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Preface

This dissertation consists of two self-contained chapters, which are broadly related to questions

in empirical public finance. The first chapter contains a methodological contribution that is

particularly suited for the study of tax systems and social insurance programs. The second

chapter is empirical in nature and concerned with social mobility in Germany.

The question how governments should design tax systems and social insurance programs

is a constant source of academic and public debate. Should the income tax schedule be more

progressive? Should the government increase unemployment benefits? While different on the

surface, both questions share the same structure, in the sense that the design of optimal policies

requires knowledge of the behavioural responses of individuals to policy changes. One approach

to inform policy is to specify a complete model of economic behaviour and to estimate the

primitives of the model, allowing for the simulation of counterfactual policies. A second, less

restrictive but empirically more demanding, approach is to derive optimal policy formulas as

a function of estimable behavioural elasticities. The method proposed in Chapter 1 of this

dissertation aims to provide a practical tool for researchers following the latter approach.

The second chapter is concerned with intergenerational social mobility in Germany. While

the public political debate on transfer and education policies in Germany often centers around

suspected consequences of proposed reforms for social mobility, and political parties across

the spectrum refer to and justify their educational policy platforms by equality of opportunity

principles, empirical evidence on the level and evolution of social mobility in Germany is scarce.

How socially mobile is the German society? Has Germany become more or less mobile over

the last few decades? Are the opportunities of disadvantaged children the same across regions

in Germany? The second chapter of this dissertation proposes and implements a measurement

framework for social mobility in Germany that allows for the estimation of robust and easy to

interpret mobility statistics to document time trends and regional differences at a higher level

of detail than previously possible.

In the following, I will briefly describe the content of each of the two chapters in more detail.
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Chapter 1: Optimized Inference in Regression Kink Designs

Tax and benefit schedules are often defined as a piecewise linear function of an assignment

variable, resulting in kinks at the thresholds between adjacent parts of a schedule. Regression

Kink Designs use such kinks to estimate the local average behavioral response of individuals

to changes in the policy variable by comparing how the outcome of interest changes with the

assignment variable in a small neighborhood around the threshold. In practise, this requires

estimates of the derivative of the conditional expectation function of the outcome variable given

the assignment variable to the left and the right of the threshold, which can be obtained non-

parametrically, that is without imposing functional form assumptions. However, the statistical

properties of nonparametric estimators depend on the smoothness of the unknown function,

which complicates estimation and inference. This chapter proposes a method to remedy finite

sample coverage problems and improve upon the efficiency of commonly employed procedures

for the construction of nonparametric confidence intervals in regression kink designs. The pro-

posed interval is centered at the linear minimax estimator over distributions with Lipschitz

constrained conditional mean functions and obtained via numerical convex optimization. This

approach offers several theoretical and practical advantages over traditional methods, leading

to substantial improvements in the length and coverage properties of the resulting intervals.

Chapter 2: Social Mobility in Germany

This chapter is based on joint work with Sebastian Findeisen, Lukas Henkel, Dominik Sachs and

Paul Schüle. It proposes a measurement strategy for social mobility in Germany that is based

on the association between parental income and the educational opportunities of children, which

allows for the use of census data. Our measure of educational opportunities captures whether

a child obtains an A-Level degree, the highest secondary schooling degree in Germany which

grants direct access to the tuition-free national university system and marks an important sign

of social distinction in the German society. We find that, at the national level, a 10 percentile

increase in the parental income rank is associated with a 5.2 percentage point increase in the

probability of obtaining an A-Level degree. This parental income gradient has not changed

for the birth cohorts of 1980-1996, despite a large-scale policy of expanding upper secondary

education. At the regional level, there exists substantial variation in mobility estimates, which

cannot be explained by sorting of different households into different regions.
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Chapter 1

Optimized Inference in

Regression Kink Designs

Abstract

In this chapter, I propose a method to remedy finite sample coverage problems and improve

upon the efficiency of commonly employed procedures for the construction of nonparamet-

ric confidence intervals in regression kink designs. The proposed interval is centered at the

half-length optimal, numerically obtained linear minimax estimator over distributions with

Lipschitz constrained conditional mean function. Its construction ensures excellent finite

sample coverage and length properties which are demonstrated in a simulation study and

an empirical illustration. Given the Lipschitz constant that governs how much curvature

one plausibly allows for, the procedure is fully data driven, computationally inexpensive

and valid irrespective of the distribution of the assignment variable.
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1.1 Introduction
Research designs that warrant a causal interpretation of model parameter estimates based on

observational data are becoming increasingly popular in the empirical social sciences. The

quality of such observational studies is often assessed in terms of how well the assumptions

that allow for the estimation of counterfactual quantities can be justified. In this context,

methods that exploit discontinuities arising naturally from institutional rules are particularly

attractive, as they allow the researcher to be precise about the source of variation utilized in the

estimation of the parameter and discuss the assumptions that allow for a causal interpretation.

The Regression Kink Design (RKD) can be employed to estimate causal parameters when

the variable of interest is a kinked function of an assignment variable. Analogous to the better-

known Regression Discontinuity Design (RDD), which estimates the effect of a variable that

changes its level discontinuously at a threshold, kink designs utilize discontinuous changes in the

slope of the policy variable, effectively exposing units on each side of the threshold to different

incentives. Such kinks arise naturally whenever marginal rates change discontinuously or benefit

formulas involve maxima or minima and can be exploited to address important questions that

are often difficult to be addressed experimentally, e.g. questions regarding the optimal design of

unemployment insurance policies (see Card et al., 2015a; Landais, 2015; Kolsrud et al., 2018).

For example, a common feature of unemployment insurance systems is that unemployment

benefits, typically a function of income in some base period, are capped at some maximum

level. Consequently, the incentives for reemployment differ at each side of the threshold defined

by the cap, and the (local) causal effect of the benefit level on unemployment duration can be

estimated by comparing how the duration outcome changes with prior income at each side of

the cutoff relative to the size of the kink. In practice, this amounts to estimating the jump

in the first derivative of the conditional expectation function (CEF) of the duration outcome

given the assignment variable at the kink point, and dividing the estimate by the kink size.

If unobserved confounders vary smoothly at the discontinuity point, this corresponds up to

scale to the (local) elasticity of unemployment duration with respect to the benefit level, a key

parameter in dynamic labor supply models and corresponding welfare optimal benefit formulas.

Since the welfare effects of policy changes can often be expressed in terms of elasticities, kink

designs can be used in a sufficient statistics approach to policy evaluation, avoiding the need

for parametric assumptions and the estimation of structural primitives of the model, combining

credible identification with the ability to make welfare predictions (Chetty, 2009).

2



A practical challenge for researchers utilizing discontinuity designs is to choose estimation

and inference procedures that preserve the credibility of their findings stemming from the

nonparametric identification of the causal parameter. The standard approach to inference in

regression kink designs relies on local polynomial regression, that is fitting a polynomial model

of order p ≥ 1 using only observations within a prespecified window of length 2h around the

threshold c by weighted least squares. The theoretical properties of local polynomial estimators

have been studied extensively (e.g. Ruppert and Wand, 1994; Fan and Gijbels, 1996; Fan et

al., 1997) and it is well understood that if the true CEF differs from a polynomial of order

p on [c − h, c + h], the resulting estimator for the kink parameter is generally biased. The

two standard approaches to inference in regression kink designs recognize this by combining an

asymptotic normality result with an argument that addresses this smoothing bias.

One approach is to choose the bandwidth h sufficiently small such that for a given sample size

n the resulting bias is (hopefully) negligible relative to the estimator’s standard deviation. This

strategy is referred to as undersmoothing in the nonparametric regression literature and uses

plug-in estimates of bandwidth sequences that shrink faster than the asymptotic mean squared

error (MSE) optimal sequence, eliminating the bias from the asymptotic approximation invoked

for inference. In practice, the bandwidth is chosen by multiplying a regularized estimate of the

pointwise, that is evaluated at the unknown true CEF, asymptotic MSE optimal bandwidth by

n−δ for some small δ > 0 (cf. Imbens and Lemieux, 2008).

A second approach relies on estimating the leading bias term using a higher order polyno-

mial and constructing the interval around a bias corrected point estimate, taking into account

the additional variance introduced by bias estimation in the asymptotic approximation. This

approach is referred to as robust bias correction (Calonico et al., 2014) and is implemented

using a pilot bandwidth tuned for bias estimation and a regularized estimate of the pointwise

asymptotic MSE-optimal bandwidth for confidence interval (CI) construction.

In a recent paper, Armstrong and Kolesár (2020) demonstrate that both default approaches

to nonparametric confidence interval construction can lead to severe undercoverage in finite sam-

ples when implemented using bandwidth selectors justified by pointwise asymptotics, as is com-

mon. They attribute this finding to the pointwise statistical guarantees underlying these pro-

cedures in general, and in particular to the fact that, irrespective of the global curvature of the

CEF, the pointwise asymptotic MSE-optimal bandwidth selector can be arbitrarily large if the

(p + 1)-th derivative of the CEF is close to zero at the threshold, resulting in large bandwidth

choices for potentially highly nonlinear functions. While this problem was previously recog-

nized, the regularization terms that are added to prevent the empirical bandwidth selectors

3



from selecting too large bandwidths are sensitive to ad-hoc choices of tuning parameters that

drive the finite sample coverage rates of the resulting intervals. As a solution, the authors pro-

pose to explicitly restrict the parameter space by placing a bound on the (p+1)-th derivative of

the unknown CEF and select bandwidths according to a minimax criterion, avoiding the need

for regularization and allowing for the construction of intervals that are honest, in the sense

that they are valid uniformly over the considered parameter space. This approach is feasible, as

the bound allows for the computation of the magnitude of the exact worst-case smoothing bias

of the local polynomial estimator over the class of functions restricted by the bound, which is

taken into account by adjusting critical values accordingly. It is shown that explicitly account-

ing for possible smoothing bias in this fashion can substantially sharpen inference relative to

traditional methods.

This paper proposes confidence intervals for regression kink designs that leverage this po-

tential. Our proposed method is optimal in the sense that it minimizes the interval length

amongst all honest procedures that utilize linear estimators and thus improves upon the per-

formance of intervals based on local polynomial regression in a minimax sense. The efficiency

gains in terms of the length of two-sided 95% intervals relative to the uniform MSE-optimal

local linear1 intervals for continuous designs are approximately 6 percent, and increase when

the assignment variable is discrete. It follows from the arguments in Armstrong and Kolesár

(2020) that the efficiency gains relative to undersmoothing and robust bias-correction under

valid bandwidth choices are even larger, which we demonstrate in a simulation study and

an empirical illustration. Our results suggest that the efficiency gains relative to traditional

approaches to nonparametric inference in regression kink designs are substantial. These im-

provements are particularly valuable for applied work that utilizes RKDs, as power concerns

are common and existing procedures that take into account the smoothing bias often yield

uninformative confidence intervals despite graphical evidence suggesting the existence of kink

effects (Card et al., 2017). While optimally tuned honest intervals based on local polynomial

regression attain on par efficiency in continuous designs, the optimization approach to inference

allows us to flexibly incorporate shape constraints that can further shrink the confidence set.

We extend the optimization approach to fuzzy designs by employing the inversion strategy

proposed in Noack and Rothe (2019) and state conditions that ensure that the optimized linear

confidence intervals are honest in the sense of Li (1989). Finally, we illustrate the utility of the

1We focus on local linear estimators as the relevant benchmark as they are a popular choice in applied work
and have leading bias proportional to the second derivative of the unknown function.
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procedure in the context of inference on the elasticity of unemployment duration with respect

to the benefit level and provide software that implements the procedure.

The key tuning parameter of our proposed method is the bound on the second deriva-

tive of the CEF, which governs how much curvature one plausibly allows for. In contrast to

undersmoothing and robust bias correction, our method requires that this bound is specified

explicitly. However, as pointed out in Armstrong and Kolesár (2020), these methods can not

factually avoid this choice, as they must also implicitly restrict a derivative of order two or

higher in order to maintain coverage over a given nonparametric class of functions. Once this

bound is specified, the proposed method is fully data driven and avoids the choices associated

with local polynomial regression regarding the polynomial order, the kernel or the bandwidth.

These advantages come at the cost of a closed-form expression for the estimator that we center

our interval around, which is defined as the solution to a linear minimax problem over the space

of distributions defined by the bound and obtained by numerical convex optimization.

The study of linear minimax estimators for nonparametric regression problems (among other

problems) goes back to Donoho (1994), who showed that, under broad conditions, the ratio of

the linear minimax risk to the general minimax risk is bounded by 1.25, and that the minimax

linear estimator for linear functionals over convex parameter spaces can be obtained via convex

optimization. In the context of inference in discontinuity designs, Armstrong and Kolesár (2018)

first applied this result to RDDs over a class of functions proposed by Sacks and Ylvisaker (1978)

that restricts the approximation error of a Taylor expansion about the discontinuity point2.

In the same context, Imbens and Wager (2019) impose a bound on the second derivative and

propose a numerical optimization strategy to construct honest RDD intervals based on the linear

minimax estimator under homoskedasticity, emphasizing the advantages of direct optimization

in settings with discrete assignment variables and multivariate assignment rules.

The method proposed in this paper contributes to the methodological literature on inference

in regression kink designs (Calonico et al., 2014; Card et al., 2015b; Ganong and Jäger, 2018;

Noack and Rothe, 2019). In implementing our method, we rely on the discretization strategy of

Imbens and Wager (2019), which is employed to the dual of the linear minimax problem for kink

estimation. Conceptually, this paper builds on the ”bias-aware” approach to nonparametric

inference in particular (Armstrong and Kolesár, 2018; Kolesár and Rothe, 2018; Imbens and

2In this class, the minimax linear estimator can be obtained in closed form. However, since discontinuity
designs are predicated on the assumption of continuity of the CEF away from the threshold it is conceptually
less appealing than the Hölder class considered in Imbens and Wager (2019), Armstrong and Kolesár (2020)
and this paper. Moreover, permitting functions that are discontinous away from the threshold also leads to
inference that is too conservative at smooth functions, as the worst-case bias is larger in this class.
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Wager, 2019; Ignatiadis and Wager, 2019; Noack and Rothe, 2019; Rambachan and Roth,

2019; Schennach, 2020; Armstrong and Kolesár, 2020) and a large methodological literature on

inference in discontinuity designs in general (cf. Lee and Lemieux, 2010; Cattaneo et al., 2019).

The remainder of this paper is structured as follows: Section 1.2 introduces our notation,

sketches the identification result underlying regression kink designs and defines the parameter

of interest. Section 1.3 formally states the objective of this paper, explains how the bound

permits a bias characterization that facilitates the implementation of the procedure, states

assumptions under which optimized linear confidence intervals attain honesty and discusses

practical questions related to their implementation. In Section 1.4, we conduct a simulation

study to investigate the performance of optimized linear intervals relative to a variety of methods

based on local linear regression. In Section 1.5, we demonstrate the utility of our method in

a sensitivity analysis to Landais (2015). Section 1.6 concludes. The Appendix contains proofs

and additional results.

1.2 Framework and Notation
1.2.1 Setup. We observe a random sample of n independent pairs (Xi, Yi), where Yi ∈ R

is the outcome of interest and Xi ∈ R is the assignment variable for unit i. We write the

nonparametric regression model as

Yi = µ(Xi) + ui E[ui|Xi] = 0 V[ui|Xi] = σ2
i i = 1, . . . , n,

so that µ(Xi) = E[Yi|Xi] denotes the conditional expectation function of the outcome given

the assignment variable. The subscript N indicates a column vector of length n where the i-th

element corresponds to individual i, such that e.g. XN = (X1, X2, · · · , Xn)T . We normalize the

threshold c to zero and define an indicator function D(x) = 1[x≥0]. For a general function f(x)

we write f+(x) = f(x)D(x) and f−(x) = f(x)(1−D(x)) and denote the j-th derivative of f(x)

with respect to x by f j(x), where f 0(x) is understood to mean the function itself. Moreover,

let f j
±(0) = lim±x↓0 f j

±(x) so that in particular µ1
+(0) = limx↓0 µ1

+(x) and µ1
−(0) = limx↑0 µ1

−(x).

Let RX denote the support of Xi, i.e. the smallest closed set in R such that Pr{Xi ∈ RX} = 1.

We assume that RX covers zero, is bounded and denote by x and x̄ its minimal and maximal

element. Let X− = [x, 0) and X+ = (0, x̄]. We assume that the CEF µ is a member of the class

F(L) = {f : |f 1
±(x)− f 1

±(x′)| ≤ L|x− x′|, (x, x′) ∈ X±},
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which formalizes the notion that µ is two times differentiable on either side of the threshold,

potentially discontinuous at the threshold, and has second derivative bounded by L uniformly

over X = X+ ∪ X−. The bound L effectively governs how much curvature one allows for, as

values of L close to zero imply that the members of F(L) are close to linear, while larger values

of L allow for increasing amounts of curvature. Given L and σN , the method that is proposed

in this paper is fully data-driven and we will assume throughout the derivation that both are

known. The choice of L and estimation of σN are discussed separately in Section 1.3.7.

Since conditional expectation functions are unique only over the support of the conditioning

variable, we follow Kolesár and Rothe (2018) in that, assuming µ ∈ F(L) is understood to mean

that there exist µ in F(L) such that Pr{µ(Xi) = E[Yi|Xi]} = 1. While the canonical regression

kink design is predicated on continuous assignment variables, our setup therefore does not

assume the assignment variable to be of any specific type. This is advantageous in settings in

which we only have coarse measurements at our disposal, in particular if the support of the

assignment variable does not contain an open neighborhood around the threshold. In such

situations, the bound L allows for extrapolation that ensures meaningful partial identification

of µ1
+(0) and µ1

−(0), as discussed in Section 1.3.6.

1.2.2 Parameter of Interest. Regression Kink Designs consider structural models of the

form

Y = Y (T, X, E) T = T (X),

where the function Y : R3 7→ R describes how the outcome is produced, the random variable

E ∈ R aggregates unobserved influences potentially correlated with the assignment variable,

and the policy function T : R 7→ R is differentiable away from a kink location normalized to

zero. The parameter of interest is the average partial effect of the policy variable at the kink

τRKD = E
[

∂Y (T, X, E)
∂T

∣∣∣∣∣X = 0
]

,

which inherits its causal interpretation from the definition of Y . Let fE|X(e|x) denote the

conditional probability density function of E given X = x. Under regularity conditions, we can

write the first derivative of the CEF in this framework as

µ1(x) = E
[

∂Y (T, X, E)
∂T

∣∣∣∣∣X = x

]
T 1(x) + E

[
∂Y (T, X, E)

∂X

∣∣∣∣∣X = x

]
+ E

[
Y

∂ ln fE|X(e|X)
∂X

∣∣∣∣∣X = x

]
.

7



Since T is kinked at zero, this decomposition implies that, if the average partial effect of

the assignment variable and the distribution of unobservables are continuous at zero, τRKD is

identified by

τRKD = µ1
+(0)− µ1

−(0)
T 1

+(0)− T 1
−(0) .

Card et al. (2015b) characterize models for which this is the case and discuss conditions under

which τRKD is equivalent to the ”treatment on the treated” parameter in Florens et al. (2008)

or the ”local average response” parameter in Altonji and Matzkin (2005), respectively. In the

next section, we focus on the sharp RKD, that is we assume that the denominator of τRKD is

known, such that inference on τRKD is solely concerned with the jump in the first derivative of

µ(x), θ = µ1
+(0)−µ1

−(0), which we refer to as the kink parameter. In Appendix 1.F, we extend

our method to fuzzy designs by using a strategy recently proposed by Noack and Rothe (2019).

1.3 Optimized Honest Confidence Intervals
1.3.1 Problem Statement. We seek to construct efficient confidence intervals of the form

Iα = [θ, θ̄] which cover the kink parameter θ with at least probability 1−α for some prespecified

level α > 0 in large samples. Furthermore, we strengthen this requirement by demanding our

confidence intervals to be honest in the sense of Li (1989) with respect to the class F(L)

lim inf
n→∞

inf
µ∈F(L)

Pr
[
µ1

+(0)− µ1
−(0) ∈ Iα

]
≥ 1− α.

The uniform requirement imposed by honesty disciplines our inference in the sense that it

requires us to specify and take into account plausible adversarial distributions in our asymptotic

approximation. In the present setting, this means to specify L and guarantee coverage for the

worst-case function in F(L). Honesty ensures that, for any tolerance level η, we can find a

sample size nη such that for n > nη coverage of Iα is above 1 − α − η for all f ∈ F(L). As

discussed in Armstrong and Kolesár (2020), the requirement to explicitly specify L is not a

disadvantage of uniform procedures, as methods that rely on pointwise guarantees of the type

for every f ∈ F , lim inf
n→∞

Pr
[
µ1

+(0)− µ1
−(0) ∈ Iα

]
≥ 1− α,

must implicitly restrict L to justify that coverage is controlled over a given function class F .

This holds true, irrespective of the regularization problem that such procedures need to solve.
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1.3.2 General Approach. We center the confidence interval around a linear estimator of

the form θ̂ = ∑n
i=1 wiYi, with weights wN optimized for a uniform criterion. The estimator is

linear in the sense that the weights depend only on XN and a non-random tuning parameter

κ > 0, which we keep implicit in our notation. This choice is motivated by the relative minimax-

efficiency result in Donoho (1994) and the fact that the mean squared error of linear estimators,

and related quantities governing the length of our confidence intervals, depend on the unknown

function only through the bias. In order to ensure honesty of the enclosing interval, we compute

the magnitude of the exact worst-case conditional bias B̄(wN) = supµ∈F(L) E[θ̂ − θ|XN ] of

the estimator over F(L) during the optimization, and inflate the interval width accordingly.

Following Imbens and Wager (2019), we obtain the estimate for the kink parameter by numerical

convex optimization, solving a version of the linear minimax problem under known variance σ2
N

min
wN ∈Rn

n∑
i=1

w2
i σ2

i + κB̄(wN)2 B̄(wN) = sup
µ∈F(L)

{
n∑

i=1
wiµ(Xi)− (µ1

+(0)− µ1
−(0))

}
. (1.1)

Note that, since the class F(L) is symmetric with respect to zero, we do not need an absolute

value inside the supremum, as the worst-case negative and positive biases over F(L) have the

same magnitude. For κ = 1, the objective function thus corresponds to the uniform conditional

MSE of θ̂ over F(L). In general, κ governs the worst-case conditional bias-variance tradeoff

and is either chosen to minimize the uniform MSE or the interval length. Since the solution of

(1.1) depends on the data only through XN , the confidence interval obtained by optimizing the

interval length over κ provides the same statistical guarantee as those obtained for a fixed κ.

1.3.3 Bias Characterization. In order to translate (1.1) into a tractable optimization prob-

lem we rely on the restrictions defining F(L). For any µ ∈ F(L) and Xi ∈ RX we can write

µ+(Xi) = µ+(0) + µ1
+(0)Xi + R+(Xi) µ−(Xi) = µ−(0) + µ1

−(0)Xi + R−(Xi),

where R+ and R− denote the remainders of the expansions. Note that by definition R(0) = 0,

R1(0) = 0, and |R2(x)| ≤ L for all µ ∈ F(L) and x ∈ X . The worst-case conditional bias

B̄(wN) of a general linear estimator of θ over F(L) is

sup
µ∈F(L)

{
n∑

i=1
wi,+

[
µ+(0) + µ1

+(0)Xi + R+(Xi)
]

+
n∑

i=1
wi,−

[
µ−(0) + µ1

−(0)Xi + R−(Xi)
]
− θ

}
.
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Since the assumption µ ∈ F(L) does not impose any constraints on (µ0, µ1) at zero, this

expression is infinite unless the following discrete moment conditions are satisfied

n∑
i=1

wi,+ = 0
n∑

i=1
wi,+Xi = 1

n∑
i=1

wi,− = 0
n∑

i=1
wi,−Xi = −1.

As a consequence, any solution to (1.1) must satisfy these constraints, a fact that we utilize in

the implementation of our estimator. We refer to a linear estimator and the corresponding set

of weights with associated XN as ”of the correct order” if these constraints are met, in which

case the conditional bias of θ̂ is given by the weighted sum of approximation errors of the Taylor

approximation to µ± near zero. Since µ ∈ F(L) implies that µ1 is absolutely continuous, an

integration by parts argument allows further characterization of the conditional bias under the

constraints, yielding

E[θ̂ − θ|XN ] =
n∑

i=1
wiR(Xi) =

n∑
i=1

wi,+

∫ Xi

0
µ2(t)(Xi − t)dt−

n∑
i=1

wi,−(Xi)
∫ 0

Xi

µ2(t)(Xi − t)dt.

Applying an argument based on Fubini’s Theorem then obtains

E[θ̂ − θ|XN ] =
∫ ∞

0
µ2(t)

∑
i:Xi∈[t,∞)

wi,+(Xi − t)dt−
∫ 0

−∞
µ2(t)

∑
i:Xi∈(−∞,t]

wi,−(Xi − t)dt.

This representation of the conditional bias characterizes the choice of an an adversarial nature

that needs to pick µ out of F(L) in response to (wN , XN) for weights that satisfy the above

constraints. Let w̄(t) = D(t)∑i:Xi≥t wi,+(Xi − t) − (1 − D(t))∑i:Xi<t wi,−(Xi − t). In this

notation, the conditional bias is
∫
R µ2(t)w̄(t)dt, which an adversarial nature maximizes by

setting µ2(t) = sign(w̄(t))L, yielding

B̄(wN) = L
∫
R
|w̄(t)|dt. (1.2)

It follows that the worst-case conditional bias of a linear estimator, if it is finite, is proportional

to L and that the worst-case function in F(L) at which it is attained is a quadratic spline with

piecewise constant second derivative of magnitude L. Another consequence of (1.2) is that, for

any given set of weights of the correct order and bound L, the computation of B̄(wN) amounts

to finding the roots of w̄(t). This has practical value, as the sign of w̄(t) is known for local

polynomial estimators under regularity conditions, a fact we utilize in our estimation strategy.
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1.3.4 Estimation via Dual Optimization. Our approach to implementing the optimized

linear confidence intervals relies on a renormalization justified by the result in (1.2) and the

convexity of (1.1). From equation (1.2) it follows that for linear estimators with finite worst-

case bias, it holds that supµ∈F(L) E[θ̂ − θ|XN ] = L supR∈F̄(1)
∑n

i=1 wiR(Xi) with F̄(1) defined

as

F̄(1) = {f : f(0) = f 1(0) = 0 ∧ |f 1
±(x)− f 1

±(x′)| ≤ |x− x′|, (x, x′) ∈ X±}.

The class F̄(1) can be understood as the class of remainder functions corresponding to the

conditional expectation functions in F(1), which is reflected by the additional constraints that

correspond to the aforementioned properties of remainders. The renormalization allows us to

equivalently state the optimization problem defining θ̂ as follows. For a fixed κ, we write the

primal problem as

minimize
wN ,r

n∑
i=1

w2
i σ2

i + κL2r2

subject to sup
R∈F̄(1)

[
n∑

i=1
wiR(Xi)

]
≤ r

n∑
i=1

wi,+ = 0
n∑

i=1
wi,− = 0

n∑
i=1

wi,+Xi = 1
n∑

i=1
wi,−Xi = −1.

(1.3)

The weights solving problems (1.1) and (1.3) are equivalent since, at the optimal value of r,

the objective functions are identical and any candidate solution to (1.1) lies in the feasible set

for wN of (1.3). This reformulation is helpful, as we require the optimal weights as well as

a sharp uniform upper bound on E[θ̂ − θ|XN ] to construct our confidence interval and, more

importantly, rely on the additional constraints of F̄(1) in our implementation. The Lagrangian

of (1.3) is given by

L(wN , r, ν, λ) = sup
R∈F̄(1)

n∑
i=1

w2
i σ2

i + κL2r2 + ν

(
n∑

i=1
wiR(Xi)− r

)
+ λ1

(
n∑

i=1
wi,+

)

+ λ2

(
n∑

i=1
wi,−

)
+ λ3

(
n∑

i=1
wi,+Xi − 1

)
+ λ4

(
n∑

i=1
wi,−Xi + 1

)
.

In order to solve (1.3) we rely on a second equivalence result. In Appendix 1.B, we show that

the local polynomial weights with corresponding worst-case conditional bias lie in the feasible

set of (1.3), implying that a refined Slater’s condition applies to (1.3). As a consequence, strong
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duality holds and any primal optimal point is also a minimizer of L(wN , r, ν∗, λ∗) where (ν∗, λ∗)

is the solution to the dual problem

maximize
ν,λ

q(ν, λ) = inf
wN ,r

L(wN , r, ν, λ)

subject to ν ∈ R1
+, λ ∈ R4.

In Appendix 1.C, we show that we can interchange the order of the infimum and the supremum

in the dual objective by applying a minimax theorem, yielding an inner convex quadratic

minimization problem that is solved analytically. This results in closed-form expressions for

the primal parameters as functions of the dual parameters and a remainder function R ∈ F̄(1),

wi = λ1D(Xi) + λ2(1−D(Xi)) + λ3D(Xi)Xi + λ4(1−D(Xi))Xi + νR(Xi)
−2σ2

i

r = ν

2κL2 (1.4)

as well as a simplified expression for the dual objective

q(ν, λ) = sup
R∈F̄(1)

− 1
4

n∑
i=1

[λ1D(Xi) + λ2(1−D(Xi)) + λ3D(Xi)Xi + λ4(1−D(Xi))Xi + νR(Xi)]2

σ2
i

− 1
4

ν2

κL2 − λ3 + λ4.

Let (w∗, r∗) = (w(ν∗, λ∗), r(ν∗, λ∗)) for the element of F̄(1) that attains the supremum in q(ν, λ).

It follows from strong duality and strict convexity of L(w, r, ν∗, λ∗) that (w∗, r∗) is the solution

of (1.3). As a consequence, we can recover the weights solving (1.1) as well as the associated

worst-case conditional bias over F(L) by the solution of the simplified dual problem

maximize
ν,λ,R

− 1
4

n∑
i=1

[λ1D(Xi) + λ2(1−D(Xi)) + λ3D(Xi)Xi + λ4(1−D(Xi))Xi + νR(Xi)]2

σ2
i

− 1
4

ν2

κ2L2 − λ3 + λ4.

subject to ν ∈ R1
+, λ ∈ R4, R ∈ F̄(1), (1.5)

in conjunction with the mapping (1.4) between primal and dual parameters and the result (1.2).

This translates the primal problem of n + 1 parameters into a problem over the space F̄(1) and

five dual parameters, which we solve numerically by discretization as described in Appendix 1.D.

Remark 1. Abstracting from the constraint R ∈ F̄(1), the dual problem (1.5) is a standard

quadratic program and the remaining challenge is to find a suitable approximation strategy

to the the functional constraint. In our implementation, we approximate the function on
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an equidistant grid to permit approximation of the second order constraint via finite central

differences, e.g. R2(x) = [R(x+h)−2R(x)+R(x+h)]/h2+O(h2) (see Appendix 1.D for details).

This approach is formally justified by Proposition 2 of Imbens and Wager (2019), which states

that, for assignment variables with compact and convex support, the optimal weights can be

recovered with arbitrary small L2- error under the proposed discretization strategy.

Remark 2. Under the proposed strategy, the optimization approach to bias-aware inference

allows us to incorporate shape constraints in a simple fashion. As explained in detail in Appen-

dices 1.D and 1.F, any additional constraint on the CEF that can be approximated in terms of

finite differences of Taylor remainders can be utilized by modifying the feasible set of (1.5).

1.3.5 Interval Construction. Given a solution (ν∗, λ∗, R∗) to (1.5) for a fixed value of κ,

we recover the optimal weights wN ← w∗ and the corresponding worst-case bias magnitude

B̄(wN) ← r∗L via the mapping (1.4) and the result (1.2) to construct the optimized linear

interval. Intuitively, the construction relies on the following decomposition of θ̂ − θ

θ̂ − θ =
n∑

i=1
wiR(Xi)︸ ︷︷ ︸

=E[θ̂−θ|XN ]

+
n∑

i=1
wiui︸ ︷︷ ︸

=θ̂−E[θ̂|XN ]

.

By definition, E[θ̂ − θ|XN ] is bounded in absolute value by B̄(wN) = supµ∈F(L) E[θ̂ − θ|XN ]

uniformly over F(L). Let s2
n = ∑n

i=1 w2
i σ2

i denote the conditional variance of θ̂ given XN and

define the conditional bias to standard deviation ratio tn = s−1
n E[θ̂ − θ|XN ]. The uniform

bound implies that the t-statistic

θ̂ − θ

sn

= E[θ̂ − θ|XN ]
sn

+ θ̂ − E[θ̂|XN ]
sn

is the sum of a term that is bounded in absolute value by t̄n = B̄(wN)s−1
n uniformly over F(L)

and a term that, under conditions stated in the next section, converges to a standard normal

distribution uniformly over F(L) by a suitable central limit theorem. Provided that this is the

case, it follows that an honest (1− α) confidence interval for θ is given by

Iα =
[
θ̂ ± sncv1−α(t̄n)

]
, (1.6)

where cv1−α denotes the (1−α) quantile of the folded normal distribution |N(t̄n, 1)| with mean

t̄n and variance one, that is the distribution of the absolute value of a normal distribution with

13



mean t̄n and variance one. Intuitively, this construction works because the bias can not be

negative and positive at the same time, which implies that a hypothetical interval that adds

and subtracts B̄(wN) + z1−α/2sn from θ̂ would be too conservative. For the sharp3 regression

kink design, an honest (1− α) interval for τRKD is then immediately obtained by rescaling the

upper and lower ends of Iα by the inverse of the magnitude of the kink.

We construct two types of optimized linear confidence intervals according to (1.6): Uniform

MSE-optimal (κUMSE = 1) and length-optimal (κLE = arg minκ>0 sncv1−α(t̄n)) intervals. How-

ever, the same construction principle can be applied to any uniform performance criterion that

specifies a worst-case bias-variance trade-off, as the guarantees of (1.6) hold for any fixed κ > 0.

Remark 3. In order to obtain the length-optimal interval, we search for the optimal value κLE

using a combination of golden section search and successive parabolic interpolation as imple-

mented in standard derivative free optimization libraries. This is feasible at high accuracy in

practice as the runtime of a single optimization iteration as implemented is low (approximately

0.129 seconds for a sample size of 6000), leading to an average total runtime of 3.59 seconds

for the same sample size on a standard desktop computer (see Appendix 1.G for more details).

This could in principle be further improved by restricting attention to values of κ smaller than

the uniform MSE-optimal choice κ = 1. This is because the length-optimal weights will ”over-

smooth” relative to the uniform MSE-optimal weights, which Armstrong and Kolesár (2020)

show for estimators in their regularity class (cf. Figure 1 therein).

1.3.6 Theoretical Properties. In order to discuss the statistical properties of confidence

intervals constructed according to (1.6) we impose the following assumptions.

Assumption 1 Let (C, δ, σmin, σmax) ∈ R4
+ be some fixed vector.

(i) {Yi, Xi}n
i=1 is an i.i.d. random sample of size n from a fixed population.

(ii) µ ∈ F(L) for some L > 0.

(iii) 0 < σ2
min ≤ E[(Yi − µ(Xi))2|Xi = x] ≤ σ2

max for all x ∈ RX and µ ∈ F(L).

(iv) E[|Yi − µ(Xi)|2+δ|Xi = x] ≤ C for all x ∈ RX and µ ∈ F(L).

(v) The solution w∗
N satisfies

maxi w2
i∑n

i=1 w2
i

P→ 0.

3In fuzzy discontinuity designs, the strategy underlying the construction of the interval (1.6) can also be
employed in principle. However, in this case the smoothing bias of the first stage estimator must be dealt
with and additional problems arise. In Appendix 1.F, we discuss how our implementation utilizes the strategy
proposed in Noack and Rothe (2019) to extend the optimization approach to fuzzy discontinuity designs.
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Assumption 1 is sufficient for a central limit theorem to apply to s−1
n wT

NuN = s−1
n

(
θ̂ − E[θ̂|XN ]

)
uniformly over F(L) and ensures the consistency of θ̂ in the identified setting. Part (i) is

the standard model for survey data and provides that the kink parameter is a well defined

quantity. Part (ii) and (iii) ensure that the quadratic program defining θ̂ is strictly convex, which

guarantees that the optimal weights are uniquely recovered by the dual optimal parameters,

provided that the data contains at least two distinct points on either side of the threshold.

Assumptions (iii) and (iv) guarantee the existence of and establish bounds on the second

and (2 + δ)-th absolute conditional moment functions of the CEF error uniformly over the

support of the assignment variable and the class of permitted CEFs. The two assumptions

restrict the class of permitted distributions beyond the CEF constraint (ii) in that they require

uniformly bounded and non-zero conditional variances as well as the existence of a strictly finite

higher order moment function. Assumptions 1 (i)-(v) are sufficient to establish that Lyapunov’s

condition applies to each element of F(L), implying convergence of s−1
n wT

NuN to a standard

normal variable uniformly over F(L).

Assumptions (v) restricts the limit behavior of the set of optimal weights and is difficult to

derive from higher-level conditions. This is because, to the best of our knowledge, a closed form

solution to (1) is not known and a general characterization of w∗
N beyond the spline property

derived in Section 1.3 is difficult. While this is unattractive from a theoretical point of view,

the good news is that we can verify that the condition is approximately met in any given

application, and our implementation reports the finite sample counterparts to Assumption (v).

Assumption (v) together with (iii) is sufficient for s2
n = op(1) uniformly over F(L) and implies

consistency of θ̂ in the identified setting.

Roughly speaking, Assumption 1 rules out distributions such that, for some Xi ∈ RX and

µ ∈ F(L), in the limit wiui is ”too large”, in the sense that it dominates the behavior of the

sequence s−1
n wT

NuN . This rules out that only a ”small” proportion of the data is driving the

estimate under this function. Appendix 1.E contains a formal discussion of how the relevant

components of Assumption 1 can be used to show that Lyapunov’s condition holds conditionally

on XN uniformly over F(L), which is the key ingredient in ensuring that the optimized interval

attains honesty. Once uniform convergence of s−1
n [θ̂ − E[θ̂|XN ] D→ N(0, 1) is established, it

follows from the definitions of the worst-case bias to standard deviation ratio t̄n and the critical
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value cv1−α that, for a standard normal random variable Z ∼ N(0, 1), it holds uniformly over

F(L) that

lim inf
n→∞

Pr
(
|Z + tn| ≤ cv1−α(t̄n)|Xn

)
≥ 1− α.

Taken together, the two results imply that (1.6) is honest, which we record in Proposition 1.

Proposition 1 Suppose that Assumption 1 holds. Then uniformly over F(L)

s−1
n [θ̂ − E[θ̂|XN ] D→ N(0, 1) and tn ≤ t̄n = s−1

n B̄(wN),

and the interval Iα =
[
θ̂ ± sncv1−α(t̄n)

]
satisfies

lim inf
n→∞

inf
µ∈F(L)

Pr
[
µ1

+(0)− µ1
−(0) ∈ Iα

]
≥ 1− α

for tn, B̄(wN) and cv1−α as defined in Section 1.3.5.

The relevant difference of the statistical guarantee given in Proposition 1 relative to those that

pointwise approaches to nonparametric confidence interval construction rely on is as follows: It

ensures that, for any tolerance level η, one can find a sample size nη such that for all n > nη

coverage is at least 1 − α − η for all functions in F(L). In contrast, pointwise procedures

can not generally ensure the existence of such a sample size for any given non-trivial tolerance

level without restricting the curvature or a higher order derivative, since the true CEF is

unknown. Thus, their coverage properties can theoretically be poor even in large samples.

Consequently, the uniform guarantee provided by honesty is required for reliably good finite

sample performance. Once such a restriction is imposed, it follows from the definition of

optimized intervals that they are the minimax optimal choice (under known variances) amongst

all linear intervals.

Another attractive property of (1.6) and ”bias-aware” intervals in general is that they re-

main valid, irrespective of whether the assignment variable has support arbitrarily close to the

threshold or not, in the sense that the statistical guarantee of the interval remains the same.

In settings in which this is not the case, the interval will have positive length in the limit, but

not necessarily cover the whole identification interval, that is the interval of values for θ that

are consistent with the distribution (X, Y ) and the restriction imposed by µ ∈ F(L). Partial

identification intervals of this type were proposed in Imbens and Manski (2004) and are also
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useful in other non-standard situations, e.g. if one wants to exclude data for reasons such as

data entry errors or other institutional characteristics that could justify such a choice.

In order to discuss two potential threats to the quality of the approximation underlying the

construction of (1.6), we further introduce the following two assumptions.

Assumption 2 Let C1 ∈ R+ be fixed and ŝn denote an estimator at our disposal.

(i) Assumption 1 holds with δ = 1.

(ii) Assumption 1 holds and ŝn − sn = op(1) uniformly over F(L).

Assumption 2 (i) allows us to clarify the role of the ratio w̄R = [maxi |wi|] [∑n
i=1 |wi|]−1 addressed

by Assumption 1 (v) with respect to the quality of the normal approximation underlying (1.6).

It follows from the Berry-Essen Theorem (cf. Theorem 3 in De Brabanter et al., 2013) that

under Assumption 2 (i)

sup
z∈R1 µ∈F(L)

∣∣∣∣∣∣Pr
 θ̂ − E[θ̂|XN ]

sn

 ≤ z
∣∣∣∣ XN

− Φ(z)

∣∣∣∣∣∣ ≤ D
C

σ3
min

maxi |wi|∑n
i=1 |wi|

,

where Φ denotes the standard normal CDF and the constant D lies in 0.4097 < D ≤ 0.56. This

illustrates the role of Assumption 1 (v) in ensuring the quality of the distributional approxima-

tion. In particular, under the maintained assumptions, one would expect that the finite sample

coverage rate of (1.6) at the worst-case function is close to nominal whenever the ratio w̄R is

small. We therefore report w̄2
R as a diagnostic statistic in our implementation and recommend

to verify that this is the case in practice. If the ratio is ”large”, in the sense that the weights

concentrate on a small set of observations, it is recommended to modify κ. In doing so, one

effectively trades the quality of the estimator resulting from the initial choice of κ in terms

of the respective performance criterion for an improvement in the quality of the distributional

approximation.

Assumption 2 (ii) emphasizes that the honesty property of (1.6) was derived under known

variances and that, in principle, one needs an appropriate estimator for σN in order to preserve

honesty under estimated conditional variance. Assumption 2 (ii) provides that such a uniformly

consistent estimator of sn is available. In this case, the feasible interval that replaces sn with ŝn

remains asymptotically uniformly valid. This is pointed out because commonly used estimators

for the conditional variance have a leading bias that is proportional to µ1, which is unrestricted

over F(L). Noack and Rothe (2019) propose an estimator for the conditional variance based
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on a regression adjusted version of the nearest-neighbor estimator of Abadie et al. (2014) that

has leading bias proportional to µ2 and can thus preserve honesty under second order bounds.

Our implementation contains their proposed estimator as well as standard estimators of sn.

Note that the estimator solving (1.1) is the finite-sample minimax linear estimator of θ

over F(L) only under known conditional variances σ2
N . If the conditional variances need to be

estimated, the estimator is no longer guaranteed to achieve the minimax risk in finite samples.

However, in the case of homoskedasticity, it suffices to estimate σ2
N by an efficient estimator for

the conditional variance to obtain honest and asymptotically minimax optimal intervals. Under

heteroskedasticity, a uniformly consistent estimator for σ2
N is required to maintain honesty as

discussed above, and the minimax properties of the estimator solving (1.1) depend on this

choice.

1.3.7 Practical Implementation. So far we have assumed that the curvature bound L

and the conditional variances σN are known. In practice, it needs to be specified how σN

should be estimated and L chosen. While the previous discussion gives some guidance on

how to estimate σN , the most important choice in implementing our method is the choice

of the tuning parameter L, which, without additional assumption, can not be determined

from the data without undermining the honesty of (1.6) (cf. Armstrong and Kolesár (2018)

and references therein). This is due to a result in Low (1997), who shows that when F is a

derivative smoothness class, it is, without further assumptions, not possible to adapt to F while

maintaining uniform coverage at the same time.

1.3.7.1. Choice of L. As a consequence of Low’s impossibility result, the curvature bound

L has to be chosen a priori and application-specific knowledge on what constitutes plausible

amounts of curvature is required to obtain suitable values of L. We reiterate that this re-

quirement is not unique to bias-aware approaches to inference, as confidence intervals based on

pointwise procedures must implicitly restrict L to be informative at any given tolerance level.

In the absence of reliable information on the magnitude of L, it is recommended to conduct

a sensitivity analysis by considering a range of plausible bounds together with rule of thumb

(ROT) estimates of L based on modelling the CEF over the largest part of its domain that is

plausibly informative. In our implementation, we consider three rules of thumb. The first was

suggested by Armstrong and Kolesár (2020) and is based on fitting a global quartic polynomial

on each side of the threshold. The ROT estimate of L is then obtained by computing the

global maximum of the absolute value of the second derivative of the polynomial implied by

18



the estimated coefficients. The second rule of thumb we consider was proposed in Imbens

and Wager (2019). It involves fitting a quadratic polynomial on each side of the cutoff and

computing an estimate of L by scaling the maximum second derivative magnitude by a factor of

2-4. Finally, we propose a third rule of thumb that is based on fitting a cubic smoothing spline

with evenly spaced knots on each side of the threshold. The bound L̂ROT is then estimated

by the maximum magnitude of the implied second derivative. This approach is heuristically

motivated by the fact that the worst-case function of our estimator is a quadratic spline. In

our simulation study, we report results based on this approach.

While it is not possible to consistently recover L from the data, we are aware of two methods

that were proposed to guard against overly optimistic choices of L and to gain intuition for

what might constitute plausible degrees of curvature. The first method is due to Kolesár and

Rothe (2018), who propose a method to estimate a lower bound on L based on the observations

that any function in F(L) can, between any two points that are ∆ units apart, not depart from

a straight line by more than L∆2

8 . The second method is due to Noack and Rothe (2019), who

propose a graphical procedure based on the solution to a constrained least squares problem

to visualize ”extreme” elements of F(L). The idea is to plot this element while iteratively

increasing the curvature bound until the resulting function becomes implausibly erratic. We

generally recommend to combine subject knowledge, ROT estimates and such heuristic devices

to gain intuition in any given application.

1.3.7.2. Estimation of σN . The discussion in the previous section implies that the estimator

derived under known variances underlying the optimized linear confidence intervals can be

understood as motivated by a homoskedastic model. In order to ensure that the inference based

on (1.6) is robust to heteroskedasticity, it is required to construct confidence intervals using an

approriate estimator for the conditional variances σ2
N , analogous to a regression analysis that

uses ordinary least squares estimators but builds confidence intervals using Eicker–Huber–White

standard errors. In our implementation, we initialize σN by a naive homoskedastic estimate to

obtain the weights, before building confidence intervals based on a function that implements

different heteroskedasticity-robust estimators of the conditional variance, including estimators

based on standard estimates of σi relying on the residuals of linear regressions, nearest-neighbor

estimates proposed and considered in Abadie and Imbens (2006) and Abadie et al. (2014), as

well as the uniformly consistent modification proposed in Noack and Rothe (2019). The results

reported in the simulation study are obtained using the nearest-neighbor approach of Abadie

et al. (2014) to estimate σN based on 10 nearest-neighbor matches.
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1.4 Comparison with other Methods
In this section, we compare the performance of optimized linear confidence intervals to a variety

of procedures based on local linear regression in a simulation study. In order to be precise about

the comparison we briefly introduce the considered methods.

1.4.1 Local Linear Methods. The local linear estimate θ̂LL of θ with bandwidth h is the

coefficient on XiDi in a weighted OLS regression of Yi on the vector (1, Xi, Di, XiDi), using

only observations i such that |Xi| ≤ h, with weights determined by a kernel function. Under

regularity conditions, it holds that if the density of the assignment variable fX(x) is continuous

and bounded away from zero in an open neighborhood around the threshold, the MSE of the

local linear estimator with bandwidth sequence hn → 0 evaluated at a function µ is

MSE(hn; µ) = hn

[
B2 + op(1)

]
+ 1

nh3
n

[V + op(1)] ,

where B ∝ (µ2
+(0)− µ2

−(0)) is the leading asymptotic bias and V ∝ (σ+(0)2 + σ−(0)2)fX(0)−1

is the asymptotic variance. If B ̸= 0, an asymptotic MSE-optimal bandwidth sequence is thus

hP MSE = n−1/5
[ 3V

2B2

]1/5
.

In our simulation study, we compare the performance of uniform procedures to methods that

rely on plug-in estimates of this quantity which add a regularization term to the denominator

that shrinks with the sample size (Imbens and Kalyanaraman, 2012). We denote such estimates

by ĥP MSE and compute them using the plug-in estimators proposed by Calonico et al. (2014).

The undersmoothing bandwidths are computed relative to the obtained pointwise asymptotic

MSE-optimal estimate ĥUS = n−1/20ĥP MSE. The two bandwidth choices required for the RBC

intervals are either both set pointwise optimal b = b̂P MSE, h = ĥP MSE, where b̂P MSE refers to

the pointwise asymptotic MSE-optimal plug-in estimate for the local quadratic bias estimator,

or both set to the pointwise asymptotic MSE-optimal estimate ĥP MSE for the local linear esti-

mator. In addition, we consider RBC bandwidth choices hCE, bCE that optimize the pointwise

asymptotic coverage error (Calonico et al., 2018), which can be considered an intermediate form

of undersmoothing and robust bias correction.

Under regularity conditions and restrictions on the rate of the bandwidth sequence hn → 0

√
nh3

n

[
θ̂LL(hn)− θ − hnBn

]
d→ N(0, V ),
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where Bn
P→ B. The methods that we consider differ in whether and how they take into

account the incorrect centering induced by the smoothing bias. In our simulation, we consider

the following four types of two-sided local linear intervals for the above bandwidth choices:

Conventional IConv. =
[
θ̂LL(ĥP MSE)± z1−α/2

√
V̂Conv./nĥ3

P MSE

]
,

Undersmoothed IUS =
[
θ̂LL(ĥUS)± z1−α/2

√
V̂US/nĥ3

US

]
,

Robust Bias Correction IRBC =
[
θ̂LL(ĥRBC)− ĥRBCB̂n(b̂RBC)± z1−α/2

√
V̂RBC/nĥ3

RBC

]
,

Fixed Length IF L =
[
θ̂LL(ĥF L)± cv1−α(t̄n)

√
V̂F L/nĥ3

F L

]
,

where z1−α/2 denotes the (1−α/2) quantile of the standard normal distribution, V̂ denotes an

estimate of the respective asymptotic variance, and cv1−α as well as tn are defined as in (1.5)

for the worst-case magnitude of the conditional bias of θ̂LL(ĥF L).

The first two types, conventional and undersmoothed confidence intervals, essentialy assume

the smoothing bias away. While the conventional method directly assumes that hnBns−1
n ≈ 0,

undersmoothed intervals rely on the asymptotic promise that hUS/hP MSE →
n→∞

0, implying

that
√

nh3
n

[
θ̂(hn)− θ − hnBn

]
=
√

nh3
n

[
θ̂(hn)− θ

]
+ op(1) d→ N(0, V ), which is uninformative

about the smoothing bias in a given sample.

The last two types explicitly address the smoothing bias. RBC intervals are centered around

a bias-corrected point estimate, using a higher order local polynomial estimator to estimate

the bias. They differ from traditional bias-corrected intervals, which are known to perform

poorly in finite samples (Hall, 1992), in that they do not require hRBC/bRBC →
n→∞

0. As a

consequence, the standardized bias-correction term is not negligible asymptotically, leading to a

different asymptotic variance VRBC that captures the additional uncertainty introduced by bias

estimation. In our simulation, all RBC bias estimates are based on local quadratic estimators.

The fixed length intervals are constructed in the same spirit as the optimized intervals discussed

in Section 1.3 with weights defined by the local linear estimator. They take into account the

exact magnitude of the worst-case conditional bias by inflating the critical value according

to the ratio t̄n, and are therefore valid for any bandwidth choice. The bandwidths for the

fixed length local linear intervals are obtained analogously to κUMSE and κLE by minimizing

the finite sample uniform MSE hUMSE or the interval half-length hHL. The variances for

interval construction are estimated by the conditional variances of the estimators implied by

the weights, using the nearest-neighbor approach of Abadie et al. (2014) based on 10 nearest

neighbor matches.
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1.4.2 Monte Carlo Setup. In order to investigate the performance of the optimized linear

confidence intervals relative to the methods introduced above we conduct a simulation study.

The setups differ in the conditional mean function, its degree of curvature and the distribution

of the assignment variable, yielding a total of 8 different settings. The assignment variable

is drawn from an equidistant uniform distribution with support {−1,−1 + 2
K

, · · · , 1 − 2
K

, 1},

where the parameter K controls the number of support points and K∞ means the continuous

uniform distribution with support [−1, 1]. The outcome data is generated according to

Yi = µj(Xi) + εi j ∈ {1, 2},

where the CEF error εi is drawn from a mean zero normal distribution with σ = 0.1 and

µ1(x) = D(x)θx + L

2
[
−x2 + 1.75s2

+(|x| − 0.15)− 1.25s2
+(|x| − 0.4)

]
µ2(x) = D(x)θx + L

2
[
(x + 1)2 − 2s2

+(x + 0.2) + 2s2
+(x− 0.2)− 2s2

+(x− 0.4) + 2s2
+(x− 0.6)− 0.92

]
,

where s2
+(x) = D(x)x2 denotes square of the plus function. Note that both CEFs are second

order splines with maximal second order derivative magnitude L and thus elements of F(L).

The function µ1 attains the second order bound only in (−0.15, 0.15) while µ2 attains the

bound everywhere on [−1, 1] with alternating signs in each interval defined by the knots. In

the simulation, we set θ = −0.5 and consider bounds L ∈ {2, 6}. Figure 1.1 displays the shape

of the functions.

(a) L = 2 (b) L = 6

Figure 1.1: Shape of µ1 (solid) and µ2 (dashed) for θ = −0.5 and L ∈ {2, 6} on [−1, 1].
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1.4.3 Monte Carlo Results. Tables 1.1 and 1.2 show the results of 5000 Monte Carlo runs4

with sample size n = 2000 for µ1 and µ2 respectively. The top panel in each table displays

the results for the case when the assignment variable is drawn from the continunous uniform

distribution, while the bottom panel shows the results for 80 equidistant support points. We

use a triangular kernel for all local linear methods. In the case that a bandwidth selector

chooses a bandwidth for which the respective estimator is not defined, we manually adjust the

bandwidth such that it covers three support points on either side of the cutoff5. The left panel

in each table reports the results for the low curvature version of the CEF, while the right panel

reports the results for high curvature. Columns 1 and 2 indicate the method and the tuning

target. The curvature bound L is either chosen by the rule of thumb L̂ or fixed to 2 or 6, as

indicated in the tuning subscript. We report the empirical coverage rate at nominal level 95%,

the average length relative to the optimal linear interval with correct curvature bound, as well

as the average tuning parameter choice of each method.

Unsurprisingly, conventional and undersmoothing confidence intervals show below nominal

coverage in all designs, with undercoverage of undersmoothed intervals becoming more severe

in the high curvature regime. The performance of robust bias-corrected intervals varies with

the tuning target. While both, the default RBC method6 that picks both bandwidths using the

respective asymptotic MSE-optimal estimate and the coverage error optimized RBC interval

undercover severly, the RBC interval obtained by setting both bandwidths to the local linear

pointwise MSE bandwidth or the UMSE bandwidth under the ROT estimate of L show close to

nominal coverage and are insensitive to the true curvature. However, for the latter this comes

at a cost in terms of their length relative to fixed-length and optimized intervals. In all designs,

RBC intervals with tuning that attains close to nominal coverage are at least approximately

twice as long as the infeasible length-optimal interval and 40% longer than feasible length

optimized intervals under the ROT choice of L. Fixed-length and optimized intervals show

above or close to nominal coverage under the correct curvature, with the lowest empirical

coverage at 94.7% (µ1,2, K = 80, L = 6). As one would expect, they are conservative when the

true curvature is lower than specified and undercover when the true curvature is higher than

specified. The rule of thumb choice of L tends to overestimate the curvature with the exception

of (µ1, K∞, L = 6), leading to above nominal coverage of both uniform interval types in most

4In Appendix 1.I, we provide analogous results for 20.000 Monte Carlo runs that were conducted on a cluster
due to the required computational resources. The results reported in Tables 1.1 and 1.2 can be replicated on a
desktop computer within a reasonable timeframe using the replication files. See Appendix 1.H for details.

5This occured only in the discrete setting.
6This refers to the default in the authors’ software implementation of RBC CIs.
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Table 1.1: Monte Carlo Results: Coverage and Relative Length I

µ1(x) L = 2 L = 6

Method Tuning Cov. RL h/κ Cov. RL h/κ

Cont. Design
Conv. hP MSE 43.0 0.566 0.226 18.3 0.398 0.183
US hUS 87.1 0.999 0.154 64.2 0.702 0.125
RBC bP MSE, hP MSE 53.9 0.849 0.226 (0.462) 38.1 0.582 0.183 (0.388)
RBC h = b = hP MSE 95.2 2.140 0.226 95.1 1.510 0.183
RBC bCE, hCE 84.4 1.160 0.154 (0.462) 68.9 0.807 0.125 (0.388)
RBC h = b = hUMSE,L=L̂ 95.5 4.390 0.167 94.7 3.940 0.104
LL-FL hUMSE,L=L̂ 95.0 1.710 0.167 95.2 1.530 0.104
LL-FL hHL,L=L̂ 96.8 1.610 0.221 93.1 1.440 0.138
Opt κUMSE,L=L̂ 94.9 1.700 1.000 95.1 1.520 1.000
Opt κHL,L=L̂ 96.7 1.600 0.246 93.0 1.430 0.246

LL-FL hUMSE,L=2 95.1 1.060 0.187 21.1 0.550 0.187
LL-FL hHL,L=2 97.0 1.000 0.247 0.42 0.517 0.247
Opt κUMSE,L=2 95.1 1.060 1.000 21.0 0.549 1.000
Opt κHL,L=2 97.0 1.000 0.246 0.36 0.517 0.246

LL-FL hUMSE,L=6 99.3 2.060 0.121 95.0 1.060 0.121
LL-FL hHL,L=6 100.0 1.940 0.160 95.0 1.000 0.160
Opt κUMSE,L=6 99.4 2.050 1.000 95.1 1.060 1.000
Opt κHL,L=6 100.0 1.930 0.245 95.0 1.000 0.245

Disc. Design
Conv. hP MSE 44.8 0.578 0.225 17.8 0.403 0.183
US hUS 87.8 1.040 0.154 65.3 0.723 0.126
RBC bP MSE, hP MSE 54.4 0.869 0.225 (0.463) 37.2 0.593 0.183 (0.389)
RBC h = b = hP MSE 95.4 2.320 0.225 95.2 1.670 0.183
RBC bCE, hCE 84.8 1.200 0.154 (0.463) 69.6 0.832 0.126 (0.389)
RBC h = b = hUMSE,L=L̂ 95.0 4.550 0.170 94.3 4.380 0.108
LL-FL hUMSE,L=L̂ 95.4 1.900 0.170 95.4 1.760 0.108
LL-FL hHL,L=L̂ 97.3 1.810 0.224 93.4 1.670 0.142
Opt κUMSE,L=L̂ 95.4 1.860 1.000 95.0 1.710 1.000
Opt κHL,L=L̂ 97.2 1.760 0.246 93.2 1.620 0.243

LL-FL hUMSE,L=2 95.0 1.070 0.189 19.7 0.548 0.189
LL-FL hHL,L=2 97.1 1.000 0.251 0.30 0.515 0.251
Opt κUMSE,L=2 95.4 1.060 1.000 20.9 0.546 1.000
Opt κHL,L=2 97.2 1.000 0.242 0.32 0.513 0.242

LL-FL hUMSE,L=6 99.5 2.100 0.125 95.0 1.080 0.125
LL-FL hHL,L=6 100.0 1.960 0.163 94.9 1.010 0.163
Opt κUMSE,L=6 99.4 2.080 1.000 94.9 1.070 1.000
Opt κHL,L=6 100.0 1.950 0.237 94.7 1.000 0.237

Note: Empirical coverage rate (Cov.), average length relative to optimized interval with true smoothness
bound (RL) and tuning parameter choice (h/κ) of conventional (Conv.), undersmoothed (US), robust bias-
corrected (RBC), fixed length (LL-FL) and optimized linear (Opt) 95% confidence intervals over 5.000 Monte
Carlo draws. The pilot RBC bandwidh is reported in parentheses if it is selected separately from h.
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Table 1.2: Monte Carlo Results: Coverage and Relative Length II

µ2(x) L = 2 L = 6

Method Tuning Cov. RL h/κ Cov. RL h/κ

Cont. Design
Conv. hP MSE 42.7 0.599 0.221 55.4 0.593 0.143
US hUS 84.6 1.060 0.151 79.7 1.050 0.098
RBC bP MSE, hP MSE 62.2 0.908 0.221 (0.439) 82.8 0.778 0.143 (0.336)
RBC h = b = hP MSE 95.4 2.260 0.221 93.9 2.250 0.143
RBC bCE, hCE 87.0 1.230 0.151 (0.439) 86.8 1.150 0.098 (0.336)
RBC h = b = hUMSE,L=L̂ 95.1 5.510 0.134 94.3 4.870 0.088
LL-FL hUMSE,L=L̂ 98.1 2.140 0.134 98.7 1.890 0.088
LL-FL hHL,L=L̂ 99.3 2.010 0.178 99.6 1.780 0.116
Opt κUMSE,L=L̂ 98.1 2.130 1.000 98.7 1.880 1.000
Opt κHL,L=L̂ 99.3 2.010 0.246 99.6 1.770 0.246

LL-FL hUMSE,L=2 95.0 1.060 0.187 20.6 0.550 0.187
LL-FL hHL,L=2 95.4 1.000 0.247 0.02 0.517 0.247
Opt κUMSE,L=2 95.1 1.060 1.000 20.5 0.549 1.000
Opt κHL,L=2 95.3 1.000 0.246 0.02 0.517 0.246

LL-FL hUMSE,L=6 99.3 2.060 0.121 95.0 1.060 0.121
LL-FL hHL,L=6 100.0 1.940 0.160 95.0 1.000 0.160
Opt κUMSE,L=6 99.4 2.050 1.000 95.1 1.060 1.000
Opt κHL,L=6 100.0 1.930 0.245 95.0 1.000 0.245

Disc. Design
Conv. hP MSE 45.0 0.621 0.218 54.2 0.607 0.143
US hUS 84.4 1.120 0.149 80.2 1.000 0.106
RBC bP MSE, hP MSE 62.1 0.939 0.218 (0.436) 83.2 0.801 0.143 (0.334)
RBC h = b = hP MSE 95.5 2.520 0.218 94.1 2.680 0.143
RBC bCE, hCE 85.8 1.300 0.149 (0.436) 87.5 1.110 0.106 (0.334)
RBC h = b = hUMSE,L=L̂ 95.0 5.990 0.137 94.1 5.730 0.092
LL-FL hUMSE,L=L̂ 98.3 2.490 0.137 98.9 2.060 0.092
LL-FL hHL,L=L̂ 99.5 2.370 0.181 99.8 1.940 0.121
Opt κUMSE,L=L̂ 98.4 2.420 1.000 98.8 2.000 1.000
Opt κHL,L=L̂ 99.4 2.300 0.246 99.8 1.890 0.239

LL-FL hUMSE,L=2 95.0 1.070 0.189 18.9 0.548 0.189
LL-FL hHL,L=2 95.6 1.000 0.251 0.04 0.515 0.251
Opt κUMSE,L=2 95.2 1.060 1.000 20.3 0.546 1.000
Opt κHL,L=2 95.3 1.000 0.242 0.06 0.513 0.242

LL-FL hUMSE,L=6 99.5 2.100 0.125 95.0 1.080 0.125
LL-FL hHL,L=6 100.0 1.960 0.163 94.9 1.010 0.163
Opt κUMSE,L=6 99.4 2.080 1.000 94.9 1.070 1.000
Opt κHL,L=6 100.0 1.950 0.237 94.7 1.000 0.237

Note: Empirical coverage rate (Cov.), average length relative to optimized interval with true smoothness
bound (RL) and tuning parameter choice (h/κ) of conventional (Conv.), undersmoothed (US), robust bias-
corrected (RBC), fixed length (LL-FL) and optimized linear (Opt) 95% confidence intervals over 5.000 Monte
Carlo draws. The pilot RBC bandwidh is reported in parentheses if it is selected separately from h.
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interval types in most designs with lowest empirical coverage at 93.0%. The resulting intervals

thus tend to be conservative but are still substantially shorter than their pointwise counterparts

under valid tuning. Interestingly, the length-optimal bias-aware intervals show higher coverage

rates than their uniform MSE-optimal counterparts on average. The length-optimal weights of

both, fixed length and optimized estimators ”oversmooth” relative to the uniform MSE-optimal

choice of the respective tuning parameter. The optimally tuned fixed-length intervals demon-

strate performance on par with their optimized counterparts, indicating that the high minimax

efficiency of local linear estimators under second order bounds demonstrated in Armstrong and

Kolesár (2020) for estimating the value of the CEF at a point also holds for the estimation of

first derivatives.

1.4.4 Gains from Optimization. The popularity of local linear estimators in empirical

practice is motivated by their intuitive appeal and a range of attractive theoretical properties

of local polynomials, in particular their asymptotic minimax efficiency over the Taylor class of

functions (Fan, 1993, Fan et al., 1997, Cheng et al., 1997). Armstrong and Kolesár (2020) show

that local polynomial estimators can also attain high minimax efficiency in the Hölder class of

functions defined by derivative bounds among a large class of estimators to which a central limit

theorem applies and that have worst-case bias and standard deviation that scale as powers of

a bandwidth parameter. This result relies on their observation that, for relevant performance

criteria, the asymptotic minimax performance of two estimators in this class does not depend

on the criterion but is solely governed by their worst-case biases, their standard deviations and

their rate exponents r = γb/(γb − γs), where γb and γs denote the scaling exponents of the

worst-case bias and the standard deviation respectively. Moreover, they show that the optimal

worst-case bias to standard deviation ratio depends only on the criterion and r (cf. Theorem

2.1 in Armstrong and Kolesár, 2020).

Their analytic results provide us with guidance on what to expect with respect to the

asymptotic efficiency gains of optimized linear confidence intervals and allow us to state a

lower bound for the efficiency gain of our method relative to uniform MSE-optimal fixed length

intervals. For the local linear estimator of the kink parameter, r = 0.4 and their calculations

imply an efficiency gain of approximately 6% at α = 0.05 for moving from the uniform MSE-

optimal to the length-optimal local linear interval (cf. Figure 3 in Armstrong and Kolesár,

2020), which is consistent with our Monte-Carlo results. Thus, a lower bound for the efficiency

gain of the optimized interval relative to the UMSE-optimal fixed length interval is 6%. This
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(a) Excess Length (b) Excess UMSE

Figure 1.2: Excess length of a 95% confidence interval (a) and excess UMSE (b) of the length-
optimal (triangle) and UMSE-optimal (circle) local linear fixed-length interval and estimator
relative to the respective optimized linear interval/estimator for continuous (blank) and discrete
(filled) designs across different sample sizes.

K
=

50
K

=
2000

(a) n = 1000 (b) n = 5000 (c) n = 25000

Figure 1.3: Uniform MSE-optimal linear (triangle) and fixed-length local linear (circle) weights
for a coarse (K = 50) and a dense (K = 2000) uniform design on [0, 1] for different sample
sizes, L = 2 and σ = 0.2. The plotted weights are scaled by n4/5 to facilitate comparison across
sample sizes.
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implies a larger lower bound for the efficiency gain relative to undersmoothed and RBC intervals

based on valid bandwidth choices. Figure 1.2 shows the relative risk of fixed length length-

optimal and uniform MSE-optimal estimators in terms of interval length (a) and uniform MSE

(b) relative to the optimized linear counterparts for the respective criterion for the continuous

and discrete (K = 40) uniform design for different sample sizes. It illustrates that the efficiency

gains from optimization increase as the discreteness of the assignment variable becomes more

severe7. This is because the shape of the optimized weighting function increasingly deviates

from the local linear weights as the discreteness increases. This can be seen in Figure 1.3,

which depicts uniform MSE-optimal local linear and optimized weights for different degrees

of discreteness. In continuous designs fixed-length and the optimal linear kernels are nearly

identical and the only advantage of the optimization based approach is that it can be easily

modified to sharpen inference via shape constraints as discussed in Appendix 1.F.

1.5 Empirical Illustration
We apply our method to the data of Landais (2015), who estimates the effect of unemployment

benefits on the duration of unemployment in a regression kink design. The paper exploits

kinks in the schedule of unemployment benefits arising from a hard cap at a maximum benefit

amount bmax. In the US, the weekly benefit amount b received by an eligible unemployed is a

fixed fraction γ of a function of previous quarterly earnings hqw in a base period up to the cap.

b =


γhqw, if γhqw ≤ bmax

bmax, if γhqw > bmax

Landais (2015) reports estimates of τRKD for five US states: Louisiana, Idaho, Missouri, New

Mexico and Washington. For the sake of exposition, we focus on the results for Louisiana,

which serves as the leading example in the paper. Figure 1.4 displays the benefit schedule for

Louisiana for the time period covered by the data. Due to adjustments, the maximum benefit

level changed over time, resulting in five distinct kinks. For the period under consideration the

weekly benefit rate was fixed at γ = 0.04, which corresponds to a constant replacement rate of

52% up to the respective kink, from where onwards the replacement rate decreases. The paper

utilizes data from the Continuous Wage and Benefit History (CWBH), a publicly available

administrative UI data set for the US that contains the universe of unemployment spells and

7The convergence of the risk observed in Figure 1.2 is due to manual bandwidth adjustments to ensure that
the estimators are well defined.
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Figure 1.4: Weekly UI Benefit Schedule, Louisiana 1979-1984 (Landais, 2015).

wage records for the five US states from the late 1970s to 1984, with different states starting

the recording at different points in time. For Louisiana, the dataset contains n = 44702

unemployment spells for the whole time period. See Landais (2015) Section II.A for a detailed

description of the data. Figure 1.5 plots the pooled data for all five time periods, where we

have normalized the assignment variable (highest quarterly earnings) by the location of the

respective kink and included only data within an 85% interval of the kink [0.15, 1.85]. This

corresponds to bandwidths in the range of 3000-4300 USD. In order to reduce noise, it shows

the average unemployment durations, measured in weeks, in 30 equally wide bins. The paper

reports RKD estimates of the effect of the benefit level on unemployment duration separately

for each time period, with point estimates and standard errors rescaled to the 2010 USD price

level. In the main specification, Landais (2015) estimates τRKD using local linear regression

with a fixed bandwidth h = 25008 and reports conventional 95% confidence intervals for τRKD

based on Eicker-Huber-White standard errors. Table 1.3 replicates9 the results reported in

Table 2 of the paper and additionally presents robust bias-corrected (h = b = ĥP MSE) and

optimized linear (L = L̂ROT ) point estimates and 95% confidence intervals computed on the

same data. The point estimates reported in Table 1.3 correspond to the estimated effects of a

8In the paper’s online Appendix, the author reports robustness checks for the pooled sample consisting of
the last two periods using bandwidths 1500 and 4500.

9The point estimates in the top-left panel for period 3 and 4 deviate by 0.001 from the results reported in
the paper. We attribute this difference to rounding.
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(a) Average duration (b) Density

Figure 1.5: Average duration (a) and density (b) in 30 equal width bins over [-0.15,1.85].

1 USD increase in weekly benefits on the duration of paid unemployment in weeks. For ex-

ample, the point estimate for period 4 reported in Landais (2015) (top-left panel) suggest that

a 1 dollar increase in weekly unemployment benefits leads to a 0.043 weeks increase in the

duration of unemployment at the kink. The estimates in the top-left panel correspond to (lo-

cal) elasticities in the range of 0.2 and 0.7, suggesting that a 10% increase in the average weekly

Table 1.3: RKD Estimates: Effect of the Benefit Level on Unemployment Duration

Landais (2015) RBC

Period Estimate Interval h Estimate Interval h

1 0.006 [−0.005, 0.018] 2500 -0.012 [−0.460, 0.435] 600
2 0.018 [0.007, 0.028] 2500 -0.094 [−0.291, 0.102] 1063
3 0.019 [0.007, 0.030] 2500 0.058 [−0.252, 0.368] 855
4 0.043 [0.025, 0.061] 2500 -0.198 [−0.529, 0.133] 1024
5 0.047 [0.035, 0.060] 2500 0.190 [0.044, 0.337] 1410

Optimized Optimized

Period Estimate Interval κ Estimate Interval κ

1 0.005 [−0.006, 0.017] 0.729 0.006 [−0.006, 0.017] 1
2 0.017 [−0.004, 0.039] 0.302 0.016 [−0.016, 0.039] 1
3 -0.056 [−0.250, 0.138] 0.367 -0.041 [−0.238, 0.156] 1
4 0.063 [−0.045, 0.170] 0.240 0.068 [−0.046, 0.183] 1
5 0.059 [0.010, 0.109] 0.217 0.072 [0.020, 0.125] 1

Note: Ad-hoc conventional local linear, robust bias-correction and optimized RKD point
estimates and 95% confidence intervals for τRKD in the CWBH data for the periods Jan-Sep
1979 (Period 1), Sep 1979-Sep 1980 (Period 2), Sep 1980-Sep 1981 (Period 3), Sep 1981-Sep
1982 (Period 4) and Sep 1982-Dec 1983 (Period 5).
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benefit amount increases unemployment duration by 2 to 7% on average at the kink. As can

be seen from the confidence intervals reported in the remaining panels, this finding is sensitive

to potential smoothing biases for most of the time periods under consideration, with both

RBC and optimized intervals covering zero at the 95% level for periods 1-4. However, while

the RBC point estimates differ substantially from those reported in the top-left panel, with

confidence intervals that are mostly uninformative for the question at hand, our procedure

yields point estimates relatively close to those reported in Landais (2015) and lower bounds

of 95% confidence intervals that are marginally below zero for most periods. This is because

the estimated curvature is rather low relative to the estimators’ standard deviation in all data

sets except for period 3, with L̂ROT × 105 = (0.0137, 0.058, 1.99, 0.477, 0.145). For the same

reason, the difference between length-optimal and UMSE-optimal intervals is rather small in

this data set as shown in the lower panel. Overall, these results indicate that the uncertainty

associated with the estimated effect of unemployment benefits on unemployment duration is

higher than suggested by the top-left panel unless one is certain about the linearity of the CEF

in the domain specified by the bandwidth.

As mentioned earlier, the optimization approach to bias-aware RKD inference allows us to

readily sharpen inference by imposing shape constraints on the CEF. This is often useful, as

the plateaus in the schedules that are typically exploited in regression kink designs often give

rise to empirically plausible concavity and convexity restrictions. In Appendices 1.F and 1.D,

we discuss this further and explain how shape constraints are implemented in practise. Table

1.4 presents the counterparts of the optimized intervals reported in the lower panel of Table

1.3 under the restriction that µ is a concave function, demonstrating that such constraints can

substantially shrink the confidence set.

Table 1.4: Optimized Intervals under Shape Constraints: Concavity

Length-optimal UMSE-optimal

Period n Estimate Interval κ Estimate Interval κ

1 2493 0.001 [−0.007, 0.009] 1.325 0.001 [−0.007, 0.009] 1
2 4580 0.005 [−0.003, 0.012] 0.990 0.005 [−0.003, 0.012] 1
3 4019 0.002 [−0.005, 0.009] 1.157 0.002 [−0.005, 0.009] 1
4 5577 0.034 [0.025, 0.043] 1.281 0.034 [0.025, 0.043] 1
5 10721 0.023 [0.017, 0.029] 1.214 0.023 [0.017, 0.029] 1

Note: Shape constrained (concavity of µ) optimized linear confidence intervals for τRKD in
the CWBH data for the periods as in Table 1.3.
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1.6 Conclusion
Motivated by the finite sample coverage problems of pointwise approaches to nonparametric

inference, this paper proposes a robust and efficient alternative method for the construction

of nonparametric confidence intervals in regression kink designs. Given a curvature bound,

the method is fully data driven, easy to implement, and has excellent finite sample coverage

and length properties due to its minimax construction that explicitly takes into account the

worst-case smoothing bias in a given data set.
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Appendices to Chapter 1
1.A Bias Derivation
The proposition that the weights solving problem (1.3) also solve the program (1.1) relied on

two arguments. First, we argued that the weights solving (1.1) must lie in the feasible set of

(1.3) by means of simple Taylor expansions. Second, we argued that by the result in (1.2),

the worst-case conditional bias of θ̂ over F(L) is proportional to the smoothness bound L and,

by definition of the remainder, the same as the worst-case conditional bias over the normal-

ized class F̄(L). The second argument relied on an explicit formula for the remainder of Taylor

expansions near the threshold obtained via integration by parts and the Fubini-Tonelli Theorem.

Proof. Since µ ∈ F(L), µ1 is Lipschitz by definition and hence absolutely continuous, and has

second derivative almost everywhere with sup
x∈X
|µ2(x)| ≤ L . By the Fundamental Theorem of

Calculus we have that for each Xi ∈ X+ and µ ∈ F(L)

µ+(Xi) = µ+(0) +
∫ Xi

0
µ1

+(t)dt.

Set u(t) = µ1
+(t) and v(t) = Xi − t. Integration by parts then yields

µ+(Xi) = µ+(0)−
∫ Xi

0
u(t)v1(t)dt

= µ+(0)−
[
µ1

+(t)(Xi − t)
]Xi

0
+
∫ Xi

0
µ2

+(t)(Xi − t)dt

= µ+(0) + µ1
+(0)Xi +

∫ Xi

0
µ2

+(t)(Xi − t)dt.

Analogously, for each Xi ∈ X− and µ ∈ F(L), µ−(Xi) = µ−(0) + µ1
−(0)Xi−

∫ 0
Xi

µ2
−(t)(Xi− t)dt.

The integral form of the remainder allows us to write the conditional mean as

E[θ̂|XN ] =
N∑

i=1
w+

[
µ+(0) + µ1

+(0)Xi +
∫ Xi

0
µ2

+(t)(Xi − t)dt

]

+
N∑

i=1
w−

[
µ−(0) + µ1

−(0)Xi −
∫ 0

Xi

µ2
−(t)(Xi − t)dt

]
,

which we used to confirm the first statement. The constraints

n∑
i=1

wi,+ = 0
n∑

i=1
wi,− = 0

n∑
i=1

wi,+Xi = 1
n∑

i=1
wi,−Xi = −1
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are in fact necessary conditions for the worst-case bias over F(L) to be finite, as, if they are

not all satisfied, we can choose (µ+, µ−, µ1
+, µ1

−) to induce an arbitrary conditional bias. As a

consequence, we have that, if the worst-case conditional bias is finite, it is given by

sup
µ∈F(L)

E[θ̂ − θ|XN ] = sup
µ∈F(L)

[
n∑

i=1
wi,+

∫ Xi

0
µ2

+(t)(Xi − t)dt−
n∑

i=1
wi,−

∫ 0

Xi

µ2
−(t)(Xi − t)dt

]
.

In order to derive the result (1.2) we define the two measure spaces (R, L , υ1) and (N, P(N), υ2),

where L denotes the Lebesgue σ-algebra, υ1 the Lebesgue measure, P(N) the power set of

the natural numbers and υ2 the counting measure. Note that the measures are σ-finite on the

real numbers and natural numbers respectively. Let (N × R, A , υ) denote the product space,

where A is the generated product σ-algebra and υ is the unique product measure. Moreover, let

g : N×R 7→ R, g(i, t) = w̃(i)µ2(t)(t̃(i)−t), where w̃(i) = wi ·1[1≤i≤n] and t̃(i) = Xi ·1[1≤i≤n] and

define the sets A+ = {(i, t) ∈ N × R | 0 ≤ t ≤ t̃(i)} and A− = {(i, t) ∈ N × R | t̃(i) ≤ t < 0}.

Note that by definition, ∑n
i=1 wi,+

∫Xi
0 µ2

+(t)(Xi − t)dt =
∫
N
∫ t̃(i)

0 g(i, t)dυ1(t)dυ2(i) ≡ T1 and∑n
i=1 wi,−

∫ 0
Xi

µ2
−(t)(Xi − t)dt =

∫
N
∫ 0

t̃(i) g(i, t)dυ1(t)dυ2(i) ≡ T2. By the Fubini–Tonelli Theorem

it holds10 that

T1 =
∫

A+
g(i, t)dυ =

∫ ∞

0

∫
t̃(i)≥t

g(i, t)dυ2(i)dυ1(t) =
∫ ∞

0
µ2

+(t)
∑

i:Xi∈[t,∞)
wi,+(Xi − t)dt,

T2 =
∫

A−
g(i, t)dυ =

∫ 0

−∞

∫
t̃(i)<t

g(i, t)dυ2(i)dυ1(t) =
∫ 0

−∞
µ2

−(t)
∑

i:Xi∈(−∞,t]
wi,−(Xi − t)dt,

and it follows that under the constraints,

sup
µ∈F(L)

E[θ̂ − θ|XN ] = sup
µ∈F(L)

∫ ∞

0
µ2

+(t)
∑

i:Xi∈[t,∞)
wi,+(Xi − t)dt−

∫ 0

−∞
µ2

−(t)
∑

i:Xi∈(−∞,t]
wi,−(Xi − t)dt

 .

This yields (1.2) and, by the definition of the remainder11, an immediate consequence is

B̄(wN) = sup
µ∈F(L)

E[θ̂ − θ|XN ] = L sup
µ∈F(1)

E[θ̂ − θ|XN ] = L sup
R∈F̄(1)

n∑
i=1

wiR(Xi).

with F̄(1) = {f : f(0) = f 1(0) = 0 ∧ |f 1(x)− f 1(x′)| ≤ |x− x′|, x, x′ ∈ X}. This shows the

equivalence of problems (1.1) and (1.3) in terms of optimal weights and implies that, by sym-

metry of F(L) with respect to zero, r∗L is a sharp bound on the magnitude of B̄(wN).

10Note that if max1≤i≤n{|wi|} <∞ boundedness of X and µ2 implies
∫

A±
|g(i, t)|dυ <∞.

11Note that |R1(x)−R1(x′)| = |µ1(x)− µ1(x′)| ≤ |x− x′| for any x, x′ ∈ X and µ ∈ F(L).
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Remark. Provided that ∑n
i=1 wi,+Xj

i = −∑n
i=1 wi,−Xj

i = δv,p for j = 1, . . . , p, iteratively

integrating by parts and applying the same logic yields a general formula for the conditional

bias of a linear estimator of θv as a function of the weights and µp+1:

1
p!

∫ ∞

0
µp+1

+ (t)
∑

i:Xi∈[t,∞)
wi,+(Xi − t)pdt−

∫ 0

−∞
µp+1

− (t)
∑

i:Xi∈(−∞,t]
wi,−(Xi − t)pdt

 .

1.B Constraint Qualification
In Section 1.3.4 we argued that, by strong duality of (1.3), we can recover the solution of (1.3),

and thus the weights solving (1.1) as well as the associated worst-case bias over F(L), by solv-

ing the dual problem underlying (1.5). Because (1.3) is a strictly convex quadratic problem

and our constraints are all linear equalities and inequalities, we can verify strong duality by

showing that a refined Slater’s condition (cf. Boyd and Vandenberghe, 2004) applies. This

constraint qualification states that strong duality holds whenever there exists a feasible point

for (1.3), which we demonstrate by showing that the weights of the local polynomial estimator

of order p ≥ 1 together with r corresponding to its worst-case conditional bias over F(1) satisfy

all constraints of (1.3).

Proof. Let Kh(t) = K(t/h) for a bounded kernel function K with support [−1, 1] indexed by

a bandwidth h > 0 and let ej denote the unit column vector of length 2p + 2 with a one at

position j. The local polynomial estimator of order p ≥ v for a jump in the v-th derivative is

θ̂LP (v,p) = v!wT
LP (v,p)YN with weights given by wLP (v,p) = eT

p+2+v

(
XT

0 W0X0
)−1

XT
0 W0, where the

matrices X0 (n × 2p + 2) and W0 (n × n) are defined as W0 = diag
(

Kh(X1) · · · Kh(Xn)
)

and X0 = [χ1, . . . , χn]T with χi = (1, Xi, . . . , Xp
i , D(Xi), XiD(Xi), . . . , Xp

i D(Xi)). From this

definition, it immediately follows that a generalization of the equality constraints of (1.3) hold,

since the local polynomial estimator is unbiased for polynomials of order j ≤ p

n∑
i=1

wi,+Xv
i = eT

p+2+v

(
XT

0 W0X0
)−1

XT
0 W0X0ep+2+v = 1

n∑
i=1

wiX
v
i = eT

p+2+v

(
XT

0 W0X0
)−1

XT
0 W0X0e1+v = 0

n∑
i=1

wi,+Xj
i = eT

p+2+v

(
XT

0 W0X0
)−1

XT
0 W0X0ep+2+j = 0

n∑
i=1

wiX
j
i = eT

p+2+v

(
XT

0 W0X0
)−1

XT
0 W0X0e1+j = 0 for p ≥ j ̸= v.
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Moreover, the integral form of the remainder immediately provides us with a feasible bound r

as sup
R∈F̄(1)

E
[
θ̂LP (v,p) − θv|XN

]
= sup

R∈F̄(1)
E [v!∑n

i=1 wiR(Xi)|XN ] ≤ ∑n
i=1

∣∣∣wiX
p+1
i

v!
(p+1)!

∣∣∣. Thus, the

problem (1.3) is strictly feasible, and, by Slater’s condition, strong duality holds.

It turns out that the simple bound obtained via this approach is sharp for general local

polynomial estimators. To show this explicitly, assume that θ̂LP (v,p) is well defined and note

that

w̄LP (v,p),+(t) =
∑

Xi≥t

wi,LP (v,p)(Xi − t)p = eT
2+p+v

(
XT

0 W0X0
)−1

XT
0 W0


(X1 − t)pD(X1 − t)

...

(Xn − t)pD(Xn − t)

 .

It follows from regression principles that w̄LP (v,p),+(t) and w̄LP (v,p),−(t) can be understood as the

(v + 1)-th coefficients from a weighted polynomial regression of ∆i,+(t) = (Xi − t)pD(Xi − t)

and ∆i,−(t) = (Xi − t)p(1 − D(Xi − t)) on Mi = (1, Xi, · · · , Xp
i ) based on subsets of the

data with Xi ≥ 0 and Xi < 0 respectively. The corresponding regressions in turn can be

understood as Tikhonov regularized least-squares problems, which allows us to show that the

regression coefficients w̄LP (v,p),+(t) and w̄LP (v,p),−(t) are attenuated versions of coefficients with

deterministic sign. To show this formally, we define the following objects

X+(t) = [MT
i , . . . ] : Matrix of Mi’s for units with 0 ≤ t ≤ Xi,

Γ+(t) = [MT
i , . . . ] : Matrix of Mi’s for units with 0 ≤ Xi < t,

WX+(t) = diag(Kh(Xi), . . . ) : Matrix of weights for units with 0 ≤ t < Xi,

WΓ+(t) = diag(Kh(Xi), . . . ) : Matrix of weights for units with 0 ≤ Xi < t,

∆X,+(t) = [∆i,+(t), . . . ] : Vector of ∆i,+(t)’s for units with Xi ≥ 0.

Analogously,

X−(t) = [MT
i , . . . ] : Matrix of Mi’s for units with Xi ≤ t ≤ 0,

Γ−(t) = [MT
i , . . . ] : Matrix of Mi’s for units with t ≤ Xi < 0,

WX−(t) = diag(Kh(Xi), . . . ) : Matrix of weights for units with Xi ≤ t ≤ 0,

WΓ−(t) = diag(Kh(Xi), . . . ) : Matrix of weights for units with t ≤ Xi < 0,

∆X,−(t) = [∆i,−(t), . . . ] : Vector of ∆i,+(t)’s for units with Xi < 0.
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Let ∥·∥2 denote the Euclidean norm. In this notation, w̄LP (v,p),+(t) and w̄LP (v,p),−(t) are the

(v + 1)-th elements of the solutions to the ”regularized” least-squares problems

min
γ∈Rp+1

∥∥∥WX±(t) 1
2 [X±(t)γ −∆X,±(t)]

∥∥∥2

2
+
∥∥∥WΓ±(t) 1

2 Γ±(t)γ
∥∥∥2

2
.

Assume without loss of generality that ∆X,+(t) and ∆X,−(t) are sorted in ascending and de-

scending order respectively. By least squares algebra, it then follows that w̄LP (v,p),±(t) is

γ̂v = eT
v+1

(
X±(t)T WX±(t)X±(t) + Γ±(t)T WΓ±(t)Γ±(t)

)−1
X±(t)T

WΓ±(t) 0

0 WX±(t)

∆X,±(t).

Note that, for any t, the ”unregularized” subproblem minγ∈Rp+1

∥∥∥WX±(t) 1
2 [X±(t)γ −∆X,±(t)]

∥∥∥2

2

corresponds to the simple weighted least squares regressions of (Xi − t)p on (1, Xi, ..., Xp
i ) on

the data sets defined by Xi ≥ t and Xi < t respectively. By the binomial theorem, it holds for

any p ≥ 0

(x− t)p =
p∑

k=0

(
p

k

)
xp−k(−t)k =

(
p

0

)
xp(−t)0 +

(
p

1

)
xp−1(−t)1 + · · ·+

(
p

p

)
x0(−t)p,

which implies that there always exists a perfect solution (in the mean squared error sense) to

the ”unregularized” subproblem, with coefficients that do not depend on the weights WX±(t) or

the data X±(t). More importantly, the sign of the coefficients does only depend on the sign of

t and the orders p and v. Note that, for t > 0, the coefficients {
(

p
k

)
(−t)k}p

k=0 in the polynomial

expansion alternate in sign, starting with a positive coefficient on xp. For t < 0 all coefficients

are positive.

It follows that for t ≥ 0, w̄LP (p,v)(t) is positive if p− v is even, and negative if p− v is odd,

while w̄LP (p,v)(t) is positive for all t < 0. As a consequence, the conditional bias
∫
R µp+1(t)w̄(t)dt

is maximized by setting µp+1(t) = L if p − v is even and µp+1(t) = −L sign(t) if p − v is odd.

This yields the following general formula of the worst-case bias of a local polynomial estimator

under p + 1 order bounds

B̄n(wLP (v,p)) = v!L
(p + 1)!

[
(−1)p−v

n∑
i=1

wi,+Xp+1
i +

n∑
i=1

wi,−Xp+1
i

]
.
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1.C Dual Optimization
Appendix 1.A justifies the equivalence of (1.1) and (1.3) by establishing (1.2). Appendix 1.B

shows strong duality of (1.3) and the original dual underlying (1.5), implying that the solution

to (1.1) can be obtained by solving the dual problem. To derive the objective in (1.5) and to

obtain (1.4), which we used to recover the solution of (1.3), we relied on a reformulation of the

dual objective that gave rise to a quadratic problem nested in the dual objective q(ν, λ). The

problem was obtained by interchanging the order of the supremum and infimum in the original

dual objective

q(ν, λ) = inf
(wN ,r)

L(w, r, ν, λ)

= inf
(wN ,r)

sup
R∈F̄(1)

n∑
i=1

w2
i σ2

i + κL2r2 + ν

(
n∑

i=1
wiR(Xi)− r

)
+ λ1

(
n∑

i=1
wi,+

)

+ λ2

(
n∑

i=1
wi,−

)
+ λ3

(
n∑

i=1
wi,+Xi − 1

)
+ λ4

(
n∑

i=1
wi,−Xi + 1

)
.

Proof. To see that this is admissible, first note that the set of functions F̄(1) is convex. Let

z ∈ [0, 1] and consider any two f1, f2 ∈ F̄(1), with (x, x′) ∈ X±. By definition of F̄(1),

zf1(0) + (1− z)f2(0) = zf 1
1 (0) + (1− z)f 1

2 (0) = 0

z|f 1
1 (x)− f 1

1 (x′)|+ (1− z)|f 1
2 (x)− f 1

2 (x′)| ≤ |x− x′|

which implies that zf1(x) + (1 − z)f2(x) ∈ F̄(1). Moreover, any sequence of functions fn(x)

in F̄(1) is uniformly bounded and uniformly equicontinuous. The first statement follows from

arguments analogous to those in Appendix 1.A since |fn(x)| ≤ |
∫ x

0 (x − t)dt| = 0.5x2 for all

fn ∈ F̄(1). Uniform equicontinuity holds since for any (x, y) in [x, x̄] and sequence fn in F̄(1)

|fn(x)− fn(y)| ≤
∣∣∣∣ ∫ x

0
(x− t)dt−

∫ y

0
(y − t)dt

∣∣∣∣ = |0.5(x2 − y2)| ≤ max{|x̄|, |x|}|x− y|,

so that for δ = ε

max{|x̄|, |x|} it holds that |fn(x)− fn(y)| ≤ ε whenever |x− y| < δ. It follows

from the Arzelà-Ascoli Theorem that the set F̄(1) is relatively compact in C([x, x̄]), the space

of continuous real-valued functions on [x, x̄]. To obtain the result, define g : Rn+1×F̄(1) 7→ R1

g(x, R|ν, λ) =
n∑

i=1
w2

i σ2
i + κL2r2 + ν

(
n∑

i=1
wiR(Xi)− r

)
+ λ1

(
n∑

i=1
wi,+

)

+ λ2

(
n∑

i=1
wi,−

)
+ λ3

(
n∑

i=1
wi,+Xi − 1

)
+ λ4

(
n∑

i=1
wi,−Xi + 1

)
,
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where x = (w1, · · · , wn, r)T . Clearly, Rn+1 is convex and g is continuous in both arguments.

Moreover, the function is, for any given R ∈ F̄(1), convex over Rn+1 and, for any given

x ∈ Rn+1, linear (concave) over F̄(1). It then follows from Sion’s minimax theorem (Sion,

1958) that

inf
x∈Rn+1

sup
R∈F̄(1)

g(x, R|ν, λ) = sup
R∈F̄(1)

inf
x∈Rn+1

g(x, R|ν, λ).

Interchanging the infimum and supremum in the dual objective substantially simplifies the

minimax problem and allows us to obtain the result in (1.4). To make this explicit, define

Q = diag(2σ2
1, · · · , 2σ2

n, 2κL2), let f(x) = 1
2xTQx and denote by f ∗(y) = supx

[
xTy− f(x)

]
the conjugate function of f(x). Moreover, let

C =



D(X1) · · · D(Xn) 0

1−D(X1) · · · 1−D(Xn) 0

D(X1)X1 · · · D(Xn)Xn 0

(1−D(X1))X1 · · · (1−D(Xn))Xn 0


d =



0

0

1

−1


AT =



R(X1)
...

R(Xn)

−1


b = 0.

In this notation, the dual objective after the exchange of supremum and infimum is given by

q(ν, λ) = sup
R∈F̄(1)

inf
x

[
f(x) + ν (Ax− b) + λT (Cx− d)

]
= sup

R∈F̄(1)
−λT d + inf

x

(
f(x) +

(
νA + λTC

)
x
)

= sup
R∈F̄(1)

−λT d− f ∗
(
−
(
AT ν + C′λ

))
= sup

R∈F̄(1)
−λT d− 1

2
(
AT ν + C′λ

)T
Q−1

(
AT ν + CTλ

)

= sup
R∈F̄(1)

−1
4

n∑
i=1

[λ1D(Xi) + λ2(1−D(Xi)) + λ3D(Xi)Xi + λ4(1−D(Xi))Xi + νR(Xi)]2

σ2
i

− 1
4

ν2

κL2 − λ3 + λ4,

Note that for σi > 0, L > 0, κ > 0, the objective function of the inner minimization problem

in the dual objective is a quadratic form with positive definite Hessian. As a consequence, we

obtain the analytical expressions (1.4) by (wN , r) = −Q−1
(
AT ν + CTλ

)
and can write q(ν, λ)

using its conjugate function. Finally, since by (1.2) the maximum exists, we can write the dual

problem as a maximization problem over the space F̄(1) which yields (1.5).
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Remark. In order to pass this problem to a numeric solver, it is useful to turn it into a

minimization problem and to reparameterize it to avoid products of optimization parameters,

R̃(Xi)← νR(Xi). This yields the baseline problem that we solve via discrete approximation.

minimize
ν,λ,R̃

n∑
i=1

[
λ1D(Xi) + λ2(1−D(Xi)) + λ3D(Xi)Xi + λ4(1−D(Xi))Xi + R̃(Xi)

]2
4σ2

i

+ ν2

4κL2 + λ3 − λ4 (1.7)

subject to ν ∈ R+, λ ∈ R4, R̃ ∈ F̄(ν).

1.D Implementation
Our R implementation solves the QP (1.7) by approximating the continuous argument R̃ on

a discrete equidistant grid with distance ∆ = h between any two adjacent grid points. Let x

and x̄ denote the minimal and maximal elements of {Xi − c}n
i=1. In a first step, we divide the

interval I =
(
x− h

2 , x̄ + h
2

]
in J = (x̄−x)/h disjoint intervals Ij =

(
x + (j − 3

2)h, x + (j − 1
2)h

]
.

Let xj denote the center of interval j, so that x1 = x and xJ = x̄. In a second step, we assign

each data point Xi to its closest grid point. For example, if Xi falls into Ij we assign j ← i and

store this mapping. Moreover, we keep track of the two grid points (xc,−, xc,+) that are closest

to the normalized cutoff zero (ties are possible only if zero itself is a grid point).

x x + h · · · 0 · · · xj
· · · x̄xc,− xc,+

∆ = h

x− h
2 x̄ + h

2

Figure 1.D.1: Illustration of the discretization strategy. Red (black) dots indicate data (grid)
points.

Note that by construction 0 ≥ xc,− →
J→∞

0 and 0 ≤ xc,+ →
J→∞

0 since h →
J→∞

0. Since µ ∈ F(L),

R̃(0)− R̃(xc,−) = O(|xc,−|) as xc,− → 0 R̃1(0)− R̃(0)− R̃(xc,−)
|xc,−|

= O(|xc,−|) as xc,− → 0

R̃(0)− R̃(xc,+) = O(|xc,+|) as xc,+ → 0 R̃1(0)− R̃(xc,+)− R̃(0)
|xc,+|

= O(|xc,+|) as xc,+ → 0

and we take into account the constraint R̃(0) = R̃1(0) = 0 by enforcing R̃(xc,−) = R̃(xc,+) = 0.

In order to take into account the second order derivative constraint |R̃2(x)| ≤ L, we utilize

the equidistance of grid points to impose the constraints via second order central difference
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approximations R̃2(x) − [R̃(x + h) − 2R̃(x) + R̃(x − h)]h−2 = O(h2) as h → 0. This yields 2

linear equality and 2J linear inequality constraints12 that we enforce during the optimization



0 0
... ...

1 0

0 1
... ...

0 0



T 

R̃(x)
...

R̃(xc,−)

R̃(xc,+)
...

R̃(x̄)


= 02



1 −2 1 0 · · · · · · 0

0 1 −2 1 · · · · · · 0
... ... . . . . . . . . . · · · ...

−1 2 −1 0 · · · · · · 0

0 −1 2 −1 · · · · · · 0
... ... . . . . . . . . . · · · 0





R̃(x)

R̃(x + h)
...

R̃(x̄)


≤ 12Jνh2.

Let A1 and A2 denote the two matrices above. In order to write the quadratic program (1.7) in

standard form, we define x̃ = (w̃J , ν, λ, R̃J)T , where w̃j = −2σ(xj)2wj and R̃j = νR(xj) are the

reparameterized weights and remainders evaluated at the approximation points. The quadratic

and linear part of the objective are H̃ = diag(0.5σ(x)−2, · · · , 0.5σ(x̄)−2, 0.5κ−1L−2, 0T
J+4) and

d̃ = (0T
J , 0, 0, 0, 1,−1, 0T

J )T . In this notation, (1.7) under discretization of R̃ ∈ F̄(ν) is

minimize
x̃

1
2 x̃T H̃x̃ + d̃T x̃

subject to [−IJ , 0J×1, C̃T λ, IJ ]x̃ = 0J

[02×J+5, A1]x̃ = 02 (1.8)

[02J×J+5, A2]x̃ ≤ 12Jνh2, ν ∈ R+,

where C̃ is defined in analogy to the matrix C in Appendix 1.C, with the approximation points

xj (j = 1 . . . , J) playing the role of the data points Xi (i = 1, . . . , n). In the implementation,

we reformulate (1.8) in terms of the equivalent Second Order Cone Program to avoid issues of

standard solvers associated with the semidefiniteness of H̃ induced by the J + 4 zero rows. To

this end, let q be an additional parameter and note that since H̃ is positive semidefinite, we

can write x̃T H̃x̃ = x̃T RTRx̃ = ∥Rx̃∥2
2, allowing us to equivalently write the problem with an

objective that is linear in ẍ = (x̃, q)T

minimize
ẍ

eT
2J+6ẍ + [d̃, 0]T ẍ

subject to q + 1 ≥
√
∥Rx̃∥2

2 + q2

...

12Note that we need to enforce the second order constraints only at grid points that have data points in their
respective interval. We can thus increase precision without linearly growing the number of constraints.
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Given a solution to (1.8), we assign weights to data points according to the mapping between

the index sets of Xi and xj, and rescale each weight to satisfy the moment conditions exactly.

1.E Proof of Proposition 1
The honesty property of the interval (1.6) for any given bound L relies on an (asymptotic) upper

bound for the worst-case smoothing bias and uniform convergence of s−1
n [θ̂−E[θ̂|Xn]] D→ N(0, 1)

over F(L). It then follows from standard arguments that a confidence interval based on the

approximation (θ̂−θ)/sn ∼̇ |N(t̄n, 1)| yields asymptotically uniformly valid confidence intervals.

Proof. We first show that under Assumption 1, conditionally on XN , Lyapunovs condition

applies uniformly over all permitted CEFs. By Lyapunov’s Central Limit Theorem and as-

sumptions A1 (i)-(ii) this requires us to show that for all µ ∈ F(L)

1
s2+δ

n

n∑
i=1

E
[
|wi(Yi − µ(Xi))− E [wi(Yi − µ(Xi))|XN ] |2+δ|XN

]
= op(1).

By the definition of µ, E [wi(Yi − µ(Xi))|Xn] = 0, and the Lyapunov condition holds since

∑n
i=1 E

[
|wi(Yi − µ(Xi))|2+δ|XN

]
[√∑n

i=1 σ2
i w2

i

]2+δ ≤
∑n

i=1 |wi|2+δ E
[
|(Yi − µ(Xi))|2+δ|XN

]
[√∑n

i=1 σ2
i w2

i

]2+δ

≤ C

∑n
i=1 |wi|2+δ[√∑n
i=1 w2

i σ2
i

]2+δ by A1 (iv)

≤ C
maxi{wi}2∑n

i=1 |wi|δ[
σmin

√∑n
i=1 w2

i

]2+δ by A1 (iii)

= C

σ2+δ
min

maxi{wi}2∑n
i=1 w2

i

= op(1) by A1 (v)

where the second and third line utilize the uniform moment bounds and the last equation relies

on the limit behavior of the ratio w̄R. It then follows from standard arguments that a uniform

asymptotic upper bound on undercoverage of (1.6) is given by

lim inf
n→∞

(
inf

µ∈F(L)
Pr
[∣∣∣s−1

n [θ̂ − E[θ̂|XN ]] + tn

∣∣∣ ≤ cv1−α(t̄n) | XN

]
− inf

µ∈F(L)
Pr
[
|Z + tn| ≤ cv1−α(t̄n) | XN

])
= 0,
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where Z denotes a standard normal variable. Then by the definition of cv1−α and t̄n it holds

lim inf
n→∞

inf
µ∈F(L)

Pr
[
µ1

+(0)− µ1
−(0) ∈ Iα

]
≥ 1− α.

1.F Extensions
1.F.1 Fuzzy Discontinuity Design. The inference problem discussed in the main body of

the paper is a special case of the general problem of inference on the ratio of jumps in the

v−th derivative of two CEFs at a point (normalized to zero). Let µY (x) = E[Yi|Xi = x] and

µT (x) = E[Ti|Xi = x]. The general parameter of interest in discontinuity designs is

τRD =
µv

Y,+(0)− µv
Y,−(0)

µv
T,+(0)− µv

T,−(0) = θv
Y

θv
T

, (1.9)

under the assumption that θv
T ̸= 0, with v = 0 corresponding to RDDs and v = 1 to RKDs.

First note that, provided a bound on the magnitude of the respective derivatives of order p > v,

we can, irrespective of the order v, employ the optimization approach discussed in Section 1.3

seperately to θv
Y and θv

T by restricting the feasible set via ∑n
i=1 wi,+Xk

i = −∑n
i=1 wi,+Xk

i = δv,k

as in Appendix 1.A. This is because, by the arguments in Appendix 1.B, we can always derive

a suitable constraint qualification to employ the logic of Section 1.3.

In the sharp case, that is if the institutional rule T governing treatment assignment is

deterministic V[T (Xi)|Xi] = 0 and fully implemented Pr{Ti = T (Xi)} = 1, it is sufficient

to do so for just θv
Y and to conduct inference on τRD in complete analogy to Section 1.3.

However, in the fuzzy setting, that is if the rule is probablistic, or if there are deviations from

the assignment rule, the denominator needs to be estimated and inference on τRD requires a

method that addresses the nonlinearity induced by the ratio. As a consequence, additional

complications for inference arise and our optimization approach can not be directly employed.

Fuzzy designs can arise for various reasons such as noncompliance, multivariate rules with

unobserved assignment variables or measurement errors, and occur frequently in applications.

The standard approach to inference in fuzzy settings is to estimate θv
Y and θv

T separately

and rely on a linearization of the estimator ratio to build confidence intervals based on a delta

method argument. The delta method approach to inference in discontinuity designs has three

important limitations. The first two concern the validity of the distributional approximation

in settings with discrete assignment variables or weak identification, that is if the denominator

θT is close to zero. In both cases, the validity of the approximation breaks down, as otherwise
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asymptotically negligible terms in the expansion have non-zero probability limits. A third

problem is that, due to the nonlinearity of the estimator, the bias-aware approach can not

control the exact worst-case smoothing bias.

Motivated by these shortcomings of delta method based inference, Noack and Rothe (2019)

propose a method to conduct inference based on an Anderson-Rubin type inversion argument

(Anderson and Rubin, 1949). This approach is known to allow for valid pointwise inference

under weak identification and importantly also allows them to apply bias-aware methods to

construct honest confidence sets, as the method avoids linearization. In order to extend our

optimization based approach to fuzzy designs, we employ their strategy.

The basic idea is to consider the parameter θv(τ) = θv
Y −τθv

T and to construct honest (1−α)

confidence intervals for θv(τ) for different values of τ . Note that by definition of θv
Y and θv

T , this

corresponds to constructing CIs for the jump in the v-th derivative of µτ (x) = E[Yi−τTi|Xi = x]

at the discontinuity point for any given value of τ . A confidence set for τRD is then obtained

by collecting all values of τ for which the auxiliary interval covers zero, and adjusting this

set depending on whether an honest confidence interval for θv
T contains zero or not. The

procedure thus reduces the fuzzy inference problem to repeated sharp problems and allows

us to immediately employ optimized intervals. The only particularity that arises under this

strategy relates to the shape of the confidence sets, which varies depending on whether the

auxiliary confidence interval for θv
T covers zero or not. Let IT = [θv

T , θ̄v
T ] denote an optimized

interval for θv
T and let IτRD

= [τRD, τ̄RD] denote the confidence interval13 obtained by employing

the above method. The following five cases are possible for some a < b.

Table 1.F.1: Shape of Anderson-Rubin Confidence Sets for τRD

Case Shape of Confidence Set

i) 0 ̸∈ IT [a, b]
ii) 0 ∈ IT , 0 ̸∈ Iτ (−∞, a] ∪ [b,∞).
iii) 0 ∈ IT , 0 ∈ Iτ (−∞,∞)
iv) θT = 0, τRD > 0 [a,∞)
v) θ̄T = 0, τ̄RD < 0 (−∞, b]

See Noack and Rothe (2019) for a detailled discussion of the construction and properties of bias-

aware Anderson-Rubin Confidence Sets based on local polynomial estimators. As discussed in

their paper, the cases iv) and v) are empirically irrelevant, as the events θv
T = 0 and θ̄v

T = 0

occur with probability zero. Adapting their findings to our setting, we impose the following
13Iτ has this shape by continuity of w∗, B̄(wN ) and sn in τ , and the folded normal quantile function in t̄n.
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modification of Assumption 1 to ensure that the Anderson-Rubin Confidence Sets obtained via

optimization are well defined and honest.

Assumption 1.F.1 Let (C, δ, σmin, σmax) ∈ R4
+ be some fixed vector.

(i) {Yi, Xi, Ti}n
i=1 is an i.i.d. random sample of size n from a fixed population.

(ii) (µY , µT ) ∈ F(L)×FT (LT ) for some L ≥ 0 and LT ≥ 0 with

Fp(L) = {f : |fp−1
± (x)− fp−1

± (x′)| ≤ L|x− x′|, (x, x′) ∈ X±}

, FT (L) = {f : f ∈ F(LT ) ∧ |f v
+(0)− f v

−(0)| > 0}.

(iii) For all x ∈ RX , (µY , µT ) ∈ F(L)×FT (LT ) and τ ∈ R,

0 < σ2
min ≤ E[(Yi − τTi − µτ (Xi))2|Xi = x] ≤ σ2

max.

(iv) For all x ∈ RX , (µY , µT ) ∈ F(L)×FT (LT ) and τ ∈ R,

E[|Yi − τTi − µτ (Xi)|2+δ|Xi = x] ≤ C.

(v) For each τ ∈ R, the solution w∗ satisfies
maxi w2

i∑n
i=1 w2

i

P→ 0

The adjustments in Assumption 1.F.1 ensure that (1.9) is well defined and that we can construct

honest CIs for θv
T and θv

τRD
(for each value of τ), by utilizing the bound on the p-th derivatives

encoded in Fp(L) and FT (LT ). Note that by the logic discussed in Section 1.3, the worst-case

bias of our estimator over F(L) × FT (LT ) is proportional to L + |τ |LT . In order to compute

the confidence sets, it is thus required to construct optimized intervals for different values of τ ,

taking into account the relevant functional constraint.

In order to implement this procedure, we first compute a length-optimized interval for θv
T .

In a second step, we compute UMSE optimized intervals on a prespecified grid of values of τ

by calling our method on data with modified outcome variable Ỹi = Yi − τTi, adjusting the

smoothness bound as needed. If the grid contained a sufficiently large range of values of τ ,

this yields approximate values for τRD and τ̄RD. We then compute length-optimized intervals

starting at the two approximate bounds until we found the roots of θ̂v(τ)± sn(τ)cv1−α(t̄n(τ)).

Finally, we report confidence sets according to Table F.1.

The method of Noack and Rothe (2019) thus allows us to extend the optimization approach

to fuzzy RKDs and RDDs. The latter is is a special case of the multivariate RDD problem

considered in Imbens and Wager (2019), which we extend to the (univariate) fuzzy setting.

Given the results in Imbens and Wager (2019) and our simulations for RKDs one would expect

these intervals to be particularly useful in fuzzy settings with discrete running variables.
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1.F.2 Shape Constraints. An attractive feature of the honest optimization approach to RD

inference in sharp designs is that it is rather simple to utilize additional structural information

on the CEF under consideration. In our view, this is a noteworthy feature of combining the

bias-aware approach with optimization techniques, as utilizing such information for inference

is typically rather difficult. This is because in general the distribution of a restricted estimator

depends in a non-trivial fashion on whether and where the shape constraints are binding, which

is typically not known a priori (Freyberger and Reeves, 2018).

Under the bias-aware approach, this dependence operates through the worst-case bias and

is rather simple in structure. In principle, any additional constraint that can be approximated

in terms of finite differences of Taylor remainders and that does not break the convexity and

compactness of F̄(1) can be directly utilized to sharpen inference. Such information can easily

be incorporated by adding suitable constraints to (1.8). For example, concavity of µ could be

utilized by the following modification to the feasible set of (1.8)



1 −2 1 0 · · · · · · 0

0 1 −2 1 · · · · · · 0
... ... . . . . . . . . . · · · ...

−1 2 −1 0 · · · · · · 0

0 −1 2 −1 · · · · · · 0
... ... . . . . . . . . . · · · 0





R̃(x)

R̃(x + h)
...

R̃(x̄)


≤

 0J

1Jνh2

 .

Analogously, monotonicity of µ can be imposed via the constraint



1 0 −1 0 · · · · · · 0

0 1 0 −1 · · · · · · 0

0 0 1 0 −1 · · · 0
... ... . . . . . . . . . . . . ...





R̃(x)

R̃(x + h)
...

R̃(x̄)


> (<)0J .

This is particularly useful for applied work that utilizes regression kink designs, as the ”plateau”-

schedules that often form the basis for kink designs tend to generate empirical CEFs that

plausibly satisfy shape constraints. Note that this applies directly only to the sharp setting, as

the properties of θτ (c) depend on both µY and µT and even c. In the fuzzy setting one therefore

needs to be more careful when thinking about imposing shape constraints in this fashion.
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1.G Runtime Estimates
Table 1.G.1 shows average runtimes of the procedure proposed in this paper for 100 simulated

runs for each of the sample sizes reported in the first column. The data was drawn from a

continuous uniform distribution on [−1, 1] with L = 2 and σ2 = 0.12. The computations were

conducted on a standard desktop computer using R 4.1.0. and the implementation provided in

the replication files.

Table 1.G.1: Runtime Estimates

Sample Size UMSE-optimal HL-optimal

500 0.115 2.738
1000 0.109 2.813
1500 0.108 2.849
2000 0.116 3.076
2500 0.120 3.030
3000 0.117 3.141
3500 0.120 3.226
4000 0.129 3.286
4500 0.129 3.115
5000 0.127 3.304
5500 0.130 3.568
6000 0.129 3.590
6500 0.133 3.419
7000 0.132 3.458
7500 0.136 3.365
8000 0.132 3.320
8500 0.138 3.419
9000 0.141 3.641
9500 0.145 3.806
10000 0.144 3.899

Note: Runtime estimates in seconds for UMSE and length
optimized linear confidence intervals for different sample
sizes.
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1.H Replication Files and Programs
Table 1.H.1 contains all R packages required to run the replication files that reproduce the nu-

merical results and figures reported in this paper, as well as additional packages (*) that are not

required for the replication but necessary to utilize all configurations of the provided functions.

The second column states the package versions under which the results were produced.

Table 1.H.1: Dependencies

Package Version Purpose

RMosek 9.2 optimization
Matrix 1.3-4 computation
foreach 1.5.1 parallelization

doParallel 1.0.16 parallelization
doSNOW 1.0.19 parallelization
doRNG 1.8.2 replication
FRD* 1.0.1 uniformly valid nn-variance estimator

rdrobust 0.98 robust bias-correction bandwidths
reshape2 1.4.4 reshaping data
ggplot2 3.3.5 visualization

latex2exp 0.5.0 visualization

Note: R packages required to run the replication files .

In order to replicate the simulation results reported in Tables 1.1 and 1.2 in a reasonable

time frame it is necessary to install RMosek, an R interface for the Mosek software library

designed to solve large-scale convex optimization problems. This is generally recommended for

implementing the proposed optimized linear confidence intervals on medium to large datasets. If

RMosek is not installed, the optrkd function provided in the replication files will rely on a solver

that is integrated in base R, which tends to take longer, especially on large datasets, and has

lower accuracy. The installation of RMosek is thus required to match the results numerically.

The following link explains how RMosek can be downloaded and installed: https://docs.mosek.

com/9.2/rmosek/install-interface.html. Academic licenses are available free of charge and can

be requested here: https://www.mosek.com/products/academic-licenses/. The FRD package is

the companion package of Noack and Rothe (2019) and can be downloaded here. All other

packages can be downloaded and installed from CRAN via the standard commands.
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The files described in Table 1.H.2 contain the relevant functions and programs that replicate

the results in the order in which they appear in this paper. All output is precomputed and

stored in the results_local and figures folders. The simulation study reported in Tables 1.1

and 1.2 requires approximately 14 hours at 6 kernels to complete. Numerically similar results

can be obtained by reducing the number of Monte Carlo runs M to 2500.

Table 1.H.2: Replication Files

Name Description

Functions
srd.R functions for optimized linear RD intervals
frd.R functions for optimized linear FRD intervals

lp_unif.R functions for fixed length local polynomial RD intervals
utils.R utility functions
cvar.R functions to estimate the conditional variance
rot.R functions to compute rule of thumbs for L

hpc_sim.R function to conduct the simulation study in Appendix 1.I
rel_risk.R functions to conduct a simulation study

Programs
plt_cefs.R plots the CEFs displayed in Figure 1

num_tbls12.R conducts the simulation study reported in Table 1 and 2
plt_relrisk.R computes and plots the results reported in Figure 2

plt_discweights.R computes and plots the weights displayed in Figure 3
plt_application.R schedule and binscatter plots displayed in Figures 4 and 5
num_application.R computes the estimates and intervals reported in Section 5

Note: Description of the R files that reproduce the results reported in the main body.

The code in the file srd.R is a modified and adapted version of Imbens and Wager (2019)

original code for optimized inference in regression discontinuity designs. In particular, the

discrete approximation of the second order constraint on the remainder is due to them and the-

oretically justified by Proposition 2 in their paper. All other code was produced autonomously.

1.I Additional Simulation Results
Tables 1.I.1 and 1.I.2 contain the results of a more extensive Monte Carlo study based on 20.000

Monte Carlo runs. The setup is the same as in Section 1.4.2 and the results remain qualitatively

the same. The tables, including additional columns, are available in the results_cluster

folder as tableX_panelX_large20.rda and are computed using hpc_sim.R.
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Table 1.I.1: Monte Carlo Results: Coverage and Relative Length I

µ1(x) L = 2 L = 6

Method Tuning Cov. RL h/κ Cov. RL h/κ

Cont. Design
Conv. hP MSE 43.4 0.567 0.225 18.4 0.398 0.183
US hUS 87.1 1.000 0.154 64.0 0.704 0.125
RBC bP MSE, hP MSE 54.3 0.850 0.225 (0.462) 38.0 0.583 0.183 (0.388)
RBC h = b = hP MSE 95.2 2.150 0.225 95.0 1.510 0.183
RBC bCE, hCE 84.6 1.160 0.154 (0.462) 69.6 0.808 0.125 (0.388)
RBC h = b = hUMSE,L=L̂ 95.3 4.590 0.166 94.7 4.030 0.104
LL-FL hUMSE,L=L̂ 95.1 1.770 0.166 94.9 1.560 0.104
LL-FL hHL,L=L̂ 96.6 1.610 0.219 93.1 1.470 0.138
Opt κUMSE,L=L̂ 95.0 1.750 1.000 95.1 1.550 1.000
Opt κHL,L=L̂ 96.6 1.650 0.246 93.1 1.460 0.246

LL-FL hUMSE,L=2 95.1 1.060 0.187 21.1 0.550 0.187
LL-FL hHL,L=2 96.7 1.000 0.247 0.38 0.517 0.247
Opt κUMSE,L=2 95.0 1.060 1.000 21.0 0.549 1.000
Opt κHL,L=2 96.7 1.000 0.246 0.34 0.517 0.246

LL-FL hUMSE,L=6 99.2 2.060 0.121 94.9 1.060 0.121
LL-FL hHL,L=6 100.0 1.940 0.160 94.8 1.000 0.160
Opt κUMSE,L=6 99.3 2.050 1.000 95.0 1.060 1.000
Opt κHL,L=6 100.0 1.940 0.244 94.8 1.000 0.244

Disc. Design
Conv. hP MSE 45.2 0.579 0.224 18.0 0.404 0.183
US hUS 87.6 1.040 0.153 65.9 0.725 0.126
RBC bP MSE, hP MSE 54.7 0.870 0.224 (0.438) 37.5 0.594 0.183 (0.389)
RBC h = b = hP MSE 95.4 2.320 0.224 95.2 1.670 0.183
RBC bCE, hCE 85.1 1.210 0.153 (0.438) 70.4 0.834 0.126 (0.389)
RBC h = b = hUMSE,L=L̂ 95.1 4.600 0.169 94.9 4.420 0.108
LL-FL hUMSE,L=L̂ 95.4 1.890 0.169 95.4 1.750 0.108
LL-FL hHL,L=L̂ 97.2 1.790 0.223 93.5 1.660 0.141
Opt κUMSE,L=L̂ 95.4 1.850 1.000 95.3 1.710 1.000
Opt κHL,L=L̂ 97.1 1.750 0.245 93.5 1.620 0.243

LL-FL hUMSE,L=2 95.0 1.070 0.189 19.8 0.548 0.189
LL-FL hHL,L=2 96.8 1.000 0.251 0.28 0.515 0.251
Opt κUMSE,L=2 95.1 1.060 1.000 20.9 0.546 1.000
Opt κHL,L=2 96.9 1.000 0.242 0.32 0.513 0.242

LL-FL hUMSE,L=6 99.4 2.100 0.125 94.9 1.080 0.125
LL-FL hHL,L=6 100.0 1.960 0.163 94.9 1.010 0.163
Opt κUMSE,L=6 99.3 2.080 1.000 95.0 1.070 1.000
Opt κHL,L=6 100.0 1.950 0.237 94.8 1.000 0.237

Note: Empirical coverage rate (Cov.), average length relative to optimized interval with true smoothness
bound (RL) and tuning parameter choice (h/κ) of conventional (Conv.), undersmoothed (US), robust bias-
corrected (RBC), fixed length (LL-FL) and optimized linear (Opt) 95% confidence intervals over 20.000 Monte
Carlo draws. The pilot RBC bandwidh is reported in parentheses if it is selected separately from h
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Table 1.I.2: Monte Carlo Results: Coverage and Relative Length II

µ2(x) L = 2 L = 6

Method Tuning Cov. RL h/κ Cov. RL h/κ

Cont. Design
Conv. hP MSE 43.1 0.600 0.221 56.0 0.595 0.143
US hUS 84.6 1.060 0.151 80.2 1.050 0.098
RBC bP MSE, hP MSE 62.5 0.911 0.221 (0.439) 83.2 0.781 0.143 (0.336)
RBC h = b = hP MSE 95.4 2.270 0.221 94.0 2.260 0.143
RBC bCE, hCE 86.8 1.240 0.151 (0.439) 86.6 1.150 0.098 (0.336)
RBC h = b = hUMSE,L=L̂ 95.1 5.710 0.134 94.4 4.970 0.088
LL-FL hUMSE,L=L̂ 98.3 2.200 0.134 98.7 1.920 0.088
LL-FL hHL,L=L̂ 99.3 2.070 0.177 99.6 1.180 0.115
Opt κUMSE,L=L̂ 98.3 2.190 1.000 98.7 1.910 1.000
Opt κHL,L=L̂ 99.3 2.060 0.246 99.5 1.800 0.246

LL-FL hUMSE,L=2 95.0 1.060 0.187 20.8 0.550 0.187
LL-FL hHL,L=2 95.1 1.000 0.247 0.04 0.517 0.247
Opt κUMSE,L=2 95.0 1.060 1.000 20.7 0.549 1.000
Opt κHL,L=2 95.0 1.000 0.246 0.05 0.517 0.246

LL-FL hUMSE,L=6 99.2 2.060 0.121 94.9 1.060 0.121
LL-FL hHL,L=6 100.0 1.940 0.160 94.8 1.000 0.160
Opt κUMSE,L=6 99.3 2.050 1.000 95.1 1.060 1.000
Opt κHL,L=6 100.0 1.940 0.244 94.9 1.000 0.244

Disc. Design
Conv. hP MSE 44.8 0.622 0.218 54.1 0.608 0.143
US hUS 84.7 1.120 0.149 81.1 1.000 0.106
RBC bP MSE, hP MSE 62.3 0.941 0.218 (0.436) 83.4 0.803 0.143 (0.334)
RBC h = b = hP MSE 95.5 2.530 0.218 94.1 2.690 0.143
RBC bCE, hCE 86.0 1.300 0.149 (0.436) 87.8 1.120 0.106 (0.334)
RBC h = b = hUMSE,L=L̂ 95.2 6.010 0.137 94.9 5.740 0.092
LL-FL hUMSE,L=L̂ 98.4 2.430 0.137 99.0 2.060 0.092
LL-FL hHL,L=L̂ 99.4 2.310 0.180 99.8 1.940 0.121
Opt κUMSE,L=L̂ 98.4 2.380 1.000 98.9 2.010 1.000
Opt κHL,L=L̂ 99.4 2.250 0.244 99.8 1.890 0.237

LL-FL hUMSE,L=2 94.9 1.070 0.189 19.0 0.548 0.189
LL-FL hHL,L=2 95.2 1.000 0.251 0.03 0.515 0.251
Opt κUMSE,L=2 95.0 1.060 1.000 20.4 0.546 1.000
Opt κHL,L=2 95.2 1.000 0.242 0.04 0.513 0.242

LL-FL hUMSE,L=6 99.4 2.100 0.125 94.9 1.080 0.125
LL-FL hHL,L=6 100.0 1.960 0.163 94.9 1.010 0.163
Opt κUMSE,L=6 99.3 2.080 1.000 95.0 1.070 1.000
Opt κHL,L=6 100.0 1.950 0.237 94.9 1.000 0.237

Note: Empirical coverage rate (Cov.), average length relative to optimized interval with true smoothness
bound (RL) and tuning parameter choice (h/κ) of conventional (Conv.), undersmoothed (US), robust bias-
corrected (RBC), fixed length (LL-FL) and optimized linear (Opt) 95% confidence intervals over 20.000 Monte
Carlo draws. The pilot RBC bandwidh is reported in parentheses if it is selected separately from h
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Chapter 2

Social Mobility in Germany

Abstract

This chapter proposes and implements a strategy for the measurement of social mobility

in Germany that allows for the estimation of mobility statistics using census data. The

reported mobility statistics characterize intergenerational social mobility in Germany by

the association between a child’s probability of obtaining an A-Level degree, an important

educational qualification in the German institutional framework, and its parents’ position

in the national income distribution. We document that a 10 percentile increase in the

parental income rank is associated with a 5.2 percentage point increase in the probability

of obtaining an A-Level degree. This parental income gradient has not changed for the

birth cohorts of 1980-1996, despite a large-scale policy of expanding upper secondary

education. We document substantial variation in our mobility estimates across regions

and show that the estimated regional disparities are unlikely to be driven by sorting of

households.
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2.1 Introduction
Social mobility is an important indicator for both fairness and economic efficiency in a society,

as it captures the extent to which individuals of different socioeconomic backgrounds are offered

equal economic and social opportunities. Next to violating widely held fairness ideals, a low

level of social mobility indicates the misallocation of resources, as it suggests that talented

individuals from disadvantaged backgrounds are impeded from realizing their potential.

While, in many European countries, social mobility concerns and equality of opportunity

principles feature prominently in the public debate, and political preferences on important issues

such as redistributive policies are documented to be driven by beliefs about intergenerational

mobility (Alesina et al., 2018), reliable mobility statistics are often not available.

The scarcity of empirical evidence on social mobility can be explained by the relatively

high data requirements necessary for the construction of mobility statistics, which require

representative data that allows to link the outcomes of parents to a measure of opportunities for

children. While the household panel studies that are available in many countries often contain

this information, they are typically too small to deliver sufficiently precise estimates to facilitate

regional comparisons or the analysis of time trends (cf. Lee and Solon, 2009; Mazumder, 2018).

An attractive alternative are large-scale administrative data sources, such as linked tax records,

which researchers were able to obtain for some countries (e.g. Chetty et al., 2014). However,

such data is not available for many countries, including Germany, where to date no large-scale

empirical study of social mobility across time and space exists.

With the aim to fill this gap, this paper proposes and implements a measurement strategy

for social mobility in Germany that allows for the use of census data to document time trends

and regional differences in social mobility at a higher level of detail than previously possible.

Motivated by Germany’s early tracking system of secondary education, which allocates children

into different tracks at the end of primary school, our mobility statistics measure the associa-

tion between parental income and the educational opportunities of children. Our measure of

opportunities captures whether a child will obtain the A-Level (Abitur), the highest secondary

schooling degree in Germany which grants direct access to the tuition-free national university

system and marks an important sign of social distinction in the German society. Since sec-

ondary school aged children and adolescents typically still live in their parental household, we

are able to link them to their parents in the German census data. Our data covers one percent

of the German population in every year from 1997 to 2018, providing detailed information on

the educational activities of 526,000 children and the socioeconomic status of their parents.
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We present three main findings. First, relative social mobility at the national level has

remained constant for recent birth cohorts. On average, a 10 percentile rank increase in the

parental income distribution was associated with a 5.2 percentage point increase in the prob-

ability to obtain an A-Level degree, corresponding to a top-bottom gap of approximately 50

percentage points. For the 1980-1996 birth cohorts, this parental income gradient has not

changed despite the Bildungsexpansion, a large-scale expansion of upper secondary education

in Germany. This long-term expansion was in parts a policy response to a public debate on

social mobility (cf. Dahrendorf, 1965; Hadjar and Becker, 2006) and increased the A-Level

share from 39% for children born in 1980 to 53% for the 1996 birth cohort. We document

that the Bildungsexpansion took place uniformly across the income distribution, with almost

identical increases in the share of A-Level educated children in all quintiles of the national

parental income distribution. This enhanced the odds ratio for disadvantaged children but left

the parental income gradient unaffected. The same pattern emerges when estimating mobility

trends for subpopulations often emphasized in the public debate on social mobility, such as

children in single parent households or children of parents with low levels of formal education.

Second, we document substantial geographical variation in our social mobility measures

across German states, cities and local labor markets. For example, the top-bottom gap in

the probability of attaining an A-Level degree is approximately 20 percentage points larger in

Bremen than in Hamburg, two city states in north-west Germany approximately 100 kilometers

apart. Interestingly, we also find significant and meaningful differences within states. For

example, the top-bottom gap is approximately 8 percentage points larger in Cologne than in

Duesseldorf, two large cities in North Rhine-Westphalia located approximately 40 kilometers

apart. Similarly, the share of children obtaining an A-Level from the bottom quintile of the

income distribution is 8 percentage points smaller in Nuremberg than in Munich, two large

cities in Bavaria. We consider this noteworthy, as education policies, which the prior literature

has suspected to be a key determinant of mobility, vary mainly at the state level in Germany.

Third, we show that observable household characteristics are not suited to explain the

variation in mobility measures across local labor markets. This is important as, abstracting from

estimation uncertainty, differences in our mobility measures can arise either due to structural

differences between places or due to systematic sorting of different households into different

local labor markets. Which answer prevails has important implications for the usefulness of

place-based policies intended to promote social mobility, a topic of ongoing debate in the

academic literature. The census data employed in this paper contains rich information on the

structure and characteristics of households, allowing us to directly test the importance of sorting
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by conditioning on an extensive set of household characteristics. We find that the mobility

ranking between local labor markets is largely unchanged when conditioning on household

characteristics, indicating that sorting is unlikely to explain the observed regional differences.

In addition, we provide mobility statistics for population subgroups and explore which

regional characteristics are most predictive of our mobility estimates. We find that parental

education is highly predictive of the educational opportunities of children, highlighting the fact

that the interpretability advantages of income based measures of parental background come

at the cost of missing information that could be used to characterize social mobility more

comprehensively. In our prediction exercise, we find that local labor market conditions, social

characteristics and the quality of local schools are best suited to predict our mobility statistics.

The remainder of this paper is structured as follows. Section 2.2 discusses the related

literature and relevant aspects of the German institutional framework. In Section 2.3, we

describe our data and measurement strategy. Section 2.4 presents our results at the national

level. Our regional estimates, including our analysis of local labor markets, are presented in

Section 2.5. Section 2.6 concludes.

2.2 Related Literature and Institutional Background

2.2.1 Related Literature

The study of social mobility has a long tradition in economics, sociology and educational

research. Across disciplines, efforts to understand and describe the association between the

opportunities of children and their parents’ socioeconomic status have been made. Since op-

portunities are difficult to measure, empirical studies of social mobility have generally aimed

at the joint distribution of outcomes, with different disciplines emphasizing different outcomes.

While early sociological studies focused on occupational transitions between generations, educa-

tional research studied intergenerational correlations in educational attainment. In economics,

the most common measure of social mobility is the intergenerational elasticity of (lifetime) earn-

ings (IGE), which can be derived from standard intergenerational life-cycle models of human

capital accumulation (cf. Becker and Tomes, 1986; Zimmerman, 1992; Solon, 1992; Mazumder,

2005). Since estimates of the IGE are sensitive to non-linearities and measurement issues at

the bottom of the income distribution, recent empirical work relies on rank-rank correlations in

lifetime income (Dahl and DeLeire, 2008; Chetty et al., 2014) to produce more robust mobility

statistics. A major step forward in terms of data quality has been achieved by Chetty et al.

(2014), who were able to obtain linked administrative tax records. The sample size of this study
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allowed the authors to produce reliable estimates of rank-rank correlations across regions in the

US, opening up the field for new strategies aimed at understanding the causes of social mobility

(cf. Chetty and Hendren, 2018a; Chetty and Hendren, 2018b). This approach was recently

replicated for other countries, including Italy (Acciari et al., 2019), Switzerland (Chuard and

Grassi, 2020), Canada (Corak, 2020) and Australia (Deutscher and Mazumder, 2020).

While measures of social mobility based on the joint distribution of lifetime incomes are

attractive, as they allow for easy cross-country comparisons and have a natural interpretation

in terms of consumption, they have important limitations. First, since they rely on estimates

of children’s lifetime income, they are only feasible for relatively old birth cohorts, as reliable

estimates of lifetime income require data on children’s earnings in the age range 30-40. Thus,

such measures are not suited to investigate relatively recent developments in social mobility.

Second, since individuals value non-monetary qualities of jobs (cf. Kalleberg, 1977; Mottaz,

1985; Kalleberg, 2011) and parental income is documented to be positively associated with

the non-monetary compensation that children receive from their work (cf. Boar and Lashkari,

2021), measures based on the joint distribution of incomes may overestimate the degree of inter-

generational mobility. Finally, large-scale linked tax data are not available in many countries.

Thus, in such countries, mobility measures based on the joint distribution of incomes can only

be estimated with sufficient precision at the aggregate level, preventing further analysis of time

and geographic variation that is possibly informative about the determinants of social mobility.

For example, in Germany, it is not possible to link individual tax returns. For that rea-

son, most empirical evidence on income mobility is based on the German Socio Economic

Panel (GSOEP), the German counterpart of the Panel Study of Income Dynamics (PSID).

Like the PSID, the GSOEP provides detailed information about child outcomes and parental

background, but suffers from a small sample size. In the GSOEP it is therefore not possible

to document time trends or more fine-grained geographical variation in social mobility with

a sufficient degree of statistical confidence. Schnitzlein (2016) shows that existing estimates

of the national IGE based on the GSOEP are sensitive to small variations in sampling cri-

teria, resulting in a wide range of plausible estimates. It is therefore not surprising that the

empirical evidence regarding the level of social mobility in Germany is mixed. Studies that

investigate intergenerational income mobility in the GSOEP include Eisenhauer and Pfeiffer

(2008), Riphahn and Heineck (2009), Eberharter (2013) and Bratberg et al. (2017). These

studies typically find a higher level of income mobility in Germany as compared to the US, and

lower levels of mobility in East than in West Germany, albeit with high statistical uncertainty.
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Our measurement approach circumvents the data requirements imposed by life-cycle bias

concerns by focusing on children’s educational opportunities, while retaining the interpretability

advantages of income based measures of parental socioeconomic status. This allows us to draw

on the German census data, providing us with the statistical power necessary to conduct a

more comprehensive study of social mobility in Germany.1 2

A similar approach was followed by Hilger (2015) for the US, who reports mobility statistics

based on census data that measure the association between children’s years of schooling and

parental income. However, while we also rely on the co-residency of children and their parents,

the outcome studied in Hilger (2015) manifests much later in life, when most children have

already left the parental household, exacerbating sample selection concerns that necessitate an

imputation procedure. Focusing on the years of schooling is necessary in the US context, as

almost all children attend academic high school programs. In contrast, the German system

of secondary education is separated in an academic and a vocational track, making it better

suited for a census based analysis of social mobility as we outline below.

2.2.2 Institutional Background

The salient feature of Germany’s system of secondary education is early age tracking, where

only the successful completion of the highest track results in the award of an A-Level degree

(Abitur), which grants direct access to the tuition-free national university system.

After finishing the four-year elementary school around the age of 10, children are allo-

cated into one of three tracks.3 While the highest track, the Gymnasium (grades 5-12/13),

provides general academic education that aims to prepare children for college, the lower two

tracks (grades 5–9/10) provide vocational training with a focus on preparing students for an

apprenticeship. In contrast to the US, where only a small share of students attends vocational

schools, around 50% of children in Germany are enrolled in a vocational program. The rigor of

the tracking system is mediated by the possibility to switch tracks and academic components

in the curricula of vocational programs. In particular, it is common that academically talented

students from the vocational track switch to the general high track or attend a specialized high

track after they finish their vocational degree when they are around 16 years old.

1A less comprehensive version of the German Census data has previously been used to document differences
in the intergenerational correlation in educational attainment between East and West Germany (cf. Riphahn
and Trübswetter (2013) and Klein et al. (2019)).

2The idea to rely on educational outcomes of children that can be measured early in life has recently been
popularized in a small but growing literature on social mobility in developing countries (cf. Alesina et al., 2021;
Asher et al., 2020 Muñoz, 2021).

3In the states of Berlin and Brandenburg, elementary school lasts six years. The number of vocational tracks
varies over time and between states, with some states having adopted a single vocational track design.
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Since the early educational careers of children have important consequences for the choices

available to them at later stages, and early track choices are heavily influenced by parental

characteristics (cf. Dustmann, 2004), the German institutional framework4 is particularly suited

to study social mobility through the lens of educational opportunities. The importance of

track choices for social mobility is reinforced by the fact that almost all primary and secondary

schools as well as universities are state-funded, mostly based on student headcounts, resulting

in a comparatively large equality in the endowments and quality between different schools and

universities. While the exact implementation of the education system can vary across regions,

as the responsibility for the education system falls under the jurisdiction of the 16 German

states, there are only minor differences in the state provided financing and there are no legal

differences between the educational qualifications obtained in different states. In particular,

the Standing Conference of State Education Secretaries has the stated goal to ensure a high

degree of comparability of educational qualifications across German states and there are no

legal differences between the A-Level degrees issued from different states.

The tracking system of secondary education is complemented by a system of dual education

that combines apprenticeships in a company and vocational education, integrating school-based

learning with company-based practice. The apprenticeships are standardized across the coun-

try, preventing large disparities by school or company, and offer occupation-specific practical

knowledge and training of skills that allow children to directly enter a specific occupation. Ap-

prenticeships offer a popular pathway into the labor market, and many young adults choose

to enter vocational programs despite being eligible for further study. While typically not a

strict requirement, the A-Level constitutes a beneficial factor for obtaining vocational training

in many popular white-collar occupations (Klein et al., 2019).

In consequence, the A-Level degree is by far the most important qualification in the German

education system and individuals who obtain it enjoy substantially above-average economic

outcomes. Using data on full-time workers aged 30-45, we find an A-Level wage premium

of 42% for monthly net income.5 This estimate mirrors Schmillen and Stüber (2014) who

report a 44% A-Level wage premium for total gross lifetime earnings. An A-Level degree is

also associated with a lower risk of being unemployed (Hausner et al., 2015) and a higher life

expectancy (Gärtner, 2002) and marks an important sign of social distinction in the German

4A more detailed description of the German tracking system and track switching in Germany can be found
in Biewen and Tapalaga (2017) and Dustmann et al. (2017).

5The A-Level wage premium is estimated using the waves 1997-2018 of the German Mikrocensus (described
in the next section) by regressing the log of net monthly personal income of full-time workers aged 30-45 on an
A-Level indicator, as well as a set of age and year indicators to implicitly account for job experience.
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society. Overall, this illustrates that, for children in Germany, the A-Level degree is a compelling

measure for their social and economic opportunities.

2.3 Data and Measurement Strategy
Our analysis is based on data of the German Microcensus (Mikrozensus, hereafter MZ), a

large-scale annual representative survey of the German population administered by the Federal

Statistical Office of Germany. The MZ is comparable to, but more detailed than, the American

Community Survey and constitutes the largest survey program of official statistics in Europe.

The survey was first administered in West Germany in 1957 and includes East Germany since

1991. It contains individual level data on a wide range of topics, including family status

and linkage within the household, citizenship, labor market participation, income as well as

information on educational activities and attainment for all members of the sampled households.

The MZ survey has several features that make it particularly suited for our research ques-

tion. First, it allows us to reliably match children to their parents as long as they are still

registered at their parents’ household. This is because, by law, it is compulsory for individuals

living in Germany to register at their household and the sampled households are obliged to pro-

vide information on every person registered at their respective household. Second, it contains

fine-grained information on the location of households and is sufficiently large to permit the es-

timation of mobility statistics for single cohorts and regions. Moreover, since its inception, the

survey was continuously improved and its institutional embeddedness and design offer several

advantages over comparable national surveys as we outline below.

Sampling Design. Each year, a randomly selected 1% sample of the persons and households

in Germany is asked to participate in the survey. By law, participation is mandatory for mem-

bers of the selected households, which remain in the survey for at most four subsequent years.

The primary sampling units consist of clusters of neighbouring buildings and all households

belonging to a sampled cluster are interviewed. The non-response rate is approximately 3%.6

Each year, one quarter of the initially sampled clusters are replaced by new clusters, resulting

in partial overlap of sampling units. The detailed nature of the questionnaire together with the

low non-response rate and partial panel dimension of the data allow us to mitigate measurement

and sample selection concerns often brought forward in the context of survey data.

6The non-response rate is driven by households that could not be reached and residents in shared accomoda-
tions (cf. Statistisches Bundesamt, 2018), which we exclude from our sample. Appendix 2.A contains additional
information on the survey and sampling design of the MZ.
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2.3.1 Variable Definitions

Measuring Opportunities of Children. Motivated by the importance of the A-Level de-

gree for children’s future educational and labor market opportunities in the German institu-

tional framework, we measure opportunities by a binary variable Yi that is equal to one if a

child has obtained, or is on track to obtain, a degree that is equivalent to an A-Level, and zero

otherwise. Specifically, our outcome variable is equal to one if (i) a child has obtained a degree

that qualifies for tertiary education7 or if (ii) a child is enrolled in the last 2-3 years of a track

which leads to such a degree at the successful completion of school.8 In the following, we refer

to this outcome as an A-Level degree and characterize intergenerational mobility in terms of

the conditional probabilities of obtaining an A-Level degree for children of different parental

backgrounds.

Our outcome definition takes into account three considerations. First, while the MZ survey

is conducted on a rolling basis, A-Level degrees are typically awarded in the second quarter of

the calendar year. Back of the envelope calculations suggest that, if we only count children who

have already obtained an A-Level degree, we would miss-measure our outcome for around 40%

of the graduating cohort in each survey year. Second, since the share of children failling the

final examination in a given year is low9, including upper stage students allows us to capture

children that can reasonably be expected to obtain an A-Level degree but rotate out of the

survey before they do so. Finally, including younger children disproportionately increases our

sample size, as younger children are more likely to live with their parents. Table 2.1 displays

the share of children living with at least one parent by age of the child, calculated from our

data. In our data, virtually all children younger than 15 still live with at least one parent.

However, the share of children co-residing with their parents is decreasing with child age with

steep drops after the legal age of 18. While 92% of 18 year olds are living with at least one

of their parents, this fraction drops to 44% for individuals at the age of 23. In Section 2.3.3,

we discuss how the co-residency and move-out patterns observed in the MZ data affect the

interpretation of our results.

7We classify educational qualifications as equivalent to an A-Level if they grant access to the tuition-free
national university system. This includes Allgemeine Hochschulreife (Abitur), Fachgebundene Hochschulreife
and Fachhochschulreife.

8The MZ data contains information on the type of school and grade level attended by all sampled children.
Our definition subsumes all students on Allgemeinbildende Schulen enrolled in the Gymnasiale Oberstufe as
well as students from specialized tracks like Berufliches Gymnasium or Fachoberschule which award an A-Level
degree.

9The national average failure rate is approximately 3 percent on average for the years 2010-2020. For an
overview of the share of children failing the final examination see https://www.kmk.org/dokumentation-statistik/
statistik/schulstatistik/abiturnoten.html.
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Table 2.1: Co-Residence Rate by Child Age

Child Age 15 16 17 18 19 20 21 22 23
Share Living with Parents 0.99 0.98 0.97 0.92 0.84 0.72 0.62 0.52 0.44

Notes: This table reports the fraction of individuals which live in the same household as at least one of their
parents in the MZ waves 1997 to 2018 by age at observation.

Measuring Parental Background. We measure parental background by a household’s self-

reported monthly net income, excluding the income of all dependent children. Our income mea-

sure covers all sources of income, including labor income, business profits and social security

transfers. To account for differences in the structure of costs encountered by households of dif-

ferent compositions, we scale all household incomes by the OECD-modified equivalence scale.10

Following Dahl and DeLeire (2008) and Chetty et al. (2014), we then compute the households’

percentile ranks in the sample distribution11 of equivalized household income, and assign each

child the rank of their respective household, which we refer to as the parental income rank Ri.

We emphasize that our aim is not to estimate some causal effect of relative parental in-

come on children’s educational attainment. Instead, our measure intends to capture relative

advantages in family circumstances of some children relative to others in a fashion that al-

lows for the construction of robust and easy to interpret mobility statistics. To that end,

parental income ranks are conceptually attractive, as the relevance of financial resources and

costly enrichment activities for different aspects of child development is widely recognized and

there exists empirical evidence of significant disparities in child-related expenditures across

the income distribution in Germany. Table 2.2 reports estimates of monthly child-related ex-

penditures in different categories based on data of the 2018 Income and Consumption Survey

(EVS) for dual parent households with single children in the top and bottom decile of the na-

tional income distribution. The estimates reveal substantial gaps in monthly expenditures on

child-enrichment activities in categories such as education, health as well as culture and leisure

activities, suggesting that parental income ranks are a suitable measure of parental background

for the construction of mobility statistics in Germany. Our approach of computing parental

income ranks based on the sample distribution of equivalized household income reflects the idea

10In Appendix 2.B, we show that the choice of the scaling factor is not influential for our results at the
aggregate level. However, the quality of the linear approximation to the empirical CEF of our A-Level indicator
conditional on parental income ranks is improved when computing ranks based on equivalized incomes.

11In Appendix 2.B.1, we provide additional information on the sample income distributions and details on
the construction of our rank variable.
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that we want to capture a household’s available resources for child-related expenditures.

Table 2.2: Monthly Child-related Expenditures of Single Child Households

Category Total Education Health Food Culture Mobility Other
Top Decile 1212 83 113 156 205 85 244
Bottom Decile 424 28 11 104 47 29 65
Ratio 2.85 2.96 10.27 1.5 4.36 2.93 3.75

Notes: This table reports estimates of the monthly child-related expenditures in Euro of dual parent, single
child households in the top and bottom decile of the German national income distribution for different
expenditure categories. The data is reported in the 2018 Income and Consumption Survey (EVS) of the
German Federal Statistical Agency (Statistisches Bundesamt, 2021).

The measure of household income provided in the MZ data that we use to compute the

parental income ranks has two important limitations. First, it is not asked directly in the

survey, but imputed by the Statistical Office. The survey respondents report their personal

income in 24 predefined bins, as well as their household’s total net income. While the top bin is

defined only by a lower bound, all other bins are defined by half open intervals. The bins were

updated over time to account for changes in the income distribution such that less than 1% of all

households fall into the top bin. The right-skewed shape of the income distribution is reflected

by increasing bin-widths (Statistisches Bundesamt, 2019). The Statistical Office transforms

the personal binned income into a continuous variable, essentially randomizing individuals

uniformly within each bin. In a second step, these values are summed up to a continuous

measure of household income. Our rank computations are based on an equivalized version of

the imputed household income. We divide the household’s total income by the sum of weights

assigned to each member of a household. The first person in each household is assigned a weight

of 1. Each additional member above the age of 14 is assigned a weight of 0.5. Children below

the age of 14 are assigned a weight of 0.3, yielding a measure of income that takes into account

differences in the household’s size and composition. Second, since the underlying bin data is

self-reported, it is likely subject to misreporting. As a consequence, our rank computations are

based on a measure of household income that is subject to two types of measurement error.

While the measurement error induced by the imputation procedure is independent of household

characteristics and thus has well understood statistical implications, we can not rule out that

the errors due to self-reporting are systematically related to household attributes, with less

obvious implications for the statistical properties of our mobility statistics. In Section 2.3.3,

we discuss to what extent we can address and mitigate these measurement issues.
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2.3.2 Mobility Statistics

The central building block of all mobility statistics reported in this paper are estimates of the

conditional probability of attaining an A-Level degree for children with parental income rank

in a given set A, E[Yi|Ri ∈ A]. Consequently, all estimands are descriptive, in the sense that

all uncertainty about our mobility statistics stems only from the fact that we do not observe

the full population of Germany.

Following the recent literature, we define two sets of mobility statistics with the aim to

distinguish between two mobility concepts: absolute and relative mobility. While measures of

absolute mobility are informative about the level of opportunities for disadvantaged children,

relative mobility measures seek to capture differences in opportunities between children of

disadvantaged backgrounds relative to those of more advantaged backgrounds.

Absolute Mobility. Our preferred measure of absolute mobility is the probability of obtain-

ing an A-Level degree for a child from the bottom quintile of the parental income distribution:

Q1 = E(Yi|Ri ≤ 20). (2.1)

We refer to this estimand as the Q1 measure and estimate it by its sample analogue Q1. A

high value of the Q1 measure implies high absolute mobility, as it indicates that a large share

of disadvantaged children are eligible to enter the university system.

Relative Mobility. In contrast, relative mobility measures are concerned with differences in

opportunities between children from low-income families relative to children from high-income

families. A simple measure of relative mobility is the Q5/Q1 ratio:

Q5/Q1 = E(Yi|Ri > 80)
E(Yi|Ri ≤ 20) , (2.2)

which captures the odds ratio of obtaining an A-Level degree for children from the top quintile

relative to those in the bottom quintile of the parental income distribution. A high value of

the Q5/Q1 ratio implies low relative mobility. For example, a ratio of Q5/Q1 = 2 means that

children from the top quintile of the income distribution are twice as likely to obtain an A-Level

degree as children from the bottom quintile of the income distribution. We estimate the Q5/Q1

ratio by its sample analogue Q5/Q1.
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Parametric Mobility Statistics. In order to produce precise estimates of the conditional

probabilities underlying the above mobility statistics using sample analogues, it is necessary to

observe sufficiently many children of parents in the relevant regions of the income distribution.

While this is not a concern for estimates at the national or state level, where sufficiently many

observations are available, producing precise estimates in smaller subsets of the data, such as

single cities or regions, is challenging.

An important feature of our data that we rely on to produce informative estimates for such

partitions is that the empirical conditional expectation function, Ê[Yi|Ri], of our outcome given

the parental income rank can be well approximated by a linear function in various partitions of

our data. As a consequence, we can use a parsimonious parametric model to extrapolate towards

regions with few observations and characterize mobility in terms of the model parameters.

Formally, we do so by approximating the respective conditional expectation function (CEF) by

its best linear predictor, which is defined as

θ = arg min
θ

E[(Yi − Z ′
iθ)2],

with Zi = (1, Ri)′ and θ = (α, β). In practise, we estimate the model parameters by running an

OLS regression of our outcome indicator on the parental income rank variable. If the CEF is

linear, the model parameters have a natural interpretation in terms of conditional probabilities:

The intercept α corresponds to the probability of attaining an A-Level degree for children from

the bottom of the income distribution, while the slope coefficient β measures the gap in the

probability of obtaining an A-Level between the children at the top and the bottom of the

income distribution. As such, they represent meaningful measures of absolute and relative

mobility. We refer to the slope coefficient as the parental income gradient and report estimates

of β × 100, which captures the gap in percentage points, for improved readability.

While the ”true” CEFs are unlikely to be exactly linear, our parametric mobility statistics

provide meaningful approximations that can be estimated with sufficient precision to allow for

meaningful comparisons. In the results section of this paper, we provide evidence that the

empirical CEF is close to linear in many different partitions of the data, which, in our view,

together with complimentary evidence, lends credence to the parametric mobility statistics we

report for our regional analysis in Section 2.5, where we rely heavily on the parental income

gradient to characterize regional relative mobility. In Section 2.3.3, we explain how we quantify

the uncertainty associated with our estimates.
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2.3.3 Sample Definition and Limitations

In our analysis, we use the MZ survey waves from 1997 to 2018, for which a consistent definition

of all relevant variables is available.12 Our primary sample contains all sampled children aged

17 to 21 which are observed in the same single-family household as at least one of their parents.

The age range is chosen to balance the following trade-off: For older children, our outcome is

measured more precisely, i.e. we do not need to rely on upper-stage enrollment but are more

likely to observe the completed degree. At the same time, the fraction of children in our sample

that has already moved out of the parental household, and thus can not be matched to their

parents, increases with age, which guides our choice for the upper bound. The lower bound is

chosen to account for track switching, as children enrolled in the final stage of an A-Level track

are typically at least 17 years old.

Sample Selection. An immediate concern caused by the observed move-out patterns in the

MZ data relates to the representativeness of our sample. If the observed move-out decisions

were systematically related to parental income and the educational attainment of children, the

external validity of our estimates would be undermined, in the sense that our statistics would

not measure social mobility in the general population of interest. An advantage of the MZ

survey is that the partial panel dimension of the data set allows us to investigate the empirical

plausbility of such concerns. While we acknowledge that dependencies of this type are generally

plausible, we do not find evidence of sample selection in our data. Figure 2.1 displays the share

of observed move-outs of children by parental income rank for the subsample of households

in our data that is observed in the survey in multiple years. It shows that move-outs occur

uniformly across the income distribution and are thus uncorrelated with the parental income

rank. This can also be seen in Table 2.3, which documents how time-constant characteristics

of the children in our sample change with the age at observation. The average parental income

and the associated income rank of children in the age range 17-21 are essentially constant. Over

the full age-range, we find that females and children of parents with an A-Level degree tend

to move out at earlier ages. While this exercise suggests that sample selection is not a major

concern for our analysis, we also demonstrate in the next section that choosing alternative age

ranges barely affects our results at the aggregate level.

12For our national and regional estimates, we restrict our sample to the survey waves 2011-2018 (230,000
children) to produce recent mobility statistics and avoid ambiguities caused by a series of administrative reforms
that changed county boundaries. The mobility statistics by birth cohort reported in Section 2.4.2 are computed
based on the observed children of the 1980-1996 birth cohorts (526,000 children).
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Figure 2.1: Move-out Frequency by Parental Income Rank
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Notes: This figure shows the relative frequency of move-outs of children younger than 21 by parental income
rank. It is computed using the subset of households observed in the survey more than once.

Table 2.3: Average Characteristics of Children by Age at Observation

Child Share Mean Parental Parental Share Parents
Age Female Income (Equiv.) Income Rank with A-Level
13 0.49 1153 47 0.35
14 0.49 1127 45 0.34
15 0.49 1167 47 0.34
16 0.49 1161 46 0.33
17 0.49 1244 50 0.33
18 0.48 1245 50 0.32
19 0.47 1245 50 0.32
20 0.44 1239 50 0.31
21 0.42 1243 50 0.31
22 0.41 1162 46 0.31
23 0.39 1174 46 0.30

Notes: This table reports average attributes of children in the MZ waves 1997 to 2018 that are observed in the
same household as at least one of their parents by age at observations. The ranks are computed based upon
the sample distribution of equivalized household income as described in Section 2.3.1.
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Measurement Error. A second concern relates to the quality of the data underlying our

estimates. While the accuracy of the information on educational activities and qualifications

underlying our outcome variable is documented (Schimpl-Neimanns, 2006), the information on

household income reported in the MZ data is subject to measurement error as explained in

Section 2.3.1. Our measurement approach reflects concerns regarding the quality of the MZ

income data in that we rely on rank-based measures of social mobility, documented to have

favorable bias properties in the presence of measurement errors relative to other approaches

(Nybom and Stuhler, 2017). Moreover, we demonstrate that our results do not change when

we compute income ranks based on multi-year averages as explained below.

Life-cycle Bias. As discussed in Section 2.3.2, our definition of household income does not

seek to capture lifetime income but the household resources available for enrichment activities

during childhood. In our baseline, we therefore compute parental income ranks based on the

earliest observed household income. To the extent that parental incomes fluctuate from year

to year due to transitory income shocks, our estimates could overstate mobility. To address

this issue, we again exploit the partial panel dimension of our data to compute multi-year

averages of parental income before assigning ranks. We demonstrate below that our results are

insensitive to this procedure. While such fluctuations could affect our rank computations, our

education-based measure of opportunities does not suffer from life-cycle biases. In contrast to

traditional measures that rely on the labor market incomes of children, such as the IGE, we

can therefore study recent birth cohorts without compromising the quality of our estimates.

Standard Errors. The standard errors reported alongside our estimates in the results section

of this paper abstract from the fact that we estimate the cutoffs defining the percentile ranks.

For our parametric mobility statistics, we report Liang-Zeger standard errors (Liang and Zeger,

1986) clustered at the level of the sampling district, the primary sampling unit of the MZ. The

standard errors reported alongside our estimates of the quintile measures are based on the

variance of the sample averages in the respective subsamples, effectively treating our data as a

simple random sample. For the Q1 measure, we report the standard error of the corresponding

sample average of outcomes. For the Q5/Q1 ratio, we report plug-in standard errors based on

a ”delta method argument”, that is we linearize the ratio of averages which yields the following

approximation for the variance of the sampling distribution of the Q5/Q1 sample ratio

V (Q5/Q1) ≈ 1
(Q1)2

V (Q5) +
[

Q5
Q1

]2

V (Q1)− 2Q5
Q1Cov(Q5, Q1)

 .
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2.4 National Estimates
We begin our empirical analysis by characterizing social mobility at the national level. Figure

2.2 shows the share of children with an A-Level degree by parental income rank in our data,

as well as the best linear approximation to the empirical CEF. As can be seen, a linear model

provides a reasonable approximation to the empirical CEF, a regularity that we observe in

essentially all considered partitions of our data.

Figure 2.2: Social Mobility at the National Level
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Notes: This figure shows the fraction of children aged 17-21 that are either enrolled in the upper stage of an
A-Level track or have already attained an A-Level degree by the percentile rank of their parents in the national
income distribution based on the MZ waves 2011-2018, as well as the best linear approximation to the empirical
CEF. The reported slope coefficient of 0.0052 (SE 0.004) is estimated by OLS using the underlying individual
level data, with LZ standard errors clustered at the level of the primary sampling unit.

In the national data, we estimate the parental income rank gradient at β × 100 = 0.52, implying

a gap of roughly 50% in the probability of obtaining an A-Level degree between children from

the top and the bottom of the income distribution. Our preferred measure of absolute mobility

in the national data suggests that roughly one third of the children from the bottom quin-

tile of the income distribution complete an A-Level degree, with Q1 estimated at 0.34. Both,
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parametric and nonparametric mobility statistics imply that the odds ratio in the probability

of obtaining an A-Level degree between children from the top quintile relative to the bottom

quintile is greater than 2, with Q5/Q1 estimated at 2.24. Consistent with our discussion of

sample selection concerns and measurement issues in Section 2.3.3, we find that our estimates

are robust to variations of the age restriction defining our sample, as well as the computation

of income ranks based on multi-year averages of parental income, as shown in Table 2.4.

Table 2.4: National Mobility Estimates

Age Gradient Q1 Q5 Q5/Q1 A-Level
Share

N

17-21 0.52 0.34 0.76 2.24 0.52 230,972(0.004) (0.002) (0.002) (0.007)

Averaged 0.52 0.34 0.77 2.26 0.52 230,972(0.004) (0.003) (0.003) (0.010)

17 0.53 0.31 0.71 2.30 0.49 53,324(0.007) (0.005) (0.004) (0.016)

18 0.51 0.34 0.76 2.26 0.54 51,278(0.007) (0.005) (0.004) (0.014)

19 0.51 0.35 0.76 2.20 0.53 46,747(0.008) (0.005) (0.004) (0.015)

20 0.51 0.35 0.76 2.20 0.53 42,396(0.008) (0.005) (0.005) (0.016)

21 0.52 0.35 0.76 2.20 0.53 37,227(0.008) (0.005) (0.005) (0.017)

Notes: This table reports our national mobility statistics for different age restrictions with corresponding
standard errors in parentheses. The upper panel corresponds to our primary sample. The rows in the lower
panel report analogous estimates for samples containing only children of a given age at measurement, as indicated
in the first column. The standard errors are computed as described in Section 2.3.3.

Do these estimates depict Germany as a country of high or low relative mobility? While a

cross-country comparison of our results is not straightforward, as the German system of upper

secondary education and university funding is rather peculiar, we are aware of two US studies

which report comparable mobility statistics. Using data from the Census 2000, Hilger (2015)

reports a parental income rank gradient of 3.6 percentage points in attending college for children

aged 19-21. A higher point estimate is reported in Chetty et al. (2014), who estimate the rank

gradient in college enrollment at 6.7 percentage points for children aged 18-21 based on tax

registry data. Under the assumption that college enrollment conditional on having obtained an

A-Level degree is weakly increasing in parental income ranks, our estimate of 5.2 percentage
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points implies a college enrollment gradient that falls into the range of point estimates reported

for the US. Abstracting from differences in the distributions of college quality and the selection

of students of different parental backgrounds into colleges of different quality, our estimates

suggest that educational mobility, as we measure it, in Germany is similar to the US. We

consider this finding noteworthy, as (after tax) income inequality is more pronounced in the

US than in Germany, suggesting that one should expect steeper rank gradients in the US. Our

finding contrasts with cross-country comparisons in relative income-mobility, which typically

report higher levels of relative mobility in Germany, highlighting the conceptual difference

between income and education based measures of social mobility. Similar results were obtained

by Landersø and Heckman (2017), who find that Denmark, a society that is characterized by

high levels of income mobility, is similar to the US in terms of measures of educational social

mobility.

2.4.1 Subgroup Estimates

A natural question to ask is whether our national estimates mask meaningful differences in our

mobility measures across subpopulations. Table 2.5 reports our mobility statistics for selected

subsamples of our data defined by discrete attributes of children and their households contained

in the MZ survey.

We document a few interesting patterns. Most importantly, we find substantial differences

by parental education. Figure 2.3 displays the A-Level share of children by parental income

rank and the associated parental income gradient separately for children from households where

no parent has an A-Level degree (a) and for children from households where at least one parent

has an A-Level degree (b). We find that the A-Level share amongst children of parents without

an A-Level degree at the top of the income distribution is comparable to the A-Level share

amongst children with at least one A-Level educated parent at the bottom of the income distri-

bution. The conditional rank gradients are attenuated due to the positive correlation between

parental education and income ranks with point estimates of approximately 0.3 in both groups,

narrowing the top-bottom gap from approximately 50% to around 30%. Roughly speaking, the

empirical conditional distribution for children of A-Level educated parents is shifted upwards

by approximately 30 percentage points, uniformly across ranks. The intergenerational correla-

tion in A-Level attainment in our data is 0.54. This finding highlights that the interpretability

advantages of income-only based measures of parental background come at the cost of missing
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Table 2.5: Mobility Statistics for Subgroups

Attribute Subgroup Gradient Q1 Q5 Q5/Q1 A-Level Share N

No A-Level 0.33 0.28 0.55 1.94 0.39 145,892Parental (0.005) (0.002) (0.005) (0.023)
Education A-Level 0.29 0.61 0.84 1.36 0.75 85,080(0.006) (0.006) (0.002) (0.012)

Single Parent 0.50 0.34 0.72 2.13 0.47 50,622Parenting (0.008) (0.003) (0.007) (0.031)
Status Two Parents 0.54 0.34 0.76 2.26 0.54 179,715(0.004) (0.003) (0.002) (0.021)

Not Married 0.47 0.33 0.69 2.11 0.46 51,018Parents (0.007) (0.003) (0.007) (0.030)
Married Married 0.54 0.35 0.77 2.21 0.54 172,999(0.007) (0.003) (0.003) (0.024)

Gender
Male 0.53 0.29 0.72 2.49 0.47 123,649(0.005) (0.003) (0.003) (0.027)

Female 0.50 0.40 0.81 2.02 0.58 107,323(0.008) (0.003) (0.003) (0.019)

Native 0.54 0.32 0.76 2.35 0.55 164,018Migration (0.004) (0.002) (0.002) (0.020)
Background Migrant 0.48 0.36 0.75 2.11 0.50 60,908(0.006) (0.003) (0.006) (0.029)

Region
West Germany 0.50 0.34 0.76 2.19 0.52 201,684(0.004) (0.002) (0.002) (0.016)

East Germany 0.60 0.40 0.81 2.02 0.51 29,288(0.009) (0.005) (0.006) (0.049)

Siblings
Yes 0.54 0.35 0.79 2.29 0.52 156,960(0.004) (0.003) (0.003) (0.018)

No 0.50 0.32 0.72 2.27 0.52 74,012(0.006) (0.004) (0.003) (0.034)

Birth Order

First Child 0.51 0.34 0.76 2.22 0.53 165,336
(0.004) (0.003) (0.002) (0.019)

Second Child 0.52 0.34 0.77 2.27 0.51 56,996
(0.007) (0.004) (0.004) (0.031)

Later Child 0.57 0.31 0.78 2.48 0.45 8,640
(0.017) (0.008) (0.015) (0.076)

Notes: This table reports estimates of our relative and absolute mobility measures for selected groups of children
observed in the MZ survey waves 2011-2018, for which a consistent definition of the attributes used to partition
the sample is available. Parental marital status indicates if both parents are married. Migration background
subsumes all individuals who immigrated to Germany after 1949, as well as all foreigners born in Germany and
all individuals born in Germany with at least one parent who immigrated after 1949 or was born in Germany as
a foreigner. The standard errors reported in parentheses below each point estimate are computed as described
in Section 2.3.3.
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Figure 2.3: Empirical Distribution by Parental Education
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Notes: This figure shows the fraction of children aged 17-21 observed in the MZ survey waves 2011-2018 that are
either enrolled in the upper stage of an A-Level track or have already attained an A-Level degree by the parental
income rank, separately for children of parents who have not obtained an A-Level degree (a) and children of
parents where at least one of the parents has obtained an A-Level degree (b) as well as the corresponding best
linear approximations to the empirical CEFs. The reported estimates of the parental income gradient are based
on the underlying micro data. Standard errors are reported in the first panel of Table 2.5.

observable attributes of households that could be used to characterize social mobility more

comprehensively. The estimates reported in Table 2.5 reveal a few more interesting discrepan-

cies. We find that, at the bottom of the income distribution, females and children of migrants13

are approximately 11 and 4 percentage points more likely to obtain an A-Level degree than

their respective male and native counterparts. While the gender-gap is roughly constant across

the income distribution, the difference between migrant and native children vanishes in the

top-quintile. Moreover, we document larger income rank gradients for children of married and

cohabiting couples, as well as natives and children living in East Germany. The East-West gap

in parental income gradients is approximately 0.1, implying a 10 percentage points larger top-

bottom gap in the probability of attaining an A-Level degree in East Germany as compared to

West Germany. We investigate such regional patterns in our mobility measures in more detail in

Section 2.5. Figure 2.B.4 in Appendix 2.B displays the empirical CEF for all subgroups, show-

ing that the linearity assumption underlying our parental income gradient estimates provides

a reasonable approximation to our data.

13In the MZ, migrants are defined as all individuals who immigrated to Germany after 1949, as well as all
foreigners born in Germany and all individuals born in Germany with at least one parent who immigrated after
1949 or was born in Germany as a foreigner.
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2.4.2 Time Trends

A second interesting question to ask is how our mobility measures have evolved over time. While

our descriptive approach does not allow us to attribute changes in mobility measures to specific

policies, our measurement strategy enables us to provide novel evidence on the evolution of so-

cial mobility in Germany for relatively recent birth cohorts. The period we study is particularly

interesting, as it covers the second half of the arguably most significant educational reform in

post-war Germany, the ”Bildungsexpansion”, a large-scale policy of expanding upper secondary

and higher education that, starting in the early 1970s, increased the A-Level share from around

20% to approximately 50% for the birth cohorts since the mid 1990s. This expansion was a

policy response to a heated public debate on social mobility (cf. Dahrendorf, 1965) and the

increasing importance of education for economic growth (cf. Picht, 1964) at the time (Hadjar

and Becker, 2006). We ask whether the large-scale expansion of upper-secondary education in

Germany was accompanied by changes in social mobility as defined by our mobility measures.

To this end, we focus on a sample of 526,000 children born between 1980-1996.14 At the

time of writing, the children of the respective birth cohorts are 25-40 years old and constitute

a significant part of the German working population. Including relatively young cohorts in our

analysis is feasible, as our education-based measure of opportunities, in contrast to traditional

measures that rely on the labor market incomes of children, does not suffer from life-cycle

biases. Figure 2.4 depicts the evolution of the A-Level share amongst 17-21 year old children in

the MZ data for the birth cohorts under consideration. For the considered cohorts, the A-Level

shares in our data closely mirror those reported in the official school statistics, suggesting that

our sample is representative.

As shown in Figure 2.4, our data covers roughly the second half of the expansion, with an

observed increase in the A-Level share of around 15% from 39% for the 1980 birth cohort to 53%

for children born in 1996. Figures 2.5 and 2.6 display the estimates of our mobility measures for

the same cohorts. The figures document that, while the parental income gradient has remained

roughly constant at around 0.52, the point estimate that we report at the national level based

on more recent data, the odds ratio captured by the Q5/Q1 ratio decreased by approximately

one third, from around 3 for the 1980 birth cohort, to slightly above 2 for the 1996 cohort. At

the same time, absolute mobility as measured by the Q1 share increased substantially, from

approximately 0.22 in 1980 to 0.35 in 1996, which is similar to the share of around one third

14We restrict our attention to these cohorts to rule out that our estimates are affected by differences in the
distribution of age at measurement. For the considered cohorts, the share of 17, 18-, 19-, 20- and 21-year-olds
in our data is constant.
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Figure 2.4: A-Level Share by Cohort 1980-1996
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Notes: This figure shows the fraction of children born between 1980 and 1996 and observed at ages 17-21 that
are either enrolled in the upper stage of an A-Level track or attained an A-Level degree in the MZ data. The
shaded area depicts pointwise 95% confidence intervals computed as described in Section 2.3.3.

for children from the bottom quintile of the income distribution on track to an A-Level degree

reported in Section 2.4.1 based on more recent cohorts. The same overall pattern emerges when

estimating mobility trends by the subgroups studied in Section 2.4.1 as we report in Figures

2.B.6 and 2.B.5 in the Appendix.

The picture that emerges is best summarized by Figure 2.7, which depicts the A-Level

share by quintile across birth cohorts: The Bildunsexpansion took place uniformly across the

income distribution with increases of about 14 percentage points in the A-Level share in all

parts of the distribution from the 1980 cohort to the 1996 cohort. Did the Bildunsexpansion

achieve its goal of fostering social mobility in Germany? While the expansion unquestionably

increased absolute mobility as we measure it, the question whether relative mobility increased

or remained stagnant since 1980 depends on the measure. While the attenuation of the Q5/Q1

odds ratio caused by the uniform increases in A-Level shares suggests an increase in relative

mobility according to a proportional notion of the concept, the unaltered top-bottom gap in

the probability of attaining an A-Level captured by the parental income gradient emphasizes

stagnation in absolute differences. Since both, absolute and relative disparities often form the

normative basis for interventions, both readings are justifiable.
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Figure 2.5: Parental Income Gradient by Cohort 1980-1996
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Notes: This figure shows the evolution of our estimates of the parental income gradient by birth cohort. The
shaded area depicts pointwise 95% confidence intervals computed based on LZ standard errors as described in
Section 2.3.3.

Figure 2.6: Quintile Measures by Cohort 1980-1996
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Notes: This figure shows the evolution of our estimates of the quintile based measures of social mobility by birth
cohort. While the left axis corresponds to the Q5/Q1 ratio, the right axis corresponds to the Q1 measure. The
shaded areas depict pointwise 95% confidence intervals computed based on the standard errors of the underlying
sample averages as described in Section 2.3.3.
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Figure 2.7: A-Level Share by Cohort Quintile 1980-1996
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Notes: This figure shows the share of children born between 1980 and 1996 who obtained an A-Level degree by
birth cohort and quintile of the parental income distribution in the MZ data. The shaded areas depict pointwise
95% confidence intervals computed based on the standard errors of the underlying sample averages as described
in Section 2.3.3.

2.5 Regional Estimates
An interesting empirical observation documented in the recent empirical literature on social

mobility is that there exists substantial geographic variation in social mobility measures within

politically homogenous entities, suggesting that within comparisons can be used to gain a

better understanding of the causes of social mobility (cf. Chetty et al., 2014; Acciari et al.,

2019; Corak, 2020; Deutscher and Mazumder, 2020; Chuard and Grassi, 2020). This idea is

appealing, as attributing discrepancies in social mobility to differences in single characteristics

or policies of otherwise heterogeneous entities is difficult to justify. Complementary to well-

designed evaluations of political reforms that rely on within variation across time (e.g. Bertrand

et al., 2021), geographic variation can be helpful in understanding the causal mechanisms

fostering or impeding social mobility by identifying exposure effects (cf. Chetty and Hendren,

2018a; Chetty and Hendren, 2018b). Moreover, pronounced regional differences can suggest

mechanisms that warrant investigation. Understanding the sources of regional variation is

also relevant for policy makers, as the efficiency of place-based programs designed to foster

social mobility locally depends on whether the local differences are driven by amendable place

characteristics or the composition of local households, a topic of ongoing academic debate.
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The regional analysis conducted in this section is motivated by these considerations. In

a first step, we present evidence of meaningful geographic variation in our mobility measures

across regions in Germany. In a second step, we then ask what we can learn from the observed

differences. We structure our regional analysis by disaggregating our data in a stepwise fashion,

lending credence to our parametric mobility statistics while taking into account the political

and economic landscape of Germany.

2.5.1 States

A natural starting point for our regional analysis are the 16 federal states of Germany. This

is because, by constitutional law, the responsibility for the design and implementation of the

education system falls under the jurisdiction of the German states and not the federal gov-

ernment.15 As a consequence, state law-makers and the executive branch have considerable

discretion in the design of the state education systems, leading to distinctions in the rigor of

the tracking system, the capacities of each track, the types of schools and curricula as well as

examination standards and other important features of the education system. In particular,

the states differ with respect to the tracking age, that is the duration of primary school after

which all children are allocated into the different tracks, the number of tracks (2 or 3), as well

as the importance of teacher recommendations for admitted track choices. While in all states

teachers provide recommendations on the suggested track for each child at the end of primary

school, the track recommendations are binding in some states while other states allow parents

to freely choose tracks for their children. These parameters of the state education systems and

their suspected consequences for social mobility are often at the center of the public debate on

educational mobility in Germany.

Table 2.6 reports our mobility estimates for the 16 states, sorted by our point estimates of

the parental income gradient in ascending order. We document significant and economically

meaningful differences in both, absolute and relative mobility measures between states. For

example, the top-bottom gap in the probability of attaining an A-Level degree is approximately

20 percentage points larger in Bremen than in Hamburg, two city states in north-west Germany

approximately 100 kilometers apart. Similarly, the share of children obtaining an A-Level degree

from the bottom quintile of the parental income distribution is 10 percentage points larger in

Baden-Wuerttemberg than in Bavaria, the two southmost states of Germany. The table also

15These differences do not extend to the A-Level degree. The Standing Conference of State Education
Secretaries has the stated goal to ensure a high degree of comparability of educational qualifications across
German States and there are no legal differences between the A-Level degrees issued from different states.
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Table 2.6: Social Mobiliy at the State Level

State Gradient Q1 Q5 Q5/Q1 A-Level Number of Tracking Binding
Share Tracks Grade Teacher Rec.

Hamburg (HH) 0.45 0.43 0.80 1.85 0.60 2 5 No(0.026) (0.017) (0.014) (0.082)

Rhineland-Palatinate (RP) 0.50 0.36 0.76 2.11 0.53 2 5 No(0.015) (0.009) (0.009) (0.064)

North Rhine-Westphalia (NW) 0.51 0.41 0.82 2.02 0.59 3 5 R(0.007) (0.005) (0.014) (0.024)

Hesse (HE) 0.52 0.39 0.81 2.07 0.59 3 5 R(0.012) (0.008) (0.014) (0.047)

Baden-Wuerttemberg (BW) 0.52 0.34 0.76 2.25 0.53 3 5 R(0.009) (0.006) (0.005) (0.045)

Saarland (SL) 0.53 0.33 0.74 2.27 0.54 2 5 R(0.032) (0.019) (0.021) (0.145)

Schleswig-Holstein (SH) 0.53 0.32 0.76 2.35 0.52 2 5 No(0.019) (0.012) (0.011) (0.094)

Lower Saxony (NI) 0.55 0.29 0.73 2.54 0.48 3 5 No(0.010) (0.006) (0.007) (0.060)

Bavaria (BY) 0.55 0.25 0.67 2.72 0.42 3 5 Yes(0.009) (0.006) (0.005) (0.064)

Berlin (BE) 0.56 0.39 0.85 2.19 0.59 2 7 No(0.017) (0.010) (0.010) (0.064)

Brandenburg (BB) 0.57 0.36 0.84 2.35 0.60 2 7 R(0.022) (0.016) (0.012) (0.109)

Saxony-Anhalt (ST) 0.57 0.25 0.72 2.82 0.43 2 5 R(0.028) (0.014) (0.021) (0.175)

Saxony (SN) 0.61 0.27 0.78 2.85 0.48 2 5 Yes(0.002) (0.011) (0.013) (0.124)

Mecklenburg-Vorpommern (MV) 0.63 0.25 0.76 3.01 0.45 2 5 No(0.034) (0.016) (0.025) (0.214)

Bremen (HB) 0.64 0.32 0.86 2.65 0.55 2 5 No(0.036) (0.019) (0.023) (0.176)

Thuringia (TH) 0.65 0.25 0.76 3.07 0.46 2 5 Yes(0.026) (0.014) (0.019) (0.185)

Notes: This table reports estimates of our relative and absolute mobility measures for each federal state of
Germany based on all children observed in the MZ survey waves 2011-2018. The standard errors reported in
parentheses below each point estimate are computed as described in Section 2.3.3. The states are sorted in
ascending order by the point estimate of the parental income gradient. The classification of the state education
systems is based on the description of educational reforms in Helbig and Nikolai (2015). The entry ”R” in
the last column indicates that teacher recommendations were reformed during the time period relevant for our
analysis. The reforms of teacher recommendations relevant for the birth cohorts in our sample were conducted
as follows: North Rhine-Westphalia (NW): binding until 1997, non-binding until 2006, then binding until 2010,
and non-binding since. Hesse (HE): non-binding since 1993. Baden-Wuerttemberg (BW): non-binding since
2011. Saarland (SL): non-binding until 2000, then binding until 2009, then non-binding. Brandenburg (BB):
binding since 2007. Sachsen-Anhalt (ST): non-binding until 2005, then binding, then non-binding since 2012.
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reiterates the east-west gap documented in Section 2.4.1: with the exception of Bremen, the

five least mobile states are all located in East Germany.

While we find that the differences in our measure of absolute mobility can be well explained

by differences in the states’ A-Level shares, that is the relative capacity of the highest track,

there is no clear pattern in our estimates with respect to the aforementioned characteristics

of the state education systems displayed in the last three columns of the table. Our findings

suggest that, while certainly important, the design of the tracking system is not suited to

explain the pronounced differences in our mobility measures between states.

Figure 2.C.1 shows that the estimated differences are not driven by differences in the shape

of the empirical CEFs by displaying the rank-binned data underlying our state-level estimates.

While we observe some degree of convexity in Bavaria and to a smaller extent in Baden-

Wuerttemberg, we find that the linearity assumption underlying our parametric mobility esti-

mates is supported by the data.

2.5.2 Cities

A similar picture emerges when we restrict our analysis to urban regions of Germany. Table

2.7 reports our mobility estimates for the 15 largest labor markets of Germany, consisting of

cities and their catchment areas as defined by commuting flows.

On average, the largest urban regions of Germany show lower levels of relative, but higher

levels of absolute social mobility (and A-Level shares), as compared to the national estimates

reported in Table 2.4. At the same time, the table shows that the regional differences ob-

served at the state-level can also be found within states. For example, the top-bottom gap

is approximately 8 percentage points larger in Cologne than in Duesseldorf, two large cities

in North Rhine-Westphalia (NW) located approximately 40 kilometers apart. Similarly, our

estimates of absolute mobility differ by 8 percentage points between Nuremberg and Munich,

two large cities in Bavaria (BY). The most striking discrepancy between cities in our data is

observed for Hamburg and Leipzig, with a difference of approximately 20 percentage points in

the estimated top-bottom gap, as well as 15 percentage points in our estimate of the Q1 mea-

sure. Figure 2.8 displays our raw data for the two cities. Similar to the previously considered

partitions of our data, we find that the empirical CEFs are reasonably well approximated by

a linear function. Overall, our city-level findings suggest that the (relative) opportunities of

(disadvantaged) children can differ meaningfully across politically similar and geographically

close regions of Germany. Figure 2.C.2 shows the empirical CEFs for each urban labor market.
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Table 2.7: Social Mobility in the 15 Largest Urban Labor Markets

City State Gradient Q1 Q5 Q5/Q1 A-Level Share

Hamburg HH 0.47 0.41 0.79 1.94 0.58(0.019) (0.013) (0.010) (0.071)

Duesseldorf NW 0.47 0.45 0.84 1.87 0.65(0.023) (0.018) (0.012) (0.080)

Muenster NW 0.47 0.47 0.84 1.78 0.62(0.032) (0.023) (0.018) (0.096)

Gelsenkirchen NW 0.50 0.40 0.80 2.01 0.57(0.027) (0.015) (0.019) (0.090)

Stuttgart BW 0.50 0.34 0.75 2.19 0.55(0.018) (0.013) (0.009) (0.080)

Bonn NW 0.50 0.44 0.86 1.94 0.65(0.028) (0.021) (0.013) (0.096)

Duisburg NW 0.51 0.42 0.84 2.02 0.58(0.025) (0.016) (0.015) (0.085)

Frankfurt HE 0.52 0.42 0.83 1.97 0.62(0.019) (0.015) (0.009) (0.071)

Munich BY 0.54 0.31 0.71 2.32 0.53(0.019) (0.016) (0.009) (0.124)

Dortmund NW 0.55 0.40 0.86 2.16 0.59(0.025) (0.016) (0.015) (0.095)

Cologne NW 0.55 0.38 0.85 2.25 0.60(0.021) (0.015) (0.012) (0.094)

Hanover NI 0.56 0.30 0.76 2.51 0.53(0.027) (0.018) (0.016) (0.155)

Berlin BE 0.56 0.39 0.85 2.20 0.59(0.016) (0.010) (0.009) (0.064)

Nuremberg BY 0.60 0.23 0.70 3.01 0.43(0.028) (0.018) (0.018) (0.246)

Leipzig SN 0.68 0.26 0.80 3.11 0.48(0.034) (0.021) (0.024) (0.266)

Notes: This table reports estimates of absolute and relative mobility for the 15 largest urban local labor markets
in Germany, as measured by their total population in 2017, based on the MZ waves 2011-2018. The local labor
markets are sorted in ascending order by the point estimate of the parental income gradient. Standard errors are
computed as described in Section 2.3.3. The point estimates for the city-states can differ from those reported
in Table 2.6, as the urban labor markets typically also include surrounding towns and villages.
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Figure 2.8: Mobility in Hamburg and Leipzig
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(a) Hamburg (HH)
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(b) Leipzig (SN)

Notes: This figure shows the fraction of children aged 17-21 observed in the MZ survey waves 2011-2018 that are
either enrolled in the upper stage of an A-Level track or have already attained an A-Level degree in Hamburg
(a) and Leipzig (b), as well as the best linear approximation to the empirical CEF. Standard errors are reported
in Table 2.7.

2.5.3 Local Labor Markets

With the aim to learn more about the regional variation in mobility measures across Germany,

we disaggregate our data once more to the level of 258 local labor markets (LLMs).16 The

258 LLMs represent aggregations of counties based on commuting flows, comparable to the

commuting zones in the US, and provide a geographic partition of Germany into areas in which

people live and work. As such, the properties of local labor markets likely influence the decisions

of households and the opportunities of children. With the exceptions of five local labor markets

(Bremen, Bremerhaven, Hamburg, Mannheim and Ulm), all counties aggregated into LLMs

belong to a single federal state.

While disaggregating our data to the LLM level allows us to ask several interesting questions,

it makes it substantially harder to distinguish meaningful variation from noise. Figure 2.9

displays the frequencies of the numbers of children observed by local labor market in bins of

100 observations. The median number of children in our sample (observations) per LLM is

552 (mean: 895). The lowest number of observations across all LLMs is 100 (LLM Sonneberg)

and the largest number of observations is 8159 (LLM Stuttgart). In the following, we present

our LLM level results using maps of Germany. In Appendix 2.C.4 we show analogous maps,

16We assign households to the LLM of their current place of main residence as reported in our data.
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aggregated to the level of spatial planning regions, a higher-level aggregation of commuting

zones, which demonstrate that the general patterns are not driven by noise.

Figure 2.9: Histogram of the Number of Observations by Local Labor Market
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Notes: This figure shows the frequencies of number of children (observations) by local labor market in bins of
100 observations in the MZ waves 2011-2018.

Regional Patterns in Absolute Mobility. We begin our local labor market-level analysis

by studying the regional variation in our absolute mobility estimates. Figure 2.10 shows the

A-Level Share (a) and our estimates of the Q1 measure (b) in each of the 258 LLMs. As

indicated by the legends, red areas correspond to regions with low, and blue areas to regions

with high values of the respective statistic. For both statistics, state-level clusters are clearly

visible. Panel (a) shows that the A-Level share is uniformly higher in the local labor markets

of states with high average A-Level capacities, such as North Rhine-Westphalia or Hesse. In

line with our city-level estimates, we find that across Germany, cities typically demonstrate

higher A-Level shares than the surrounding local labor markets. Comparing the two panels

demonstrates that, unsurprisingly, our measure of absolute mobility is closely linked to the local

A-Level share. Consequently, we observe lower levels of absolute mobility in regions with low

A-Level shares, such as Bavaria. Overall, there is substantial variation in absolute mobility.

In some regions, less than 15% of children from the bottom quintile of the national income

distribution obtain an A-Level degree, whereas in other regions this number exceeds 50%. We

find that 42% of the variation in the Q1 measure and 57% of the variation in the A-Level share

can be attributed to state level differences. In Table 2.C.1 we report the correlations between

our mobility estimates.
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Figure 2.10: A-Level Share and Q1 Measure by Local Labor Market
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Notes: This figure presents heat maps of the estimated A-Level shares (a) and Q1 measures (b) by local labor
market. Bold black lines indicate state borders. Children are assigned to local labor markets according to their
place of residence at observation. The estimates are based on children aged 17-21 in the MZ waves 2011-2018.

Regional Patterns in Relative Mobility. While the variation in our absolute mobility

measure can be well explained by state A-Level shares, the regional patterns in our estimates

of relative mobility are less obvious. Figure 2.11 presents a heat map of our parental income

gradient estimates.17 Blue areas represent areas of high mobility (low gradients), whereas

red areas indicate less mobile regions. The interpretation of the displayed regional patterns

is complicated by the fact that our LLM-level gradient estimates are estimated less precise

than the sample averages displayed in Figure 2.10. However, we document a few interesting

regularities. First, in line with our state-level estimates, LLMs in the former GDR (East

Germany) typically exhibit lower levels of relative mobility. Second, urban labor markets are

typically adjacent to clusters of more relatively mobile rural labor markets. Moreover, we find

multiple clusters of local labor markets with similar estimated levels of relative mobility within

each (non-city) state. In contrast to our estimates of absolute mobility, some of the observed

17The corresponding heatmap for the Q5/Q1 ratio is displayed in Figure 2.C.3 in the Appendix.
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Figure 2.11: Parental Income Gradient by Local Labor Market
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Notes: This figure presents a heat map of our estimates of the parental income gradient by local labor market.
Children are assigned to labor markets according to their current place of residence. The estimates are based
on MZ waves 2011-2018. The estimate of the parental income gradient is obtained as the slope coefficient of a
regression of the A-Level indicator on a constant and the parental income rank, multiplied by 100, as described
in Section 2.3.2.

clusters extend beyond state borders. In some rural labor markets, the parental income gradient

is estimated below 0.3, whereas in the least mobile areas the gradient exceeds 0.8. While these

differences in point estimates can partially be driven by noise, the evidence we present in Figure

2.C.4 in Appendix 2.C shows that a similar pattern emerges when aggregating data to the level

of spatial planning regions. Our maps demonstrate that there exists substantial variation in

relative mobility estimates across local labor markets in Germany as a whole, as well as within

individual states. The LLMs with the highest gradient (Lichtenfels) and the lowest gradient

(Mühldorf) are both located in Bavaria but similar disparities exist in other states.
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Sorting What can we learn from the estimated regional differences across local labor markets?

A first potential insight relates to the debate on the potential of place-based mobility policies.

An active literature argues that places shape economic outcomes and that place-based policies

can be an effective and cost-efficient tool to improve outcomes by amending local conditions (cf.

Kline and Moretti, 2014; Neumark and Simpson, 2015). In the context of educational policies

and social mobility, it is often argued that the government should allocate additional resources

to the local public school systems of socially immobile regions to enhance mobility. However,

such a policy is unlikely to achieve its objective if social mobility in the respective regions

is low for reasons other than the quality of local schools. For example, if a region exhibits

a high degree of inequality in parental educational attainment, the patterns we document in

Section 2.4.1 would likely result in low levels of relative mobility as measured by the parental

income gradient. Such systematic sorting mechanisms are at the center of the academic debate

regarding the interpretation of the regional differences in estimated mobility measures within

countries. For example, for the US, Rothbaum (2016) and Gallagher et al. (2019) suggest that

a substantial share of the geographical variation in the intergenerational mobility measures

reported in Chetty et al. (2014) can be explained by differences in household characteristics

across commuting zones. Unfortunately, this can not be directly tested in the administrative

tax data used in Chetty et al. (2014), as it contains only limited information on household

characteristics.

In contrast, the German census data allows us to test whether regional differences are

muted when we account for household characteristics. We do so by computing conditional rank

gradients, which we then compare to the corresponding regional parental income gradients.

The set of conditioning variables that we use for this exercise are the discrete attributes that

we used for our subgroup analysis in Section 2.4.1.18 Figure 2.12 panel (a) plots the marginal

distributions of conditional and unconditional rank gradients. It shows that the CDF of the

unconditional gradient first order stochastically dominates the CDF of the conditional gradient,

which is expected given the patterns documented in Table 2.5. At the same time, the variance

of the distribution of conditional rank gradients is approximately the same as the variance of

the unconditional gradient. While this suggests that sorting does not play a major role, the

same pattern would emerge if our regional estimates were dominated by noise, in the sense that

the between local labor market variation in gradients was negligible relative to the estimation

uncertainty. However, as displayed in panel (b), we find that the relative ordering of gradients

18In contrast to Section 2.4.1, we include four categories of parental education and do not include the East-
West indicator.
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Figure 2.12: Sorting: Conditional and Unconditional Rank Gradients
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(b) Scatter Plot

Notes: Panel (a) plots the Cumulative Distribution Function (CDF) of our estimates of the conditional and
unconditional parental income gradients across local labor markets. Panel (b) shows a scatter plot of our
estimated conditional and unconditional rank gradients for each local labor market as well as their linear fit.

is unaffected by conditioning, which strongly suggests that regional sorting of households can

not explain the regional variation in relative social mobility as we measure it. Conditional

and unconditional gradients are strongly correlated, with a Pearson correlation of 0.91 and

a Spearman rank correlation 0.89. In Appendix 2.C.5 we show that our regional results on

relative mobility are unaffected if we compute rank gradients based on the state or regional

income distribution.

Predictors of Mobility The local labor market-level estimates of our mobility statistics fur-

ther allow us to characterize mobile regions by conducting a prediction exercise. To this end, we

construct a database of 71 regional indicators with information on labor market participation,

economic conditions, infrastructure, demographics, housing and living conditions, as well as

indicators on the local educational institutions and social characteristics. Table 2.C.2 lists all

regional indicators as well as their respective sources.

In order to obtain an optimal set of regional mobility predictors, we rely on a Random

Forest based measure of variable importance.19 The set of the 15 most informative predictors

19There are several ways to compute a Random Forest based measure of variable importance. We choose
the implementation proposed by Strobl et al. (2008), which computes a conditional permutation importance
measure that accounts for the dependence structure between the predictors. We split our data in a training
and test data set (75-25 split) and fit 1000 trees, randomly selecting 72/3 = 24 variables for each split. The
Random Forest algorithm predicts 38% of the variation in the testing data (R2 = 0.38).
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is displayed in Table 2.8.20 The last column of the table displays the sign of the bivariate

correlation between each variable and the parental income gradient. A positive sign implies

that the indicator is predictive for low relative mobility (a high gradient). For example, LLMs

with a high prevalence of school dropouts are associated with low relative mobility. Overall,

Table 2.8: The 15 Most Informative Predictors of Relative Mobility

Variable Importance Measure ρ

School Dropout Rate 0.85 +
Share Married 0.60 −
Teenage Pregnancies 0.42 +
Students 0.39 −
Median Income Vocational Qualification 0.18 −
Broadband Availability 0.17 +
Distance to Next College 0.15 −
Unemployment Rate 0.14 +
Gender Wage Gap 0.14 +
Share without Vocational Qualification 0.13 −
Gini Parental Income 0.08 −
Share Marginal Employment 0.07 −
Share Children 0-2 in Childcare 0.07 +
Share Social Assistance 0.07 +
Share on Vocational A-Level Track 0.07 −

Notes: This table lists the optimal predictive set of 15 regional indicators for the local labor market parental
income gradient estimates, as chosen by a Random Forest based measure of variable importance. The last
column shows the sign of the Pearson correlation coefficient between each variable and the estimates of the
parental income gradient.

our selection procedure highlights social characteristics, the local organization of the education

system and labor market conditions.21 For example, local labor markets with a high prevalence

of school dropouts are associated with low relative mobility. The same applies to the share

of teenage pregnancies, the prevalence of child poverty and the share of individuals which are

dependent on social assistance. All these indicators point to comparatively disadvantaged social

contexts in these labor markets, consistent with social capital based explanations of regional

disparities in mobility. Other variables like the access to broadband internet or the distance to

the next university are less straightforward to interpret. In our view, the findings reported in

Table 2.8 support the view that our measurement approach, despite its descriptive nature, is

20The ranking of the selected predictors varies for different implementations of the Random Forest algorithm.
We are therefore cautious not to over-interpret the ranking between single predictors.

21In Table 2.C.3, we report analogous results obtained by conducting our prediction exercise seperately for
the 129 largest and smallest local labor markets. Reassuringly, similar sets of predictors are selected.
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able to detect meaningful variation in regional mobility patterns and we hope that future work

will be able to build on our analysis to shed light on the causal determinants of social mobility.

2.6 Conclusion
This paper proposes a measurement strategy for and provides novel empirical evidence on the

level, evolution and geography of social mobility in Germany. Our statistics characterize social

mobility by the association between children’s educational opportunities and their parents’

relative position in the national income distribution, allowing for the use of census data.

At the national level, we document that a 10 percentile increase in the parental income

distribution is associated with a 5.2 percentage point increase in the probability to obtain

an A-Level degree, implying a top-bottom gap of approximately 50 percentage points. This

gap remained stable for the 1980-1996 birth cohorts, despite a large-scale expansion of up-

per secondary education. We document substantial variation in our mobility measures across

regions of Germany, including within states, and show that regional differences in household

characteristics cannot account for these disparities. As such, our findings are consistent with

place-based rather than sorting-type explanations of geographical dispersion in mobility mea-

sures. Obtaining an optimal set of mobility predictors based on our disaggregated estimates,

we find that social characteristics, the local organization of the education system and labor

market conditions are best suited to predict our relative mobility estimates.
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Appendices to Chapter 2
2.A Additional Information on the Microzensus
The Microzensus (MZ) is the largest household survey in Europe. Conducted anually with

a sampling fraction of 1% of all individuals who have the right of residence in Germany, it

yields representative statistics on the German population. The MZ has been conducted in

West Germany since 1957 and in the new federal states (East Germany) since 1991. It is

planned and prepared by the Federal Statistical Office of Germany and carried out by the

statistical offices of the 16 German states. The legal basis of the MZ are the Federal Statistics

Law and the Microcensus Law, which make it compulsory for households to provide answers to

the core items of the survey. The non-response rate is further minimized by repeated visits of

interviewers to irresponsive households and multiple possible ways for the sampled households

to submit information.

Since 1972, the MZ uses a single-stage stratified cluster sampling design. The primary

sampling units typically consist of neighbouring buildings (larger buildings are divided into

smaller partitions). For the survey waves utilized in this paper, the target size for a cluster

is 7-15 households. All households and residents in the sampled clusters are interviewed. The

database used to assign households to clusters is created based on the most recent full census

and updated anually using information on new construction activities. Since 1977, each cluster

is assigned to a ”rotation quarter” that remains in the survey for four years. Each year, a

quarter is replaced by new clusters. The survey does not follow individuals who leave their

cluster, but replaces them by the new residents. The MZ survey design results in data best

described as a repeated survey with partial overlap of units as sketched in Figure 2.A.1.22

Figure 2.A.1: Illustration of the Microcensus Survey Design

Survey Wave
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...

1 2 3 4 5 6 7 ...

X X X ...

X X X .. .

X X X .. .

X X X .. .

... . . . . . . . . . . . . . . . . . . . . .

22For more information, see https://www.gesis.org/en/missy/metadata/MZ/ and the references listed there.
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2.B Additional Material: National Estimates

2.B.1 Sample Income Distribution and Ranks

Figure 2.B.1 displays the sample distributions of (equivalized) CPI-adjusted monthly household

net income in the 2011-2018 MZ data. We CPI adjust all household incomes in order to allow for

meaningful aggregation of survey-years before computing ranks. Ties are broken by allocating

households to the lower quantile. Our findings are insensitive to the choice of tie-breakers.

Figure 2.B.1: Equivalized Household Income by Percentile Rank
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Notes: This figure shows the distribution of (equivalized) CPI adjusted household incomes in the 2011-2018 MZ
data.

2.B.2 Alternative Equivalization Schemes

Figure 2.B.2 shows the national empirical CEF for the pooled data, as well as the corresponding

best linear approximation for income ranks computed based on the distribution of per-capita

(household size) adjusted household incomes (a) and unadjusted household incomes (b). The

figure illustrates that the linear approximation to the CEF improves when ranks are computed

based on equivalized income and that our estimates are not sensitive to the choice of the

equivalization scheme, that is whether we rely on the OECD-modified or a per capita adjustment

scheme.
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Figure 2.B.2: National Estimates under Different Equivalization Schemes
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Notes: This figure shows the empirical CEF and the corresponding best linear approximations when income
ranks are computed based on per-capita adjusted household income (a) or unadjusted household income (b).
The reported slope coefficients are obtained by OLS using the underlying micro data.
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2.B.3 A-Level Wage Premium 1997-2016

Figure 2.B.3 displays our point estimates for the A-Level wage premium based on the MZ data,

obtained by regressing the log of net monthly individual income of full-time workers aged 30-45

on an A-Level indicator in our data, separately for each survey year. The ”adjusted” point

estimate additionally conditions on age indicators to indirectly account for job experience.

Figure 2.B.3: A-Level Wage Premium, Years 1997-2016
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Notes: This figure shows the development of the A-Level wage premium for the years 1997-2016 as estimated
based on the MZ data. We compute the A-Level wage premium by regressing the log of net monthly personal
income of full-time workers aged 30-45 on an A-Level indicator. The adjusted A-Level wage premium is com-
puted by additionally conditioning on a set of age indicators to indirectly account for job experience.

2.B.4 Subgroup CEFs and Trends

Figure 2.B.4 displays the empirical CEFs as well as the best linear approximation to the em-

pirical CEFs for each subgroup discussed in Section 2.4.1. Figures 2.B.6 and 2.B.5 display our

estimates of the parental income gradients and A-Level shares by birth cohort for the same

subgroups. The figures illustrate that the linearity assumption underlying our parametric mo-

bility statistics provide a reasonable approximation to the data and that the stability of the

parental income gradient for the birth cohorts 1980-1996 holds for most subgroup with one

notable exception: the parental income gradient for children with A-Level educated parents

became more muted over time, although with high statistical uncertainty.
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Figure 2.B.4: Social Mobility for Subgroups
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Notes: This figure shows the empirical CEFs and the corresponding best linear approximations for each of the
subgroups discussed in Section 2.4.1 based on the MZ waves 2011-2018.
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Figure 2.B.5: Trends in Parental Income Gradients by Subgroups
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Notes: This figure displays our point estimates for the parental income gradient by birth cohort for the pop-
ulation subgroups discussed in Section 2.4.1 and the birth cohorts 1980-1996. The estimates are based on all
children belonging to the respective birth cohorts observed in the MZ data.
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Figure 2.B.6: Trends in A-Level Shares by Subgroups
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Notes: This figure shows the development of the A-Level share for different population subgroups for birth
cohorts 1980-1996 in the MZ. The A-Level share is given as the fraction of children aged 17-21 that are either
enrolled in the last two/three years of the A-Level track or already completed an A-Level degree.
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2.C Additional Material: Regional Estimates

2.C.1 State Level CEFs

Figure 2.C.1: Social Mobiliy at the State Level
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Notes: This figure shows the empirical CEFs and corresponding best linear approximations for each of the 16
German states based on the MZ waves 2011-2018. The point estimates and standard errors are reported in
Table 2.6. Children are assigned to a state based on the location of their household as reported in our data.
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2.C.2 City Level CEFs

Figure 2.C.2: Social Mobiliy in the 15 Largest Local Labor Markets
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Notes: This figure shows the empirical CEFs and corresponding best linear approximations for the 15 largest
local labor markets in Germany based on the MZ waves 2011-2018. The point estimates and standard errors
are reported in Table 2.7. Children are assigned to a local labor market based on the location of their household
as reported in our data.
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2.C.3 Q5/Q1 Ratio by Local Labor Market

Figure 2.C.3 displays the Q5/Q1 ratio by local labor market. Due to data privacy restrictions

we are unable to report the ratio for 6 local labor markets with insufficient number of children

observed in one of the two relevant quintiles of the income distribution. Note that, in contrast

to the maps reported in the main body of the paper, the colors indicate the quintile of the re-

spective LLM-level estimate in the distribution of estimates. The schema is chosen to account

for outliers with extreme values of the Q5/Q1 ratio induced by small denominators.

Figure 2.C.3: Q5/Q1 Ratio by Local Labor Market
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1.96 − 2.26
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2.67 − 3.30
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Insufficient Data

Notes: This figure presents a heat map of the Q5/Q1 ratio by local labor market. Children are assigned to
labor markets according to their place of residence at observation. The estimates are based on the MZ waves
2011-2018. The Q5/Q1 ratio is computed by dividing the share of children with an A-Level degree in the top
20% through the share of children with an A-Level degree in the bottom 20% of the parental income distribution.
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2.C.4 Mobility Estimates by Planning Region

The figures presented below display our mobility estimates for the 96 spatial planning regions

of Germany. Spatial planning regions (SPRs) are aggregations of commuting zones. The

median number of observations per spatial planning region is 1741 (mean: 2406). The maps

demonstrate that the geographic patterns documented and described in Section 2.5.3 can also

be found when estimation uncertainty is less of a concern.

Gradient by SPR Figure 2.C.4 presents SPR-level estimates of the parental income gradient.

Figure 2.C.4: Parental Income Gradient by Spatial Planning Region
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Notes: This figure presents a heat map of the parental income gradient for the 96 spatial planning regions of
Germany. Children are assigned to spatial planning regions according to their current place of residence. The
estimates are based on children aged 17-21 in the MZ waves 2011-2018.
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Q5/Q1 Ratio by SPR 2.C.5 presents SPR-level estimates of the Q5/Q1 Ratio. Note that,

in contrast to all other SPR-level maps, the colors indicate the quintile of the respective SPR-

level estimate in the distribution of estimates. The schema is chosen to account for outliers

with extreme values of the Q5/Q1 ratio induced by small denominators.

Figure 2.C.5: Q5/Q1 Ratio by Spatial Planning Region

1.45 − 1.96

1.96 − 2.26

2.26 − 2.67

2.67 − 3.30

3.30 − 12.60

Notes: This figure presents a heat map of the Q5/Q1 Ratio for the 96 spatial planning regions of Germany.
Children are assigned to spatial planning regions according to their current place of residence. The estimates
are based on children aged 17-21 in the MZ waves 2011-2018.
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Q1 Measure by SPR 2.C.6 presents SPR-level estimates of the Q1 Measure.

Figure 2.C.6: Q1 Measure by Spatial Planning Region
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Notes: This figure presents a heat map of the Q1 Measure for the 96 spatial planning regions of Germany.
Children are assigned to spatial planning regions according to their current place of residence. The estimates
are based on children aged 17-21 in the MZ waves 2011-2018.
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A-Level Share by SPR 2.C.7 presents SPR-level estimates of the A-Level share.

Figure 2.C.7: A-Level Share by Spatial Planning Region
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Notes: This figure presents a heat map of the A-Level share for the 96 spatial planning regions of Germany.
Children are assigned to spatial planning regions according to their current place of residence. The estimates
are based on children aged 17-21 in the MZ waves 2011-2018.
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2.C.5 Alternative Reference Distributions

Figure 2.C.8 displays the CDFs and scatter plots of our LLM-level point estimates for the

parental income gradient based on different reference distributions. The figure shows that

changing the reference distribution from the national to the state or regional distribution has

negligible impact on our point estimates, implying that regional differences are unlikely to be

driven by differences in the shape of marginal income distributions across local labor markets.

Figure 2.C.8: State and Region Specific Parental Income Ranks
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Notes: This figure displays the sensitivity of our LLM-level gradient point estimates with respect to the reference
income distribution. While the upper panels (a) and (b) compare gradients computed based on the national and
state income distributions, the bottom panels (c) and (d) compare the gradients obtained by computing income
ranks based on the national and regional income distribution. The reported slope parameters of 0.93 and 0.98
correspond to the OLS slope estimates obtained by regressing the gradients obtained using the respective local
ranks on the gradients obtained by using national income ranks.
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2.C.6 Correlation between Mobility Estimates

Table 2.C.1 reports the pairwise correlations between our point estimates of the local labor

market-level mobility measures, as well as the local A-Level share.

Table 2.C.1: Correlation between Mobility Statistics

Measure Corr. A-Level Q1 Q5/Q1 Gradient

A-Level ρ 1 - - -
r 1 - - -

Q1 ρ 0.75 1 - -
r 0.77 1 - -

Q5/Q1 ρ -0.39 -0.73 1 -
r -0.45 -0.84 1 -

Gradient ρ -0.03 -0.47 0.66 1
r -0.09 -0.49 0.77 1

Notes: This table reports the correlations between our estimates of the different measures of social mobility
across local labor markets. ρ denotes the Pearson correlation coefficient of two measures across local labor
markets and r denotes the Spearman rank correlation coefficient.

As discussed in the main body of the paper, the A-Level share is strongly correlated with the

Q1 measure. As a consequence of the approximate proportionality between the A-Level share

and the quintile shares, the Q5/Q1 ratio is negatively correlated with the A-Level share. In

contrast, there is little linear dependence between the A-Level share and the parental income

gradient, as the A-Level shares are sufficiently far from 0 and 1, so that there is little mechanical

correlation. Altogether, these correlations mirror our considerations regarding the time trends

in the previous section. While the A-Level share is strongly linked to the quantile measures,

its correlation with the parental income gradient is negligible.

2.C.7 Regional Indicators

Table 2.C.2 displays the 71 regional indicators that were used as predictors in the Random

Forest algorithm discussed in Section 2.5.3, as well as the respective data source. The data was

obtained as follows: In a first step, we retrieved data from the Federal Institute for Building,

Urban Affairs and Spatial Research (BBSR), which maintains the INKAR database of regional

indicators (https://www.inkar.de/). These data are collected from various government bodies

in Germany, including the German Statistical Office Destatis and the Institute for Employ-

ment Research (IAB). We select all indicators which we think may potentially be relevant for

mobility and are not too collinear to each other (for example, we do not include the general
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unemployment rate and the unemployment rates among males and females at the same time).

In a second step, we add data from Destatis publications with information on the share of

Gymnasium students among all secondary school students and compute the distance of the

geographical center of each LLM to the next college based on data from the website of the

Table 2.C.2: List of Regional Indicators

Category Variable Source

Labor Market

Unemployment Rate INKAR
Share Long Term Unemployed INKAR
Share Female Employees INKAR
Share Part Time Employees INKAR
Share without Vocational qualification INKAR
Share Marginal Employment INKAR
Share Employed in Manufacturing Sector INKAR
Apprenticeship Positions INKAR
Apprentices INKAR
Vocational School Students INKAR
Employees with Academic Degree INKAR
Commuting Balance INKAR
Hours Worked INKAR
A-Level Wage Premium MZ

Education

Students (before Tertiary Education) INKAR
Students (Tertiary Education) INKAR
Students (Universities of Applied Sciences) INKAR
School Dropout Rate INKAR
Highly Qualified Persons INKAR
Share Children 0-2 in Childcare INKAR
Share Children 3-5 in Childcare INKAR
Share of all Students Enrolled in Gymnasium INKAR
Share of all Secondary School Students Destatis

Enrolled in Gymnasium
Distance to Next College HRK
Distance to Next Elementary School INKAR
Share on Vocational A-Level Track MZ

Economy

GDP per Capita INKAR
Municipal Tax Revenues per Capita INKAR
Municipal Debt per Capita INKAR
Business Creation INKAR

Housing

Construction Land Prices INKAR
New Apartments INKAR
Building Permits INKAR
Living Area INKAR
Share of Apartment Buildings INKAR
Rent Prices INKAR
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Income

Median Household Income INKAR
Median Household Income with Vocational INKAR

Qualification
Gender Wage Gap INKAR
Child Poverty INKAR
Mean Household Income INKAR
Gini Household Income MZ
Expected Rank Difference Parental Income MZ
Mean Parental Income MZ
Gini Parental Income MZ
Ratio p85/p50 (Household Income) MZ
Ratio p50/p15 (Household Income) MZ

Infrastructure

Physician Density INKAR
Broad Band Availability INKAR
Passenger Car Density INKAR
Hospital Beds INKAR

Demographics

Average Age INKAR
Share Female INKAR
Share Foreigners INKAR
Share Asylum Seekers INKAR
Total Net Migration INKAR
Births Net of Deaths INKAR
Fertility Rate INKAR
Teenage Pregnancies INKAR
Life Expectancy INKAR
Child Mortality INKAR
Population Density INKAR
Share Single Parents MZ
Share Married MZ
Share Divorced MZ

Social

Voter Turnout INKAR
Vote Share CDU INKAR
Vote Share SPD INKAR
Share Social Assistance INKAR
Mean ISEI MZ
Gini ISEI MZ

Notes: This table displays all regional indicators considered for our analysis. The third column reports the data
source, which is either the INKAR database, the Statistical Office of Germany (Destatis), the Hochschulrek-
torenkonferenz (HRK) or the Mikrozensus (MZ).

Hochschulrektorenkonferenz (HRK; https://www.hochschulkompass.de/hochschulen/downloads.

html). In a third step, we compute additional statistics on the LLM level in the MZ data

like the Gini coefficient in household income, the local A-Level wage premium or the ISEI (an

international index of social status). We construct our final indicators as the time averages of

variables over the years 2011 to 2018 at the LLM level.
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2.C.8 Split Sample Predictors

Table 2.C.3 displays the set of predictors selected by the Random Forest algorithm discussed in

Section 2.5.3 when employed separately to our estimates for the 129 largest and smallest local

labor markets.

Table 2.C.3: Optimal Predictors of Relative Mobility by Size Category

Variable Importance Measure ρ

Panel (A): 129 Largest Local Labor Markets
School Dropout Rate 0.42 +
Gini Parental Income 0.23 −
Share Married 0.16 −
Share without Vocational Qualification 0.10 −
Students 0.09 −
Physician Density 0.09 +
Teenage Pregnancies 0.06 +
Mean Parental Income 0.06 −
Share Marginal Employment 0.06 −
Students (Universities of Applied Sciences) 0.05 −
Median Income Vocational Qualification 0.05 −
Distance to next Elementary School 0.03 −
Share Children 0-2 in Childcare 0.03 +
Child Mortality 0.03 −
Ratio p50/p15 0.03 −

Panel (B): 129 Smallest Local Labor Markets
School Dropout Rate 0.75 +
Unemployment Rate 0.45 +
Child Poverty 0.40 +
Students 0.40 −
Share Married 0.33 −
Teenage Pregnancies 0.33 +
Median Income Vocational Qualification 0.19 −
Gender Wage Gap 0.19 +
Share Social Assistance 0.18 +
Total Net Migration 0.12 −
Highly Qualified Persons 0.10 +
Broadband Availability 0.10 +
Share on Vocational A-Level Track 0.08 −
Building Permits 0.08 −
Share Apartment Buildings 0.07 +

Notes: This table lists the set of the 15 most predictive indicators for explaining between LLM variation in
our estimates of the parental income gradient, separately for the 129 largest (Panel A) and the 129 smallest
(Panel B) local labor markets. The last column shows the sign of the Pearson correlation coefficient between
each variable and our estimates of the parental income gradients.
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