costs in the early slow start of the season, and, simultaneously, it is beneficial to have

an earlier timing to avoid lost sales and in-season inventory costs in the slow end of the

season. This complex trade-off cannot be managed by only adjusting the timing; quantity

must also be adjusted. Specifically, quantity is used to avoid in-season inventory costs

in the slower end of the season, whereas timing is mainly used to manage the trade-off

between pre-season inventory costs and lost sales. Future studies could conduct a more

in-depth and systematic analysis into the reasons for this result, as well as the reasons
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why the optimal quantity for the constant, decreasing and increasing demand rates are

approximately equal.

Comparing the effect of A on the two inventory decisions, we obtain ∆R(t) = 0.1157 >

∆R(x) = 0.0269. Again, we see that when managing products with a different shape of

the demand pattern, a firm should mostly use the inventory timing decision to differen-

tiate between the respective optimal inventory policies.

Figure 19 shows the main effects plot for the shape of the demand pattern factor on

the absolute profit difference ∆Π. We use the absolute profit difference because the

difference in the mean of the relative profit difference is not statistically significant for

several pairs of levels of A.
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Figure 19: Main effects plot – shape of the demand pattern on absolute profit difference

Both the F-test and Tukey’s HSD test are significant. The plot mirrors the one portraying

the main effects of A on inventory timing, which provides a clear interpretation of the

results. However, it is important to note that, although the difference in inventory timing

between the constant and triangular demand rate levels is statistically insignificant, the

difference in the absolute profit difference between this pair of levels is significant. The

reason is that the optimal quantity for the triangular demand rate case is lower and

further away from the suboptimal näıve quantity than the one for the constant demand

rate case, thus leading to a larger difference in profits between the two policies.

Inventory costs – h̃

Figure 20 shows, for each inventory decision, the main effects plot of the inventory costs

factor on the optimal decision in fuchsia, and, for reference, the näıve policy in black.

The figure shows that as h̃ increases, the optimal inventory timing monotonically in-

creases. The F-test is significant and Tukey’s HSD test shows a significant difference

between all pairs of levels. The higher h̃ is, the more expensive pre- and in-season in-

ventory is, which makes it increasingly beneficial to accept more expected lost sales to

save on inventory costs by delaying timing.

For the quantity decision, as h̃ increases, the optimal inventory quantity decreases mono-
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Figure 20: Main effects plots – inventory costs

tonically. Also in this case, both the F-test and Tukey’s HSD test are significant. When

h̃ increases and the timing is delayed, both the future demand and the unit profit margin

of the product decrease, thus leading to a smaller optimal inventory quantity. Moreover,

Figure 20b confirms the analytical results obtained by Schlapp and Fleischmann (2020)

that the optimal inventory quantity is always below the newsvendor one, even with low

holding costs, due to the latter model neglecting the complex effect of inventory costs

on both underage and overage costs.

The effect of h̃ on the two inventory decisions is similar in strength, with the effect on

quantity being slightly stronger: ∆R(t) = 0.0512 < ∆R(x) = 0.0676. This shows that

the firm should have different inventory policies for products with different inventory

holding costs and that these optimal policies should differ both in terms of timing and

quantity. Moreover, we note that increasing h̃ beyond the range considered in this

numerical study, for products with low CF s, the optimal decision in some instances is

to not produce/introduce them at all, because all the inventory timing and quantity

combinations lead to expected losses.

Figure 21 shows the main effects plot for the inventory costs factor on the relative profit

difference ∆rΠ.
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Figure 21: Main effects plot – inventory costs on relative profit difference
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The plot shows that the relative profit difference increases monotonically in h̃. The F-

test and Tukey’s HSD test are both significant. This increase follows directly from the

combined difference in the inventory timing and quantity decisions between the optimal

and näıve policies. The näıve policy makes the product available as soon as possible to

avoid lost sales at all costs. For products with low inventory costs, this strategy works

relatively well, as shown in Figure 21. For products with higher holding costs, instead, it

is crucial to consider the high inventory costs incurred because of the long time that the

products remain on stock before being sold if they are made available too early, which

outweigh the expected additional revenues gained if the season starts early.

Critical fractile – CF

Figure 22 shows, for each inventory decision, the main effects plot of the critical fractile

factor on the optimal decision in fuchsia, and the näıve policy in black by comparison.
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Figure 22: Main effects plots – critical fractile

The main effects plot for timing shows that the inventory timing monotonically decreases

in CF . The F-test and Tukey’s HSD test are significant. The larger CF is, the larger

is the ratio of lost sales costs to unit inventory costs is. This makes it beneficial to set

an earlier timing to decrease total lost sales, at the expense of increasing expected total

inventory costs.

For the quantity decision, as CF increases, the optimal inventory quantity increases

monotonically. The F-test and Tukey’s HSD test are both significant. With a larger CF

and an earlier timing, both the future demand and the unit profit margin of the product

increase, thus leading to a larger optimal inventory quantity.

We obtain ∆R(t) = 0.0937 < ∆R(x) = 0.5394. The analysis shows that products with

a different CF should be managed differently, in terms of inventory timing and, more

importantly in terms of inventory quantity.

Figure 23 shows the main effects plot for the critical fractile factor on the relative profit

difference ∆rΠ.
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Figure 23: Main effects plot – critical fractile on relative profit difference

The relative profit difference decreases monotonically in CF , and the F-test and Tukey’s

HSD test are significant. The difference in both inventory timing and inventory quantity

between the optimal and näıve policies decreases in the critical fractile, which explains

the relative profit differences. Figure 22b again shows that the optimal inventory quantity

is always below the newsvendor one, although the difference is small. However, the large

gap between the inventory timing of the two policies depicted in Figure 22a shows that

the näıve policy, aimed at avoiding lost sales at all costs, is clearly suboptimal when the

unit profit margin of the product is low, because the high inventory costs caused by this

strategy have a substantial negative impact on the expected profits of the firm.

3.5.3 Synthesis

We summarize the results of the numerical study in Table 2. For each numerical factor,

in the Direction columns we use plus and minus signs to represent whether changing the

value of the factor from its lowest to its highest level respectively increases or decreases

the optimal inventory timing and quantity, or the absolute or relative expected profit

difference between the optimal and näıve inventory policies. For the non-numerical

parameters, in the same column, we report the levels of the parameters in ascending order

in terms of the value of the corresponding mean response variables. For the two inventory

decisions, we then repeat the values of ∆R(t) and ∆R(x), reflecting the strength of the

effect that the factor has on the decisions. For the profit difference, we additionally

report the indicator ∆Πr+, defined, similarly to R(t)+ and R(x)+, as the mean value

of ∆Πr when the factor is at the level which achieves the highest mean value of ∆Πr.

This indicator, when compared to the mean of ∆Πr over all instances of the problem

considered in the numerical study, equal to 0.10, facilitates the interpretation of the

results of the analysis related to our second research goal.

For the range of values of the parameters of the problem considered in this numerical

study, the results show that the effect of changing the level of a parameter on the
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Table 2: Numerical study results – summary

Parameter Inventory timing Inventory quantity Profit difference

Direction ∆R(t) Direction ∆R(x) Direction ∆Πr+

µL + 0.1665 - 0.0234 + 0.1383

CVL
dp=indep: -
dp=pdep: +

0.0133
0.0993

+ 0.0014∗
dp=indep: -
dp=pdep: +

0.1018

σB - 0.1375 - 0.0338 + 0.1752

CVQ + 0.0570 + 0.0214 + 0.1557

dp (indep,pdep) 0.1381 (indep,pdep) 0.0026∗ (indep,pdep) 0.1105

A
(decr,const,
tri,incr)

0.1157
(tri,const,
decr,incr)

0.0269
(decr,const,
incr,tri)

0.1207

h̃ + 0.0512 - 0.0676 + 0.2278

CF - 0.0937 + 0.5394 - 0.2524

∗Statistically insignificant (P > 0.05)

optimal inventory timing of the firm is statistically significant for all the parameters of

the problem, whereas the effect on the optimal inventory quantity is insignificant for two

parameters, i.e. the coefficient of variation of the length of the season and the statistical

dependence between the stochastic parameters defining the season. The median strength

of the effect that a parameter has on the inventory timing decision, measured by ∆R(·),
is 0.105, whereas that on the inventory quantity decision is 0.025. This clearly highlights

the importance of the often neglected timing component of the inventory policy for

products with a stochastic selling season. Additionally, we see that the effect on timing

is stronger than that on quantity for all parameters defining the characteristics of the

stochastic selling season, i.e. µL, CVL, σB, CVQ, A and dp, whereas the opposite is true

for the two cost parameters of the problem, h̃ and CF . This implies that a firm should

mainly utilize inventory timing to differentiate the inventory policies of the products in

its portfolio when their selling seasons have different characteristics. If these products

have different unit profit margins and holding costs, then their inventory policies should

also differ significantly in terms of quantity.

In addition, the analysis shows that by correctly considering the effects of inventory costs

on profits and the role of inventory timing in managing them, a firm selling products

with a stochastic selling season can achieve considerably higher expected profits than if

it follows the näıve approach of making inventory available as early as possible. This is

especially the case when the start of the products’ selling season is highly uncertain, the

holding costs are high, and the products have low profit margins.
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3.6 Conclusions and outlook

In this chapter, we built on the analysis of Schlapp and Fleischmann (2020), presenting

the results of a numerical study on the inventory management problem of a firm that

manufactures a product with seasonal and uncertain demand. Using the model setup

of Schlapp and Fleischmann (2020), it was possible to differentiate between the two

types of demand uncertainty, timing and quantity, confronted by the firm in this setting,

and to explicitly model the two key related elements of the firm’s inventory policy –

the inventory timing and inventory quantity decisions. In our numerical study, we were

therefore able to show how and to what extent the parameters of the problem, including

the financial ones and the ones describing the timing and quantity uncertainty of demand,

influence the two inventory decisions of the firm. Based on our results, we conclude that,

although often neglected, inventory timing is a critical component of the inventory policy

of the firm, and that it is especially important to differentiate the inventory policies of

products with different stochastic selling seasons, as defined by B, L, Q, A and dp,

because the strength of the effect of varying the related problem’s parameters in the

ranges considered, measured by ∆R(·), is larger on the inventory timing decision than

on the inventory quantity decision.

Moreover, by comparing the optimal and näıve inventory policies, we showed that a näıve

approach to inventory management for products with stochastic selling seasons is clearly

suboptimal. Indeed, importantly, the näıve inventory policy essentially neglects the

properties of the product’s stochastic season. First, the longer the season is, and hence

the less appropriate the assumption of the newsvendor model of an instantaneous season,

the more important inventory timing becomes and the larger the relative profit difference

between the optimal and näıve policies is. Second, the more uncertain the properties of

the season are, i.e. its start, length and total demand, the better the optimal inventory

policy performs compared to the näıve one. Third, as already concluded by Schlapp

and Fleischmann (2020), the shape of the demand pattern is an additional important

characteristic of the season that should be considered when making inventory decisions,

because different patterns require different policies, especially in terms of timing. Fourth,

the näıve inventory policy disregards inventory costs, and thus the trade-off between

lost sales and inventory costs, which is the central trade-off managed by the inventory

timing decision. Therefore, when inventory costs are more substantial, considering them

becomes crucial for the firm’s profitability. This is especially relevant for products with

a low CF , because the inventory costs caused by a wrong (early) inventory timing

can quickly erode a unit’s low profit margin. In settings in which inventory timing is

especially important, as just defined, the näıve inventory policy can lead to potential

expected losses; these can be up to 250% lower, in absolute values, than the positive

expected profits obtained by the optimal policy in the same setting.

The analysis conducted is not without limitations. The quality of the scenario approxi-
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mation of the analyzed inventory management problem is highly dependent on the num-

ber of scenarios used, and the accuracy of the grid-search solution approach is limited.

Although the results obtained using this solution approach allow us to draw meaningful

and practically relevant conclusions, future studies may be able to improve the preci-

sion of the solutions. In addition, due to the computational complexity of solving the

problem instances, we can only consider a limited subset of levels for each parameter.

Although we believe the levels examined to be practically relevant and the results to

be informative for out-of-sample instances, additional parameter settings, for example

trapezoidal demand rate and different probability distributions of B, L and Q, can be

considered in future research. Moreover, an intuitive interpretation of the effect on one

or both optimal inventory decisions is not provided for some of the parameters.

Finally, we note that, although it allows to clearly highlight the effects and importance of

demand timing uncertainty and inventory costs on the inventory policy of the firm, the

stylized model of Schlapp and Fleischmann (2020) has limited applicability for solving

practical inventory problems, which involve many additional complexities not considered

by the model. For example, firms usually produce multiple products sharing a limited

production capacity, and the production processes are often complicated. In the next

chapters of this dissertation, we focus on showing how a firm can efficiently solve its

inventory planning problem in a more detailed, realistic setting and consider multiple

relevant sources and characteristics of uncertainty.
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4 A scenario-generation approach for stochastic lot-

sizing problems with correlated demands

4.1 Introduction

In this chapter, we continue our study of the inventory management problem faced by

a firm that manufactures products with seasonal and uncertain demands in a common

make-to-stock environment. In Chapter 3, using the model developed by Schlapp and

Fleischmann (2020), we made some simplifying assumptions which allowed us to focus

solely on the effects of seasonality and clearly differentiate between the timing uncertainty

and the quantity uncertainty of demand in that setting. For example, we assumed that

the product under consideration has a single clear-cut seasonal demand pattern in the

planning horizon considered; that at most one lot of the product can be produced; that

the production capacity is infinite, with no setup costs and times; and that the firm

produces only one product, or, equivalently, that the production capacity of the firm is

not shared between the multiple products manufactured. Some of the demand-related

assumptions could in principle be dropped by properly modifying the random parameters

characterizing the uncertain demand, e.g. by changing the A function used to describe

the shape of the season, but to model different and more complex demand patterns

it becomes more natural to use a discrete time parametrization of uncertainty. The

assumptions related to the production process, instead, require a more complex model

than the newsvendor one.

In this chapter, we drop several assumptions made in Chapter 3 and study the same in-

ventory problem in a different production environment and with a more practice-oriented

focus. First, we consider a setting in which the firm produces multiple products with

a potentially stochastic season that share the limited capacity of a single production

resource. Second, we study the problem in an often-encountered production setting in

which the production of a product can be started only after a setup operation, with

associated setup time and/or setup costs, has been performed on the relevant produc-

tion resource. Examples of industries where such production processes can be found are

the agrochemical, food, beverage, pharmaceutical and semiconductor industries (Copil

et al., 2017). Setups make the problem more complex, but at the same time richer by in-

troducing an additional inventory driver, namely economies of scale. However, it should

be noted that, although we focus on this specific production environment, the general

methodology developed to solve the stochastic inventory problem can be easily applied

to other production environments, which can be less or more complex, making the tools

presented here relevant for a wide range of applications. Third, we allow products to

have different and more complex demand patterns.

Therefore, we model the problem in discrete time and define a demand distribution for
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each product in each period within the planning horizon. In addition, the demand of

different product-period combinations can be dependent. This gives more degrees of

freedom to represent demand uncertainty. As a result, we diverge from the previous

representation of the seasonal demand uncertainty used in Chapter 3, which uses three

random variables (plus a function, which can itself be stochastic) per product, and adopt

one that uses one random variable for each product-period combination. This way of

representing demand and its uncertainty is very common in the literature and highly

relevant in practical applications, because the advanced planning systems employed by

many companies use a discrete time axis (Meistering and Stadtler, 2017). To summarize,

in this chapter we analyze the problem faced by a manufacturer of products with seasonal

and uncertain demand, whose production requires setups. The goal is to determine the

optimal production and inventory plan which minimizes costs subject to service-level

constraints, as opposed to the goal in Chapter 3, which was maximizing profits. To

achieve this objective, the right mix of seasonal, cycle and safety stock must be identified.

To model this problem, we build on the stochastic capacitated lot-sizing problem

(SCLSP), the stochastic counterpart of the well-established capacitated lot-sizing prob-

lem (CLSP) which has lately received increasing attention in scientific literature. This

choice is motivated by the ability of the SCLSP to capture all relevant inventory drivers,

i.e. economies of scale, seasonality, and uncertainty, in an integrated fashion. This

model also uses a discrete time axis, in accordance with most lot-sizing problems. The

SCLSP is commonly modeled as a nonlinear mixed-integer problem, and due to the lack

of exact solution methods, approximations are generally developed and solved, possi-

bly with the use of heuristics. The two most notable approximations are the piecewise

linear approximation (PLA) and the scenario approximation (SCN). Irrespective of the

technique used, it is crucial that the nature of demand uncertainty is preserved as much

as possible in the approximated problem, because this determines the validity of the

approximation and, therefore, the quality of the solution. Importantly, this means that

demand dependencies, that especially characterize settings with seasonal demand, as

explained in the introductory chapter of this dissertation, should be correctly reflected

in the approximation.

Specifically, when a scenario approximation is used to solve the problem, it is crucial

to consider the demand dependencies in the process of generating the scenarios. This

is a challenging task for two main reasons. First, in practical applications, estimating

the correct dependencies is not an easy task. For example, for linear dependencies,

an exceptionally large variance-covariance matrix needs to be estimated, possibly from

limited or incomplete data. Second, the scenario-generation process must be able to

generate scenarios reflecting the right dependencies, which calls for techniques that are

much more complex to devise and apply than the often used simple random sampling.

In this chapter, we contribute to the stochastic lot-sizing literature by presenting a re-
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formulation of the scenario approximation of the SCLSP, based on a cumulative demand

view. This approximation redefines scenarios in a way that significantly simplifies the

demand distribution estimation and sampling procedures in the case of demand depen-

dencies, over time and across products.

The remainder of this chapter is structured as follows. In Section 4.2, we present a

review of the stochastic lot-sizing literature, followed by a brief review of the literature

on scenario-generation techniques. In Section 4.3, we present the nonlinear SCLSP which

we use to model the inventory problem studied in this chapter. In Section 4.4, we propose

our cumulative scenario approximation of the SCLSP. We then assess the performance

of the newly developed approach in Section 4.5. Finally, in Section 4.6, we summarize

our contribution and findings.

4.2 Literature review

4.2.1 Stochastic lot sizing

Lot-sizing models are a widely used tool for production planning and inventory man-

agement in manufacturing settings in which setup operations are necessary before the

production of a product can start. Given that these setup operations entail certain fixed

costs which are independent of the quantity produced, these decision models typically

focus on striking a balance in the trade-off between setup and inventory holding costs.

The fewer the setups performed, the lower the incurred setup costs. However, this im-

plies producing in large lot sizes (or batches) in order to meet the incoming demand,

which results in high holding costs. Conversely, performing more setups leads to high

setup costs, but low holding costs due to the ability of meeting demand with smaller lot

sizes. Therefore, two interlinked decisions must be made to solve these problems: the

production timing, i.e. when to produce, and the corresponding lot size.

Lot-sizing problems have been extensively studied, from the simple economic order quan-

tity (EOQ) model to the more complex lot-sizing and scheduling problems with sequence-

dependent setup times and/or costs. The EOQ model is a single-item lot-sizing problem

with stationary demand, a continuous time axis and an infinite planning horizon (Harris,

1913). All other lot-sizing models can be seen as extensions of the EOQ model. The

economic lot-scheduling problem (ELSP) extends the EOQ model by considering multi-

ple products competing for the same scarce capacity (Rogers, 1958). The ELSP keeps

the assumptions of a continuous and infinite time scale, which sets it apart from other

extensions of the EOQ model, which use a discrete time framework, as well as a station-

ary demand for the products. Another extension of the EOQ model is the well-known

Wagner Within (WW) model, which assumes a discrete and finite planning horizon with

dynamic demand, but ignores capacity constraints (Wagner and Whitin, 1958). In the
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remainder of this chapter, the literature review will focus on extensions of the WW

model. These models consider a discrete and finite planning horizon, multiple products

with potentially dynamic demand, and capacity constraints. Because the problem set-

ting analyzed in this chapter considers multiple items whose demand can be seasonal,

and because of the desired discrete-time representation of demand (and its uncertainty),

as explained in the introduction, these models suit our needs very well. According to

the way the time horizon is discretized, these discrete-time capacitated lot-sizing models

can be broadly classified into small bucket and big bucket models (Eppen and Martin,

1987).

Small bucket problems divide the planning horizon into a large number of short periods,

also known as micro-periods. Generally, at most one product can be produced in each of

these periods. Problems belonging to this class are the discrete lot-sizing and scheduling

problem (DLSP), the continuous setup lot-sizing problem (CSLP) and the proportional

lot-sizing and scheduling problem (PLSP). The DLSP makes an “all-or-nothing” as-

sumption, meaning that at most one product can be produced per micro-period and

if production occurs, then the entire capacity of that period is utilized (Fleischmann,

1990). The CSLP relaxes this assumption by allowing partial capacity utilization, while

still allowing at most one item to be produced per period, meaning that the remaining

capacity of the period is unused (Karmarkar and Schrage, 1985). Finally, the PLSP

overcomes the drawback of the CSLP that capacity in some micro-periods might be un-

used by allowing to use this capacity to produce a single additional product in the same

micro-period; that is, at most two products can be produced in the same period (Drexl

and Haase, 1995).

Big bucket models, instead, divide the planning horizon into a small number of long

periods, also called macro-periods. In each of these periods, multiple products can be

produced. Big bucket models include the CLSP (Eppen and Martin, 1987) and the

capacitated lot-sizing and scheduling problem with sequence dependent setups (CLSD).

The CLSP is a basic big bucket model, whereas the CLSD (Haase, 1996) extends it by

allowing for sequence dependent setup times and setup carryover.

A model which does not perfectly fit this classification, and therefore is usually referred

to as a “hybrid” model, is the general lot-sizing and scheduling problem (GLSP), which

divides the time horizon into a finite number of macro-periods, each composed of a fixed

number of micro-periods with variable lengths in which at most one product can be

produced (Fleischmann and Meyr, 1997). The number of micro-periods restricts the

amount of products that can be produced per macro-period.

Most studies on the lot-sizing problem assume a deterministic environment, i.e. all

parameters of the problem are assumed to be known with certainty. Buschkühl et al.

(2010) provide a review of deterministic capacitated lot-sizing problems, whereas Copil

et al. (2017) provide a more recent review on deterministic models that consider lot
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sizing and scheduling simultaneously. However, over the past few decades, a growing

body of research has focused on relaxing the certainty assumption, at least partly, and

investigated the lot-sizing problem under uncertainty, thus introducing a new inventory

driver into the problem. Apart from exploiting economies of scale, now inventory also

serves as a buffer against uncertainty: a larger inventory, although expensive, allows to

meet the uncertain demand more reliably. The most recent literature review on stochastic

lot sizing by Aloulou et al. (2014) shows that the most commonly considered uncertain

parameter is demand, although other uncertainties have also been examined. Recent

examples of studies that consider problems with other stochastic parameters are Taş

et al. (2018), who examine a CLSP with stochastic setup times, Li and Hu (2017), who

consider a CLSD with uncertain demand and workforce productivity, and Hilger et al.

(2016), who study a CLSP with uncertain demand and returns of used products. Aloulou

et al. (2014) also show that in most cases a stochastic programming (SP) formulation is

used to solve the problem (for an overview of SP, see Birge and Louveaux, 2011). This

approach assumes that the probability distribution of the uncertain parameters of the

problem is known. Recently, however, a limited body of research has focused on robust

optimization (RO) modeling techniques (see e.g. Alem et al., 2018). In the remaining

part of this section the focus is on stochastic lot-sizing problems with uncertain demand

modeled using stochastic programming approaches, because these approaches represent

the analyzed inventory management problem the best. This chapter contributes to the

literature on this topic.

The modeling approaches used by scholars to solve the stochastic lot-sizing problem

found are usually classified using the terminology introduced by Bookbinder and Tan

(1988). They classify response strategies to deal with demand uncertainty into three

categories: the dynamic, static-dynamic, and static uncertainty strategies. Following

the dynamic uncertainty strategy, both the production periods, i.e. the periods in which

a lot of a product is produced, and the lot sizes may change dynamically every time

period and be adjusted in accordance with the realization of the uncertain demand.

Under the assumption that capacity is unlimited, Scarf (1959) showed that in a setting

with dynamic and uncertain demand the optimal inventory policy is a dynamic order-

up-to level (st, St) policy. Finding the optimal parameters of this policy is a complex

task which could potentially be solved using dynamic programming (Tempelmeier, 2013).

However, the unlimited capacity assumption prevents the applicability of this model to

most real-life production settings, where usually multiple products are produced on the

same production resource with limited capacity. When capacity constraints and possibly

other complicated factors are taken into account, the problem is typically formulated as

a multi-stage SP model, in which each stage, i.e. decision-point, corresponds to a time

period in the planning horizon. However, solving this problem is complex, especially

because the binary setup variables in each stage are dependent on the realization of

the uncertainty up to that stage. Consequently, this problem has been solved only for
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relatively small instances using scenario trees to represent demand uncertainty.

In the static-dynamic uncertainty strategy, the production periods are fixed at the be-

ginning of the planning horizon, whereas the lot sizes can depend on the realization

of the uncertain dynamic demand in each period. This problem can be modeled as a

multi-stage stochastic program, with each period corresponding to a stage and only the

setup decisions being first-stage variables.

The static uncertainty strategy assumes that all decisions, i.e. production periods and lot

sizes, are fixed at the beginning of the planning horizon. This would be a stochastic pro-

gram with all production decisions being first-stage decisions. As noted by Tempelmeier

(2013), although a dynamic-uncertainty strategy would lead to optimal costs, it would

also lead to significant planning nervousness, due to the uncertainty in the timing and

size of production lots. To avoid this and keep the problem tractable, many studies in

the stochastic lot-sizing literature employ a static uncertainty strategy.

Stochastic lot-sizing problems are commonly formulated as nonlinear mixed integer prob-

lems and solution techniques typically use approximations. These approximations rely

on linear functions to calculate the statistical expectation of the uncertain elements of

the model, e.g. inventory. The accuracy of the approximation of the expectation func-

tions clearly determines the validity of the model and the quality of the solution. The

most common approximation technique is to use discrete scenarios to represent the pos-

sible realizations of the uncertain parameters. Another popular approach consists of

approximating the nonlinear expectation functions using piecewise linear functions.

In what follows, a review of the relevant stochastic lot-sizing literature will be presented.

The review, summarized in Table 3, is structured according to the classification scheme of

Bookbinder and Tan (1988), starting with the dynamic uncertainty strategy and ending

with the static uncertainty strategy.

As already anticipated, most studies using the dynamic uncertainty strategy model the

stochastic lot-sizing problem as a multi-stage SP and use scenarios to represent demand

uncertainty. Brandimarte (2006) is one of the first and most cited studies on stochastic

lot sizing, and it is one of the few studies which consider at least one type of demand

dependence, namely cross-correlation. The author considers a CLSP under uncertain

demand. Uncertainty is modeled using a scenario tree, which is a widely used uncer-

tainty representation method in SP. Unmet demand is assumed to be lost, as opposed

to backlogged as commonly done in the stochastic lot-sizing literature, and results in a

known cost. This assumption will be discussed in more detail later, when we explain

our choice of using backlogs in the inventory problem analyzed in this chapter. The

uncertainty strategy employed by Brandimarte (2006) is dynamic, and the problem is

formulated using a multi-stage plant-location SP model, with both setup and lot size

decisions being scenario-dependent in every stage. Because of the size of the result-
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ing mixed integer program (MIP), the author proposes a heuristic approach to solve it.

To generate the scenario tree, different procedures which are able to generate samples

from a multivariate normal distribution with correlations are used: pure random sam-

pling (RS), antithetic sampling (AS), Latin hypercube sampling (LHS), and moments

matching (MM). In numerical tests, the author solves instances of the problem with

stationary, multivariate normal, cross-correlated demand. The study finds that the SP

model proposed significantly outperforms a näıve deterministic lot-sizing model based

on the expected value of demand, especially when capacity is tight and setup times have

a large impact.

Hu and Hu (2018) consider a different production setting with sequence-dependent setup

times and costs. They develop a stochastic CLSD under demand uncertainty, where the

latter is represented using a scenario tree. The problem is modeled as a multi-stage SP

model, in which both production periods and lot sizes can be adjusted in every period of

the planning horizon, meaning that the authors essentially utilize a dynamic uncertainty

strategy. Unmet demand is assumed to be backordered and is penalized in the objective

function. The scenario tree is obtained by first generating a large number of scenarios

using MM, and then by decreasing this number using scenario-reduction techniques.

These techniques start from a large scenario set and choose which scenarios to keep and

which to delete in such a way that the resultant reduced scenario set has a probability

distribution as close as possible to the original larger scenario set. In their case study,

demands of different product-period combinations are assumed to be independent. The

authors show that a multi-stage model results in a 10% cost reduction compared to a

two stage model.

Curcio et al. (2018) analyze a GLSP under multi-stage demand uncertainty. The prob-

lem is modeled as a multi-stage SP with scenarios, thus following a dynamic uncertainty

strategy. Also in this study, backorders are allowed and limited by penalizing them in the

objective function, as opposed to by using service-level constraints. The authors focus

on developing adaptation and approximate solution strategies, based on both SP and

RO methods, that make it possible to obtain good quality solutions to the often com-

putationally intractable multi-stage problem in reasonable time. The solution strategies

based on SP use a scenario approach to model the uncertainty of the dynamic demand.

The sampling approach used to derive the scenarios is simple random sampling (SRS),

which is applicable due to the independence of demand for every product and period.

The performance of the different approaches is evaluated in a numerical study, which

proves their effectiveness, especially for large instances of the problem.

The final study utilizing a dynamic uncertainty strategy reviewed here is by Chen and Su

(2022), who analyze a stochastic CLSD with multiple resources and machine eligibility.

Demand is uncertain, and each unit of unmet demand can be backordered at a certain

cost. The problem is modeled as a multi-stage SP with scenarios. Three demand patterns
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are analyzed in their numerical study: dynamic, positive and negative trends. In all cases,

the demand for each product-period combination is assumed to be uniformly distributed

and mutually independent, and scenarios are obtained through SRS. Their results show

that the stochastic model outperforms a deterministic one based on the expected value of

demand, especially in the setting in which demand is highly uncertain and has a positive

trend.

The majority of the studies on stochastic lot sizing under the static-dynamic uncertainty

strategy analyzes single-item uncapacitated problem settings (e.g. Rossi et al., 2015).

The only paper we have found in the literature which comes closest to utilizing a static-

dynamic uncertainty strategy in a multi-item capacitated setting is the one by Hu and

Hu (2016), who model a CLSD as a two-stage SP program, where demand uncertainty is

represented using scenarios. Introducing overtime, they define all regular time production

decisions as first stage variables, and overtime production quantities as second stage

variables. In other words, the production periods and the minimum lot sizes are fixed in

advance for the entire planning horizon, as in the static uncertainty strategy, whereas the

lot sizes in every period can be increased by using overtime. This strategy can be viewed

as a special case of a static-dynamic uncertainty strategy. The overtime decisions in

each period are assumed to be made under perfect information, i.e. current and future

periods’ demands are known. The remaining details of the problem are the same as

the ones analyzed by Hu and Hu (2018), which is an extension of this problem to a

multi-stage setting. The model is tested on a real-life case study. As usual, it is shown

that there are benefits to applying the stochastic model as opposed to a deterministic

model. Additionally, it is found that the setup costs of the deterministic and stochastic

models are very close, which indicates that the production sequence is less sensitive to

uncertainty than the production quantities.

The literature on stochastic lot-sizing problems under the static uncertainty strategy is

much richer, probably because of the advantages of the strategy, which were explained

earlier. These advantages are what led us to use this uncertainty strategy in solving

the inventory problem studied in this chapter. Tempelmeier and Herpers (2010) first

proposed a formulation of the SCLSP with a β service-level constraint because of the

practical relevance of the β service-level metric. Unsatisfied demand is assumed to

be backordered. The underlying strategy used to deal with uncertainty is the static

uncertainty strategy. Given the lack of an exact solution method, the authors proposed

a modified ABC heuristic to solve the problem, as opposed to solving it by using a

PLA or SCN reformulation. A different heuristic, based on column generation, was

later presented by Tempelmeier (2011). The performance of the solution methods was

tested using instances with dynamic, normal demand, assuming that there is no auto-

correlation and no cross-correlation, as well as with lumpy demand. Results show that,

on average, the column generation heuristic outperforms the ABC heuristic.
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Helber et al. (2013) presented a nonlinear formulation of a SCLSP with a δ service level,

which will be used to limit backlogs also in the study conducted in this chapter. Under

the assumption that unfulfilled demand is backlogged, the authors show how this new

service level measure is able to reflect both the size of the backorders and the waiting time

of customers. The authors use the static uncertainty strategy. In addition, the problem

is reformulated using two approximations, PLA and SCN, which aim at linearizing the

expected backlog and on hand inventory functions. The resulting MIP problems are then

solved using a fix-and-optimize (F&O) heuristic. The heuristic’s performance, used for

solving both approximations, is assessed using instances with dynamic, normal demand,

under the assumption that there are no auto- or cross-correlations. In order to obtain

scenarios for the SCN model, the authors utilize both SRS and descriptive sampling

(DS). The results show that although the PLA approach outperforms the SCN one,

the latter still produces solutions considered robust and, as the authors note, has the

advantage of being able to model scenarios where auto- or cross-correlation of demand

exists. Moreover, it is shown that the SCN model with DS clearly outperforms the SCN

model with SRS.

Tempelmeier and Hilger (2015) subsequently extend the PLA model of Helber et al.

(2013) by introducing a β service-level constraint and by providing for setup carry-overs.

To solve the problem, they propose a variant of the F&O heuristic, the performance of

which is tested and compared against the heuristic presented in Tempelmeier (2011),

using the same data set. The newly developed heuristic is shown to outperform the

column generation heuristic for smaller problem sizes, whereas it is outperformed by

the latter in larger problem sizes. However, the authors point out that, as opposed to

the column generation heuristic, the F&O heuristic is able to handle problems which

include setup times. Li et al. (2017) analyze the same problem as Tempelmeier and

Hilger (2015) but in a setting with multiple resources and overtime production. More-

over, backlogs are controlled by imposing a penalty instead of service-level constraints.

The authors reformulate the problem using the PLA approach and develop two new

solution approaches based on the F&O heuristic. A numerical study, in which demand

is assumed to be stationary, normally distributed and independent over time and across

products, is performed to test the newly developed approaches. The authors show that

their approaches outperform the F&O heuristic method previously proposed by Sahling

et al. (2009). They also compare their solutions to those obtained solving the SCN ap-

proximations of the problems, which use SRS to obtain the scenarios and are solved with

a branch and cut technique. The results show that their newly developed methods are

competitive with the SCN approach for smaller instances, whereas the latter approach

is not able to obtain a solution for larger instances. However, this might be because the

SCN approach uses a number of scenarios which increases exponentially with the number

of periods and that the solution method used is exact instead of being a heuristic.
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Alem et al. (2018) investigate a GLSP under demand uncertainty using both SP and

RO. In both cases, the static-uncertainty strategy is used to deal with demand uncer-

tainty. Unmet demand is assumed to be backlogged and backlogs are penalized in the

objective function. To represent demand uncertainty, the SP approach uses scenarios,

which are obtained using SRS given that no dependencies in demand are assumed. The

authors compare the two methodologies in computational experiments, confirming their

known different properties. Apart from showing that both approaches outperform a de-

terministic model, the authors also propose guidelines to help decision makers choose

the most appropriate uncertainty modeling approach; if possible, given that they each

have their own strengths and weaknesses, they should be used together. Moreover, they

find that assuming the wrong demand distribution when solving the problem with the

SP approach has only a small impact on the performance.

De Smet et al. (2020) study a stochastic CLSD with a β cycle service level under the

static uncertainty strategy. The only uncertain parameter considered is demand, which

is independently normally distributed for each product and period, and it is assumed

that unmet demand is backordered. The authors approximate the problem using the

PLA approach and propose a novel procedure to find the most appropriate breakpoints

when linearizing the expected backorder and inventory functions. Moreover, they de-

velop a new relax-and-fix with fix-and-optimize heuristic to solve the problem. In a

computational study, they prove that their linearization technique leads to cheaper and

more conservative plans than previously proposed methods, and that their heuristic out-

performs a state-of-the-art solver, both in terms of objective function value and solution

time.

We conclude this review of stochastic lot-sizing problems under different uncertainty

strategies with three studies that differ from the ones presented so far. These studies use

a slightly different approach to model uncertainty and apply their stochastic lot-sizing

models under a rolling horizon (RH) planning strategy, which is in itself an alternative

method of dealing with uncertainty. The first paper is that of Meistering and Stadtler

(2017). The authors analyze a stochastic lot-sizing problem with β cycle service-level

constraints. They model the problem starting from a deterministic CLSP, which is

then extended to consider demand uncertainty by using exogenous minimum inventory

targets at the end of each production cycle (the time between two consecutive setups

of the same product), under the assumption that production cycles have integer period

lengths. These minimum inventory targets, obtained in a pre-processing phase for all

cycles of all possible production schedules, are the safety stocks necessary to achieve the

target β cycle service level. Binary variables which determine the start and duration

of production cycles of all the products are therefore added to the model, as well as

constraints ensuring that whatever schedule is chosen, the inventory at the end of each

cycle is larger than the exogenous target. As opposed to the SCLSP, the objective
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function does not estimate inventory costs based on the expected inventory on-hand,

but on the expected net inventory. This method results in an inaccurate estimation of

inventory costs, but this inaccuracy is negligible if the target service level is high enough.

The focus of the article is not on the specific modeling approach to deal with uncertainty,

but on its application in RH planning.

The authors propose the idea of a stabilized-cycle strategy, which can be summarized

as follows. At each resolving point in the planning horizon, the estimated future cycle

fill-rate is calculated based on currently available information. If this falls below the

target, then a cycle that started in the past and finishes in the future is interrupted and

a new setup is enforced to avoid missing the target, even if this new setup is made in

the frozen horizon of the RH framework. In other words, the problem solved at each re-

planning point in time uses a static uncertainty strategy, because decisions are fixed for

the entire planning horizon. However, the optimal schedule determined at the beginning

of the planning horizon can occasionally be modified at future re-planning points if

the developed plan does not meet the intended service-level target. The authors carry

out a numerical study comparing their approach to other commonly used strategies to

deal with demand uncertainty in an RH planning environment. They analyze both a

setting with stationary and seasonal demand, in which demand is period and product

independent, finding that their approach reaches a good compromise between inventory

costs and the negative deviation of the service-level from its target.

Tavaghof-Gigloo and Minner (2020) study a SCLSP under a RH planning strategy. The

authors propose a novel formulation for the SCLSP with cycle service-level constraints

which takes into account future re-planning opportunities under a RH strategy. The

basic variant of the model uses a static uncertainty strategy. Demand is assumed to be

independent over time and across products. Cycle service-level constraints are enforced

by ensuring that the inventory level at the beginning of each production cycle is larger

than the target inventory level. This target inventory level is a nonlinear function of the

mean and the variance of the cumulative demand in the cycle, which are decision variables

of the model, because the length of the production cycles is determined endogenously in

the model. To linearize the function, a bivariate linearization technique (BLT) is used.

Subsequently, the authors present an extension of the model which considers the possible

future re-planning opportunities that arise when applying the model under RH planning.

This is done by decreasing the target inventory level function at the end of each cycle

with the use of a scaling factor calculated in a pre-processing phase, because the re-

planning opportunities protect against some demand uncertainty, thus limiting the need

for safety stock. As a result, the extended model can be thought of as using a static

uncertainty strategy with an exogenous dynamic uncertainty strategy component. The

performance of the models is then compared to that of a stochastic dynamic program

and a sequential planning approach in a numerical study. The authors find that, as
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expected, if capacity is limited, the newly developed models outperform the sequential

approach, because less inventory is needed to achieve the same service level. If there

is sufficient capacity, the extended SCLSP, which considers re-planning opportunities,

outperforms the basic SCLSP by avoiding excessive safety stock. Finally, as capacity

increases, the performance of the extended SCLSP moves closer to the theoretical lower

bound provided by the SDP.

Tavaghof-Gigloo (2019) develops a new formulation of the stochastic GLSP using the

same techniques presented in Tavaghof-Gigloo and Minner (2020), that are appropriately

modified to fit the different setting that is analyzed. Here backorders are limited by

backlog costs as opposed to target inventory levels. This requires the determination of

backlogs at the end of each production cycle. In addition, the production cycle lengths

are implicit decision variables of the model. The backlog at the end of a production cycle

is a nonlinear function of the mean and variance of the cumulative demand within the

cycle. The backlog functions are then linearized using a BLT. Moreover, the model can

accommodate autocorrelation in the products’ demand. Because the model is applied

under a RH planning strategy, re-planning opportunities are also considered similar to the

2020 study, namely by decreasing the expected backlog functions at the end of each cycle

with the use of a scaling factor calculated in a pre-processing phase. Therefore, the model

essentially uses a static uncertainty strategy with an exogenous dynamic uncertainty

strategy component. The numerical study conducted by the author on a real-world data-

set assumes that demand is independent between products but autocorrelated for each

product. The results show that the newly developed approach significantly outperforms

other simpler strategies commonly used in practice to deal with demand uncertainty,

such as the sequential approach.

Table 3 summarizes the literature presented. The last two columns are only relevant for

SCN approaches. In the last column, titles Correlations, the word Yes indicates that

the scenario-generation method used to derive the scenarios in the numerical study can

accommodate demand dependencies.
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As can be seen, the practical benefits of the static uncertainty strategy have attracted

significant interest in the stochastic lot-sizing literature, although recently the focus

has shifted towards the static-dynamic uncertainty strategy. In the model discussed

in this chapter, we use the static uncertainty strategy. From the studies that do not

assume dynamic demand, only Meistering and Stadtler (2017) consider seasonal demand

in their numerical study, but this is done assuming that demand is time and product

independent. In the context of the study reported in this thesis, it is important to note

that although demand is usually assumed to be dynamic, the models and approximations

developed in the studies reviewed can deal with demand seasonality, because this can be

considered as a special case of dynamic demand. Moreover, the scenario representation

of uncertainty remains widely used to solve stochastic lot-sizing problems. In most

studies using a scenario representation of uncertainty, the scenario-generation method

is unable to account for correlations. The studies able to account for this assume that

demands of different product-period combinations are mutually independent. The only

exception is Brandimarte (2006), in which demand is assumed to be cross-correlated,

but not auto-correlated. Finally, we mention that the PLA approach is theoretically

able to deal efficiently with demand dependencies, even though all studies utilizing this

approximation strategy assume independent demands.

In this chapter, we analyze a SCLSP using a static uncertainty strategy in which demand

can be static, dynamic or seasonal, and can be product and period-dependent. Unmet

demand is assumed to be backordered and the amount of backorders is limited through

service-level constraints. To approximate and solve the problem, we use a scenario

approach.

4.2.2 Scenario generation

When a SCN approach is used to solve the SCLSP, it is crucial that the scenario-

generation method creates scenarios that reflect all the important characteristics of un-

certainty to obtain a solution of good quality. Specifically, in the case of interest, seasonal

demand, the dependence of demand is such a characteristic. The majority of the SCLSP

studies that use a SCN approximation to solve the problem, identified in the literature

review in the previous section, use simple scenario-generation methods, such as SRS and

DS, which are unable to account for demand dependencies. Alternatively, they use more

complex methods, such as MM, that can deal with dependencies but are applied to sim-

pler settings where correlations are disregarded. Of course, SP and scenario-generation

techniques are not only applied to stochastic lot-sizing problems, or more generally to

inventory management problems, but also to many other problems from a wide variety

of fields. In the supply chain management area, SP is extensively used to solve supply

chain network design problems. Other fields include finance, telecommunication and

electricity and energy generation (Di Domenica et al., 2009). Because of the central role
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generally played by scenario-generation methods in stochastic problems and specifically

in stochastic lot sizing, we provide a brief overview of the methods found in the scientific

literature.

The most commonly used scenario-generation approach is sampling, which can take

many forms (Kaut and Wallace, 2003). In its simplest but most prevalent form, sam-

pling methods can sample from univariate distributions only, and therefore can handle

multivariate distributions only if the random variables are independent. Monte Carlo

sampling (e.g. the SRS approach mentioned earlier), importance sampling, DS and

stratified sampling (e.g. LHS) are examples of this kind of technique. Other sampling

methods can generate samples from multivariate distributions respecting possible cor-

relations between the variables, albeit at the cost of significantly increasing complexity.

Examples of such methods are found in Cario and Nelson (1997) and Deler and Nel-

son (2000), who use transformation-based approaches to obtain the desired multivariate

random vector with an arbitrary correlation matrix. Another method that deals with

correlations consists of conducting principal component analysis (PCA) on the original

variables and then sampling scenarios of the principal components, which can then be

transformed back into scenarios of the random variables that exhibit the correct corre-

lations. As an example, Loretan (1997) uses PCA to develop stress scenarios for market

risk in financial instruments. The sampling approaches mentioned so far assume that the

dependencies between the random variables can be captured by standard correlations,

whereas copulas-based methods do not assume this. An example of the use of copulas

can be found in Kaut and Wallace (2011) and Kaut (2014), in which copulas are applied

to single and multi-period portfolio optimization problems.

The main disadvantage of sampling-based methods is that they may generate scenario

trees that have significantly different statistical properties than the sampled distribu-

tion with a limited number of scenarios (Mitra and Di Domenica, 2010). As a result,

statistical methods were developed in order to obtain scenarios following the statistical

properties of the random variables of interest. The most common method in this class

is MM. This method was first presented in Hoyland and Wallace (2001), where it was

applied to generate scenarios of returns of different financial assets with the goal of find-

ing the optimal funds’ allocation among those assets. This method, as opposed to many

sampling methods, does not assume that the distribution functions of the marginal vari-

ables are known. MM consists of solving one or more nonlinear, non-convex optimization

problems that which generate a predetermined number of scenarios which have statis-

tical properties, including correlations, as close as possible to the ones of the sampled

multivariate distribution. Other statistical approaches are path-based methods, which

are employed when the underlying random process follows an econometric or time-series

model. For example, Conejo et al. (2010) show how path-based methods can be used to

generate unit-availability scenarios in the electricity markets. These methods are built on
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the assumption that demand is time-dependent and can accommodate cross-correlation,

which, however, increases their complexity.

Finally, certain studies generate scenarios that combine two or more of the aforemen-

tioned approaches. For example, Schütz et al. (2009) analyze a SCND problem in

the meat industry and generate demand scenarios using a combination of path-based

methods, which take care of inter-temporal correlation, PCA, which takes care of cross-

correlations between products, and finally MM, which ensures that the first four moments

in the scenarios are as close as possible to those in the historical data. Calfa et al. (2014)

present a similar approach that combines path-based methods and a modified version of

MM that, apart from moments, also attempts to match the empirical cumulative distri-

bution function of the data. The method is applied to forecast demand and production

yield for illustrative purposes.

The above summary is not a comprehensive review of the literature available on the topic

of scenario generation. However, we it is sufficient for the purpose of this thesis. For a

more comprehensive review, the reader is referred to Mitra and Di Domenica (2010) and

Kaut and Wallace (2003).

The reformulation of the scenario approximation of the SCLSP model that we propose

requires scenarios of the cumulative demand for each product and period combination.

These scenarios can be obtained independently, making it unnecessary in a practical

setting to estimate correlations from limited or incomplete historical data and to con-

sider them when generating scenarios, thus simplifying the latter process significantly.

Moreover, our approach can be directly applied to problems in which demand dependen-

cies are nonlinear, whereas the more sophisticated scenario-generation methods usually

deal with linear dependencies (correlations) only. This might be useful in some settings

when the demand of a product is seasonal. As an example, demands of different periods

can be uncorrelated or negatively correlated in “normal” seasons, e.g. the timing of the

demand during the season might change, but the total demand in the season remains

unchanged. However, they might be highly positively correlated in very “good” or “bad”

seasons, i.e. the demand in every period of the season soars or drops. In addition, in

these settings, similar to the dependence over time, the dependence across products can

also be nonlinear.

4.3 Problem statement and model formulation

We use the SCLSP with a static uncertainty strategy as a starting point for modeling the

inventory management problem analyzed in this chapter. In line with the literature, and

following, for the most part, the notation of Helber et al. (2013), we divide the (finite)

planning horizon into T discrete time periods. We assume that there is a single facility,

or resource, with a limited regular-time capacity of bt, measured in time, in period t,
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Table 4: SCLSP model – notation

Sets

K = {1, . . . , K} Set of products
T = {1, . . . , T} Set of periods

Deterministic parameters

bt Production capacity in period t ∈ T
ptk Unit processing time of product k ∈ K
sck Setup cost of product k ∈ K
stk Setup time of product k ∈ K
hk Unit holding costs per period for product k ∈ K
oc Cost of one unit of overtime

Random variables

Dkt Demand of product k ∈ K in period t ∈ T
NIkt Net inventory of product k ∈ K at the end of period t ∈ T
IPkt Physical inventory of product k ∈ K at the end of period t ∈ T

Decision variables

xkt Lot size of product k ∈ K in period t ∈ T
ykt Binary setup variable of product k ∈ K in period t ∈ T
ot Overtime used in period t ∈ T

which can produce all K products. The capacity can be expanded by the use of overtime,

which comes at a cost of oc per unit of time. In order to produce product k ∈ K in a given

period, a setup operation with corresponding costs sck and time stk must be performed,

and a processing time ptk is required to produce each unit of the product. Holding costs

per unit and period are hk. Unmet demand is assumed to be backordered and we limit its

amount using service-level constraints. The demand for product k in period t ∈ T , Dkt,

is a random variable with a known probability distribution, and dependencies between

different product-period combinations may exist. Based on the notation introduced in

Table 4, the stochastic capacitated lot-sizing model can be formulated as follows (Helber

et al., 2013):

SCLSP Model

Min
∑
k∈K

∑
t∈T

hk · E[IPkt] +
∑
k∈K

∑
t∈T

sck · ykt +
∑
t∈T

oc · ot (40)
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Subject to

NIkt = NIk,t−1 + xkt −Dkt ∀k ∈ K, ∀t ∈ T (41)

IPkt = max(0, NIkt) ∀k ∈ K, ∀t ∈ T (42)∑
k∈K

(ptk · xkt + stk · ykt) ≤ bt + ot ∀t ∈ T (43)

xkt ≤
bt
ptk

· ykt ∀k ∈ K, ∀t ∈ T (44)

Service level constraints (45)

xkt ≥ 0 ∀k ∈ K, ∀t ∈ T (46)

ot ≥ 0 ∀t ∈ T (47)

ykt ∈ {0, 1} ∀k ∈ K, ∀t ∈ T . (48)

The objective (40) is to minimize expected total costs, which are composed of expected

inventory holding costs, setup costs and overtime costs. Given the uncertainty of de-

mand, the physical inventory is itself a random variable, which is defined in the con-

straints. Constraints (41) define the stochastic net inventory, which is a function of the

net inventory in the previous period, the produced quantity and the random demand.

Constraints (42) define the random physical inventory, which is a function of the net

inventory. Constraints (43) ensure that the capacity used for producing and performing

setups does not exceed the sum of the regular and overtime capacities. Constraints (44)

ensure that in order to produce an item, the required setup is performed. Constraints

(45) are service-level constraints which limit the amount of backorders; their exact form

depends on the service-level measure used and will be discussed shortly. Constraints

(46)-(48) are variable definition constraints. As previously mentioned, the static un-

certainty strategy applied here can be used with any other production model, e.g. the

GLSP or CLSD, by simply substituting the production-related constraints (43), (44),

(46) and (48) by the (deterministic) production constraints of the relevant model.

In the setting with uncertain seasonal demand, analyzed in this chapter, inventory plays

three roles. First, it allows exploiting economies of scale by producing in large batches,

which creates inventory, and thus save on setup costs. The inventory kept for this

purpose is called cycle stock. Second, it serves as a buffer against demand uncertainty to

ensure that the desired service-level target is met; this inventory is referred to as safety

stock. Third, inventory enables to serve demand in the peak season by pre-producing in

the off-season instead of using the expensive overtime capacity in the peak season; this

inventory is named seasonal stock. Although in the SCLSP model they are not explicitly

differentiated, all of these different inventory types are included in the optimal inventory

plan.

At this point it is important to discuss the topic of unmet demand and the importance
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of limiting its amount. Whenever a firm is unable to meet a customer’s demand, this

demand can either be lost or backordered, i.e. served at a later point in time, possibly

at a discount. Accordingly, this should be reflected in inventory models, which therefore

are commonly developed under the assumption that unmet demand is either lost or

backordered. Of course, in practical settings, a mix of these two assumptions is likely

to be the most accurate representation of reality. As mentioned in the literature review

section, the common assumption in inventory theory is the one of backordering, which

has the advantage of simplifying the model formulation. However, it should be noted

that when the backordered quantity is kept low enough, the difference between the

model formulations under the two assumptions is negligible (Azoury and Miyaoka, 2013).

For these reasons, we also assume that unmet demand is backordered in our model.

Subsequently, the amount of backorders must be controlled.

In inventory models, and specifically in lot-sizing problems, as shown in the literature

review, backorders are limited by either attaching a cost to each backordered unit or by

enforcing a certain minimum service level, which measures the degree of customer or-

ders’ satisfaction according to some metric. Due to the practical difficulty of quantifying

backorder costs, we use the latter approach to limit the size of backorders. Because sev-

eral service-level measures have been developed in the inventory management literature,

in the following only the most common ones will be presented and formulated for the

SCLSP model.

The α service level measures the probability that no stockout occurs during a production

cycle, i.e. the time between two consecutive production periods, or in a given time

interval. The α service level of a product k for a certain period t is thus defined as

αkt = Pr(NIkt ≥ 0). (49)

If the α service level measure is used to control backlogs, then, given a target service

level per product and period αk, constraints (45) would take the following form (Koca

et al., 2015):

Pr(NIkt ≥ 0) ≥ αk ∀k ∈ K, ∀t ∈ T . (50)

This measure is intuitive and mathematically tractable, but it has the downside that

it only measures the probability of the occurrence of a stockout without considering its

magnitude.

The β service level, or fill-rate, measures the percentage of demand in a given time span

that is met immediately, that is, without backordering. The time span considered can

be either any finite number of periods, or a production cycle. In this thesis, we use the

terminology employed by Helber et al. (2013): the backorder in period t refers to the

amount of products demanded in period t which is not met in the same period, whereas
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the backlog in period t refers to the quantity of backorders generated in periods 1 to t

that remain unfilled at the end of period t. For a given product k, we define the number

of units (newly) backordered in period t as Bkt, i.e. the amount of demand of period t

which is not met in the same period. The so-called finite horizon fill-rate of product k,

βkT , can then be defined as follows:

βkT = 1− E[
∑T

t=1Bkt]

E
[∑T

t=1Dkt

] . (51)

The backorders in period t can be obtained by subtracting the backlog at the beginning

of period t, i.e. immediately after production but before the period’s demand is satisfied,

from the backlog at the end of period t (Tempelmeier, 2013). We can therefore define

Bkt as

Bkt = max(0,−NIkt)−max
(
0,

t−1∑
τ=1

Dkτ −
t∑

τ=1

xkτ

)
. (52)

To implement a finite-horizon β service-level constraint (where the horizon is the entire

planning horizon) with product-specific targets βkT , constraints (45) need to be replaced

with:

Bkt = max(0,−NIkt)−max
(
0,

t−1∑
τ=1

Dkτ −
t∑

τ=1

xkτ

)
∀k ∈ K, ∀t ∈ T (53)

1−
∑

t∈T E[Bkt]∑
t∈T E[Dkt]

≥ βkT ∀k ∈ K. (54)

In order to implement a cycle β service-level constraint in the SCLSP, to measure the

percentage of demand that is met immediately in a given production cycle, more changes

are necessary, because there is a need to track every cycle of every product in the planning

horizon considered. First, for a given product k and for two given consecutive order cycles

(i−1) and i, ending in periods τi−1 and τi, respectively, we can define the β cycle service

level for cycle i of product k, βk(τi), as

βk(τi) = 1−
E
[∑τi

t=τi−1
Bkt

]
E
[∑τi

t=τi−1
Dkt

] . (55)

The numerator on the right-hand side of equation (55) represents the new backorders

generated during cycle i and the denominator represents the total demand in that cycle,

thus defining the cycle service level as intended. Second, we must define two new tracking

variables: lkt, which counts the number of periods since the last setup of product k prior

to t, and wkt, which equals one if a setup for product k is performed in period t+ 1 and

zero otherwise.

Finally, denoting the β cycle service-level target for each cycle of product k by βk, we
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can substitute constraints (45) with the following constraints (Tempelmeier, 2013):

Bkt = max(0,−NIkt)−max(0,
t−1∑
τ=1

Dkτ −
t∑

τ=1

xkτ ) ∀k ∈ K, ∀t ∈ T (56)

lkt = (lk,t−1 + 1) · (1− ykt) ∀k ∈ K, ∀t ∈ T (57)

lk0 = −1 ∀k ∈ K (58)

wkt = yk,t+1 ∀k ∈ K, t = 1, . . . , T − 1 (59)

wkT = 1 ∀k ∈ K (60)

1−
E
[∑t

τ=t−lkt
Bkτ

]
E
[∑t

τ=t−lkt
Dkτ

] ≥ βk ∀k ∈ K, ∀t ∈ T |wkt = 1. (61)

Constraints (56) define the backorders in period t, as already explained. Constraints

(57) and (58) are used to measure the lengths of cycles. For every time period t, variable

lkt is equal to zero if the current production cycle started in period t or equal to the

length of the production cycle if it started in a previous period. Constraints (59) and

(60) are used to define the end of the current production cycle of product k. For every

time period t, variable wkt is equal to one if the current production cycle of product

k will terminate in period t + 1 or if t is the last period of the planning horizon, and

equal to zero otherwise. Service-level constraints (61) ensure that for each period t, if a

production cycle of product k started in period t− lkt ends, then the cycle service-level

target for that cycle is met. Tempelmeier et al. (2018) show a linear reformulation of

constraints (56)-(61), which does not require the additional variables lkt and wkt, obtained

by expressing the cycle service level in terms of an equivalent finite-horizon fill-rate. This

reformulation ensures that if capacity constraints are not binding, then the target cycle

service level is met exactly, and otherwise it guarantees that the target is not missed.

As noted by Helber et al. (2013), apart from the difficulty of simultaneously making

production quantity decisions and enforcing service-level constraints, the β service-level

measure also has the disadvantage of only controlling the size of the backorders in a

production cycle without reflecting the time that is necessary to meet this backordered

demand.

The γ service level attempts to overcome this shortcoming of the fill-rate measure by

reflecting the waiting time of customers whose demand is backordered, to a certain

extent. Denoting the existing backlog of product k at the end of period t by BLkt, the

γ service level of product k in period t can be defined as

γkt = 1− E[BLkt]

E[Dkt]
. (62)

Alternatively, the measure can be defined as an average over the whole planning horizon.

The problem with this measure is that for some periods it might be either negative, if the

78



expected backlog is larger than the expected demand in that period, or even undefined,

if the expected demand is zero. Moreover, this measure is not clearly interpretable.

The δ service level is a measure introduced by Helber et al. (2013) which simultaneously

measures the size of the backorders and the waiting time experienced by customers.

Moreover, it is well-defined and offers a clear interpretation. Averaged over the entire

planning horizon, the δ service level of product k is defined as

δk = 1−
∑T

t=1E[BLkt]∑T
t=1(T − t+ 1) · E[Dkt]

. (63)

To interpret this measure, we can use Little’s Law. We can define the customers waiting

for their backorders of product k as the inventory of this production system. The average

inventory of the system is then 1
T
·
∑T

t=1E[BLkt]. If long-run production matches long-

run demand, then the system has an average throughput of 1
T
·
∑T

t=1E[Dkt]. The average

waiting time for customers to receive their backlogged demand, E[Wk], is therefore

E[Wk] =
1
T
·
∑T

t=1 E[BLkt]
1
T
·
∑T

t=1 E[Dkt]
. (64)

Using this equality, we can obtain another, equivalent, definition of the δ service level:

δk = 1−
∑T

t=1E[Dkt]∑T
t=1(T − t+ 1) · E[Dkt]

· E[Wk]. (65)

The second term on the right-hand side of this equality is the percentage of the maximum

demand-weighted waiting time that customers of product k experience. Indeed, the

denominator of this term is the maximum demand-weighted waiting time, because every

period’s demand is multiplied with the maximum waiting time for that demand, i.e. the

time left until the end of the planning horizon. The numerator measures the actual

demand-weighted waiting time experienced by customers, because each period’s demand

is multiplied by the average waiting time. Therefore, we can conclude that the δ service

level measures “the expected percentage of the maximum possible demand-weighted

waiting time that the customers of product k are protected against” (Helber et al.,

2013). This measure reflects both the size of backorders and the waiting time experienced

by customers, and is clearly well-defined. Indeed, if the entire demand is always met

immediately, i.e. there are no backlogs in any period, or, equivalently, the average waiting

time is zero, then δk = 1. If, instead, the total production quantity in the planning

horizon is zero, meaning that the total backlog and the average waiting time are at their

respective maximum values, then δk = 0. All other possible cases are somewhere between

these two extreme events, therefore 0 ≤ δk ≤ 1.
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Denoting the service-level target of product k by δk, we can implement a δ service-level

constraint by substituting constraints (45) with the following (Helber et al., 2013)

BLkt = max(0,−NIkt) ∀k ∈ K, ∀t ∈ T (66)

1−
∑T

t=1E[BLkt]∑T
t=1(T − t+ 1) · E[Dkt]

≥ δk ∀k ∈ K (67)∑
t∈T

xkt ≥
∑
t∈T

E[Dkt] ∀k ∈ K. (68)

In the SCLSP analyzed in this chapter, the δ service level is chosen to limit backorders,

given the above-mentioned properties of this measure.

The SCLSP with δ service-level constraints is a mixed integer nonlinear programming

model (MINLP), with the nonlinearity originating from the expected inventory and ex-

pected backlog functions, which are defined as the expectation of maximum functions.

Because of its nonlinear nature, the most common approach to solving the SCLSP is to

approximate it by linearizing the nonlinear expected inventory and backlog functions,

either with the use of scenarios or of piecewise linear functions. We now analyze the sce-

nario approximation of the problem, focusing on the setting with dependent demands.

4.4 A cumulative scenario approximation of the SCLSP

4.4.1 The standard scenario approximation of the SCLSP

As mentioned, a common approach in the stochastic lot-sizing literature (and in SP in

general) is to represent the uncertainty in the form of scenarios, i.e. possible discrete

realizations of the stochastic parameters. It is assumed that one scenario s of a set

S = {1, . . . , S} of scenarios will be realized, and the ex-ante probability that this will

happen is prs. These scenarios are paths of demand realizations used to approximate

the total costs and expected service level of a static uncertainty production plan. This

discretization of the demand process transforms the SCLSP model into a linear model,

because the expected value of the net inventory, and therefore of the physical inventory

and backlog, can be expressed as linear functions, specifically as weighted sums of the

values of the variable in each scenario, where the weights are the probabilities of the

scenarios occurring.

Using the SP terminology, the resulting problem is a two-stage stochastic program. All

production decisions are first stage decision variables, i.e. scenario independent, because

they must be taken before the uncertainty unfolds. Net inventory, physical inventory

and backlogs are second stage variables, i.e. scenario dependent, given that they depend

on the realization of the demand uncertainty.
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Table 5: SCLSP-SCN model – additional/modified notation

Sets

S = {1, . . . , S} Set of scenarios

Parameters

prs probability of occurrence of scenario s ∈ S
Dkts Demand of product k ∈ K in period t ∈ T in scenario s ∈ S
E[Dkt] Expected demand of product k ∈ K in period t ∈ T
δk Delta service-level target for product k ∈ K

Scenario-dependent decision variable

NIkts Net inventory of product k ∈ K at the end of period t ∈ T in scenario
s ∈ S

IPkts Physical inventory of product k ∈ K at the end of period t ∈ T in
scenario s ∈ S

BLkts Backlog of product k ∈ K at the end of period t ∈ T in scenario s ∈ S

Using the notation shown in Tables 4 and 5, and indicating that E[Dkt] =
∑

s∈S Dkts, the

scenario-approximation model SCLSP-SCN with δ service-level constraints is formulated

as (Helber et al., 2013):

SCLSP-SCN Model

Min
∑
k∈K

∑
t∈T

hk ·
(∑

s∈S

prs · IPkts

)
+
∑
k∈K

∑
t∈T

sck · ykt +
∑
t∈T

oc · ot (69)

Subject to constraints (43), (44),(46)-(48) and

NIkts = NIk,t−1,s + xkt −Dkts ∀k ∈ K, ∀t ∈ T , ∀s ∈ S

(70)

IPkts ≥ NIkts ∀k ∈ K, ∀t ∈ T , ∀s ∈ S
(71)

BLkts ≥ −NIkts ∀k ∈ K, ∀t ∈ T , ∀s ∈ S
(72)∑

t∈T

∑
s∈S

prs ·BLkts ≤ (1− δk) ·
∑
t∈T

(
(T − t+ 1) · E[Dkt]

)
∀k ∈ K

(73)
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∑
t∈T

xkt ≥
∑
t∈T

E[Dkt] ∀k ∈ K

(74)

IPkts, BLkts ≥ 0 ∀k ∈ K, ∀t ∈ T , ∀s ∈ S.
(75)

Constraints (70) calculate the net inventory in each scenario and replace constraints

(41). Constraints (71) and (72), together with constraints (75), define physical inventory

and backlogs for all scenarios, respectively; the δ service-level constraints (73) and the

direction of the optimization ensure that both IPkts and BLkts are well-defined using

these constraints. As explained, in objective function (69) and constraints (73), the

nonlinear expected inventory and backlog functions are calculated as the probability-

weighted average of inventory and backlogs in all scenarios, respectively. Constraints

(74) ensure that the inventory system is stable.

In Section 4.2.1, a short overview of the scenario-generation literature was presented.

We now discuss certain frequently used scenario-generation methods in more detail.

As noted, many stochastic lot-sizing studies assume that the demand for each product-

period combination is independent from all other combinations. As a result of this

assumption, sampling is simple, because samples for each product-period couple can be

drawn independently. In the majority of these cases, the sampling method used is SRS.

Using this method, to obtain a scenario s, a (pseudo-) random number is first drawn from

the standard uniform distribution in the interval [0, 1] for each product-period couple

(k, t) independently, denoted by vkts; this number can be interpreted as a cumulative

probability. Second, using the inverse cumulative distribution function of the relevant

demand, F−1
Dkt

, a random value of the demand is obtained. Specifically, the demand for

product k in period t in scenario s is

Dkts = F−1
Dkts

(vkts). (76)

This procedure is then repeated S times, where S is the number of desired scenarios,

each of which has a probability of occurrence equal to 1/S. When the number of sce-

narios is limited, as in most SP applications, the resulting demand sample’s cumulative

distribution function might be considerably different from the corresponding sampled

distribution function. Additionally, the optimal objective function and optimal solution

of the model is likely to vary considerably from one sample to another.

To overcome these issues, DS was proposed by Saliby (1990). Given a predetermined

number of target scenarios S, the first step of this method is to deterministically obtain,

for each product-period combination, S demand scenarios. To do this, S equidistant

numbers are taken from the interval [0, 1], representing quantiles of the sampled distri-
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bution. Next, the demand values corresponding to the quantiles are obtained using the

relevant inverse cumulative distribution function. Specifically, the deterministic set of

values of the uncertain demand is obtained by applying the following formula:

Dkts = F−1
Dkt

(s− 0.5

S

)
s = 1, . . . , S. (77)

Assigning a probability of 1/S to each demand realization, the cumulative distribution

function of this deterministic sample of demand is expected to be a reliable representa-

tion of the underlying sampled distribution function. In a second step, for each couple

(k, t), the elements of this deterministic sample are “shuffled”, i.e. the sampled values

are randomly assigned to specific scenario numbers s = 1, . . . , S, creating a random per-

mutation of the deterministic elements of the set. Now, a given scenario s ∈ {1, . . . , S}
represents a path of demand from the beginning to the end of the planning horizon,

and Dkts represents the demand of product k in period t in that specific scenario. In

addition, each scenario has the same probability of occurrence equal to 1/S. Obtaining

different sets of scenarios is possible by re-shuffling the deterministic demand values for

each period-product combination. This leads to a lower variance of the objective function

and optimal solution than SRS.

A method that can be thought of as a mix of DS and SRS is univariate LHS. Using

this method, for each product-period combination, the interval [0, 1] is divided into S

separate portions, all equal in size, and then a random value vkts is drawn from each

portion s = 1, . . . , S. The value of demand of product k in period t corresponding to vkts

is then obtained again by using the inverse cumulative distribution function as follows:

Dkts = F−1
Dkt

(vkts) s = 1, . . . , S. (78)

To obtain the S scenarios of demand, these values are then shuffled using the same

technique as used with DS. Now, for a given s ∈ {1, . . . , S}, Dkts represents the demand

of product k in period t in scenario s. The sampling cumulative distribution function in

this case would also be quite close to the sampled one.

Out of the statistical scenario-generation methods mentioned in Section 4.2.2, MM is

the most commonly used. To apply it to the static uncertainty SCLSP, the number of

scenarios S of demand and the Q statistical properties to be matched by them must

be determined in advance. Denote by d the vector of demand of all products, periods

and scenarios combinations, and by pr the vector of the probabilities of the S scenarios,

where the sth element, prs, corresponds to the probability of scenario s. Also, denote

the weight of statistical property q by wq, the mathematical expression of statistical
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property q by fq(·, ·) and the value of the statistical property q to be matched by Svalq.

The scenario-generation optimization model can be formulated as follows (Calfa et al.,

2014):

min
d,p

Q∑
q=1

wq · (fq(d, pr)− Svalq)
2 (79)

Subject to

S∑
s=1

prs = 1 (80)

prs ∈ [0, 1] ∀s = 1, . . . , S. (81)

(82)

The objective function (79) minimizes the weighted sum of the (squared) deviations of the

values of the statistical properties of the scenario set from their target values. Examples

of these statistical properties are the first four moments of the marginal distribution

of each product-period combination. The weights enable the modeler to choose the

relative importance of meeting the different statistical properties, in case not all of them

can be met perfectly. Constraint (80) ensures that the probabilities of the scenarios,

which are the decision variables of this optimization problem together with the values of

the random variables for each scenario, sum up to one. Finally, constraints (81) make

sure that the probabilities of the scenarios are larger than zero, and thus well-defined.

Although in the stochastic lot-sizing literature this method has been applied assuming no

demand correlations, it can be applied to a setting with both auto- and cross-correlated

demand because the auto- and cross-correlation of demand can be part of the statistical

properties to be matched by the scenarios. For example, to ensure that the scenarios

exhibit the correct cross-correlation in all periods, one set of the fq(·, ·) functions would
be defined as:

corrk,j =
S∑

s=1

(Dkts −meankt) · (Djts −meanjt) · prs ∀(k, j) ∈ K|k ̸= j, ∀t ∈ T , (83)

where meankt is the mean of the demand of product k in period t. The deviation of

corrk,j from its target value would then be entered into the objective function (79).

If the objective function value is small (the best possible outcome being zero) then the

solution scenario set satisfies the desired statistical properties sufficiently well. The MM

model is in general nonlinear and non-convex, and thus the solution is likely to be a local

optimum (Hoyland and Wallace, 2001). It is possible that multiple scenario sets match

the statistical properties as intended, however, they might significantly differ from the
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original data distribution (Mitra and Di Domenica, 2010).

Other common scenario-generation methods that are used when demand is time-

dependent are path-based methods. Demand is assumed to follow an econometric or

time-series model, which is used to derive scenarios. Conejo et al. (2010) show how to

develop scenarios following one of these methods. An auto-regressive integrated moving

average (ARIMA) model is fitted to the demand of each product k. The demand process

can thus be expressed as

(
1−

p∑
j=1

ϕj ·Bj
)
· (1−B)dDkt =

(
1−

q∑
j=1

θj ·Bj
)
· εkt, (84)

where B is the so-called lag operator, i.e. Bj ·Dkt = Dk,t−j. The general model in (84)

has p autoregressive parameters ϕ1, . . . , ϕp, q moving average parameters θ1, . . . , θq, and

a degree of differencing d. The errors εkt are generally assumed to be independent and

identically distributed (iid) and to follow a normal distribution. Although the standard

model in (84) is not directly applicable to a seasonal demand series, there is an extension

to this model that can be applied to these cases.

Once the parameters of the ARIMA model are determined, scenarios are obtained follow-

ing an iterative procedure which generates one scenario path per iteration. To generate

one scenario path for product k, for each period t a random sample from the distribu-

tion of εt is drawn and the ARIMA model (84) is used to calculate Dkts based on the

demand and random errors obtained in the periods up to t in scenario s. This basic

scenario-generation procedure must be modified when there are correlations among the

error terms of different products, because the paths cannot be sampled for each product

individually. Conejo et al. (2010) present a procedure to do that, based on an orthogonal

transformation of the normal errors generated for each product independently.

To conclude, in the presence of correlations, the sampling methods outlined above cannot

be directly applied. This is because it is impossible to draw samples from the marginal

demand distribution of each (k, t) pair independently and then combine different real-

izations of different pairs randomly to create scenarios. Instead, samples must be drawn

from a joint distribution with correlated random variables, which is a challenging task.

Both the MM and path-based methods can deal with linear dependencies, but only at

the cost of an increased complexity in their approaches. Moreover, it is also a challenge

to estimate the dependencies between the demand of different (k, t) pairs in the first

place, particularly in practical applications where data availability is an issue. This is

especially likely to be the case when demand is seasonal, because every seasonal cycle

provides only a single data point for the estimation of the demand distribution.

85



4.4.2 The new cumulative scenario approximation of the SCLSP

We now propose an alternative formulation of the scenario approximation of the SCLSP,

which significantly simplifies the scenario-generation process. The simplification is due

to a different definition of scenarios, that eliminates the necessity to consider demand

dependencies when generating scenarios and, therefore, to estimate them in the first

place. We first describe how to obtain the new scenario approximation and then compare

it in detail to the standard scenario approximation used in the literature, clearly pointing

out the advantages of our new approach.

To justify using this approach, we note that the net inventory, and therefore the physical

inventory and the backlog, of product k at the end of period t is a function of the

cumulative demand up to period t. This means that in order to determine the net

inventory, physical inventory, and backlog of the product at the end of a period, we

do not need to know the demands for the product in the individual periods up to that

period, but only their sum. This is the key to our approach.

In the SCLSP model, we must calculate the expected value of the total inventory costs

and of the total backlogs for each product. The SCLSP-SCN approach essentially cal-

culates these values as E
[∑

t∈T
∑

k∈K hk · IPkt

]
and E

[∑
t∈T BLkt

]
, respectively. The

estimates are obtained with the use of scenarios generated from the joint probability dis-

tribution of demands for all products in all periods. We propose an alternative procedure

for obtaining an approximation of the two expected values of interest, based on the fact

that the expectation and summation operators can be interchanged. That is, we calcu-

late the expected total inventory costs and total backlogs as
∑

t∈T
∑

k∈K E[hk · IPkt] and∑
t∈T E[BLkt], respectively. We then exploit the fact that both IPkt and BLkt depend

on the cumulative demand for product k until period t. Hence, we estimate the corre-

sponding expected values by using scenarios generated from the probability distribution

of the corresponding cumulative demand. This new approach employs a cumulative de-

mand “view” and we name the resulting approximation model SCLSP-CDS, where CDS

stands for cumulative demand scenario.

To formulate the SCLSP-CDS model, we start by considering the original nonlinear

SCLSP model (40)-(48), and denoting by CDkt the random cumulative demand of prod-

uct k up to period t, i.e. CDkt =
∑t

τ=1Dkτ . We can rewrite constraints (41) of the

model as

NIkt =
t∑

τ=1

xkτ − CDkt ∀k ∈ K, ∀t ∈ T . (85)

Therefore, adapting the SCLSP-SCN model to the cumulative demand view requires only

two changes. First, constraints (70) are reformulated by expressing the net inventory of

product k at the end of period t in scenario s as a function of the cumulative demand
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in scenario s, CDkts, using the logic of constraints (85). Second, the δ service-level

constraints (73) and constraints (74) are rewritten by using scenarios of cumulative

demand to express the right-hand side of the inequalities. The SCLSP-CDS model

therefore has objective (69), subject to constraints (43), (44),(46)-(48), (71), (72), (75)

and the following three constraints:

NIkts =
t∑

τ=1

xkτ − CDkts ∀k ∈ K, ∀t ∈ T , ∀s ∈ S. (86)∑
t∈T

∑
s∈S

prs ·BLkts ≤ (1− δk) ·
∑
t∈T

∑
s∈S

(
CDkts · prs

)
∀k ∈ K (87)∑

t∈T

xkt ≥
∑
s∈S

CDkTs ∀k ∈ K. (88)

Compared to the SCLSP-SCN model, scenarios are not “paths” of demand in a scenario

tree, instead they are scenarios of cumulative demands. In other words, the set S no

longer contains S scenarios of the demand realization for all products for the entire

planning horizon, instead it contains S scenarios of cumulative demand for each product-

period combination. In principle, the number of scenarios could vary from one product-

period combination to another, in which case we would define K × T sets of scenarios,

defined as Skt = {1, . . . , Skt}.

As for the standard SCLSP-SCN model, a scenario-generation method is needed to

obtain the cumulative demand scenarios. The main advantages of the SCLSP-CDS lie

exactly in this step, because it is unnecessary to account for demand dependencies when

generating scenarios. This is clearly explained in the next section, where a more in-depth

comparison between the SCLSP-SCN and SCLSP-CDS models is presented.

4.4.3 Comparing SCLSP-SCN and SCLSP-CDS

Figure 24 helps to explain the difference in the logic of estimating the total expected

inventory in the SCLSP-SCN model and the SCLSP-CDS model. A similar figure and

discussion can be used to explain the difference in the estimation of backlogs, but we

focus on inventory here for ease of exposition. A simple setting with K = T = 2 and

S = 4 is analyzed for illustration purposes. The following description of the figure

clarifies the simplified notation used in the graphs.

The logic behind the SCN model is shown in Figure 24a. Scenarios are generated as paths

through a so-called scenario fan, a special form of a scenario tree. The bold arrows, for

example, characterize scenario (path) s = 1. Given a plan, the resulting total inventory

costs in the scenario is calculated and denoted by TICs=1. The same is done for the other

three scenarios shown in the figure. Finally, the expected total inventory costs, E[TIC],
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(a) SCLSP-SCN logic

(b) SCLSP-CDS logic

Figure 24: Difference between SCLSP-SCN and SCLSP-CDS
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are calculated as the probability-weighted sum of the total inventory of the four scenarios.

As a comparison, the logic behind the CDS model is shown in Figure 24b. The estimation

of the total inventory costs is decomposed into the estimation of single and independent

inventory costs for each (k, t) pair: the two green rounded rectangles decompose the

estimation problem into single-product problems, and the two grey rounded rectangles

further decompose the problem into single-period problems (note that there are no arrows

connecting the different (k, t) pairs, in contrast to the standard scenario fan). Scenarios

for the cumulative demand are generated for each pair. To each such scenario corresponds

a certain inventory costs figure, IPCkts. The expected inventory costs for each (k, t) pair,

E[IPCkt], is then calculated as the probability-weighted sum of inventory costs over all

scenarios. Then, the expected total inventory costs of each product over the planning

horizon, E[TICk], is calculated by adding its expected inventory costs over all periods.

Finally, these values are added for all the products to obtain the expected total inventory

costs, E[TIC].

The cumulative view has two clear advantages over the standard view when it comes

to the scenario-generation process, due to estimating the expected inventory costs (and

backlogs) for each (k, t) pair separately and then adding these estimates up. First, it is

unnecessary to consider demand dependencies between products or periods when gener-

ating scenarios of cumulative demands. Indeed, the decomposition of total inventory into

the sum of total inventory over all products (the green rectangles in figure 24b) eliminates

the need for controlling the demand dependence between products in the scenarios. The

further decomposition of each product’s total inventory into the sum of inventory over all

periods (the grey rectangles in figure 24b) eliminates the need for controlling the time-

dependence of demand in the scenarios, because sampling from the cumulative demand

distributions obviously ensures that the time-dependence is respected in the (implicit)

path to arrive at any cumulative demand value. We emphasize that this decomposition

only relates to the problem of estimating the expected inventory and backlog functions of

different products, and not the production planning problem. The first stage production

variables of different products are still linked through the capacity constraints, however,

the evaluation of the resulting production plan in terms of inventory and backlog in the

second stage can be performed independently for each product. Second, as a result of this

simplification, it is unnecessary to estimate the dependencies between all product-period

pairs in the first place. As mentioned, this is clearly an advantage in practice, because

estimating the dependencies in problems with large amounts of products and periods is

a challenging task, especially with limited data, which is likely an issue in settings with

seasonal demand patterns.

The sampling methods presented in section 4.4.1 can be applied to derive the cumulative

demand scenarios in the same way as in the standard SCN model, the only difference

is that the sampled distributions are now the cumulative demand distributions instead
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of single period demand distributions. Although the SRS procedure is essentially un-

changed, the application of DS and univariate LHS is slightly different. Specifically, in

both scenario-generation methods, the shuffling procedure is no longer needed, because

of the independence of the estimates of the inventories and backlogs of different (k, t)

pairs. This means that DS becomes completely deterministic, whereas LHS still induces

some variability in the estimates of the inventories and backlogs from one scenario set to

another, although this variability is much smaller than in the standard SCN model. In

addition, certain statistical scenario-generation methods, e.g. the MM and path-based

methods shown in Section 4.4.1, can still be applied as before. However, the demand de-

pendencies no longer have to be considered as part of the statistical properties to match.

Because of the superiority of DS over SRS in the standard SCN approximation of the

SCLSP, proven by Helber et al. (2013), we chose to use DS to derive the scenarios for

the SCLSP-CDS model.

For completeness, we to point out that the PLA approach used to solve the SCLSP

(see Helber et al., 2013 for details), which is not our research focus in this chapter,

also employs the cumulative demand view underlying the CDS model. Indeed, in this

alternative approximation approach, the expected backlog and inventory functions of

different product-period combinations are approximated independently using piecewise

linear functions and cumulative demand distributions.

We conclude mentioning that the cumulative view approach also has some disadvantages.

First, we cannot evaluate the performance of a given plan for a specific scenario, because

this requires that a concrete scenario path is constructed. This means that correlations

should first be estimated and then enforced when generating the scenario, and it is

precisely this step that the cumulative approach eliminates. In other words, without

creating scenario paths we can only determine the expected performance of a plan, but

have no information concerning its variance. This could be important if the decision

maker wants to control risk. Second, this approach works only for a static uncertainty

strategy (or for a single-stage SP in general). If a different strategy is used, we must

make decisions at a stage based on information concerning the actual realization of

demand before that stage and the expectation of future demand realizations that are

conditional on the scenario path up to that stage. Third, it is impossible to measure the

newly generate backorders in any given period using linear constraints, thus making it

impossible to control backorders using popular service-level measures other than the δ

one, e.g. the finite-horizon and cycle β service level measures.

4.5 Numerical study

The main advantage of the CDS approach is the simplification of the estimation and

scenario-generation processes in settings with correlated demands. Because both pro-
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cesses are performed before solving the SCLSP, quantifying this advantage over other

scenario-generation methods in a computational study is not a trivial matter. Therefore,

in the numerical study presented in this chapter, we focus on evaluating the performance

of the CDS method in terms of the accuracy of its approximation of the stochastic pro-

duction planning problem. We do this using the standard problem setting assumed in

the SCLSP literature with dynamic and uncorrelated demand. An application of the

method to a setting with seasonal and correlated demand will be presented in Chapter

5. Specifically, we now investigate the performance of the CDS approach (in this section

CDS in short) using the test instances presented in Helber et al. (2013) and compare

it to that of the SCLSP-SCN approach with SRS and DS (in this section SRS and DS

in short, respectively). A complete analysis should compare both the (expected) ser-

vice levels achieved by the methods and their expected costs. However, comparing the

expected costs of a method which underachieves the target for only one product with

the expected costs of another method which misses the target for two products is not

straightforward. If the first method leads to much higher costs, the better service-level

performance might not be worth it. As a result, we choose to compare the methods by

evaluating their performance based on the size of the expected over- or underachievement

of the target service level for all products: the size of the overachievement will serve as

an indicator of the expected costs.

In total, we consider 1, 296 test instances, each of which is characterized by a different

combination of parameters, whose values are shown in Table 6. For every instance, we

assume that the demand for each product-period combination is independent of other

combinations and normally distributed with known mean E[Dkt] and standard deviation

σkt, which vary across instances. Further details on the parameters of the test instances

can be found in Helber et al. (2013) and Appendix A.

Table 6: Parameters of the test instances – comparison of the SCN and CDS approxi-
mation of the SCLSP

Number of products K = {5, 10, 20}
Number of time periods T = {5, 10, 20}
Inter-period coefficient of variation of expected demand V Cip = {0.2, 0.3}
Demand coefficient of variation V Cd = {0.1, 0.3}
Time between orders TBO = {1, 2, 4}
Utilization due to processing Util = {0.6, 0.75}
Setup time as fraction of period processing time tsrel = {0.0, 0.25}
Service-level target δ = {0.8, 0.9, 0.95}
Number of scenarios S = {10, 30, 50}

Source: Helber et al. (2013)
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We solve all problem instances using the SRS, DS and CDS approaches, each with 10, 30

and 50 scenarios, in order to compare their performances. We use different numbers of

scenarios for each method because the quality of the solution and the solution time of all

methods are strongly influenced by the number of scenarios used in the problem, which is

always the case in scenario-based SP. Becauase of the mutual independence of demands,

we note that the cumulative demand distributions needed by the CDS method can be

easily obtained. For a given product k, the cumulative demand up to and including

period t, CDkt, is normally distributed, because it is the sum of normally distributed

single-period demands, with mean µCDkt
=

∑t
τ=1E[Dkτ ] and standard deviation σCDkt

=√∑t
τ=1 σ

2
kt. Due to the size of some problem instances, we apply the F&O heuristic

presented by Helber et al. (2013) to all instances to solve them in a reasonable time.

After solving all instances, we can evaluate the plans obtained by all the methods analyti-

cally, based on the true distribution of the random demand variables. Indeed, because all

the random demand variables follow a known normal distribution, the expected backlog

and expected inventory function values for a certain production quantity can be obtained

exactly using the first-order loss function (see Helber et al., 2013). Therefore, running

simulations to evaluate the performance of the methods is unnecessary.

We performed the analysis using an Intel Core CPU with 2.4 GHz and 16 GB of RAM.We

coded and implemented the F&O heuristic in Python 3.7 and solved the subproblems

using Gurobi 9.0. The optimization of each subproblem was stopped as soon as an

optimality gap of 0.5% was reached or the time limit of 30 seconds was exceeded.

We first compare the different methods in terms of the average solution time of the test

instances. In Table 7 we show, for all methods, the average run time of the F&O heuristic

in CPU seconds as a function of the number of products, time periods and scenarios.

As can be seen, there is no significant difference in solution time between the methods.

In addition, as expected, the larger the number of periods, products and scenarios, the

longer it takes to solve the problem for all methods.

As the starting point for the comparison of the performance of the methods, in Table 8

we show the average percentage of products over all instances for which the under and

overachievement of the target service level fall in a given interval. For example, column

“U≤0.01” shows, for a given method, the percentage of products over all instances which

underachieve the target service level by at most one percentage point, whereas column

“O≤0.01” shows the percentage of products over all instances that achieve the service

level or overachieve it by at most one percentage point.

Figure 25 provides a visualization of the results of Table 8 with the use of relative

frequency histograms. Specifically, each frequency plot is constructed by drawing, for

each equal-length interval that represents the difference between the achieved and target

service level, a rectangle with the interval as its base and the relative frequency of the
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Table 7: Solution time (in CPU seconds)

T=5 T=10 T=20

K=5 CDS S=10 0.43 2.08 12.11
S=30 1.28 6.49 43
S=50 2.34 11.07 89.61

DS S=10 0.48 2.44 13.02
S=30 1.45 7.27 43.98
S=50 2.60 11.85 81.88

SRS S=10 0.47 2.48 12.83
S=30 1.42 7.46 45.09
S=50 2.56 12.05 86.73

K=10 CDS S=10 1.42 7.79 59.18
S=30 4.50 16.89 244.80
S=50 8.09 28.36 550.35

DS S=10 1.57 8.80 68.05
S=30 5.19 19.81 252.55
S=50 9.24 28.38 503.61

SRS S=10 1.60 8.72 66.26
S=30 5.00 18.87 253.51
S=50 9.48 28.74 528.67

K=20 CDS S=10 6.00 35.03 302.80
S=30 16.54 64.05 1290.22
S=50 29.34 137.07 3137.22

DS S=10 6.41 37.67 334.67
S=30 19.82 66.86 1332.97
S=50 31.36 133.55 2769.03

SRS S=10 6.66 37.94 343.48
S=30 19.78 66.60 1370.92
S=50 31.55 128.37 2858.50

interval over all products and instances as its height.

It is evident that as the number of scenarios increases, for both DS and SRS, the percent-

age of products that achieve a service level close to the target increases in the number of

scenarios (the frequency “mass” of the intervals closer to 0% increases), indicating that

the methods’ solution quality improves. This is not a surprising result, as it is well known

in SP that with sampling methods the quality of the solution improves as the number

of scenarios increases, because a better representation of the underlying uncertainty is

achieved. However, importantly, this improvement is not as significant for CDS, whose

performance appears to be independent of the number of scenarios.

Moreover, the results show that DS and SRS clearly outperform CDS in terms of the

percentage of products which meet the target service level (the sum of the last three

columns of Table 8). However, CDS outperforms the other methods in terms of the

percentage of products which miss the target by at most 1% (the sum of the last four
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Table 8: Comparison of service level performance

2%<U 1%<U≤2% U≤1% O≤1% 1%<O≤2% 2%<O

CDS S=10 0.00% 0.00% 89.26% 3.43% 2.23% 5.07%
S=30 0.00% 0.00% 90.34% 3.13% 2.23% 5.07%
S=50 0.00% 0.00% 90.30% 3.23% 1.86% 4.62%

DS S=10 0.13% 2.72% 60.44% 28.58% 2.72% 5.41%
S=30 0.00% 0.34% 56.03% 36.56% 2.08% 4.99%
S=50 0.00% 0.00% 53.33% 39.77% 2.06% 4.84%

SRS S=10 6.98% 10.24% 33.79% 31.64% 8.85% 8.51%
S=30 1.44% 6.33% 40.90% 39.26% 6.31% 5.77%
S=50 0.37% 3.86% 43.16% 42.66% 4.87% 5.07%

Figure 25: Comparison of service level performance

columns), even when only 10 scenarios are used to solve the problem. Therefore, if it is

acceptable to miss the target by less than one percentage point, CDS provides a solution

which is better than the one of SRS with 50 scenarios and as good as that of DS with

50 scenarios. Considering the increase in complexity of the model, which translates into

a significant increase in solution time, as shown in Table 7, this is a remarkable result.

Indeed, if we consider instances with 20 products and 20 time periods, we see that CDS

with 10 scenarios can be solved approximately 9 times faster than both SRS and DS with

50 scenarios, clearly showing the advantage of CDS over the other methods in terms of

computational effort. Concerning SRS, although the method outperforms CDS in terms

of the percentage of products meeting the service-level target, the results show that it is

outperformed by both CDS and DS in terms of the percentage of products which miss the

target by more than 1%. The ability of the SRS method to limit the underachievement

of the target improves along with the number of scenarios, as expected for completely
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random sampling. However, even with 50 scenarios, the method is less effective than the

other two methods.

As an additional performance indicator, for all the methods and numbers of scenarios

used, we calculate the average underachievement and overachievement of the target over

all instances. We show the results using a bar chart in Figure 26, which illustrates that,

for any given number of scenarios, CDS outperforms the other two methods both in terms

of expected underachievement and expected overachievement. Moreover, the expected

underachievement of CDS with 10 scenarios is only slightly larger than that of DS with

50 scenarios and much smaller than that of SRS with 50 scenarios. Finally, we see that

the expected overachievement of CDS with 10 scenarios is below that of both DS and

SRS with 50 scenarios. Overall, we can conclude that CDS outperforms the other two

methods in terms of both the expected underachievement and overachievement.

Figure 26: Comparison of average expected under and over achievement

An interesting characteristic of CDS is that it seems to systematically slightly under-

achieve the target, as can be seen from column “U≤0.01” of Table 8. As a reminder,

given a production plan, the true δ service level of product k, denote it by δtruek , is defined

as follows:

δtruek = 1−
∑T

t=1 E[BLkt]∑T
t=1E[CDkt]

. (89)

In the SCLSP-CDS model, we approximate both the numerator and the denominator in

the right-hand side using scenarios, obtaining the estimated service level

δk = 1−
∑T

t=1

∑S
s=1 prs ·BLkts∑T

t=1

∑S
s=1 prs · CDkts

. (90)

In the case that demand for all products in all periods is normally distributed and that

we use DS to obtain the scenarios in the CDS approach, it can easily be proven that the

denominator of (90) estimates the denominator of (89) exactly. Therefore the systematic

underestimation of the service level stems from a systematic underestimation of the

expected backlog. In our numerical study, we have indeed observed that the expected
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backlog function for every product and period combination is always below the true one.

As an example, in Figure 27 we show, for a normally distributed cumulative demand

with mean 200 and standard deviation 50, the true expected backlog as a function of the

cumulative production x and its approximation obtained with the CDS approach using

S = 10. As can be seen, the CDS expected backlog function is always below the true

one.

Figure 27: Comparison of true and CDS-approximated BL function

This apparent property suggests that we could obtain even better solutions for CDS

by inflating the service-level target by a few percentage points. Table 9 shows the

performance of all methods for all instances withK = 5, where CDS was solved increasing

the original service-level targets by 0.3% to δ = {0.803, 0.903, 0.953}. As can be seen,

CDS now achieves the service-level target for 80% of the products with S = 10, and

for 100% of the products with S = 30 and S = 50, thereby outperforming all methods.

As Figure 28 shows, this comes at the price of a larger expected overachievement of the

target and, therefore, expected costs, but this figure is still below that of SRS and only

slightly above that of DS. It is important to note, however, that the “right” inflated target

to use to reach the desired service level performance is problem-specific and difficult to

determine a priori.

We now turn to analyze the effects of changing the parameters of the problem (listed in

Table 6) on the quality of the solution for all the methods. To simplify the presenta-

tion of the results and the discussion, we focus on the service-level performance and use

three performance indicators, following Helber et al. (2013): “SL”, “SL 1%” and “SL

2%”. These indicators represent the percentage of instances in which, in expectation, all
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Table 9: Comparison of service level performance with inflated target for CDS

2%<U 1%<U≤2% U≤1% O≤1% 1%<O≤2% 2%<O

CDS S=10 0.00% 0.00% 19.26% 72.87% 2.64% 5.23%
S=30 0.00% 0.00% 0.00% 92.92% 2.18% 4.91%
S=50 0.00% 0.00% 0.00% 92.73% 1.99% 5.28%

DS S=10 0.14% 3.10% 59.31% 28.24% 3.19% 6.02%
S=30 0.00% 0.60% 56.67% 34.77% 2.64% 5.32%
S=50 0.00% 0.00% 52.04% 39.91% 2.64% 5.42%

SRS S=10 7.04% 9.95% 33.10% 32.59% 8.33% 8.98%
S=30 1.39% 6.44% 39.72% 38.10% 7.59% 6.76%
S=50 0.46% 3.19% 41.39% 43.33% 5.69% 5.93%

Figure 28: Comparison of average expected under and over achievement with inflated
target for CDS

products meet the service-level target, underachieve it by at most 1% and 2%, respec-

tively. Table 10 shows the effect of changing the coefficient of variation of demand, V Cd.

From the decision maker’s perspective, this parameter can be thought of as the degree

of forecast accuracy, i.e. the larger the coefficient of variation of demand, the more in-

accurate the results are. The results show that SL slightly decreases for all methods as

the coefficient of variation of demand increases. In addition, SL 1% decreases for SRS

and DS, however, this decrease is less important for larger scenario sets (only for DS

with S = 50 the SL 1% performance remains unchanged). Instead, for CDS, the SL 1%

performance does not decrease in the coefficient of variation of demand, independent of

the number of scenarios used by the method. This clearly shows that, from a managerial

perspective, in terms of the SL1 % indicator, CDS is robust against forecast inaccuracy

and computationally efficient, because decreasing the number of scenarios does not affect

the method’s performance.

Table 11 shows the effects of varying the service-level target. Focusing again on the

SL 1% performance indicator, for any number of scenarios, SRS performs consistently

poorly, whereas the performance of DS with 10 and 30 scenarios clearly worsens as the

target increases (for S=50 the performance remains equal). Instead, the performance of

97



Table 10: Comparison of service level performance for different values of the coefficient
of variation of demand

SL SL 1% SL 2%

CDS S=10 V Cd = 0.1 0.93% 100.00% 100.00%
V Cd = 0.3 0.31% 100.00% 100.00%

S=30 V Cd = 0.1 0.62% 100.00% 100.00%
V Cd = 0.3 0.15% 100.00% 100.00%

S=50 V Cd = 0.1 0.15% 100.00% 100.00%
V Cd = 0.3 0.15% 100.00% 100.00%

DS S=10 V Cd = 0.1 2.47% 100.00% 100.00%
V Cd = 0.3 0.93% 68.83% 97.53%

S=30 V Cd = 0.1 2.31% 100.00% 100.00%
V Cd = 0.3 0.77% 95.06% 100.00%

S=50 V Cd = 0.1 2.31% 100.00% 100.00%
V Cd = 0.3 1.39% 100.00% 100.00%

SRS S=10 V Cd = 0.1 3.09% 62.81% 96.14%
V Cd = 0.3 0.77% 7.87% 29.01%

S=30 V Cd = 0.1 2.62% 92.28% 99.85%
V Cd = 0.3 1.08% 27.31% 74.85%

S=50 V Cd = 0.1 3.86% 98.15% 100.00%
V Cd = 0.3 1.70% 44.75% 92.75%

CDS is perfect independent of the target and the number of scenarios. This shows that

CDS has the desired property of being robust to changes in the target service level, as

opposed to DS. In addition, when compared to DS and SRS, it is evident that CDS can

again provide high quality solutions even with only 10 scenarios.

Finally, Table 12 shows the effect of changing the TBO parameter. As a reminder, this

parameter influences the setup costs, with a larger TBO indicating higher setup costs.

Continuing to focus on the SL 1% performance of the methods, we can observe that

the performance of both DS and SRS improves in the setup costs, whereas that of CDS

stays perfect, again illustrating the robustness of the CDS method to the problem’s

parameters. We found that the rest of the problem’s parameters did not significantly

influence the performance of the different methods.
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Table 11: Comparison of service level performance for different values of the target
service level

SL SL 1% SL 2%

CDS S=10 δ = 0.8 1.85% 100.00% 100.00%
δ = 0.9 0.00% 100.00% 100.00%
δ = 0.95 0.00% 100.00% 100.00%

S=30 δ = 0.8 1.16% 100.00% 100.00%
δ = 0.9 0.00% 100.00% 100.00%
δ = 0.95 0.00% 100.00% 100.00%

S=50 δ = 0.8 1.16% 100.00% 100.00%
δ = 0.9 0.00% 100.00% 100.00%
δ = 0.95 0.00% 100.00% 100.00%

DS S=10 δ = 0.8 4.40% 93.06% 99.77%
δ = 0.9 0.69% 82.64% 98.61%
δ = 0.95 0.00% 77.55% 97.92%

S=30 δ = 0.8 4.17% 99.77% 100.00%
δ = 0.9 0.23% 97.45% 100.00%
δ = 0.95 0.23% 95.37% 100.00%

S=50 δ = 0.8 4.63% 100.00% 100.00%
δ = 0.9 0.46% 100.00% 100.00%
δ = 0.95 0.46% 100.00% 100.00%

SRS S=10 δ = 0.8 4.63% 37.96% 62.96%
δ = 0.9 0.93% 33.10% 61.11%
δ = 0.95 0.23% 34.95% 63.66%

S=30 δ = 0.8 4.17% 59.72% 85.88%
δ = 0.9 0.46% 59.26% 85.88%
δ = 0.95 0.93% 60.42% 90.28%

S=50 δ = 0.8 5.56% 69.68% 95.60%
δ = 0.9 1.39% 69.91% 95.60%
δ = 0.95 1.39% 74.77% 97.92%
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Table 12: Comparison of service level performance for different values of the time between
orders

SL SL 1% SL 2%

CDS S=10 TBO= 1 1.62% 100.00% 100.00%
TBO= 2 0.23% 100.00% 100.00%
TBO= 4 0.00% 100.00% 100.00%

S=30 TBO= 1 1.16% 100.00% 100.00%
TBO= 2 0.00% 100.00% 100.00%
TBO= 4 0.00% 100.00% 100.00%

S=50 TBO= 1 1.16% 100.00% 100.00%
TBO= 2 0.00% 100.00% 100.00%
TBO= 4 0.00% 100.00% 100.00%

DS S=10 TBO= 1 3.01% 75.46% 96.53%
TBO= 2 1.16% 84.26% 99.77%
TBO= 4 0.93% 93.52% 100.00%

S=30 TBO= 1 2.78% 94.21% 100.00%
TBO= 2 0.46% 98.84% 100.00%
TBO= 4 1.39% 99.54% 100.00%

S=50 TBO= 1 3.01% 100.00% 100.00%
TBO= 2 0.46% 100.00% 100.00%
TBO= 4 2.08% 100.00% 100.00%

SRS S=10 TBO= 1 2.55% 26.39% 52.08%
TBO= 2 1.62% 34.49% 65.05%
TBO= 4 1.62% 45.14% 70.60%

S=30 TBO= 1 3.70% 52.08% 80.79%
TBO= 2 0.23% 58.10% 86.11%
TBO= 4 1.62% 69.21% 95.14%

S=50 TBO= 1 3.70% 63.66% 92.82%
TBO= 2 2.08% 69.91% 97.22%
TBO= 4 2.55% 80.79% 99.07%
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To summarize, the numerical study presented in this section shows that the newly devel-

oped CDS approach outperforms the standard scenario-approximation methods proposed

in the literature in many aspects, even in the absence of demand dependencies. Indeed,

the average percentage of products that miss the target service level by at most 1% is

largest for CDS, and both the expected underachievement and overachievement of the

target is lowest for CDS. Moreover, the study highlighted the computational efficiency

of CDS compared to other approaches, because in terms of solution quality the results

of the method with 10 scenarios are very close to the results when three or five times

the number of scenarios are used. Finally, we showed that, as opposed to SRS and DS,

the new method, even with only 10 scenarios, is robust to changes in all parameters of

the problem.

4.6 Summary

In this chapter, we presented a new formulation of the scenario approximation of the

SCLSP under a static uncertainty strategy using δ service-level constraints. The core

difference between the newly proposed SCLSP-CDS model and the standard scenario

approximation of the problem, SCLSP-SCN, is that the former uses scenarios of cu-

mulative demand for each product-period combination to estimate expected backlogs

and inventory, as opposed to paths of demand in a scenario tree/fan as the latter. In

complex application settings with demand dependencies, this difference in the nature

of scenarios significantly simplifies the scenario-generation process while leading to a

correct estimation of expected inventory and backlog. Indeed, using the SCLSP-CDS

scenario approximation, first, it is unnecessary to estimate the correct correlations be-

tween the demand of different (k, t) pairs in the pre-scenario-generation phase. Second,

generating the scenarios for the cumulative model consists of sampling from marginal

(cumulative) demand distributions, instead of a joint distribution with dependencies

between the random variables. Moreover, we emphasize that estimating the cumulative

demand distribution for a given product-period combination requires the same amount of

effort as estimating the period-specific demand distribution for the same product-period

combination, which is a necessary step in other standard scenario-generation procedures.

In our numerical study we considered the case of independent demands and showed that

even in this setting the newly developed approach outperforms other common scenario-

approximation methods to solve the SCLSP in terms of most performance measures. In

addition, it is important to note that the new method is computationally efficient, i.e.

it is able to achieve good quality solutions with a much smaller number of scenarios

than the other methods. Indeed, in the analyzed problem instances, the CDS approach

provides an excellent approximation of the expected backlog and inventory functions,

even when a limited number of scenarios is used. Finally, we have also shown the
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noteworthy property of the CDS method of being robust to changes in the parameters

of the problem, namely the coefficient of variation of demand, the service-level target

and the time-between-orders. We defer an in-depth investigation into the reasons for the

computational efficiency and the robustness of the CDS approach to future studies.

We think that a comparison in a setting with dependent demands between the SCLSP-

CDS approach and the standard SCLSP-SCN approach, with the latter using other

sampling or statistical scenario-generation methods able to deal with demand depen-

dencies, would produce further valuable insights. Therefore, we propose this task as a

future research opportunity. In the next chapter of this thesis, we move in this direction

by presenting an application of the CDS approximation to a different production setting

with demand dependencies. Another opportunity of interest for future research is to

evaluate the performance of the SCLSP-CDS approach in a RH planning strategy, which

is a frequently used method to deal with demand uncertainty in practice.

To conclude, notwithstanding their limitations, we believe that the tools presented in

this chapter have the potential of being highly valuable for inventory planning in many

practical settings with demand dependencies.
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5 Inventory analysis for an agrochemical company:

a real-world case study

5.1 Introduction and research objectives

In this chapter, we use the cumulative demand scenario (CDS) approach introduced in

Chapter 4 to study the mid-term inventory problem for crop protection products (CPPs)

faced by an agrochemical company. For reasons of confidentiality, we cannot disclose the

name of the company and will instead refer to it as Agro Chem (AC). The investigated

setting is not specific to the industry partner though, but it is typical for a large size

agrochemical producer. Specifically, in this study, we consider the inventory problem for

the entire portfolio of CPPs produced at a formulation plant of AC. The demand for

these products, as is typical for agrochemical products, is seasonal and highly uncertain.

Indeed, the demand for each of these CPPs occurs only in a limited time period during

the year and is highly uncertain, both in terms of timing and quantity, due to the

many factors influencing the buying decisions, most notably the weather. Accordingly,

there are strong dependencies over time and across products that affect demand, and

these dependencies must be considered when making inventory decisions. Moreover,

the production processes of the considered CPPs are highly complex due to the nature

and use of the products. This complexity makes it necessary to make lot-sizing and

scheduling decisions simultaneously in order to derive feasible and cost-efficient plans.

Thus, in contrast to Chapter 4, we now analyze a more complex real-world setting. In

particular, in this chapter we develop a stochastic lot-sizing and scheduling model, which

we solve using the CDS approach, and apply it to a setting with seasonal, uncertain and

dependent demand.

Currently, AC solves its mid-term inventory planning problem in two steps, which are

performed sequentially. In the first step, expected future demands are inflated by experts

to consider demand uncertainty and AC’s target service level. These decisions essentially

determine safety stock quantities and determine the inventory targets for all products

in all periods of the planning horizon considered. In the second step, a deterministic

planning problem, which aims to meet these inventory targets, is solved. This type of

sequential planning approach is very common in practice and in the literature. However,

it is known to lead to suboptimal results, because the interaction between safety stock

and cycle stock is disregarded. Moreover, in the specific case of AC, the first step heavily

relies on the experts’ subjective judgments. The company recognizes the importance of

demand uncertainty and requests a tool able to provide a clear picture of how this

uncertainty influences its inventory costs and service-level performance. Moreover, AC

is interested in evaluating their currently used planning approach to determine its ability

to manage demand uncertainty.
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Therefore, in this study we have two objectives:

1. Provide the company with insights into the impact of demand uncertainty on their

mid-term inventory/production planning problem;

2. Assess the effectiveness of the methods currently employed by the company in their

decision-making processes to deal with demand uncertainty.

To reach these two closely connected goals, we use a stochastic general lotsizing and

scheduling problem (SGLSP) to model the inventory problem faced by the company, and

use the CDS approach to approximate and solve this problem, because of the uncertain

seasonal demand of the products considered. This integrated model, as opposed to the

sequential procedure currently implemented by the company, uses the available statistical

information on the demand process to make simultaneous lot-sizing, scheduling and

safety stock decisions.

Therefore, in this chapter we contribute to the literature on inventory planning in settings

with demand seasonality and uncertainty, particularly the agrochemical industry that

was presented in Chapter 2, by presenting a real-world case study conducted at AC.

The rest of this chapter is organized as follows. In Section 5.2 we present the problem

setting in detail, as well as the stochastic model used to conduct the study. In Section

5.3 we explain how we derive the input data of the model, with a particular focus on the

probability distribution of demand. The results are presented in Section 5.4. Finally,

Section 5.5 concludes the chapter with a summary of the findings and future research

opportunities.

5.2 Problem setting and model formulation

In this section, we present the setting of the analyzed inventory planning problem and

the mathematical optimization model developed to model it. In Section 5.4 we then

use this model to conduct an analysis to achieve the two objectives of this chapter. To

protect the company’s interests, we cannot fully disclose all the details pertaining to the

problem setting; nonetheless, the details we present provide a clear description of the

analyzed problem.

Our focus lies on the mid-term inventory management problem that a single plant of

AC experiences. This consists of developing a rough-cut production and inventory plan

which enables the plant to meet the company’s goals for a given year under demand

uncertainty. The plant considered is a formulation plant for a relatively wide range of

CPPs, sold mostly to customers located in the same geographical region as the plant. The

production process to manufacture these CPPs follows the steps previously described in

Chapter 2. First the active ingredients (AIs) are synthesized in dedicated plants, and
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then formulation takes place in the plant under consideration. After the formulation

process, CPPs are bottled and labeled according to the market in which the products

are finally sold (we name this final country-specific form in which the CPPs are sold

“articles”). As a reminder, the typical supply chain (SC) of CPPs is shown in Figure 29.

Figure 29: Typical supply chain of crop protection products. Adapted from Fritz and
Hausen (2009)

The plant consists of less than 10 production resources, each of which can produce a

different (potentially overlapping) set of the approximately 40 CPPs formulated in the

plant. These CPPs are sold in the form of country-specific articles, which in total are in

the hundreds. These products have a seasonal and uncertain demand, but every product

has a potentially different season, because the demand depends on the agricultural cycles

of crops and the life cycles of the pests that the product is designed to eliminate. However,

there is still an overall seasonal demand pattern, i.e. an aggregate off-season and peak

season for all products. We consider the firm’s planning problem at the beginning of the

first month of this “macro off-season”, when it needs to decide how to build up stock

for the upcoming macro peak season. Uncertainty exists in both demand timing and

scale, and it is therefore characterized by demand dependencies, both between periods

and products.

An important feature of the formulation process of the CPPs considered which signif-

icantly complicates production planning is the sequence-dependence of the setup oper-

ations, i.e. the fact that the duration and/or cost of setting up a resource to produce

a given product depends on the product that was produced before. This is due to the

nature of the products: the need to avoid cross-contamination between different CPPs,

mostly those using different AIs, requires the resources to be thoroughly cleaned when a

changeover is performed, i.e. when two different products are produced sequentially on

the same resource.

First we conceptually analyze the choices made to model the plant’s inventory problem

that must be solved by the planners, and then present the mathematical formulation of

the model.

We focus on and model the formulation step of the production process. In addition,
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we model the inventory process and consider the transportation of the products to the

destination warehouses implicitly through appropriate lead times. However, due to the

mid-term nature of the problem, for simplification purposes we model the production,

inventory and demand processes at the level of CPPs, instead of the country-specific

articles. The production of AIs, which serve as input in the formulation plant, is not

considered in this study. In particular, we assume that there is a sufficient supply of

AIs to sustain any (realistic) production plan. We also disregard bottling and labeling

operations, although these could be considered in a future study.

While on the one hand we are looking at a mid-term planning problem, and therefore,

we are not interested in modeling the dynamics of production, inventory and demand in

detail, on the other hand we have to recognize that sequence-dependent setups require

a more complex model than the stochastic capacitated lot-sizing problem (SCLSP) ana-

lyzed in Chapter 4. Usually, setups and sequence-dependent setups are not modeled in

mid-term planning problems, but in certain settings, such as the process industry ana-

lyzed here, their impact is significant enough to justify the additional model complexity

caused by their inclusion (Albrecht et al., 2015). We, therefore, include them in the

production model presented in this chapter because a wrong production sequence can

result in highly significant changeover times (in the order of days). Because the pro-

posed model could be used, after appropriate modifications, to support future planning

efforts, including this very challenging feature into the problem would also facilitate the

acceptance of the model by the planning experts, as well as produce more realistic plans

which can then be used as input for more detailed short-term planning.

We choose the general lot-sizing and scheduling problem (GLSP) (Fleischmann and

Meyr, 1997) to model this planning problem, because of its ability to elegantly model

sequence-dependent setups and its flexibility in accommodating additional characteristics

of the problem. However, in view of the uncertainty and seasonality of demand for the

products under consideration, an appropriate stochastic version of the GLSP is necessary.

Therefore, we develop a stochastic GLSP and solve it by using the cumulative demand

scenario approach presented in Chapter 4.

As mentioned, we consider a planning horizon of one year, and use monthly time buckets.

We choose the length of one year because of the need to consider at least an entire season

in the problem, while at the same time limiting the increase in computational effort

caused by considering longer time horizons. However, “truncating” the time horizon

might have negative consequences, as the optimal decisions within the horizon might

be dependent on the demand in periods beyond it. In particular, these consequences,

known as end-of-horizon (EOH) effects, are that the optimal solution consists of not

performing any setups in the last periods of the planning horizon and ending with zero

inventories, because these inventories do not have any purpose beyond the horizon (Lang,

2010). In our case, inventory at the end of the planning horizon will be needed to satisfy
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the demand in the first periods of the next off-season. To avoid EOH effects, several

techniques have been proposed in the literature, e.g. setting final inventory targets or

decreasing the setup costs of lots in the final periods of the planning horizon (Lang,

2010). We opt to implement ending inventory constraints, namely forcing the expected

ending net inventory to be at least larger than the starting inventory. This creates a

cyclical plan which ensures that, in expectation, we can meet the service level also in

the next season. Moreover, as opposed to production planning models, we define initial

inventory as a decision variable in our model. The purpose of this is to ensure that

the analysis for a given season is independent of the starting conditions of the inventory

system. Indeed, when comparing the performance of the developed stochastic model with

the currently used inventory management tools (one of our two research objectives), the

“wrong” starting inventory might obscure some of the advantages that one method has

over the other.

In addition, we also consider the lead time needed for the products to be transported

in their intended market by requiring products to be produced by the end of the period

preceding the one in which they are sold. We complete the cyclical schedule mentioned

above by making the production quantity of the last period of the planning horizon,

together with initial inventory, available to serve the demand in the first period.

As discussed in Chapter 4, there are different strategies to deal with demand uncertainty.

In our model we use the static uncertainty strategy. This means that all production

decisions, i.e. the production schedule and lot sizes, are fixed at the start of the planning

horizon.

The objective of the model is to minimize (expected) inventory costs subject to meeting

a target service level. Furthermore, we model sequence-dependent setups only in terms

of time, and not in terms of costs in the objective function. However, we note that, apart

from the operational costs for performing the changeover operation, a major component

of setup costs is the opportunity cost of the setup. Indeed, the time used for performing

the changeover could be used to produce the same or other products closer to the selling

season, thus saving inventory costs. Therefore, by considering sequence-dependent setup

times, this important element of setup costs is taken into account and traded off with

inventory costs (the same approach is used in Tavaghof-Gigloo, 2019). In the objective

function, we also do not consider other cost components, e.g. production, overtime or

transportation costs, because these are beyond the scope of this study.

We assume that unmet demand is backordered and we limit the amount of backorders

by enforcing a service-level target. As presented in Chapter 4, there are many different

service level metrics used for this purpose. We use the already introduced δ service

level metric, because of its properties and the ease of its implementation in the CDS

approach, which will be used to solve the analyzed stochastic planning problem. In

the literature, the service level is usually measured for each product individually, which
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potentially enables setting a different target per product. Alternatively, companies might

set targets at the product group level, or even a single overall target, depending on their

strategic goals. In the initial formulation of the stochastic model, we measure the service

level over all products, as we find that this simplifies the discussion of the results with

our research partner. However, we modify this in a subsequent extension of the model to

provide further insights. If there is a single “aggregate” service-level target, then a poor

service-level performance for one product can be compensated for by a good service-level

performance of another product.

In accordance with the problem setting and the modeling choices explained in the previ-

ous paragraphs, we finally present the mathematical formulation of the SGLSP which we

use for the analysis. The GLSP is a hybrid lot-sizing model, because it uses both macro-

periods, like big bucket models, and micro-periods, like small bucket models. Formally,

the planning horizon, equal to one year, is divided into T macro-periods, each equal

to one month, and each macro-period t is divided into a fixed number of micro-periods

(to simplify the notation of the model, let N denote the set of all chronologically or-

dered micro-periods of the planning horizon, and Nt = {Nt−1 + 1, . . . , Nt} the subset

of micro-periods in macro-period t, where Nt is the last micro-period in t). Similar to

most small bucket models, it is assumed that at most one product can be produced per

micro-period; given that the number of micro-periods in a given macro-period is fixed,

the total maximum number of products that can be produced, and therefore the number

of changeovers that can be performed, in a macro-period is also fixed and equal to the

number of micro-periods. However, although the number of micro-periods in a given

macro-period is fixed in advance by the planner, their lengths are not fixed, but are

implicit decision variables of the model: the length of a micro-period is equal to the time

spent processing the product produced in the considered micro-period (naturally there

can be idle micro-periods in which nothing is produced, and the assumption is that the

setup state is conserved in this case). As explained by Fleischmann and Meyr (1997), the

“external dynamics” of the production/inventory system are modeled in discrete time

(the macro-periods), i.e. the demand and the holding costs are specified and occur at

discrete points in time, whereas the “internal dynamics” are modeled in continuous time

(the micro-periods), i.e. the changeovers in production can happen at any time within

the planning horizon.

Uncertainty of demand is modeled using scenarios following the cumulative view ap-

proach presented in Chapter 4. Formally, using the notation in Table 13, the CDS

approximation of the SGLSP is defined as follows:

SGLSP-CDS Model

Min
∑
k∈K

∑
t∈T

hk ·
(∑

s∈S

prs · IPkts

)
+
∑
k∈K

∑
n∈N

∑
m∈M

hk · xknm (91)
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Subject to∑
n∈Nt

∑
k∈K

ptkm · xknm +
∑
n∈Nt

∑
k∈K

∑
j∈K

stkjm · zkjnm ≤ bmt ∀m ∈ M, ∀t ∈ T

(92)

xknm ≤ bmt

ptkm
· yknm ∀k ∈ K, ∀m ∈ M, ∀n ∈ N

(93)

xknm ≥ lkm · (yknm − yk,n−1,m) ∀k ∈ K, ∀m ∈ M, ∀n ∈ N
(94)∑

k∈K

yknm = 1 ∀m ∈ M, ∀n ∈ N

(95)

zkjnm ≥ yk,n−1,m + yjnm − 1 ∀k, j ∈ K, ∀m ∈ M, ∀n ∈ N
(96)

NIkts = IPk0 +
∑
n∈NT

∑
m∈M

xknm − CDkts ∀k ∈ K, t = 1, ∀s ∈ S

(97)

NIkts = IPk0 +
∑
n∈NT

∑
m∈M

xknm +
t−1∑
τ=1

∑
n∈Nτ

∑
m∈M

xknm

− CDkts

∀k ∈ K, t ≥ 2, ∀s ∈ S

(98)

IPkts ≥ NIkts ∀k ∈ K, ∀t ∈ T , ∀s ∈ S
(99)

BLkts ≥ −NIkts ∀k ∈ K, ∀t ∈ T , ∀s ∈ S
(100)∑

k∈K

∑
t∈T

∑
s∈S

prs ·BLkts ≤ (1− δ) ·
∑
k∈K

∑
t∈T

(
E[CDkt]

)
(101)∑

n∈N

∑
m∈M

xknm ≥ E[CDkT ] ∀k ∈ K

(102)

xknm ≥ 0 ∀k ∈ K, ∀m ∈ M, ∀n ∈ N
(103)

yknm ∈ {0, 1} ∀k ∈ K, ∀m ∈ M, ∀n ∈ N
(104)

zkjnm ≥ 0 ∀k, j ∈ K, ∀m ∈ M, ∀n ∈ N
(105)
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IPkts, BLkts ≥ 0 ∀k ∈ K, ∀t ∈ T , ∀s ∈ S.
(106)

The objective (91) is to minimize the expected costs of holding inventory, including

pipeline stock (the second term of the objective function). Constraints (92)-(96) are

the constraints defining the production process in the standard (deterministic) GLSP.

Constraints (92) ensure that the production time plus the changeover times performed in

any machine in every period does not exceed the capacity of the machine in that period.

Constraints (93) ensure that the production of a product in a given machine can only

occur if the machine is set up for the respective product. Constraints (94) make sure that

every time there is a changeover in a machine to a different product, its minimum batch

size is produced. This constraint is necessary not only for technical reasons pertaining to

the production process, but also to avoid the possibility of performing a changeover to a

product while producing no units of it just to take advantage of the non-triangular nature

of the setup matrix. Constraints (95) ensure that each machine can be set up for a single

product per micro-period. Constraints (96) define the changeover variables. Constraints

(97)-(100) define, for each scenario, the net inventory, the physical inventory and the

backlog of a product at the end of each period, respectively. These are the stochastic

counterpart of the inventory balance constraints in the standard deterministic GLSP

under the “cumulative demand view” of the CDS approach developed in Chapter 4.

Constraint (101) is the aggregate δ service-level constraint. Constraints (102) ensure

that the cumulative production over the entire planning horizon is larger than or equal

to the cumulative demand. These constraints not only serve the same purpose as in the

SCLSP-CDS model introduced in Chapter 4, as we again use the δ service-level measure,

but also ensure that the expected ending net inventory is larger than or equal to the

starting inventory, i.e. they are the EOH constraints. Constraints (103)-(106) define the

domain of the decision variables of the model.

This model integrates the lot-sizing, scheduling and safety stock problems, thus consid-

ering the interaction of these decisions.

5.3 Derivation of the input data

We conduct our analysis under real-world conditions by evaluating the performance of

the SGLSP-CDS model, and other models introduced later in this chapter to reach our

research objectives, in three past seasons, named “Season 1”, “Season 2” and “Season

3”. Specifically, for each of the three seasons, we assume that we are in the first month of

the macro off-season and have to make the inventory planning decision for the following

year under uncertainty. After solving the models, we can then derive both their expected

performance, i.e. according to the assumed probability distribution of demand, and their
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Table 13: SGLSP model – notation

Sets

K = {1, . . . , K} Set of products
M = {1, . . . ,M} Set of machines
T = {1, . . . , T} Set of macro-periods
Nt = {Nt−1+1, . . . , Nt} Set of micro-periods in macro-period t ∈ T
N = {1, . . . , N} Chronologically ordered set of all micro-periods
S = {1, . . . , S} Set of scenarios

Parameters

bmt Production capacity of machine m ∈ M in macro-
period t ∈ T

ptkm Unit processing time of product k ∈ K in machine
m ∈ M

stkjm Setup time of a changeover from product k ∈ K to
product j ∈ K in machine m ∈ M

hk Unit holding costs per macro-period for product k ∈
K

lkm minimum lot size of product k ∈ K (units) in ma-
chine m ∈ M

prs probability of occurrence of scenario s ∈ S
CDkts Cumulative demand of product k ∈ K up to macro-

period t ∈ T in scenario s ∈ S
E[CDkt] Expected cumulative demand of product k ∈ K up

to macro-period t ∈ T
δ Delta service-level target

Scenario-dependent decision variables

NIkts Net inventory of product k ∈ K at the end of macro-
period t ∈ T in scenario s ∈ S

IPkts Physical inventory of product k ∈ K at the end of
macro-period t ∈ T in scenario s ∈ S

BLkts Backlog of product k ∈ K at the end of macro-period
t ∈ T in scenario s ∈ S

Scenario-independent decision variables

xknm Lot size of product k ∈ K in micro-period n ∈ N in
machine m ∈ M

IPk0 Initial physical inventory of product k ∈ K
yknm Binary setup variable of product k ∈ K in micro-

period n ∈ N in machine m ∈ M
zkjnm changeover variable equal to 1 if there is a

changeover from product k ∈ K to j ∈ K in micro-
period n ∈ N in machine m ∈ M; 0 otherwise
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actual performance, i.e. according to the actual demand realization in the season. In

this section, we explain how we derive the input parameters of the SGLSP-CDS model,

with a particular focus on the scenarios of cumulative demand.

Several parameters of the problem are relatively easy to obtain, such as the production

capacity of the machines, the unit processing times of products, the changeover times,

the unit holding costs and the minimum products’ lot sizes. Defining a single service-

level target for a stochastic planning problem is not easy from a practical point of view,

so we vary this number and solve multiple optimization problems, which also allows us to

highlight the trade-off between inventory costs and service level. The most challenging

input parameters to obtain are the scenarios of cumulative demand for each product-

period combination. To this end, we first need to estimate the cumulative demand

distribution from which we can then sample to obtain the scenarios. The data at our

disposal to reach this goal are historical sales and forecasts for a limited number of past

seasons.

As a first step towards estimating the demand distribution, we assume that past sales

values are a good representation of past actual demand, because the latter is unavailable.

The classical approach used in the literature is to use past sales/demand data to derive

a demand distribution for the future. However, this approach is problematic in this

setting, because of the limited number of historical data points available and the nature

of the market for CPPs. To recall, given the yearly seasonality of demand, even if

10 years of data were available, the cumulative demand distribution for each product-

period combination would still need to be derived from only 10 data points, which are

insufficient to obtain a well-defined demand distribution. Moreover, in our setting, data

points taken from far back in time most likely are not representative of the demand

in future seasons, due to a different portfolio of products, different customers, different

competitors’ portfolios, etc.

To solve the representativeness problem, we note that, apart from past sales data, as

mentioned, in this particular setting we also have access to past forecasts data: combined

with demand data, this provides us with a time series of forecast errors, which gives us

information on demand uncertainty. We, therefore, derive the demand distribution for

the planning problem of each analyzed season starting from the historical forecasts for

the season and the historical information on forecast errors. Accordingly, we make

the seemingly reasonable decision to treat past cumulative forecast errors, in particular

relative cumulative errors (the reason is clarified later), as random variables that follow

a similar distribution in the future seasons to the past ones. Similar decisions were taken

by Fisher and Raman, 1996 in the famous Sport Obermeyer case study and by Cachon

and Terwiesch, 2012 in their O’Neill case study.

Due to the lack of sufficient historical data, it is impossible to reliably estimate the

distribution of forecast errors for individual products. We overcome this problem by
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working with relative cumulative forecast errors instead of absolute ones, and assuming

that the relative cumulative forecast errors of different products for a given month are

independently and identically distributed random variables (a similar approach is used

by Cachon and Terwiesch, 2012). This enables us to pool historical cumulative forecast

errors data over products to obtain enough data points to characterize a cumulative error,

and therefore a demand distribution for each product-period combination. However, in

the setting under consideration, we cannot test the validity of this assumption from the

data itself, again because of the limited data available. Thus, we discussed the validity

of this assumption with the company’s experts and tested the sensitivity of the results of

the model to a misspecification of the demand distribution. We discuss this robustness

check in more detail in Section 5.4.

Mathematically, we derive cumulative demand distributions from relative cumulative

forecast error distributions as follows: For each data point available, i.e. each season j

of the available J years of history and each product k = 1, . . . , K, we define the relative

cumulative forecast error, RCFE, of a cumulative forecast made at the start of the

planning horizon for month t, which we denote by ftjk, as

RCFEtjk =
ftjk − atjk

ftjk
, (107)

where atjk is the cumulative actual demand of product k in season j up to month t. It

should be noted that the measure in equation (107) is undefined for ftjk = 0. To solve

this issue, we simply exclude the (very few) data points for which this happens from

consideration. Combining all products and past seasons, we obtain a set of P = K × J

RCFE data points for each month t ∈ T : the P points in this set, with element p

denoted by RCFEpt, form the empirical distribution of the random variable RCFEt,

from which the empirical probability distribution of the cumulative demand random

variable CDkt is readily obtained. Accordingly, the actual cumulative demand forecast

at the start of the planning horizon for product k in month t, fkt, the points p = 1, . . . , P

of the empirical distribution of CDkt, denoted by CDpkt, are obtained from:

CDpkt = fkt · (1−RCFEpt). (108)

This probability distribution is not only used to derive the scenarios of the stochastic

model presented in the previous section, but also to evaluate the expected performance

of all models used in this chapter’s analysis.

Finally, given the probability distribution of demand obtained as previously explained,

we use descriptive sampling (DS) to derive scenarios for the SGLSP-CDS model, as

in Chapter 4, and we choose to use 10 scenarios, because this proved to be a valid

compromise between the quality of the solutions and the computational complexity of
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the model. The S scenarios of the cumulative demand for each product k and period t

combination are derived as:

CDkts = F−1
CDkt

(s− 0.5

S

)
s = 1, . . . , S. (109)

Because we sample from a discrete distribution, in case there is no point in the em-

pirical distribution which exactly satisfies equation (109) for some s, we set the value

of the cumulative demand in scenario s equal to the smallest point CDpkt for which

F−1
CDkt

(CDpkt) ≥ ( s−0.5
S

).

It is worth mentioning that, for some products, the above scenario-generation process

could result in negative expected demands for individual periods, because cumulative

forecast errors data are pooled across all products. However, this does not affect the

implementation of the CDS approach in our setting.

Additionally, we use the actual demand and forecast data of Seasons 2 and 3, along

with that of other past seasons, to derive the demand distribution which is utilized

both as input in the SGLSP-CDS model and to obtain the expected performance of all

the models in the same seasons. In other words, for Seasons 2 and 3 we use an in-

sample evaluation approach for all models, whereas for Season 1 we use an out-of-sample

evaluation approach. We make this pragmatic choice because of the limited amount of

data available.

5.4 Results

After deriving the problem’s relevant input as explained in Section 5.3, we now conduct

an analysis to reach the research objectives described at the start of the chapter.

Prior to showing the results, we make some general remarks which are relevant for the

entire section. The different analyses presented involve solving one or more optimiza-

tion problems, i.e. the SGLSP-CDS model and others which will be newly introduced

shortly. All these problems are solved on a machine with a 2.30 GHz CPU and 64 GB

of RAM using Gurobi 8.1 with a time limit of one hour, which, in most cases, leads to

an optimality gap ranging from 1% to 3.5%. As discussed in the previous section, we

use the actual data of three past seasons to evaluate the resulting solutions and draw

our conclusions. For all seasons, the expected performance of the models’ optimal plans

is computed according to the same cumulative demand distribution which is used to

derive the scenarios in the SGLSP-CDS model. In addition, we evaluate the models’

performance for the actual demand realizations in the given season. For all analyses

presented, we show and explain the results in detail for Season 1, and present additional

results for Seasons 2 and 3 in Appendix B. Additionally, to maintain confidentiality, we

normalize the sensitive original input and output quantities of the analyses.
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5.4.1 Inventory drivers and their importance

In the first step of our analysis, we attempt to understand the impact of uncertainty

as an inventory driver in the problem setting under consideration by comparing it to

the other inventory drivers. We start by identifying and categorizing the most relevant

inventory drivers as follows:

� Transportation time. This is an unavoidable time during which the produced

products remain in inventory before they reach their sales region and can be sold

to customers. As mentioned, products must be available in the sales region one

month in advance, therefore, the production quantity in a given month stays in

inventory for at least one month.

� Seasonal demand and limited capacity. The seasonality of demand is one of the

most distinctive characteristics of the industry in which the firm operates. Due to

the limited production capacity, this forces the firm to produce ahead of the peak

demand season and use inventory in order to avoid unmet demand.

� Economies of scale. The agrochemical production processes are characterized by

long, sequence-dependent setup times and minimum batch constraints, which make

batch production necessary to avoid an excessive number of costly changeovers.

� Uncertain demand and desired service level. As discussed, the demand for CPPs

can exhibit a high degree of uncertainty. Inventory is needed to buffer against this

uncertainty to ensure that the desired service level is attained with the minimum

financial investment in inventory.

To quantify the impact of the above drivers, we follow a stepwise approach. Focusing

our attention on Season 1, in each step (which we call phase) of the approach we solve an

optimization problem which determines the production plan that minimizes inventory

costs considering a subset of inventory drivers. Specifically, following the order in which

they are presented in the earlier provided list, we add an additional inventory driver in

each phase and compare the resulting minimum inventory costs in the actual realized

scenario of Season 1. The increase in the minimum inventory costs from one phase to

the next serves as an indicator of the importance of the newly added inventory driver.

To avoid unnecessary repetition, we present only the mathematical formulation of the

(deterministic) problem of Phase 3 in Appendix C. The problems for Phases 1 and 2 can

be readily derived from that by deleting or modifying some constraints, as explained in

subsequent sections.

In Phase 1, we consider only the transportation time as an inventory driver. We assume

that demand is known and equal to the realized demand in the season. We solve a simple,

linear deterministic production planning problem with the objective of minimizing total
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inventory costs subject to meeting the demand and considering the lead time. As in

the SGLSP-CDS model, we treat initial inventory as a variable to make the analysis

independent of the starting condition. We also force the ending inventory to be at

least as large as the initial one, thus creating a cyclical plan. Capacity constraints

and the production process-related constraints of the standard deterministic GLSP are

disregarded because they are associated with other inventory drivers not considered at

this stage. Formally, we solve the model shown in Appendix C excluding constraints

(112)-(116) and (121)-(122).

In Phase 2, we consider additionally the limited capacity. The linear deterministic model

used for Phase 1, which uses seasonal demand as input, is extended by the addition of

simple capacity constraints that ensure that the total production time in each month

does not exceed the available capacity. These constraints are obtained by excluding the

second term on the left-hand side of constraints (112) in Appendix C.

In Phase 3, we also consider economies of scale. As in the SGLSP-CDS model, we do that

by considering sequence-dependent setup times and minimum batch constraints. The

deterministic model of the previous phase is extended by adding the standard production-

process-related constraints of the deterministic GLSP. The complete model formulation

is presented in Appendix C.

In Phase 4, we consider demand uncertainty and the target service level. To that end,

as opposed to the previous three phases, we solve the stochastic SGLSP-CDS model

presented in Section 5.2. The optimal plan of the SGLSP-CDS model, and thus the

resulting actual inventory costs in Season 1, is a function of the δ service-level target.

In order to estimate the effect of varying this parameter, we solve the stochastic model

multiple times with different target δ service levels. We show the results for δ service-

level targets equal to 0.96, 0.98 and 0.99. The choice of these relatively high service-level

targets is motivated by the fact that customers expect high service levels and that there

are substitutes of the products in the market, which drive AC to aim for such targets.

The optimal monthly inventory costs of the different phases are plotted in Figure 30.

Focusing our attention on the inventory cost curves of the first three phases, we see that

the differences between them are really small. Transportation times cause significant un-

avoidable inventory costs, whereas the addition of seasonal demand and limited capacity,

as well as economies of scale, do not cause a significant increase in inventory costs. A

comparison of the curve of Phase 3 to the curves of phase 4 shows a significant increase in

inventory costs, which clearly indicates that the uncertainty of demand and the desired

service-level targets is an inventory driver which significantly amplifies the impact of the

other drivers. This effect of demand uncertainty emphasizes the importance of appropri-

ately considering this inventory driver when planning. For the company, this means that

it is valuable to invest time and resources to improve their planning under uncertainty
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Figure 30: Comparison of inventory drivers – season 1

and to improve the accuracy of their demand forecasts. In addition, the results show

that a relatively small increase in the target service level requires a significant increase

in the necessary inventory investment, emphasizing the importance of carefully choosing

an appropriate target.

5.4.2 Inventory-service level trade-off and assessment of the current plan-

ning procedure

Based on these results, in the next step of the analysis, we focus on understanding the

trade-offs between inventory costs and service level in detail, as well as on comparing

the performance of the developed stochastic model and the planning process currently

used by the plant. Conceptually, the latter works as follows. First, forecasts for the next

season (and beyond) are generated in an S&OP meeting. Second, these forecasts are

adjusted, in nearly all cases inflated, by individual countries’ sales experts considering

the company’s goals and the uncertainty of demand in their region. In the final step, a

production plan to meet the inflated forecasts is developed. Essentially, in this sequential

process, safety stocks are determined by experts, in the form of inflated forecasts. Sub-

sequently, a deterministic planning problem is solved to meet the resulting safety stock

targets. This type of approach, in which demand uncertainty is dealt with before the

planning problem is solved, is frequently used in practice and in the literature (Boulaskil

et al., 2009), despite it being considered suboptimal. In the specific case of AC, two

main issues of the approach can be identified. The first is its sequential nature, which

makes it impossible to consider the interaction and possible synergies between safety and

other types of stock. The second is the unsystematic representation of uncertainty and

the lack of clear rules for determining the required safety stocks. Indeed, no systematic

statistical analysis is conducted to characterize demand uncertainty, and experts decide

safety stock levels relatively subjectively.
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In our analysis, we replicate the company’s current planning approach as follows: to

obtain the company’s planning decision for a particular season, we solve a deterministic

GLSP which aims at finding the production plan which minimizes inventory costs while

satisfying a demand equal to the inflated forecasts that are obtained in the second step

of the company’s planning procedure (we refer to this model as the GLSP-IF model).

The mathematical formulation of the model is identical to that of the Phase3 Model

shown in Appendix C, with the exception that the parameter CDkt now represents the

cumulative demand for product k up to period t obtained from the experts’ inflated

forecasts at the start of the planning horizon. In the remainder of this chapter, we will

use the terms GLSP-IF and SGLSP-CDS to refer to the inventory planning approaches,

and GLSP-IF model and SGLSP-CDS model to refer to the mathematical model used to

solve the inventory problem in the corresponding approach. A similar naming strategy

is applied to all other approaches introduced in this section.

For each analyzed season, we first obtain the production plans from the SGLSP-CDS

model and from the deterministic GLSP-IF model. Because the optimal plan of the

SGLSP-CDS model is a function of the service-level target, we solve the stochastic model

multiple times for different target δ service levels. This allows us to show the trade-off

between service level and inventory costs inherent to the problem, and to obtain a more

insightful comparison of the SGLSP-CDS and GLSP-IF. The optimal plan of the GLSP-

IF is instead unique, because the service level is entirely determined by the inflated

forecasts which serve as input to the model. Thereafter, we simulate and compare the

performance of the approaches, both in expectation, i.e. assuming that the true demand

distribution is the one used to derive the scenarios for the SGLSP-CDS models, and in

the actual scenario.

For Season 1, the results in expectation are shown in Figure 31. As can be seen, the

plan developed by the SGLSP-CDS outperform the one obtained by using the GLSP-IF

in expectation. Specifically, it can be concluded that approximately 30% of inventory

costs can be saved while keeping the δ service level constant by using the SGLSP-CDS

instead of the GLSP-IF. Alternatively, keeping inventory costs constant, the service level

can be improved by approximately 4% using the stochastic model for planning.

The results of the comparison for the actual demand in Season 1 are shown in Figure

32. As can be seen, in the actual scenario, the SGLSP-CDS only slightly outperforms

the GLSP-IF. This suggests that the actual scenario’s demand realization is a favorable

one for the GLSP-IF.

Similar analyses for Seasons 2 and 3 are shown in Figures 42-45 in Appendix B. In these

two seasons, the SGLSP-CDS clearly outperforms the GLSP-IF, both in expectation and

in the actual scenario.

The above analysis relates to both of our research objectives. First, it clearly shows the
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Figure 31: Expected performance of the SGLSP-CDS and GLSP-IF – Season 1

Figure 32: Performance of the SGLSP-CDS and GLSP-IF models – Season 1

level of investment in inventory that is needed to achieve a certain service level. The

classical trade-off between the cost minimization and service-level maximization objec-

tives provides practitioners with a useful tool for making, justifying and communicating

inventory management decisions. Second, it shows that the newly developed SGLSP-

CDS can deal with uncertainty more effectively than the planning approach currently

used.

5.4.3 Comparison of inventory plans of the newly developed and the existing

planning approaches

We now direct our attention to understanding the origins of the observed performance

difference between the two approaches to inventory planning by first looking at how their

optimal planning decisions differ. To this end, we compare the optimal plan of the GLSP-

IF model with the optimal plan of the specific SGLSP-CDS model that achieves the same

expected aggregate service level (according to the demand distribution implied by the

scenarios used in the stochastic model) but with lower expected inventory costs in Season
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1. In other words, we investigate the differences in the optimal planning decisions of the

GLSP-IF and the SGLSP-CDS models, assuming that the aggregate target service level of

the company is the one reached in expectation by the GLSP-IF plan. First, although both

plans achieve the same aggregate service level, the service level achieved in expectation for

the individual products differ, and this could explain the difference in expected holding

costs. To quantify the extent to which this aspect can explain the difference in the

inventory costs performance of the two approaches, we solve the SGLSP-CDS problem

with individual product target service levels set equal to those achieved in expectation

by the GLSP-IF plan. Comparing the resulting expected inventory costs to those of

the original SGLSP-CDS plan, we find that of the 30% savings in expected inventory

costs, 9% stem from the difference in the individual products’ service levels achieved in

expectation. Therefore, a large part of the difference in expected holding costs between

the SGLSP-CDS and GLSP-IF plans remains unexplained. The remaining important

difference between the two plans is therefore the production schedule. Comparing the

two production schedules, we find that, although the number of changeovers and the

overall utilization of the production resources is almost identical, the decisions on the

timing and size of the production lots differ substantially. We show the two aggregate

plans in Figure 33.

Figure 33: Comparison of resulting production plans between SGLSP-CDS and GLSP-
IF models – Season 1

According to the figure, the most noticeable difference is that the GLSP-IF plan starts

with a much larger inventory than the SGLSP-CDS plan. As previously mentioned, the

difference between the two plans is ultimately due to the way the two approaches treat

demand uncertainty and calculate the optimal safety stocks. In the SGLSP-CDS, safety

stocks are calculated endogenously by the planning model, whereas in the SGLSP-IF

they are calculated exogenously and then input into the planning model in the form

of inflated demand forecasts. Therefore, the underlying input demand to the GLSP-

IF model explains the difference between the production plans and thus the inventory

costs of the approaches. In Figure 34, we show the total demand for each period of the
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planning horizon that the GLSP-IF model aims to fulfill, which is a result of a demand

estimation process and safety stock decisions, and the expected total demand for each

period which is assumed by the SGLSP-CDS model when simultaneously determining

the production schedule and the safety stock.

Figure 34: Comparison of input demand between SGLSP-CDS and GLSP-IF models –
Season 1

The graph clearly shows that the GLSP-IF plan starts with higher inventory because it

aims to build substantial safety stocks in the first periods of the off-season, when demand

is rather low. For Seasons 2 and 3, however, this difference in demand in the first months

is found to be less striking (the analysis is shown in Figures 46-49 in Appendix B); as a

result, also the optimal production plans do not differ as much as for Season 1. In those

seasons, however, the expected savings of the SGLSP-CDS over the GLSP-IF are also

lower, although still significant.

This analysis confirms that the previously observed advantage of the SGLSP-CDS over

the GLSP-IF originates from the way the former approach determines safety stocks to

buffer against demand uncertainty. Conceptually, this advantage comes from two sources.

One is the use of available statistical information on demand uncertainty in the form

of demand distributions instead of a subjective estimation of the demand uncertainty,

which is used when generating inflated forecasts. The other is the use of a stochastic

planning model, which plans safety stock and production in an integrated fashion, i.e.

simultaneously, as opposed to the currently used planning approach, where the safety

stocks are determined before the planning model is solved. When determining the safety

stock, the sequential approach of the GLSP-IF fails to consider many features of the

problem, such as limited capacity and setup times. In other words, contrary to the

SGLSP-CDS, the current sequential approach disregards the fact that the optimal safety

stock is a function of (depends on) the production plan.

Given these two sources of the advantage of the SGLSP-CDS over the SGLSP-IF, it is

insightful to determine which source leads to the most significant improvement over the
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current planning procedure. Accordingly, we investigate the potential benefits of using a

statistically-based but sequential planning process for determining the safety stocks over

the currently used method of forecast inflation.

In the first step of the current approach used by the company, forecasts for each article

and period are inflated subjectively, leading to safety stock targets. A different approach

to determining safety stocks is to perform this step using the statistical knowledge of

the demand process which we use for deriving scenarios in the SGLSP-CDS model.

Specifically, we consider the following planning approach:

1. Derivation of the relevant probability distribution of demand. In this step, the

cumulative demand distributions for each product-period pair are estimated, as

for the SGLSP-CDS model.

2. Safety stock calculation as a demand percentile. Here, a certain percentile of

demand for each product-period combination is determined based on the service-

level target. We assume that the same service-level target, and thus the same

percentile, is used for all products and periods, although it could potentially be

different for each combination.

3. Production planning. We solve a deterministic GLSP aiming at minimizing in-

ventory costs subject to meeting the production targets corresponding to the per-

centiles of the demand distributions determined in step 2. Specifically, the math-

ematical model is identical to that shown in Appendix C, with the exception that

the parameter CDkt now represents the percentile of the cumulative demand dis-

tribution for product k up to period t determined in step 2.

The second step is the statistically-based equivalent to the currently used forecast-

inflation method. We solve the inventory problem using this planning approach, which

we denote by GLSP-SIF (where SIF stands for statistically inflated forecasts), with dif-

ferent percentile targets in the second step, and compare the results with the ones of the

GLSP-IF and SGLSP-CDS. The results of the analysis for Season 1 are shown in Figures

35 and 36.

Each point in the GLSP-SIF curve corresponds to a solution obtained using a different

percentile of the demand distribution for all product-period combinations to determine

the production targets. Specifically, from left to right the targets percentiles are 70%,

72.5%, 75%, 77.5% and 80%. As can be seen, in expectation, the GLSP-SIF performs

better than the GLSP-IF, showing that it is beneficial to use the available statistical

knowledge of the demand process, even when using a simple rule of thumb to make

safety stock decisions in a sequential planning approach. Also, predictably, the GLSP-

SIF is outperformed by the GLSP-CDS, because the latter optimizes the safety stock

and planning decisions simultaneously, instead of sequentially. The comparison between
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Figure 35: Comparison of SGLSP-CDS, GLSP-IF and GLSP-SIF models – expected
performance in Season 1

Figure 36: Comparison of SGLSP-CDS, GLSP-IF and GLSP-SIF models – actual per-
formance in Season 1

the expected performance of the three models provides additional information on the

shortcomings of the currently used planning approach. As can be seen, the difference in

performance between the SGLSP-CDS and the GLSP-SIF is smaller than that between

the GLSP-SIF and the GLSP-IF. This shows that the major drawback of the current

approach is the lack of a systematic, statistically-based method to determine safety

stock levels. Consequently, implementing the proposed GLSP-SIF, even if the sequential

nature of the planning approach is kept, would benefit AC. However, it is also important

to note that in the GLSP-SIF there is not a clear relationship between the percentile of

demand used to determine safety stocks and the expected achieved service level, thus

complicating the application of the approach in practice. For example, choosing the

75th percentile does not lead to a 75% service level. Also, independent of the expected

service level achieved, the resulting plan is not necessarily the cost-optimal way to reach

the target, because the interaction between periods and products are disregarded in this

sequential approach, since the safety stock targets are determined independently for each
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product-period combination. Additionally, due to the EOH constraints, large percentiles

may lead to infeasibility of the problem. Finally, we see that it would be beneficial for

the company to take into consideration switching from a sequential planning approach

to an integrated one, in which safety stocks and production decisions are optimized

simultaneously.

The difference between the GLSP-SIF and the other approaches in the actual scenario of

Season 1 is not clear-cut, but it seems that, as it is the case in expectation, the GLSP-SIF

slightly outperforms the GLSP-IF and is marginally outperformed by the SGSLP-CDS.

Similar results are obtained for Seasons 2 and 3, with the corresponding graphs shown

in Figures 50-53 in Appendix B. However, in these seasons, the relationship between the

different models in the actual scenario is much clearer, and comparable to the relationship

between the models in expectation in all seasons.

5.4.4 Robustness of the SGLSP-CDS to misspecifications of the demand

distribution

In Section 5.3 we explained that we obtained the results shown so far assuming that

the relative cumulative forecast errors of all products are iid. We now try to test the

robustness of the SGLSP-CDS model to a different distribution assumption.

After a discussion with the company’s experts, we obtain the different distribution as-

sumption for the robustness check as follows: We use a classification scheme developed

by the company for forecasting purposes to group the products into three clusters. We

then assume that the relative cumulative forecast errors of all the products in each clus-

ter are iid and thus derive a different demand distribution for all products by repeating

the procedure presented in Section 5.3 for each cluster.

Under the resulting new demand distribution assumption, we solve the SGLSP-CDS

model again with different service-level targets to obtain the new optimal inventory and

production plans. Subsequently, we compare the expected performance of these plans,

according to the newly derived demand probability distribution, with that of the original

plans obtained by the SGLSP-CDS model without clustering and the plan of the GLSP-

IF model. We therefore evaluate the expected performance of all models under the

assumption that the actual demand distribution is the one obtained using the clustering

of products. The results of this analysis are shown in Figure 37.

As can be seen, the SGLSP-CDS model with clustering (denoted by “clustering” in the

graph) outperforms not only the GLSP-IF, but also the SGLSP-CDS model without

clustering (denoted by “no clustering” in the graph). This is to be expected, because to

the fact that the plan of the SGLSP-CDS model with clustering is optimized for the the

demand distribution implied by the clustering, which is also used to obtain the expected

performance of the all plans shown in Figure 37. However, it is important to note that
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Figure 37: Robustness check to misspecifications of the probability distribution of de-
mand – Season 1

the performance of the SGLSP-CDS model without clustering is very close to that of

the model with clustering, suggesting that the plans of the stochastic model are indeed

robust to misspecifications of the probability distribution of demand. We also observe

that the SGLSP-CDS model without clustering still clearly outperforms the GLSP-IF.

This appears to indicate that even if the developed stochastic planning model uses an

incorrect demand probability distribution assumption, it still performs better than the

current approach. This strengthens the conclusion that the SGLSP-CDS model provides

benefits over the currently used planning approach. The robustness of the stochastic

model is further confirmed by the results of the same analysis in Seasons 2 and 3, which

are shown in Figures 54-55 in Appendix B. In the remainder of this chapter, we will

thus continue using the demand distribution obtained without clustering the products

to show the results of our analysis.

5.4.5 Aggregate versus individual service-level targets

In the analysis presented so far in this chapter, we have used aggregate service-level

constraints, meaning that the service level is defined and controlled as aggregated over

all products. We made this choice because it simplified the process of obtaining and

discussing the results of our analysis with our research partner. Theoretically, however,

service-level constraints can be disaggregated (aggregated) along many dimensions, such

as product, time, customer, or geographical region. Because the choice of the aggregation

level of the service-level constraints has important consequences on the required inven-

tory investment to reach a certain target, we now analyze the effects of disaggregating

the service-level constraints for individual products. Specifically, we enforce a δ service-

level constraint for each individual product. Although we focus on this specific relevant

dimension, we note that the analysis can be repeated for others, providing further in-
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sights to the company to help it setting the right service-level targets, which is a highly

challenging task in practice. In principle, the targets can also differ between products,

however, in our analysis we assume that they are identical for the sake of simplicity.

We show the expected performance of the SGLSP-CDS with individual service-level tar-

gets (which we denote by SGLSP-CDS-ind) in Season 1 in Figure 38. As for the previous

analyses, the vertical axis represents the expected aggregate service-level performance of

the different plans. By comparison, in the same graph we again show the performance

of the SGLSP-CDS with aggregate service-level targets and of the GLSP-IF.

Figure 38: Expected performance of the SGLSP-CDS-ind, SGLSP-CDS and GLSP-IF
models – Season 1

Predictably, it is shown that the expected costs necessary to achieve any given target δ

service level are higher if this target must be met for each individual product instead of

over all products. A reason for this is that using an aggregate service-level constraint

allows the company to overachieve the target for the less expensive (in terms of inventory

costs) products and underachieve it for the more expensive ones, while still meeting the

overall target. Another reason is that, even if all products were equally expensive, a bad

service-level performance for one product in one scenario can be compensated for by a

good service-level performance for another product in the same scenario, thus allowing

risk-pooling. In Figure 39, we show the relationship between the optimal service level

chosen by the SGLSP-CDS and the unit inventory costs of all products when the target

δ service level is set to 98%. As mentioned, the optimal decision is to overachieve the

service-level target for products with low inventory costs and underachieve it for those

with higher inventory costs.

Although Figure 38 shows that there is a difference in the inventory cost performance

between the SGLSP-CDS and the SGLSP-CDS-ind, this difference is small. This can

largely be attributable to the consideration of high service-level targets in our analysis.

These high targets leave little room to the SGLSP-CDS for overachieving the target for

the cheaper products, which therefore cannot compensate for a large underachievement
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Figure 39: Optimal service level – inventory costs relationship with aggregate service
level δ = 98% – Season 1

of the target for more expensive products. Indeed, in Figure 39 we see that in order to

reach an aggregate target of 98% it is not possible to aim for a service level lower than

94% even for the most expensive products without increasing total inventory costs. To

summarize, this analysis shows that in the problem setting under consideration, given

that high service levels are targeted, AC would not need to substantially increase its

inventory investment if it decided to aim for a comparable service level for each individual

product. It also shows that using an aggregate service-level constraint does not result in

an excessively uneven distribution of service levels among products.

5.4.6 Cost-based model to support service-level target setting

We conclude our study by discussing the problem of setting the right target for the

service-level constraints. Thus far, we have shown the effects on inventory costs of

changing the target service level by solving the SGLSP-CDS (or SGLSP-CDS-ind) model

for different δ service-level targets, but have not discussed how AC should choose the right

target (or targets, depending on the aggregation level of the service-level constraints).

Due to the uncertainty of demand, each possible plan implemented by AC implies two

risks: on the one hand the risk of experiencing a shortage, and on the other hand that of

carrying unnecessary costly inventory. In theory and in practice, the most common ways

to manage these risks are two. One is to enforce service-level constraints, the method

applied so far in this chapter, which requires decision makers to set the target service

levels. The other is to use shortage costs: once these costs are defined, they are added to

the objective function and traded-off against inventory costs. Using the latter method,

the service-level targets of different products are essentially decided by the products’

underage and overage costs, instead of by the decision maker. The target service levels

chosen by the latter cost-based approach can be used in practice as a starting point

for setting the right targets for the products in the former service-level-based approach.
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Therefore, we now develop a cost-based model of the mid-term production and inventory

planning problem faced by AC, with the aim to help them setting the right service-level

target and thus determining the necessary inventory investment to reach their goals.

In the lot-sizing literature, it is common to control shortages by penalizing each backo-

rdered unit by a certain cost in the objective function. However, there are other ways of

“costing” a shortage. Other common ways include, for example, defining a fixed cost per

stockout occasion or a fractional charge per unit short per unit time (see Silver et al.,

2016 for a more in-depth discussion on different methods of costing shortages). In the

developed cost-based model, we control stockouts by introducing a penalty for each unit

of backlog per time period. We derive the cost-based model from the SGLSP-CDS model

by modifying the objective function and eliminating the service-level constraints of the

latter. Specifically, letting pk be the penalty cost per period of one unit of backlog of

product k, we formulate the cost-based model, named SGLSP-CDS-p, as follows:

SGLSP-CDS-p Model

Min
∑
k∈K

∑
t∈T

hk ·
(∑

s∈S

prs · IPkts

)
+
∑
k∈K

∑
n∈N

∑
m∈M

hk · xknm +
∑
k∈K

∑
t∈T

pk ·
(∑

s∈S

prs ·BLkts

)
(110)

Subject to constraints (92)-(100), and (102)-(106).

Because it is difficult, if not impossible, to correctly estimate the penalty costs pk in

practice, we solve the problem for different values of this parameter. To this end, we

assume that the backlog costs of all products are directly proportional to their profit

margins. Furthermore, we obtain different values of pk by varying the proportionality

factor, which we denote by q. We present the results of the analysis in Figure 40, showing

the expected performance of the SGLSP-CDS-p, as well as that of the SGLSP-CDS and

GLSP-IF by comparison, in Season 1.

Figure 40: SGLSP-CDS-p – Expected performance, Season 1

From left to right, the points in the SGLSP-CDS-p curve correspond to an increasing
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value of the constant of proportionality q used to obtain the penalty terms (the specific

values are confidential, and hence, not shown). As expected, as the backlog costs in-

crease, the expected inventory costs and aggregate service level also increase, because

the SGLSP-CDS-p model accepts higher inventory costs in order to avoid the relatively

more expensive backlogs. Moreover, importantly, these results give decision makers at

AC initial valuable insights into the problem of setting the right service-level targets. In-

deed, given the company’s estimate of the constant of proportionality q, and thus backlog

costs, the graph shows the service-level target δ for which they should aim. Of course,

however, solving the SGLSP-CDS model with an aggregate target δ we will not obtain

the same optimal production/inventory plan as when solving the corresponding SGLSP-

CDS-p model with the constant of proportionality q that leads to the solution with an

aggregate service level of δ. Indeed, as can be seen by comparing the SGLSP-CDS and

the SGLSP-CDS-p curves, the cost-based model prescribes higher inventory costs than

the service-level-based model. Specifically, the optimal plans of the two models differ in

the service-level targets set for the individual products. To see how, for illustrative pur-

poses, we compare the optimal service level of all products chosen by the SGLSP-CDS

model with a target of δ = 98% to that chosen by the SGLSP-CDS-p model which leads

to the same aggregate service level. In Figure 41, we plot the difference between the

optimal δ service level chosen by these two models for all products against their profit

margins.

Figure 41: Difference in the optimal δ service level between SGLSP-CDS and SGLSP-
CDS-p models as a function of the products’ profit margin – Season 1

As expected, compared to the SGLSP-CDS model, the SGLSP-CDS-p model chooses a

higher service level for products with a large profit margin, although it achieves the same

aggregate δ service level. This choice leads to larger inventory costs, but consequently

also to lower backlog costs, and the decrease in the latter outweighs the increase in the

former, thus minimizing the sum of the two costs. The company could, therefore, look

at the service-level targets chosen by the SGLSP-CDS-p for a given q as a starting point

to set individual targets for its products.
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5.5 Conclusions

To summarize, in this chapter, we developed an integrated lot-sizing and scheduling

model under uncertainty and used it to conduct an analysis to help AC quantify the

impact of uncertainty in their mid-term inventory planning problem and make more

effective and well-informed inventory decisions.

The proposed model, a stochastic version of the GLSP solved with the CDS approxima-

tion method presented and studied in Chapter 4, is able to cope efficiently with the major

challenges faced by the company in the complex setting in which it operates, namely de-

mand seasonality, demand timing and quantity uncertainty, and sequence-dependent

setup times. Using this model, we conducted an extensive analysis which enabled us to

provide insights into the company’s planning problem. We also believe that the model

can serve as a starting point to support actual future mid-term inventory planning.

We have shown that demand uncertainty is the most important inventory driver in the

setting analyzed. Because of the seasonal nature of demand, uncertainty actually takes

two forms: demand scale and demand timing uncertainty. As a result, it is crucial

to manage both types of uncertainty appropriately when planning, and our proposed

approach appears to be a promising way to do that. Moreover, this result also signals

that it is beneficial for AC to invest in improving forecast accuracy.

The developed planning model allows to clearly visualize and quantify the trade-off be-

tween inventory costs and service level and can be used for evaluation and planning

purposes. Indeed, performance evaluation and decision-making should become more

transparent once the relationship between the two aforementioned key performance in-

dicators is made clear and intuitive for all the stakeholders involved in the planning

process.

Moreover, we simulated the performance of the stochastic model for three past seasons,

and showed that it outperforms the currently used planning approach, both in expecta-

tion and in the actual scenario. In a further step, we also highlighted the shortcomings

of the current planning method compared to the newly proposed planning approach.

Finally, we developed a cost-based stochastic lot-sizing and scheduling model and com-

pared its behavior and performance to those of the initial service-level-based model. This

new model represents an alternative approach to inventory management and can com-

plement the originally proposed model by providing guidance in the process of selecting

the right service-level targets for the company’s products.

The nature of the market under consideration and the limited available data make it

challenging to obtain an estimate of the probability distribution of demand. We have

successfully conducted a limited test of the robustness the model to a misspecification of

the demand distribution. However, future research could extend this analysis and test
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ways to improve the estimate of the demand distribution.

The performance of the model in past seasons could also be tested by applying the

model under a rolling horizon planning approach, because that would provide a more

accurate estimate of its performance. This would also facilitate applying the model

in future planning efforts. Moreover, again for both evaluation and future planning

purposes, the model could be extended to consider re-planning opportunities within

the planning horizon, for example by using a static-dynamic or a dynamic uncertainty

strategy as opposed to a static one. This different uncertainty strategy would provide

superior solutions in terms of inventory costs, but might lead to planning nervousness,

a significant increase in computational complexity of the problem and the need to use

a solution approach other than the CDS. Indeed, with a static-dynamic or dynamic

strategy, a multi-stage stochastic program is needed to model the problem, in which

decisions in each stage are dependent not only on the past realization of demand and past

decisions, but also on the conditional probability distribution of demand in the remaining

periods of the planning horizon, thus also requiring an estimate of these distributions. As

an alternative solution to transforming the model into a multi-stage stochastic program,

the model can be extended by considering future re-planning opportunities under rolling

horizon planning using the methodology introduced by Tavaghof-Gigloo and Minner

(2020).

Another possible extension of the proposed model is to consider the bottling and labeling

steps of the production process of CPPs at the plant to consider the capacity of these

production stages more accurately. This could also be coupled with modeling the demand

processes at the article level instead of the CPP level. Similarly, the model could be

extended by considering the production decisions for AIs or their availability, which we

assumed to be unlimited in our approach.

Finally, different scenario-generation methods could be evaluated, especially those able

to provide scenarios which are paths through a scenario tree that respect demand depen-

dencies. Coupled with the standard scenario-approximation methodology of stochastic

lot-sizing problems presented in Chapter 4.4.1 (instead of the CDS one), this would al-

low to measure the variance of the objective function and thus control risk. However,

these scenario-generation methods would require that the dependence between all the

product-period combinations are first estimated and then generate scenarios which obey

these dependencies. This process is especially challenging in the real-world setting ana-

lyzed, due to the number of products considered and the limited availability of demand

data.
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6 Conclusions

In this thesis, we studied the inventory management problem of a firm selling products

with a seasonal and uncertain demand. Our focus was on simultaneously considering the

quantity and timing uncertainty of demand and the related inventory decisions, a topic

that has not been addressed in sufficient depth in the literature. When the products’

selling seasons are stochastic, the right inventory timing decision is as important as the

right inventory quantity to the success of the firm. Therefore, the correct representation

of the timing uncertainty and the role of inventory timing in buffering against this

uncertainty should be explicitly considered. In particular, we focused on showing the

relationship between the problem’s parameters and the inventory decisions of the firm,

highlighting the (practical) relevance of the problem and developing tools to manage it

in complex real-world settings.

We began this thesis by illustrating the analyzed inventory problem and its practical

relevance with an in-depth description of the agrochemical industry and the inventory

challenges faced by a firm manufacturing crop protection products (CPPs). Despite

the degree and importance of the timing uncertainty of demand for these products, we

showed that no published studies conducted in this industry directly address or propose

solutions to the specific challenges posed by this key characteristic of demand.

In Chapter 3, we started our analysis of the inventory problem by investigating how the

characteristics of the problem, i.e. the stochastic properties of the selling season of the

product and the cost parameters of the product such as its profit margin and holding

costs, influence the optimal inventory timing and quantity, and the profits of the firm.

With this analysis, we filled a gap in the literature on inventory management of products

with seasonal and uncertain demand. This literature has indeed paid almost no attention

to demand timing uncertainty and the inventory timing decision, with the exception of

Schlapp and Fleischmann (2020).

We first presented the model and summarized the analytical results of Schlapp and

Fleischmann (2020), to comprehensively define the problem setting and characterize the

optimal inventory timing and quantity of the firm, as well as to point out the main

differences with the classic newsvendor model that this model is built on.

Then, we used this knowledge to conduct a numerical study aimed to answer our research

questions. We first discussed all parameters varied across the problem instances solved in

detail and justified our reasons for choosing the values of each parameter considered in our

study. Given that there exists no known closed-form solution to the problem, we proposed

a scenario approximation of the problem and a grid-search algorithm to solve it, to obtain

good quality solutions in a reasonable time. We also defined a newsvendor-like näıve

inventory policy commonly used in practice, which makes the product available as soon

as possible to minimize lost sales. Because of its nature, this policy serves as a benchmark
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to show the effects of not properly considering the timing uncertainty of demand and the

role of inventory timing in managing the latter. After solving all instances, we showed

how varying each parameter influences the näıve and optimal inventory strategies. For

the optimal policy, we also showed whether a parameter has a stronger influence on the

inventory quantity or inventory timing decision. This helps decision makers by clearly

identifying which decision must be prioritized depending on the characteristics of the

inventory problem they face. We additionally showed, for each parameter, which values

lead to the smallest and largest difference in expected profits between the two inventory

policies considered, to understand the conditions under which a näıve policy is especially

harmful and should be avoided.

Our results showed that the effect on inventory timing is stronger than on inventory

quantity for all parameters defining the properties of the stochastic selling season, such

as the mean length of the season and the coefficients of variation of the length and

start of season, whereas the contrary holds true for the cost parameters of the product,

i.e. its critical fractile and the inventory holding costs. Moreover, we showed that

avoiding the pitfalls of the näıve policy is especially important when the season’s start

is highly uncertain, the inventory holding costs are high and the critical fractile is low.

These results clearly emphasize the importance of considering both types of demand

uncertainties and both inventory decisions simultaneously in the examined setting, in

conflict with the lack of studies on the topic. However, several simplifying assumptions

were made in the decision model used for the analysis that limit its suitability to solve the

inventory problem in real-world settings. The subsequent chapters of the thesis focused

on overcoming this limitation.

As opposed to the stylized setting studied in Chapter 3, in real-world settings companies

often produce multiple products, each of which could have a selling season with different

characteristics, which additionally share the limited capacity of a production resource.

Moreover, in many industries, before the production of a product can start, a setup

operation which costs money and time must be performed. In addition, in the time

horizon which the firm needs to consider in its production/inventory planning problem,

the products might have multiple seasons, and each of them is likely to not have a clear-

cut pattern. Therefore, in Chapter 4, we examined how the inventory problem in these

more complex but practically relevant settings can be tackled.

Consequently, we parted from the continuous time model used in Chapter 3, and modeled

the problem using a discrete time stochastic capacitated lot-sizing problem (SCLSP).

The objective considered also shifted from profit maximization to cost minimization

subject to service-level constraints, a more common approach to inventory planning

in practice. This widely used model allowed us to capture the aforementioned more

complex production setting and to consider more complex demand patterns. At the

same time, modeling the problem in discrete time and defining the demand distribution
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for each product-period combination requires to correctly capture the auto- and cross-

correlations of demand, which are naturally present in a setting with seasonal demand

as the one analyzed. Indeed, the shape of the season clearly connects the demand of

different periods for a given product, and the demand of different products is correlated

if they share the same selling season or have different but interconnected seasons.

We showed that a popular approach to solve the SCLSP found in the literature consists

of solving the scenario approximation of the problem. In the analyzed setting, using this

solution method requires to build scenarios of demand with the correct auto- and cross-

correlations. However, we observed that studies on stochastic lot sizing did not consider

settings with seasonal demand, and that most studies further assumed that there were

no demand correlations. Furthermore, they did not propose efficient ways to estimate

these correlations or to generate scenarios obeying these correlations. Therefore, we

proposed an alternative formulation of the scenario approximation of the SCLSP which

uses what we define as a cumulative demand scenario (CDS) approach. In contrast to the

standard approach found in the literature that defines and uses scenarios which are paths

of demand in a scenario tree, the CDS approach requires the generation of scenarios of

cumulative demand.

We first compared these two approaches theoretically, to show that they lead to an

equivalent estimation of the stochastic variables of the problem and highlighted the ad-

vantages of the newly proposed approach. These consist of disregarding demand depen-

dencies when generating scenarios and, therefore, not needing to estimate these complex

dependencies in the first place. This is clearly useful in practice, because, first, not

many scenario-generation methods are able to generate scenarios of dependent demands

without a considerable increase in the complexity of the scenario-generation process,

and, second, with the limited amount and imperfect quality of data available in many

practical settings, the estimation of dependencies is a challenging task. We then com-

pared the performance of the classic and CDS approaches in a numerical study under

the common assumption in the literature of dynamic and uncorrelated demand. First,

the results showed that our approach is computationally efficient, because it can obtain

high-quality solutions even with a limited number of scenarios. Second, as opposed to

the classic approach using common sampling techniques, the results showed that the

quality of the solutions is robust to changes in all the parameters of the problem, most

notably the coefficient of variation of demand, even with a limited number of scenarios.

We finally discussed the limitations of the approach, which, however, we believe to not

have a significant impact on its potential benefits. These benefits should be especially

large when the CDS approach is applied in a setting with seasonal and uncertain demand

– that is the topic of the last chapter of this thesis.

In Chapter 5, we applied the CDS approach in a real-world case study to perform an

inventory analysis for an agrochemical company. We started by describing the problem
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setting analyzed, which is the typical one of the agrochemical industry already intro-

duced in Chapter 2. We chose the stochastic counterpart of the well-known and flexible

general lot-sizing and scheduling problem (GLSP) to model the inventory problem of

the company, motivated by the complexity of the production processes and the presence

of uncertainty. Because of the seasonal and uncertain nature of demand for the prod-

ucts, we used the CDS approach, presented in Chapter 4, to approximate and solve the

problem.

We then discussed several additional modeling choices in accordance with the needs and

goals of the company, before presenting the model formulation of the problem. Out

of all the parameters of the problem, the most challenging ones to obtain were the

demand scenarios, because of the limited amount of past data. This lack of sufficient

data necessary to estimate a well-defined demand distribution for each product is inherent

in the market of CPPs, due to the yearly seasonality of the demand and the issue that

past data are not representative of the demand in future seasons, because of the changing

portfolio of the market players and of the different customers. Therefore, we discussed the

method used to overcome this issue and generate scenarios of cumulative demand starting

from past demand and forecast data. This involved using past cumulative relative errors

and pooling them over products, assuming that they are independently and identically

distributed (iid) random variables.

Finally, we presented the results of the analysis. We showed that the high uncertainty of

demand, combined with the high service-level requirements of the industry, necessitates a

large investment in safety stock, which makes this inventory driver more important than

seasonality and economies of scale. This result emphasizes that it is especially valuable

for the company to devote resources and time to improve both its planning strategy

under uncertainty and the accuracy of its demand forecasts. Moreover, it shows that

even a small increase in the target level can cause a substantial increase in the safety

stock needed to reach that target, emphasizing the importance of a careful choice of the

target service level.

Furthermore, we demonstrated how our model can facilitate clearly visualizing the trade-

off between inventory costs and service level by applying and simulating the performance

of the developed model in past seasons. In addition, we used past seasons’ data to

show how the model compares to the planning method currently used by the company.

Given that our model outperformed the existing method, we subsequently analyzed the

difference between the plans of the two methods in detail and clearly identified the sources

of this difference. Our results showed that the major drawback to the company’s current

approach is that it lacks a systematic and statistically-based procedure to determine

the level of safety stock necessary to reach its target service level. The other important

drawback is that it is a sequential approach which tries to deal with the uncertainty

of demand in a first step by determining safety stocks, and then develops a production
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plan to meet these inventory targets in a second step – these two steps are carried

out independently from one another, thus neglecting that the optimal safety stock is a

function of the production plan. Therefore, the company could benefit by addressing

either of the two pitfalls of their planning procedure, and our model is a promising

solution to address both.

Because we assumed in our analysis that the relative cumulative forecast errors of all

products are iid, we later showed that the CDS approach is robust to misspecifications

of the demand distribution by using a different distribution assumption. Moreover, we

investigated the effects of changing the target service level definition from an aggregate

level to a product-specific level. We showed that this change leads to an only relatively

small increase in safety stocks, and that the optimal distribution of service levels among

products using aggregate service-level constraints is not excessively uneven. In the last

step of the analysis, we proposed a profit-maximizing version of the SGLSP-CDS model

developed. We simulated and compared the performance of these two models in past sea-

sons and showed that the profit-maximizing model can support the company in choosing

the service-level targets of individual products.

In this thesis, we made multiple valuable contributions to the literature on the inventory

management problem of a firm selling products with a seasonal and uncertain demand,

both in terms of quantity and timing. However, the presented results are not without

limitations and combined with a general shortage of studies on this specific, challenging

and highly relevant topic, they provide several future research opportunities.

In the analysis of Chapter 3, the interpretation of the effect of certain problem’s param-

eters on the optimal inventory decisions remains open. Future studies could improve the

quality and accuracy of the results obtained by solving the scenario approximation of

the problem using a grid-search solution approach. Also, additional practically relevant

parameter settings could be considered. Finally, assumptions that limit the applicability

of the model to solve real-world problems could be relaxed. Most notably, the model

could be extended to consider multiple products sharing a single production resource

with limited capacity, in order to investigate what parameters of the products and their

seasons’ characteristics would influence their priority in terms of safety stock invest-

ment and production sequence. Although we move in this direction in the remaining

two chapters of the thesis, continuing to use a stylized model would help isolate the

effects of changing the problem’s parameters to develop a deeper and richer theoretical

understanding of the problem and the trade-offs therein, because it provides control and

transparency unlike more complex models.

The CDS approach was shown to be computationally efficient and robust to changes in

the parameters of the problem. However, future studies could examine the exact reasons

for these valuable properties of this approach. Future studies could also conduct a com-

parison, similar to that made in Chapter 4, between the CDS approach and the standard
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approach that is used in the literature, where a different scenario-generation method is

applied in the standard approach that can account for demand dependencies, in a setting

with auto- and cross-correlations. Moreover, the performance of the CDS approach in

a rolling horizon (RH) planning framework is also worth investigating, because of the

widespread use of this planning strategy in practice.

Concerning the real-world case study presented in Chapter 5, different directions for

future research which could provide further valuable insights to the company, can be

identified. Extending the model to consider other steps in the supply chain process of

the company, such as the production of active ingredients and the bottling and labeling

of formulated products, would be an interesting research direction to pursue. In addition,

the performance of the CDS approach could be tested by applying the planning model

under a RH strategy, in order to provide a better estimate of its performance. Therefore,

this would also be a valid option to consider if the model is applied in actual future

planning efforts. Moving away from the CDS approach, both for evaluation and future

planning purposes, the model could be extended to a multi-stage one to consider re-

planning opportunities within the planning horizon and to obtain better solutions than

the single-stage SGLSP-CDS model proposed. However, this would lead to both an

increase in complexity of the model and the need to estimate more complex demand

distributions than those needed by the CDS approach.

To maintain the advantage of the CDS approach, a valid opportunity to still consider

re-planning opportunities, even though less accurately, is to extend the CDS approach

by following the methodology presented by Tavaghof-Gigloo and Minner (2020). This

involves applying the single-stage model in a RH fashion, taking into account future

re-planning opportunities by appropriately decreasing the safety stock needed to achieve

the given target service level. As another alternative to the CDS approach, the problem

could be modeled using the standard scenario-approximation methodology of stochastic

programming coupled with scenario-generation techniques which can create scenarios

as paths through a scenario tree. This would allow to control risk by measuring the

variance of the cost objective function, which is a useful tool in practice. However, this

would necessitate estimating the auto- and cross-correlations of demand and generating

scenarios with the correct dependencies, a difficult task in this real-world setting, which

the CDS approach was specifically designed to avoid.

In conclusion, we trust that the work conducted in this thesis will serve as a stepping

stone for further research into the challenging and relevant inventory management prob-

lem faced by firms serving stochastic selling seasons.
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A Numerical test details

Problem instances have 5, 10 or 20 products, as well as 5, 10 or 20 time periods. In

order to obtain the dynamic demand time series, the procedure followed by Helber et al.

(2013) was the following. First for each product a different average demand E[Dk] was

specified. Second, to obtain a dynamic demand, for each period t the expected demand of

product k, E[Dkt], was defined by drawing a random number from a normal distribution

with mean E[Dk] and standard deviation V Cip · E[Dk], where V Cip is the coefficient of

variation of the expected demand. Two time series of expected demand were defined:

one setting V Cip = 0.2, creating a moderately dynamic series, and another setting

V Cip = 0.3, creating a more volatile series. We used the two time series of expected

demand obtained, following this procedure, by Helber et al. (2013). To define demand

uncertainty, the demand of product k in period t is assumed to be normally distributed

with mean E[Dkt] and (time-invariant) standard deviation σkt = σk = E[Dk]·V Cd, where

E[Dk] =
∑

T E[Dkt]

T
and V Cd is the coefficient of variation of demand. In the test instances

this coefficient is set equal to 0.1 or 0.3, to simulate a higher and lower demand forecasting

accuracy, respectively. To obtain test instances with K products and T periods, the first

K products and the first T periods are considered, respectively. The holding costs per

unit hk and the processing time per unit ptk are set equal to 1, and overtime costs

oc equal to 100 per unit of overtime. The setup costs for product k are defined as

sck = E[Dk]·TBO2·hk

2
, where TBO = {1, 2, 4} is the time-between-orders parameter. The

setup time of product k, stk, is defined as stk = tsrel ·E[Dk] · ptk, where tsrel = {0, 0.25}
is the setup time as a fraction of the period processing time. The capacity parameter, bt

is dynamic and defined as bt =
∑

k∈K ptk·E[Dkt]

Util
, where Util = {0.6, 0.75} is the utilization

due to processing. The δ service-level target is varied across instances: it is set equal to

0.8, 0.9 or 0.95 for all products in a given instance. Finally, the sample size S used by

all sampling methods is set equal to 10, 30 or 50.
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B Additional analysis results

Figure 42: Expected performance of the SGLSP-CDS and GLSP-IF models- Season 2

Figure 43: Actual performance of the SGLSP-CDS and GLSP-IF models – Season 2

Figure 44: Expected performance of the SGLSP-CDS and GLSP-IF models – Season 3
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Figure 45: Actual performance of the SGLSP-CDS and GLSP-IF models – Season 3

Figure 46: Comparison of optimal plans between SGLSP-CDS and GLSP-IF models –
Season 2

Figure 47: Comparison of input demand between SGLSP-CDS and GLSP-IF models –
Season 2
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Figure 48: Comparison of optimal plans between SGLSP-CDS and GLSP-IF models –
Season 3

Figure 49: Comparison of input demand between SGLSP-CDS and GLSP-IF models –
Season 3

Figure 50: Comparison of SGLSP-CDS, GLSP-IF and GLSP-SIF models – expected
performance in Season 2
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Figure 51: Comparison of SGLSP-CDS, GLSP-IF and GLSP-SIF models – actual per-
formance in Season 2

Figure 52: Comparison of SGLSP-CDS, GLSP-IF and GLSP-SIF models – expected
performance in Season 3

Figure 53: Comparison of SGLSP-CDS, GLSP-IF and GLSP-SIF models – actual per-
formance in Season 3
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Figure 54: Robustness check to misspecifications of the probability distribution of de-
mand – Season 2

Figure 55: Robustness check to misspecifications of the probability distribution of de-
mand – Season 3
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C Mathematical formulation of the inventory prob-

lem of Phase 3

Phase3 Model

Min
∑
k∈K

∑
t∈T

hk · IPkt +
∑
k∈K

∑
n∈N

∑
m∈M

hk · xknm (111)

Subject to∑
n∈Nt

∑
k∈K

ptkm · xknm +
∑
n∈Nt

∑
k∈K

∑
j∈K

stkjm · zkjnm ≤ bmt ∀m ∈ M, ∀t ∈ T

(112)

xknm ≤ bmt

ptkm
· yknm ∀k ∈ K, ∀m ∈ M, ∀n ∈ N

(113)

xknm ≥ lkm · (yknm − yk,n−1,m) ∀k ∈ K, ∀m ∈ M, ∀n ∈ N
(114)∑

k∈K

yknm = 1 ∀m ∈ M, ∀n ∈ N

(115)

zkjnm ≥ yk,n−1,m + yjnm − 1 ∀k, j ∈ K, ∀m ∈ M, ∀n ∈ N
(116)

IPkt = IPk0 +
∑
n∈NT

∑
m∈M

xknm − CDkt ∀k ∈ K, t = 1

(117)

IPkt = IPk0 +
∑
n∈NT

∑
m∈M

xknm +
t−1∑
τ=1

∑
n∈Nτ

∑
m∈M

xknm − CDkt ∀k ∈ K, t ≥ 2

(118)∑
n∈N

∑
m∈M

xknm ≥ CDkT ∀k ∈ K

(119)

xknm ≥ 0 ∀k ∈ K, ∀m ∈ M, ∀n ∈ N
(120)

yknm ∈ {0, 1} ∀k ∈ K, ∀m ∈ M, ∀n ∈ N
(121)

zkjnm ≥ 0 ∀k, j ∈ K, ∀m ∈ M, ∀n ∈ N
(122)

IPkt ≥ 0 ∀k ∈ K, ∀t ∈ T
(123)

144



Bibliography

Albrecht, M., J. Rohde, and M. Wagner (2015). Master planning. In H. Stadtler,

C. Kilger, and H. Meyr (Eds.), Supply chain management and advanced planning:

concepts, models, software, and case studies (5 ed.)., pp. 155–176. Springer.

Alem, D., E. Curcio, P. Amorim, and B. Almada-Lobo (2018). A computational study

of the general lot-sizing and scheduling model under demand uncertainty via robust

and stochastic approaches. Computers and Operations Research 90, 125–141.

Aloulou, M. A., A. Dolgui, and M. Y. Kovalyov (2014). A bibliography of non-

deterministic lot-sizing models. International Journal of Production Research 52,

2293–2310.

Arrow, K. J., T. Harris, and J. Marschak (1955). Optimal inventory policy. Economet-

rica 19, 250–272.

Azoury, K. and J. Miyaoka (2013). Managing production and distribution for supply

chains in the processed food industry. Production and Operations Management 22 (5),

1250–1268.

Bassett, M. (2000). Assigning projects to optimize the utilization of employees’ time and

expertise. Computers & Chemical Engineering 24, 1013–1021.

Bassett, M. (2018). Optimizing the design of new and existing supply chains at Dow

AgroSciences. Computers and Chemical Engineering 114, 191–200.

Bassett, M. and L. Gardner (2013). Designing optimal global supply chains at Dow

AgroSciences. Annals of Operations Research 203, 187–216.

Birge, J. R. and F. Louveaux (2011). Introduction to stochastic programming (2nd ed.).

Springer.

Bloemen, R. and J. Maes (1992). A DSS for optimizing the aggregate production plan-

ning at Monsanto Antwerp. European Journal of Operational Research 61, 30–40.

Böcker, T. G. and R. Finger (2017). A meta-analysis on the elasticity of demand for

pesticides. Journal of Agricultural Economics 68, 518–533.

Bookbinder, J. and J. Y. Tan (1988). Strategies for the probabilistic lot-sizing problem

with service-level constraints. Management Science 34, 1096–1108.

Boulaskil, Y., J. C. Fransoo, and E. N. G. van Halm (2009). Setting safety stocks in multi-

stage inventory systems under rolling horizon mathematical programming models. OR

Spectrum 31, 121–140.

X



Bouma, E. (2003). GEWIS, a weather-based decision support system for timing the

application of plant protection products. EPPO Bulletin 33, 483–487.

Brandimarte, P. (2006). Multi-item capacitated lot-sizing with demand uncertainty.

International Journal of Production Research 4 (15), 2997–3022.
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