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Summary

Many manufacturing systems are subject to uncertainty, which can be described
using stochastic processes. These processes might be stable or change with the pro-
duction quantity. This dissertation analyzes the design and control of such stochas-
tic manufacturing systems.

The first article investigates the balancing of an assembly line with stochastic task
times and a constraint on the line reliability. We provide a sampling-based model
formulation for generally distributed task times. We prove that any lower bound
on the number of stations for the related deterministic problem can be transformed
into a lower bound for this sampling formulation. We apply these bounds in a
reliability-based branch-and-bound algorithm and show that they substantially re-
duce the required computation time.

The second article analyzes the impact of the used sampling method and the sample
size on the resulting performance measures and optimal decision by considering
the performance evaluation of an M/D/1 queueing system and the optimization of
an M/M/c staffing level numerically. The article suggests that managers should
be aware that the distribution of the resulting performance measures or optimal
solution derived from a sampling-based approach may not be symmetrical and that
the chosen sampling method may have an impact on this behavior.

The third article investigates the ramp-up of a new product or machine with stochas-
tic and non-stationary yield. We formalize the problem as a Newsvendor problem
and prove that any positive optimal ramp-up quantity will always be at least the
demand. Furthermore, we characterize the optimal ramp-up quantity for the special
case of stationary yield by a critical fractile. The optimal ramp-up quantity tends to
be decreasing in the expected yield. However, a numerical analysis shows that an
increase in the expected yield can lead to a higher optimal production quantity at
first, before the production quantity decreases.
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There is a gap in the literature for each of the considered optimization problems
under the considered assumptions. Future research could integrate the design and
control decisions considered in this dissertation into a single optimization model.
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1 Introduction

The optimization of manufacturing systems can be divided into a design and a con-
trol phase. In the design phase, a new manufacturing process is set up or an existing
process is redesigned. Optimization objectives of the design phase can be mani-
fold, for example the maximization of the throughput or the minimization of the
required stations. After the design phase, the control phase optimizes the produc-
tion planning in manufacturing systems. A classical example is matching supply
with demand. Manufacturing systems are often stochastic, for example due to the
involvement of human workers (Doerr and Arreola-Risa, 2000; Cortés et al., 2010),
or due to yield (e.g. Lee and Yano, 1988; Tang et al., 2012).

This thesis addresses the design and control of such stochastic manufacturing sys-
tems. It consists of three articles, each co-authored by a different set of authors.
These authors are Raik Stolletz, Justus Arne Schwarz and Fikri Karaesmen. The
articles study different optimization problems focused on the design and control of
stochastic manufacturing systems. Each article describes the motivation for the re-
search and formalizes the analyzed optimization problem. Analytical and numerical
studies generate insights on the analyzed problems.

Assembly lines are common in today’s mass production and their design is a key
driver of efficiency. Line balancing is an important step in designing a paced as-
sembly system. The first article (Chapter 2) considers the assembly line balanc-
ing problem with stochastic task times. Tasks have to be assigned to a minimum
number of stations with a constraint on the line reliability, which is the probabil-
ity of finishing a work piece completely. A sampling approach is developed that
ensures the line reliability. We prove that any lower bound on the number of sta-
tions for the related deterministic problem can be transformed into a lower bound
for this sampling formulation. We exemplify the usefulness of these bounds in a
reliability-based branch-and-bound (RB&B) algorithm that explicitly considers the
dependence among all stations due to the constrained line reliability. Effective fath-
oming strategies based on the new transformed lower bounds or based on a direct
consideration of the line reliability are proposed.
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For any sampling-based approach, the robustness of the decisions for a given sample
size and sampling method is always of interest. Therefore, the second article (Chap-
ter 3) analyzes the impact of the sample size and the sampling method on the per-
formance evaluation and optimization numerically. Sampling-based optimization is
often used to analyze the performance or optimize the design of complex, stochastic
optimization problems. Common approaches to draw the required random numbers
are simple random sampling (SRS) and descriptive sampling (DS). We conduct a
numerical study and analyze the distribution of the performance measures or of the
optimal decision over independent replications. It analyzes the design of an M/M/c
system with c parallel servers and the objective of minimizing the required number
of servers. Furthermore, the performance evaluation of an M/D/1 queueing system
is analyzed.

After the initial design of a system, a ramp-up phase is often observed, in which the
system still improves its performance. The third article (Chapter 4) is motivated by
the ramp-up in the semiconductor manufacturing industry. During the introduction
of a new product or machine, the yield of a production process tends to start low
and increases with the production quantity. This is known as the ramp-up phase
and the company has to chose the production quantity during the ramp-up phase ex
ante. The analysis of real yield data from the company shows that such a stochastic
and non-stationary yield behavior occurs both for the introduction of new products
as well as for the introduction of new machines. We formalize the company’s prob-
lem as a Newsvendor problem with stochastic and non-stationary yield. We derive
analytical and numerical insights on the optimal ramp-up quantity and the expected
profit.

Chapter 5 discusses the conclusions regarding this thesis as a whole as well as
the potential for further research. Appendices A and B further specify the lower
bounds and the heuristic used in Chapter 2. Additional instances are analyzed in
Appendix C and the complete implementation of the RB&B in Python from Chap-
ter 2 can be found in Appendix D. Appendix E and F show further instances for the
performance evaluation and optimization analyzed in Chapter 3. Known results for
the normal approximation of a special case of the model considered in Chapter 4
are presented in Appendix G. The references for all articles are presented in a joint
bibliography.
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2 Stochastic assembly line balancing:
General bounds and
reliability-based
branch-and-bound algorithm

Co-authors:

Johannes Diefenbach
Chair of Production Management, Business School, University of Mannheim,
Germany

Raik Stolletz
Chair of Production Management, Business School, University of Mannheim,
Germany

Published in:

European Journal of Operational Research 302 (2), 589-605
DOI: 10.1016/j.ejor.2022.01.015

Abstract:

We analyze the assembly line balancing problem with stochastic task times. Tasks
have to be assigned to a minimum number of stations with a constraint on the line
reliability, which is the probability of finishing a work piece completely. A sam-
pling approach is developed that ensures the line reliability. We prove that any
lower bound on the number of stations for the related deterministic problem can
be transformed into a lower bound for this sampling formulation. This general
transformation can be applied to any bound that has already been developed or to
any potential new bound. Those bounds can be applied to any MIP model, opti-
mization algorithm or heuristic procedure based on a sampling formulation. We
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exemplify the usefulness of these bounds in a reliability-based branch-and-bound
(RB&B) algorithm that explicitly considers the dependence among all stations due
to the constrained line reliability. A partial assignment of tasks to stations has to
consider already constructed stations and potential further assignments to other sta-
tions. Hence, a feasible assignment of tasks to this station may allow for exceeding
the cycle time with a certain probability but has to consider the overall line reliabil-
ity with respect to the remaining stations. Effective fathoming strategies based on
the new transformed lower bounds or based on a direct consideration of the line re-
liability are proposed. A numerical study shows that the transformed lower bounds
are tight and that they substantially reduce the required computation times of the
RB&B algorithm and of the solver CPLEX.
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2.1 Introduction

2.1.1 Motivation and optimization problem

Assembly lines are common in today’s mass production and their design is a key
driver of efficiency. Line balancing is an important step in designing a paced as-
sembly system. It assigns tasks to stations such that the cycle time is not exceeded
at each station and technical precedence relations between the tasks are fulfilled.

The simple assembly line balancing problem (SALBP) assumes task times to be de-
terministic. However, task times in manufacturing are often stochastic, for example
due to the involvement of human workers (Doerr and Arreola-Risa, 2000; Cortés
et al., 2010).

Because of stochastic task times, staying within the cycle time at a certain station
may no longer be guaranteed. Exceeding the cycle time even at a single station
results in an incomplete work piece. Different policies have been proposed to deal
with incomplete work pieces. Reeve and Thomas (1973) analyze stopping the line,
until all work pieces are completed at all stations. Further approaches are to let
the work piece continue down the line with as many tasks completed as possible,
but with associated cost of rework, or to steer the line with a constraint on the
probability of staying within the cycle time (Liu et al., 2005). For a sequential
production process as we consider, Graves (1998) defines the rolled throughput
yield as the probability of a work piece to be finished at the end of the line. This
rolled throughput yield is an important measure in Six Sigma and can be used to
control the performance of production processes (Graves, 2002). In the context of
assembly line balancing, the rolled throughput yield is equal to the probability that
a work piece can be finished within the cycle time at each station of the entire line,
which is defined as the line reliability. In contrast, a constraint on the station-based
reliability requires only an isolated probability of staying within the cycle time at a
single station. To ensure a certain probability of finishing a work piece, managers
should consider a constraint on the line reliability when assigning tasks to stations.

The problem of minimizing the length of the line is relevant in practice, see for ex-
ample Lapierre and Ruiz (2004). The alternate optimization problem of maximizing
the line reliability for a given number of stations is also an important optimization
problem in practice, see for example Silverman and Carter (1986). The related lit-
erature considers the minimization of the probability of a line stoppage, which can
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been seen as the counter probability of the line reliability (e.g. Reeve and Thomas,
1973; McMullen and Frazier, 1998).

2.1.2 Solution approach and contributions

We present a sampling-based model for line balancing with a given cycle time and
the objective to minimize the number of stations (the deterministic version is known
as SALBP-1).

Stochastic Programming is a common technique to model such stochastic optimiza-
tion problems (e.g. Birge and Louveaux, 2011). One class of stochastic optimization
problems are chance-constrained programs. We consider such a chance-constrained
program, as a minimal probability of finishing a work piece for the entire line is re-
quested. When the distribution of the random variable is known and analytically
tractable, the chance-constraint may directly be implemented in the optimization
model. Sampling-based approximation methods have been proposed for the cases
with known but analytically intractable distributions (e.g. Calafiore and Campi,
2005; Luedtke and Ahmed, 2008). As we consider generally distributed task times,
we present and solve a sampling-based model for this line balancing problem with
a constraint on the line reliability with respect to the cycle time and the objective
of minimizing the number of stations. The presented sampling-based model can be
applied to both uncorrelated or correlated distributions of task times.

Lower bounds are crucial in many solution methods for deterministic assembly line
balancing (Scholl and Becker, 2006). For the stochastic assembly line balancing
problem, only a few lower bounds on the number of stations are known under spe-
cific assumptions regarding the distribution of the task times (Betts and Mahmoud,
1989; Urban and Chiang, 2006; Chiang et al., 2016). To close this gap, we de-
velop a general transformation of any lower bound on the number of stations for
the deterministic SALBP-1 into a lower bound for the sampling-based model with
stochastic task times. The developed bounds are valid with respect to the analyzed
sample and therefore can be considered as approximations for the original problem.
This transformation can be applied to any bound that has already been developed
or to any potential new bound. These bounds may significantly improve several
solution methods. We will exemplify this for a branch-and-bound algorithm as well
as for the CPLEX solver.

The constraint on the line reliability creates a dependence among the stations as the
probabilities of exceeding the cycle time may be different from station to station.
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We develop a reliability-based branch-and-bound (RB&B) algorithm that explicitly
considers the dependence among all stations due to the constrained line reliability.
When constructing a potential station during the branch-and-bound algorithm, a par-
tial assignment of tasks to this station has to consider already constructed stations
and potential further assignments to other stations. Hence, a feasible assignment
of tasks to this station may allow for exceeding the cycle time with a certain prob-
ability but has to consider the overall line reliability with respect to the remaining
stations. This significantly increases the number of potential nodes of the branching
tree. Therefore, effective fathoming strategies based on the new transformed lower
bounds or based on a direct consideration of the line reliability are proposed.

A numerical study shows that the transformed lower bounds are tight and that they
substantially reduce the required computation times of the RB&B algorithm and of
the solver CPLEX. We analyze the sensitivity of the desired line reliability and of
the distribution of task times on the optimal number of stations.

The main contributions of this paper are as follows:

1. We prove a general transformation of any lower bound on the number of sta-
tions from the deterministic problem to a sampling-based model for assembly
line balancing with a constraint on the line reliability. To improve the com-
putation times, the new bounds can be applied to any MIP formulation, opti-
mization algorithm or heuristic procedure based on a sampling formulation.

2. To examine the usefulness of these bounds, we develop an RB&B algorithm
that explicitly considers the dependence among all stations due to the con-
strained line reliability. Therefore, a partial assignment of tasks to stations has
to consider already constructed stations and potential further assignments to
other stations. The developed fathoming strategies based on the transformed
lower bounds and on the constraint on the line reliability effectively reduce
the required number of nodes and the computation time.

2.1.3 Structure of the paper

The remainder of this paper is organized as follows. We provide an overview of
the literature on assembly line balancing with a reliability constraint in Section 2.2.
In addition, we review the literature on lower bounds for stochastic assembly line
balancing. The chance-constraint and the sampling-based model are presented in
Section 2.3. In Section 2.4, we develop and prove a general transformation of any
lower bound for the deterministic problem into a lower bound for the sampling-
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based model. Section 2.5 presents the RB&B algorithm to optimally solve the
sampling-based model. The construction of nodes considers the line reliability and
we propose several fathoming strategies. The numerical study in Section 2.6 an-
alyzes the fathoming strategies in isolation and shows the value of the combined
lower bounds for the RB&B algorithm and for CPLEX. The sensitivities of the de-
sired line reliability and the distribution of task times on the optimal number of
stations are analyzed. The findings are summarized in Section 2.7.

2.2 Literature on assembly line balancing with
stochastic task times

We first review the literature on the stochastic assembly line balancing problem with
a constraint on the reliability in Section 2.2.1. The literature on lower bounds for
stochastic assembly line balancing is reviewed in Section 2.2.2.

2.2.1 Reliability-based Line Balancing

This section reviews the literature on stochastic assembly line balancing with a relia-
bility constraint on the stations or on the entire line. Reliability-based line balancing
has also been applied to disassembly lines with stochastic task times (e.g. Bentaha
et al., 2015). For a recent review on disassembly line balancing see Özceylan et al.
(2019).

Table 2.1 gives an overview of optimization models with constraints on the station-

based reliability. It shows the underlying distribution, the line setup, the assumed
product mix, and the considered objective function. The last column states the
applied solution methods.

The literature is sorted according to the distribution of the task times: uniform,
normal and general. The majority of the literature on the stochastic assembly line
balancing problem studies normally distributed task times. Many papers assuming
general distributions apply the Normal distribution for the numerical study (Kao,
1976, 1979; Raouf and Tsui, 1982; Henig, 1986; Nkasu and Leung, 1995; Guerriero
and Miltenburg, 2003; Chiang and Urban, 2006; Leitold et al., 2019). Most papers
assume straight and U-shaped lines while some consider two-sided lines or lines
with parallel stations. Only three papers consider line balancing for mixed products.
The objective functions consist of the number of stations, the cycle time or the line
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Objective

Distr. Line Prod. St
at

io
ns

C
yc

le
tim

e

B
al

an
ce

R
el

ia
bi

lit
y

Method

McMullen and Frazier (1997) Uniform Parallel Mixed x Incremental utilization
McMullen and Tarasewich (2003) Uniform Parallel Mixed x Ant colony

Moodie and Young (1965) Normal Straight Single x Greedy heuristic
Carraway (1989) Normal Straight Single x Dynamic programming
Urban and Chiang (2006) Normal U-Line Single x Linearization
Ağpak and Gökçen (2007) Normal U-Line Single x Linearization
Baykasoğlu and Özbakır (2007) Normal U-Line Single x x x Genetic alg.
Özcan (2010) Normal 2-Sided Single x Simulated annealing
Bagher et al. (2011) Normal U-Line Single x x x Imperialist competitive alg.
Cakir et al. (2011) Normal Parallel Single x x Simulated annealing
Chiang et al. (2016) Normal 2-Sided Single x Particle swarm opt.
Delice et al. (2016) Normal 2-Sided Single x Genetic alg.
Tang et al. (2017) Normal 2-Sided Single x Teaching-learning-based alg.
Dong et al. (2018) Normal Straight Single x Particle swarm opt.
Özcan (2018) Normal Parallel Single x Tabu search
Zhang et al. (2018) Normal U-Line Single x x x Evolutionary alg.
Aydoğan et al. (2019) Normal U-Line Single x Particle swarm opt.
Fathi et al. (2019) Normal Straight Single x x CPLEX
Foroughi and Gökçen (2019) Normal Straight Single x Genetic alg.

Kao (1976, 1979) General Straight Single x Heuristic DP
Sphicas and Silverman (1976) General Straight Single x Ignall’s method
Sniedovich (1981) General Straight Single x Heuristic DP
Raouf and Tsui (1982) General Straight Single x Greedy heuristic
Henig (1986) General Straight Single x Heuristic DP
Betts and Mahmoud (1989) General Straight Single x Branch-and-bound
Nkasu and Leung (1995) General Straight Single x x x COMSOAL
Merengo et al. (1999) General Straight Mixed x Improvement heuristic
Guerriero and Miltenburg (2003) General U-Line Single x Recursion alg.
Chiang and Urban (2006) General U-Line Single x Improvement heuristic
Boysen and Fliedner (2008) General U-Line Single x x AVALANCHE
Leitold et al. (2019) General Straight Single x Dynamic programming

Table 2.1: Optimization models with a constrained station-based reliability
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Liu et al. (2005) Normal Straight Single x Bidirectional assignment
Chiang et al. (2016) Normal 2-Sided Single x Particle swarm opt.
Tang et al. (2017) Normal 2-Sided Single x Teaching-learning-based alg.

Table 2.2: Optimization models with a constrained line reliability

balance. In addition, some papers account for the average reliability per station. The
minimization of the number of stations is the most common objective while some
papers consider several components. Both heuristic and optimal solution methods
are applied. For the optimal solution methods, dynamic programming, linearization
of chance-constrained problems and branch-and-bound algorithms have been used.

The studies mentioned above constrain the reliability of each station in isolation
instead of the entire line. Table 2.2 gives an overview of the literature considering a
constraint on the line reliability.

Stochastic line balancing with a constraint on the line reliability has been studied
for normally distributed task times with a single product. Liu et al. (2005) ana-
lyze the problem of minimizing the cycle time in a straight line and present a bidi-
rectional construction and trade-and-transfer based improvement heuristic. Chiang
et al. (2016) and Tang et al. (2017) analyze the problem of two-sided assembly
lines with the objective of minimizing the number of stations. Chiang et al. (2016)
present a particle swarm optimization algorithm and Tang et al. (2017) present a
hybrid teaching-learning-based heuristic to solve the problem.

To summarize, line balancing with stochastic task times and station-based reliability
is studied with generally distributed task times. However, a constrained line relia-
bility is considered for normal distributions only. None of the studies in Tables 2.1
and 2.2 present a solution approach for a sampling-based model.

2.2.2 Lower bounds for stochastic task times

This section reviews lower bounds for the stochastic line balancing problem. Two
bounds are derived for the stochastic problem with a constraint on the station-based

reliability. They are based on a transformation of lower bounds on the number of
stations for the deterministic problem. Urban and Chiang (2006) show the trans-
formation from the lower bound LB1 for the deterministic SALBP-1 (Scholl and
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Becker, 2006) to the stochastic problem under the assumption of normally dis-
tributed task times. This bound has been applied under the same assumptions in a
wide range of methods (Chiang and Urban, 2006; Ağpak and Gökçen, 2007; Özcan,
2010; Bagher et al., 2011; Chiang et al., 2016; Özcan, 2018; Zhang et al., 2018;
Aydoğan et al., 2019; Fathi et al., 2019). Betts and Mahmoud (1989) show the
transformation of bounds LB1 and LB2 of Scholl and Becker (2006) for symmetri-
cally distributed task times using Chebyshev’s inequality.

For the stochastic line balancing problem with a line reliability, only two papers
consider lower bounds. Liu et al. (2005) minimize the cycle time and apply a bound
on it, which is valid if all task times have the same coefficient of variation. Chi-
ang et al. (2016) develop a bound on the number of mated stations in a two-sided
line based on LB1 (Scholl and Becker, 2006) under the assumption of normally
distributed task times. Every feasible solution of the stochastic line balancing prob-
lem with a constraint on the line reliability is also a solution of the problem with
a station-based reliability. Therefore, the three bounds related to a station-based
reliability mentioned above are additional feasible lower bounds on the number of
stations for the problem with a line reliability.

To summarize, out of the seven lower bounds on the number of stations for the
deterministic problem from Scholl and Becker (2006), only two bounds have been
applied to line balancing with stochastic task times. They are valid under specific
assumptions regarding the distribution of the task times. Therefore, there is a need
to study the impact of other bounds for the stochastic problem with generally dis-
tributed task times.

2.3 Chance-constraint and sampling-based model
formulation

In this section, we first present the chance-constraint on the line reliability and then
formulate a sampling-based model.

Let ti be the stochastic task time of task i . There are I tasks and M stations. The
cycle time c is given and the set of precedence relations P has to be considered
in the assignment. A constraint on the line reliability R (with 0 ≤ R ≤ 1) of
finishing a work piece within the cycle time at each station of the entire line has to
be fulfilled. The chance-constrained formulation uses two types of binary variables.
The assignment-variable Xi ,m is equal to 1 if task i is assigned to station m and
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0 otherwise. The station-variable Zm is equal to 1 if station m is opened. The
constraint on the line reliability is given by

M∏
m=1

(
Prob

{ I∑
i=1

ti · Xi ,m ≤ c · Zm

})
≥ R . (2.1)

We approximate the constraint on the line reliability in Eq. (2.1) using a finite num-
ber of N samples, where each sample n represents a work piece assembled in the
line. The parameter tn,i is the sampled task time for task i and sample n. The
sample-variable Bn is equal to 0 if the cycle time c is exceeded for sample n at least
at one station. The formulation of the sampling-based model is as follows:

min
M∑

m=1

Zm (2.2)

s.t.
I∑

i=1

tn,i · Xi ,m ≤ c · Zm + (1− Bn) · M̄ m = 1, . . . ,M ; n = 1, . . . ,N

(2.3)
N∑

n=1

Bn

N
≥ R (2.4)

M∑
m=1

Xi ,m = 1 i = 1, . . . , I (2.5)

M∑
m=1

m · Xi ,m ≤
M∑

m=1

m · Xj ,m ∀ (i , j ) ∈ P (2.6)

Xi ,m ∈ {0, 1} i = 1, . . . , I ; m = 1, . . . ,M

(2.7)

Zm ∈ {0, 1} m = 1, . . . ,M (2.8)

Bn ∈ {0, 1} n = 1, . . . ,N . (2.9)

The objective function (2.2) minimizes the number of open stations. Constraint (2.3)
ensures that the sum of all task times assigned to station m stays within the cy-
cle time c if the sample-variable Bn is equal to 1. If the cycle time is exceeded
for sample n (Bn = 0), the constraint is not binding. To guarantee this, we
chose M̄ = maxn

∑I
i=1 tn,i . Hence, if the cycle time is exceeded at least at

one station, the sample-variable Bn has to equal 0. Constraint (2.4) ensures that

12



the cycle time is never exceeded for at least a fraction of R samples. Hence, Con-
straints (2.3) and (2.4) approximate the chance-constraint on the line reliability from
Eq. (2.1). Constraint (2.5) ensures that each task is assigned to exactly one station.
For two tasks (i , j ) with a precedence relation, Constraint (2.6) ensures that task i

is not assigned to a station after the station with task j . Constraints (2.7) - (2.9)
describe the variable domains.

2.4 General transformation of lower bounds

Tight lower bounds on the number of stations are crucial in the solution of deter-
ministic assembly line balancing problems (Scholl and Becker, 2006; Pape, 2015;
Pereira, 2015). This section develops a general transformation of any determin-
istic lower bound on the number of stations for the deterministic SALBP-1 to a
lower bound for the proposed sampling-based model with a constraint on the line
reliability ((2.2) - (2.9)) from Section 2.3. This transformation can use any lower
bound that has already been developed or might be developed in the future for the
deterministic problem.

Let LB(n) be a lower bound on the number of stations for the deterministic SALBP-
1 based on the instance with the task times of a single sample n ∈ {1, . . . ,N } in
isolation.

Theorem 1. Let the samples be ordered such that the lower bounds on the number

of stations for the deterministic problem for a single sample are non-decreasing,

i.e. LB(n) ≤ LB(n + 1) holds. Let LB(n̄) be the lower bound of sample n̄ with

n̄ := ⌈R · N ⌉.

Then, LB(n̄) is a lower bound on the number of stations for the proposed sampling-

based model with a constraint on the line reliability ((2.2) - (2.9)) with respect to

samples n ∈ {1, . . . ,N } and the line reliability R.

Proof. Assume a feasible solution with LB ′ < LB(n̄) stations. Then, samples
n̄, . . . ,N can satisfy Equation (2.3) for Bn = 0 only because their lower bounds are
larger than LB ′. Rearranging Constraint (2.4) on the line reliability results in

R · N ≤
N∑

n=1

Bn =
n̄−1∑
n=1

Bn ≤ n̄ − 1 = ⌈R · N ⌉ − 1 < R · N . (2.10)
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This contradicts the assumption that a feasible solution with LB ′ < LB(n̄) stations
exists.

Using Theorem 1, any lower bound on the number of stations for the deterministic
SALBP-1 can be transformed to a lower bound for the sampling-based model pro-
posed in Section 2.3. The transformation requires the calculation of a lower bound
for each of the N deterministic problems in isolation.

We apply Theorem 1 to all seven lower bounds on the number of stations proposed
by Scholl and Becker (2006). The sampling-based formulations of those lower
bounds are summarized in Appendix A.

2.5 Reliability-based branch-and-bound algorithm

We use the general transformation of lower bounds presented in Section 2.4 in a
reliability-based branch-and-bound (RB&B) algorithm to solve the sampling-based
model proposed in Section 2.3. The algorithm presented in this section has to con-
sider the line reliability directly.

The general idea of the RB&B algorithm is to open stations successively and assign
tasks to them. A node is a partial assignment of tasks to stations. The assignment
for this subset of tasks fulfills the cycle time constraint (2.3), the line reliability (2.4)
and the precedence constraints (2.6). However, Constraint (2.5) is relaxed, as not
every task has to be assigned. A leaf of the branching tree is a complete and feasible
assignment of tasks to stations. We use a bidirectional branching strategy in which
tasks are assigned from the first and last stations of the line simultaneously (Scholl
and Klein, 1997). These are referred to as the forward and backward directions
respectively.

In contrast to the deterministic problem, Constraint (2.4) on the line reliability cre-
ates a dependence among the stations, as the probabilities of exceeding the cycle
time may be different from station to station. Therefore, when constructing a poten-
tial station during the RB&B algorithm, a partial assignment of tasks to this station
has to consider already constructed stations and potential further assignments to
other stations. Similar to Scholl and Klein (1997), task i is available at station m

if all preceding tasks have been assigned to a station before m when branching in
the forward direction. Likewise, task i is available at station m if all following
tasks have been assigned to a station following m when branching in the backward
direction. The sampled task times and the constraint on the line reliability R have
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to be taken into account. To decide whether a task can be added to a station, we call
a task R-assignable to station m if it is available and assigning it to station m does
not cause the line reliability of the entire line to drop below R (see Constraints (2.3)
and (2.4)). This also means that a task can be assigned to a station even if the sta-
tion loads of some samples exceed the cycle time. The station load of station m is
called R-maximal if no further task can be added without violating the precedence
constraints or the line reliability R.

The main difference to a branch-and-bound algorithm for deterministic task times
is that we need to branch on R-maximal and non-R-maximal station loads. This
means that a node has to be opened for every subset of tasks for every R-maximal
station load, leading to a significant increase in the size of the branching tree. The
RB&B algorithm reduces the size of the branching tree by using the following new
fathoming strategies that incorporate the line reliability directly. Local lower bounds
based on Theorem 1 fathom nodes that cannot lead to an improvement of the incum-
bent. A new dominance rule checks whether the branching of a node with a non-R-
maximal station load leads to an improvement in the line reliability. A new logical
test checks whether a node can lead to a feasible solution for the line reliability R.

Section 2.5.1 describes the adaptation of the branching strategy of the RB&B algo-
rithm to the sampling-based model in detail. In Section 2.5.2, we present different
strategies to fathom nodes based on the transformed lower bounds presented in Sec-
tion 2.4, the new dominance rule and the new logical test. The updating of both the
upper and lower bound during the algorithm is described in Section 2.5.3.

2.5.1 Bidirectional branching

We perform a bidirectional branch-and-bound procedure with a station-oriented
branching strategy, which is commonly used in the deterministic setting (Scholl
and Becker, 2006). For each child node in the station-oriented branching strategy,
the next station is opened and sets of tasks are assigned to it. Branching in the for-

ward direction refers to starting at the first station and using the original precedence
graph. Branching in the backward direction refers to starting at the last station and
using the reversed precedence graph. We use a bidirectional search (Scholl and
Klein, 1997), where the branching tree is developed in the forward and backward
directions simultaneously, eventually connecting both directions. Nodes k and k ′

can be connected if the assigned tasks of node k and the assigned tasks of node k ′

are disjunct and form the set of all tasks.
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Two empty root nodes are created: one for the forward direction and one for the
backward direction. The forward node starts at the first station and the backward
node starts at the last station. We use a greedy start heuristic to find an initial upper
bound (UB ); see Appendix B. The number of the last station is set equal to this UB .

In the deterministic problem, only maximal station loads have to be considered.
However, for the stochastic problem, the line reliability is measured for the whole
line, which creates a dependence among the stations. Therefore, both R-maximal
and non-R-maximal station loads have to be considered. If only R-maximal station
loads were to be built, then the algorithm would “use up” the entire line reliability
on early stations, running into infeasibility later and, more importantly, potentially
fathoming optimal solutions. Therefore, each station is loaded with all feasible
combinations of tasks with respect to Constraints (2.3), (2.4) and (2.6) and the re-
laxation of Constraint (2.5). The need to consider non-R-maximal station loads
increases the number of nodes significantly.

The forward and backward nodes are sorted separately to find the most promising
node in each direction. For each direction, the algorithm chooses the nodes that have
the lowest local lower bound (see Section 2.5.2 for the calculation). Out of these,
choose those that use the most stations (depth first). The most promising nodes
in the forward and backward direction are compared using a modified version of
the “average task time” Tk (Scholl and Klein, 1997, p. 327). A large value of Tk

implies that tasks with large average task times are available, that there are not many
available tasks or that tasks can only be assigned to few stations. In defining Tk , we
account for the sampling-based formulation as follows:

Tk :=

( ∑
i∈AVk

ti
1
N
·
∑N

n=1 Li(UB , n)− Ei(n) + 1

)
· 1

|AVk |

where AVk is the set of available tasks for node k and ti is the average task time
of task i . We define Ei and Li as the earliest and latest stations that task i can be
assigned to (see the formal definition in Appendix A.3). Instead of using the set
of R-assignable tasks, we employ the set of available tasks, because the available
tasks can be calculated independently of the sample size. Scholl and Klein (1997)
use the lower bound as an estimate for the required number of stations. Since we
use a greedy heuristic to determine an initial solution, we use the incumbent (UB)
as an estimator. Whenever a new incumbent is found, Tk is updated for all open
nodes. The Tk value is calculated for the most promising nodes in the forward and
backward direction. If T f > T b or if T f = T b and |AV f | ≤ |AV b|, a forward
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step is performed. Otherwise, a backward step is performed. Numerical pretests
have shown the efficiency of this way of determining the most promising node by
comparing it with other criteria such as the line reliability or the average station
load.

In contrast to Scholl and Klein (1997), we do not only open nodes with the same
local lower bound. Instead, all feasible combinations are opened as child nodes in
descending order of their number of tasks. Nodes with the same number of tasks
are opened in no particular order. This allows the dominance rule described in
Section 2.5.2 to fathom non-R-maximal station loads that do not lead to an im-
provement of the line reliability. Algorithm 1 summarizes this branching strategy.

Algorithm 1 Branching of a node
AS ← Set of all R-maximal assignments
AS all ← Set of all subsets of all sets in AS
Sort set AS all by descending cardinality of set members
for assignment in AS all do

Create child node with assignment
Check if child node can be fathomed

end for

2.5.2 Fathoming Strategies

The RB&B algorithm uses different strategies to fathom nodes. Local lower bounds
are used to show that a node cannot lead to a better solution than the current upper
bound. A new dominance rule checks if the branching of a node with a non-R-
maximal station load leads to an improvement in the line reliability. A new logical
test is used to show that a branch following a node cannot lead to a feasible solution.

Local lower bounds

After the bounds are transformed to the sampling-based model (Section 2.4 and Ap-
pendix A), the global lower bound (LB) is equal to the largest of all lower bounds:
LB = max{ LB1, LB2, LB3, LB4, LB5, LB6, LB7 }. In addition to the global
lower bound, local lower bounds (LLB) on the number of additionally required sta-
tions are used in the RB&B algorithm to determine the most promising node and
to fathom nodes. For each node, the local lower bound on the additionally required
stations is calculated based on the remaining unassigned tasks of the node. Since we
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follow a station-oriented branching strategy, the remaining idle time of the last sta-
tion to which tasks are currently assigned has no impact on the local lower bound.
The local lower bounds LLB1

k to LLB7
k can be derived according to Section 2.4.

The LLBk of node k is the maximum of all of these bounds. Therefore, node k can
be fathomed if the used stations and LLBk of node k are not smaller than the current
upper bound:

max{LLB1
k ,LLB

2
k ,LLB

3
k ,LLB

4
k ,LLB

5
k ,LLB

6
k ,LLB

7
k }

+ used stations of node k ≥ UB

Dominance Rule

Different dominance rules have been proposed for deterministic assembly line bal-
ancing. The Labeling Dominance Rule fathoms a node, if an assignment of a set of
tasks does not need fewer stations than an earlier assignment of the same set of tasks
(Scholl and Klein, 1997). Similarly, the Tree Dominance Rule fathoms equivalent
partial solutions that differ only in their sequence of assignment (Scholl and Klein,
1999). In the problem with a minimal line reliability, in addition to the number of
stations, the resulting line reliability is also relevant. Therefore, we propose a new
dominance rule to check whether a node with a non-R-maximal station load leads
to an improvement in the line reliability. Nodes with a non-R-maximal station load
may be fathomed if assigning only a subset of tasks to the same or more stations
does not lead to an increase in the line reliability. Hence, node k can be fathomed
if there is a node k ′ such that:

1. The assigned tasks of node k are a subset of the assigned tasks of node k ′ and

2. k requires an equal number or more stations than k ′ and

3. Line reliability of node k ≤ line reliability of node k ′

This means that an assignment of a subset of tasks that does not require fewer sta-
tions and does not lead to a higher line reliability cannot lead to a better solution.
The line reliability of node k is computed by LRk =

∣∣Ck1 ∩ Ck2 ∩ . . . ∩ CkM
∣∣ / N

where Ckm =
{
n
∣∣∣ ∑I

i=1 tn,i · X k
i ,m ≤ c

}
is the set of all samples for which the

assignment of node k does not exceed the cycle time c.

The order of opening new nodes in the branching strategy is important for the ef-
ficiency of the dominance rule. Since we open nodes in descending order of the
assigned number of tasks to the child nodes, later nodes often contain subsets of
tasks of earlier nodes. Therefore, these nodes can be checked against the already
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opened nodes and potentially fathomed, thereby reducing the number of non-R-
maximal station loads. This dominance rule includes the Labeling Dominance Rule
and the Tree Dominance Rule known from the deterministic problem.

Logical Test

We also introduce a new logical test to assess whether the branch following a node
can lead to a feasible solution of the sampling-based model. Independent of the
assignment, sample n is guaranteed to be incomplete if its largest task time exceeds
the cycle time. Let G = { n | maxi {tn,i} > c} be the set of all samples that are
guaranteed to be incomplete independent of the assignment.

Consider the assignment of a certain node k with the resulting sampling-based line
reliability LRk and a specific sample n. If task i has not yet been assigned in node
k and the task time of i exceeds the cycle time c for sample n, it is guaranteed
that sample n cannot be completed. Therefore, node k can be fathomed if the line
reliability of node k minus the percentage of additionally guaranteed incomplete
samples is less than R.

For any (partial) assignment in node k , the set of samples for which the cycle time
is violated can be calculated by

ICk =

{
n

∣∣∣∣∣ max
m

{
I∑

i=1

tn,i · X k
i ,m

}
> c

}
. (2.11)

Node k can be fathomed, if its line reliability minus the percentage of guaranteed
incomplete samples not in ICk is less than R, i.e. if 1 − | ICk −G\ICk | /N < R

holds.

2.5.3 Updating of bounds

The algorithm terminates if there are no more open nodes or if the upper bound is
equal to the global lower bound LB . Whenever a new solution with fewer stations
than the current upper bound is found, this bound is updated. Whenever a new
upper bound is found, the algorithm checks if any of the remaining open nodes can
be fathomed using the local lower bounds and the new upper bound. The global
lower bound LB can be increased if it is smaller than the local lower bound LLBk

of node k plus the number of used stations of node k for all open nodes. In this
case, LB is set to the smallest of these values.

19



2.6 Numerical study

The numerical study first analyzes the effects of the transformed lower bounds on
fathoming nodes within the RB&B algorithm and on the computation times for the
RB&B algorithm and CPLEX, respectively. The effects of the transformed lower
bounds, the dominance rule and the logical test as fathoming strategies in isola-
tion are analyzed in Section 2.6.1. We study the value of the combination of the
transformed lower bounds for both the RB&B algorithm and the solver CPLEX in
Section 2.6.2. Section 2.6.3 analyzes the impact of the line reliability constraint
on the optimal solution. We analyze the sensitivity of the optimal solution to the
distribution of the task times in Section 2.6.4.

We use descriptive sampling with a sample size of N = 10, 000 to draw the task
times (Saliby, 1990). Many distributions have infinite support and it is common to
truncate the distribution at zero to avoid negative task times (Sarin et al., 1999) or
to analyze the convoluted cumulative density function at the point of the desired
minimal probability R. For the instances with normally distributed task times, all
sampled negative task times are replaced by zero. We conduct numerical pretests
using the 81 problem instances described in Section 2.6.1 and sample sizes of
N ∈ {1, 000; 2, 500; 5, 000; 7, 500; 10, 000; 15, 000; 20, 000}. The 81 prob-
lem instances are solved for those seven different sample sizes with 20 independent
runs each (different random seeds). Setting N ≥ 10, 000, no deviation was ob-
served in the number of stations for any of the analyzed problems. In addition,
the absolute deviation between sampling-based and analytical line reliability ranges
only between 0 and 0.0288. Therefore, we use a sample size of N = 10, 000 for the
numerical studies in Section 2.6.

All calculations are performed on an Intel Core i7-7700K with 3.60GHz and 64GB
of memory. The model is implemented in GAMS 25.1.1 and solved using CPLEX
12.8. The RB&B algorithm is implemented in Python 3.6 using the Spyder envi-
ronment.

2.6.1 Fathoming strategies in isolation

This section analyzes the global lower bounds and the fathoming strategies in iso-
lation. The performance of global lower bounds in isolation is analyzed first. Then,
we apply all fathoming strategies for the RB&B algorithm in isolation: the lower
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bounds for each transformed bound according to Theorem 1, the dominance rule
and the logical test.

There are different benchmark sets for deterministic assembly line balancing, e.g.
Otto et al. (2013). In the stochastic assembly line balancing literature (see Sec-
tion 2.2), it is common to use the deterministic benchmark set of Scholl (1993). We
analyze all problem instances of this set with up to 21 tasks. These are six differ-
ent precedence graphs (Mertens, Bowman, Jaeschke, Mansoor, Jackson, Mitchell),
each with different specified cycle times, resulting in 27 deterministic problem in-
stances. For each task i we assume normally distributed task times with mean
µi = t̃i from the deterministic benchmark set and standard deviation σi = cv · t̃i .
We apply coefficients of variation cv ∈ {0.1, 0.3, 0.5} since both Liu et al. (2005)
and Tang et al. (2017) use coefficients of variation up to 0.5. The distributions of
the task times are assumed to be independent. The desired line reliability is set to
R = 0.95. The combination of the 27 deterministic problem instances with three
different coefficients of variation leads to 81 problem instances in total. We limit
the solution to 10, 000 nodes and 10, 000 seconds, whichever is reached first.

In the deterministic literature, lower bounds are analyzed towards their tightness
with respect to the optimal solution. Scholl and Becker (2006) state that out of the
7 analyzed bounds, LB4 provides the tightest bound for the deterministic problem.
Pereira (2015) compares the tightness of LB1 through LB4 and finds that there is
no significant difference for the deterministic problem.

To analyze the performance of the global lower bounds for the sampling-based
model, Table 2.3 states the transformed global lower bound LB for each bound
in isolation. The last line gives the number of times each bound has the highest
value. We observe that LB7 has the best bound in 38 of the 43 instances. This is
closely followed by LB4 and LB5 with 37 each and LB1 with 33. LB2 and LB3

only have the best lower bound in 7 and 6 of the instances respectively, but are never
the unique best lower bound. In 7 instances, the lower bound provided by LB2 is 0
stations, even though all other bound arguments provide a positive number of sta-
tions. Therefore, in contrast to Pereira (2015), we find a significant difference for
the first 4 bounds for the analyzed instances. Similar to Scholl and Becker (2006),
we find that LB4 has a good performance. In addition, LB1, LB5 and LB7 also
perform well.

The remaining part of Section 6.1 is devoted to the performance of both the global
and local lower bounds within the RB&B algorithm. Table 2.4 shows the required
number of nodes of the RB&B algorithm if each fathoming strategy is applied in
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cv c LB1 LB2 LB3 LB4 LB5 LB6 LB7

Mertens 0.1 7 5 5 5 5 5 6 5
8 4 5 5 4 4 5 4

10 4 4 3 4 4 4 4
15 3 0 2 3 3 2 3
18 2 0 1 2 2 2 2

0.3 10 4 4 4 4 4 4 4
15 3 1 2 3 3 3 3
18 2 1 2 2 2 2 2

0.5 15 3 2 3 3 3 3 3
18 3 1 2 3 3 2 3

Bowman 0.1 20 4 5 4 5 5 5 5

Jaeschke 0.1 7 6 7 7 7 7 8 8
8 5 7 6 6 6 7 6

10 4 4 4 5 5 4 5
18 3 0 1 3 3 2 3

0.3 10 5 5 5 6 6 5 6
18 3 1 2 3 3 3 3

0.5 18 3 1 2 3 3 3 3

Jackson 0.1 9 6 7 6 6 6 7 6
10 5 6 5 5 5 6 5
13 4 2 4 4 4 4 4
14 4 1 3 4 4 4 4
21 3 0 1 3 3 2 3

0.3 13 5 4 4 5 5 4 5
14 4 3 4 4 4 4 4
21 3 1 2 3 3 3 3

0.5 14 5 4 4 5 5 4 5
21 3 1 2 3 3 3 3

Mansoor 0.1 62 4 3 3 4 4 3 4
94 3 1 2 3 3 2 3

0.3 94 3 2 2 3 3 2 3
0.5 94 3 2 2 3 3 3 3

Mitchell 0.1 21 6 2 3 6 6 4 6
26 5 1 2 5 5 3 5
35 4 0 1 4 4 3 4
39 3 0 1 3 3 2 3

0.3 21 6 3 4 6 6 4 6
26 5 2 3 5 5 3 5
35 4 1 1 4 4 3 4
39 4 0 1 4 4 2 4

0.5 26 5 3 3 6 6 4 6
35 4 1 2 4 4 3 4
39 4 1 2 4 4 3 4

Count best bound: 33 7 6 37 37 21 38

Table 2.3: Analysis of global lower bound LB for different bounds in isolation
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isolation. The first three columns describe the precedence graph, coefficient of
variation cv and cycle time c, respectively. This is followed by a column for each
strategy in isolation: no fathoming strategy (None), only the global and correspond-
ing local lower bound 1-7 (LB & LLB), only the dominance rule (DOM) or only
the logical test (LOG) is applied. Bold numbers indicate the least number of nodes
for each instance.

Out of the 81 problem instances, 38 are infeasible. Infeasibility was proven imme-
diately, therefore we do not report these instances in Table 2.4. For 36 of the 43

feasible instances, the greedy start heuristic (see Appendix B) is able to find the op-
timal solution. If the optimal number of stations is equal to the global lower bound,
only 1 node is reported. Hence in these cases, the transformed lower bounds prove
the optimality of the greedy solution with respect to the sampled data. Table 2.4
shows that the RB&B algorithm requires significantly fewer nodes with each lower
bound in isolation than the RB&B algorithm without lower bounds. Using LB7

requires the least nodes among all isolated strategies for 30 instances. The logical
test requires the highest number of nodes in all instances and does not reduce the
number of nodes in most instances compared to not using any strategy.

Table 2.5 considers the required computation time and has the same structure as
Table 2.4. It can be observed that using lower bounds in isolation also reduces
the required solution times significantly. Using LB1 requires the least time in 29

instances. The dominance rule requires the least time in 6 instances. Interestingly,
even though LB7 requires the least nodes in many cases, it is never the fastest
strategy if the start heuristic did not find the optimal solution. This is due to the
higher computational effort needed to derive this bound, as the required time to
compute LLB7 in these cases is between 64% and 90% of the total computation
time.

To summarize, we find that LB1, LB4, LB5 and LB7 provide the best global lower
bounds. During the RB&B algorithm, the lower bounds in isolation and the dom-
inance rule in isolation significantly reduce the required number of nodes or the
computation time of the RB&B algorithm. The logical test in isolation does not
show significant positive effects.
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LB & LLB
cv c None 1 2 3 4 5 6 7 DOM LOG

Mertens 0.1 7 688 15 75 13 15 56 1 10 56 653
8 941 3 1 1 3 17 1 3 78 941

10 1,546 28 55 67 25 69 20 25 54 1,546
15 3,823 1 386 6 1 1 3 1 48 3,823
18 3,595 1 39 13 1 1 1 1 33 3,595

0.3 10 941 6 6 6 6 19 3 6 106 941
15 3,363 1 61 3 1 1 1 1 151 3,363
18 4,051 3 232 25 3 10 3 3 83 4,051

0.5 15 1,882 19 66 37 17 42 31 35 185 1,879
18 3,511 1 19 6 1 1 3 1 223 3,511

Bowman 0.1 20 761 3 1 4 1 1 1 1 32 757

Jaeschke 0.1 7 590 53 37 32 28 29 1 10 40 560
8 1,012 31 1 19 11 14 1 11 54 1,012

10 2,140 27 130 43 24 25 28 19 35 2,140
18 9,167 1 341 100 1 1 3 1 30 9,167

0.3 10 1,012 43 39 50 17 19 26 15 63 1,012
18 7,920 1 73 9 1 1 1 1 69 7,920

0.5 18 7,336 7 64 19 4 4 11 4 157 7,336

Jackson 0.1 9 > 10,000 1,090 316 2,702 858 891 145 130 145 > 10,000
10 > 10,000 210 1,000 915 165 167 195 155 231 > 10,000
13 > 10,000 11 4,832 66 10 10 26 10 91 > 10,000
14 > 10,000 1 1,403 5 1 1 1 1 76 > 10,000
21 > 10,000 1 3,085 639 1 1 3 1 63 > 10,000

0.3 13 > 10,000 49 775 368 48 49 49 41 622 > 10,000
14 > 10,000 168 5,021 1,766 158 158 728 151 499 > 10,000
21 > 10,000 12 555 47 12 12 15 12 192 > 10,000

0.5 14 > 10,000 1,768 5,403 5,058 1,663 1,411 2,131 1,278 249 > 10,000
21 > 10,000 81 6,357 264 81 26 90 26 417 > 10,000

Mansoor 0.1 62 > 10,000 1 37 37 1 1 14 1 68 > 10,000
94 > 10,000 1 1,045 42 1 1 3 1 30 > 10,000

0.3 94 > 10,000 1 18 5 1 1 3 1 190 > 10,000
0.5 94 > 10,000 13 47 47 12 49 18 12 169 > 10,000

Mitchell 0.1 21 > 10,000 1 > 10,000 > 4,001 1 1 329 1 571 > 10,000
26 > 10,000 1 > 10,000 > 2,607 1 1 285 1 259 > 10,000
35 > 10,000 1 > 10,000 > 10,000 1 1 64 1 278 > 10,000
39 > 10,000 1 > 10,000 > 3,114 1 1 3 1 245 > 10,000

0.3 21 > 10,000 2,180 > 10,000 > 4,072 > 873 > 1,286 > 1,490 > 1,012 1,402 > 10,000
26 > 10,000 27 > 10,000 > 10,000 15 > 120 > 1,073 9 1,646 > 10,000
35 > 10,000 592 > 10,000 > 10,000 > 228 > 175 > 1,462 > 162 934 > 10,000
39 > 10,000 1 > 10,000 > 8,608 1 1 68 1 681 > 10,000

0.5 26 > 10,000 > 2,873 > 10,000 > 10,000 > 525 > 738 > 5,372 > 1,034 2,346 > 10,000
35 > 10,000 400 > 1,993 > 10,000 247 483 > 9,388 > 213 2,004 > 10,000
39 > 10,000 533 > 10,000 > 10,000 > 194 > 161 > 1,699 > 145 2,514 > 10,000

Count best strategy: 0 19 3 1 23 21 12 30 3 0

Table 2.4: Number of nodes for a single fathoming strategy in isolation
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LB & LLB
cv c None 1 2 3 4 5 6 7 DOM LOG

Mertens 0.1 7 103 11 28 11 36 97 2 29 19 104
8 115 3 1 1 9 45 1 10 21 136

10 188 19 25 32 65 148 21 77 20 223
15 424 1 117 11 1 1 7 1 19 494
18 423 1 40 15 1 1 1 1 16 494

0.3 10 126 6 6 7 19 53 5 20 28 149
15 397 1 36 6 1 1 1 1 40 464
18 476 6 81 31 19 64 8 19 27 557

0.5 15 247 7 23 22 20 48 12 58 48 293
18 423 1 26 11 1 1 7 1 56 496

Bowman 0.1 20 110 3 1 4 1 1 1 1 10 134

Jaeschke 0.1 7 111 22 19 19 62 64 3 35 15 123
8 163 17 1 16 38 43 1 43 19 198

10 326 18 52 25 72 80 27 61 13 389
18 1,292 1 141 77 1 1 8 1 16 1,476

0.3 10 175 20 21 27 55 58 23 54 23 211
18 1,162 2 60 14 2 2 2 2 29 1,345

0.5 18 1,096 9 62 25 20 18 21 18 54 1,259

Jackson 0.1 9 > 1,432 485 359 1,149 1,430 2,124 256 959 105 > 1,611
10 > 1,328 255 424 503 892 1,305 303 1,176 147 > 1,462
13 > 1,309 23 2,232 185 87 104 106 102 81 > 1,463
14 > 1,292 4 1,244 17 4 4 4 4 85 > 1,429
21 > 1,355 2 1,987 925 2 2 24 1 84 > 1,549

0.3 13 > 1,525 91 678 436 359 468 147 381 351 > 1,679
14 > 1,398 284 1,975 1,075 1,049 1,472 752 1,283 325 > 1,550
21 > 1,430 14 710 134 40 49 18 45 213 > 1,623

0.5 14 > 3,036 1,264 2,722 2,692 3,243 4,250 1,591 3,822 182 > 1,870
21 > 1,527 92 1,725 280 342 103 135 94 381 > 1,666

Mansoor 0.1 62 > 1,333 2 165 182 2 2 98 2 87 > 1,476
94 > 1,461 2 896 256 2 2 26 2 67 > 1,689

0.3 94 > 1,532 2 88 23 2 2 20 2 238 > 1,752
0.5 94 > 1,613 48 211 233 158 568 126 187 188 > 1,642

Mitchell 0.1 21 > 3,787 7 > 4,384 > 10,000 7 7 8,055 7 1,883 > 4,571
26 > 2,416 6 > 5,994 > 10,000 6 6 6,085 6 1,106 > 2,761
35 > 2,693 6 > 2,969 > 2,903 6 6 3,496 6 2,122 > 3,194
39 > 3,099 6 > 3,389 > 10,000 6 6 125 7 1,607 > 3,659

0.3 21 > 6,870 4,362 > 5,803 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 4,324 > 8,532
26 > 5,053 192 > 6,763 > 4,566 1,431 > 10,000 > 10,000 886 5,705 > 5,926
35 > 3,019 4,156 > 3,915 > 3,335 > 10,000 > 10,000 > 10,000 > 10,000 4,384 > 3,394
39 > 3,115 7 > 3,285 > 10,000 7 7 3,624 6 3,820 > 3,584

0.5 26 > 7,300 > 10,000 > 7,638 > 8,301 > 10,000 > 10,000 > 10,000 > 10,000 7,325 > 9,497
35 > 3,620 969 > 10,000 > 5,432 2,731 5,413 > 10,000 > 10,000 7,766 > 4,077
39 > 3,888 4,195 > 5,241 > 5,742 > 10,000 > 10,000 > 10,000 > 10,000 9,423 > 4,364

Count best strategy: 0 29 3 1 15 15 10 16 6 0

Table 2.5: Computation time in seconds for a single fathoming strategy in isolation
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2.6.2 Combination of lower bounds

This section analyzes the value of applying the transformed lower bounds in com-
bination as a fathoming strategy within the RB&B algorithm and providing them to
the solver CPLEX.

Section 2.6.1 demonstrated that some lower bounds significantly reduce the re-
quired number of nodes while others reduce the computation time. In numerical
pretests we compared different combinations of fathoming strategies. For exam-
ple, the logical test is the worst performing strategy in isolation. However, using
all strategies in combination with and without the logical test shows that the logi-
cal test does not require significant additional computation time in most cases, but
decreases the required computation time significantly in some cases. As another
example, when using all fathoming strategies except for LB2 and LB3, the global
lower bound LB was not affected. However, excluding them as a local lower bound
requires slightly higher computation time in total. Therefore, we use all fathoming
strategies, which is in line with the suggestion for the deterministic line balancing
problem (Scholl and Becker, 2006). The order they are applied is based on the per-
formance in isolation. LB1 and the dominance rule performed well regarding the
computation time and LB5 and LB7 require the calculation of heads and tails made
during LB4. Therefore, when using all fathoming strategies, we apply the strategies
in the following order: LB1, dominance rule, LB4, LB2, LB3, LB5, LB6, LB7 and
the logical test.

We consider a desired line reliability of R = 0.95. The first three columns of
Table 2.6 describe the same problem instances as those in Section 2.6.1. Columns 4-
6 report the global lower bound LB (using LB1 through LB7), the optimal number
of stations (

∑
Zm) and the difference between the optimal number of stations and

the global lower bound (∆). In 22 out of 43 feasible problem instances, the global
lower bound LB is equal to the optimal number of stations

∑
Zm . The difference

is only one station in 17 instances and the maximal difference is three stations,
which occurs only once. Therefore, the global lower bounds based on the general
transformation of Theorem 1 are tight in most of the analyzed benchmark problems.

To show the value of the combination of the seven lower bounds, Table 2.6 com-
pares the computation time (in seconds) of the RB&B algorithm using all fathoming
strategies together (column with LB) with the performance of the RB&B algorithm
using only the dominance rule and the logical test as fathoming strategies (column
w/o LB). The value in parentheses behind the computation time states the number
of opened nodes. The RB&B algorithm with lower bounds requires significantly
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shorter computation times than the RB&B algorithm without lower bounds in most
instances. The difference is especially large for the Mitchell instances. The RB&B
algorithm using lower bounds requires significantly less nodes than the RB&B al-
gorithm without the lower bounds.

Furthermore, we analyze the value of the lower bounds by providing CPLEX with
the global lower bound. Similar to the RB&B algorithm, CPLEX was able to prove
infeasibility within seconds. For the feasible instances in Table 2.6, the last two
columns report the computation times of CPLEX provided with the global lower
bound (column with LB) and without the new lower bound (column w/o LB). If the
optimal solution could not be found or proven within 10, 000 seconds, the current
lower bound and upper bound are reported ([lower, upper]). If this upper bound is
equal to the optimal solution but without proof of optimality, the interval is marked
with an asterisk, i.e., [lower, upper]∗. We report “-” if no feasible solution is found
within 10, 000 seconds.

With the global lower bound, CPLEX is able to solve all instances, except for the
Mitchell instances, within 10, 000 seconds. For these instances, the optimality gap is
large, but a feasible solution can be found. Without the lower bound, CPLEX fails to
prove optimality in many instances. For some instances, no feasible solution can be
found within 10, 000 seconds, even though there is one. For the RB&B algorithm,
the lower bounds significantly improve the computation time. However, comparing
both approaches with lower bounds reveals that the RB&B algorithm is much faster
than CPLEX.

As shown in Table 2.6, the proposed general transformation provides tight lower
bounds on the number of stations. Figure 2.1 compares them to the lower bounds
proposed by Urban and Chiang (2006) and Betts and Mahmoud (1989) (see Sec-
tion 2.2.2). For Betts and Mahmoud (1989), we report the maximum of LB1 and
LB2. In all 81 analyzed instances, the lower bound obtained from the proposed gen-
eral transformation is better than or equal to the lower bounds from the literature.
The analysis of further instances from the deterministic benchmark sets of Scholl
(1993) and Otto et al. (2013) reveals that the transformed lower bounds are tight,
see Appendix C.

To summarize, the proposed transformation of lower bounds LB1 to LB7 based
on Theorem 1 provides tight lower bounds on the number of stations. They are
often better than the bounds reported in the literature. Using these lower bounds re-
duces the computation times substantially for both the RB&B algorithm and for the
solution with the solver CPLEX. Numerical pretests have shown that the sampling-
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RB&B CPLEX

cv c LB
∑

Zm ∆ with LB w/o LB with LB w/o LB

Mertens 0.1 7 6 6 0 2 (1) 19 (52) 2 (0) 200 (0)
8 5 5 0 1 (1) 24 (78) 2 (0) 5,828 (398)

10 4 5 1 43 (17) 22 (54) 214 (19) [2.8, 5]∗ (2,330)
15 3 3 0 1 (1) 20 (48) 2 (0) 4,453 (124)
18 2 2 0 1 (1) 16 (33) 3 (0) 1,414 (12)

0.3 7 7 Inf. 0 (0) 0 (0) 1 (0) 1 (0)
8 6 Inf. 0 (0) 0 (0) 1 (0) 1 (0)

10 4 5 1 9 (3) 31 (106) 578 (13) 2,409 (99)
15 3 3 0 1 (1) 44 (151) 8 (0) 512 (15)
18 2 3 1 6 (3) 29 (83) 158 (697) 158 (697)

0.5 7 7 Inf. 0 (0) 0 (0) 1 (0) 1 (0)
8 7 Inf. 0 (0) 0 (0) 1 (0) 1 (0)

10 6 Inf. 0 (0) 0 (0) 1 (0) 1 (0)
15 3 4 1 29 (14) 53 (184) 6,718 (632) 1,218 (43)
18 3 3 0 1 (1) 62 (223) 11 (0) 634 (26)

Bowman 0.1 20 5 5 0 1 (1) 11 (32) 27 (0) 1,337 (50)
0.3 20 8 Inf. 0 (0) 0 (0) 1 (0) 1 (0)
0.5 20 8 Inf. 0 (0) 0 (0) 1 (0) 1 (0)

Jaeschke 0.1 7 8 8 0 3 (1) 15 (33) 21 (0) 157 (0)
8 7 7 0 1 (1) 22 (54) 3 (0) 1,898 (107)

10 5 6 1 29 (8) 15 (35) 426 (25) 7,443 (288)
18 3 3 0 1 (1) 17 (30) 5 (0) 7,015 (99)

0.3 7 9 Inf. 0 (0) 0 (0) 1 (0) 1 (0)
8 9 Inf. 0 (0) 0 (0) 1 (0) 1 (0)

10 6 7 1 69 (15) 27 (63) 501 (26) 1,215 (51)
18 3 3 0 2 (1) 32 (69) 374 (280) 374 (280)

0.5 7 9 Inf. 0 (0) 0 (0) 1 (0) 1 (0)
8 9 Inf. 0 (0) 0 (0) 1 (0) 1 (0)

10 8 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
18 3 4 1 12 (4) 60 (157) 703 (30) 704 (30)

Jackson 0.1 9 7 8 1 277 (49) 115 (145) 621 (208) [3.5, 8]∗ (132)
10 6 7 1 134 (26) 163 (231) 853 (91) [2.5, 7]∗ (829)
13 4 5 1 46 (10) 88 (91) 2,354 (226) [1.6, 5]∗ (70)
14 4 4 0 4 (1) 91 (76) 144 (0) [1.5, 4]∗ (73)
21 3 3 0 2 (1) 88 (63) 5 (0) [1.2, 3]∗ (149)

0.3 9 8 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
10 7 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
13 5 6 1 183 (32) 387 (622) 1,742 (70) [4, 6]∗ (372)
14 4 6 2 321 (63) 351 (499) 7,841 (1,571) [4, 6]∗ (843)
21 3 3 0 69 (21) 224 (192) 46 (0) 46 (0)

0.5 9 10 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
10 9 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
13 6 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
14 5 8 3 403 (82) 132 (187) 7,125 (409) [5.4, 8]∗ (655)
21 3 4 1 84 (25) 408 (417) 4,372 (337) 4,369 (337)

Mansoor 0.1 62 4 4 0 2 (1) 92 (68) 29 (0) [1.5, 4]∗ (152)
94 3 3 0 2 (1) 69 (30) 30 (0) [0.9, 3]∗ (73)

0.3 62 5 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
94 3 3 0 1 (1) 247 (190) 213 (15) 214 (15)

0.5 62 7 Inf. 0 (0) 0 (0) 2 (0) 2 (0)
94 3 4 1 62 (8) 189 (166) 927 (21) 925 (21)

Mitchell 0.1 21 6 6 0 7 (1) 1,928 (571) 5,799 (185) - (0)
26 5 5 0 6 (1) 1,128 (259) 417 (10) - (0)
35 4 4 0 6 (1) 2,157 (278) 119 (0) [0, 11] (0)
39 3 3 0 6 (1) 1,658 (245) 939 (0) [0, 11] (0)

0.3 21 6 8 2 2,027 (106) 3,981 (1,320) [6, 16] (8) - (0)
26 5 6 1 324 (9) 5,805 (1,646) [5, 6]∗ (51) - (0)
35 4 5 1 3,280 (137) 4,425 (934) [4, 6] (26) - (0)
39 4 4 0 7 (1) 3,875 (681) 286 (0) [3, 4]∗ (25)

0.5 21 9 Inf. 0 (0) 0 (0) 5 (0) 5 (0)
26 6 8 2 4,655 (226) 7,410 (2,432) [6, 12] (5) - (1)
35 4 5 1 1,160 (84) 7,900 (2,004) [4, 8] (5) [4, 8] (6)
39 4 5 1 2,660 (93) 9,612 (2,514) [4, 10] (10) [4, 10] (10)

Table 2.6: Impact of combined lower bounds on computations times (number of
nodes)
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Figure 2.1: Comparison of transformed lower bounds to lower bounds proposed in
the literature

based lower bounds also reduce the computation times substantially when solving
the model with Gurobi 9.1. The RB&B algorithm with all fathoming strategies
requires significantly less computation time than CPLEX.

2.6.3 Sensitivity in line reliability

In this section, we analyze the impact of the constraint on the line reliability R

on the solution. Figure 2.2 shows the required computation time, optimal number
of stations and global lower bounds on the number of stations for Mertens’ and
Jackson’s precedence graphs for varying R. We assume a cycle time of c = 10 for
Mertens’ precedence graph and c = 14 for Jackson’s and vary the coefficient of
variation. For infeasible line reliabilities, the number of stations is set to zero.

As expected, the optimal number of stations increases with the line reliability. The
global lower bound on the number of stations also increases with the line reliability.
Whenever the optimal number of stations increases by one, the computation time
increases substantially for the higher line reliability. Then, it tends to decrease until
the next time the number of stations increases.

The optimal number of stations can be identical for a wide range of the desired
line reliability R. For example, for Mertens’ precedence graph with a cycle time of
c = 10 and a coefficient of variation of cv = 0.1, the line requires the same number
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of stations for R ∈ [0.01, 0.23] (R ∈ [0.24, 0.94] and R ∈ [0.95, 1.00], respectively)
but may have different assignments of tasks to stations and hence different realized
line reliabilities LR. For example, the optimal solutions for R = 0.24 and R = 0.94

require four stations. However, the optimal assignment for R = 0.24 leads to a line
reliability of 50.09%, while the optimal assignment for R = 0.94 leads to a line re-
liability of 94.37%, even though the same number of stations is required. Managers
should be aware that even if the desired line reliability is reached with a certain
number of stations, it might be possible to reach a substantially higher resulting
line reliability with the same number of stations but a different task assignment.
Therefore, once the optimal number of stations has been found using the RB&B
algorithm, the sampling-based line reliability can be maximized as a secondary ob-
jective.

To summarize, the computation times and the structure of the solutions strongly
depend on the desired line reliability R. Due to the possibility of multiple optimal
solutions, an alternate assignment might exist with the same number of stations and
a higher realized line reliability.

2.6.4 Sensitivity in task time distribution

In this section, we analyze the impact of the distribution of the task times on the
global lower bounds and on the optimal number of stations. In addition to the
results using the normal distribution from Section 2.6.1, we present the results with
a gamma distribution. This distribution is able to account for skewed task times,
which have been observed in manufacturing. We consider a desired line reliability
of R = 0.95. A gamma distributed task time for task i with mean ti and coefficient
of variation cvi has the shape parameters αi =

1
cv2

i
and βi =

1
ti ·cv2

i
.

Based on the same set of examples, all instances that are infeasible for the nor-
mal distribution are also infeasible for the gamma distribution. For the remaining
instances, Table 2.7 shows the global lower bound (LB), the optimal number of sta-
tions (

∑
Zm), the difference between the optimal number of stations and the global

lower bound (∆) and the resulting sampling-based line reliability of the optimal
solution (LR) for both distributions.

The global lower bounds for the gamma distribution are always at least as large
as those for the normal distribution. For both distributions, the bounds tend to be
tighter for a lower coefficient of variation. Three instances with a feasible solution
for the normal distribution are infeasible when the gamma distribution is assumed.
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Figure 2.2: Impact of line reliability R on computation time, number of stations and
global lower bound
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Normal distribution Gamma distribution
cv c LB

∑
Zm ∆ LR Time (s) LB

∑
Zm ∆ LR Time (s)

Mertens 0.1 7 6 6 0 0.9522 2 6 Inf. 0
8 5 5 0 0.9795 1 5 5 0 0.9764 1

10 4 5 1 0.9516 43 4 5 1 0.9997 36
15 3 3 0 0.9947 1 3 3 0 0.9925 1
18 2 2 0 0.9999 1 2 2 0 0.9998 1

0.3 10 4 5 1 0.9616 9 4 6 2 0.9552 59
15 3 3 0 0.9591 1 3 3 0 0.9604 2
18 2 3 1 0.9556 6 2 3 1 0.9717 5

0.5 15 3 4 1 0.9601 29 3 5 2 0.9600 78
18 3 3 0 0.9623 1 3 4 1 0.9557 52

Bowman 0.1 20 5 5 0 0.9550 1 5 6 1 0.9556 29

Jaeschke 0.1 7 8 8 0 0.9522 3 9 Inf. 0
8 7 7 0 0.9753 1 7 7 0 0.9702 2

10 5 6 1 0.9989 29 5 6 1 0.9982 33
18 3 3 0 0.9999 1 3 3 0 0.9999 1

0.3 10 6 7 1 0.9577 69 6 8 2 0.9558 94
18 3 3 0 0.9765 2 3 3 0 0.9577 2

0.5 18 3 4 1 0.9590 12 3 5 2 0.9694 97

Jackson 0.1 9 7 8 1 0.9528 277 7 8 1 0.9941 177
10 6 7 1 0.9962 135 6 7 1 0.9931 149
13 4 5 1 0.9858 46 4 5 1 0.9799 43
14 4 4 0 0.9819 4 4 4 0 0.9764 4
21 3 3 0 0.9706 2 3 3 0 0.9671 2

0.3 13 5 6 1 0.9622 183 5 7 2 0.9534 806
14 4 6 2 0.9716 321 4 6 2 0.9739 418
21 3 3 0 0.9514 69 3 4 1 0.9644 142

0.5 14 5 8 3 0.9509 403 6 Inf. 0
21 3 4 1 0.9500 84 3 5 2 0.9604 488

Mansoor 0.1 62 4 4 0 0.9967 2 4 4 0 0.9936 2
94 3 3 0 0.9680 2 3 3 0 0.9644 2

0.3 94 3 3 0 0.9524 1 3 3 0 0.9631 4
0.5 94 3 4 1 0.9635 62 4 5 1 0.9508 218

Mitchell 0.1 21 6 6 0 0.9561 7 6 6 0 0.9677 7
26 5 5 0 0.9549 6 5 5 0 0.9519 6
35 4 4 0 0.9825 6 4 4 0 0.9792 6
39 3 3 0 0.9800 6 3 3 0 0.9754 7

0.3 21 6 8 2 0.9524 2,027 7 9 2 0.9517 3,006
26 5 6 1 0.9502 324 5 [6, 7] 2 0.9534 10,000
35 4 5 1 0.9506 3,280 4 5 1 0.9561 2,756
39 4 4 0 0.9551 7 4 4 0 0.9511 7

0.5 26 6 8 2 0.9500 4,655 7 13 6 0.9501 6,037
35 4 5 1 0.9512 1,160 4 [5, 6] 2 0.9509 10,000
39 4 5 1 0.9510 2,660 4 5 1 0.9529 1,693

Table 2.7: Comparison of the optimal solutions for normally and gamma distributed
task times
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For the remaining 40 instances, the optimal number of stations for the gamma dis-
tribution is equal to or larger than the optimal number for the normal distribution.
The instance of Mitchell with cv = 0.5 and c = 26 is especially noteworthy, where
the optimal solution with a normal distribution requires 8 stations and the optimal
solution with a gamma distribution requires 13 stations.

Computation times are in the same range for many instances, however, sometimes
larger for the instances with a Normal distribution and sometimes larger for the in-
stances with a Gamma distribution. The computation times exceed 10,000 seconds
for two instances with the Gamma distribution.

To summarize, the sampling approach with the transformation of lower bounds is
applicable for general distributions of the task times where no bounds are described
in the literature.

2.7 Conclusion

We present the assembly line balancing problem with a chance-constraint on the line
reliability and formulate a sampling-based model. We develop a general transfor-
mation of any lower bound on the number of stations for the deterministic problem
into a lower bound for the sampling-based model. This general transformation can
be applied to any bound that has already been developed or to any potential new
bound.

We develop a reliability-based branch-and-bound (RB&B) algorithm that explicitly
considers the dependence among all stations due to the constrained line reliabil-
ity. A partial assignment of tasks to stations considers already constructed stations
and potential further assignments to other stations which increases the size of the
branching tree. However, nodes are effectively fathomed based on the transformed
bounds, a new dominance rule and a new logical test. The proposed sampling ap-
proach with a transformation of lower bounds is general and can be applied inde-
pendent of the assumed theoretical or empirical distribution of the task times.

A numerical study shows that the transformed lower bounds are tight and that they
substantially reduce the required computation time of the RB&B algorithm and of
the solver CPLEX. We analyze the sensitivities of the desired line reliability and of
the distribution of task times.

Further research could address algorithmic improvements as well as application-
based extensions.
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The lower bounds are independent of the specific sampling formulation for the as-
sembly line balancing problem, as long as the sampling-based constraint on the line
reliability is included. Furthermore, the lower bounds can be applied to other op-
timal solution methods or to heuristic approaches. As the general transformation
of lower bounds from Theorem 1 is valid for any lower bound to the deterministic
problem, newly developed deterministic lower bounds can directly be transformed
and applied during the RB&B algorithm. The RB&B algorithm is flexible and
therefore any other suitable dominance rule may be integrated. As demonstrated in
Section 5.2.2, some dominance rules for the deterministic version of the problem
can be integrated into dominance rules for the stochastic version of the problem. In
contrast to dominance rules for the deterministic problem, they also need to consider
non-R-maximal station loads. Furthermore, adaptions of deterministic dominance
rules which compare mean task times need to consider the interdependence among
all samples and all realizations within one sample. In addition, fast and reliable
heuristics or other exact approaches can be developed to solve the stochastic assem-
bly line balancing for larger instances. If the algorithms are based on a sampling
formulation, the transformed lower bounds of Theorem 1 can be used.

Future research could also address more complex lines, such as U-shaped lines, pro-
ducing multiple products. Alternate concepts of handling incomplete work pieces
could be analyzed, for example including rework loops. In addition to the mini-
mization of the number of stations, the optimization problem of maximizing the
sampling-based line reliability is an interesting direction for further research. Dedi-
cated solution approaches and fathoming strategies have to be developed and tested
numerically.
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Abstract:

Sampling-based optimization is often used to analyze the performance or optimize
the design of complex, stochastic optimization problems. Common approaches
of drawing the required random numbers are simple random sampling (SRS) and
descriptive sampling (DS). To gain insights into the impact of the used sampling
method and the sample size, we consider the performance evaluation of an M/D/1
queueing system and the optimization of an M/M/c staffing level.

We conduct a numerical study and analyze the distribution of the performance mea-
sure or optimal decision over independent replications. The probability to underes-
timate the desired performance measure of the M/D/1 system is higher for descrip-
tive sampling in the analyzed examples, both for expected values as well as values
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based on the standard deviation. This effect can still be observed for large sample
sizes. For the optimization of the M/M/c staffing level, the expected value of the
optimal decision is similar for both sampling methods. However, the standard devi-
ation for descriptive sampling is lower. The distribution of the optimal decision is
not symmetrical and this effect is stronger for descriptive sampling in the analyzed
examples.

Therefore, managers should be aware that the distribution of the resulting perfor-
mance measures or optimal solution derived from a sampling-based approach may
not be symmetrical and the chosen sampling method may have an impact on this
behavior.
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3.1 Introduction

Complex, stochastic systems are often difficult to analyze analytically. Nonetheless,
performance evaluation and optimization of such systems is desirable. Therefore,
sampling-based optimization is frequently used to solve stochastic optimization
problems (Stolletz, 2022). Common approaches of drawing the required random
numbers are simple random sampling (SRS) and descriptive sampling (DS). Both
have been applied to a broad variety of problems in operations management. Ex-
amples for the application of SRS are lot sizing (Kämpf and Köchel, 2006), buffer
allocation (Costa et al., 2015), project scheduling (Golenko-Ginzburg and Gonik,
1997) and call-center staffing (Atlason et al., 2008). Similarly, lot sizing (Helber
et al., 2013), buffer allocation (Stolletz and Weiss, 2013; Weiss and Stolletz, 2015),
project scheduling (Ballestin and Leus, 2009) and production and remanufacturing
planning (Hilger et al., 2016) have been analyzed using DS. These are just a few
examples of the many applications of both methods.

Simple random sampling, also known as Monte Carlo sampling, draws a random set
of values. As the values are drawn at random, they appear in a random sequence.
Descriptive sampling was first introduced by Saliby (1990). In contrast to simple
random sampling, descriptive sampling draws a deterministic set of values. Fig-
ure 3.1 (taken from Saliby (1990)) shows the deterministic set with a sample size of
N = 10. The sampled values are spread uniformly along the y-axis between 0 and
1 and applied to the cumulative distribution function F (x ). This allows descriptive
sampling to capture the entire range of the distribution even for small sample sizes.
Afterwards, the deterministic set is permutated into a random sequence, thereby in-
ducing stochasticity. Studies have shown that descriptive sampling leads to a lower
variability of the sampled values (Saliby and Pacheco, 2002) and the performance
measures of a stochastic system (Helber et al., 2013). Furthermore, using descrip-
tive sampling in a sampling-based optimization has been shown to lead to a reduced
variability of the sample-optimal solutions for the buffer allocation problem (Stol-
letz and Weiss, 2013).

The sampling procedure of DS can therefore be divided into two steps: creation
and sequencing of the set of values. For the sampling of a single random variable,
as is typical for problems such as the Newsvendor, only the creation of the set of
values is crucial, as their order of arrival does not play a role. When sampling a
random process however, the sequence of the sampled values plays a critical role.
Therefore, we analyze the performance evaluation and sampling-based optimization
of a queueing system. One approach for the performance evaluation of a system
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 Illustrating the method, Table 1 presents a set of n = 10 descriptive values for a negative expo-

 nential distribution with a mean of 1. Although n = 10 is a very small sample size for a simulation

 run, Figure 2 shows that a good agreement with the sampled distribution was achieved.

 In cases where the inverse of the distribution function is not analytically available, approx-

 imations are required. Also notice that the same library of routines for random sampling gener-

 ation, if based on the inverse transform, can be used for the generation of descriptive values.

 F(x)

 F(x)F(X)
 1.00 _

 0.95 ? ? F(x)
 0.90
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 FIG. 2. Distribution function [F(x)] and cumulative distribution function for a descriptive sample of
 size n = 10 [F(x)],for a negative exponential random variable with mean E(X) = 1.0.

 Random permutation

 While the set values can be generated only once for all replicated runs in a simulation experi-

 ment, each run is based on a different random permutation. The set values can all be shuffled

 before carrying out each run, but it is more convenient to shuffle them during the run, drawing a

 set element whenever it is required. In practice, this sequential process is done by sampling the

 pre-defined set of descriptive values without replacement. A data structure and an algorithm are

 suggested.

 Data structure

 For each input random variable, define a record with the following structure and content:

 n: integer defining the sample size;

 XD: array[1 . .. n] of real, containing the set values;

 ip: integer pointing to the first available XD element to be drawn. If ip = 1, no element has been

 drawn yet. If ip = n + 1, a full set of values has already been drawn.

 Algorithm

 (a) Initialization. Before running the simulation, define n, generate the set values XD and let

 ip: = 1.

 (b) Sampling without replacement during the run. Whenever a descriptive sample value is

 required,

 (bi) if ip > n, then let ip: = 1;
 (b2) randomly generate an integer iaux E [ip, n];
 (b3) interchange XD[ip] with XD[iaux];

 (b4) let ip: = ip + 1.

 Comments

 (a) ip divides vector XD into two parts: the first part, up to ip -1 (empty, if ip = 1), contains the

 set values already drawn. The remaining part (empty, if ip = n + 1) contains the set values not

 yet drawn.

 1138

This content downloaded from 134.155.137.40 on Sat, 02 Jul 2016 08:53:55 UTC
All use subject to http://about.jstor.org/terms

Figure 3.1: Cumulative distribution function [F (x )] for a negative exponential ran-
dom variable with mean E[X] = 1.0 and corresponding descriptive sam-
ples xdn for a sample size N = 10 (taken from Figure 2 in Saliby
(1990))

is to analyze independent replications and derive their mean for each performance
measure. However, this is not a common approach for sampling-based optimization.
Rather, often a single replication is considered.

The aim of this paper is to analyze the impact of the sample size and sampling
method for a given problem. More specifically, we analyze the distribution of the
resulting performance measure or optimal decision for a given sampling-approach
over a number of independent replications. Furthermore, we analyze numerically
if structural differences can be observed between simple random sampling and de-
scriptive sampling for the analyzed examples.

We analyze the sampling-based performance evaluation for one instance of an M/D/1
queueing system and for three instances of the optimization of an M/M/c staffing
level for simple random sampling and descriptive sampling with different sample
sizes. We exemplify how the sensitivity of the analyzed performance measures or
optimal solutions in the sample size and sampling method can be analyzed based
on these four instances. We find that even though descriptive sampling has a lower
root mean square error than simple random sampling for all examples of the M/D/1
queueing system, it has a higher probability to underestimate the desired perfor-
mance measure. This effect can still be observed for large sample sizes. For the
optimization of the M/M/c staffing level, the distribution of the optimal decision is
not symmetrical and this effect is stronger for descriptive sampling in the analyzed
examples.
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3.2 Problem description

The aim of this paper is to identify the impact of the chosen sampling method and
sample size on the performance evaluation and optimization. Therefore, we analyze
the performance evaluation of the analytically tractable M/D/1 queueing system and
the optimization of the M/M/c staffing level, which has a single decision on the
number of servers.

3.2.1 M/D/1 queueing system

We analyze the performance evaluation of the M/D/1 queue to better understand
the effects of the sampling method on the optimization, see Figure 3.2. The arrival
process has exponentially distributed inter-arrival times with rate λ. A single server
processes all arriving customers with a deterministic processing rate of µ. There is
no limit on the queue length.

µλ

Figure 3.2: Analyzed system for performance evaluation: M/D/1 queue

The M/D/1 queue is chosen, as it is analytically tractable (i.e. exact values are
known) and there is only one stochastic process. Therefore, there are no interactions
between multiple sampled processes. In the steady state (with λ < µ), the utilization
ρ of such a system is given by

ρ =
λ

µ

and the processing time τ can be calculated by

τ =
1

µ
.

We analyze the expected waiting time E [Wq ], expected queue length E [Lq ], stan-
dard deviation of waiting times Std [Wq ] and standard deviation of queue length
Std [Lq ]. Using the Pollaczek-Khinchine formula and Little’s Law, all expected val-
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ues can be derived analytically (Shortle et al., 2018):

E [Wq ] =
ρ · τ

2(1− ρ)
(3.1)

E [Lq ] = λ · E [Wq ] (3.2)

The standard deviation of the waiting time Std [Wq ] and of the queue length Std [Lq ]

can be determined by

Std [Wq ] =

(
ρ · τ

2(1− ρ)

)2

+
ρ · τ 2

3(1− ρ)
(3.3)

Std [Lq ] =
ρ3

3(1− ρ)
+

(
ρ2

2(1− ρ)

)2

+
ρ2

2(1− ρ)
. (3.4)

3.2.2 M/M/c staffing level

We analyze the M/M/c staffing level with exponentially distributed inter-arrival
times and arrival rate λ. The service rate of each server is µ and service times
are also exponentially distributed, see Figure 3.3. There is no limit on the queue
length.

λ

µ

1

µ

2

µ

c

…

Figure 3.3: Analyzed system for optimization: M/M/c queue

The M/M/c system is chosen as it is a common system for the optimization of the
staffing decision and it is analytically tractable. There is a single decision on the
number of servers c, with the objective of minimizing the number of servers. Mul-
tiple constraints have been applied to this problem. In the sampling-based literature,
it is common to apply expected values (e.g. Costa et al., 2015; Weiss and Stolletz,
2015) or an X/Y service level (e.g. Atlason et al., 2008; Ballestin and Leus, 2009).
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min c (3.5)

E [Wq ] ≤W ∗ (3.6)

Pr{Wq ≤ Y } ≥ X (3.7)

The objective is to minimize the required number of servers, see Equation (3.5).
Equation (3.6) is a constraint on the expected waiting time, which cannot exceed
a predefined value W ∗. Equation (3.7) is known as an X /Y service level. The
probability of the waiting time to exceed Y cannot exceed X . We consider these
two constraints independently of each other in our numerical study. The relevant
performance measures used as constraints can be determined analytically by

P0 =
1∑c−1

n=0
ρn

n!
+ ρc

c!·(1− ρ
c
)

(3.8)

E [Wq ] =
ρc

(c − 1)! · (c − ρ)2 · µ
· P0 (3.9)

Pr{Wq ≤ Y } = 1− ρc · P0

c!(1− ρ
c
)
· e−(cµ−λ)Y . (3.10)

Therefore, the optimal staffing decision c∗ can be determined by enumeration. We
start with the first c, which fulfills the stability condition for steady state: λ < µ · c
and increase c by one in each iteration. The first c which fulfills the respective
constraints is the optimal staffing level c∗.

3.3 Numerical study

To understand the impact of the sampling method and sample size on the perfor-
mance evaluation and optimization of a system, we analyze the two problems from
Section 3.2. We use 10000 independent replications and analyze the distribution
of the results for each performance measure and constraint, respectively. All com-
putations are performed using Python 3.6. We use the inverse of the cumulative
distribution function by utilizing the stats.expon.ppf function from Python’s SciPy

library. For simple random sampling, we draw random numbers between 0 and
1 using the random.uniform function from Python’s NumPy library. For descrip-
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tive sampling, the deterministic set is permutated into a random sequence using the
random.shuffle function from Python’s NumPy library.

3.3.1 Performance evaluation of M/D/1

For the performance evaluation of the M/D/1 queue, we first analyze the impact of
the warm-up length on the expected waiting time. Then, we analyze the distribution
of the sampling-based performance evaluation.

Analysis of warm-up length

We want to analyze the queueing system in steady-state. However, at the beginning
of a sampling replication, the system is empty and therefore, a warm-up length has
to be considered. In this section, we analyze the appropriate warm-up length (in
number of samples n0). All performance measures of the M/D/1 queue will later
be considered on the N samples following the warm-up length with n0 samples.
Let Wn,r be the waiting time of sample n in replication r . Figure 3.4 shows the
waiting time for each sample for three independent replications. As can be seen,
the waiting time starts at zero for the first sample and tends to increase at first. In
this example using a warm-up length of n0 = 750, the performance of the system
would be analyzed on the N = 1000 samples after the warm-up length.

We conduct a numerical study with arrival rate λ = 0.9, processing rate µ = 1,
and R = 10000 independent replications to understand the impact of the warm-up
length n0 using simple random sampling. Fig. 3.5 shows the expected waiting time
over all replications E [Wq ](n) for sample n, where the expected waiting time is
calculated by

E [Wq ](n) =

∑R
r=1Wn,r

R
.

The expected waiting time for the first sample starts at zero. At first, the expected
waiting time of each sample increases. Once it reaches the analytical waiting time
E [Wq ] = 4.5 between n = 500 and n = 750, the expected waiting time of each
sample fluctuates around the analytical value. Thus, for the analyzed case, the ex-
pected waiting time of a sample arriving into the system is stable for samples after
n = 750. Therefore, we choose a warm-up length n0 of 750 for our analysis.

As we do not want the warm-up phase to have an impact on our analysis, we con-
struct the numerical study of the M/D/1 queue in the following way. The samples
for the warm-up phase are always drawn using simple random sampling. To be pre-

42



0 250 500 750 1000 1250 1500 1750
Sample n

0

1

2

3

4

5

6
W

n,
r

n0 n0 + N

Example with R=3 and N = 1000
r = 1
r = 2
r = 3
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Figure 3.5: Expected waiting time over all replications E [Wq ](n) for sample n
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cise, we sample R independent warm-up phases using simple random sampling. In
the next step, we add the sampled inter-arrival times of N samples for each repli-
cation r and each method (SRS; DS) independently. Therefore, both SRS and DS
have the same R warm-up phases to start from.

Distribution of sampling-based performance evaluation

We analyze the distribution of the resulting performance evaluation of the M/D/1
queue with exponentially distributed inter-arrival times with rate λ = 0.9, determin-
istic processing rate µ = 1, a warm-up length of n0 = 750 and R = 10000 indepen-
dent replications. Different effects can be observed for these examples. The analyt-
ical expected waiting time of this system based on Equation (3.1) is E [Wq ] = 4.5

and the analytical standard deviation based on Equation (3.3) is Std [Wq ] = 4.82.

Figures 3.6 and 3.7 shows the resulting histograms of the expected waiting times
for different sample sizes N from N = 100 to N = 15000 for descriptive sampling
on the left (in blue) and simple random sampling on the right (in orange). For a
sample size N = 100 and descriptive sampling, a large part of the distribution is
below the analytical expected waiting time. The RMSE is 3.19 and the skew is
3.73. The probability to observe at most the analytical value is 77%. For a sample
size N = 100 and simple random sampling, again a large part of the distribution is
below the analytical value. The RMSE is 3.9 and is higher than for DS. However,
the distribution is more symmetrical, which can be seen by the lower skew of 2.74.
The probability to observe at most the analytical value is 67% and therefore less
than for DS. Figure 3.10 aggregates the results for the (a) RMSE, (b) Skew and (c)
Probability that a replication is at most the analytical value. With an increase in
the sample size, the spread of the distribution decreases for both sampling methods.
As expected, the root mean square error (RMSE) is decreasing in the sample size.
In all examples, the RMSE is lower for descriptive sampling for the same sample
size N . For all sample sizes, the distributions are not symmetrical, but rather, there
is a positive skew. The probability that a single replication is at most the expected
waiting time is always higher for descriptive sampling in these examples. All effects
can still be observed for sample sizes up to N = 15000. The same observations can
be made when analyzing the standard deviation of the waiting time for the same
examples, see Figures 3.8 and 3.9. In addition, these observations are not limited to
the waiting time, but extend to the expected queue length and standard deviation of
the queue length, see Appendix E.
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To summarize this example with µ = 1 and λ = 0.9, the root mean square er-
ror is decreasing in the sample size for the performance evaluation of the M/D/1
queue for the analyzed examples. However, for the same sample size, descriptive
sampling always has a lower root mean square error than simple random sampling
in the analyzed examples. For all performance measures, the distribution over all
replications is skewed. The probability to underestimate the desired performance
measure is higher for descriptive sampling in the analyzed examples.

3.3.2 Optimization of M/M/c staffing level

We analyze the distribution of the resulting optimal staffing decision c of the M/M/c
staffing level with exponentially distributed inter-arrival times with rate λ = 10, an
exponential processing rate µ = 1 per server c, a warm-up length of n0 = 750

and R = 10000 independent replications. As before, we analyze sample sizes
from N = 100 to N = 15000. We consider two examples with a constraint on
the expected waiting time (E [Wq ] ≤ 0.7 and E [Wq ] ≤ 0.000007) and one with a
constraint on the probability X of waiting at most a specified time Y (Pr{Wq ≤
0.7} ≥ 0.8). The second example of a very small W ∗ is chosen to analyze a system
in which waiting occurs only rarely. The analytical optimal solutions based on
Equations (3.9) and (3.10) are c∗ = 11, c∗ = 25 and c∗ = 12, respectively.

Figure 3.11 and 3.12 show the distribution of the sample-optimal staffing decision
c with a constraint on the expected waiting time of E [Wq ] ≤ 0.7 and E [Wq ] ≤
0.000007, respectively. Figure 3.13 shows the results for an X/Y service level with
Pr{Wq ≤ 0.7} ≥ 0.8. Again, we report different sample sizes N for descriptive
sampling on the left (in blue) and simple random sampling on the right (in orange).
The results for sample sizes from 2500 to 15000 can be found in Appendix F. For a
sample size N = 100, E [Wq ] ≤ 0.7 and descriptive sampling, the analytical opti-
mal solution of c∗ = 11 is found in 6526 of the 10000 replications. The RMSE is
0.74 and the skew is 1.06. The probability to observe at most the analytical optimal
solution is 75%. For a sample size N = 100, E [Wq ] ≤ 0.7 and simple random
sampling, the analytical optimal solution of c∗ = 11 is found in 5005 of the 10000

replications and therefore less frequent compared to DS. The RMSE is 0.9 and is
higher than for DS. However, the distribution is more symmetrical, which can be
seen by the lower skew of 0.66. The probability to observe at most the analytical
optimal solution is 70% and therefore less than for DS. For all analyzed exam-
ples, the largest observed difference in the mean optimal staffing decision between
descriptive sampling and simple random sampling is 0.1. For the problems with
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(a) Sample size N = 100

0 5 10 15 20 25 30
E[Wq]

0

500

1000

1500

2000

2500

3000

3500

Ob
se

rv
at

io
ns E[Wq]:  4.5

Mean:   3.95
Median: 3.41
Std:      2.08
RMSE:   2.15
Skew:   4.4
Pr{Wq E[Wq]}: 0.77

E[Wq]
DS

0 5 10 15 20 25 30
E[Wq]

0

500

1000

1500

2000

2500

3000

3500

Ob
se

rv
at

io
ns E[Wq]:  4.5

Mean:   4.5
Median: 3.53
Std:      3.29
RMSE:   3.29
Skew:   3.38
Pr{Wq E[Wq]}: 0.66

E[Wq]
SRS

(b) Sample size N = 250
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(c) Sample size N = 500
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(d) Sample size N = 1000

Figure 3.6: Expected waiting time in an M/D/1 system for sample sizes N = 100 to
N = 1000
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(a) Sample size N = 2500
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(b) Sample size N = 5000
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(c) Sample size N = 10000
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(d) Sample size N = 15000

Figure 3.7: Expected waiting time in an M/D/1 system for sample sizes N = 2500
to N = 15000
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(a) Sample size N = 100
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(b) Sample size N = 250
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(c) Sample size N = 500
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(d) Sample size N = 1000

Figure 3.8: Standard deviation of waiting time in an M/D/1 system for sample sizes
N = 100 to N = 1000
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(a) Sample size N = 2500
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(b) Sample size N = 5000
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(c) Sample size N = 10000
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(d) Sample size N = 15000

Figure 3.9: Standard deviation of waiting time in an M/D/1 system for sample sizes
N = 2500 to N = 15000
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Figure 3.10: Overview of distribution of results for the performance evaluation of
M/D/1

50



E [Wq ] ≤ 0.7 and Pr{Wq ≤ 0.7} ≥ 0.8 (Figures 3.11 and 3.13), the means range
from 11.2 to 11.4 and from 11.3 to 11.5, respectively over all sample sizes and both
sampling methods. For the problem with E [Wq ] ≤ 0.000007 (Figure 3.12), the
mean is increasing in the sample size and ranges from 17.3 to 23.7. This suggests
that even larger sample sizes are required for this case. For all analyzed examples,
the standard deviation of the optimal staffing decision is larger for simple random
sampling. Figure 3.14 aggregates the results for the (a) RMSE, (b) Skew and (c)
Probability that a replication is at most the optimal decision derived from the ana-
lytical values for the optimization based on the expected waiting time. The largest
observed difference in the RMSE between both methods is 0.18. However, the skew
is larger for descriptive sampling for the same sample size. Like the results for the
performance evaluation, all analyzed examples have a positive skew. Therefore, the
distribution of the optimal decision is not symmetrical and this effect is stronger for
descriptive sampling in the analyzed examples. The probability to chose at most the
analytically optimal solution is equal or larger for descriptive sampling.

To summarize, for the optimization of the M/M/c staffing level, the mean optimal
staffing decision does not differ between both methods. However, the distribution
of the optimal decision is not symmetrical and this effect is stronger for descriptive
sampling in the analyzed examples.

3.4 Conclusion and further research

We analyze the sampling-based performance evaluation of an M/D/1 queueing sys-
tem and optimization of an M/M/c staffing level. We analyze the impact of different
sample sizes and two sampling methods on the distribution of the resulting perfor-
mance measures and optimal solution. The analyzed sampling methods are simple
random sampling and descriptive sampling.

For the analyzed examples, we find that the root mean square error is decreasing
in the sample size for the performance evaluation of the M/D/1 queue, both for
expected values as well as values based on the standard deviation. This can be ob-
served for both methods. However, for the same sample size, descriptive sampling
always has a lower root mean square error than simple random sampling in the ana-
lyzed examples. For all performance measures, the distribution over all replications
is skewed. The probability to underestimate the desired performance measure is
higher for descriptive sampling in the analyzed examples. This effect can still be
observed for large sample sizes. For the optimization of the M/M/c staffing level,
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(a) Sample size N = 100
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(d) Sample size N = 1000

Figure 3.11: Optimal number of servers in an M/M/c system with constraint on ex-
pected waiting time with E [Wq ] ≤ 0.7 for sample sizes N = 100 to
N = 1000
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(a) Sample size N = 100
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(b) Sample size N = 250
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(c) Sample size N = 500
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(d) Sample size N = 1000

Figure 3.12: Optimal number of servers in an M/M/c system with constraint on
expected waiting time with E [Wq ] ≤ 0.000007 for sample sizes
N = 100 to N = 1000
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(a) Sample size N = 100
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Figure 3.13: Optimal number of servers in an M/M/c system with X/Y service level
for sample sizes N = 100 to N = 1000
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Figure 3.14: Overview of distribution of results for the optimization of M/M/c
staffing problem
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the distribution of the optimal decision is not symmetrical and this effect is stronger
for descriptive sampling in the analyzed examples.

Even though we only analyzed four instances, it can be concluded that managers
should be aware that the distribution of the resulting performance measures or op-
timal solution may not be symmetrical and the chosen sampling method may have
an impact on this behavior. In order to avoid a sampling bias, managers could per-
form a similar analysis as shown in this paper to understand the sensitivity of their
problem in the sample size and the sampling method.

Further research could analyze if our findings can be generalized, both for the ana-
lyzed systems and for the performance evaluation of other systems or the optimiza-
tion of different problems. Therefore, further instances of the analyzed systems
could be considered. Other assumptions on the distribution and the analyzed sys-
tems could be used to provide further insights. The analysis of further sampling
methods, such as latin hypercube sampling, could further be investigated. Further-
more, analyzing the impact of the sampling method analytically could be a fruitful
direction for research. A deeper statistical analysis on the sampled series could
further increase the understanding of these effects, for example by analyzing the
auto-correlation of the random numbers in the sequence.
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Abstract:

Our research is motivated by the planning problem of a global manufacturer of
semiconductors. During the introduction of a new product or machine, the yield of
a production process tends to start low and increases with the production quantity.
This is known as the ramp-up phase and the company has to chose the production
quantity during the ramp-up phase ex ante. Demand is known, but yield is stochastic
and non-stationary, following a known learning curve. The ramp-up quantity has to
be chosen such that the expected profit is maximized.
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Yield problems occur when some of the produced products do not meet the quality
specifications and can therefore not be used to fulfill the demand. The analysis of
real yield data from the company shows that such a stochastic and non-stationary
yield behavior occurs both for the introduction of new products as well as for the
introduction of new machines.

We formalize the company’s problem as a Newsvendor problem with stochastic and
non-stationary yield. We derive analytical and numerical insights on the optimal
ramp-up quantity and the expected profit.

We prove that the expected profit is a discrete concave function of x for stationary
yield. However, this property does not hold for the case of increasing yield. In ad-
dition, any positive optimal production quantity will always be at least the demand.
We characterize the optimal production quantity for stationary yield by a critical
fractile.

A numerical study shows that the optimal production quantity using the proposed
model is close to the ex-post optimal production quantity from the data. An increase
of the learning curve increases the expected yield for each produced unit. The
optimal ramp-up quantity tends to be decreasing in the expected yield. However, a
numerical analysis shows that an increase in the expected yield can lead to a higher
optimal production quantity at first, before the production quantity decreases.
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4.1 Introduction

4.1.1 Motivation: Introduction of a new product or machine

During the introduction of a new product or a new machine, the output of a produc-
tion process tends to start low and is increasing with the production quantity. This
is known as the ramp-up phase. With today’s frequent technology changes, ramp-
ups are becoming ever more important, especially in high-tech industries, such as
semiconductor manufacturing.

Ever shortening product life cycles put high pressure on firms’ production capacities
(Milor, 2013). The performance during the ramp-up phase plays a crucial role for
the economic success of a company (Weber, 2004). For example, Intel faced a
severe supply shortage in 2018, which severely impacted its financial performance
(Kim, 2018). Because of the introduction of its 10 nanometer chips, Intel continued
to struggle to raise its supply into the third quarter of 2019 (Hruska, 2019). While
ramping up the production for the iPhone X, Apple faced supply shortfalls due to
the complexity of producing organic light-emitting diode (OLED) screens (Kubota
et al., 2017).

Yield problems during the ramp-up are especially important for the economic sit-
uation of a company (Bohn and Terwiesch, 1999). They occur when some of the
produced products do not meet the specifications and can therefore not be used to
fulfill the demand (Cunningham et al., 1995). In the semiconductor manufactur-
ing industry, as well as in many other industries, stochastic yield is common (e.g.
Ehrhardt and Taube, 1987; Lee and Yano, 1988; Tang et al., 2012). Yield prob-
lems are typically observed during the ramp-up phase (Bohn and Terwiesch, 1999).
It tends to be low at the beginning and increases afterwards (Li and Zheng, 2006;
Grasman et al., 2007). This non-stationary yield behavior can be modeled by a
learning curve.

Learning curves have been applied in a wide variety of decision problems, see for
example the review by Biskup (2008) on scheduling decisions with learning. Other
examples include the assignment of tasks to stations in a paced line with learning
(Toksarı et al., 2008) or of workers to manufacturing cells with learning and for-
getting (Liu et al., 2016). Different optimization problems have considered produc-
tion planning with a learning curve depending on the past production (e.g. Mazzola
et al., 1998). Usually, the production process is assumed to be deterministic, but
follows a learning curve. Cavagnini et al. (2020) consider a workforce production
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planning problem where the parameters of a linear learning curve are unknown, but
the process itself is deterministic. As all these problems apply a learning curve to a
deterministic process, they are not suitable to capture an optimization problem with
stochastic yield and a learning curve.

4.1.2 Example: Semiconductor manufacturing

Our research is motivated by the ramp-up in the manufacturing of semiconductors.
A detailed description and in-depth analysis of the observed data is carried out in
Section 4.3. We observe three classes of ramp-ups with respect to the yield behav-
ior: (1) deterministic and stationary yield, (2) stochastic and stationary yield, and
(3) stochastic and non-stationary yield.

We analyze the situation, in which the company is planning the start of a new prod-
uct or a new machine. There is a separation in planning between the ramp-up phase
and the steady-state phase. The expected yield during the ramp-up is non-stationary
and follows a learning curve. The considered company operates in a business-to-
business setting and produces specific products for its customers. The quantities to
be delivered by the semiconductor company are contracted. Therefore, the demand
can be considered to be known in advance. Lead times are long, sometimes up to
several months, forcing the company to decide on the ramp-up quantity before the
realization of the stochastic yield is known. Even though the company may produce
in lots, lot-sizes can vary and the decision is on the number of products (chips) to be
produced. Therefore, there is a single production decision with a stochastic quan-
tity of resulting non-defective end products to meet a known demand. In case of
a supply shortage, the company loses revenue and faces contracted shortfall costs.
In case of overproduction, the overproduced units can be sold at a lower value in
the steady-state phase. This lower value represents both the decreasing prices in
the high-tech industry as well as holding costs. The company aims to maximize its
expected profit.

4.1.3 Problem description and contributions

We formalize the company’s problem as a Newsvendor problem with stochastic and
non-stationary yield. The demand is known and the corresponding ramp-up quan-
tity has to be chosen to maximize the expected profit. Yield is stochastic and the
probability of each unit to be non-defective follows a learning curve. Therefore, the
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quantity of non-defective end products is modelled as a Poisson Binomial distribu-
tion. We assume that the learning curve is known but do not make specific assump-
tions about its shape. Revenue is incurred for the share of the demand that can be
fulfilled by non-defective end products. Costs are composed of variable production
cost and penalty cost for demand shortfalls. Non-defective end products exceeding
the demand can be sold at a salvage value at the end of the ramp-up phase. Choi
et al. (2019) have analyzed the special case of stationary yield, i.e. the probability
of each unit to be non-defective does not change with the production quantity, and
no salvage value.

Our research is motivated by an application in the semiconductor industry, but not
limited to it. Rather, it applies to any production setting with stochastic and non-
stationary yield and a singular decision on the production quantity. This paper aims
to analyze the structure of the optimal ramp-up quantity with non-stationary yield.
The main contribution of this paper is summarized as follows.

1. We present a Newsvendor model with stochastic and non-stationary yield de-
pendent on the production quantity.

2. We derive analytical insights on the expected profit and the optimal ramp-
up quantity. We prove a bound on the optimal ramp-up quantity and on the
expected profit for any learning curve. For increasing yield, we show that a
positive production quantity below the demand is never optimal. For station-
ary yield, we characterize the optimal ramp-up quantity by a critical fractile
and show the sensitivity of a change in the model parameters on the optimal
ramp-up quantity. We derive the impact of a change in the cost parameters on
the expected profit.

3. A numerical study compares our model with the ex-post optimal decision
derived from the data. We find that the optimal ramp-up quantity from the
model is close to the optimal ex-post quantity. Furthermore, our numeri-
cal study suggests that the monotony of the optimal ramp-up quantity in the
model parameters extends to the case of increasing yield. Finally, our nu-
merical study shows that an increase in the expected yield can first lead to
more production before it leads to less production, i.e. the optimal ramp-up
quantity is non-monotone in the expected yield.
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4.1.4 Structure of the paper

The remainder of this paper is organized as follows. We provide an overview of
the literature on learning curves and Newsvendor problems with stochastic yield in
Section 4.2. A detailed description and analysis of the yield data from the semicon-
ductor industry is given in Section 4.3. The Newsvendor model with stochastic and
non-stationary yield is presented in Section 4.4. In Section 4.5, we derive analytical
insights on the expected profit and the optimal ramp-up quantity. The numerical
study in Section 4.6 compares our model to the ex-post solution using real data,
analyzes the monotony of the optimal ramp-up quantity and performs a sensitivity
analysis of the expected yield on the optimal ramp-up quantity. We summarize our
findings in Section 4.7.

4.2 Literature on learning curves and Newsvendor
problems with stochastic yield

We analyze a non-stationary behavior of the yield, which is also known as a learn-
ing curve. The literature on learning curves with stochastic processes focuses on
predicting the learning curve for a set of features. Therefore, many different yield
learning curves have been proposed for various specific situations, such as the area
in the production process or the type of produced product. In many cases, the lit-
erature is concerned with including the right features for a good prediction of the
learning curve. However, we assume that the learning curve is known and therefore
present the literature on learning curves only briefly in Section 4.2.1. As we for-
malize the company’s optimization problem as a Newsvendor model with stochas-
tic and non-stationary yield, we review the literature on Newsvendor models with
stochastic yield in Section 4.2.2.

4.2.1 Learning curves

The literature on learning curves is vast and goes back to Wright (1936), who ob-
served that marginal production cost decrease with the production quantity. An
early review on learning curves is given by Yelle (1979), presenting decreasing
learning curves with respect to the required production time or cost per unit.

A stream of literature reviews yield learning curves with a focus on predicting the
yield learning curve in semiconductor manufacturing. Tirkel (2013) reviews learn-
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ing curves based on the production quantity and multivariate learning curves using
other inputs in addition to the production quantity. Milor (2013) investigates yield
models for the wafer probe data, sources of defects and in-line excursion detection.
Kumar et al. (2006) also incorporate other factors, such as spatial defects and radial
yield losses, which might improve the prediction quality of the yield learning curve,
in their review.

The reviews by Anzanello and Fogliatto (2011) and Grosse et al. (2015) include
learning curves both for decreasing costs per unit as well as for an increasing out-
put. Anzanello and Fogliatto (2011) further differentiate between univariate and
multivariate learning curves, i.e. predicting the learning curve based on a single or
on multiple features. For an increase in productivity of a single product or machine,
such as the yield, Grosse et al. (2015) present four different learning curves, which
are summarized in Table 4.1.

Two parameter exponential yield (2PE) p(i) = k
(
1− e−(

i
R)
)

Three parameter exponential yield (3PE) p(i) = k
(
1− e−(

i+m
R )
)

Two parameter hyperbolic yield (2PH) p(i) = k
(

i
i+R

)
Three parameter hyperbolic yield (3PH) p(i) = k

(
i+m

i+m+R

)
Table 4.1: Yield learning functions dependent on production quantity (Grosse et al.,

2015)

In all functions, p(i) represents the probability of the i th produced unit to be non-
defective. With respect to our problem from Section 4.1.2, i refers to each single
unit produced within the ramp-up quantity x (i.e. i = 1, . . . , x ). The parameter
k represents the final yield, i.e. the value to which the function converges. The
learning rate R determines how fast the yield is changing, where a low R represents
a fast increase. The previous experience, for example from the ramp-up of a similar
product or machine, is given by m. There are two classes of functions: exponential
yield and hyperbolic yield. Both can be expressed with two parameters (2PE and
2PH) or with three parameters (3PE and 3PH). The three parameter models extend
the two parameter models by the experience m, making the two parameter models
special cases.

To summarize, learning curves are important to predict the output of many different
systems. Furthermore, they are especially important for the planning in the semi-
conductor manufacturing industry. Learning curves have been applied in a wide
variety of optimization problems for deterministic production systems. In order to
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analyze the optimal ramp-up quantity, we review the literature with a single produc-
tion decision and stochastic yield in Section 4.2.2.

4.2.2 Newsvendor models with stochastic yield

For different planning problems with stochastic yield, we refer the reader to Yano
and Lee (1995). According to their classification, we consider a single-period model
with a single production run. Therefore, this section reviews the literature with
models considering a single decision on the production quantity with stochastic
yield. This type of problem is also known as Newsvendor models with stochastic
yield. For a broader review on Newsvendor problems under various assumptions
we refer the reader to Khouja (1999).

Consider a production quantity x . We denote the resulting quantity of non-defective
end products by Q(x ). The literature can be divided into four different categories
with respect to the modelling of stochastic yield.

Additive yield can for example be motivated by agriculture yield dependent on the
weather (Keren, 2009) and is defined by:

Q(x ) = x + ξ , (4.1)

where ξ is the random error with support [a, b] (with −x ≤ a ≤ x ≤ b). Newsven-
dor models with additive yield has been analyzed in Rekik et al. (2007); Keren
(2009); Li et al. (2012).

Applications for proportional yield, also known as multiplicative yield, include
perishable goods (Shih, 1980), remanufacturing (Inderfurth, 2004) or blood banks
(Gerchak et al., 1988), among many others. Proportional yield is defined by:

Q(x ) = x · Y , (4.2)

where Y is the random yield and most authors assume Y has support [0, 1]. This
model has been studied widely, e.g. Shih (1980); Tang and Yin (2007); Okyay et al.
(2014).

The model of proportional yield has been extended to incorporate random capac-

ity, where equipment might malfunction, resulting in a random capacity K (Okyay
et al., 2015). Therefore, the production quantity is the minimum of x and the real-
ized capacity K . The resulting quantity of non-defective end products may further
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be reduced by stochastic yield, resulting in:

Q(x ) = Y ·min{K , x} . (4.3)

Random capacity is studied in Wang and Gerchak (1996); Sayın et al. (2014); Okyay
et al. (2015).

The models with additive yield, proportional yield and random supply assume that
the distribution of the random yield, random error and random capacity is inde-
pendent of the production quantity. In contrast, models with yield as a function

of the production quantity assume that the quantity of non-defective end products
follows a distribution, which has parameters dependent on the production quantity.
For simplicity, we call this distribution the yield distribution. Applications include
a Gardener (Abdel-Malek et al., 2008; Abdel-Malek and Otegbeye, 2013) and the
production of semiconductors (Noori and Keller, 1986; Choi et al., 2019) among
others.

Yield Demand Objective

Abdel-Malek et al. (2008) Uniform: Q(x) ∼ U (a, x) Uniform Minimize cost
Abdel-Malek and Otegbeye (2013) Uniform: Q(x) ∼ U (a, x) General continuous Maximize profit
Noori and Keller (1986) Normal: Q(x) ∼ N (px , σ2) Uniform, Exponential Minimize cost

Normal: Q(x) ∼ N
(
px , (sx)2

)
Gamma: Q(x) ∼ G(n = p2/s2, α = s2x/p)

Gallego and Moon (1993) Binomial: Q(x) ∼ Bin(p, x) General worst case Maximize profit
Alfares and Elmorra (2005) Binomial: Q(x) ∼ Bin(p, x) General worst case Maximize profit
Choi et al. (2019) Binomial: Q(x) ∼ Bin(p, x) Deterministic Maximize profit

Normal: Q(x) ∼ N
(
px ,

√
xp(1− p)

2
)

Table 4.2: Literature with yield as a function of production quantity

Table 4.2 reviews the literature, where the quantity of non-defective end products
Q(x ) follows a distribution whose parameters depend on the production quantity.
The table reviews the yield distribution, demand distribution and objective function.
For the distribution of yield, Uniform, Normal, Gamma and Binomial distribution
of yield have been analyzed. Uniformly distributed yield assumes a fixed lower
value a and the upper bound of the interval is x . Even though the mean probability
of each unit changes with a change of the production quantity, all units have the
same expected probability for a fixed production quantity, i.e. the Uniform distri-
bution does not capture a learning curve for the yield. For the other distributions,
a stationary parameter p specifies the expected probability of each unit to be non-
defective. In all cases, p is independent of the production quantity, i.e. the presented
literature only considers stationary yield and does not consider a learning curve on
the probability p. Both stochastic and deterministic demand have been considered.
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The objectives feature the minimization of expected cost or the maximization of
expected profit.

In conclusion, there is a wide variety of literature analyzing Newsvendor models
with stochastic yield, where the distribution of yield is independent of the produc-
tion decision. For the literature with yield as a function of the production quantity,
only stationary yield is considered. Since we want to analyze the optimal ramp-up
quantity for stochastic and non-stationary yield, there is a gap in the literature for
a model with non-stationary yield. The literature on predicting learning curves is
large and many different learning curves have been applied. Therefore, we present
a general model in Section 4.4, which does not have a specific assumption on the
learning curve. In Section 4.5, we prove properties of the optimal production quan-
tity and optimal objective value for different classes of learning functions.

4.3 Yield analysis for ramp-ups in semiconductor
manufacturing

This section describes and analyzes the data we were provided by a global manufac-
turer of semiconductors. First, we describe the data in general and the applied data
cleaning process. Afterwards, we present the data for the introduction of new prod-
ucts in the area wafer probe in Section 4.3.1 and for new machines in Section 4.3.2.
The new machines are spread over the entire process of semiconductor manufac-
turing and their realized yield is measured directly at the machine. In contrast, the
yield of the new products is always measured at the end of the area wafer probe. We
have two data sets, each spanning approximately three years of production.

The data considers the production process of wafers, which are thin slices used
in semiconductor manufacturing, where each wafer consists of a large number of
microchips. The manufacturer produces its microchips in lots, where each lot is
a batch of wafers. The data consists of the average realized yield for each lot.
Each data point represents a single processing step of a single lot in the production
process. As the production quantity per lot is not fixed, we consider the realized
average yield in relation to the cumulative production quantity.

Data cleaning is the first step in the analysis of yield data in semiconductor manu-
facturing (Lee et al., 2019). After discussions with process experts from the man-
ufacturing company, we apply the following cleaning rules to the data sets. A data
point is removed, if
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1. its processing time is negative,

2. its yield is above one,

3. its yield is zero or lower.

For the analyzed data sets, the process experts explained that a yield of zero is most
probably caused by a split in the lot, which cannot be traced afterwards. Therefore,
we remove these data points. A lot is removed completely, if its first processing step
contains less units than its last processing step. Finally, we only consider products
or machines with at least 10 lots.

4.3.1 New product introduction

The first data set contains the realized yield of new product introductions in the
area wafer probe. For each lot, the functionality of each individual chips is tested.
Therefore, the realized average yield is the number of non-defective chips in a lot
divided by the total number of chips in that lot.
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Figure 4.1: New product introductions with deterministic and stationary yield

Figures 4.1 to 4.3 show the realized average yields depending on the production
quantity for different products and their corresponding coefficient of variation (cv ).
We observe that some products have a very low coefficient of variation of cv ≤
0.004, which we consider to be deterministic yield (Figure 4.1), while others are
stochastic (Figures 4.2 and 4.3). All products with deterministic yield show a sta-
tionary yield behavior. For the products with stochastic yield, some have stationary
yield (Figure 4.2) while others show a non-stationary yield behavior (Figure 4.3).

To summarize, three different classes of products can be observed. Ramp-ups of
new products with stochastic and non-stationary yield are common. As we are
interested in the optimal ramp-up quantity for non-stationary yield, we further an-
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Figure 4.2: New product introductions with stochastic and stationary yield
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Figure 4.3: New product introductions with stochastic and non-stationary yield
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alyze the examples from Figure 4.3 by fitting different learning curves to them in
Section 4.3.3.

4.3.2 New machine introduction

The second data set contains newly introduced machines in the entire production
process of the semiconductor manufacturer with more than 10 lots. We show some
examples of those machines and, again, we report the realized average yield, which
is the number of non-defective chips in a lot divided by the total number of chips in
that lot.
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Figure 4.4: New machine introductions with deterministic and stationary yield

Figures 4.4 to 4.6 show the realized average yield depending on the production
quantities for different machines and their corresponding coefficients of variation
(cv ). For the introduction of new machines, we also observe (1) deterministic and
stationary yield, (2) stochastic and stationary yield, and (3) stochastic and non-
stationary yield. These are the same classes as we have observed for the introduction
of new products in Figures 4.1 to 4.3.
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Figure 4.5: New machine introductions with stochastic and stationary yield
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Figure 4.6: New machine introductions with stochastic and non-stationary yield

To summarize, we observe the same three classes for the introduction of a new
machine as for the introduction of a new product. In both cases, stochastic and
non-stationary yields can be observed. As we are interested in the optimal ramp-up
quantity for non-stationary yield, we further analyze the examples from Figure 4.6
by fitting different learning curves to them in Section 4.3.3.

4.3.3 Fitting learning curves to yield data

To further analyze the examples of ramp-ups with stochastic and non-stationary
yield from Figures 4.3 and 4.6, we fit the learning curves presented Table 4.1 from
the literature review in Section 4.2.1 to the data. We analyze, if the learning curves
can be used to model the behavior of the non-stationary yield. For each fitted learn-
ing curve, we report the corresponding coefficient of determination R2. As the
two-parameter learning curves from Table 4.1 are special cases of the three param-
eter learning curves, they can never have a better coefficient of determination R2 in
our analysis. Therefore, we only report the results of the three parameter learning
curves.
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Tables 4.3 and 4.4 show the original yield data and the different yield learning curve
for the introduction of a new product and machine, respectively. Each column cor-
responds to a learning curve (3 parameter exponential (3PE) and 3 parameter hyper-
bolic (3PH)). We fit the learning curves using curve fit from Python’s SciPy library,
which uses non-linear least squares to fit a function to data.

The fitted learning curves have values of R2 between 0.11 and 0.56. In general, the
resulting coefficients of determination R2 are higher for the fitted learning curves
of the new product introductions. There is no significant difference between the fit
of the exponential and the hyperbolic yield curve. In conclusion, both cases can be
modeled using three parameter exponential or hyperbolic yield.

4.3.4 Summary of yield data

To summarize, (1) deterministic and stationary yield, (2) stochastic and stationary
yield, and (3) stochastic and non-stationary yield can be observed in the data for
new product introduction and new machine introduction. While the literature has
focused on models with stochastic and stationary yield, non-stationary yield behav-
ior can be observed in the data. Therefore, there is a practical need for a model to
capture the non-stationary behavior of the stochastic yield during the ramp-up of a
new product or a new machine. Thus, the model we present in Section 4.4 features
stochastic and non-stationary yield. However, stochastic and stationary can also be
captured as a special case. Therefore, the model allows to gain insights into both
presented classes of stochastic yield.

The three parameter exponential and hyperbolic yield curves can be used to model
the non-stationary yield behavior. There is no significant difference in the coeffi-
cient of determination between both. However, the model we present in Section 4.4
does not rely on a specific assumption on the learning curve.
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Table 4.3: Fitted exponential and hyperbolic yield for realized average lot yield of
different products in the production area wafer probe
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Table 4.4: Fitted exponential and hyperbolic yield for realized average lot yield of
different new machine introductions
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4.4 Newsvendor model with stochastic and
non-stationary yield

Index:
i i th produced product (i = 1, . . . , x )

Parameters:
n Demand for non-defective end product
c Unit cost per produced end product
r Unit revenue per non-defective end product
b Unit penalty cost for unsatisfied demand
s Unit salvage value per overproduced non-defective end product
p(i) Probability of i th product to be non-defective (non-stationary yield)

Decision variable:
x Production quantity (x ∈ N)

Random variable:
Q(x ) Non-defective end products if x products are produced (depends on p(i))

Table 4.5: List of notation

We consider the decision on the production quantity x to maximize the expected
profit E[Π(x ,Q(x ))] for a known demand n. Each product is either defective or
non-defective. The profit is driven by the unit cost per produced end product c
(with c > 0), unit revenue per sold non-defective end product r (with r ≥ c) and
penalty cost for each unit of unsatisfied demand b (with b ≥ 0). All non-defective
end products, which exceed the demand, can be sold at a salvage value s (with
s < c). This leads to the following expected profit:

max
x∈N

E[Π(x ,Q(x ))]

= E[r ·min(Q(x ), n) + s · (Q(x )− n)+ − b · (n −Q(x ))+ − cx ] . (4.4)

To account for non-stationary yield, we introduce non-stationary probabilities for
each product i to be non-defective. We assume the yield follows a Poisson Binomial
distribution with the probability p(i) of the i th product to be non-defective (with
i = 1, ..., x ). The probability of receiving q non-defective products for a production
quantity x is defined by

Pr{Q(x ) = q} = f (x , q) =
∑
A∈Fq

∏
i∈A

p(i)
∏
j∈Ac

(1− p(j )) (4.5)
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where Fq is the set of all subsets A of q integers that can be selected from {1, 2, 3,
. . . , x}. Equation (4.5) is the probability mass function of the Poisson Binomial dis-
tribution. Using Equation (4.5), we can express the expected profit in Equation (4.4)
by

max
x∈N

E[Π(x ,Q(x ))] = r
x∑

q=0

q f (x , q)− (r − s)
x∑

q=n

(q − n) f (x , q)

− b
n∑

q=0

(n − q) f (x , q)− cx . (4.6)

The non-stationary yield is reflected by the function p(i). Note that the model of
Choi et al. (2019) is included as a special case for stationary yield p(i) = p(i+1) =

p and a salvage value of s = 0. The analytical results of Choi et al. (2019) for a
Normal approximation of this special case are summarized in Appendix G.

4.5 Analytical insights on expected profit and optimal
ramp-up quantity

In this section, we present analytical results for the problem defined in Section 4.4.
We analyze the properties for stationary and for increasing yield. First, we analyze
properties of the objective function, such as concavity and an upper bound on the
expected profit. This is followed by insights on the optimal ramp-up quantity.

This section shows how the structure of the objective value changes when consid-
ering increasing yield instead of stationary yield. We derive bounds on the optimal
ramp-up quantity for increasing yield. Therefore, in order to find the optimal solu-
tion, searching a finite number of discrete values in this range is sufficient. Further-
more, the optimal ramp-up quantity is characterized for stationary yield in the form
of a critical fractile. In addition, this section shows the impact of the cost parameters
and the demand both on the expected profit as well as the optimal ramp-up quantity
for stationary yield.

4.5.1 Insights on expected profit

From Equation (4.4), it follows that the expected profit is non-increasing in pro-
duction cost c if x = 0 and decreasing in c for a given x > 0. Furthermore,

75



E[Π(x ,Q(x ))] is non-increasing in the backlog cost b and non-decreasing in the
unit revenue r and the unit salvage value s .

To characterize the shape of the expected profit, we first define the condition on dis-
crete concavity. Afterwards, this condition is applied to stationary yield functions.

Lemma 1 (Condition for discrete concavity). E[Π(x ,Q(x ))] is a discrete concave

function of x , if and only if

p(x + 2)

p(x + 1)
≤ (r + b − s) Pr{Q(x ) < n}+ s

(r + b − s) Pr{Q(x + 1) < n}+ s
(4.7)

holds for all x .

Proof. Let
∆(x ) = E[Π(x + 1,Q(x + 1))]− E[Π(x ,Q(x ))] (4.8)

be the difference in expected profit between producing x +1 and producing x units.
Note that E[Π(x ,Q(x ))] is a discrete concave function of x if and only if ∆(x ) is
a non-increasing function of x (see Yüceer (2002, Theorem 1) for the definition
of discrete convex function of a single variable). Note that when the production
quantity increases from x to x + 1, the revenue increases by r and the backlog
decreases by b if item x + 1 is non-defective and Q(x ) < n. If Q(x ) ≥ n, the
revenue and backlog stay the same. The salvage value increases by s if item x + 1

is non-defective and Q(x ) ≥ n. The salvage value is unchanged if Q(x ) < n. The
production cost increase by c independently of Q(x ). Therefore, the difference in
Equation (4.8) can be reformulated as

∆(x ) = r p(x + 1) Pr{Q(x ) < n}+ b p(x + 1) Pr{Q(x ) < n}

+ s p(x + 1) Pr{Q(x ) ≥ n} − c

= (r + b − s) p(x + 1) Pr{Q(x ) < n}+ s p(x + 1)− c . (4.9)

Equation (4.9) is a non-increasing function of x for all x , if and only if

∆(x + 1) ≤ ∆(x )

⇔ (r + b − s) p(x + 2) Pr{Q(x + 1) < n}+ s p(x + 2)− c

≤ (r + b − s) p(x + 1) Pr{Q(x ) < n}+ s p(x + 1)− c

⇔ p(x + 2)

p(x + 1)
≤ (r + b − s) Pr{Q(x ) < n}+ s

(r + b − s) Pr{Q(x + 1) < n}+ s
.
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Lemma 1 defines the condition for discrete concavity of the expected profit. This
condition is independent of the production cost c, but depends on all other parame-
ters. Next, this condition is applied to stationary yield functions.

Theorem 2 (Concavity for stationary yield). For p(i) = p, E[Π(x ,Q(x ))] is a

discrete concave function of x .

Proof. For p(i) = p, the left hand side of the condition for discrete concavity in
Equation (4.7) reduces to

p(x + 2)

p(x + 1)
=

p

p
= 1 . (4.10)

Therefore, Inequality (4.7) can be rewritten as

1 ≤ (r + b − s) Pr{Q(x ) < n}+ s

(r + b − s) Pr{Q(x + 1) < n}+ s

⇔ Pr{Q(x + 1) < n} ≤ Pr{Q(x ) < n} (4.11)

Pr{Q(x ) < n} is a discrete decreasing function of x for any yield p(i). Therefore,
Pr{Q(x ) < n} ≥ Pr{Q(x + 1) < n} holds and Inequality (4.11) is fulfilled.

Therefore, stationary yield always leads to a discrete concave function of x . How-
ever, this property is lost when considering increasing yield, as counterexamples
can be constructed. For an intuition for this change, consider an increasing yield
function with low starting yield. For the first produced units, the full production
cost c have to be incurred while the probability of receiving a non-defective end
product is low. Therefore, the expected revenue of producing the first units can be
below its production cost and the expected profit declines with each produced unit.
As the yield increases, the expected profit of producing further units becomes posi-
tive and the expected profit increases. Therefore, the expected profit is not a discrete
concave function of x for increasing yield.

In addition to analyzing the shape of the expected profit, an upper bound on the
expected profit can be derived.
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Lemma 2 (Upper bound on expected profit). The expected profit E[Π(x ,Q(x ))] in

Equation (4.6) is bounded above by

Π(x ,Q(x ) = x ) =

(r + b − c)x − bn x < n

rn + s(x − n)− cx x ≥ n .
(4.12)

Proof. We use the special case of a (deterministic) yield of 100%, i.e. p(i) = 1 for
all i . The corresponding quantity of non-defective end products Q(x ) is equal to the
production quantity x , Q(x ) = x . The profit can be expressed by Equation (4.12).

Consider two quantities of non-defective end products Q(x ) and Q̄(x ) with differ-
ent underlying non-stationary yields. Assume that the non-stationary yield p(i) is
such that E [Q(x )] = E [Q̄(x )] + ϵ, i.e. the expected quantity of non-defective end
products Q(x ) is always ϵ units larger than that of Q̄(x ).

For Q̄(x ) < n, the difference in expected profit is an increase of ϵ units of revenue
and a decrease of ϵ units of backlog. For Q̄(x ) ≥ n, the difference in expected
profit is ϵ additional salvage units. Therefore, the expected profit of Q(x ) is always
larger than that of Q̄(x ). Since a deterministic yield of 100% results in the largest
possible quantity of non-defective end products, it poses an upper bound on the
expected profit.

The optimum of the deterministic profit with perfect yield is attained when produc-
ing exactly the demand and the resulting profit is Π(n,Q(n) = rn − cn, see Fig-
ure 4.7. Since the expected profit is bounded above by the deterministic profit with
perfect yield, the optimal expected profit is bounded above by E[Π(x ∗,Q(x ∗))] ≤
rn − cn.

4.5.2 Insights on optimal ramp-up quantity

In this section, we use the insights on the expected profit to derive insights on the op-
timal ramp-up quantity. From the upper bound on the expected profit in Lemma 2,
an upper bound on the optimal ramp-up quantity can be derived for any yield func-
tion.

Theorem 3 (Bound on optimal production quantity). The optimal production quan-

tity x ∗ is bounded by

0 ≤ x ∗ ≤ n
r − s + b

c − s
. (4.13)
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Proof. The expected profit for the case of no production is incurring the full back-
log cost, i.e. E[Π(0,Q(0))] = −bn. The expected profit E[Π(x ,Q(x ))] in Equa-
tion (4.6) is bounded above by Equation (4.12), see Lemma 2. For x ≥ n, the
deterministic profit is a decreasing function in x since s < c. For any x larger than
the intersection of the upper bound and−bn, the upper bound on the expected profit
is less than −bn, and therefore the expected profit is less than −bn, see Figure 4.7.
The upper bound equals −bn for x ≥ n for

rn + s(x − n)− cx = −bn

⇔ x = n
r − s + b

c − s
(4.14)

𝑥

𝔼[Π 𝑥, 𝑄 𝑥 ]

0

−𝑏𝑛

Π(𝑥, 𝑄 𝑥 = 𝑥)

𝑛

𝑟𝑛 − 𝑐𝑛

𝑛
𝑟 − 𝑠 + 𝑏

𝑐 − 𝑠𝔼 Π 𝑥, 𝑄 𝑥

Figure 4.7: Upper bounds on the expected profit and optimal production quantity

Therefore, for any yield function p(i), the optimal production quantity is bounded
above. This bound depends on the demand, revenue and the cost parameters. Since
we consider a discrete problem, enumerating all integer values between the bounds
defined in Equation (4.13) is guaranteed to find the optimal solution. We make use
of this in the Numerical Study in Section 4.6.

Theorem 4 (Unique local maximum). For p(i) ≤ p(i+1), there is no unique local

maximum in 0 < x < n.
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Proof. If a local optimum at x ∗ exists in 0 < x < n, then

E[Π(x ∗ − 1,Q(x ∗ − 1))] ≤ E[Π(x ∗,Q(x ∗))] (4.15)

E[Π(x ∗ + 1,Q(x ∗ + 1))] ≤ E[Π(x ∗,Q(x ∗))] (4.16)

has to hold. Using the definition of the marginal profit in Equation (4.8), Equa-
tions (4.15) and (4.16) can be reformulated to

∆(x ∗ − 1) ≥ 0 (4.17)

∆(x ∗) ≤ 0 (4.18)

For 0 < x ∗ < n, i.e. Pr{Q(x ∗) < n} = 1, and p(i) ≤ p(i +1), the marginal profit
in Equation (4.9) leads to

0 ≥ ∆(x ∗) = (r + b) p(x ∗ + 1)− c ≥ (r + b) p(x ∗)− c = ∆(x ∗ − 1) ≥ 0 .

(4.19)

Hence, 0 ≥ ∆(x ∗) ≥ 0. The only case, in which Equation (4.19) holds, is for
∆(x ∗) = ∆(x ∗ − 1) = 0. Hence, if there is a local maximum in 0 < x < n, then
∆(x ∗) = 0 holds for x ∗ ≤ x ≤ n − 1 and x = n has the same objective value and
there is no unique maximum in 0 < x < n.

Therefore, 0 < x < n can be excluded from the search for the global maximum
for p(i) ≤ p(i + 1). This implies that the optimal ramp-up quantity is either 0 (no
production) or to produce at least the demand n.

Lemma 2 shows that the expected profit is always a discrete concave function of x
for stationary yield. The optimal production quantity is characterized in Theorem 5.

Theorem 5 (Optimal production quantity). For p(i) = p, the optimal production

quantity is given by

x ∗ = min

{
x : Pr{Q(x ) < n} ≤ c − sp

p (r + b − s)

}
. (4.20)

Proof. As E[Π(x ,Q(x ))] is a discrete concave function of x , the optimal production
quantity x ∗ is given by the first value where the difference in expected profit between
producing x+1 and producing x units ∆(x ) (Equation (4.9)) switches from positive
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to negative.

x ∗ = min {x : ∆(x ) ≤ 0}

= min {x : p (r + b − s) Pr{Q(x ) < n}+ sp − c ≤ 0}

= min

{
x : Pr{Q(x ) < n} ≤ c − sp

p (r + b − s)

}
(4.21)

As the considered production quantity is bounded below by zero, the optimal pro-
duction quantity x ∗ is given by Equation (4.21).

The optimal solution is the first x , for which the probability of having less non-
defective end products than the demand, is smaller or equal a fraction of the cost
parameters, which can be considered a critical fractile. In addition, the monotony
of the optimal production quantity x ∗ in the parameters can be analyzed due to the
discrete concavity of the expected profit.

Corollary 1 (Monotony of x ∗ in parameters). For p(i) = p, the optimal production

quantity x ∗ is monotonically non-decreasing in r , s , b and n and monotonically

decreasing in c.

Proof. To analyze the impact of the cost parameters on the optimal production
quantity, we consider the partial derivative of the marginal profit between producing
x + 1 and producing x units ∆(x ) as defined in Equation (4.9) with respect to r , s ,
b and c.

δ

δ r
∆(x ) = p Pr{Q(x ) < n} ≥ 0 (4.22)

δ

δ s
∆(x ) = p (1− Pr{Q(x ) < n}) ≥ 0 (4.23)

δ

δ b
∆(x ) = p Pr{Q(x ) < n} ≥ 0 (4.24)

δ

δ c
∆(x ) = −1 < 0 (4.25)

Therefore, the entire marginal profit changes with a change in each parameter. This
also means a change in the first value where the difference in expected profit be-
tween producing x + 1 and producing x units switches from positive to negative.
Thus, the monotony properties of ∆(x ) also hold for the optimal production quan-
tity x ∗. The probability of receiving less non-defective end products Q(x ) than the
demand n on the left hand side of the inequality in (4.20) is non-decreasing in n.
Therefore, the optimal production quantity x ∗ is increasing in n.
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Therefore, the optimal production quantity in the case of stationary yield is char-
acterized by Equation (4.20) from Theorem 5. Furthermore, the impact of cost
parameters and demand is characterized in Corollary 1. In addition, the case of
stationary yield (p(i) = p) also fulfills the conditions of increasing yield, i.e. all
results for p(i) ≥ p(i + 1) extend to the case of stationary yield. Therefore, the
optimal ramp-up quantity for stationary yield is also either 0 or at least the demand
n. Interestingly, all results presented for stationary yield p(i) = p also hold for
decreasing yield (p(i) ≥ p(i + 1)).

4.5.3 Summary of analytical insights

To summarize, the expected profit is a discrete concave function of x for stationary
yield. Choi et al. (2019) show that the normal approximation of E[Π(x ,Q(x ))]

with stationary yield converges to a concave function in x when the demand n is
sufficiently large. Our results hold for the exact model formulation and are further
strengthened as they do not depend on the demand n. However, we show that this
property does not extend to the case of increasing yield.

In addition, the expected profit is bounded above by the deterministic profit with
perfect yield and the optimal expected profit is bounded above by E[Π(x ∗,Q(x ∗))] ≤
rn − cn.

The optimal production quantity is bounded by Equation (4.13). In addition, any
positive optimal production quantity will always be at least the demand n. In addi-
tion, the optimal production quantity for stationary yield is characterized by Equa-
tion (4.20).

For stationary yield, the optimal production quantity is decreasing in the production
cost. It is non-decreasing in the backlog cost, revenue, salvage value and demand.
Choi et al. (2019) obtain the same direction of the monotony but for the normal
approximation of E[Π(x ,Q(x ))].

4.6 Numerical study: Impact of yield learning

In addition to our analytical insights from Section 4.5, we analyze the presented
Newsvendor model with non-stationary yield numerically. In Section 4.6.1, we
compare the optimal solution of our model to the optimal ex-post solution using
real data and to the approximation with stationary yield. Furthermore, we analyze
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the monotony of the optimal solution in Section 4.6.2. Section 4.6.3 analyzes the
impact of the expected yield on the optimal production quantity and shows that an
increase in learning does not always lead to a decrease in the optimal production
quantity.

4.6.1 Comparison to ex-post optimal solution

In this section, we compare the performance of our Newsvendor model with non-
stationary yield from Section 4.4 to the ex-post optimal solution using scaled real
data. As no other model exists with non-stationary yield, we compare the perfor-
mance of our model to the state of the art in the current literature, which is using
stationary yield as an approximation. We use the cost and demand parameters from
an example given in Choi et al. (2019) (n = 40, c = 20, b = 100, r = 70, s = 0).
The yield function p(i) is fitted to the data as described in Section 4.3. One pa-
rameter of this fitting is the final yield k . For stationary yield, we assume the final
yield k (p(i) = k ) or the expected yield at the demand n (p(i) = p(n)).

We compare the expected profit and optimal production quantity x ∗ using these fit-
ted parameters with the ex-post objective value from the real data by enumeration
of the production quantity. Figure 4.8 shows the production quantity on the x-axis
and the expected profit on the y-axis for the ramp-up of a machine (Machine E) and
of a product (Product E). The exponential yield learning model fits well to the profit
resulting from the observed data. Table 4.6 shows the resulting optimal production
quantity x ∗, the expected profit predicted by the models and the resulting real profit
from the data. In both cases, the non-stationary model overestimates the optimal
production quantity, while the stationary model using the final yield underestimates
it. Using the stationary model with the expected yield at the demand results in the
same optimal production quantity as the non-stationary model in case of Machine
E, and the same optimal production quantity as the stationary model with the final
yield in case of Product E. For the introduction of a new machine, the stationary ap-
proximation using the final yield underestimates the production quantity by 2.2%.
However, the resulting real profit is 15.3% less than the optimal ex-post profit, as
the profit function is steep for quantities below the optimal quantity. In contrast
to this, the resulting real profit using the non-stationary model is only 2.0% below
the optimal ex-post profit. For the introduction of a new product, using the station-
ary approximation with the final yield is 2.2% below the optimal ex-post quantity,
the resulting real profit at this point results in a decrease of 7.9%. Again, the non-
stationary model is close to the real data, resulting in a resulting real profit which
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is only 1.1% below the optimal ex-post profit. The underestimation of the optimal
production quantity by the stationary approximation using the final yield is to be ex-
pected for an increasing learning curve. By ignoring the ramp-up of the yield func-
tion and assuming the final yield already for the first produced unit, the stationary
approximation overestimates the probability to be non-defective for the first units.
Therefore, also the expected revenue from the first units is overestimated, which
in turn leads to an overestimation of the expected profit. Therefore, the stationary
approximation leads to an underestimation of the optimal production quantity. The
difference is large, if the difference between the actual ex-post probability and the
final yield probability is large. This effect could be reduced by choosing a differ-
ent stationary yield. In our examples, we analyze the expected yield at the demand
quantity. In one case, this leads to the same results as the non-stationary model. In
the other case however, it leads to the same results as the stationary model with the
final yield.

Using the optimal solution of the non-stationary model results in significantly higher
profit (ex-post) than using the stationary yield model with the final yield. Using
the stationary model with the expected yield at the demand quantity may or may
not lead to better results than the stationary model with the final yield. Therefore,
managers should consider the non-stationary yield model for planning the optimal
ramp-up quantity.

30 35 40 45 50 55 60
Production quantity x

0
250
500
750

1000
1250
1500
1750
2000
2250

Ex
pe

ct
ed

 p
ro

fit

Machine E

Observed data
p(i) = k(1 e (i + m)/R)
p(i) = k
p(i) = p(n)
Demand

30 35 40 45 50 55 60
Production quantity x

0
250
500
750

1000
1250
1500
1750
2000
2250

Ex
pe

ct
ed

 p
ro

fit

Product E

Observed data
p(i) = k(1 e (i + m)/R)
p(i) = k
p(i) = p(n)
Demand

Figure 4.8: Comparison of expected profit from stationary yield model, non-
stationary yield model and realizations from real data

4.6.2 Monotony in parameters

Corollary 1 in Section 4.5 shows the monotony of the optimal production quantity
x ∗ in the parameters for a stationary learning function. In this section, we analyze
the monotony numerically for an increasing learning function. We use the same
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Yield model x∗ Expected profit Resulting real profit (data)

Observed data: Machine E 42 1960.00

p(i) = k
(
1− e−(

i+m
R )
)

44 (+4.5%) 1889.44 1920.00 (-2.0%)
p(i) = k 40 (-5.0%) 2000.00 1660.00 (-15.3%)
p(i) = p(n) 44 (+4.5%) 1894.45 1920.00 (-2.0%)

Observed data: Product E 45 1900.00

p(i) = k
(
1− e−(

i+m
R )
)

46 (+2.2%) 1851.07 1880.00 (-1.1%)
p(i) = k 44 (-2.2%) 1896.70.00 1750.00 (-7.9%)
p(i) = p(n) 44 (-2.2%) 1896.70.00 1750.00 (-7.9%)

Table 4.6: Resulting optimal ramp-up quantities and profits

parameters as in Section 4.6.1 for the fitted non-stationary yield function of Machine
G and vary the unit cost c, shortfall cost b, unit revenue r , salvage value s and
demand n.

Figure 4.9 shows the optimal production quantity x ∗ in relation to a change in pa-
rameters for an increasing learning function. The optimal production quantity is
non-increasing in the unit cost. Furthermore, it is non-decreasing in the shortfall
cost, unit revenue, salvage value and demand. This is in line with the results from
Corollary 1, which analyzes the monotony for a stationary learning function.

Next, we analyze if monotonic properties can be observed when changing a com-
bination of parameters regarding the learning curve. One of the common questions
regarding yield learning is whether a process with a high starting yield and slow
increase (high start) or a process with low starting yield but a fast increase (fast

increase) is more profitable. Figure 4.10 shows two such examples in comparison.
The parameters are chosen such that the final yield k is the same and the learning
speed parameter R of the high start is three times that of the fast increase (higher
R corresponds to slower learning). We set the experience m such that both curves
intersect at the demand n. We use a final yield of k = 0.9 in all examples. In the
upper case of Figure 4.10, we use R = 30 and m = 43 for the high start, and ac-
cordingly R = 10 and m = 1 for the fast increase. In the lower case of Figure 4.10,
we use R = 150 and m = 43 for the high start, and accordingly R = 50 and m = 1

for the fast increase.

We analyze two different combinations of parameters. In the upper case of Fig-
ure 4.10, the high start leads to a lower optimal production quantity. This is an
expected behavior, as the high yield probability at the beginning of the production
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Figure 4.9: Monotony of optimal production quantity in cost parameters and de-
mand
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process leads to few defectives. Therefore, a smaller production quantity is needed
to maximize the expected profit. In addition, the optimal expected profit of the high

start (3796.42) exceeds that of the fast increase (3610.68). In the lower case of
Figure 4.10 however, the high start actually results in a larger optimal production
quantity. Even though the high start has a significantly higher probability of non-
defectiveness at the beginning than the fast increase, it is still quite low. Therefore,
the expected profit of the fast increase exceeds that of the high start before both
attain their maximum. This results in a higher optimal production quantity and a
lower optimal expected profit for the high start. Therefore, intersecting yield prob-
abilities can lead to a higher or a lower production quantity.

In the next section, we analyze the effect of strictly larger yield probabilities on the
optimal production quantity.
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Figure 4.10: Analysis of fast versus slow learning

4.6.3 Impact of expected yield

In this section, we analyze the impact of a change in the expected yield on the opti-
mal solution. The expected yield for each produced unit i is p(i). An increase in the
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final yield k leads to a parallel shift of the entire non-stationary yield function p(i)

upwards, therefore increasing the expected yield of each unit i . We use the same
parameter setting as in Section 4.6.1 for the fitted non-stationary yield of Machine
G, but vary the final yield k . Figure 4.11 shows the optimal production quantity
and expected profit in dependence on the final yield k . For this setting, the optimal
production quantity is decreasing and the expected profit is increasing in the final
yield.
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Figure 4.11: Impact of final yield on optimal production quantity and expected
profit

One might think this is intuitive, as a larger final yield k increases the expected
yield p(i) for all i and consequently a smaller production quantity x is required
to achieve the same quantity of non-defective end products. However, the optimal
production quantity is not always monotonically decreasing in the expected yield.
Figure 4.12 shows another analysis of the impact of the final yield on the optimal
production quantity. In this analysis, we use an example with salvage value s = 0

and backlog cost b = 0. However, structurally equivalent examples can also be
constructed for positive salvage value and backlog cost, as well as for the stationary
case p(i) = p. The left graph shows the non-stationary yields p(i) for different
values of the final yield and right graph shows the resulting expected profits. The
colored dots mark the optimal production quantity in each case. We consider final
yields from k = 0.215 to k = 0.4. For k = 0.215, the optimal production quan-
tity is zero, as each produced unit incurs a negative expected profit. Therefore, no
production is the optimal decision in this case. For k = 0.225, the optimal produc-
tion quantity is positive and is x ∗ = 55. The optimal production quantity is then
further increasing until it is 62 for k = 0.245 and k = 0.255. For k = 0.275, it de-
creases to 61. For further increases in k , the optimal production quantity is further
decreasing until it reaches x ∗ = 49 for k = 0.4. In contrast to the behavior shown
in Figure 4.11, this example shows that a higher expected yield now first leads to
an increase in the optimal production quantity before it leads to a decrease. There-
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fore, a higher probability of finishing any product i can result in a higher optimal
production quantity. While the optimal production quantity shows a non-monotone
behavior in this example, the expected optimal profit is increasing in the final yield
k .

0 20 40 60 80 100
Product i

0.200
0.225
0.250
0.275
0.300
0.325
0.350
0.375
0.400

p(
i)

k = 0.4
k = 0.35
k = 0.3
k = 0.275
k = 0.255
k = 0.245
k = 0.235
k = 0.225
k = 0.215
Demand

0 20 40 60 80 100
Production quantity x

1000

0

1000

2000

3000

Ex
pe

ct
ed

 p
ro

fit

k = 0.4
k = 0.35
k = 0.3
k = 0.275
k = 0.255
k = 0.245
k = 0.235
k = 0.225
k = 0.215
Demand

(n = 20, c = 100, b = 0, r = 450, s = 0, k = 0.215→ 0.4, R = 15, m = 50)

Figure 4.12: Counterexample for monotonicity of optimal production quantity x ∗ in
final yield k

To provide a formal reason and an intuition why the optimal production quantity
first increases before it decreases, we analyze the derivative of the expected revenue
(marginal revenue) and of the production cost (marginal production cost), which are
part of the marginal profit ∆(x ) defined in Equation (4.9). Therefore, the marginal
revenue is expressed by r ·p(x+1) ·Pr{Q(x ) < n} for b = s = 0 and the marginal
production cost is c.

The derivative of the revenue consists of two parts influenced by a change in the
expected yield for each produced unit. The first part, p(x + 1), is the probability
that the next produced unit is non-defective. For i ≥ 0, the partial derivative of p(i)
with respect to the final yield k is

δ

δk
p(i) = 1− e−( i+m

R
) ≥ 0 . (4.26)

Therefore, from Equation (4.26) it follows that the probability of the next produced
unit to be non-defective is increasing in k . The second part, Pr{Q(x ) < n}, is the
probability that the number of non-defective end products is less than the demand
and is decreasing in k . Thus, the marginal profit can be increasing or decreasing,
depending on which effect is dominating. This in turn changes the point, for which
the marginal profit changes from positive to negative, defining the optimal produc-
tion quantity. The two opposing effects of an increase in the final yield k explain
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the non-monotone behavior of the optimal production quantity for an increase in the
expected yield. From a managerial point of view, an increase in the expected yield
may reduce the optimal ramp-up quantity, as the same quantity of non-defective
end products can be obtained from a smaller ramp-up quantity. However, a larger
expected yield may also increase the optimal ramp-up quantity, as the expected rev-
enue of an additionally produced unit increases.

We observed this non-monotone effect in different examples where the expected
revenue per unit for the final yield k · r is close to the production cost per unit c.
This parameter setting can be found in competitive markets, where marginal cost
are close to marginal revenue.

To summarize, for values close to the case fitted to real production data, an increase
in the expected yield leads to a decrease in the optimal production quantity. This
observation can however not be generalized. For settings where k · r is close to the
production cost per unit c, an increase in the expected yield may actually lead to an
increase in the optimal production quantity at first.

From Section 4.6, we conclude that the model from Section 4.4 fits well to the
ex-post analysis using real data from the ramp-up of a new machine in the semi-
conductor manufacturing industry. Therefore, managers should not use a stationary
approximation for their decision on the optimal ramp-up quantity, but should con-
sider the non-stationary yield for planning the ramp-up.

When comparing two different learning curves with a high start and a fast increase,
these intersecting yield probabilities can lead to a higher or a lower production
quantity. Therefore, there is no clear monotony of the optimal production quantity.

The optimal ramp-up quantity tends to be decreasing in the expected yield. How-
ever, a numerical analysis shows that an increase in yield learning can lead to a
higher optimal production quantity at first, before the production quantity decreases.

Our numerical analysis suggests that the monotony properties of the optimal pro-
duction quantity for stationary yield functions also extend to the case of increasing
yield.

4.7 Conclusion

We present the problem of planning the optimal ramp-up quantity with stochastic
and non-stationary yield for a known demand. The analysis of real yield data from
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a global semiconductor manufacturing company shows that such a non-stationary
yield behavior occurs both for the introduction of a new product as well as for the
introduction of a new machine. We formalize the company’s problem as a Newsven-
dor problem with stochastic and non-stationary yield. The demand is known and the
corresponding ramp-up quantity has to be chosen to maximize the expected profit.

The expected profit is a discrete concave function of x for stationary yield. How-
ever, this property does not extend to the case of increasing yield. It is bounded
above by the expected profit of a (deterministic) yield of 100%.

The optimal production quantity is bounded by Equation (4.13). In addition, any
positive optimal production quantity will always be at least the demand for increas-
ing yield, which also extends to stationary yield. Furthermore, we characterize the
optimal production quantity for stationary yield by a critical fractile.

For stationary yield, the optimal production quantity is monotonically non-decreasing
in the revenue, salvage value, backlog cost and demand. It is monotonically de-
creasing in the production cost. Our numerical analysis suggests that this insight
also extends to the case of increasing yield.

The optimal ramp-up quantity tends to be decreasing in the expected yield. How-
ever, a numerical analysis shows that an increase in the expected yield can lead to a
higher optimal production quantity at first, before the production quantity decreases.
This behavior can be observed where marginal cost are close to marginal revenue.

As our research is motivated by a company operating in the B2B sector, we assume
deterministic demand and a fixed revenue per unit. Future research could analyze
the impact of stochastic demand or of allowing the company to set the revenue per
unit after the realization of the yield is known. In addition, we assume that each chip
is either defective or non-defective and that the probability of each is independent
of the realization of previous chips. In some production situations, an error in the
production process might lead to an entire wafer to be destroyed. Therefore, future
research could analyze the impact of different assumptions on the distribution of
the non-stationary yield. Furthermore, we assume that the learning curve is known
from the previous ramp-up of a similar machine or product. Future research could
develop algorithms to predict the learning curve of a new machine or product.
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5 Conclusions and outlook

5.1 Conclusions

In this dissertation, three problems on the design and control in stochastic man-
ufacturing systems were discussed. All three considered stochastic variability in
the production process, either regarding the time required to finish a process or the
yield of the process. In addition, the optimization of a staffing problem considered
uncertainty in the demand process. All problems were formalized as mathematical
optimization problems and solved using different approaches.

The first article investigated the balancing of an assembly line with stochastic task
times and a constraint on the line reliability. We provided a sampling-based model
formulation for generally distributed task times. We proved that any lower bound
on the number of stations for the related deterministic problem can be transformed
into a lower bound for this sampling formulation. We showed the value of these
bounds by applying them in a reliability-based branch-and-bound, which directly
considered the interdependence between stations due to the constrained line relia-
bility. A numerical study showed that the transformed lower bounds are tight and
that they substantially reduce the required computation times of the algorithm and
of the solver CPLEX.

The second article investigated two commonly used sampling methods: simple ran-
dom sampling and descriptive sampling. The article analyzed the impact of the used
sampling method and the sample size numerically by considering the performance
evaluation of an M/D/1 queueing system and the optimization of the M/M/c staffing
level. The article suggests that managers should be aware that the distribution of the
resulting performance measures or of the optimal solution derived from a sampling-
based approach may not be symmetrical and that the chosen sampling method may
have an impact on this behavior.

The third article investigated the ramp-up of a new product or machine with stochas-
tic and non-stationary yield. Using data from a semiconductor manufacturer, we
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observed three classes of yield during the ramp-up: (1) deterministic and station-
ary yield, (2) stochastic and stationary yield, and (3) stochastic and non-stationary
yield. We formalized the problem as a Newsvendor problem and proved that any
positive optimal ramp-up quantity will always be at least the demand. Furthermore,
we characterized the optimal ramp-up quantity for the special case of stationary
yield by a critical fractile. One might expect that the optimal ramp-up quantity is
decreasing in the expected yield. However, this behavior cannot be generalized and
an increase in the expected yield can lead to a higher optimal ramp-up quantity at
first, before the ramp-up quantity decreases.

While the third article analyzed the control of ramping-up a new product or ma-
chine, the first article analyzed the design of a new assembly line. The stochastic
task times in combination with the fixed cycle time lead to a stochastic yield of
the line as a whole. However, the expected yield was considered in a constraint.
Since the distribution of the task times did not change, there was a stationary yield.
In contrast to this, the yield of the third article changed with each produced unit
and the decision on the ramp-up quantity had an effect on the resulting quantity of
non-defective end products. In a process with non-stationary task times following
a learning curve, our approach from the first article could be used to redesign the
assembly line once the task times are stationary or do not change significantly any-
more. The empirical distribution of observed task times from the ramp-up phase
could be used directly in the sampling-based model formulation and solved using
the RB&B.

In our first article, we used descriptive sampling and a fixed sample size for the
stochastic assembly line balancing problem. The second article analyzed the im-
pact of the chosen sampling method and the sample size on the distribution of the
performance measures in an M/D/1 system and of the optimal staffing decision in
an M/M/c system. During numerical pretests for our first article, we conducted a
similar analysis using the distribution of the optimal decision for independent repli-
cations to derive the chosen sample size.

5.2 Further research directions

In addition to suggestions for further research given by each article independently,
this dissertation as a whole gives several suggestions for fruitful directions of future
research.
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The first article assumes stationary task times. However, the third article shows that
non-stationary effects can be observed in industry and have an impact on the optimal
decision. Therefore, future research could analyze the impact of non-stationary task
times on the balancing of an assembly line. In addition, the first article considers
the expected value of the line reliability and ignores the ramping-up of the line.
From this, two fruitful directions for future research could be considered. First,
an empty line at the start of the horizon and explicitly considering the ramp-up of
this line could be assumed. This analysis could be further enriched by analyzing
different policies on how to treat incomplete work pieces, such as taking out a work
piece or letting it continue down the line with rework at the end of the line. Second,
a stationary line reliability might not be reasonable for non-stationary task times.
Therefore, future research might consider a non-stationary constraint on the line
reliability depending on the production quantity.

The third article analyzes the optimal ramp-up under the assumption that each pro-
duced product is either defective or non-defective with a changing probability of
defectiveness. This leads to the assumption, that the yield follows a Poisson Bi-
nomial distribution. However, this assumes that the production of each product is
independent of all other products. This might not always be the case. For exam-
ple, during the production of semiconductors the chips produced on the same wafer
might not be independent. Therefore, other assumptions on the distribution of the
yield could be analyzed. Sampling-based methods could be used to formulate these
problems. However, the impact of the chosen method should be considered and
could be analyzed in a similar way as proposed in our second article.

In this dissertation, we consider the design and control of stochastic manufacturing
systems independently of each other. As discussed, the design of such a system
could impact the non-stationary behavior of the yield during the ramp-up phase.
Therefore, an integrated approach could further improve the overall efficiency of
such systems. For example, the integrated decision on the design of an assembly
line and the produced ramp-up quantity on that line could be considered.

While this dissertation considers stochasticity in some parts of the system, other
parts are considered to be deterministic and known. Therefore, future research
could analyze the considered systems with further stochastic processes. Alterna-
tively, the parameters might be deterministic but unknown. This could be applied
to parameters such as the cycle time for the assembly line balancing or the learning
curve and demand for the optimization of the ramp-up quantity.
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Finally, all articles assume a risk-neutral decision maker. Therefore, future research
could analyze the impact of the risk attitude of the decision maker on the considered
optimization problems.
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Appendix A: Sampling-based,
deterministic lower bounds
(Chapter 2)

We use all seven lower bounds on the number of stations proposed by Scholl and
Becker (2006). In the following, we present the respective bounds for each sam-
ple n.

A.1 Bin packing bounds (Lower bounds 1-3)

The bin packing bounds disregard any precedence relation between the tasks and
determine the minimal number of stations solely based on task times.

LB1(n) =

⌈∑I
i=1 tn,i
c

⌉

LB2(n) = ⌈|N1(n)|+ 1/2 · |N2(n)|⌉

N1(n) = {i | tn,i > 1/2 · c}

N2(n) = {i | tn,i = 1/2 · c}

LB3(n) =
⌈
|N3(n)|+ 1/2 · |N4(n)|+ 2/3 · |N5(n)|+ 1/3 · |N6(n)|

⌉
N3(n) = {i | tn,i > 2/3 · c}

N4(n) = {i | 2/3 · c > tn,i > 1/3 · c}

N5(n) = {i | tn,i = 2/3 · c}

N6(n) = {i | tn,i = 1/3 · c}
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A.2 One-machine scheduling bound (Lower bound 4)

Lower bound 4 relies on the relaxation of the assembly line problem to the one-
machine scheduling problem (Hoffmann, 1990). First, a fictitious source node i = 0

is added to the precedence graph with tn,0 = 0 and precedence relations to all
original source nodes. Tasks are viewed as jobs with processing time pn,i = tn,i/c

and have to be scheduled on a single machine with the objective of minimizing the
makespan. The tail sn,i of task i for sample n is the time required after task i is
completed (not necessarily an integer). An optimal solution is sequencing the jobs
in order of non-increasing tails. For such an ordering {h1, . . . , hI}, the minimum
makespan is given by (Scholl and Becker, 2006):

sn,i = MS (n) = max{pn,h1+sn,h1 , pn,h1+pn,h2+sn,h2 , . . . , pn,h1+. . .+pn,hI+sn,hI }

The calculation of tails is performed from task I to task 0. The tail of task i is
defined by the minimum makespan of all tasks j following task i (j ∈ Fi ). For the
assembly line problem, the tail is the minimum number of stations required after
task i . Note that this number does not have to be an integer, as task i may be
placed on the first station of the tail. However, the bound is tightened by a rounding
process, where sn,i is rounded up to ⌈sn,i⌉ if sn,i < ⌈sn,i⌉ and pn,i + sn,i > ⌈sn,i⌉.
The head an,i of task i for sample n can be determined by applying the same logic
in forward direction with a fictitious sink node i = I + 1.

LB4(n) = max
{
⌈an,i + pn,i + sn,i⌉

∣∣ i = 0, . . . , I + 1
}

A.3 Destructive improvement bounds (Lower bounds
5-7)

The destructive improvement bounds try to contradict a valid lower bound (trial
value) by showing that no feasible solution exists for this number of stations.
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LB5(n) = min{m | Li(m, n) ≥ Ei(n) ∀i}

Ei(n) =

⌈
max

{
an,i + pn,i ,

tn,i +
∑

j∈Pi
tn,j

c

}⌉
Li(m, n) = m + 1−

⌈
max

{
pn,i + nn,i ,

tn,i +
∑

j∈Fi
tn,j

c

}⌉

LB6(n) = min

{
m

∣∣∣∣∣ max

{
h∑

j=0

tn,(h·m+1−j )

∣∣ h = 1, . . . , ⌊(I − 1)/m⌋

}
≤ c

}

LB7(n) = min

{
m

∣∣∣∣∣
⌈∑

i∈N7(m,n) tn,i

c

⌉
≤ m2 −m1 + 1

∀ m1,m2 with 1 ≤ m1 ≤ m2 ≤ m

}
N7(m, n) = {i | Ei(n) ≥ m1 and Li(m, n) ≤ m2}
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Appendix B: Greedy start heuristic
(Chapter 2)

We perform a greedy start heuristic to find an initial upper bound (UB ). The heuris-
tic starts at the first station and iteratively determines the R-assignable tasks and
assigns the one with the highest mean task time until an R-maximal station load is
reached. Then, the next station is loaded R-maximally and the procedure is contin-
ued until all tasks have been assigned.

Afterwards, the same procedure is carried out in the backward direction (starting at
the last station). The upper bound is set to the better of both solutions. The heuristic
may not find a feasible solution if it assigns too many tasks too early. In this case,
the upper bound is set to the number of tasks I .
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Appendix C: Lower bounds for
additional instances (Chapter 2)

This appendix analyzes the transformed lower bounds for additional instances from
the deterministic benchmark sets of Otto et al. (2013) and Scholl (1993). We ana-
lyze all 525 instances from the benchmark set of Otto et al. (2013) with I = 20

tasks. From the benchmark set of Scholl (1993), we analyze the instances of
Roszieg (I = 25) and Sawyer (I = 30), each for its smallest, median and largest
cycle time. As described in Section 2.6.1, we transform the deterministic problem
instances into stochastic instances by assuming normally distributed task times with
a coefficient of variation cv ∈ {0.1, 0.3, 0.5}. The desired line reliability is set to
R = 0.95.

Table C.1 presents detailed results for a subset of those instances. Besides the
instances based on Scholl (1993), we select the first two instances from all cate-
gories which have a known deterministic solution from the deterministic bench-
mark sets of Otto et al. (2013): “less tricky” (instance n=20 1, instance n=20 2),
“tricky” (instance n=20 9, instance n=20 12), “very tricky” (instance n=20 8, in-
stance n=20 14) and “extremely tricky” (instance n=20 17, instance n=20 39), re-
spectively. We solve the described instances for varying sample sizes N ∈ {100;
1,000; 10,000}, which results in 120 instances in total. The first three columns of
Table C.1 describe the analyzed instance. Next, we report the global lower bound
LB with respect to Theorem 1 and the upper bound UB as a result of the greedy
heuristic (the UB is set to the number of tasks in case the greedy solution is infeasi-
ble). The optimal solution (

∑
Zm) and the computation time in seconds (Time (s))

are given next. In case the optimal solution is not found or proven within a time limit
of 10, 000 seconds, we report the final lower and upper bound [LB, UB] derived by
the RB&B algorithm. We do not report the instances, which are infeasible for all
analyzed sample sizes. Table C.1 demonstrates that the transformed lower bounds
are tight for many of the analyzed instances, also for longer lines. The transformed
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lower bound LB proves the optimality of the greedy heuristic in 37% of the feasible
instances from Table C.1.

Out of the 1, 575 instances from the benchmark set of Otto et al. (2013) with 20

tasks and a sample size of N = 1, 000, 474 instances are infeasible and the RB&B
did not find a proven optimal solution within 10, 000 seconds for 154 instances, see
Table C.2. The global lower bound equals the optimal solution in 348 instances,
and there is a difference of only one station in 366 instances. A difference above
four stations is observed in only 11 instances. Table C.2 summarizes the results, ag-
gregated for each problem characteristic of the instances, see Otto et al. (2013). For
the feasible instances that are solved within the time limit, the last columns give the
average computation time and the percentage of instances with a difference between
the optimal solution and the global lower bound ∆LB =

∑
Zm − LB of only zero

or one. For many specifications, the lower bounds are tight. However, for the trick-
iness category “open”, ∆LB was above one station for all four feasible instances. In
these instances, the optimal solution ranges between 15 and 17 stations, while the
resulting ∆LB is only between 2 and 3 stations. For a task times distribution with
a peak in the middle, ∆LB is less or equal one in 7% of the instances. We observe
∆LB ≤ 2 for 33% of the instances and ∆LB ≤ 3 for 78% of the instances, while the
average line length is 15.4 stations.

Solved in Average
Characteristics Specification Instances Infeasible 10,000 seconds solution time ∆LB ≤ 1

All 1,575 30% 86% 1,037 75%

Graph structure BN 450 30% 90% 1,598 76%
CH 450 30% 85% 1,164 76%
Mixed 675 31% 84% 545 75%

Desired OS 0.2 675 30% 67% 2,071 89%
0.6 675 30% 100% 660 69%
0.9 225 30% 100% 70 68%

Task times peak at the bottom 525 0% 93% 598 99%
distribution peak in the middle 525 66% 77% 2,325 7%

bimodal 525 25% 81% 1,152 68%

Trickiness less tricky 777 16% 86% 885 85%
category tricky 492 38% 89% 1,757 54%

very tricky 213 52% 82% 1,044 68%
extremely tricky 81 54% 76% 1,861 32%
open (not known yet) 12 67% 100% 951 0%

Coefficient 0.1 525 1% 91% 947 74%
of variation 0.3 525 32% 86% 816 74%

0.5 525 58% 76% 1,702 82%

Table C.2: Tightness of lower bounds aggregated for different graph characteristics

We performed a similar analysis on two instances of each category with I = 50

tasks from the benchmark set of Otto et al. (2013), see Table C.3. Again, the
transformed lower bounds are close to the upper bounds for many instances. As
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expected, the RB&B algorithm does not terminate within the time limit and a clear
judgment on the tightness of the lower bounds is not possible in case of a large gap
between LB and UB.
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Appendix D: Implementation of
RB&B in Python (Chapter 2)

This Appendix features the full code implementation of the reliability-based branch-
and-bound (RB&B) from Chapter 2. The RB&B algorithm is implemented in
Python 3.6 using the Spyder environment.
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#==============================================================================

#Functions

pseudonode = -1

def f_pseudo(list_of_tasks, node, direction='forward'):

""" Create a Pseudo node the check R assignability at the next station """

global nodelist

local_node = nodelist[node][:]

local_node[p_number] = 'X'

local_node[p_state] = 'Pseudo'

if direction == 'forward':

local_node[p_station] += 1

if direction == 'backward':

local_node[p_station] -= 1

for i in list_of_tasks:

local_node[nodechar+i-1] = local_node[p_station]

nodelist.append(local_node)

return nodelist[pseudonode]

def f_open(list_of_tasks, node, direction='forward'):

""" Create a new Open node with list_of_tasks assigned tasks at next station """

global nodelist

global assignedlist

global unassignedlist

global currentnode

global currentstation

currentnode = len(nodelist) # calculate number of current node

nodelist.append(nodelist[node][:]) # copy parent node

if direction == 'forward':

currentstation = nodelist[node][p_station] + 1

if direction == 'backward':

currentstation = nodelist[node][p_station] - 1

nodelist[currentnode][p_number] = currentnode # update numbering of the current node

nodelist[currentnode][p_station] = currentstation # update current station for new node

nodelist[currentnode][p_incumbent] = incumbent

nodelist[currentnode][p_state] = 'Open'

for i in list_of_tasks:

nodelist[currentnode][nodechar+i-1] = nodelist[currentnode][p_station]

localstations = [m for m in nodelist[currentnode][nodechar:] if m != '_'] # update number of used stations

if localstations != []:

nodelist[currentnode][p_usedstation] = max(localstations) - min(localstations) + 1

else:

nodelist[currentnode][p_usedstation] = 0

nodelist[currentnode][p_completion] = f_completionrate(currentnode) # update current completion rate for new node

nodelist[currentnode][p_time] = round(time.time() - starttime, 2)

f_assigned(currentnode)

assignedlist.append(assigned)

unassignedlist.append(unassigned)

Tklist.append(f_Tk(currentnode))

def f_assigned(node):

""" Determine the assigned and unassigned tasks of a node """

global unassigned

global assigned

unassigned = [i-nodechar+1 for i,x in enumerate(nodelist[node]) if x=='_'] # unassigned tasks of current node

assigned = [i+1 for i,x in enumerate(nodelist[node][nodechar:tasks+nodechar+1]) if x != '_']
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# assigned tasks of current node

def f_available(node, mode=0):

"""

Calculates all available task with 'node' as the parent node

Mode: 0 -> Data is already available in assignedlist

1 -> f_assigned has to be done first

"""

global assigned

global available

if mode == 1:

f_assigned(node)

else:

assigned = assignedlist[node]

if nodelist[node][p_direction] == 'f':

pairs = [ (i,j) for i in assigned for j in tasklist if (i,j) in P]

# pairs in P of which i has already been assigned

Pclear = P[:]

# matrix of still existing precedence relations (i has not been assigned yet)

if nodelist[node][p_direction] == 'b':

pairs = [ (i,j) for i in assigned for j in tasklist if (i,j) in P_rev]

# pairs in P of which i has already been assigned

Pclear = P_rev[:]

# matrix of still existing precedence relations (i has not been assigned yet)

for i in range(0,len(pairs)) :

del Pclear[Pclear.index(pairs[i])]

notavailable = [ Pclear[i][1] for i in range(0,len(Pclear)) ] # all task NOT available

available = [i for i in tasklist if i not in notavailable if i not in assigned] # all tasks available

def f_assignable(node, mode=0):

"""

Calculates all assignable task with 'node' as the parent node

Mode: 0 -> Available has already been calculated

1 -> f_available has to be done first

"""

global assignable

if mode == 1:

f_available(node, 1)

assignable = [i for i in available if f_LR(node,i) >= R]

return assignable

constructiontime = 0

def f_branch(node):

""" Branch the chosen node with all feasible combinations of assignments, check all created child nodes for

LLB/Logical/Dominance """

startconstruct = time.time()

global feasible_assignment

global assignable

global nodelist

global r

global countconstruct

global fathomed

global endnode

global constructiontime

if nodelist[node][p_direction] == 'f':

direction = 'forward'

else:

direction = 'backward'

feasible_assignment = [] # final list of assignments for opening new nodes

nodelist[node][p_state] = 'Evaluated'
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f_pseudo([], node, direction)

f_assignable(pseudonode, 1)

del nodelist[pseudonode]

r = [[i] for i in assignable] # intermediate list of possible assignments

while r != []:

f_pseudo(r[0], node, direction)

f_assignable(pseudonode, 1)

if assignable == []:

if r[0] not in feasible_assignment:

feasible_assignment.append(r[0])

else:

intermediateresults = [ r[0] + [assignable[i]] for i in range(len(assignable))]

#only add new results

for entry in range(len(intermediateresults)):

intermediateresults[entry].sort()

if intermediateresults[entry] not in r:

r.append(intermediateresults[entry])

if r[0] not in feasible_assignment:

feasible_assignment.append(r[0]) # add this to enforce opening of "idle" time

del r[0], nodelist[pseudonode]

feasible_assignment = [x for _,x in sorted(zip([len(entry)

for entry in feasible_assignment],feasible_assignment),reverse=True)]

# sort results: assignments with more tasks come first

for entry in range(len(feasible_assignment)):

endnode = False

fathomed = False

f_open(feasible_assignment[entry], node, direction)

f_increase(currentnode)

f_assigned(currentnode)

if unassigned == []:

f_endnode(currentnode)

if endnode == False and endloop == False:

f_LLB1(currentnode)

if fathomed == False:

f_dominance(currentnode)

if fathomed == False:

f_LLB4(currentnode)

if fathomed == False:

f_LLB2(currentnode)

if fathomed == False:

f_LLB3(currentnode)

if fathomed == False:

f_LLB5(currentnode)

if fathomed == False:

f_LLB6(currentnode)

if fathomed == False:

f_LLB7(currentnode)

if fathomed == False:

nodelist[currentnode][p_LLB] = max(LLB1, LLB2, LLB3, LLB4, LLB5, LLB6, LLB7) \

+ nodelist[currentnode][p_usedstation]

f_logical(currentnode)

if fathomed == False:

f_connect(currentnode)

if endloop == True:

break
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endconstruct = time.time()

constructiontime += endconstruct - startconstruct

def f_workload(node):

""" Calculates the workload of a node """

global workload # workload[n][m]

local_node = nodelist[node][nodechar:]

workload = [ [0 for m in range(tasks)] for n in range(N) ]

for n in range(N):

for i in range(len(local_node)) :

if local_node[i] != '_' :

workload[n][local_node[i]-1] += t_n[n][i]

return workload

def f_utilization(node):

""" Calculates the utilization of a node """

global utilization

f_workload(node)

utilization = [ [workload[n][m] / c for m in range(len(workload[n]))] for n in range(N) ]

return utilization

def f_complete(node):

""" Calculates the resulting complete samples for a node """

global complete

local_utilization = f_utilization(node)

complete = [ 1 if max(local_utilization[n]) <= 1 else 0 for n in range(N) ]

return complete

def f_completionrate(node):

""" Calculates the resulting completion rate of a node """

global LR

LR = sum(f_complete(node)) / N * 100

return LR

def f_evaluate(node):

f_workload(node)

f_utilization(node)

f_complete(node)

f_completionrate(node)

def f_endnode(node):

global nodelist

global incumbent

global endloop

global endnode

nodelist[node][p_state] = 'End node'

nodelist[node][p_station] = max(nodelist[node][nodechar:]) - min(nodelist[node][nodechar:]) + 1

endnode = True

if nodelist[node][p_usedstation] < incumbent:

incumbent = nodelist[node][p_usedstation]

nodelist[node][p_incumbent] = incumbent

print('\nNew incumbent found:', incumbent, '\n')

if incumbent == LB : # exit if incumbent = global lower bound (global bounding)

print('Global lower bound reached:', LB)

endloop = True

return
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else:

endloop = False

#check all open nodes for LLBs and dominance

open_list = [ nodelist[k][p_number] for k in range(0,len(nodelist)) if nodelist[k][p_state] == 'Open' ]

for k in open_list:

Tklist[k] = f_Tk(k)

if nodelist[k][p_LLB] >= incumbent:

nodelist[k][p_state] = 'Fathomed'

def f_increase(node):

""" For backward nodes, increase assignment to station by 1 for every station, if current station is 0 """

global nodelist

if min([ nodelist[node][nodechar+i] for i in range(tasks) if nodelist[node][nodechar+i] != '_' ]) < 1:

for i in [ i for i in range(tasks) if nodelist[node][nodechar+i] != '_' ]:

nodelist[node][nodechar+i] += 1

nodelist[node][p_station] = 1

return nodelist[node]

def f_LR(node, task):

""" Calculates the completion rate of a node if an additional task is assigned """

global LR

local_utilization = f_utilization(node)

for n in range(N):

local_utilization[n][nodelist[node][p_station]-1] += (t_n[n][task-1] / c)

# minus one because list starts with station 1 not 0

local_complete = [ 1 if max(local_utilization[n]) <= 1 else 0 for n in range(N) ]

LR = sum(local_complete) / N * 100

return LR

def f_findnode():

"""

Find the most promising forward and backward node

"""

global endloop

global parentnode_f

global parentnode_b

outlist = []

for direc in ['f','b']:

statelist_0 = [ nodelist[k][:nodechar] for k in range(len(nodelist)) if nodelist[k][p_state] == 'Open'

and nodelist[k][p_direction] == direc ]

# List of all open nodes

if statelist_0 == []: # If there are no open nodes in current direction

outlist.append([])

else:

statelist_1 = [ statelist_0[k] for k in range(len(statelist_0))

if statelist_0[k][p_LLB] == min([ statelist_0[k][p_LLB] for k in range(len(statelist_0)) ]) ]

# Nodes with lowest LLB

statelist_2 = [ statelist_1[k] for k in range(len(statelist_1))

if statelist_1[k][p_usedstation] == max([ statelist_1[k][p_usedstation] for k in range(len(statelist_1)) ]) ]

# Nodes with highest used stations

local_Tklist = [Tklist[statelist_2[k][p_number]] for k in range(len(statelist_2))]

statelist_3 = [statelist_2[np.argmax(local_Tklist)]]

outlist.append(statelist_3[len(statelist_3)-1]) # Newest nodes

if outlist == [[],[]]:

print('\nThere are no more open nodes.')

endloop = True

else:

try:
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parentnode_f = outlist[0][p_number]

except:

parentnode_f = 'X'

try:

parentnode_b = outlist[1][p_number]

except:

parentnode_b = 'X'

def f_Tk(node):

""" Calculate the Tk value for a node """

global Tklist

global Tk

denominator = [ sum([(latest_n[n][incumbent][i] - earliest_n[n][i] + 1 + 0.0000001)

for n in range(N)])/N for i in range(tasks) ]

f_available(node)

try:

Tk = sum([ t[i-1]/(denominator[i-1]) for i in available]) / len(available)

except:

Tk = -1

return Tk

def f_direction():

""" Find the direction of the next branching """

global nodelist

global available

global parentnode

global direction

global assignedlist

global parentnode

global steps_f

global steps_b

global parentnode_f

global parentnode_b

global T_f

global T_b

global endloop

global denominator

if endloop == True:

return

denominator = [ sum([(latest_n[n][incumbent][i] - earliest_n[n][i] + 1 + 0.0000001)

for n in range(N)])/N for i in range(tasks) ]

if parentnode_f != 'X':

f_available(parentnode_f)

available_f = available[:]

T_f = sum([ t[i-1]/(denominator[i-1]) for i in available_f]) / len(available_f)

else:

steps_b += 1

f_available(parentnode_b)

available_b = available[:]

direction = 'backward'

available = available_b

parentnode = parentnode_b

return

if parentnode_b != 'X':

f_available(parentnode_b)

available_b = available[:]

T_b = sum([ t[i-1]/(denominator[i-1]) for i in available_b]) / len(available_b)

else:

steps_f += 1

f_available(parentnode_f)

available_f = available[:]

direction = 'forward'

available = available_f

parentnode = parentnode_f
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return

if T_f > T_b or (T_f == T_b and len(available_f) <= len(available_b)):

steps_f += 1

direction = 'forward'

available = available_f

parentnode = parentnode_f

else:

steps_b += 1

direction = 'backward'

available = available_b

parentnode = parentnode_b

def f_connect(node):

""" Connect the backward nodes with the forward nodes """

global local_node

global nodelist

global incumbent

global endloop

global fathomed

global local_max

global local_min

global local_dif

global connection

connection = False

for k in range(len(nodelist)):

if k != node:

local_list = assignedlist[k] + assignedlist[node]

local_list.sort()

if local_list == tasklist:

local_node = [ len(nodelist), 'e', 0, 0, round(time.time()-starttime,2), 100.0, nodelist[node][p_LLB],

incumbent, 'End node']

if nodelist[node][p_direction] == 'f':

local_node += nodelist[node][nodechar:]

local_max = nodelist[node][p_station]

local_min = nodelist[k][p_station]

local_dif = local_min - local_max - 1

while '_' in local_node:

local_node[local_node.index('_')] = nodelist[k][local_node.index('_')] - local_dif

else:

local_node += nodelist[k][nodechar:]

local_max = nodelist[k][p_station]

local_min = nodelist[node][p_station]

local_dif = local_min - local_max - 1

while '_' in local_node:

local_node[local_node.index('_')] = nodelist[node][local_node.index('_')] - local_dif

local_node[p_station] = max(local_node[nodechar:])

local_node[p_usedstation] = local_node[p_station]

nodelist.append(local_node)

nodelist[-1][p_completion] = f_completionrate(-1)

if nodelist[-1][p_completion] >= R:

connection = True

assignedlist.append(tasklist)

unassignedlist.append([])

Tklist.append(-1)

f_endnode(len(nodelist)-1)

else:

del nodelist[-1]

def f_greedy_heuristic():

""" Greedy heuristic """
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global nodelist

global endloop

global currentnode

global assigned

global unassigned

global assignedlist

global unassignedlist

global inf

global incumbent

global heu_sol ###

currentnode = 0

currentstation = 1

nodelist = []

nodelist.append([0, 'f', currentstation, 0, 0, 0.0, LB, incumbent, 'GH'] + ['_' for task in tasklist])

# open new node

inf = 0

unassigned = tasklist[:]

while unassigned != []:

f_assigned(currentnode)

f_assignable(currentnode,1)

stationlist = [nodelist[currentnode][nodechar+i-1] for i in assigned]

if assignable == [] and nodelist[currentnode][p_station] not in stationlist:

nodelist[currentnode][nodechar:] = [tasks for i in range(tasks)]

nodelist[currentnode][nodechar] = 1

break

if unassigned == []:

break

if assignable == []:

nodelist[currentnode][p_station] += 1

else: #always assign the task with the highest average task time t

nodelist[currentnode][nodechar+assignable[np.argmax([t[i-1] for i in assignable])] -1] \

= nodelist[currentnode][p_station]

heu_sol = [max(nodelist[0][nodechar:])-min(nodelist[0][nodechar:]) + 1, 0]

if max(nodelist[0][nodechar:])-min(nodelist[0][nodechar:]) + 1 > LB:

currentnode = 1

inf = 0

nodelist.append([currentnode, 'b', currentstation, 0, 0, 0.0, LB, incumbent, 'GH'])

# backward node

nodelist[currentnode] += ['_' for task in tasklist]

unassigned = tasklist[:]

while unassigned != []:

f_assigned(currentnode)

f_assignable(currentnode,1)

stationlist = [nodelist[currentnode][nodechar+i-1] for i in assigned]

if assignable == [] and nodelist[currentnode][p_station] not in stationlist:

nodelist[currentnode][nodechar:] = [tasks for i in range(tasks)]

nodelist[currentnode][nodechar] = 1

break

if unassigned == []:

break

if assignable == []:

nodelist[currentnode][p_station] -= 1

else: #always assign the task with the highest average task time t

nodelist[currentnode][nodechar+assignable[np.argmax([t[i-1] for i in assignable])] -1] \

= nodelist[currentnode][p_station]

while min([ nodelist[currentnode][nodechar+i] for i in range(tasks) \

if nodelist[currentnode][nodechar+i] != '_' ]) < 1:

113



for i in [ i for i in range(tasks) if nodelist[currentnode][nodechar+i] != '_' ]:

nodelist[currentnode][nodechar+i] += 1

print('Forward:', max(nodelist[0][nodechar:])-min(nodelist[0][nodechar:]) + 1)

print('Backward:', max(nodelist[1][nodechar:])-min(nodelist[1][nodechar:]) + 1)

heu_sol[1] = max(nodelist[1][nodechar:])-min(nodelist[1][nodechar:]) + 1 ###

if max(nodelist[0][nodechar:])-min(nodelist[0][nodechar:]) + 1 \

<= max(nodelist[1][nodechar:])-min(nodelist[1][nodechar:]) + 1:

del nodelist[1]

else:

del nodelist[0]

nodelist[0][p_number] = 0

try:

localstations = [m for m in nodelist[0][nodechar:] if m != '_']

nodelist[0][p_direction] = 'GH'

nodelist[0][p_usedstation] = max(localstations) - min(localstations) + 1

nodelist[0][p_completion] = f_completionrate(0)

except:

pass

if inf != 2:

f_endnode(0)

nodelist[0][p_time] = round(time.time() - starttime, 2)

f_assigned(0)

assignedlist.append(assigned)

unassignedlist.append(unassigned)

Tklist.append(-1)

def f_LLB1(node, delete=1):

global nodelist

global assignedlist

global unassignedlist

global LLB1

global fathomed

global count_LLB1

global LLB1_n

fathomed = False

LLB1_n = [math.ceil(sum([ t_n[n][i-1] for i in unassignedlist[node] ])/c) for n in range(N)]

LLB1_n.sort()

LLB1 = LLB1_n[math.ceil(R/100 * N - 1)]

if assignedlist[node] != [] and nodelist[node][p_usedstation] + LLB1 >= incumbent:

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (LLB1)'

fathomed = True

count_LLB1 += 1

return LLB1

def f_LLB2(node, delete=1):

global nodelist

global assignedlist

global unassignedlist

global LLB2

global fathomed

global count_LLB2

fathomed = False

N_bar_1 = [[i for i in unassignedlist[node] if t_n[n][i-1]>c/2] for n in range(N)]

N_bar_2 = [[i for i in unassignedlist[node] if t_n[n][i-1]==c/2] for n in range(N)]

LLB2_n = [math.ceil(len(N_bar_1[n]) + 0.5*len(N_bar_2[n])) for n in range(N)]
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LLB2_n.sort()

LLB2 = LLB2_n[math.ceil(R/100 * N - 1)]

if assignedlist[node] != [] and nodelist[node][p_usedstation] + LLB2 >= incumbent:

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (LLB2)'

fathomed = True

count_LLB2 += 1

return LLB2

def f_LLB3(node, delete=1):

global nodelist

global assignedlist

global unassignedlist

global LLB3

global fathomed

global count_LLB3

fathomed = False

N_bar_3 = [[i for i in unassignedlist[node] if t_n[n][i-1]>2*c/3] for n in range(N)]

N_bar_4 = [[i for i in unassignedlist[node] if 2*c/3>t_n[n][i-1]>1*c/3] for n in range(N)]

N_bar_5 = [[i for i in unassignedlist[node] if t_n[n][i-1] == 2*c/3] for n in range(N)]

N_bar_6 = [[i for i in unassignedlist[node] if t_n[n][i-1] == 1*c/3] for n in range(N)]

LLB3_n = [math.ceil(len(N_bar_3[n]) + 0.5*len(N_bar_4[n]) + 2/3*len(N_bar_5[n]) + 1/3*len(N_bar_6[n]))

for n in range(N)]

LLB3_n.sort()

LLB3 = LLB3_n[math.ceil(R/100 * N - 1)]

if assignedlist[node] != [] and nodelist[node][p_usedstation] + LLB3 >= incumbent:

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (LLB3)'

fathomed = True

count_LLB3 += 1

return LLB3

def f_LLB4(node, delete=1):

global nodelist

global assignedlist

global unassignedlist

global LLB4

global fathomed

global signaltoLLBs

global count_LLB4

global local_n_j

global local_a_j

fathomed = False

signaltoLLBs = node

# add dummy tasks, root tasks for forward nodes, sink task for backward nodes

if nodelist[node][p_direction] == 'f':

add_dummy = [tasks+1]

else:

add_dummy = [0]

local_preceder = [[i for i in LB4_preceder[j] if i in unassignedlist[node]+add_dummy

and j in unassignedlist[node]+add_dummy] for j in LB4_tasklist ]
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local_follower = [[i for i in LB4_follower[j] if i in unassignedlist[node]+add_dummy

and j in unassignedlist[node]+add_dummy] for j in LB4_tasklist ]

local_n_j = [[0 for i in range(LB4_tasks)] for n in range(N)]

for n in range(N):

for i in LB4_tasklist_rev:

local_listoftails = [[j,local_n_j[n][j]] for j in local_follower[i]]

local_listoftails.sort(key = lambda l: (l[1]), reverse=True) #sort in non-increasing order of tails

local_sortedtails = [[local_listoftails[j][0] for j in range(len(local_listoftails))][:j+1]

for j in range(len(local_listoftails))]

local_n_j[n][i] = max([sum([p_j[n][j] for j in local_sortedtails[jj]] +

[local_n_j[n][local_sortedtails[jj][-1]]])

for jj in range(len(local_sortedtails))] + [0])

if local_n_j[n][i] < math.ceil(local_n_j[n][i]) and p_j[n][i] + local_n_j[n][i] > math.ceil(local_n_j[n][i]):

local_n_j[n][i] = math.ceil(local_n_j[n][i])

local_a_j = [[0 for i in range(LB4_tasks)] for n in range(N)]

for n in range(N):

for i in LB4_tasklist:

local_listofheads = [[j,local_a_j[n][j]] for j in local_preceder[i]]

local_listofheads.sort(key = lambda l: (l[1]), reverse=True) #sort in non-increasing order of heads

local_sortedheads = [[local_listofheads[j][0] for j in range(len(local_listofheads))][:j+1]

for j in range(len(local_listofheads))]

local_a_j[n][i] = max([sum([p_j[n][j] for j in local_sortedheads[jj]] +

[local_a_j[n][local_sortedheads[jj][-1]]])

for jj in range(len(local_sortedheads))] + [0])

if local_a_j[n][i] < math.ceil(local_a_j[n][i]) and p_j[n][i] + local_a_j[n][i] > math.ceil(local_a_j[n][i]):

local_a_j[n][i] = math.ceil(local_a_j[n][i])

LLB4_n = [max([math.ceil(local_a_j[n][i] + p_j[n][i] + local_n_j[n][i]) for i in LB4_tasklist]) for n in range(N)]

LLB4_n.sort()

LLB4 = LLB4_n[math.ceil(R/100 * N - 1)]

if assignedlist[node] != [] and nodelist[node][p_usedstation] + LLB4 >= incumbent:

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (LLB4)'

fathomed = True

count_LLB4 += 1

return LLB4

def f_LLB5(node, delete=1):

"""

Requires computation of LLB4 for stronger bound

"""

global nodelist

global assignedlist

global unassignedlist

global LLB5

global fathomed

global count_LLB5

global local_earliest_n1

global local_earliest_n

global local_latest_n1

global local_latest_n

global local_a_j

global local_n_j

global LLB5_n

fathomed = False

if signaltoLLBs != node:
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local_n_j = [[0 for i in LB4_tasklist] for n in range(N)]

local_a_j = [[0 for i in LB4_tasklist] for n in range(N)]

local_preceder = [[i for i in preceder[j-1] if i in unassignedlist[node] and j in unassignedlist[node]]

for j in tasklist ]

local_follower = [[i for i in follower[j-1] if i in unassignedlist[node] and j in unassignedlist[node]]

for j in tasklist ]

local_earliest_n1 = [[ math.ceil((t_n[n][i-1] + sum([ t_n[n][j-1] for j in local_preceder[i-1] ]))/c)

for i in tasklist ] for n in range(N)]

local_earliest_n = [[max(local_earliest_n1[n][i-1], math.ceil(local_a_j[n][i] + p_j[n][i])) for i in tasklist]

for n in range(N)]

local_latest_n1 = [[math.ceil((t_n[n][i-1] + sum([t_n[n][j-1] for j in local_follower[i-1]]))/c)

for i in tasklist ]

for n in range(N)]

local_latest_n = [[[m + 1 - max(local_latest_n1[n][i-1], math.ceil(p_j[n][i] + local_n_j[n][i]))

for i in tasklist]

for m in range(tasks+1)] for n in range(N)]

LLB5_n = [min([m for m in range(tasks+1) if False not in [local_latest_n[n][m][i] >= local_earliest_n[n][i]

for i in range(tasks)]])

for n in range(N) ]

LLB5_n.sort()

LLB5 = LLB5_n[math.ceil(R/100 * N - 1)]

if assignedlist[node] != [] and nodelist[node][p_usedstation] + LLB5 >= incumbent:

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (LLB5)'

fathomed = True

count_LLB5 += 1

return LLB5

def f_LLB6(node, delete=1):

global nodelist

global assignedlist

global unassignedlist

global LLB6

global fathomed

global count_LLB6

global LLB6_n

global currentstation

fathomed = False

LLB6_n = []

for n in range(N):

local_sorted_t_n = [t_n[n][i-1] for i in unassignedlist[node]]

local_sorted_t_n.sort(reverse=True)

LLB6_n.append(min([m for m in range(1,tasks-nodelist[node][p_usedstation]+1)

if max([sum([local_sorted_t_n[h*m+1-i-1] for i in range(0,h+1)])

for h in range(1,math.floor((len(local_sorted_t_n)-1)/m)+1)]+[0]) <= c]))

LLB6_n.sort()

LLB6 = LLB6_n[math.ceil(R/100 * N - 1)]

if assignedlist[node] != [] and nodelist[node][p_usedstation] + LLB6 >= incumbent:

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (LLB6)'

fathomed = True

count_LLB6 += 1
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return LLB6

def f_LLB7(node, delete=1):

global nodelist

global assignedlist

global unassignedlist

global LLB7

global fathomed

global count_LLB7

global LLB7_n

global local_n_j

global local_a_j

global local_earliest_n

global local_latest_n

fathomed = False

if signaltoLLBs != node:

local_n_j = [[0 for i in LB4_tasklist] for n in range(N)]

local_a_j = [[0 for i in LB4_tasklist] for n in range(N)]

local_preceder = [[i for i in preceder[j-1] if i in unassignedlist[node] and j in unassignedlist[node]]

for j in tasklist ]

local_follower = [[i for i in follower[j-1] if i in unassignedlist[node] and j in unassignedlist[node]]

for j in tasklist ]

local_earliest_n1 = [[ math.ceil((t_n[n][i-1] + sum([ t_n[n][j-1] for j in local_preceder[i-1] ]))/c)

for i in tasklist ]

for n in range(N)]

local_earliest_n = [[max(local_earliest_n1[n][i-1], math.ceil(local_a_j[n][i] + p_j[n][i])) for i in tasklist]

for n in range(N)]

local_latest_n1 = [[math.ceil((t_n[n][i-1] + sum([t_n[n][j-1] for j in local_follower[i-1]]))/c)

for i in tasklist ]

for n in range(N)]

local_latest_n = [[[m + 1 - max(local_latest_n1[n][i-1], math.ceil(p_j[n][i] + local_n_j[n][i]))

for i in tasklist]

for m in range(tasks+1)] for n in range(N)]

LLB7_n = []

for n in range(N):

#local_trial_m = max(LLB1, LLB2, LLB3, LLB4, LLB5, LLB6)

local_trial_m = 1

local_combinations = [[m_1, m_2, m_2-m_1] for m_1 in range(1,local_trial_m+1) for m_2 in range(1,local_trial_m+1)

if m_1 <= m_2]

local_combinations.sort(key = lambda l: (l[2])) #sort combinations in increasing order of interval length

for combination in range(len(local_combinations)):

del local_combinations[combination][2]

local_found_contr = True

while local_found_contr == True:

for combination in range(len(local_combinations)):

m_1 = local_combinations[combination][0]

m_2 = local_combinations[combination][1]

local_N7_n = [j for j in [i for i in unassignedlist[node] if local_earliest_n[n][i-1] >= m_1

and local_latest_n[n][local_trial_m][i-1] <= m_2]]

#Apply LB1

if math.ceil(sum([t_n[n][i-1] for i in local_N7_n])/c) > m_2 - m_1 + 1:

local_trial_m += 1

if local_trial_m == tasks:

local_found_contr = False

break

local_combinations = [[m_1, m_2, m_2-m_1] for m_1 in range(1,local_trial_m+1)

for m_2 in range(1,local_trial_m+1) if m_1 <= m_2]

local_combinations.sort(key = lambda l: (l[2]))

#sort combinations in increasing order of interval length

for combination in range(len(local_combinations)):

del local_combinations[combination][2]

break

else:

local_found_contr = False
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LLB7_n.append(local_trial_m)

LLB7_n.sort()

LLB7 = LLB7_n[math.ceil(R/100 * N - 1)]

if assignedlist[node] != [] and nodelist[node][p_usedstation] + LLB7 >= incumbent:

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (LLB7)'

fathomed = True

count_LLB7 += 1

return LLB7

def f_logical(node, delete=1):

global nodelist

global assignedlist

global unassignedlist

global fathomed

global count_INF

fathomed = False

if assignedlist[node] == [] or unassignedlist[node] == []:

pass

else:

f_completionrate(node)

x_n = [ [ 1 if t_n[n][i-1] > c and complete[n] == 1 else 0 for i in unassignedlist[node] ]

for n in range(N) ]

# only count if the sample "helps" the current SL

x = sum([ max(x_n[n]) for n in range(N) ])

if (sum(complete) - x ) / N * 100 < R: # if the maximum achievable SL is already below R

if delete == 1:

del nodelist[node]

del assignedlist[node]

del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Fathomed (INF)'

fathomed = True

count_INF += 1

def f_dominance(node, delete=1):

""" Check if the just opened node is dominated """

global nodelist

global assignedlist

global unassignedlist

global count_DOM

global fathomed

fathomed = False

if node == 1 or node == 2:

return

f_assigned(node)

for k in range(len(nodelist)):

if node != k and set(assigned) <= set(assignedlist[k]) \

and nodelist[node][p_usedstation] >= nodelist[k][p_usedstation] \

and nodelist[node][p_completion] <= nodelist[k][p_completion]:

#print('Node ', node , ' is dominated by node ', k)

if delete == 1:

del nodelist[node]

del assignedlist[node]
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del unassignedlist[node]

del Tklist[node]

else:

nodelist[node][p_state] = 'Dominated'

fathomed = True

count_DOM += 1

break

def f_update():

global endloop

global LB

endloop = False

local_LLBlist = [ nodelist[k][p_LLB] for k in range(len(nodelist)) if nodelist[k][p_state] == 'Open' ]

if local_LLBlist == []:

return

if min(local_LLBlist) > LB:

LB = min(local_LLBlist)

print('\nLB has been increased to', LB)

if incumbent == LB:

endloop = True

#==============================================================================

#Import packages

import numpy as np # for sampling

import time # to time the calculation

import math # for ceiling function (LB)

import copy # for set of follower/preceder

import pprint # display nodelist

from scipy.stats import norm

from scipy.stats import gamma

#==============================================================================

#Initial Parameters (change)

model = open('Jackson11.txt', 'r')

c = 13 # cycle time

R = 95

max_nodes = 10000 # maximum number of nodes

time_limit = 10000

N = 10000

distribution = 'Normal'

cv_gen = 0.1 # same cv for all tasks

cv_ex = [] # except for [task, cv]

it = 1

np.random.seed(it)

###############################################################################

#Import Problem Data

###############################################################################

lines = (len(model.readlines()))

model.seek(0)

# load number of tasks

tasks = int(next(model))

print('Tasks: ', tasks)

# load task times

t = []

for i in range(0,tasks) :

t += [next(model)]

while '\n' in t :
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del t[t.index('\n')]

for i in range(0,len(t)) :

t[i] = int(t[i])

# load precedence relations

P = []

P_ = [] # intermediate list

add = [0,0]

while add != ['-1,-1'] :

add = [next(model)]

P_ += (add)

if add == ['-1,-1\n'] :

break

for i in range(0,len(P_)) :

P_[i] = P_[i].replace('\n','')

P_[i] = P_[i].split(sep=',')

P = [ (int(P_[line][0]), int(P_[line][1])) for line in range(len(P_)-1)]

model.close

del P_, add # data clean up

P_rev = [ (P[pair][1], P[pair][0]) for pair in range(len(P)) ] # reversed precedence relations for backward step

tasklist = [i+1 for i in range(tasks)] # Determine the list of tasks based on 'tasks'

###############################################################################

#Sampling

###############################################################################

cv = [cv_gen for i in range(tasks)]

for x in range(len(cv_ex)):

cv[cv_ex[x][0]-1] = cv_ex[x][1]

startsampling = time.time()

#Create deterministic set

di = [(q - 0.5)/N for q in range(1,N+1)]

t_nT = []

for i in range(tasks):

if cv[i] == 0: #in the deterministic case

t_nT.append([t[i] for n in range(N)])

else: #in the stochastic case

if distribution == 'Normal':

t_nT.append([norm.ppf(q, loc = t[i], scale = cv[i]*t[i]) for q in di])

elif distribution == 'Gamma':

t_nT.append([gamma.ppf(q, a = 1/cv[i]**2, scale = t[i]*cv[i]**2) for q in di])

#Shuffle into random sequence

for i in range(tasks):

np.random.shuffle(t_nT[i])

t_n = [[row[i] for row in t_nT] for i in range(N)] # matrix of sampled task times t_n[n][i]

#truncation of normal distribution for negative values

truncations = 0 # counter for truncations

for n in range(N):

while min(t_n[n]) < 0:

t_n[n][np.argmin(t_n[n])] = 0

truncations += 1

endsampling = time.time()
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###############################################################################

#Data check

###############################################################################

#Is the problem feasible?

guaranteed_infeasible = [ n for n in range(N) if max(t_n[n]) > c ]

if (( N - len(guaranteed_infeasible) ) / N)*100 < R:

print('\n\n!!! R is too high. Maximal R =', (( N - len(guaranteed_infeasible) ) / N)*100, '!!!' )

# sys.exit('System is now exiting.\n\n')

max_nodes = 0

del guaranteed_infeasible

###############################################################################

#End of pre-processing

###############################################################################

#==============================================================================

#System Parameters (do not change)

currentnode = 0 # starting node

currenttask = 1 # starting task

currentstation = 0 # starting station

incumbent = tasks # starting incumbent value = upper bound

parentnode = 0 #starting parent node

nodechar = 9 # number of entries to characterize the node before task list starts

p_number = 0 # position of node number

p_direction = 1 # position of direction

p_station = 2 # position of current station

p_usedstation = 3 # position of the number of used stations

p_time = 4 # position of time

p_completion = 5 # position of completion rate

p_LLB = 6 # position of local lower bound

p_incumbent = 7 # position of current incumbent

p_state = 8 # position of node state

constructiontime = 0

LLB1 = 0

LLB2 = 0

LLB3 = 0

LLB4 = 0

LLB5 = 0

LLB6 = 0

LLB7 = 0

count_LLB1 = 0

count_LLB2 = 0

count_LLB3 = 0

count_LLB4 = 0

count_LLB5 = 0

count_LLB6 = 0

count_LLB7 = 0

count_DOM = 0

count_INF = 0

steps_f = 0

steps_b = 0

signaltoLLB5 = ' '

nodelist = []

assignedlist = []

unassignedlist = []

Tklist = []

assignable = []
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results = [['Model','LB1','LB2','LB3','LB5','Starting LB','Ending LB','Opt. sol.','Opt. assignment','Found at node',

'Found at time','c','N','cv','R','LR','CPUs','Opened nodes','Open nodes','Evaluated nodes','End nodes',

'Fathomed nodes','Dominated nodes','Infeasible nodes','Forward','Backward']]

endnode = False

endloop = False

###############################################################################

#Calculate LB

###############################################################################

#Initialize

nodelist.append([0, 'f', 1, 0, 0, 0.0, 0, incumbent, 'Open'])

nodelist[0] += ['_' for task in tasklist]

f_assigned(0)

assignedlist.append(assigned)

unassignedlist.append(unassigned)

#Precalculation for LB4-LB7

directfollower = [[P[pair][1] for pair in range(0,len(P)) if i==P[pair][0]-1] for i in range(tasks)]

directpreceder = [[P[pair][0] for pair in range(0,len(P)) if i==P[pair][1]-1] for i in range(tasks)]

follower = copy.deepcopy(directfollower)

for j in range(tasks):

for iterate in range(tasks): # do this so all appended tasks are also checked!

for i in range(len(follower[j])):

for ii in directfollower[follower[j][i]-1]:

if ii not in follower[j]:

follower[j].append(ii)

preceder = copy.deepcopy(directpreceder)

for j in range(len(preceder)):

for iterate in range(tasks): # do this so all appended tasks are also checked!

for i in range(len(preceder[j])):

for ii in directpreceder[preceder[j][i]-1]:

if ii not in preceder[j]:

preceder[j].append(ii)

LB4_t_n = [[0] + t_n[n] + [0] for n in range(N)]

LB4_tasks = len(LB4_t_n[0])

LB4_tasklist = [i for i in range(len(LB4_t_n[0]))]

LB4_tasklist_rev = LB4_tasklist[::-1]

p_j = [[LB4_t_n[n][i]/c for i in range(LB4_tasks)] for n in range(N)]

LB4_P = [(0,j) for j in [i+1 for i in range(tasks) if directpreceder[i]==[]]] + P + [(j,tasks+1)

for j in [i+1 for i in range(tasks) if directfollower[i]==[]]]

LB4_directfollower = [[LB4_P[pair][1] for pair in range(0,len(LB4_P)) if i==LB4_P[pair][0]] for i in range(LB4_tasks)]

LB4_directpreceder = [[LB4_P[pair][0] for pair in range(0,len(LB4_P)) if i==LB4_P[pair][1]] for i in range(LB4_tasks)]

LB4_follower = copy.deepcopy(LB4_directfollower)

for j in range(tasks):

for iterate in range(tasks): # do this so all appended tasks are also checked!

for i in range(len(LB4_follower[j])):

for ii in LB4_directfollower[LB4_follower[j][i]]:

if ii not in LB4_follower[j]:

LB4_follower[j].append(ii)

LB4_preceder = copy.deepcopy(LB4_directpreceder)

for j in range(len(LB4_preceder)):

for iterate in range(tasks): # do this so all appended tasks are also checked!

for i in range(len(LB4_preceder[j])):

for ii in LB4_directpreceder[LB4_preceder[j][i]]:

if ii not in LB4_preceder[j]:

LB4_preceder[j].append(ii)

LB1 = f_LLB1(0,0)

LB2 = f_LLB2(0,0)

LB3 = f_LLB3(0,0)

LB4 = f_LLB4(0,0)

LB5 = f_LLB5(0,0)

LB6 = f_LLB6(0,0)

LB7 = f_LLB7(0,0)

earliest_n = local_earliest_n
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latest_n = local_latest_n

LB = max([i for i in [LB1, LB2, LB3, LB4, LB5, LB6, LB7, 1] if type(i)==int])

LB_start = LB

#LB_start = 1

#LB = 1

print('LB: ', LB)

del nodelist[0], assignedlist[0], unassignedlist[0]

signaltoLLB5 = ' '

###############################################################################

#Greedy heuristic

###############################################################################

starttime = time.time() # starting time

if max_nodes > 0:

f_greedy_heuristic()

if incumbent == LB:

endtime = time.time() # ending time

else:

###############################################################################

#Begin of BnB

###############################################################################

if max_nodes > 0:

#create forwards root node

nodelist.append([currentnode, 'f', currentstation, 0, round(time.time() - starttime, 2), 0.0, LB,

incumbent, 'Open']) # open new node

nodelist[currentnode] += ['_' for task in tasklist] # add list of tasks to this new node

f_assigned(currentnode)

assignedlist.append(assigned)

unassignedlist.append(unassigned)

Tklist.append(f_Tk(currentnode))

currentnode += 1

#create backwards root node

nodelist.append([currentnode, 'b', incumbent+1, 0, round(time.time() - starttime, 2), 0.0, LB,

incumbent, 'Open'])

# open new node

nodelist[currentnode] += ['_' for task in tasklist] # add list of tasks to this new node

f_assigned(currentnode)

assignedlist.append(assigned)

unassignedlist.append(unassigned)

Tklist.append(f_Tk(currentnode))

parentnode = currentnode

while currentnode <= max_nodes and max_nodes > 0:

if time.time() - starttime > time_limit:

print('Time limit of', time_limit, 'seconds exceeded.')

break

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Choose direction of next step

f_findnode()

f_direction()

if endloop == True:

break

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Perform next step

f_branch(parentnode)

if endloop == True:

break

# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

# Update LB

f_update()

if endloop == True:
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break

else:

print('\nMaximum number of nodes exceeded!')

endtime = time.time() # ending time
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Appendix E: Performance evaluation
for an M/D/1 system based on queue
length (Chapter 3)

This Appendix shows the results for the sampling-based performance evaluation
of an M/D/1 system as described in Chapter 3 with respect to the expected queue
length and the standard deviation of the queue length. We use the same parameters
as in Chapter 3: exponentially distributed inter-arrival times with rate λ = 0.9,
deterministic processing rate µ = 1, a warm-up length of n0 = 750 and R = 10000

independent replications. The analytical expected queue length of this system based
on Equation (3.2) is E [Lq ] = 4.05 and the analytical standard deviation based on
Equation (3.4) is Std [Lq ] = 4.78.

Figures E.1 and E.2 show the resulting histograms of the expected queue length and
Figures E.3 and E.4 the resulting histograms of the standard deviation of the queue
length. For a sample size N = 100 and descriptive sampling, a large part of the
distribution is below the analytical expected queue length. The RMSE is 2.99 and
the skew is 3.43. The probability to observe at most the analytical value is 76%.
For a sample size N = 100 and simple random sampling, again a large part of the
distribution is below the analytical value. The RMSE is 3.71 and is higher than for
DS. However, the distribution is more symmetrical, which can be seen by the lower
skew of 2.43. The probability to observe at most the analytical value is 65% and
therefore less than for DS. The same effects can be observed on the expected queue
length and on the standard deviation of the queue length, as have been observed
on the waiting time described in detail in Chapter 3. The root mean square error
is decreasing in the sample size for the analyzed examples. However, for the same
sample size, descriptive sampling always has a lower root mean square error than
simple random sampling in the analyzed examples. For all performance measures,
the distribution over all replications is skewed. The probability to underestimate
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the desired performance measure is higher for descriptive sampling in the analyzed
examples.
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(a) Sample size N = 100
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(b) Sample size N = 250
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(c) Sample size N = 500
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(d) Sample size N = 1000

Figure E.1: Expected queue length in an M/D/1 system for sample sizes N = 100
to N = 1000
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(a) Sample size N = 2500
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(b) Sample size N = 5000
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(c) Sample size N = 10000
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(d) Sample size N = 15000

Figure E.2: Expected queue length in an M/D/1 system for sample sizes N = 2500
to N = 15000
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(a) Sample size N = 100

0 2 4 6 8 10 12
Std[Lq]

0

250

500

750

1000

1250

1500

1750

2000

Ob
se

rv
at

io
ns Std[Lq]: 4.78

Mean:    3.23
Median: 2.89
Std:       1.33
RMSE:    2.04
Skew:    1.98
Pr{Std Std[Lq]}: 0.89

Std[Lq]
DS

0 2 4 6 8 10 12
Std[Lq]

0

250

500

750

1000

1250

1500

1750

2000

Ob
se

rv
at

io
ns Std[Lq]: 4.78

Mean:    3.32
Median: 2.95
Std:       1.51
RMSE:    2.1
Skew:    1.48
Pr{Std Std[Lq]}: 0.85

Std[Lq]
SRS

(b) Sample size N = 250
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(c) Sample size N = 500
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Figure E.3: Standard deviation of queue length in an M/D/1 system for sample sizes
N = 100 to N = 1000
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(a) Sample size N = 2500
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Figure E.4: Standard deviation of queue length in an M/D/1 system for sample sizes
N = 2500 to N = 15000
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Appendix F: Optimization of an
M/M/c staffing level for further
sample sizes (Chapter 3)

This Appendix shows the results for the sampling-based optimization of an M/M/c
system as described in Chapter 3 for larger sample sizes. We use the same pa-
rameters as in Chapter 3: exponentially distributed inter-arrival times with rate
λ = 10, an exponential processing rate µ = 1 per server c, a warm-up length
of n0 = 750 and R = 10000 independent replications. This appendix shows the
detailed histograms for sample sizes from N = 2500 to N = 15000. We consider
two examples with a constraint on the expected waiting time (E [Wq ] ≤ 0.7 and
E [Wq ] ≤ 0.000007) and one with a constraint on the probability X of waiting at
most a specified time Y (Pr{Wq ≤ 0.7} ≥ 0.8). The analytical optimal solutions
based on Equations (3.9) and (3.10) are c∗ = 11, c∗ = 25 and c∗ = 12, respectively.

Figures F.1, F.2 and F.3 show the resulting histograms of the optimal staffing de-
cision c∗ for the three different considered examples. The analysis in Chapter 3
extends to these graphs. Therefore, the same effects on the mean, skew and root
mean square error can be observed for these larger sample sizes.
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(a) Sample size N = 2500
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Figure F.1: Optimal number of servers in an M/M/c system with constraint on ex-
pected waiting time with E [Wq ] ≤ 0.7 for sample sizes N = 2500 to
N = 15000
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(d) Sample size N = 15000

Figure F.2: Optimal number of servers in an M/M/c system with constraint on ex-
pected waiting time with E [Wq ] ≤ 0.000007 for sample sizes N = 2500
to N = 15000
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(d) Sample size N = 15000

Figure F.3: Optimal number of servers in an M/M/c system with X/Y service level
for sample sizes N = 2500 to N = 15000
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Appendix G: Known Results from
Choi et al. (2019) (Chapter 4)

For the normal approximation of the non-defective end products with Q(x ) ∼
N
(
xp,
√
xp(1− p)

2
)

, the following results are known (Choi et al., 2019) for sta-
tionary yield p(i) = p(i + 1) = p and a salvage value of s = 0:

1. Concavity: The normal approximation of E[Π(x ,Q(x ))] converges to a concave
function in x when the demand n is sufficiently large.

2a. Parameter sensitivity: For the normal approximation of E[Π(x ,Q(x ))], the optimal
solution x ∗ is decreasing in c and increasing in b.

2b. Parameter sensitivity for infinite demand: For the normal approximation of
E[Π(x ,Q(x ))] and n →∞, the optimal solution x ∗ is increasing in r and
non-decreasing in n.

Table G.1: Known results for the normal approximation of the special case of sta-
tionary yield and no salvage value
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