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Abstract

High quality predictions are essential for informed decision-making. This holds especially
true in meteorology as weather phenomena can engender high socioeconomic cost. In
the past decades, the paradigm in weather prediction has shifted from point forecasts
to probabilistic forecasts providing a probability distribution aiming to capture the true
uncertainty of the prediction. Operationally, these probabilistic forecasts are generated
by ensembles consisting of multiple runs of numerical weather prediction systems that
differ in model formulations and/or initial conditions. Despite best efforts, the ensemble
forecasts can still be subject to biases and dispersion errors. Statistical postprocessing
corrects these systematic shortcomings and releases the full potential of the ensemble.
This work focuses on two aspects of statistical postprocessing: incorporating spatial
dependency structure into the probabilistic forecast and the choice of an adequate
training/verification set for the postprocessing model.

Many real-world applications of statistical postprocessing benefit from modeling of
dependencies – e.g. spatial, temporal or inter-variable. The majority of the pioneering
postprocessing approaches did not address this need. Here, we extend the well-established
postprocessing method Ensemble Model Output Statistics (EMOS) with a Gaussian
random field that models global predictive errors. Indicated by the characteristics
of the forecast errors, the covariance function of this random field is assumed to be
non-stationary, accounting for land-water differences in predictive ability and correlation
length. In case studies, we apply this spatial postprocessing methods to 2m temperature
forecasts by The Interactive Grand Global Ensemble (TIGGE), as well as the European
Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, and compare their
forecast skill to the reference standards ensemble copula coupling (ECC) and the Schaake
shuffle.

When employing statistical postprocessing methods, it is critical to choose ap-
propriate verification data to train and assess the methods. Observation sites are
non-homogeneously scattered across the globe, but yield truth data that are indepen-
dent of the prediction system. Covering the entire Earth on a grid, (re)analyses combine
past forecasts and observations and are available on the same spatio-temporal resolution
as the forecasting model. Here, we contrast the benefits of postprocessing at observation
sites to postprocessing against gridded reanalyses. In a case study, we apply EMOS to
2m ECMWF temperature forecasts, trained and assessed using both verification sets.
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Zusammenfassung

Qualitativ hochwertige Vorhersagen sind für eine fundierte Entscheidungsfindung uner-
lässlich. Dies gilt insbesondere in der Meteorologie, da Wetterphänomene hohe sozioöko-
nomische Kosten verursachen können. In den letzten Jahrzehnten hat sich das Paradig-
ma in der Wettervorhersage von Punktvorhersagen zu probabilistischen Vorhersagen
verlagert, welche versuchen die Unsicherheit der Vorhersage mit einer Wahrscheinlich-
keitsverteilung zu erfassen. Operativ werden diese probabilistischen Vorhersagen durch
Ensembles erzeugt, die sich aus mehreren Läufen von numerischen Wettervorhersage-
systemen mit unterschiedlichen Modellformulierungen und/oder Anfangsbedingungen
zusammensetzen. Trotz größter Bemühungen können die Ensemble-Prognosen nach
wie vor Verzerrungen und Dispersionsfehlern unterliegen. Statistische Nachbearbeitung
korrigiert diese systematischen Mängel und setzt so das volle Potenzial des Ensembles
frei. Diese Arbeit konzentriert sich auf zwei Aspekte der statistischen Nachbearbeitung:
die Einbeziehung räumlicher Abhängigkeitsstrukturen in die probabilistische Vorher-
sage und die Wahl eines geeigneten Datensatzes zum Trainieren und Verifizieren des
Nachbearbeitungsmodells.

In der statistischen Nachbearbeitung profitieren viele Anwendungen von der Mo-
dellierung der Abhängigkeitsstrukturen – z.B. räumliche, zeitliche oder inter-variable.
Die Mehrheit der grundlegenden Arbeiten auf diesem Gebiet adressierte diesen Be-
darf nicht. Hier kombinieren wir die etablierte Nachbearbeitungsmethode Ensemble
Model Output Statistics (EMOS) mit einem Gaußsches Zufallsfeld, um globale Vor-
hersagefehler zu modellieren. Aufgrund der Charakteristiken der Vorhersagefehler wird
angenommen, dass die Kovarianzfunktion dieses Zufallsfeldes nicht-stationär ist, um
Land-Wasser-Unterschiede in der Vorhersagefähigkeit und Korrelationslänge zu berück-
sichtigen. In Fallstudien wenden wir diese räumlichen Nachbearbeitungsmethoden auf
2m-Temperaturvorhersagen des Interactive Grand Global Ensemble (TIGGE) sowie des
Ensembles vom Europäischen Zentrum für mittelfristige Wettervorhersage (EZMW) an
und vergleichen ihre Vorhersagequalität mit den Referenzstandards Ensemble Copula
Coupling (ECC) und Schaake Shuffle.

Bei der Anwendung von statistischen Nachbearbeitungsmethoden ist es essenziell,
geeignete Verifikationsdaten zu wählen, um die Methoden zu trainieren und auszuwerten.
Beobachtungsstationen sind inhomogen über den Globus verteilt, liefern aber Daten,
die unabhängig vom Vorhersagesystem sind. Im Vergleich dazu werden durch Kombi-
nation von vergangenen Vorhersagen und Beobachtungen (Re-)Analysedaten erzeugt,
die in derselben räumlichen Auflösung wie das Vorhersagemodell verfügbar sind. Hier
vergleichen wir die Verbesserung durch statistische Nachbearbeitung an Beobachtungs-
stationen mit der gegenüber Reanalysedaten. In einer Fallstudie wenden wir EMOS
auf 2m-Temperaturvorhersagen des EZMW an, die mit beiden Verifikationsdatensätzen
trainiert und ausgewertet wurden.
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Chapter 1

Introduction

Information about the uncertainty of a prediction are essential for informed decision-
making. As weather phenomena have a high socioeconomic impact, adequate decisions
based on skillful forecasts are essential for humankind. Access to the uncertainty associ-
ated with the prediction enables individuals to improve the quality of their decisions, as
shown experimentally by Joslyn and LeClerc (2012). However, the predictive uncertainty
ought to be precise. Statistical postprocessing provides powerful tools to improve numer-
ical weather prediction (NWP) models by delivering skillful probabilistic forecasts. This
thesis focuses on two aspects of statistical postprocessing: modeling spatial correlation
of the probabilistic forecast and the selection of a suitable training/verification set for
the postprocessing model.

1.1 Temperature forecasts and ensembles

Accurate temperature forecasts are critical for a variety of applications – among others
power demand and generation. In an increasingly energy-demanding world, solar power
is a sustainable alternative to fossil fuel. In 2020, the share of solar power in German
electricity generation amounts to about 9%, making solar energy one of the fastest
growing renewable energy sources over the past years (Statistisches Bundesamt, 2021).
When collecting solar power, accurate weather predictions are essential to further extend
its utilization and improve the competitiveness of this energy source.

Here, we put the emphasis on medium-range predictions with lead times up to 15
days. Usually, forecasts at this scope are based on the output of NWP models, which use
physical representations to describe the atmospheric development based on its current
state. These models comprise sets of nonlinear partial differential equations for which
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CHAPTER 1. Introduction

no analytical solution exists. Instead, they are solved numerically on a global grid or
over certain spatial regions.

At the beginning of the 20th century, NWP originated when Bjerknes (1904) proposed
to describe the evolution of the atmosphere by a set of differential equations based on
the governing equations of fluid dynamics. The initial conditions for the differential
equations are provided by the current state of the atmosphere – namely observations
for various weather variables such as pressure, temperature and humidity. Two decades
later, Lewis Fry Richardson produced the first forecast in such manner by manually
computing a hindcast for 6-hours ahead surface pressure (Richardson, 1922). Although
the forecast was highly inaccurate and the calculation time far beyond the prediction
horizon (Lynch, 2006), his dream of a forecast factory was born in which a large number
of humans would produce weather forecasts by calculating the future state of the
atmosphere (Richardson, 1922).

This fantasy became tangible when mathematician John von Neumann proposed
to use computers for weather prediction. In 1950, the group led by meteorologist Jule
Charney at Princeton University, first successfully implemented dynamical weather
prediction models on the multi-purpose digital computer ENIAC and issued a prediction
for 500hPa geopotential height over North America (Lynch, 2008). Due to the advances
of computing power in the middle of the century, computation time reduced to less
than the forecast period itself and the first forecasting system went operational in 1954
(Harper et al., 2007). From here onward, NWP models have underwent tremendous
improvements in the following decades, which can be attributed to new atmospheric
models, increased computational capacity, and greater availability of observational data
for data assimilation.

Historically, weather prediction applied the concept by Bjerknes: A system of
differential equations is run forward in time to produce a deterministic forecast of
the future state of the atmosphere. This procedure however comprises two sources
of uncertainty (Leutbecher and Palmer, 2008): It is humanly impossible to perfectly
characterize the current state of the atmosphere required for the initial conditions.
Furthermore, the model formulation itself is based on approximations of highly complex
physical processes and can be subject to inaccurate numerical schemes. Thus uncertainty
quantification in NWP is inevitable.

Lorenz (1963) first challenged the deterministic approach to forecasting by demon-
strating that the solutions to a system of nonlinear differential equations are highly
sensitive to the initial conditions. Small differences in the current description of the
atmosphere, when run forward in time, can lead to strongly deviating solutions. Thus,
weather is an example of a deterministic chaotic system, in which despite best efforts
perfect predictions are impossible.

To quantify the uncertainty of the initial conditions, Epstein (1969) suggested the
use of probability distributions within a stochastic-dynamic approach and generated
multiple forecasts through the application of Monte Carlo simulations. Although
computationally highly demanding and rather impracticable (Lewis, 2005), Leith (1974)
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CHAPTER 1. Introduction

built upon Epstein’s proposition and found that the predictive mean can be accurately
approximated with a sample size of 8; but much larger sample sizes are needed for the
estimation of higher moments. This approach can be considered an initial ensemble
prediction system (EPS).

For the following two decades nevertheless, NWP had still been viewed as a strictly
deterministic problem in which the single best model paired with the best input data
would issue the best forecast (Gneiting and Raftery, 2005). However, the paradigm in
the meteorological community shifted, when the first EPSs were launched in 1992 by
the European Centre for Medium-Range Weather Forecasting (ECMWF) and National
Centers for Environmental Prediction (NCEP) – see, inter alia, Molteni et al. (1996) and
Tracton and Kalnay (1993), respectively. An EPS consists of multiple runs of a NWP
model – each with slight variations in the model formulation or specification of initial
conditions or both. Instead of a single, deterministic point forecast, an ensemble delivers
a set of predictions which can be viewed as a sample from the underlying predictive
distribution. Through this setup, an ensemble addresses the two sources of uncertainty
in weather forecasting raised earlier.

While ensembles play a major role in the transition from deterministic to probabilistic
forecasting, they exhibit some shortcomings. Ultimately, they provide a finite sample
and do not deliver a full predictive distribution. Furthermore, they can be subject
to biases and tend to underestimate the true uncertainty of the prediction (Hamill
and Colucci, 1997). As argued before, an accurate quantification of the uncertainty
associated with the forecast is essential in many applications to allow for high quality
decisions. Statistical postprocessing releases the full potential of an ensemble forecast by
correcting the systematic biases and providing an adequate description of the underlying
uncertainty (Gneiting and Raftery, 2005). During the last two decades, a vast variety
of statistical postprocessing methods have been developed following the pivotal work of
Hamill and Colucci (1997).

State-of-the-art univariate postprocessing methods include Bayesian Model Averaging
(BMA; Raftery et al., 2005) and Ensemble Model Output Statistics (EMOS; Jewson et al.,
2004 and Gneiting et al., 2005), which are presented in Chapter 2. Both techniques model
the future distribution of a weather variable through parametric families of probability
distributions. The BMA procedure uses mixture distributions; each ensemble member
is assigned a kernel function, which reflects the past skill of that member. Within a
regression setting, EMOS fits a parametric distribution function, based on summary
statistics of the ensemble. For both models, parameters are statistically estimated over
a training period containing past observations and forecasts. To account for global
data, we propose different constructions of these training sets – allowing for data from
neighboring grid points or grid points on a similar topography only. Employing different
distribution families or mixtures thereof, BMA and EMOS are applicable to a variety
of weather variables (see for instance Sloughter et al., 2007; Baran and Lerch, 2015 or
Scheuerer and Hamill, 2015a).
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CHAPTER 1. Introduction

When evaluating probabilistic forecasts, there are two important concepts to assess
their skill: Sharpness describes the concentration of the predictive distribution, while
calibration refers to the statistical consistency between the verifying observation and
the forecasts. Gneiting et al. (2007) established the objective in probabilistic forecasting
to maximize sharpness subject to calibration. We will end the second chapter with a
collection of tools that address this notion and thereby assess the quality of univariate
probabilistic predictions.

Many of the initial postprocessing methods are univariate, meaning they solely
apply to a single weather variable, at a single location or for a single prediction
horizon. However, spatial dependence is of crucial importance when producing realistic
probabilistic forecast fields. To achieve this, we combine EMOS with a Gaussian random
field (GRF) model in Chapter 3. Although conceptually similar to the approach by
Feldmann et al. (2015), our goal is to model the correlation structure of EMOS error
fields globally. When choosing a covariance for the GRF on the sphere, it is crucial to
use an appropriate distance metric to maintain positive definiteness of the covariance
function. While great circle distances allow for a more realistic approximation of the
Earth’s silhouette, the Euclidean norm is often used in applications as it grants access
to the rich class of established covariance models on R3 (Yadrenko, 1983). For the
latter, physically unrealistic distortions occur in particular at larger distances. Since the
correlation length of the considered predictive errors is rather short, we use the Euclidean
norm. As the dependence structure of the error fields changes across planet Earth, we
assume a nonstationary covariance function, based on works by Stein (2005). Allowing
for land-water differentials in predictive standard deviations and correlation lengths,
by virtue of this function we generate physically realistic, calibrated, probabilistic
forecasts globally. The chapter ends with a presentation of tools to assess multivariate
probabilistic forecasts ranging from histograms to scoring rules.

After the presentation of postprocessing techniques, Chapter 4 displays applications
to predictions by the unique, global, multi-model ensemble TIGGE (The Interactive
Grand Global Ensemble; Bougeault et al., 2010), which merges forecasts from twelve
globally-operating weather centers. In an early experiment, Hagedorn et al. (2012) show
first verification results for simply postprocessed TIGGE temperature forecast on the
Northern Hemisphere. After successfully reproducing their study, we expand the data
set to cover the globe, assess the skill of each of the contributing forecast ensembles
individually and refine the forecasts’ quality further by the application of different
variations of the more sophisticated EMOS postprocessing approach. To account for
spatial dependencies, we employ the methods presented in Chapter 3 and compare their
predictive performance.

The most skillful contributor to the TIGGE project is the ECMWF medium-range
ensemble, also documented in Buizza et al. (2005) or Hagedorn et al. (2012). In a case
study in Chapter 5, we explore potential benefits through statistical postprocessing
for this EPS individually. Univariate postprocessing methods are applied to ECMWF
global temperature forecasts for lead times from 1 up to 15 days. For longer prediction
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CHAPTER 1. Introduction

horizons, the forecast uncertainty increases, the dispersion errors significantly reduce and
thus the benefits through postprocessing continuously diminish. Due to conservation of
computational resources and this finding, we restrict the data to the subset of 3-days
ahead forecasts when applying spatial postprocessing techniques, introduced in Chapter
3. Furthermore, the univariate verification results suggest assuming temperature to be
normally distributed may not be ideal and a distribution with heavier tails might be
more appropriate for this data. To investigate further, we employ a logistic distribution
and the Student’s t-distribution, suggested by Gebetsberger et al. (2017), to 5-days
ahead forecasts over Europe.

When training and assessing statistical postprocessing methods, it is crucial to choose
appropriate verification data: Observation sites are scattered inhomogeneously across
planet Earth, whereas (re)analyses cover the entire globe on the same spatio-temporal
scale as the forecasting model. In Chapter 6, we provide a systematic comparison of the
effects of this choice for both raw and statistically postprocessed temperature predictions
from the ECMWF ensemble system. In a study of ECMWF ensemble forecasts for
surface wind speed, Pinson and Hagedorn (2012) compare the predictive quality of grid-
based and station-based forecasts. They find that the predictive performance is superior
in the grid-based data set which can be attributed to the absence of representativeness
error and subgrid variability. However, Pinson and Hagedorn (2012) restrict attention to
the raw ensemble forecast and do not consider benefits through statistical postprocessing.
In Chapter 6, we aim to close this gap in the extant literature.

For the case study, reanalyses by the ECMWF, namely ERA5 (Hersbach et al., 2020),
and 9,103 World Meteorological Organization (WMO) stations worldwide constitute
the two verification sets. As in the previous chapter, gridded forecasts are provided by
the 50-member ECMWF ensemble and bi-linearly interpolated to the observation sites.
We apply the EMOS approach to the gridded forecasts paired with the reanalyses and
the bi-linearly interpolated predictions paired with the observational data. Analysis-
based postprocessing can enhance forecasts at lead times up to twelve days, whereas
forecasts at all lead times benefit from postprocessing when trained and verified against
observations. Overall, we conclude that more forecast skill can be gained through data
collected at observational sites.

The thesis ends with Chapter 7 in which we summarize the findings and point
towards future work.

1.2 Mathematical framework

Based in measure theory, a prediction space is a probability space designed to study
probabilistic forecasts. In the framework of point predictions, Murphy and Winkler (1987)
first advocated considering the joint distribution of forecast and observation. Following
Gneiting and Ranjan (2013), who initially expanded the concept to distributional
predictions, a prediction space is a probability space
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CHAPTER 1. Introduction

(Ω,A,Q) ,

in which for distributional forecasts F1, ..., Fk with integer k ≥ 1 for a real-valued
outcome Y , the elements of the sample space Ω can be identified with the tuplets

(F1, ..., Fk, Y ) .

Each probabilistic forecast F1, ..., Fk is measurable with respect to the sub-σ-fields
A1, ...Ak ⊆ A, that contain the information a forecast is built upon. In practice, the
distributional predictions F1, ..., Fk can be issued by different experts, statistical models
or institutions. The joint distribution of predictions and observations is described by
the probability measure Q on the measurable space (Ω,A). All theoretical concepts for
probabilistic forecasts in the subsequent chapters are based within this prediction space
setting.

6



Chapter 2

Univariate statistical

postprocessing

In numerical weather prediction, the two major sources of uncertainty in the initial
conditions and model formulations are not completely addressed by the introduction
of ensemble prediction systems, as discussed in Chapter 1. The remaining deficiencies
of the ensemble are of the form of biases as well as dispersion errors and call for
statistical postprocessing techniques to release the full potential of the EPS. A variety
of postprocessing methods have been developed following the pivotal study by Hamill
and Colucci (1997). These approaches can be classified in parametric, which assume the
predictive distribution to follow a pre-selected distribution family, and a non-parametric,
based on non-parametric approximation of the predictive distribution. Here, we put
the focus on parametric models, where the parameters of the predictive distribution
are linked to ensemble summary statistics. Generally, within a regression framework,
the parameters are selected which optimize a loss function over a training period
containing past forecasts and observations. Wilks (2018) and Vannitsem et al. (2021)
give comprehensive overviews of current procedures, which are commonly used to
improve the skill of probabilistic or deterministic forecasts.

The aim of statistical postprocessing is to maximize the sharpness of the forecasts
subject to calibration (Murphy and Winkler, 1987; Gneiting et al., 2007). We discuss this
notion further in this chapter and present the most commonly used univariate approaches
designed to achieve this goal. Univariate in this context refers to postprocessing of
weather forecasts at each location, for each lead time and for each weather variable
independently. In Chapter 3 we will explore applications to entire weather fields instead
of individual locations.
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CHAPTER 2. Univariate statistical postprocessing

This chapter begins with a review of Bayesian Model Averaging (BMA; Raftery et al.,
2005) and Ensemble Model Output Statistics (EMOS; Jewson et al. 2004; Gneiting
et al. 2005). Here, we focus on variants applicable to temperature forecasts. Both of the
presented methods rely on the idea that characterizations of forecast errors in the past
will correct and hence improve future forecasts. In particular, we will explore different
approaches on how to construct the training data for these techniques. Subsequently, we
will review spatially adaptive EMOS by Hemri et al. (2014) and simple bias correction as
reference forecasts which set benchmarks for the models to compete with. The chapter
closes with a presentation of verification tools for univariate forecasts.

2.1 Bayesian Model Averaging

BMA is a broadly applied statistical approach for combining competing statistical
models, in particular predictive distributions stemming from different forecasting sources.
Instead of restricting the predictive distribution to a certain parametric shape, BMA
delivers a mixture distribution which comprises of a weighted sum of the distributions
from the contributing models. In the context of postprocessing for weather variables,
we follow Raftery et al. (2005) to calibrate forecast ensembles.

At location s ∈ S, we make predictions for a weather variable ys with the M -member
ensemble f1,s, . . . , fM,s, where M is a natural number. Each forecaster is associated
with a conditional probability density function pm (ys|fm,s), which can be interpreted as
the conditional density of ys|fm,s, given that fm,s is the most skilled forecaster m ∈ M

in the ensemble. Then BMA stipulates a predictive density of the form

p (ys|f1,s, . . . , fM,s) =
M∑

m=1
wmpm (ys|fm,s) ,

with w1, . . . , wM non-negative weights summing up to 1. These weights reflect the
forecasters’ relative performance during the training period. A large weight indicates
skillful forecasts; whereas a small weight is assigned to poorly performing members.

For temperature forecasts, a Gaussian or normal distribution is commonly applied,
and we write N (µ, σ2) to denote a normal distribution with mean µ and variance σ2.
Then for BMA, the conditional probability density functions pm (ys|fm,s) are univariate
normal densities

ys|fm,s ∼ N (am + bmfm,s, σ2),

where the mean equals each member’s bias corrected forecast am + bmfm,s and the
variance σ2 is the same for all members. The coefficients am and bm are real-valued.

The BMA predictive mean is a weighted average of the bias corrected forecasts

8
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E (ys,|f1,s, ..., fM,s) =
M∑

m=1
wm (am + bmfm,s) ,

and the predictive variance is

Var(ys|f1s, .., fm,s) =
M∑

m=1
wm

(
(am + bmfm,s) −

M∑
m=1

wm (am + bmfm,s)
)2

+ σ2.

The variance can be decomposed into two terms: The first sum represents the between-
forecasts spread and σ2 summarizes the within-forecast variance.

In case of an exchangeable ensemble – meaning that the contributing members stem
from the same underlying model and are thus statistically not distinguishable – the
weights wm and the regression parameters am and bm should be the same for every
member m = 1, ...,M . This procedure is described in more detail in Fraley et al. (2010).

The BMA parameters are estimated in multiple steps. First we define a rolling win-
dow training period T consisting of forecasts f1,s,t, . . . , fM,s,t and verifying observations
ys,t for past days t ∈ T . Then each member is bias corrected individually via simple
linear regression of ys,t using fk,s,t as predictor and the member-specific parameters am

and bm for m = 1, . . . ,M are estimated. Based on the assumption that the forecast
errors are independent in space and time, the log-likelihood functions equals

l(w1, . . . , wM , σ2) =
∑

t∈T,s∈S
log

(
M∑

m=1
wmp (ys,t|fm,s,t)

)
.

By maximizing this function, the variance σ2 and weights wm are obtained. Because the
maximum cannot be determined analytically, Raftery et al. (2005) use the expectation–
maximization algorithm (Dempster et al., 1977). Finally the estimate for σ2 may be
refined by minimizing the continuous rank probability score (CRPS – see Section 2.4.2
for details) over the training period. BMA for ensemble forecasts can be implemented
using the R package ensembleBMA by Fraley et al. (2011).

The assumption of a normal distribution is not suitable for weather variables that
have a e.g. skewed distribution or only take non-negative values. For these cases, BMA
has been further refined and many extensions have been published. Sloughter et al.
(2010), for example, adjust the model for the needs of wind speed by employing a
gamma distribution, while Baran (2014) proposes a truncated Gaussian distribution
for this weather variable. Additionally, Bao et al. (2010) put forward a von Mises
distribution to model wind direction. Precipitation forecasts consist of two components –
a continuous distribution for a positive amount of precipitation and a discrete probability
for precipitation being equal to zero. Sloughter et al. (2007) model the point mass

9



CHAPTER 2. Univariate statistical postprocessing

at zero with logistic regression and the rainfall amount with a gamma distribution.
Schmeits and Kok (2010) refined this approach and Bentzien and Friederichs (2012)
propose a regression mixture distribution in this setting. Furthermore, Roquelaure and
Bergot (2008) extend BMA for forecasts of fog and Chmielecki and Raftery (2011) of
visibility.

2.2 Ensemble Model Output Statistics

The EMOS method (Jewson et al., 2004; Gneiting et al., 2005) can be interpreted
as a distributional regression technique (Gneiting and Katzfuss, 2014) and is thus
also referred to as non-homogeneous Gaussian regression, a term that dates back to
Wilks (2006). EMOS yields a parametric probability distribution, where the statistical
parameters are linked to the ensemble forecast at hand. As we consider forecasts for the
entire sphere, the biases and dispersion errors may differ considerably across the globe.
So we review a local version of the EMOS approach, where we estimate all parameters
at each site individually.

For temperature as for BMA, a Gaussian or normal distribution is typically applied.
At any location s ∈ S, and for a generic ensemble with M members, EMOS stipulates a
predictive distribution of the form

ys|f1,s, . . . , fM,s ∼ N (as + b1,sf1,s + · · · + bM,sfM,s, cs + dsv
2
s), (2.1)

where ys is the future temperature and f1,s, . . . , fM,s are the ensemble member forecasts.
The predictive mean is a weighted average of the contributing ensemble members and
the predictive variance is a linear function of the ensemble variance v2

s with spread
parameters cs > 0 and ds ≥ 0. The coefficients as, b1,s, . . . , bM,s can take any value
in R. Since negative weights b1,s, . . . , bM,s for members are difficult to interpret, we
occasionally restrict the estimates to be non-negative and refer to this technique as
EMOS+. In case of a forecast ensemble with exchangeable members, the above equation
simplifies to

ys|f1,s, . . . , fM,s ∼ N (as + bsf̄s, cs + dsv
2
s). (2.2)

with f̄s being the mean of the ensemble.
The parameter estimates are based on a rolling training period and obtained by

minimizing the CRPS, as proposed in Gneiting et al. (2005). In the case of a normal
distribution, the CRPS has a closed form. Let µ(as, b1,s, . . . , bM,s) be the predictive
mean, σ(cs, ds) the predictive standard deviation and θ = (as, b1,s, . . . , bM,s, cs, ds) the
parameter vector of interest. Over the training period T of length |T |, we write at each
site s ∈ S

10
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Γ(θ) = 1
|T |

∑
t∈T

σ(cs, ds)
{
ys − µ(as, b1,s, . . . , bM,s)

σ(cs, ds)

[
2Φ
(
ys − µ(as, b1,s, . . . , bM,s)

σ(cs, ds)

)
− 1

]

+ 2φ
(
ys − µ(as, b1,s, . . . , bM,s)

σ(cs, ds)

)
− 1√

π

}

and find the vector θ which minimizes this expression. The predictive probability density
and cumulative distribution function (CDF) of the normal distribution are denoted by
φ and Φ, respectively.

Alternatively, θ can be determined by maximizing the log-likelihood function

l(θ) = −1
2

{
|T | log(2π) +

∑
t∈T

(ys − µ(as, b1,s, . . . , bM,s))2

σ(cs, ds) +
∑
t∈T

log (σ(cs, ds))
}
,

which is equivalent to minimizing the logarithmic (Good, 1952) or ignorance score (Roul-
ston and Smith, 2002). Maximum likelihood is computationally faster and statistically
efficient under correct EMOS specifications (Gebetsberger et al., 2018). In this thesis
we apply both methods depending on the scenario at hand.

Since its introduction, EMOS has been modified for different weather variables
which cannot be modeled by a normal distribution. Some approaches, like Hemri et al.
(2015), first transform the predictand and predictor such that they can be considered
Gaussian to then apply conventional EMOS. Baran and Lerch (2015; 2016) employ
nonhomogeneous lognormal regression to predict wind speed, while Messner et al. (2014)
transform wind speed by its square root to then model the transformed weather variable
with a logistic distribution.

Some weather variables require non-symmetrical or truncated distributions. Tho-
rarinsdottir and Gneiting (2010), e.g., model future wind speed with a zero-truncated
normal predictive distribution, while Scheuerer and Möller (2015) propose a truncated
logistic distribution for the same purpose. Lerch and Thorarinsdottir (2013) and
Baran and Lerch (2015) investigate regime-switching models, where under alternating
conditions different distributions are employed.

In order to fit characteristics of the weather variable at hand, censoring can be used to
adapt distributions. Scheuerer (2014) further refined the EMOS model for precipitation
forecasts with a zero-censored generalized extreme value distribution. Scheuerer and
Hamill (2015a) and Baran and Nemoda (2016) model precipitation amounts with a
zero-censored shifted-gamma predictive distribution. EMOS can easily be implemented
via the R package ensembleMOS by Yuen et al. (2018).
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2.2.1 Spatially adaptive EMOS

This spatially adaptive variant of the original EMOS model was put forward by Hemri
et al. (2014). Based on the approaches by Scheuerer and Büermann (2014) and Scheuerer
and König (2014), the authors employ local anomalies of the observations and forecasts
as regression predictors and predictands. In more detail, these anomalies are defined as
the difference of the verifying observations or forecasts from their estimated historical
trend. So spatially adaptive EMOS yields a local bias correction, while the parameters
for the predictive mean remain constant across the domain. While Hemri et al. (2014)
incorporate information from the ensemble mean and specific members, we present a
simplified version solely for the mean to fit the needs of the data available to us in
Chapter 4.

For each location s ∈ S, Hemri et al. (2014) estimate the parameters g0,s, g1,s and
g2,s over the training period T of length |T | via least squares regression

ys = g0,s + g1,s sin
(2πt

365

)
+ g2,s cos

(2πt
365

)
+ εs, t = 1, . . . , |T |.

This expression models the seasonal variation in ys at each site and can easily be
extrapolated into the future by t > |T | ∈ N. The same model is fitted to the ensemble
mean f̄s, obtaining f̃s. Let ỹs be the local estimated climatology, then

µs = ỹs + a
(
f̄s − f̃s

)
describes the predictive mean. As in the original EMOS, the predictive variance is a
linear combination of the ensemble’s variance v2

s ,

σ2
s = cs + dsv

2
s .

Dabernig et al. (2017) further develop this approach by standardizing the observation
and forecast anomalies to remove site-specific and seasonal characteristics.

2.2.2 Spatial augmentation of the training period

In the original approach, EMOS parameters are estimated and kept constant over the
entire domain. As the spatial structure of temperature forecasts differs considerably
across the globe, this is not an appropriate assumption for the case studies conducted
in Chapter 4, 5 and 6. Hence, we mainly apply the so-called local version of EMOS, for
which training data and parameters are location-specific. With the combined goals of
improving estimation and increasing stability of the estimated statistical parameters
across geographic space, we explore simple approaches to augment the training data for
one location in space.
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Local

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

NS

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

WE

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ●

NN4

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ●

●

●

NN8

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●● ●

● ● ●

● ● ●

NN8−LS

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ●

Figure 2.1: Spatial composition of training sets in Local, NS, WE, NN4, and NN8
techniques, with potential further consideration of surface types (land/sea: LS) illus-
trated over Italy. For estimating the statistical parameters for the EMOS model at the
central (green) grid point, recent data from adjacent (red) grid points are included in
the training set, in addition to data at the central grid point.

Different techniques have been developed to augment the training set based on
geography. Hamill et al. (2008) propose to calculate distances between stations and
only add data from stations with small distances to the set. Lerch and Baran (2017)
further explore this idea by defining distance functions on different characteristics such
as geographical distance and distribution of observations and of forecast errors. As the
application of these sophisticated approaches reduces the forecast skill when compared
to local EMOS for our data set in Section 4.1.1, we propose a rather simple geographical
or grid-based approach.

In contrast to the standard local technique, which uses training data from the grid
point at hand only, our neighborhood techniques augment the training sets with data
from adjacent grid points, as illustrated in Figure 2.1. Specifically, when estimating
parameters for the central (green) grid point, we add data from surrounding (red) grid
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points to the training set. For the north-south (NS) and west-east (WE) variant, the two
closest grid points in the respective direction are included. Data from all of these four
grid points are added to the training set of the four nearest neighbors (NN4) version.
The eight nearest neighbors (NN8) variant includes data from all eight surrounding grid
points. For each of these neighborhood variants we consider a land/sea (LS) version,
where we only augment the training set with data from grid points that are of the same
surface type (land or sea) as the point of interest.

2.3 Reference forecast: Bias correction

As a benchmark for the postprocessing methods, we employ a simple bias correction
method described in Hagedorn et al. (2012), where at every site s ∈ S a correction
term is added to the forecast ensemble. Over the training period, the empirical errors
es = ys − f̄s of the ensemble mean f̄s relative to the verifying observation ys is calculated.
Then the mean error ēs, averaged over the whole training period, is added as a correction
term to each current ensemble member forecast. Therefore the original ensemble spread
remains, while the distribution is moved according to the correction term.

2.4 Univariate verification

Verification measures are essential in order to determine the goodness of NWP model
output or the effects of statistical postprocessing. These tools deliver information
about forecast skill in terms of calibration and sharpness. As concluded in Murphy and
Winkler (1987) and Gneiting et al. (2007), probabilistic forecasts should aim to fulfill
the principle of maximizing sharpness subject to calibration.

Calibration refers to a joint property of the prediction and the observation. It is a
necessary condition for a valuable forecast, requiring the prediction and the observation
to be statistically compatible. In detail, the observation ought to be viewed as a random
draw from the predictive distribution or indistinguishable from the ensemble forecasts.

Sharpness is a property of the forecast solely and measures the spread of the ensemble
or concentration of the predictive distribution. Forecasts with a smaller spread or less
uncertainty are preferred, as they provide more information to the user. Multiple tools
have been developed to assess predictive performance and we refer to Wilks (2011),
Gneiting and Katzfuss (2014) and Thorarinsdottir and Schuhen (2018) for details.

2.4.1 Sharpness and calibration

Calibration measures the statistical consistency between the observation and the fore-
casts. Different notions of univariate calibration have been proposed – see Gneiting
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et al. (2007), Tsyplakov (2013) or Strähl and Ziegel (2017). Following Dawid (1984),
we consider probabilistic calibration in the context of probabilistic weather prediction.
Given a probabilistic forecast F and the observation Y , we define the probability inte-
gral transform (PIT) as F (Y ) ∈ [0, 1], which equals the value of the predictive CDF
at observation Y . If F (Y ) is uniformly distributed, then we call F probabilistically
calibrated. See Gneiting and Ranjan (2013) for a more sophisticated definition of the
PIT in case F has a discrete component.

For CDF-valued probabilistic forecasts, a straightforward tool to check calibration
is the PIT histogram (Dawid, 1984; Diebold et al., 1998; Gneiting et al., 2007). Given
continuous predictive distributions Fi, i = 1, ..., n and observations yi, i = 1, ..., n,
we calculate the PIT values Fi(yi) over all forecasts cases i = 1, ..., n and plot the
corresponding histogram. The shape of the histogram indicates the goodness of the
forecasts. A uniform histogram implies calibration, while deviation from this shape
suggests miscalibration. Overdispersion is illustrated by a ∩-shaped histogram meaning
too many observations inhabit the center of the predictive distributions. We call
forecasts resulting in a ∪-shape underdispersive, implying the forecaster underestimates
the uncertainty as many observations lie in the tails of the predictive distribution.
Systematic biases manifest in a triangular form. For further details of diagnosing
miscalibration see for instance Hamill (2001).

In real life applications, probabilistic forecasts are often provided as an ensemble,
which can be interpreted as a random draw from a predictive distribution. To diagnose
calibration in this case, the verification rank histogram (VRH) or Talagrand diagram
(Anderson, 1996; Hamill and Colucci, 1997; Talagrand et al., 1997) can be used. For an
M -member ensemble the rank of the observation within the ensemble is noted, hence
taking an integer value between 1 and M + 1. These ranks are aggregated; then plotted
in a histogram. The interpretation of the VRH histogram coincides with that of the
PIT histogram.

When comparing ensembles of different sizes, results via the VRH might be mis-
leading, as the number of bins varies for the corresponding histograms. To evaluate
predictive distributions and ensembles with varying sizes, Vogel et al. (2018) introduce
the unified PIT (uPIT) histogram. For an M -member ensemble, let the observation
take rank i within 1, ...,M + 1. Then i is mapped to a random draw from the uniform
distribution on the interval

[
i−1

M+1 ,
i

M+1

]
. Thus the values of the uPIT fall within [0, 1]

as for the PIT.
Prediction intervals can be used to assess both sharpness and calibration, via their

average width and coverage, respectability. For any real-valued probabilistic forecast, a
central α% prediction interval can be calculated. If a forecast is calibrated the coverage
of the prediction interval should be close to the nominal value of α% with about 100−α

2 %
of the observations falling to the right and left side of the interval. In case of an
M -member ensemble forecast, the nominal value equals M−1

M+1 · 100% for the interval
with boarders at the lowest and highest member. Calibrated forecasts with the smallest
prediction interval width should be preferred.
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2.4.2 Proper scoring rules

Scoring rules are widely used to evaluate probabilistic forecasts by assigning a numerical
score to the forecast relative to the observation and thereby providing a summary
indicator for skill. These scoring rules should be proper in order to encourage the
forecaster to deliver their best prediction and prevent hedging. Proper scoring rules can
evaluate sharpness and calibration simultaneously (Gneiting and Raftery, 2007).

Let Ω be a general sample space and F denote the class of probability measures on
Ω. A scoring rule is a function

S : F × Ω → R ∪ {∞} ,

which assigns a score to the predictive distribution F ∈ F and observation y ∈ Ω.

Definition 2.4.2.1. We call a scoring rule proper relative to the class F if

EGS(G, Y ) ≤ EGS(F, Y )

holds for all distributions F,G ∈ F , where G is the true, but unknown distribution from
which Y ∈ Ω is sampled. A scoring rule is strictly proper if EGS(G, Y ) < EGS(F, Y )
for all distributions F ̸= G.

Propriety ensures a forecaster will deliver their best predictions as only then they will
minimize the expected score. Theoretical aspects of proper scoring rules are discussed
further in Gneiting and Raftery (2007).

Two commonly used scores are the CRPS and the ignorance or logarithmic score.
Both are negatively oriented, meaning that the forecaster should want to minimize the
penalty. The ignorance score dates back to Good (1952) and is defined as

ign(F, y) = − log f(y),

where f is the density of F . Hence, it is applicable to continuous distributions only and
cannot directly be used for ensemble forecasts. Furthermore the ignorance score is very
sensitive to outliers and might rank a forecaster poorly based on a single bad forecast.

For a normal predictive distribution, the value of the ignorance score coincides with
the Dawid-Sebastiani score (Dawid and Sebastiani, 1999), which is defined as
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dss(F, y) = log σ2
F + (y − µF )

σ2
F

for the predictive distribution F with corresponding mean µF and variance σ2
F .

Matheson and Winkler (1976) introduced the popular CRPS. Further explored in
Gneiting and Raftery (2007), Gneiting and Ranjan (2011), Hersbach (2000) and Laio
and Tamea (2007), it can be defined in three different, but equivalent ways:

crps(F, y) = EF |X − y| − 1
2EF |X −X ′| (2.3)

=
∞∫

−∞

(F (z)) − I(z ≥ y))2dz (2.4)

=
1∫

0

(
F−1(x) − y

) (
I
(
y ≤ F−1(x)

)
− x

)
dx, (2.5)

where F is the predictive distribution and F−1 its quantile function. I denotes the
indicator function, which equals one if the argument is true and zero otherwise; X
and X ′ are independent random variables with distribution function F and finite first
moment. Through Eqs. 2.4 and 2.5, the CRPS is linked to the Brier score (Brier, 1950)
and the quantile score (Gneiting and Raftery, 2007; Friederichs and Hense, 2007). Given
an ensemble forecast f1, ..., fM , Eq. (2.3) can be written as (Grimit et al., 2006)

crps(F, y) = 1
M

M∑
i=1

|fi − y| − 1
2M2

M∑
i=1

M∑
j=1

|fi − fj |.

For various conventional probability distributions, there exist closed forms of the CRPS,
which can easily be implemented using the R package scoringRules (Jordan et al.,
2019).

Deterministic forecasts can be evaluated by a range of different scoring functions
s(x, y), which assign a score based on the forecast x and observation y. Among them
are the squared error s(x, y) = (x− y)2 and the absolute error s(x, y) = |x− y|. When
applying these scoring functions to probabilistic forecasts, it is crucial to derive an
appropriate point forecast. We rely on consistent scoring functions to avoid misguided
inference (Gneiting, 2011).

Technically, a scoring function s is consistent for a functional L relative to a class F
of predictive distributions, if

EF s(L(F ), Y ) ≤ EF s(x, Y )
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for all x in the sample space Ω and all probability distributions F ∈ F (Gneiting, 2011).
A scoring function s becomes a proper scoring rule S(F, y) = s(L(F ), y) relative to the
class F , if s is consistent for the functional L. In case of the above mentioned scoring
functions, the absolute error (AE) is consistent for the median,

ae(F, y) = |median(F ) − y|,

and the squared error for the mean,

se(F, y) = (mean(F ) − y)2,

resulting in proper scoring rules in terms of the median and mean, respectively. In
practice we calculate the root mean squared error (RMSE)

rmse(F, y) =

√√√√ 1
n

n∑
i=1

se(Fi, yi)

where n is the number of available forecasts. All scores reported in the following case
studies are averaged over all forecast cases n,

s̄ = 1
n

n∑
i=1

s(Fi, yi).
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Chapter 3

Spatial postprocessing

Statistical postprocessing aims to improve NWP ensemble forecasts by generating
calibrated predictive distributions. Many of the early proposed methods are univariate,
meaning they apply to a single weather variable at a single prediction horizon and a
single site only. However, when forecasting truly multivariate or composite univariate
quantities, such as minima, maxima, or averages, the modeling of dependence structures
is of great importance. These structures are present in the raw ensemble forecasts,
but lost during postprocessing when only the marginal distributions get calibrated.
In real world applications, truly multivariate probabilistic forecasts are crucial. For
example Hemri et al. (2015) and Scheuerer et al. (2017) model coherent spatio-temporal
predictions in hydrology; realistic forecasts for entire wind fields are essential for air
traffic control (Chaloulos and Lygeros, 2007); the management of renewable energy
requires accurate forecasts of wind and solar resources in terms of location and time
(see Pinson et al., 2009; Pinson, 2013; Pinson and Messner, 2018).

Different approaches have been published which aim to capture inter-variable,
temporal or spatial dependencies – see Schefzik and Möller (2018) for an overview. In
contrast to the methods presented in Chapter 2, these models now yield multivariate
predictive distributions, which can either be parametric or non-parametric. Particularly
in the case of high-dimensional dependence structures, non-parametric approaches seem
suitable as they require low computational efforts. Popular examples comprise the
Schaake shuffle (Clark et al., 2004) and ensemble copula coupling (ECC; Schefzik et al.,
2013). In some cases, parametric multivariate models can outperform the non-parametric
– as e.g. found in Feldmann et al. (2015) for temperature fields and in Schuhen et al.
(2012) for wind vectors. Further applications of parametric approaches include forecasts
for precipitation fields (Berrocal et al., 2008), for wind vectors (Sloughter et al., 2013;
Lang et al., 2019) or inter-variable dependence between wind speed and temperature
(Baran and Möller, 2015, 2017).
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In our study, we are interested in the generation of physically realistic, calibrated
probabilistic forecasts of global temperature, where it is crucial to model spatial de-
pendencies. We utilize Gaussian random fields to represent the EMOS forecast error
fields with a nonstationary covariance function accounting for land-water differentials
in correlation lengths. Closely related is an approach by Heinrich et al. (2021), who
postprocess global sea surface temperature forecasts. Instead of fitting a parametric
covariance function to forecast residuals, they model the structure of the error fields
with a non-parametric estimate of the sample covariance matrix and apply further
restrictions for computational efficiency and interpretability. This allows for a flexible
covariance structure which also inspires us to explore our EMOS model paired with an
empirical covariance matrix.

In this chapter, we discuss some of the postprocessing techniques mentioned above
that account for spatial dependencies to generate calibrated probabilistic forecasts of
entire meteorological fields. We begin with the concept of copulas and Sklar’s theorem,
on which these models are mathematically based. Then we review ECC and the Schaake
shuffle as reference standards. Afterwards, we present an example of a nonstationary
covariance function for processes on spheres, necessary for the subsequent section, where
we discuss a global spatial extension for EMOS, called spatial EMOS. In this more
sophisticated postprocessing approach, we utilize Gaussian random fields to represent
the EMOS forecast error fields and model spatial dependencies. The chapter ends with
a description of numerous tools to assess multivariate probabilistic forecasts.

3.1 Sklar’s Theorem

Directly or indirectly, most multivariate postprocessing methods make use of a copula
function. A copula C : [0, 1]n → [0, 1] is an n-variate CDF with n ∈ N, whose marginal
distributions are uniformly distributed on the unit interval [0, 1] (Nelsen, 2007). They
can be used to model dependence patterns in statistical postprocessing. Sklar (1959)
links a copula and marginal distributions to describe a multivariate CDF.

Theorem 3.1.1 (Sklar). Let F : R → [0, 1] be an n-variate CDF with marginal
CDFs F1, . . . , Fn : R → [0, 1]. Then there exists a copula C such that

F (y1, . . . , yn) = C (F1(y1), . . . , Fn(yn)) . (3.1)

If Fi is continuous for i = 1, . . . , n, the copula C is unique.
Conversely, given marginal CDFs F1, . . . , Fn and a copula C , then the function F

defined in Eq. (3.1) is an n-variate CDF.
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When interested in a multivariate predictive distribution F , Sklar’s theorem states
that F is characterized by the marginal distributions and the copula. In the context of
statistical postprocessing for weather forecasts, we can apply univariate postprocessing
to generate predictive distributions F1(y1), . . . , Fn(yn) for a weather variable y at – in
this case – n different locations and then model the dependence structure through the
copula C . There are multiple options to specify C , which we will explore further in this
chapter.

3.2 Reference forecasts

Due to their simplicity and versatility, the Schaake shuffle and ECC are compelling
non-parametric approaches that rely on empirical copulas to construct C . With hardly
any computational cost, generating the forecast ensemble under these two methods is
rather similar and can be summarized in two steps: First, the forecasts are calibrated
in the margins; secondly, the dependence structure is reintroduced via the copula to
generate multivariate forecasts. Both models solely differ in the origin of the dependence
template: ECC preserves the rank structure of the original ensemble forecasts, while
the Schaake shuffle bases the copulas on past observations.

Another multivariate postprocessing technique, closely related to spatial EMOS, is
the Gaussian copula approach (GCA), based on works by Pinson and Girard (2012)
and Möller et al. (2013). GCA also consists of two separate steps, in which the
margins are calibrated individually and then the dependence structure is recovered by
a Gaussian copula. In a simulation study, Lerch et al. (2020) conclude that among
these three approaches, the Schaake shuffle sets a powerful benchmark for multivariate
postprocessing, which is also supported by findings from Wilks (2015) for real-world
forecasts (comparing two versions of ECC and the Schaake shuffle). Hence, we focus
on the Schaake shuffle and also, due to its low-cost computation, ECC as reference
forecasts.

3.2.1 Ensemble copula coupling

Introduced by Schefzik et al. (2013), ECC uses the inherent dependence structure of
the ensemble forecasts as a template for the multivariate structure of the prediction.
An ECC ensemble that represents spatially coherent multivariate forecasts can be
constructed as follows.
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1. Univariate postprocessing

In this step, one can apply any univariate postprocessing method to marginally
calibrate the forecasts. For coherence with the parametric model in Section 3.4,
we employ EMOS (see Section 2.2). Subsequently, at each location s ∈ S, we draw
a random sample x̂1,s, . . . , x̂M,s from the predictive distribution Fs of the same
size M ∈ N as the original ensemble. There are several options for sampling from
the marginal distributions: the simplest approach is a random draw (ECC-R).
After obtaining the sample, it is rearranged in ascending order – for simplicity
in notation x̂1,s ≤ . . . ≤ x̂M,s. Schefzik et al. (2013) recommend generating an
ensemble with equidistant quantiles at level 1

M+1 , . . . ,
M

M+1 , so that the sample
comprises of x̂1,s = F−1

s

(
1

M+1

)
, . . . , x̂M,s = F−1

s

(
M

M+1

)
, which we refer to as

ECC-Q.

2. Reordering according to dependence template

Let x1,s, . . . , xM,s be the forecast ensemble at location s ∈ S. We denote the
members’ ranks by ω(1, s), . . . , ω(M, s); ties within the ranks are resolved at
random. To reintroduce the dependence structure of the raw ensemble, we order
the sample accordingly, resulting in x̂ω(1,s), . . . , x̂ω(M,s). Hence, the members of the
ECC ensemble equal the vector x̂m = (x̂ω(m,1), . . . , x̂ω(m,|S|)) for m = 1, . . . ,M .

By definition, the ECC ensemble is limited to the same size M as the original ensemble.
To omit this restriction, the above steps can be repeated multiple times resulting in an
ensemble sized nM with n ∈ N. Wilks (2015) finds that these aggregated ensembles
can outperform a smaller ECC ensemble.

The ECC approach can be linked via Sklar’s theorem to the empirical copula
induced by the raw ensemble. Let R1, . . . , R|S| be the marginal empirical CDFs of
the ensemble forecasts at locations in S. These functions take values in the set IM ={

0, 1
M , . . . , M−1

M , 1
}

. The multivariate empirical CDF R of the raw ensemble forecast
maps into the same set. According to Sklar’s theorem, there exists a copula C with
restriction EM : I |S|

M → IM such that

R
(
y1, . . . , y|S|

)
= EM

(
R1 (y1) , . . . , R|S|

(
y|S|

))

for y1, ..., y|S| ∈ R. Hence, the empirical copula EM connects the univariate distributions
R1, ..., R|S| to the multivariate distribution R of the ensemble forecast. Schefzik et al.
(2013) describe this copula as

EM

(
i1
M
, . . . ,

i|S|
M

)
= 1
M

M∑
m=1

I
(
rank

(
x1

m

)
≤ i1, . . . , rank

(
x|S|

m

)
≤ i|S|

)
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with integers 0 ≤ i1, . . . , i|S| ≤ M and rank (xs
m) denoting the rank of xs

m within the
set xs

1, . . . , x
s
M .

Now, let F̂ be the multivariate empirical CDF of the ECC approach with marginal
empirical CDFs F̂1, ..., F̂|S| obtained through univariate postprocessing and subsequent
sampling as described in step 1. above. Then the marginal distributions are again linked
through the same empirical copula EM to the multivariate forecast distribution:

F̂
(
y1, . . . , y|S|

)
= EM

(
F̂1 (y1) , . . . , F̂|S|

(
y|S|

))
(3.2)

for y1, . . . , y|S| ∈ R. Hence, ECC can be interpreted as a copula approach. The |S|-
dimensional predictive distribution F̂ is constructed through the marginal distributions
F̂1, . . . , F̂|S| and the empirical copula EM which reflects the spatial dependency of the
raw ensemble. The relationship between ECC, empirical copulas and Sklar’s theorem is
presented more detailed in Schefzik et al. (2013) and Schefzik (2015).

Since ECC models the dependence pattern based on the direct NWP output, it is
of crucial importance for the raw ensemble to deliver physically consistent forecasts.
Deficiencies in the NWP model transfer to ECC and might even be amplified. Further
extensions to ECC have been published. The lack of flow dependence in the spatio-
temporal dependence has been addressed by incorporating the autocorrelation of forecast
errors over consecutive lead times (Ben Bouallègue et al., 2016), choosing training data
based on similarity criteria (Bellier et al., 2017) or smoothing the temporal trajectories
(Bellier et al., 2018). Hu et al. (2016) suggest stratified sampling to construct the sample
and improve the quality of the forecasts in the first step of the ECC ensemble assembly.

3.2.2 Schaake shuffle

Similar to ECC, the Schaake shuffle can be considered a copula approach and the
technique follows the same steps as ECC. The two methods only differ in the origin of
the dependence template which is based on past observations for the Schaake shuffle
instead of the ensemble forecasts. This implies that an ensemble of any size can be
obtained provided that sufficiently many past observations are available. For coherence
with the other methods, we chose the same size as the numerical EPS for the case
studies. Then the multivariate predictive distribution of the Schaake shuffle equals
Eq. 3.2 replacing EM with the empirical copula induced by past observations.

In the original approach, the past observations dates comprise of data from all
available past years and lie within 7 days of the date of interest. More sophisticated
techniques to select the template data have been developed by providing different
similarity criteria to match current atmospheric situations to analogues in the observed
data – for details see Schefzik (2016), Scheuerer et al. (2017) or Bellier et al. (2017).
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3.3 A nonstationary covariance model on spheres

In this section, we introduce the foundation for spatial EMOS, which aims to capture
spatial dependencies by modeling the correlation of the EMOS forecast error fields
across the globe. These error fields are interpreted as realizations of a Gaussian random
field. As the normal distribution is completely characterized by its first and second
moment, we can describe the random field by modeling its covariance matrix if we
assume the mean to be constant.

Due to more and more availability of spatial data over the past two decades,
studying covariance functions is once again a growing research area in spatial statistics
– particularly the construction of valid and flexible covariance functions for different
spatial scenarios. In many applications nonstationary random fields are necessary, since
the dependence structure changes across the domain. As Stein (2007) point out the
covariance structure of environmental data often exhibits near stationarity in longitude,
while being nonstationary in terms of latitude. The global temperature forecasts we
consider in the case study in Chapter 4 exhibit this dependence pattern as well. Hence,
we are interested in nonstationary covariance functions describing this characteristic
while also being valid on spheres.

For the mathematical background, we introduce geostatistical models, that assign a
value to points located across a spatial domain. These models, referred to as random
fields, are special cases of stochastic processes.

Definition 3.3.1. Let S ⊆ Rp for p ∈ N be a spatial domain of interest. A random
field (RF) is a collection of random variables (Z(s))s∈S on a joint probability space
(Ω,F , P ).

The Kolmogorov existence theorem1 states that under mild conditions stochastic
processes are uniquely determined by their finite-dimensional distributions. For every
n ∈ N and every set of sites s1, ..., sn ∈ S, the respective finite-dimensional accumulative
distribution function of the process is

F (z1, . . . , zn; s1, . . . , sn) = P (Z(s1) ≤ z1, . . . , Z(sn) ≤ zn) , (3.3)

where z1, ..., zn ∈ R. Gaussian processes are very popular in statistical modeling as
they approximate many real world phenomena and are easily applicable due to their
mathematical properties. For our case studies in particular, we consider error fields
which can be assumed to be Gaussian.

1For details see e.g. Grimmett and Stirzaker (2020) or Billingsley (2012).
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Definition 3.3.2. The RF (Z(s))s∈S is a Gaussian random field (GRF), if for all
n ∈ N and s1, . . . , sn ∈ S the distribution of the random vector (Z(s1), . . . , Z(sn))⊺ is
multivariate normal.

The simplicity of the normal distribution stems from the fact that it can be completely
and easily described by its first and second moment. Specifically, given a GRF (Z(s))s∈S ,
its finite-dimensional densities corresponding to Eq. (3.3) equal

1
(2π)n/2 det (Σ) 1/2 exp

(
−1

2(z − µ)⊺Σ−1(z − µ)
)
,

where z ∈ Rn, with mean vector µ = E (Z(s1), . . . , Z(sn))⊤ and covariance matrix
Σ = [Cov(Z(si), Z(sj))]1≤i,j≤n. If we assume E[Z(s)] to be constant for all sites s ∈ S,
the whole process can be characterized completely via its covariance function.

Definition 3.3.3. Let (Z(s))s∈S be an RF. If its second moments exist, the function

C : S × S → R, C(s1, s2) = Cov (Z(s1), Z(s2))

is the covariance function of this field.

There are two particularly interesting classes of RFs considered in the literature.
The first one consists of fields whose covariance structure only depends on the lag vector
between two points, while the other one consists of fields with covariance functions only
depending on the Euclidean distance between two points.

Definition 3.3.4. Let (Z(s))s∈S be an RF for which the second moments exist.

1. The field is called (second order) stationary, if E (Z(s)) and Cov (Z(s), Z(s + h))
do not depend on s ∈ S. Consequently, the covariance fulfills

Cov (Z(s), Z(s + h)) = Cov (Z(0), Z(h)) = C̃(h)

for some function C̃ : S → R and any lag vector h ∈ S.

2. The field is called isotropic, if it is stationary and the covariance function between
two points s1, s2 only depends on the Euclidean distance between these two points,
induced by the considered metric. In other words, the covariance reduces to
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Cov (Z(s1), Z(s2)) = ||s1 − s2||,

where ||s1 −s2|| = ((s1 − s2)⊺ (s1 − s2))1/2 denotes the Euclidean distance between
s1, s2 ∈ S.

Hence, the covariance function can be completely characterized by a function on the
domains S × S, S or R. We will call this function covariance function and denote it by
C if it is clear on which domain C operates.

Example 3.3.1. An example of a parametric covariance function for an isotropic GRF
is the Matérn function (Matérn, 1986) of the form

C(δ) = σ2Mν

(√
2ν δ

ρ

)
= σ2√

2ν δ
ρ

Kν

(√
2ν δ

ρ

)
, (3.4)

where δ is the Euclidean distance, Kν refers to the modified Bessel function of the
second kind of order ν, Γ represents the gamma function and σ2 denotes the variance.
The range or scaling parameter ρ and the smoothness parameter ν of the function are
both positive. In case of a Matérn model, the covariance between two points solely
depends on their Euclidean distance δ. For ν = 1

2 , the model reduces to the exponential
covariance function

C(δ) = σ2 exp
(

−δ

ρ

)
. (3.5)

We rely on the Matérn and exponential covariance models in the case studies.

In analogy to covariances, one can define the correlation function Cor of a GRF
(Z(s))s∈S as

Cor(s1, s2) =


C(s1,s2)√

Var(Z(s1))Var(Z(s2))

0

if Var (Z(s1)) ̸= 0 and Var (Z(s2)) ̸= 0
otherwise

,

which is a normalized covariance function.
Determining whether a function is a valid covariance function is equivalent to the

question whether it is a positive definite kernel.

Definition 3.3.5. A function h : S × S → R on S ⊆ Rp, p ∈ N is a positive definite
kernel, if
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n∑
i=1

n∑
j=1

aiajh(si, sj) ≥ 0

for all n ∈ N, any a1, ..., an ∈ R and points s1, ..., sn ∈ S.

The following well-known theorem (see e.g. Yaglom, 1987) describes the relationship
between covariance functions and positive definite kernels.

Theorem 3.3.1. For a function C : S × S → R on S ⊆ Rp, p ∈ N the following
statements are equivalent.

(i) The function C is a positive definite kernel.

(ii) On S, there exists a stationary (Gaussian) RF (Z(s))s∈S with C as covariance
function.

This theorem ensures the existence of a GRF if we can provide a valid covariance
function C. The requirement of positive definiteness follows from the interpretation of
a covariance between two points as a scalar product.

Closely related to covariance functions are variograms, which are used widely in the
geostatistical community to visualize and model the spatial dependence structure of
stationary fields.

Definition 3.3.6. Let (Z(s))s∈S be an RF. If its second moments exist, we define

γ : S × S → R, γ(s1, s2) = 1
2 E

[
(Z(s1) − Z(s2)) 2

]

to be its variogram.

Gneiting et al. (2001) explore in depth analogies and correspondences between
variograms and covariances. Assuming the mean vector of the RF to be constant, the
relationship between the two is established via

γ(s1, s2) = 1
2C (s2, s2) − C (s1, s2) + 1

2C (s1, s1) .

For a stationary RF, this expression reduces to γ(h) = C (0) − C (h) for any lag vector
h. Scheuerer and Hamill (2015b) employ variograms to evaluate multi-dimensional
forecasts – see Section 3.5.
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Since the temperature forecasts are provided globally, we are particularly interested
in covariance functions for which the domain S is the surface of a sphere, namely
Sk

r =
{

x ∈ Rk+1 : ||x|| = r
}

for k ∈ N and radius r ∈ R+. Assuming Earth to be a
true sphere, we focus on the two-dimensional spherical surface S2

r with radius r =
6371km, embedded in the three-dimensional Euclidean space R3. A point on S2

r can be
characterized as (r, lat, lon) with latitude lat ∈

[
−π

2 ,
π
2
]

and longitude lon ∈ [−π, π). In
the Euclidean space, this point is described by (a, b, c), where a = r cos(lat) cos(lon),
b = r sin(lat) cos(lon) and c = r sin(lat).

For many real-world environmental processes, the covariance decays with distance
between points and thus the covariance function should depend on this metric. A useful
quantity to calculate distances on a sphere is the central angle between two points
(lat1, lon1) and (lat2, lon2), defined as:

α = arccos {sin(lat1) sin(lat2) + cos(lat1) cos(lat2) cos(lon1 − lon2)} . (3.6)

Then the canonical distance on S2
r – the great circle or geodesic distance – is defined as

rα. Also the Euclidean distance in R3 can be expressed in terms of α by 2r · sin
(

α
2
)
.

For small ranges, these two metrics almost coincide, but distortion grows with larger
distances.

Given a GRF on S2
r, the property of isotropy directly transfers to the sphere.

However, stationarity cannot be defined the same way as there exists no canonical choice
of lag vectors h in Definition 3.3.4 on the sphere. Instead of stationarity, Jones (1963)
introduces the term of an axially symmetric process. Here, we follow the definition by
Castruccio and Stein (2013):

Definition 3.3.7. Let (Z(s))s∈S be a GRF on the sphere S ⊂ S2
r with r ∈ R+.

All points s ∈ S can be described in terms of latitude lat ∈
[
−π

2 ,
π
2
]

and longitude
lon ∈ [−π, π).We call the process axially symmetric, if

Cov (Z(lat1, lon1), Z(lat2, lon2)) = Č(lat1, lat2, lon1 − lon2)

for some function Č :
[
−π

2 ,
π
2
]

×
[
−π

2 ,
π
2
]

× [−2π, 2π) → R.

Thus the covariance function of the GRF depends on the site-specific latitudes and
longitudinal lag of the considered points. Visually, this means that the GRF model is
invariant to rotations about the main axis of the Earth. Through this definition, all
isotropic processes on the sphere are axially symmetric, but not all axially symmetric
processes are isotropic.
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Intuitively, the dependence – and hence, covariance structure – of many real world
phenomena should somewhat be influenced by the distance – with smaller dependencies
for smaller distances and vice versa. As we have seen, the simplest covariance models
on R3 with respect to the Euclidean metric are isotropic ones. Unfortunately, many of
these models are no valid covariance functions on the sphere equipped with the geodesic
distance – i.e. if we replace the Euclidean with the geodesic metric, the covariance
function changes and loses the property of positive definiteness. For instance, Gneiting
(2013) points out that the frequently applied Matérn covariance function is only positive
definite on a sphere with great circle distance for smoothness parameter ν ∈

(
0, 1

2

]
.

Banerjee (2005) states that careless formulation of distances will lead to false estimation
of the range parameter and poor prediction.

Construction of valid and useful covariance functions – like axially symmetric ones –
on spheres with geodesic metrics is thus challenging and different approaches have been
developed. However, in some applications on the globe it may be advantageous to use the
Euclidean rather than the geodesic distance. Jeong and Jun (2015a) and Guinness and
Fuentes (2016) compare Matérn covariance models to Matérn-like covariance functions,
which are valid on spheres paired with great circle distances. Both conclude that in terms
of model fit and prediction, models with Euclidean distance yield better verification
results. Only for large correlation lengths, the performance might improve by using
a Matérn-like model with great circle distances (Jeong and Jun, 2015b). Since the
correlation length of the temperature error fields considered in the case studies does
not exceed 1, 000km (see the variogram in Figure 4.9), we choose to employ Euclidean
distances. This allows us to use any function of the rich class of established covariance
models on R3 without any changes; since a valid covariance function in R3 is a covariance
function on S2

r ⊂ R3 relative to Euclidean metrics (Yadrenko, 1983).
As mentioned before, the covariance structure of the temperature data varies signif-

icantly in latitude, while the process may be nearly stationary in terms of longitude.
Additionally, the correlation length differs depending on local characteristics. To allow
for this flexibility, we chose to combine EMOS with a Matérn model. This model is a
member of the following class of covariance functions, described by Stein (2005):

Theorem 3.3.2 (Stein). Suppose Υ is a mapping from Rp to the class of the
positive definite p × p matrices, λ is a non-negative measure on [0,∞), and for
each s1 ∈ Rp, g(·, s1) ∈ L2(λ), where L2(λ) denotes the space of quadratically in-
tegrable functions relative to the measure λ. With Υ(s1, s2) = 1

2Υ(s1) + 1
2Υ(s2) and

Q (s1, s2) = (s1 − s2)⊺ Υ (s1, s2)−1 (s1 − s2),

R (s1, s2) = |Υ(s1)|1/4|Υ(s2)|1/4

|Υ(s1, s2)|1/2

∫ ∞

0
e−ωQ(s1,s2)g (ω, s1) g (ω, s2)λ (dω) ,

is a covariance function on Rp × Rp.
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This covariance function is an extension to a nonstationary model proposed by
Paciorek (2003). Porcu et al. (2009) prove a more general result and Kleiber and Nychka
(2012) extend this approach for multivariate spatial processes. As a special case of
Theorem 3.3.2., Stein (2005) finds that

R (s1, s2) = σ(s1)σ(s2)
|Υ(s1, s2)|1/2 M{ν(s1)+ν(s2)}/2

(
Q (s1, s2)1/2

)
(3.7)

is a covariance function on Rp × Rp with Mν defined as in Eq. (3.4). In particular,
this Matérn-based model allows for locally varying variance σ(s), smoothness ν(s) and
distance measures through Υ. If Υ is the unit matrix, then Q describes the squared
Euclidean distances between points s1, s2 allowing thus for spatial modulation through
matrix Υ.

This very specific model is highly tailored to the requirements of our data set. There
exist other options to construct a heterogeneous covariance function – in the sense that
it is neither isotropic nor stationary in R3 or axially symmetric in S2 . Schmidt and
Guttorp (2020) discuss current approaches of constructing such functions relative to
Euclidean distances. On spheres paired with geodesic distances, defining nonstationary
valid processes is more challenging. Das (2000) translates the deformation approach by
Sampson and Guttorp (1992) from plane to sphere to describe a new class of parametric
anisotropic covariance functions, which at the time was computationally heavy. Instead,
Jun and Stein (2008), Jun (2011) and Bolin et al. (2011) use stochastic partial differential
equations to construct nonstationary covariance functions in a computationally more
tractable way. Heaton et al. (2014) employ the kernel convolution approach based on
works by Higdon (1998) for the construction of spatial processes on spheres. Another
interesting model is put forward by Castruccio and Guinness (2017): Based on an
evolutionary spectrum approach, their covariance structure allows for incorporation of
heterogeneous geography. For a more in depth analysis, we refer the reader to Jeong
et al. (2017), who give a detailed overview of valid covariance functions in terms of
geodesic distances.

3.4 Spatial EMOS

In the spirit of Gel et al. (2004), Berrocal et al. (2007) and Feldmann et al. (2015),
we combine the univariate postprocessing method EMOS with a GRF model (see
Sections 2.2 and 3.3, respectively) to account for spatial dependencies in the predictive
distribution. This yields a multivariate normal (MVN) predictive distribution that
models the spatial structure of the forecast field, in that, given an ensemble forecast
with M ∈ N members at a finite collection of n ∈ N spatial locations s1, . . . , sn ∈ S,

y|f1, . . . , fM ∼ MVN(a+b ◦ f̄ ,Σ),
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where the components of vector y = (ys1 , ..., ysn)⊤ ∈ Rn represent the temperature at
locations s1, . . . , sn ∈ S, fm = (fm,s1 , . . . , fm,sn)⊤ ∈ Rn ´denotes the respective ensemble
member forecasts for m = 1, . . . ,M , and f̄ = 1

M

∑M
m=1 fm is the ensemble mean forecast.

The vectors a = (as1 , . . . , asn)⊺ and b = (bs1 , . . . , bsn)⊺ are obtained by fitting univariate
EMOS models of the form as Eq. (2.2) at every location s1, . . . , sn, and ◦ denotes a
component-wise product of two vectors. Given any fixed set of parameter values, the
standardized EMOS forecast error at location s ∈ {s1, . . . , sn} equals

εs = ys − (as + bsf̄s)√
cs + dsv2

s
. (3.8)

which can be assumed to each follow a standard normal distribution ϵs ∼ N (0, 1).
Minimizing these errors independently might result in a misspecified spatial correlation
structure of the EMOS forecast field. To compensate for this, we assume a Gaussian
random field model for these errors.

Feldmann et al. (2015) fit a GRF model to the respective standardized error fields
with an exponential correlation function Corθρ (see Eq. 3.5) with nugget effect θ given
by

Corθ,ρ(si, sj) = (1 − θ) exp
(

−||si − sj ||
ρ

)
+ θδij . (3.9)

where the range parameter is denoted by ρ and δij indicates the Kronecker delta. This
model is stationary and isotropic. As in Berrocal et al. (2007), Feldmann et al. (2015)
estimate the parameters via variograms and weighted least squares (Cressie, 1985)
over a sliding window training set with the same length as for the univariate EMOS
parameters. The estimated correlation matrix is then converted to a covariance matrix,
by multiplying it with a diagonal matrix with entries corresponding to the predictive
variances c+ dv2

s from the univariate EMOS models.
For comparison in forecast performance, Feldmann et al. (2015) fit a Matérn correla-

tion function Corθ,ν,ρ (Guttorp, 2006) to the Gaussian random field:

Corθ,ν,ρ(si, sj) = (1 − θ) 21−ν

Γ(ν)

(√
2ν ||si − sj ||

ρ

)ν

Kν

(√
2ν ||si − sj ||

ρ

)
+ θδij , (3.10)

where Γ denotes the gamma function, || · || represents the Euclidean distance and Kν is
the modified Bessel function of the second kind with smoothness parameter ν > 0 and
δij indicates the Kronecker delta. This is the normalized case of the covariance function
in Eq. (3.4) with nugget effect θ. However the performance results did not improve over
the application of an exponential model.
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As the area of interest was limited to Germany in Feldmann et al. (2015), a rather
simple stationary and isotropic correlation model is suitable for this specific data set.
The forecasts we consider in the following chapters cover the entire globe, however.
Since the covariance structure varies significantly over this grand domain, we propose to
use a nonstationary correlation function instead rooted in Eq. (3.7). This model allows
for more flexibility in the Matérn-based parameters.

For 2m temperature, the type of surface in terms of land or sea has a huge impact on
the statistical behavior of the data. Multiple publications have shown that incorporating
such geographical covariates can improve the covariance models – e.g. see Jun (2014) or
Castruccio and Guinness (2017). So, we chose to also account for these two regimes by
multiple range and smoothness parameters in our model.

However when we fit a simple Matérn correlation function to different sets of forecasts
residuals over land and sea separately, the estimated smoothness parameters almost
coincide (estimate around 1 for both regimes), but the range parameters differ. Hence,
we only account for the type of surface in two different range parameters, resulting in a
covariance of the form

Covν,ρ1,ρ2,σ(s1, s2) = σ(s1)σ(s2)
|Υ (s1, s2) |

1
2

Mν

([
(s1 − s2)⊤Υ(s1, s2)−1(s1 − s2)

] 1
2
)
.

Here, the term σ(s) corresponds to the local variance, Mν(x) = xνKν(x) and we define
a distance function

Υ(s1, s2) = 1
2 (Υ(s1) + Υ(s2)) ; Υ(s) =

 ρ1E3 if s ∈ land
ρ2E3 if s ∈ sea

with the unit matrix E3 of dimension 3, smoothness parameter ν, different range
parameters ρ1 and ρ2 over land and sea, respectively. For the local variance, our model
relies on the EMOS predictive variance, hence we are interested in the corresponding
correlation structure:

Corν,ρ1,ρ2(s1, s2) = 21−ν

Γ(ν)
|Υ(s1)Υ(s2)| 1

4

|Υ(s1, s2)| 1
2

Mν

([
(s1 − s2)⊤Υ(s1, s2)−1(s1 − s2)

] 1
2
)
.

(3.11)
which is based on the model in Eq. (3.7). When estimating the parameters ν, ρ1 and ρ2,
we use maximum likelihood. Assuming the forecast errors are independent over different
days, the log-likelihood stipulates
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l(ν, ρ1, ρ2) =
∑
t∈T

{
−|S|

2 log(2π) − 1
2 log det Σ − 1

2e⊤
t Σ−1et

}
,

where |S| denotes the number of sites and et the standardized EMOS error field (see
Eq. (3.8)) on the training day t ∈ T and Σ = [Corν,ρ1,ρ2(si, sj)]1≤i,j≤n the correlation
matrix.

For a non-parametric variant of spatial EMOS (spatial EMOS emp cor), we use the
empirical correlation function of the standardized error field in lieu of fitting a Matérn
correlation model. Then we proceed as described before.

3.5 Multivariate verification

Similarly to Section 2.4, we now present diagnostic tools applicable to multivariate
forecasts. First we review different techniques to assess multivariate calibration, followed
by a description of multivariate scoring rules.

3.5.1 Multivariate calibration

Gneiting et al. (2008), Ziegel and Gneiting (2014) and Wilks (2017) discuss different
tools to evaluate multivariate calibration. In the spirit of Thorarinsdottir and Schuhen
(2018), we focus on four histogram techniques, namely the multivariate, the minimum
spanning tree, the average and the band depth rank histogram, which are all based
on the following two-steps approach. Let G = {f0, f1, . . . , fM ∈ Rn} be the set of an
M -member forecast ensemble and the corresponding observation vector, denoted here
by f0. To calculate the rank of the observation within the ensemble, we proceed as
follows:

1. Pre-rank

To each ensemble member and the observation, we apply a pre-rank function
ψ : Rn → R to find the related pre-ranks ψ(fm) for m = 0, . . . ,M .

2. Multivariate rank

Then the rank of the observation vector f0 equals the rank of the corresponding
pre-rank ψ(f0) within the set of pre-ranks {ψ(f0), . . . , ψ(fM )}, in particular

rank(f0) =
M∑

m=0
I {ψ(fm) ≤ ψ(f0)}

with indicator function I and ties resolved at random.
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After accumulating a large number of forecast cases, multivariate calibration can be
assessed via the rank histogram similarly to the univariate setting.

The four methods only differ in the definition of the pre-rank function in the first
step. For the multivariate rank histogram (Gneiting et al., 2008), the pre-rank function
equals

ψmul(fi) =
M∑

m=0
I {fm ⪯ fi}

where fm ⪯ fi holds if all components fulfill f (j)
m ≤ f

(j)
i , j = 1, . . . , n. Ties are resolved at

random and the pre-ranks take integers between 1 and M + 1. Especially for dimensions
greater than 3, the multivariate rank histogram can falsify signal calibration, because
seldom all components of two vectors follow the same order structure (Pinson and
Girard, 2012). The average rank histogram (Thorarinsdottir et al., 2016) counteracts
this flaw by calculating the univariate ranks of each component instead

rank(fi, j) =
M∑

m=0
I
{
f (j)

m ≤ f
(j)
i )

}

and then averaging them in the pre-rank function

ψav(fi) = 1
n

n∑
j=1

rank(fi, j).

Ties are again resolved at random and pre-ranks take real values between 1 and M + 1.
Furthermore, Thorarinsdottir et al. (2016) propose the band depth ranking, which again
incorporates the component-wise ranks

ψbd(fi) = 1
n

n∑
j=1

[
rank(fi, j) [(M + 1) − rank(fi, j)]

+ [rank(fi, j) − 1]
M∑

m=0
I
{
f (j)

m = f
(j)
i

}]
.

If all components of all elements in the set G differ, the equation simplifies to

ψbd(fi) = 1
n

n∑
j=1

[[(M + 1) − rank(fi, j)] [rank(fi, j) − 1]] .
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Ties within the pre-ranks are again resolved at random. This ranking assesses the
centrality of the observation within the ensemble, meaning ψbd(f0) gets assigned small
values when f0 falls to the extreme end of the- ensemble and large values when f0 is
closed to the middle of the ensemble.

Smith (2001), Smith and Hansen (2004) and Wilks (2004) introduce the minimum
spanning tree ranking. A minimum spanning tree is a connected graph without any
loops, where each edge between two points gets assigned a weight. Then the minimum
spanning tree is the set of edges for which the sum of these weights, also called length,
is minimized. More details on minimum spanning tree can be found in Kruskal (1956).
For the minimum spanning tree ranking, the pre-rank function ψmst(fi) calculates the
length of the minimum spanning tree of the set G\fi, meaning the set G without element
fi:

ψmst(fi) = ||MST [{f0, . . . , fM } \ {fi}] ||

with Euclidean distances || · ||. Smith and Hansen (2004) state that other distance
metrics might be more suitable in certain settings. Like the band depth ranking, the
minimum spanning tree rank histogram evaluates the centrality of the observation
within the forecast ensemble.

All of these ranking methods can easily be used to plot the rank histogram of
the verifying observations. While calibration always results in a uniform shape, the
interpretation of the histogram varies for misspecified forecasts. In a simulation study,
Wilks (2017) found that all of the presented methods lack the capacity to identify
miscalibration in certain settings and should always be used in conjunction.

Gneiting et al. (2008) state that the interpretation of multivariate rank histogram
is the same as for the univariate rank histogram (Section 2.4.1); for n = 1 both
collapse. The implications of the average ranking also coincides with the univariate
rank histogram in terms of overdispersion, underdispersion and biases. Additionally,
underestimation of correlation can result in a ∩-shaped histogram and overestimation
in a ∪-shaped histogram. For the minimum spanning tree ranking, too weak correlation,
underdispersion or biases in the ensemble result in a triangular-shaped histogram with
many low ranks. In contrast, overestimation of correlation or overdispersion in the
forecasts display in a triangle with many higher ranks. In case of the band depth
ranking, a skewed histogram with many low ranks indicates underdispersion or a biased
ensemble, while many high ranks imply overdispersion. Too low or too high correlation
within the forecasts results in a ∪-shaped or ∩-shaped histogram, respectively.

As we have seen, interpretation of the resulting histograms is not straightforward
and further discussion on this topic can be found in Thorarinsdottir et al. (2016) and
Wilks (2017). Assessing multivariate calibration is an ongoing research question, as for
instance Jacobson et al. (2020) proposed a new diagnostic tool applicable to forecast
fields, which aims to detect correlation length and thus facilitates interpretability of the
histogram.
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3.5.2 Scoring rules

Applying appropriate multivariate scores is a straightforward method to assess the overall
skill of multivariate forecasts. Another option is to reduce the dimension of the forecasts
by considering aggregated univariate quantities instead to enable the application of
univariate scores (see Section 2.4.2). Dependence structures are of critical importance
when constructing aggregated univariate quantities, such as minima, maxima, totals, or
averages. The selection of a suitable univariate quantity depends on the data, context
and user’s needs. For example, see Berrocal et al. (2007) who evaluate temperature
forecast fields using this approach.

There exists a variate of applicable scoring rules to assess the multivariate forecasts
directly. Some univariate scores have a multivariate equivalent, as the CRPS can be
generalized to the energy score (ES), which Gneiting et al. (2007) define as

ES(F,y) = EF ||X − y|| − 1
2EF ||X − X′||,

where ||·|| denotes the Euclidean norm, F is the predictive distribution, y ∈ Rn represents
the observation and X ∈ Rn and X′∈ Rn are independent random vectors distributed
according to F . For n = 1, the ES coincides with the CRPS. In case of an ensemble
forecast, the ES can be calculated like the CRPS via

ES(Fens,y) = 1
M

M∑
i=1

||fi − y|| − 1
2M2

M∑
i=1

M∑
j=1

||fi − fj ||,

for ensemble members f1, . . . , fM ∈ Rn.
As an alternative to the ES, the Dawid-Sebastiani score (DSS, Dawid and Sebastiani,

1999) can be applied to multivariate forecasts

DSS(F,y) = log det ΣF + (y − µ)⊺ Σ−1
F (y − µ) ,

with µ being the mean predictive vector and the covariance matrix ΣF of the predictive
distribution. Since not all multivariate forecasts have an explicit predictive covariance
matrix, in certain scenarios it has to be estimated. To then avoid sampling errors, the
ensemble size needs to be larger than the dimension of the multivariate forecasts - see
e.g. Feldmann et al. (2015). If the predictive distribution is Gaussian, the DSS coincides
with the multivariate ignorance score (IGN, Roulston and Smith, 2002)

IGN(F,y) = log(f(y)),

with predictive density f . This score is limited in its applications, as a predictive density
f is seldom issued by an EPS. To resolve this constriction, Lerch et al. (2017) propose
to estimate such density.
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Motivated by the variogram, a popular tool in geostatistics, Scheuerer and Hamill
(2015b) introduce the variogram score (VS) of the form

VS(F,y) =
n∑

i=1

n∑
j=1

wi,j

(
|y(i) − y(j)|p − 1

M

M∑
m=1

|f (i)
m − f (j)

m |p
)2

,

where wi,j , i, j = 1, . . . , n are non-negative weights and p > 0 is the order of the score.
By comparing the pairwise differences in the components of the verification and forecast
vectors, the VS captures differences in the correlation structure. As suggested by
Scheuerer and Hamill (2015b), we use constant weights wi,j = 1 for i, j = 1, . . . , n and
order p equal to 0.5 as well as 1 and 2 which they also considered. The VS and ES can
be implemented using the R package scoringRules (Jordan et al., 2019).

The multivariate generalization of the absolute error is the Euclidean error (EE),
defined as

EE(F,y) = ||smedF − y||,

where smedF denotes the spatial median of the predictive distribution F , which can be
defined as (Vardi and Zhang, 2000; Gneiting, 2011)

smedF = arg minX∈RnEF ||X − X′||,

with X′ a random vector with distribution F .
Apart from the EE, all of these presented scores fulfill the requirement of being proper

(see Section 2.4.2); particularly the ES and IGN are even strictly proper. Evaluation
of multi-dimensional probabilistic forecasts is an ongoing research topic. In simulation
studies and a real-world application to wind speed forecasts, Scheuerer and Hamill
(2015b) compare the discrimination ability of the VS, DSS and ES. They recommend
using different scores to evaluate multivariate forecasts, as each score shows benefits
and limitations in certain settings. Ziel and Berk (2019) find in multiple simulation
studies that only the ES can select the true model from all alternatives and should thus
be the preferred tool for evaluation. To properly assess the discrimination ability of
multivariate scores, they strongly recommend pairing it with the Diebold-Mariano test
(Diebold and Mariano, 1995) for calculation of the significance level. Lerch et al. (2020)
find that the ranking of different multivariate postprocessing methods is highly sensitive
to the applied score and demand further research on this topic.

Statistical tests can be applied to evaluate the statistical significance of score
differences for competing forecasting methods. For probabilistic predictions, Ziel and
Berk (2019) recommend the Diebold-Mariano (DM) test, which is commonly used in
economic studies. In the context of statistical postprocessing for weather forecasts, for
example Baran and Lerch (2016) and Lerch et al. (2020) apply this test.
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Given two competing prediction models delivering distributions Fi and Gi, their
corresponding scores averaged over the test set i = 1, ..., k are denoted by s̄(F,y) =
1
k

∑k
i=1 s(Fi,yi) and s̄(G,y) = 1

k

∑k
i=1 s(Gi,yi), respectively. Then the DM test statistic

equals
Tk =

√
k
s̄ (F,y) − s̄ (G,y)

σ̂
,

where σ̂ is the estimated asymptotic standard deviation of the score differences s (Fi,yi)−
s (Gi,yi) for i = 1, ..., k. Values greater zero imply superiority of forecasts Fi, while
negative values show that forecasts Gi are preferred.

The null hypothesis states equal predictive performance of both models. Under this
hypothesis and some regularity assumptions, the test statistic Tk asymptotically follows
a standard normal distribution. To assess the statistical significance of the differences
in scores, we calculate the test statistic and the corresponding p-values. The DM test
can easily be implemented using the R package forecast (Hyndman and Khandakar,
2008).
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Postprocessing for TIGGE
forecasts

Embedded in the World Meteorological Organization (WMO), The Observing System
Research and Predictability Experiment (THORPEX) was an international research
program, lasting from 2005 to 2014, with the aim to improve skill of weather forecasts
for 1- up to 16-days ahead. Part of its objectives was the development of The Interactive
Grand Global Ensemble (TIGGE), first known as THORPEX Interactive Grand Global
Ensemble. As Ebert (2001) notes, combining forecasts from different operational NWP
centers generates an ensemble prediction system which can outperform the contributing
individual NWP models. In this spirit, TIGGE collects ensemble forecasts from twelve
internationally operating NWP centers to construct a multi-model ensemble, providing
forecasts on a global grid since the beginning of the project in 2006. Due to the research
objective of the task, these predictions are not available in real time, but with a delay
of 48 hours to avoid commercial exploitation.

The TIGGE archive provides 6-hourly forecasts for a wide range of weather quantities
(also called parameters or variables) such as surface pressure, total precipitation, surface
temperature and total cloud cover. A complete list of parameters can be found in
Bougeault et al. (2010), who discuss the objectives of the project and give detailed
information on the contributing ensemble prediction systems (EPSs). Furthermore,
Park et al. (2008) describe the characteristics of the contributing EPSs and analyze
their strengths and weaknesses, while also providing first verification results for forecasts
combined from different sources. Additional information on TIGGE can be found in
Table 4.1 or on the TIGGE website at ECMWF https://confluence.ecmwf.int/
display/TIGGE.

After a decade in existence, Swinbank et al. (2016) review TIGGE’s achievements
and conclude that the data base has supported the development of new forecast products
for extreme weather events and inspired a wide range of scientific studies. In particular,
they highlight research results by Hagedorn et al. (2012), who find that reforecast-
calibrated ECMWF forecasts are of comparable or even superior quality than the solely
bias corrected TIGGE ensemble for 2m temperature over the Northern Hemisphere.
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In the context of statistical postprocessing for TIGGE, different techniques have been
applied to various contributing sub-ensembles individually – for the univariate case see
e.g. Vogel et al. (2018) or Tao et al. (2014), while Aminyavari and Saghafian (2019) focus
on spatial postprocessing by applying the non-parametric ECC method (see Section
3.2.1) to precipitation forecasts. Incorporation of the multi-model structure can be found
in Barnes et al. (2019), who combine forecasts by three of the sub-ensembles within
a Bayesian framework. We aim to utilize the full TIGGE ensemble in postprocessing
while simultaneously accounting for the spatial dependencies.

At the beginning of this chapter, we reproduce parts of the verification results
for TIGGE by Hagedorn et al. (2012) as a reference and then apply more advanced
postprocessing techniques. The objective is to determine one univariate version of the
EMOS method (see Section 2.2) which yields the best performance results for the full
TIGGE ensemble. After successfully calibrating the marginal distributions, we apply
multivariate postprocessing methods (see Chapter 3) to generate calibrated forecasts
fields on the entire globe. During this process, we update to a more current and larger
data set from the TIGGE archive. To this set, we apply the findings from before and
conduct further analyses with a focus on spatial postprocessing.

4.1 Replicating Hagedorn et al. (2012) and beyond

4.1.1 Data set

Hagedorn et al. (2012) compare TIGGE multi-model forecasts with reforecast-calibrated
ECMWF ensemble forecasts. Their analysis includes evaluation of 2-days ahead predic-
tions for 2m temperature issued by TIGGE from December 1, 2008 until February 28,
2009. They assess forecasts initialized at 12 as well as 00 universal time coordinated
(UTC) with a focus on the latter. For predictions started at 12 UTC, nine out of the
contributing ensembles are available (see models without asterisk in Table 4.1), whereas
at 00 UTC a smaller subset is given – namely CMC, CMA, CPTEC, ECMWF, KMA,
NCEP and UKMO. Hagedorn et al. (2012) furthermore evaluated the performance of a
sub-multi-model ensemble, called TIGGE-4, which consists of the ensemble prediction
systems run by CMC, ECMWF, NCEP and UKMO. Throughout the chapter, the unit
used is degrees Celsius.

Choosing a data set to train and verify the models is of crucial importance and
discussed more extensively in Chapter 6. Hagedorn et al. (2012) contrast the use of
the NCEP reanalysis (Kanamitsu et al., 2002) and ECMWF’s ReAnalyses-Interim
(ERA-Interim; Simmons et al., 2007; Dee et al., 2011); here we only employ the latter.
While Hagedorn et al. (2012) evaluate forecast for lead times from 1 to 16 days, we
restrict our analyses to 2-days ahead predictions. In their study, they consider the
extra-tropical region over the Northern Hemisphere (20◦ - 90◦N), interpolated to a
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Table 4.2: Averaged scores and assessment of the prediction interval for bias corrected
2-days ahead temperature forecasts initialized at 00 UTC over the Northern Hemisphere
from December 1, 2008 until February 28, 2009. The predictions are verified against
ERA-Interim reanalyses as in Figure 9a in Hagedorn et al. (2012). The last column
shows the ratio of the empirical coverage and nominal prediction interval.

Prediction Intervals
CRPS AE RMSE Width Coverage Level Ratio

Model [°C] [°C] [°C] [°C] [%] [%] [%]
TIGGE 0.90 1.21 1.83 9.07 97.00 98.79 98.19
TIGGE-4 0.85 1.16 1.70 7.75 95.44 98.31 97.08
CMA 1.41 1.74 2.58 2.68 42.63 87.50 48.72
CMC 1.20 1.66 2.37 5.59 78.72 90.91 86.60
CPETC 2.00 2.08 3.00 0.54 6.84 87.50 7.82
ECMWF 0.96 1.23 1.80 3.58 66.32 96.15 68.98
KMA 1.97 2.24 3.51 2.27 35.40 88.89 39.82
NCEP 1.33 1.62 2.59 2.72 51.93 90.91 57.12
UKMO 1.23 1.57 2.32 3.38 58.99 92.00 64.12

2.5◦ × 2.5◦ grid by the ECMWF TIGGE data portal, resulting in 4.176 grid points.
When calculating the verification measures over areas, Hagedorn et al. (2012) propose
to weight the score at a certain grid point by the corresponding cosine latitude before
averaging them to properly represent verification results on the grid across a sphere; we
follow this recommendation.

4.1.2 Performance on the Northern Hemisphere

In Figure 9 (a) of Hagedorn et al. (2012), the authors evaluate the performance of
forecasts with a lead time from 1- up to 16-days ahead by selected TIGGE models and
the reforecast-calibrated ECMWF EPS. The TIGGE set consists of predictions by four
sub-ensembles – namely CMC, ECMWF, NCEP and UKMO – and the combination of
them, resulting in TIGGE-4; all of these ensembles are individually bias corrected with
a training period of 30 days (see Section 2.3). We partially reproduce the study from
2012 by only considering 2-days ahead predictions from TIGGE.

Hagedorn et al. (2012) state that ECMWF provides the most skillful contributing
EPS and in terms of CRPS, TIGGE-4 yields a lower mean score than the entire TIGGE,
which our findings confirm as shown in Table 4.2. Apart from the CRPS, we evaluate
the predictive performance with mean AE and RMSE – again supporting this ranking.
To solely assess calibration, for each M -member ensemble the table shows the empirical
coverage and width of the nominal M−1

M+1 · 100% prediction interval, which corresponds
to the ensemble range. For comparable results between ensembles of different sizes, the
table presents the ratio between the real and nominal coverage as a percentage. For
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Table 4.3: Scores for raw 2-days ahead temperature forecasts by TIGGE and sub-
ensembles initialized at 00 UTC over the Northern Hemisphere verified against ERA-
Interim reanalyses averaged over December 1, 2008 until February 28, 2009. The last
column shows the ratio of the empirical coverage and nominal prediction interval.

Prediction Intervals
CRPS AE RMSE Width Coverage Level Ratio

Model [°C] [°C] [°C] [°C] [%] [%] [%]
TIGGE 1.07 1.45 2.25 9.07 95.57 98.79 96.74
TIGGE-4 1.00 1.37 2.00 7.75 93.79 98.31 95.40
CMA 1.92 2.28 3.30 2.68 36.05 87.50 41.20
CMC 1.37 1.90 2.68 5.59 74.92 90.91 82.41
CPTEC 2.47 2.55 3.68 0.54 5.23 87.50 5.98
ECMWF 1.18 1.48 2.13 3.58 60.18 96.15 62.59
KMA 2.92 3.21 5.19 2.27 30.38 88.89 34.18
NCEP 1.63 1.94 2.96 2.72 47.52 90.91 52.27
UKMO 1.55 1.91 2.82 3.38 54.58 92.00 59.32

both TIGGE ensembles the coverage of the empirical predictive interval is closest to its
nominal value highlighting the benefits of the multi-model system while most (single-
model) ensembles underestimate the uncertainty in the forecasts (as in for example Park
et al., 2008; Bougeault et al., 2010). Among the sub-ensembles, the empirical coverage
of CMC and ECMWF demonstrates the smallest deviation from the nominal value.

The overall quality of the predictions by TIGGE and the contributing ensembles is
remarkable, as also presented in Table 4.3 which displays the performance of the direct
model output. The TIGGE-4 ensemble shows averaged CRPS, AE and RMSE of 1.00,
1.37 and 2.00, respectively. Similar to the bias corrected forecasts, TIGGE-4 is the most
skillful ensemble and both multi-models outperform every individual contributing EPS.
Among the sub-ensembles, ECMWF yields the best scores, followed by CMC and UKMO.
Comparing Table 4.2 and Table 4.3, the average width of the predictions intervals is the
same, while there is a minimal gain in empirical coverage for the simply postprocessed
ensembles because of the interval shift. Bias correction in particular improves forecasts
in terms of AE and RMSE, which in turn results in slight improvements in CRPS.

The comparison of uPIT histograms for the direct model output and the bias
corrected forecasts in Figure 4.1 again displays minor benefits through simple postpro-
cessing, as the highest bars of the histograms are lowered. Since the predictive variance is
not manipulated by the bias correction, underdispersion cannot profoundly be corrected
resulting in solely small changes to the shape of the histograms. Especially Figure
4.1 highlights the benefits of the multi-model ensemble, as histograms of both TIGGE
variants demonstrate that this ensemble is closer to uniformity and thus calibration,
while all contributing sub-ensembles show some sort of dispersion error. For CMC and
ECMWF, this underdispersion is less pronounced, which is also supported by the smaller
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Figure 4.1: uPIT histograms for raw and bias corrected 2-days ahead temperature
forecasts initialized at 00 UTC over the Northern Hemisphere and verified against
ERA-Interim for December 1, 2008 to February 28, 2009. The dark gray bars coincide
with values for the raw predictions, while the light gray bars indicate results of the bias
corrected ensembles; medium gray denotes the overlapping area.

deviation of the averaged empirical coverage from the nominal predication intervals
in Tables 4.2 and 4.3. The forecasts by CPTEC strongly underestimate the inherent
uncertainty, already foreshadowed by the low mean width of the prediction interval of
0.54°C. According to their individual histograms, each of these sub-ensembles would
benefit from sophisticated postprocessing to correct the predictive variances and biases.
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Table 4.4: Global scores for unprocessed 2-days ahead temperature forecasts by
TIGGE and individual sub-ensembles initialized at 00 UTC verified against ERA-
Interim reanalysis averaged over December 1, 2008 until February 28, 2009.

CRPS AE
Model [°C] [°C]
TIGGE 0.700 0.955
TIGGE-4 0.672 0.917

CMA 1.291 1.523
CMC 0.917 1.234
CPTEC 1.524 1.599
ECMWF 0.818 1.019
KMA 1.782 1.886
NCEP 1.094 1.284
UKMO 1.057 1.262

The combination of these independent EPS widens the prediction intervals and thus
the uncertainty associated with the forecasts, which the individual ensembles lack. As
Hagedorn et al. (2005) state the prerequisite for success of a multi-model concept is
based on the combination of skillful and independent EPSs with their own strengths
and weakness. The TIGGE project might have achieved this aim, when considering the
histograms in Figure 4.1 and performance results in Table 4.2 and 4.3.

4.1.3 Global analysis

Since the objective of this work is to model spatial dependence of forecast error fields
across the entire sphere, we expand the TIGGE data set from Section 4.1.1 with
the remaining 6,192 grid points on the globe (90◦S – 20◦N). Hence, we now evaluate
predictions for December 1, 2008 until February 28, 2009 with a lead time of 2 days, still
initialized at 00 UTC and interpolated to a 2.5◦ × 2.5◦ grid, resulting in forecasts at a
total of 10,224 sites across planet Earth (without North and South Pole) on each day. For
a first glimpse at the global predictive performance, we apply different variants of EMOS
and analyze how the predictions by TIGGE benefit from univariate postprocessing.

As a reference, Table 4.4 summarizes the verification results of the direct model
output. Compared to Table 4.3, we see an overall decrease in the averaged scores.
Through expanding the data set by the Southern Hemisphere, the proportion of grid
points over the sea increases. As we will argue in Chapter 6, when verifying forecasts
against reanalyses, especially for sites over water, where surface observations are spread
sparse, the reanalysis and the model output produce similar values. This results in low
(good) performance scores for forecasts. The ranking of the EPSs is the same as seen
in Table 4.3, hence no ensemble is specifically adapted to either the Northern or the
Southern Hemisphere.
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Figure 4.2: uPIT histograms for global raw TIGGE 2-days ahead temperature forecasts
and its sub-ensembles initialized at 00 UTC. The predictions are verified against ERA-
Interim reanalysis and accumulated globally during December 1, 2008 until February
28, 2009.

The uPIT histograms for the raw forecasts are displayed in Figure 4.2 and indicate
the need for statistical postprocessing for all sub-ensembles, as their predictive spreads
are too narrow, leading to uncalibrated forecasts. When uniting these truly independent
ensembles, both combinations, TIGGE and TIGGE-4, represent the uncertainty rather
well in comparison to its individual contributors. Because TIGGE and TIGGE-4
provide almost perfectly calibrated predictions, the improvements achieved through
postprocessing might be smaller than for the single models.
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To explore the benefits of more sophisticated postprocessing for TIGGE, firstly we
apply EMOS with the ensemble mean as predictor. In the context of multi-models,
numerous studies have demonstrated that the average of all ensemble members can
outperform the most skillful contributing single model (e.g. Hagedorn et al., 2005 and
Doblas-Reyes et al., 2005). With this in mind, we reduce TIGGE to its mean in order
to make the application of EMOS more computationally feasible, as the entire original
ensemble contains 164 individual members. When selecting the site-specific training
data sets, we rely on local estimation and the neighborhood variants as described in
Section 2.2.2. The performance results in terms of averaged CPRS and AE are shown
in the first row of Figure 4.3 for different lengths of the training period from 20 up to
50 days. Although TIGGE is not as underdispersive as most EPSs, postprocessing still
increases the quality of the forecasts. In this setting, including data from neighboring
grid points for the estimation of the EMOS parameters does not improve the performance
when compared to the local approach. Restricting neighborhoods to only contain grid
points from the same surface type (land/sea) as the grid point at hand improves the
mean scores marginally. However, the comparison is almost obsolete because the score
difference between best and worst performing model is quite small (<0.034◦C). For local
EMOS, the skill of the forecasts improves with increasing training period length. Due
to the small data set, we cannot extend the training period beyond 50 days to find a
local minimum, but will eventually analyze this issue further in Section 4.2.

In order to incorporate the multi-model structure of the TIGGE forecasts, we
calculate the mean of each TIGGE sub-ensemble and unite them, thus creating a small
ensemble of in this scenario seven members. To these combined predictive means,
we apply EMOS with the neighborhood approach for training data selection. The
forecast skill further improves when compared to the simple mean version – see the
second row of Figure 4.3. In this scenario, most neighborhood versions outperform local
EMOS. Compared to the mean-only approach from before, the number of estimated
parameters for EMOS has increased from 4 in Eq. (2.2) to 10 in Eq (2.1). Hence, the
local version might not provide enough data for a stable estimation. The variant NN4
with a differentiation for land/sea yields the lowest scores in terms of both averaged
CRPS and averaged AE.

To not only explore variants of EMOS for TIGGE focusing on the predictive
mean, but also the predictive variance, we incorporated the ensemble spread in three
different appreoaches within local EMOS applied to TIGGE’s mean. These results
are shown in the bottom row of Figure 4.3. For “Var 1”, the parameter v of the
EMOS Eq. (2.2) denotes the empirical standard deviation over the seven means of the
contributing ensembles. The parameter v represents the standard deviation of all 164
individual members in “Var 2” as in the original approach. For “Var 3” the predictive
distribution equals N (as + bsf̄s, cs + d1,sv

2
1,s + · · · + d7,sv

2
7,s), where vi, i ∈ {1, .., 7}

describes the empirical standard deviation of each sub-ensemble and the d’s are estimated
within the regular EMOS fit. As a reference, “Var 0” is a simple EMOS version, that
uses a fixed, estimated variance which does not depend on the ensemble spread; the
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Figure 4.3: Averaged CRPS and AE for EMOS applied to the mean of the TIGGE and
combined means of TIGGE’s sub-ensembles with different neighborhood training sets
and multiple formulations for the estimation of the predictive variance. The TIGGE
forecasts for temperature are initialized at 00 UTC for a prediction horizon of 2 days,
verified against ERA-Interim reanalysis.
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Figure 4.4: Difference in CRPS in degrees Celsius of local EMOS with 50 training
days compared to the raw ensemble for 2-days ahead TIGGE temperature forecasts
initialized at 00 UTC, verified against ERA-Interim reanalysis averaged over December
1, 2008 until February 28, 2009.

predictive distribution is thus N (as + bsf̄s, cs). In terms of performance, all models
yield very similar results, with “Var 2” achieving the lowest scores, but again the overall
differences in averaged scores are negligible, as they are smaller than 0.02◦C. Due to
these findings, we will continue to employ the variance according to “Var 2”, namely
ys|f1,s, . . . , fM,s ∼ N (as + bsf̄s, cs + dsv

2
s) as suggested in the original EMOS approach

by Gneiting et al. (2005).
To analyze the spatial patterns in the predictive performance, Figure 4.4 shows

the difference in terms of CRPS for the direct model output relative to postprocessed
forecasts, namely application of local EMOS with 50 training days. In general, post-
processing has a slight positive effect, with some areas showing larger improvements
– e.g. northern Africa, Australia, eastern South America. Over ocean areas, there is
almost no change to the direct model output. Again, this might be explained by the
fact that observational sites over the ocean are sparsely distributed, so the reanalyses
and the forecasting model produce similar values and the benefits from postprocessing
diminish.
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Figure 4.5: Globally averaged CRPS for EMOS postprocessed, bias corrected (BC) and
raw TIGGE 2-days ahead temperature forecasts initialized at 12 UTC. The predictions
are verified against ERA5 and accumulated over January 1, 2010 through December 31,
2018.

4.2 Updated TIGGE

4.2.1 Data set

After recreating part of the work by Hagedorn et al. (2012) and applying EMOS to
the same data set which they analyzed in their case study, we enlarge the TIGGE
data to cover the time period of 1.01.2009 until 31.12.2018 and update the reference
data set to the more recently developed ERA5 reanalyses (Hersbach et al., 2020). The
evaluation time frame ranges from 1.01.2010 to 31.12.2018 – for some analyses starting
on 1.01.2012 or 1.12.2018. As before, the 2-days ahead temperature forecasts are spread
on a 2.5◦ × 2.5◦ grid across the globe, resulting in 10,224 grid points without the North
and South Pole. To realize the full potential of the multi-model ensemble, we focus on 12
UTC, because ten of the contributing sub-ensembles are available for this initialization
time – namely BOM, CMA, CPTEC, ECCC, ECMWF, JMA, KMA, NCEP, NCMRWF
and UKMO. Predictions from some sub-ensembles are missing for certain days. When
no forecasts to train or verify are given, we exclude the respective sub-ensemble from
the EMOS fit for this specific time.
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Figure 4.6: (Unified) PIT histograms for 2-days ahead global temperature forecasts
initialized at 12 UTC and verified against ERA5 from January 1, 2010 until December
31, 2018 for the raw, bias corrected (BC) and EMOS postprocessed TIGGE ensemble.
The length of training period is based on the best performance in terms of CRPS, so 30
days of data for BC and 50 days for EMOS.

4.2.2 Univariate postprocessing

As in Section 4.1.2, we begin postprocessing with application of the bias correction used
by Hagedorn et al. (2012). The performance in terms of averaged CRPS and AE is
displayed in Figure 4.5 for different lengths of training periods from 30, 50, 100, 150 up
to 350 days. We compare the bias correction to simple local EMOS, which we apply to
the TIGGE mean forecasts for the benefit of quick computation and stable parameter
estimation. Yielding an averaged CRPS and AE of 0.566°C and 0.782°C, respectively,
the raw TIGGE ensemble already delivers highly skillful predictions when evaluated
against ERA5 reanalyses. The direct model output benefits from the application of
bias correction as well as EMOS, but improvements in CRPS are more pronounced for
EMOS. At short training periods, results of the mean AE are similar for both methods.
These findings can be explained by the fact that the bias correction shifts the entire
ensemble by the correcting term, but retains the original spread. Meanwhile EMOS can
adjust the predictive variance to improve calibration of the forecasts which is reflected
in the CRPS.

To solely evaluate calibration, Figure 4.6 displays uPIT histograms for each of the
three forecasters. Contrary to most EPSs, TIGGE suffers from minimal overdispersion as
the uPIT histogram shows a slight hump shape. This feature becomes more pronounced
after the bias correction, when the ensemble forecasts are shifted and more observations
fall close to the center of the predictive interval. The application of EMOS generally
counteracts this flaw as the histogram almost flattens, while retaining one predominant
bar on each side. We further explore possible reasons for this shape in Chapter 5.

For the previous and smaller data set, no optimal length of the training period could
be determined (see Figure 4.3). The local EMOS curve shows a local minimum for a
training period of 50 days in Figure 4.5. Beyond 250 days, the curve starts to decline
and we are interested if there exists an even lower minimum at longer training periods.
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Figure 4.7: Globally averaged CRPS and AE for raw TIGGE temperature forecasts
and two EMOS versions applied to TIGGE mean temperature forecasts initialized at 12
UTC. The 2-days ahead predictions are verified against ERA5 for January 1, 2012 to
December 31, 2018.

Hence, we restrict the evaluation period from January 1, 2012 to December 31, 2018,
which allows for a training set containing up to three years of data. Figure 4.7 displays
the verification results for local EMOS and spatially adaptive EMOS (Hemri et al.,
2014), described in Section 2.2.1. Due to the construction of spatially adaptive EMOS,
we choose certain training periods relative to the length of a year: half a year, one, two
and three years. The remaining majority of training periods lengths are multiples of
10. For local EMOS, there exists a second local minimum at a training period of 400
days with a CRPS of 0.460°C; however, this minimum is greater than the CRPS of
0.457°C at 50 days. Spatially adaptive EMOS outperforms local EMOS for training
periods greater than 150 days and exhibits hardly any sensitivity to the length of the
training period beyond 365 days, as the curve becomes almost flat. The local minimum
at a year’s worth of training data is associated with a CRPS of 0.457°C and thus nearly
identical to the local minimum of local EMOS (first difference in the sixth decimal
place). Because the latter is computationally faster due to the simplicity of the model
and smaller training data set, we continue to focus on local EMOS.

At the beginning of this chapter, we noted that the forecast skill can be greatly
improved by applying EMOS not to the overall ensemble mean, but to the ensemble of
sub-ensemble means (see Figure 4.3). Paired with the NN4 LS training data selection,
this EMOS variant generated the most skillful predictions. We apply these findings
to the updated TIGGE data set and summarize the results in Figure 4.8, where we
compare the performance of the direct model output to local EMOS fitted to the mean
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Figure 4.8: Globally averaged CRPS and AE for 2-days ahead temperature forecasts
initialized at 12 UTC of raw TIGGE predictions and two EMOS variants, one applied
to the TIGGE mean only and one applied to the combination of the means of the
contributing sub-ensemble (ens). The forecasts are verified against ERA5 for January 1,
2010 through December 31, 2018.

as well as local EMOS and NN4 LS EMOS which are both applied to the sub-ensemble
means. The results from the previous section are confirmed as local EMOS of the
sub-ensembles outperforms local EMOS applied to the overall TIGGE mean, while NN4
LS EMOS based on the sub-ensembles yields the lowest scores. Especially, local EMOS
of the sub-ensembles benefits from longer training periods as more data stabilizes the
estimation of the enlarged set of EMOS parameters (now up to 13 instead of four).
Similar to the mean local EMOS version, NN4 LS exhibits a minimum averaged CRPS
at a training period of 50 days.

For the spatial applications, we will therefore base the univariate postprocessing on
NN4 LS EMOS applied to the means of the contributing sub-ensembles. Considering
the collection of means as an ensemble, we apply EMOS accordingly, which yields
the distribution ys|f1,s, . . . , fM,s ∼ N

(
as + b1,sf̄1,s + · · · + bk,sf̄k,s, cs + dsv

2
s

)
for tem-

perature variable ys at location s ∈ S given forecasts f1,s, . . . , fM,s by an M -member
ensemble with variance v2

s . The mean forecast of each of the k sub-ensembles is denoted
by f̄l,s, . . . , f̄k,s and as, b1,s, . . . , bk,scs, ds are the EMOS parameters. The training set
for their estimation consists of data over the past 50 days from the four neighboring
grid points when the grid point is located on the same surface type (land or sea) as the
point of interest. From here onward we refer to this specification as EMOS.
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Figure 4.9: Binned variogram for standardized forecast errors by (NN4 LS sub-
ensemble) EMOS postprocessed TIGGE temperature forecasts at a prediction horizon of
2 days initialized at 12 UTC and verified against ERA5 on the first day of the training
period on 1.01.2017. The continuous and dotted lines show the averaged semi-variance
of error pairs relative to the Euclidean and geodesic metric, respectively.

4.2.3 Spatial postprocessing

After determining the most suitable univariate EMOS version for the data at hand, we
now combine spatial extensions with this postprocessing method. These approaches
are discussed in detail in Chapter 3. Specifically, spatial EMOS is computationally
highly demanding, so we restrict the verification period to the most current available
year 2018, starting January 1 and ending December 31. Instead of a rolling window
training period, we estimate the parameters of the correlation functions (Eq. 3.11) with
maximum likelihood over forecast errors on all days of the entire year 2017.

In Section 3.3, we discussed the use of geodesic and Euclidean distances for covariance
functions. Figure 4.9 displays the variogram of the forecast errors on the first day of the
training data set, 1 January 2017, relative to these metrics. Depending on the distance
function, different pairs of forecast errors fall into each of the ten bins of the variogram.
Nevertheless, both variograms display a similar shape and indicate a correlation length
of no greater than 1000km.

When verifying the spatial methods, the models are fitted simultaneously across
the globe before a sample from the predictive distribution is drawn. To obtain a
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Table 4.5: Globally averaged ES and VS for direct model output by TIGGE and
postprocessed 2-days ahead forecasts of temperature field. Model runs were initialized
at 12 UTC and forecasts are verified against ERA5 in 5 × 5 grid boxes (containing 25
grid points) starting January, 1, 2018 until December 31, 2018. The predictive sample is
either generated by a random draw (R) or the calculation of equidistant quantiles (Q).

ES [°C] VS
Forecast p = 0.5 p = 1 p = 2
Raw ensemble 3.762 83.8 1057 515,015
EMOS-R 2.967 67.4 749 297,678
ECC-R 2.965 67.9 748 297,145
Schaake-R 2.960 67.4 747 297,056
EMOS-Q 2.884 68.5 684 264,524
ECC-Q 2.796 62.6 665 263,400
Schaake-Q 2.791 61.0 657 263,066
Spatial EMOS 2.955 66.1 735 294,681
Spatial EMOS emp cor 2.958 65.9 735 295,681
Spatial EMOS emp cor 1 year 2.976 66.4 780 322,774

fair comparison, the sample size each day is the same for all methods and based on
the contributing sub-ensembles available in the training set for the verification day.
When assessing the predictive performance, we restrict the forecasts fields to boxes
of 5 × 5 = 25 neighboring grid points over the surface of planet Earth to ensure
computational feasibility. We consider all possible boxes and assign the calculated score
to the grid point at the center. The scores reported are weighted by their corresponding
cosine latitude as in Hagedorn et al. (2012) and averaged across the respective boxes
over space and time. Besides fluctuations due to sampling, the marginal predictive
performance for all spatial methods coincides with that of univariate EMOS and we
therefore refrain from reporting these results as Figure 4.8 shows this performance over
the entire verification period.

Table 4.5 summarizes the spatial performance in terms of averaged ES and VS for
the direct model output, EMOS and various spatial variants thereof. When obtaining a
sample for EMOS, ECC and the Schaake shuffle, two different methods are used. We
either draw a random sample (EMOS-R, ECC-R and Schaake-R) from the predictive
distribution F or take the equidistant quantiles F−1

(
1

M+1

)
, ..., F−1

(
M

M+1

)
of the

available M -member ensemble; the latter referred to as EMOS-Q, ECC-Q and Schaake-
Q respectively. As mentioned before, we fit the parametric correlation function for
spatial EMOS to the EMOS error fields of the entire previous year 2017 in order to
save computational time. The non-parametric version of spatial EMOS relies on the
empirical correlations either fitted over the same 50-days rolling window training period
as the univariate EMOS or a single fit over the past year as for the parametric version.

All postprocessing methods improve the direct model output in terms of mean ES
and VS. Most conclusions drawn from the scores coincide, but the VS is more sensitive
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Table 4.6: Values of the test statistic for the two-sided DM test of equal predictive
performance for the ES in Table 4.5. The comparison focuses on spatial EMOS with a
parametric correlation function and Schaake-Q as benchmarks. Positive values indicate
a superior predictive performance by the method in the top row, while negative values
indicate a better performance of the model in the left column. All values are significant
at the 0.1% level under the null hypothesis of equal predictive performance.

Schaake-Q Spatial EMOS
Raw ensemble 266 225
EMOS-R 210 11
ECC-R 201 8
Schaake-R 202 4
EMOS-Q 405 −71
ECC-Q 36 −160
Schaake-Q — −165
Spatial EMOS 165 —
Spatial EMOS emp cor 154 2
Spatial EMOS emp cor 1 year 157 30

to misspecification in the forecasted correlation structure, whereas the ES puts more
emphasis on the predictive mean vector according to early works by Scheuerer and
Hamill (2015b). The Schaake shuffle based on quantiles yields the lowest values for both
scores, which confirms findings in the simulation studies by Lerch et al. (2020), who
describe this method as a “powerful benchmark [. . .] that proves difficult to outperform”.
Hence, the spatial dependence structure of past verification sets contains more valuable
information about the true dependence structure than the template based on the raw
ensemble, since ECC-Q performs worse than Schaake-Q.

As Bröcker (2012) argues quantile forecasts are most suitable when evaluated by the
CRPS, Schefzik et al. (2013) recommend using ECC-Q, which is supported by inference
from Lerch et al. (2020). We find that within each sampling scheme (Q and R), the
reference approaches are ordered as expected in terms of performance: most skillful
forecasts by the Schaake shuffle, second place for ECC and lastly independent EMOS.

However, the sampling method impacts the ranking significantly. In Table 4 of
Schefzik et al. (2013), the authors show a similar pattern for the verification results of
their case study. ECC-Q outperforms ECC-R, but the univariate approach yields lower
scores than ECC-R1. They argue variations in spatial dependence of temperature are
a small scale phenomena and negligible at 400km distance, thus the benefit of ECC
diminishes. Minimal distances between grid centers within the considered 5 × 5 = 25
neighboring grid boxes vary across the globe due to the segmentation into latitude and

1In terms of ES, the same ranking pattern for these ECC variants and the univariate postprocessing
can be found in Table 3 of the case study by Aminyavari and Saghafian (2019). Additionally in some
applications by Schefzik (2011), ECC-Q is outperformed by quantiles derived solely via univariate
postprocessing.
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Table 4.7: Globally averaged CRPS for 2-days ahead forecasts of the minimum (min),
maximum (max) and average (ave) temperature initialized at 12 UTC verified against
ERA5 in 5 × 5 grid boxes from January, 1, 2018 until December 31, 2018.

CRPS [°C] AE [°C]
Forecast min max ave min max ave
Raw ensemble 0.698 0.474 0.344 0.936 0.634 0.475
EMOS-R 0.497 0.365 0.206 0.652 0.483 0.252
ECC-R 0.488 0.354 0.198 0.652 0.472 0.264
Schaake-R 0.485 0.354 0.193 0.646 0.474 0.260
EMOS-Q 0.484 0.353 0.197 0.653 0.483 0.251
ECC-Q 0.470 0.334 0.192 0.629 0.447 0.257
Schaake-Q 0.461 0.326 0.188 0.613 0.439 0.253
Spatial EMOS 0.491 0.359 0.201 0.650 0.478 0.265
Spatial EMOS emp cor 0.490 0.358 0.201 0.650 0.478 0.268
Spatial EMOS emp cor 1 year 0.498 0.365 0.210 0.662 0.488 0.284

longitude. Near the poles, centers can be located as close as 25km, whereas at the
equator the minimal distance between grid centers measures 278km. Thus especially
for grid boxes around the equator, we notice a similar pattern as Schefzik et al. (2013).
Furthermore, the weighing according to cosine latitude puts more emphasis on scores at
the equator, where grid centers are located further apart, and the corresponding scores
have a higher impact on the overall results.

For all versions of spatial EMOS, we draw a random sample from the multivariate
normal predictive distribution instead of quantiles. Spatial EMOS with parametric
correlation functions outperforms the raw ensemble, and all random-sample-based
approaches, but performs worse than forecasts derived from quantiles. The application
with a parametric correlation function yields slightly better performance than the
non-parametric, empirical correlation. This suggests that the structure we assumed
for the correlation functions (presented in Sections 3.4) is reasonable, supported by
the improved performance. Spatial EMOS with non-parametric correlation functions
benefits when using the same sliding window training period as for univariate EMOS
instead of one fixed training set which covers the previous year.

Besides the methods based on the random sample scheme, all postprocessing which
accounts for spatial dependency outperforms the univariate approaches in terms of VS.
The spatial EMOS versions deliver more skillful predictions than the sample variants of
ECC and the Schaake shuffle, but based on quantiles the reference methods yield better
scores. In terms of VS, spatial EMOS paired with an empirical correlation fitted on
a sliding window training period outperforms the same model paired with a constant
training set and the model using a parametric correlation function. This indicates that
the spatial correlation structure changes over the course of a year and that spatial
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Table 4.8: Values of the test statistic for the two-sided DM test of equal predictive
performance for the CRPS minimum temperature forecasts in Table 4.7. The comparison
focuses on spatial EMOS with a parametric correlation function and Schaake-Q as
benchmarks. Positive values indicate a superior predictive performance by the method
in the top row, while negative values indicate a better performance of the model in the
left column. All values are significant at the 0.1% level under the null hypothesis of
equal predictive performance.

Schaake-Q Spatial EMOS
Raw ensemble 149 123
EMOS-R 44 8
ECC-R 40 −3
Schaake-R 35 −7
EMOS-Q 76 −8
ECC-Q 37 −28
Schaake-Q — −40
Spatial EMOS 40 —
Spatial EMOS emp cor 41 0
Spatial EMOS emp cor 1 year 44 7

EMOS with the parametric correlation function might benefit from also using a sliding
window training set.

To evaluate the statistical significance of the differences in scores, we apply the DM
test, as described in Section 3.5.2. Because the application of the DM test requires
independence of the scores, we only consider scores from non-overlapping blocks of
5 × 5 = 25 grid boxes. So instead of collecting 9360 scores daily, we evaluate a subset of
size 377. In particular, we are interested in the performance in terms of averaged ES
of the best model, Schaake-Q, and the newly proposed spatial EMOS with parametric
correlation functions. The test statistics for both of these approaches compared to all
other methods are shown in Table 4.6. Although the score differences in Table 4.5
are rather small, they are highly significant being based on 137,605 forecast cases and
all p-values are smaller than 0.1%. The test statistics support the performance ranks
according to the ES as presented in Table 4.5.

Spatial dependence structure is of critical importance when predicting aggregated
univariate quantities, such as minima, maxima, totals, or averages over a region. In
Table 4.7, we consider forecasts for these quantities over the sets of 5 × 5 grid points
evaluated by the univariate scores CRPS and AE. Some results are similar to the
conclusions from VS and ES, in that all postprocessing improves the direct model output
and Schaake-Q yields the best results in most settings. Again, the sampling method
has a large impact on the scores and for the majority of cases the forecasts based on
quantiles outperform the random sampling. Spatial EMOS with a parametric (but
constant over time) correlation function shows a similar predictive skill as spatial EMOS
with an empirical correlation estimated over a sliding window training period. This
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again supports the idea of pairing spatial EMOS with a parametric correlation fitted
on a sliding window training period. Similar to findings by Schefzik (2011), Table 4.7
shows that in certain settings EMOS can outperform ECC, e.g. when there is small
spatial dependence across the domain.

In order to ensure statistical significance of the differences in scores in Table 4.7,
again we apply the DM test, as described in the paragraph before. Table 4.8 displays
representationally the test statistics in terms of CRPS for minimum temperature
predictions for the best performing model, Schaake-Q, and the newly proposed spatial
EMOS with parametric correlation functions. Compared to Table 4.7 results for the
test statistics are smaller, but as in the previous performance evaluation, Schaake-
Q delivers the most skillful predictions. All postprocessing improves upon the raw
ensemble forecasts, but compared to spatial EMOS, other postprocessing techniques
perform better. However, these improvements are small (see Table 4.7), but again highly
significant because the evaluation is based on 137,605 forecast cases and all p-values are
smaller than 0.1%. The test statistics support the performance ranks according to the
CRPS presented in Table 4.7.

To evaluate multivariate calibration, we consider the band depth, average and
multivariate rank histograms, presented in Section 3.5.1, as well as the univariate
uPIT for the aggregated forecast quantities. Because the number of contributing sub-
ensembles changes over the time range considered, we calculate unified versions of the
multivariate histograms in the spirit of the uPIT proposed by Vogel et al. (2018). The
smallest number of contributing sub-ensembles available on a specific day is five, so we
choose to plot histograms with six bins for a sound comparison. Spatial EMOS based
on a non-parametric correlation function fitted over a sliding window training period
outperforms the version with a fixed training period for all considered scores. From here
onward, we will only report multivariate calibration results for the more skillfull variant.

Figure 4.10 displays the unified band depth rank histograms. Both univariate
EMOS versions neglect spatial dependence by design, which can be detected from the
∪-shape of the corresponding histograms indicating that the correlation in the forecasts
is too low. Similar to the results in Table 4.5, the quantile-based variants of ECC
and the Schaake shuffle perform better as their histograms are flatter than those of
the random sampling approaches. The raw ensemble, ECC-R, ECC-Q, Schaake-R and
Schaake-Q display similar ∩-shapes, which are associated with too strong correlation
patterns in the predictions. As the resolution of all TIGGE’s sub-ensembles is lower than
the native resolution of approximately ∼0.281°×0.281° for the verification set ERA5,
forecast models might neglect local weather phenomena. Without these local variations
in temperature, the forecast ensembles can overestimate the correlation of in reality
independent grid points. In contrast the verification set accounts for these small-scale
effects and associates the corresponding grid points with a smaller correlation, resulting
in the ∩-shape histograms for the raw ensemble and ECC. Within the non-parametric
methods, especially Schaake-Q shows this particular shape the least, as the dependence
pattern is based on past verifications. In this case, spatial postprocessing benefits from
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Figure 4.10: Unified band depth rank histograms for raw and postprocessed TIGGE
temperature forecasts initialized at 12 UTC and verified against ERA5 across 5 × 5 grid
boxes at a prediction horizon of 2 days accumulated over the test period from starting
January, 1, 2018 until December 31, 2018.

fitting a correlation function which does not only mimic the spatial pattern of the
verification set or raw EPS as indicated by the flatter histograms for spatial EMOS
with non-parametric correlation functions.

The shapes of histograms for unified average ranking, displayed in Figure 4.11 and
band depth ranking (see Figure 4.10) almost coincide, but can differ in interpretation.
According to Thorarinsdottir et al. (2016), a ∩-shaped histogram implies too high corre-
lation in terms of the average ranking and lack of predictive correlation when evaluated
with band depth ranks. A ∪-shape histogram implies the opposite interpretations for
each diagnostic tool. When evaluating against reanalyses instead of observations, often
the forecasts and the verification coincide, discussed further in Chapter 6. Due to this
dependency and thereby limited room for benefits through postprocessing, inferences
drawn from these tools might still be inconclusive.

To nevertheless further understand the shape of the histograms for ECC, we recon-
sider the argument by Schefzik et al. (2013) stating that the benefit of ECC diminishes

60



CHAPTER 4. Postprocessing for TIGGE forecasts

ENS

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

EMOS−R

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

EMOS−Q

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

ECC−R

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

ECC−Q

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

Schaake−R

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

Schaake−Q

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

Spatial EMOS

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

Spatial EMOS emp

unified average rank

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.11: Unified average rank histograms for raw and postprocessed TIGGE
temperature forecasts initialized at 12 UTC verified against ERA5 across 5 × 5 grid
boxes at a prediction horizon of 2 days accumulated over the test period from January
1, 2018 until December 31, 2018.

beyond 400km distance between sites in case of temperature forecasts. The spatial
evaluation within 5 × 5 = 25 grid boxes results in distances up to 786km among grid
centers. In order to reduce these distances to a more meaningful size, we additionally
assess ECC-Q forecasts in grid boxes of size 3 × 3 = 9 and 2 × 2 = 4. Note that other
publications applying ECC like e.g. Schefzik et al. (2013) or Schefzik (2017) solely
evaluate forecasts of dimension 3. The unified averaged rank histograms of ECC-Q
are shown in Figure 4.12 for the reduced grid boxes. The smaller the dimensions and
thus the maximal distance between grid centers, the closer the histogram becomes to
being uniform. The remaining hump in the middle might be attributed to the higher
resolution of the verification set, as mentioned before.

Because the considered grid boxes contain 25 points, the pre-ranks of the multivariate
rank histogram cannot be uniquely determined resulting in many ties, which are resolved
at random. Hence, the histograms of most models are perfectly uniform and we omit
showing them. As an example for the verification results of aggregated quantities, Figure
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Figure 4.12: Unified average rank histograms for ECC-Q postprocessed TIGGE
temperature forecasts initialized at 12 UTC verified against ERA5 across 5 × 5, 3 × 3
and 2 × 2 grid boxes at a prediction horizon of 2 days accumulated over the test period
from January 1, 2018 until December 31, 2018.

4.13 pictures the uPIT histograms of maximum temperature. Most predictions suffer
from biases and insufficient calibration, while Schaake-R and spatial EMOS with an
empirical correlation function yield histograms closest to uniformity.

4.3 Discussion

The case studies in this chapter have confirmed the great benefit of combining predictions
to ensemble forecasts as envisioned in the TIGGE project. Already the direct model
output delivers skillful forecasts, when verified against reanalysis data; this data is
however not independent of the prediction model. Most postprocessing approaches
are trained and verified on past observational data sets instead and generate great
benefit in forecast skill (see Chapter 6). In the current context, the potential scope
of improving predictions through postprocessing is limited because of the high quality
of raw TIGGE predictions and the dependence between the verification set and the
prediction model. This holds especially true for the more complex spatial postprocessing
approaches as the implications and sensitivity of multivariate evaluation tools are not
fully understood and still further research is needed. In particular, the verification
results for the methods EMOS, the Schaake shuffle and ECC demonstrate a strong
dependence on the applied sampling scheme. While the random sample approach results
in performance comparable to the other spatial methods, the quantile approach largely
outperforms the competing multivariate postprocessing techniques.

In Chapter 3, we proposed a globally applicable spatial postprocessing methods that
delivers a multivariate predictive distribution. While the size of the prediction ensemble
generated via ECC or the Schaake shuffle is restricted by the size of the original ensemble
or number of available training cases, we can create an ensemble of any desired size with
this proposed technique which can be beneficial for the end user. Though this spatial
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Figure 4.13: uPIT histograms for raw and postprocessed forecasts of maximal temper-
ature across 5 × 5 grid boxes provided by TIGGE initialized at 12 UTC verified against
ERA5 at a prediction horizon of 2 days, accumulated over the test period from January
1, 2018 until December 31, 2018.

EMOS version does not outperform the references standards, ECC-Q and Schaake-Q, in
terms of ES and VS (see Tables 4.5 and 4.7), results for spatial calibration are superior
to the benchmarks as suggested by the histograms in Figures 4.10 and 4.11.

In the case of spatial EMOS with an empirical correlation function, the sliding
window approach yields more skillful forecasts than a fixed window for the training
period. Also for ECC and the Schaake shuffle, the spatial dependence template differs
daily capturing seasonal changes in the structure. Spatial EMOS with a parametric
correlation function might also benefit from a sliding window training period, which we
omit due to computational capacity.

The partially superior performance of spatial EMOS with an empirical correlation
function might indicate that the pre-made assumptions on the structure on the spatial
dependence are too restrictive. Based on covariance tapering and principal component
analysis, Heinrich et al. (2021) propose a more flexible multivariate approach for seasonal
temperature forecasts which also allows for negative correlations of the forecast errors.
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When applied solely to sea surface temperature, this method in certain cases outperforms
the Schaake shuffle and might also improve the quality of TIGGE temperature forecasts.

As the resolutions of the contributing ensembles are lower than for the verifying
reanalyses (see Table 4.1), small scale variations present in the verification data might not
be represented by the ensembles. Thus, the ensemble can overestimate the dependence
between grid points, especially seen in the multivariate histograms for ECC. When
verifying an EPS with its associated reanalyses, this issue does not occur, as both
are produced on the same spatio-temporal scale. However, due to the multi-model
nature of TIGGE, ensembles of different resolutions are merged, which can lead to
misspecifications of spatial dependence between grid points. In particular for spatial
modeling of probabilistic forecasts, we recommend careful selection of the forecasting
model and verification data to ensure congruence.
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Postprocessing for ECMWF

forecasts

As supported in case studies by for instance Buizza et al. (2005) or Hagedorn et al.
(2012), we have demonstrated in the previous chapter that the ECMWF EPS issues
the most skillful forecasts among the contributing TIGGE sub-ensembles. Due to its
outstanding predictive performance, the ECMWF ensemble has been subject to many
research studies – see e.g. Hemri et al. (2014), Schefzik (2017) or Vogel et al. (2020).
In this chapter, we focus on exploring the benefits of statistical postprocessing for this
EPS individually with again a special emphasis on modeling the spatial dependence of
the probabilistic forecasts by applying the methods introduced in Chapter 3.

This chapter begins with further information on the ECMWF data set in Section
5.1. We apply EMOS (see Section 2.2) to global temperature forecasts by this ensemble
system. In order to account for spatial dependence of the calibrated temperature
forecast fields, we employ ECC, the Schaake shuffle and a number of variants of spatial
EMOS (see Sections 3.2.1, 3.2.2 and 3.4, respectively) to 3-days ahead predictions.
The verification results are reported in Sections 5.2 and 5.3. These suggest that the
assumption of temperature forecasts being normally distributed might not be true for
this data and in the spirit of Gebetsberger et al. (2017), we conduct more specialized
experiments with different distribution families over the restricted area of Europe. The
chapter closes with a discussion of the results.
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Figure 5.1: Rank histograms for temperature forecasts by the ECMWF ensemble,
verified against ERA5, from November 1, 2016 until December 7, 2017 for lead times
from 1 to 15 days ahead.

5.1 Data set

We study surface (2m) temperature forecasts issued between March 1, 2016 and December
7, 2017. Specifically, we consider the 50 perturbed members of the ECMWF ensemble.
The forecasts are initialized at 12 UTC, valid at lead times from 1 to 15 days, and
available globally on a 1.5◦ × 1.5◦ grid, for a total of 240 × 121 = 29, 040 grid points on
planet Earth. To train and verify we use its associated reanalyses ERA5 (Hersbach et al.,
2020). While generally we consider the entire globe, some more specialized analyses
use a restricted data set, where the evaluation region is over Europe (10.5◦W−30◦E;
36◦ − 69◦N), resulting in 28 × 23 = 644 grid points only. The unit used is degrees
Celsius.

Figure 5.1 displays rank histograms of the ECMWF ensemble for consecutive lead
times of 1, 2, . . . , 15 days. All histograms show a minor bias as they display a
skewed shape with many values falling in the upper bins. More importantly, at shorter
lead times the histograms are strongly underdispersive, with the ECMWF ensemble
underestimating the uncertainty in the forecast due to insufficient spread, as illustrated
further in Figure 5.2. At higher lead times, the underdispersion becomes less and less
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Figure 5.2: Mean ensemble standard deviation (grey) and root mean squared error of
the ECMWF ensemble mean (black-dashed) for temperature forecasts from November
1, 2016 until December 7, 2017.

pronounced. Further information about the ECMWF’s Integrated Forecasting System
and its performance is available in Molteni et al. (1996), Richardson (2000), Buizza
et al. (2005) and ECMWF Directorate (2012), among many other documents, and via
the ECMWF website at https://www.ecmwf.int/.

5.2 Univariate postprocessing

Our evaluation period includes forecasts issued November 1, 2016 through December
7, 2017, amounting to 402 forecasting days and allowing for training periods of a
maximal length of 200 days. Excluding the North Pole and South Pole, we consider
240 × 119 = 28, 560 grid points, resulting in a total of 11,481,120 univariate temperature
forecast cases. To this data, we apply the EMOS neighborhood variants presented in
Section 2.2.2.

In Figure 5.3, we compare the predictive performance of the postprocessed tem-
perature forecasts and the raw ensemble in terms of the CRPS. At lead times up to
about 10 days, postprocessing consistently ameliorates upon the raw ensemble forecasts.
For longer lead times, postprocessing fails to yield improvement at training periods of
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Figure 5.3: Globally averaged CRPS for EMOS postprocessed and raw ECMWF
ensemble temperature forecasts over November 1, 2016 through December 7, 2017,
verified against ERA5. The scores for the raw ensemble are marked by red dots.
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Figure 5.4: Globally averaged AE for EMOS postprocessed and raw ECMWF ensemble
temperature forecasts over November 1, 2016 through December 7, 2017, verified against
ERA5. The scores for the raw ensemble are marked by red dots.
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Figure 5.5: PIT histograms for local EMOS postprocessed temperature forecasts by
ECMWF with a training period of 100 days, verified against ERA5 from November 1,
2016 until December 7, 2017.

lengths up to 200 days; it may or may not do so if longer training periods or reforecast
data sets are used for calibration; see Hagedorn et al. (2008) and Hagedorn et al. (2012).
At lead times up to 5 days, the length of the training period tends to be optimal at
50 or 100 days for all estimation methods considered (local, NS, WE, NN4, and NN8,
with and without the LS restriction). Local EMOS yields the lowest scores at lead
times up to about 5 days. At higher lead times, spatially extended training sets are
preferred. The NN8 method eventually performs best among the EMOS techniques,
but is outperformed by the raw ensemble forecast at lead times beyond 14 days.
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Table 5.1: Globally averaged energy and variogram score for direct model output by
ECMWF and postprocessed 3-days ahead forecasts of the temperature fields in 3 × 3
grid boxes. Models are verified against ERA5 in the grid boxes (containing 9 grid points)
from November 1, 2016 through December 7, 2017. The predictive sample is either
generated by a random draw (R) or the calculation of equidistant quantiles (Q).

ES VS
Forecast p = 0.5 p = 1 p = 2
Raw ensemble 2.37 9.65 95.8 21619
EMOS-R 2.12 11.26 98.4 18555
ECC-Q 2.07 8.93 84.3 18142
Schaake-Q 2.08 9.22 82.8 17304
Spatial EMOS emp cor 2.09 9.04 83.8 17161

Similar results can be found in Figure 5.4, where the methods are compared in terms
of the AE. Local EMOS yields best (lowest) scores at shorter lead times up to several
days ahead. At a lead time of 1 day, the mean AE for the raw ensemble is 0.68 degrees
Celsius, whereas local EMOS reaches a minimum of less than 0.58 degrees Celsius. At a
lead time of 2 days, the AE values for the raw ensemble and local EMOS rise to 0.80
and 0.70 degrees Celsius, respectively. The benefits of postprocessing begin to vanish at
lead times of about 10 days, and at lead times of 14 days and more, the AE values for
the raw and postprocessed forecasts are in excess of two degrees Celsius.

Figure 5.5 shows globally aggregated PIT histograms for local EMOS postprocessed
forecasts with a training period of 100 days at lead times from 1 to 9 days. While the
PIT histograms for the EMOS postprocessed forecasts are considerably more uniform
than the rank histograms for the raw ensemble forecast (Figure 5.1), they still show
underdispersion. This suggests that instead of assuming temperature to be normally
distributed, EMOS specifications for probability distributions with heavier tails might
be more appropriate for this data. We return to this issue and investigate it in some
detail in Section 5.4.

5.3 Spatial postprocessing

After univariate postprocessing, we now turn to EMOS specifications that allow to
model and accommodate dependencies in the multivariate postprocessed distributions.
In particular, we fit spatial EMOS models, as introduced in Section 3.4, over boxes
comprising 3 × 3 = 9 grid points, with the center of the grid sliding over the surface of
planet Earth, except for the North Pole and South Pole. All scores reported are globally
averaged across the respective boxes over space and time. Specifically, we apply the
spatial techniques in concert with local EMOS with a rolling training period of length
100 days and at a prediction horizon of 3 days. The test period is the same as before.
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Table 5.2: Globally averaged CRPS for direct model output by ECMWF and postpro-
cessed temperature forecasts of minimum (min), maximum (max) and average (ave)
temperature across 3×3 grid boxes at a prediction horizon of 3 days. Models are verified
against ERA5 in these grid boxes from November 1, 2016 until December 7, 2017.

CRPS AE
Forecast min max ave min max ave
Raw ensemble 0.712 0.594 0.599 0.943 0.794 0.798
EMOS-R 0.677 0.611 0.544 0.906 0.816 0.717
ECC-Q 0.592 0.522 0.514 0.829 0.726 0.715
Schaake-Q 0.593 0.515 0.514 0.829 0.719 0.719
Spatial EMOS emp cor 0.599 0.524 0.519 0.834 0.728 0.724

Table 5.3: Mean ES and VS for direct model output by ECMWF and postprocessed
3-days ahead forecasts of temperature fields in 3 × 3 grid boxes over Europe. Models
are verified against ERA5 from November 1, 2016 through December 7, 2017.

ES VS
Forecast p = 0.5 p = 1 p = 2
Raw ensemble 2.531 11.96 109.9 12957
EMOS-R 2.432 12.53 110.6 11757
ECC-Q 2.212 10.40 89.4 9632
Schaake-Q 2.242 10.90 91.2 9595
Regional Spatial EMOS 2.247 10.82 92.6 9880
Spatial EMOS 2.240 10.68 91.5 9769
Spatial EMOS emp cor 2.391 11.87 96.4 9826

Table 5.1 compares the raw ensemble forecast and the standard (independent)
implementation of the (local) EMOS postprocessed forecast (EMOS) to various explicitly
spatial variants thereof, namely, ensemble copula coupling (ECC), the Schaake shuffle
(Schaake), and a non-parametric version that relies on empirical correlations (Spatial
EMOS emp cor), in terms of globally averaged energy and variogram scores. The
methods that account for spatial structure yield lower scores than univariate EMOS
and the raw ensemble, but do not differ much between themselves.

Spatial dependence structure is of critical importance when predicting aggregated
univariate quantities, such as minima, maxima, totals, or averages over a region. For our
boxes of 3 × 3 grid points we consider the minimum, maximum and average temperature.
Then we apply univariate evaluation methods such as the CRPS presented in Table 5.2.
Spatial postprocessing improves the raw ensemble forecast and the spatially independent
EMOS implementation for the aggregated quantities by an impressive margin, with
ECC and the Schaake shuffle yielding the lowest scores overall.
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Table 5.4: Mean CRPS for direct model output by ECMWF and postprocessed
forecasts of minimum (min), maximum (max) and average (ave) temperature across
3 × 3 grid boxes in Europe at a prediction horizon of 3 days. Models are verified against
ERA5 in the grid boxes points from November 1, 2016 through December 7, 2017.

CRPS AE
Forecast min max av min max av
Raw ensemble 0.774 0.600 0.519 1.028 0.813 0.694
EMOS-R 0.735 0.662 0.538 0.991 0.895 0.681
ECC-Q 0.610 0.561 0.451 0.848 0.782 0.624
Schaake-Q 0.617 0.549 0.450 0.862 0.768 0.627
Regional Spatial EMOS 0.626 0.575 0.458 0.870 0.798 0.632
Spatial EMOS 0.623 0.566 0.455 0.866 0.787 0.634
Spatial EMOS emp cor 0.677 0.601 0.486 0.896 0.806 0.636

5.4 Further analyses over Europe

We close this case study with a number of more specialized experiments that we conduct
with a restricted data set, where the evaluation region is over Europe (10.5◦W–30◦E;
36◦–69◦N), resulting in 28 × 23 = 644 grid points only. The test period is the same as
before.

The PIT histograms for the EMOS postprocessed forecasts in Figure 5.5 suggest that
the normal assumption may not be ideal. A potential explanation is that the tails of the
Gaussian forecast distributions in Eq. (2.2) are too light, and in the following we explore
the use of alternatives with heavier tails, such as logistic or Student’s t-distributions
with degrees of freedom fixed at 3 and 5, as proposed by Gebetsberger et al. (2017).
The respective mean CRPS values for forecasts at a prediction horizon of 3 days can be
found in Figure 5.6. For training periods up to 150 days, the standard EMOS model
with normal distributions, indicated by red, yields the lowest score. For a longer training
period of 200 days, the EMOS model with a logistic distribution performs slightly better.
As the improvement is negligible, we continue to employ the Gaussian EMOS model.

We turn to spatial postprocessing, where we present a full-fledged comparison,
including a further competitor, namely the regional Spatial EMOS technique, where we
fit a single Matérn model of the form (3.10) over all of Europe applying the model across
the 644 corresponding grid points simultaneously. Otherwise, the setting is the same
as in Section 5.3. Table 5.3 shows evaluation results in terms of energy and variogram
scores. Again, EMOS paired with ECC or the Schaake shuffle yield the lowest scores. In
Table 5.4 we assess forecasts of aggregated quantities. As before, spatial postprocessing
improves the raw ensemble or spatially independent EMOS forecasts, and EMOS paired
with ECC or the Schaake shuffle yields the best results.
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Figure 5.6: CRPS for EMOS postprocessed ECMWF temperature forecasts under
normal, logistic, and Student’s t-distribution (with degrees of freedom fixed at 3 and 5)
assumptions, verified against ERA5, averaged over Europe from November 1, 2016 until
December 7, 2017, at a prediction horizon of 3 days. The violet asterisk indicates the
result for the raw ensemble.

5.5 Discussion

In this chapter, we have seen how postprocessing can improve temperature forecasts by
the ECMWF ensemble system. For longer lead times of about 10 days, the benefit of
postprocessing begins to vanish. When applying the spatial methods, we thus choose a
shorter prediction horizon and have demonstrated that the skill of the 3-days ahead
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forecasts improves through the reintroduction of the spatial dependence (see Tables 3.4
and 5.2).

In most assessments, ECC combined with EMOS yields the lowest scores, followed
by the Schaake shuffle. The ECC approach reintroduces the spatial template of the raw
ensemble, while the Schaake shuffle retains the spatial structure of past verification data.
In this chapter, we validate the ECMWF forecasts against its native reanalyses which
are both produced on the same spatio-temporal scale. Thus, distortion which might
occur due to the misrepresentation of e.g. small scale effects between the forecasting
model and verification data are prevented (in contrast to Chapter 4). Especially when
both data sets are based on the same resolution, the ECC approach might add more
valuable information to the marginally calibrated forecasts and thus improve the quality
slightly more.

For the global case study, we fit spatial EMOS with a Mátern correlation function
within the 3 × 3 grid boxes independently to save computational power. Over Europe,
we compared the simultaneous fit over all grid points to the boxes approach. As the
parameters of the correlation function differ regionally, the boxes approach outperforms
the simultaneous estimation. For univariate EMOS, we experiment with the replacement
of the normal distribution by logistic and Student’s t-distributions, but find solely slight
improvements in the forecast quality and choose to continue employing the normal
distribution family.

75





Chapter 6

Grid- vs. station-based
postprocessing of ensemble
forecasts

Any application and evaluation of postprocessing methods (described in Chapters 2
and 3) relies on the availability of training and verification data. The choice thereof is
of crucial importance, and a fundamental decision is to be made between using gridded
data, or station-based data at spatially scattered meteorological stations across planet
Earth. So far into this manuscript we have used (re)analyses for this purpose, since
they cover the entire globe on the same scale as the forecasting model. In this chapter,
we aim to close a gap in the extant literature, by providing a systematic comparison
of the effects of this choice for both raw and statistically postprocessed temperature
forecasts from the ECMWF ensemble system (see also Section 5.1).

In current practice, the most common approach is to apply ensemble postprocessing
techniques to training and verification data at spatially scattered meteorological stations.
To this end, observations at surface weather stations are required, and gridded output
from NWP models is bi-linearly interpolated to the station locations (e.g. Hemri et al.,
2014). Arguably, this commonly used approach is natural, as it aims to perfect forecasts
of weather quantities that are directly observed. An alternative lies in the use of a
gridded reanalyses with a retrospective best estimate of the state of the atmosphere.
This approach has the advantage of the temporal and spatial scale of the training
and verification data being consistent with the NWP model output, and satisfies user
needs of gridded postprocessed guidance. For a thoughtful, up-to-date discussion of the
trade-offs in the choice of training and verification data for postprocessing see Hamill
(2018, Section 7.3.2).

In a detailed study of ECMWF ensemble forecasts of surface wind speed, Pinson and
Hagedorn (2012) compared the effects of the grid-based and station-based approaches
in terms of the forecast quality. Not surprisingly, standard performance measures for
probabilistic forecasts, such as the CRPS, indicate a lesser performance of the raw
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Figure 6.1: Comparison of station-based forecasts of surface temperature, trained
and verified against observations at WMO stations, to matched grid-based forecasts,
trained and verified against ERA5, in terms of (a) mean CRPS and mean AE, (b) rank
histograms for the raw ensemble, and (c) PIT histograms for the EMOS postprocessed
forecasts, at lead times from one to 15 days. The thick red lines in the three-dimensional
histograms correspond to uniformity.
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ensemble forecast in the station-based approach. Furthermore, when evaluated
against a gridded analysis, the forecasts tend to be more reliable and better calibrated.
The superior performance in the grid-based approach can be attributed to the absence
of representativeness error and subgrid variability, in stark contrast to the station-based
approach. However, Pinson and Hagedorn (2012) restrict attention to the raw ensemble
forecast and do not consider statistical postprocessing.

In this chapter, we analyze the effects of using grid-based vs. station-based training
and verification data on both raw and statistically postprocessed ensemble forecasts. For
postprocessing, we again adopt the widely used EMOS approach (see Section 2.2). The
case study is based on the same gridded data as of Section 5.1 and further expanded by
observational data, described in Section 6.1. We apply EMOS to gridded temperature
forecasts from the ECMWF 50-member ensemble, with a reanalysis being employed for
training and verification, and to bi-linearly interpolated forecasts with station-based
observational data used to train and verify. The two approaches are compared in Section
6.2, and discussed in Section 6.3. The chapter closes with an appendix where we desribe
of the moving blocks bootstrap procedure which is implemented to generate the error
bars of the verification scores in the case study.

6.1 Data set

For our case study, we consider the same surface (2m) temperature forecasts as described
in Section 5.1. In the grid-based approach, we work directly on the grid and again use
ECMWF’s ERA5 reanalysis product for training and verification. In the station-based
approach, the ensemble member forecasts are bi-linearly interpolate to the locations
of 9,103 World Meteorological Organization (WMO) stations worldwide, and we use
station observations for training and verification. Forecasts initialized December 31,
2016 are missing, and we exclude this day from our comparison. Throughout the chapter,
the unit used is degrees Celsius.

A major challenge in any comparison of grid- vs. station-based approaches is the
distinct coverage of verification data; see, e.g., Buizza (2018). In the grid-based approach,
the spatial coverage of the verification data is uniform. In the station-based approach,
verification sites correspond to spatially scattered meteorological stations, which cluster
in more densely populated and more developed parts of the world. Coverage is sparse
over the oceans, in polar regions, and in large parts of Africa.

For a meaningful comparison of grid- vs. station-based postprocessing, we match
every single available forecast case at a WMO station to a forecast case at a grid point.
Specifically, for any WMO station we consider the four surrounding grid points. The
nearest of these four grid points that is of the same surface type (land or sea) as the
station is then matched with the station. If none of the surrounding grid points are
of the same surface type, we simply match with the nearest grid point, regardless of
the land/sea distinction. When multiple stations are matched to the same grid point,
the forecast case at this grid point contributes repeatedly. All verification results are
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Figure 6.2: CRPS skill for station-based (top panel) and grid-based (bottom panel)
EMOS postprocessed forecasts of surface temperature, relative to the raw ECMWF
ensemble and at a lead time of three days.

aggregated over the forecast cases from the matched pairs in our evaluation period,
which ranges from November 1, 2016 to December 7, 2017.

6.2 Results

Figure 6.1 gives an overall summary of the results from this comparison. The three-
dimensional versions of the histograms in (b) and (c) as proposed by Hemri et al. (2015)
allow to accommodate all lead times simultaneously. A first, crucial insight from panel
(a) is that in both the grid- and station-based approaches statistical postprocessing
improves the raw ensemble forecast at all lead times. A day ahead, the raw ensemble
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Figure 6.3: Globally averaged CRPS and AE for raw and EMOS postprocessed
ECMWF ensemble forecasts of surface temperature in the station-based approach. The
scores for the raw ensemble are marked by filled dots, and the numbers from 1 to 15
stand for lead time in days with the corresponding color.

shows mean CRPS and mean AE of 1.03 and 1.28 on the grid, and 1.72 and 1.97 degrees
Celsius at stations. Postprocessing with EMOS reduces these numbers to .66 and .92 on
the grid, and to .97 and 1.35 at stations, respectively. It is remarkable and indicative of
the vast improvement in raw and postprocessed NWP guidance (Alley et al., 2019) that
both on the grid and at stations mean CRPS values below a single degree Celsius have
been achieved.

At all lead times, raw and postprocessed ensemble forecasts show higher mean
CRPS and higher mean AE in the station-based approach, well in line with reports
by Pinson and Hagedorn (2012) for the raw ensemble. Not surprisingly, the effects of
calibration are more pronounced at stations than on the grid. While postprocessing
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Figure 6.4: CRPS and AE skill score for matched station- and grid-based EMOS
postprocessed forecasts of surface temperature relative to the raw ECMWF ensemble.

remains effective beyond week two, its benefits become smaller at larger lead times,
and appear to phase out in the grid-based approach, as opposed to the station-based
approach, where representativeness error needs to be addressed. The confidence intervals
are at the 90% level and have been generated by a moving blocks bootstrap procedure
in the spirit of Künsch (1989), Wilks (1997) and Hamill (1999), for which we refer to
Section 6.4. Briefly, we pool globally to account for spatial autocorrelation, and for
forecasts h days ahead, we use moving blocks of length h days, owing to the stylized
fact that verification measures for ideal h-step ahead forecasts are correlated at lags up
to h− 1 time units, but not at larger lags Diebold et al. (1998).

At a lead time of one day postprocessing reduces the mean CRPS from 1.70 to .97
degrees Celsius in the station-based approach, and from 1.03 to .66 in the grid-based
approach. This suggests that an improvement of about 1.03 − .66 = .37 degrees Celsius
can be attributed to the reduction of model error, and of roughly (1.70 − .97) − .37 = .36
degrees Celsius to the reduction of representativeness error. At a lead time of 15 days,
these attributions are .08 and 0.21 degrees Celsius, respectively, for a considerably
stronger relative contribution of the latter.

The rank histograms in panel (b) demonstrate that the raw ensemble is underdisper-
sive, particularly at smaller lead times, with the underdispersion being more pronounced
in the station-based approach. While the PIT histograms for the EMOS postprocessed
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forecasts in panel (c) are much closer to uniformity, some small but notable degree of
underdispersion remains. Due to this shape, we explored EMOS with heavier tails –
namely logistic or Student-t distributions in Section 5.4. But this results in minimal, if
any, improvement and so we retain the Gaussian assumption. The slight structural shift
in the three-dimensional PIT histograms between lead times of seven and eight days
reflects the increase from 100 to 200 days in the length of the rolling training period
that we use for parameter estimation.

For an analysis of any spatial patterns in the predictive performance, Figure 6.2
shows the global distribution of the CRPS skill score for EMOS postprocessed forecasts
relative to the raw ensemble, exemplarily at a lead time of three days. The top panel
concerns the station-based approach, where the black circles mark the WMO stations
with sufficient data to allow for training every single day in the evaluation period. To
avoid distortions of the color scale, we exclude the ten stations with the most negative
values of the skill score from the visual display. Overall, postprocessing has a thoroughly
positive effect, with the skill scores at a vast majority of the stations being positive.
The benefits are strongest along the west coast of the Americas and Scandinavia and in
tropical and subtropical areas, such as Northern Africa, the Arabian Peninsula, India,
South East Asia, and Japan.

The bottom panel in Figure 6.2 turns to the grid-based approach. Generally, the
EMOS postprocessed forecasts have positive skill over land, whereas over the oceans
skill tends to be slightly negative. The latter may relate to the facts that very few
surface observations are available over water, and that spatial variability is much less
pronounced over the oceans than over land. On the continents, the patterns in the
relative benefits of postprocessing resemble those seen under the station-based approach.

After the comparison of the two verification options, we will close this section with
further analysis containing the results of experiments with raw and EMOS postprocessed
ECMWF temperature forecasts at observation sites. Similar to Figures 5.3 and 5.4,
Figure 6.3 assess the effects of the length of the rolling training period for the estimation
of EMOS parameters in the station-based approach. For all lead times the ensemble
benefits from postprocessing. For shorter lead times, there is a clear minimum for the
length of the training period, whereas forecasts for lead times beyond 7 days might from
training periods longer than 200 days.

6.3 Discussion

In a first-ever comprehensive comparison, we have evaluated raw and postprocessed
ECMWF ensemble forecasts of surface temperature under both grid-based and station-
based approaches. Figure 6.4 summarizes our findings on the effects of EMOS post-
processing in terms of global CRPS and AE skill. The confidence intervals are at
the 90% level and have been generated by the moving blocks bootstrap procedure of
Appendix 6.4. While under both the station- and grid-based approaches, calibration has
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positive effects beyond week two, postprocessing yields less pronounced improvement
against gridded (re)analyses, where subgrid variability is not a major concern. Over the
continents the benefits of statistical postprocessing are near ubiquitous, with calibration
showing positive effects through week two and beyond. These findings extend from
the station-based setting studied earlier by Hemri et al. (2014) to the more challenging
grid-based approach.

A caveat to these findings is that they are based on pairs of forecast cases that
are matched to WMO stations, and so they give emphasis to temperature forecasts in
more densely populated and more developed parts of the world. Our choice of either
station observations or gridded ERA5 products corresponds to extreme ends within the
spectrum options for training and verification data. For variables such as quantitative
precipitation, an intermediary alternative lies in the use of gridded, satellite-based
observations for training and verification, as exemplified by Vogel et al. (2018).

6.4 Appendix: Moving blocks bootstrap procedure

We now describe the moving blocks bootstrap procedure used to generate the error
bars in panel (a) of Figure 6.1 and Figure 6.4. As noted, we pool globally to account
for spatial autocorrelation, and for forecasts h days ahead, we use moving blocks of
length h days, owing to the stylized fact that verification measures for ideal h-step
ahead forecasts are correlated at lags up to h − 1 time units, but not at larger lags
(Diebold et al., 1998).

We present the technique for general types of spatio-temporal verification data
observed on successive time units t = 1, . . . , T , at a prediction horizon of h time units
ahead, and using a generic bootstrap sample size M . In our work, the evaluation period
comprises T = 401 days, the prediction horizons considered range from h = 1 to h = 15
days, and we use M = 9999 bootstrap replicates, so that the 500th and 9500th ordered
value define a 90% confidence interval. We ignore the complications that arise due to
the lack of forecasts initialized on December 31, 2016 and proceed as if the data were
observed on T = 401 successive days.

Moving blocks bootstrap procedure for a mean score:

(a) At time t = 1, . . . , T let st be the (spatially aggregated) mean score considered,
and let nt be the respective number of spatially scattered observations. Let Th be
the integer part of T/h.

(b) For m = 1, . . . ,M repeat:

– Draw km,1, . . . , km,Th
at random with replacement from {1, . . . , T − h+ 1}.

– Let nm = ∑Th
t=1

∑h
j=1 nkm,t+j−1.

– Find Sm = ∑Th
t=1

∑h
j=1 nkm,t+j−1skm,t+j−1/nm.
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Figure 6.5: Mean score differences in the setting of panel (a) in Figure 6.1. Positive score
differences correspond to superior performance of the EMOS postprocessed forecasts
relative to the raw ensemble.

(c) Find a confidence interval based on the order statistics of the bootstrap replicates
S1, ..., SM .

With obvious modifications, this scheme yields bootstrap confidence intervals for
score differences as well, as exemplified in Figure 6.5. The intervals in this figure do not
include a difference of zero, despite the overlap of the respective intervals for the raw
ensemble and the EMOS postprocessed forecasts in the grid-based approach in panel
(a) of Figure 6.1 at larger lead times. This phenomenon can readily be explained by the
joint temporal variation of the mean level of the score for either type of forecast across
the evaluation period, which necessitates paired comparisons if tests of the hypothesis
of equal predictive performance are desired (Hamill, 1999, Section 3a2).

To obtain confidence intervals for skill scores, slight adaptations are needed, as
described now. In our paper the reference method is the raw ensemble forecast, and the
method at hand is the EMOS postprocessed forecast.

Moving blocks bootstrap procedure for a skill score:

(a) At time t = 1, . . . , T let rt be the (spatially aggregated) mean score under the
reference method, let st be the (spatially aggregated) mean score under the method
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at hand, and let nt be the respective number of spatially scattered observations.
Let Th be the integer part of T/h.

(b) For m = 1, . . . ,M repeat:

– Draw km,1, . . . , km,Th
at random with replacement from {1, . . . , T − h+ 1}.

– Let nm = ∑Th
t=1

∑h
j=1 nkm,t+j−1.

– Find Rm = ∑Th
t=1

∑h
j=1 nkm,t+j−1rkm,t+j−1/nm and

Sm = ∑Th
t=1

∑h
j=1 nkm,t+j−1skm,t+j−1/nm.

– Find the bootstrap replicated skill score αm based on Rm and Sm.

(c) Find a confidence interval based on the order statistics of the bootstrap replicates
α1, ..., αM .

For a review of resampling based methods in the evaluation of predictive performance
under spatial and/or temporal autocorrelation we refer to Sections 5.3.5 and 8.10.5 in
Wilks (2011).
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Chapter 7

Conclusion

In this thesis, we have seen how statistical postprocessing can systematically improve
output from NWP models. Especially for operational use of postprocessing techniques,
modeling of spatial, temporal and inter-variable dependence is crucial in order to produce
calibrated forecast fields. The main focus of this work was placed on incorporating
the spatial dependence in the statistically corrected predictions, while simultaneously
exploring the impact on postprocessing when trained and verified against observational
or reanalyses data.

True multivariate postprocessing for weather forecasts bears multiple challenges. In
Chapter 3, we presented a fully probabilistic postprocessing approach applicable to tem-
perature forecast located on the sphere. Combining EMOS with a GRF model delivers
a predictive multivariate distribution which allows for nonstationary and anisotropic
correlation of the forecast errors. While the reference standards ECC and the Schaake
shuffle base the dependence template on the structure of the forecast ensemble and
past verifications, respectively, spatial EMOS benefits from modeling the spatial depen-
dence of the EMOS residuals, which can be viewed as combining the before mentioned
approaches.

In the case study in Chapter 4, this global spatial EMOS version yields superior
results than the references standards, ECC-Q and Schaake-Q, in terms of spatial
calibration, but does not outperform these benchmarks when evaluated by the proper
scoring rules ES and VS. This can indicate that the assumptions on the structure of the
correlation function might be too restrictive. Other covariance models on spheres as
e.g., reviewed in Jeong et al. (2017) could lead to more skillful probabilistic forecast
fields.

Up to this date, the sensitivity and implications of multivariate verification measures
are not fully understood. While earlier works by Pinson and Girard (2012), Pinson and
Tastu (2013) or Scheuerer and Hamill (2015b) suggested that the ES can fail to identify
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misspecification in the correlation structure, recent simulation studies by Ziel and Berk
(2019) and Lerch et al. (2020) do not support this view and conclude that the VS and
ES exhibit similar discrimination ability. We find that these scores can easily detect
deficiencies in the raw ensemble, but seem to be sensitive to the sampling scheme of
EMOS, ECC and the Schaake shuffle as also suggested by Schefzik (2011, 2017). In
general, the ranking of the different multivariate postprocessing models highly depends
on the applied proper scoring rule. Thus, these verification measures might benefit from
further research to improve mathematical understanding and hence implications for
model comparisons.

In the case studies in Chapters 4 and 5, we trained and verified the postprocessing
models against reanalysis data. Due to the construction, the analyses are not truly
independent of the output of the forecasting model, delivering similar values especially
over regions where observational stations are scattered sparsely. Thus the potential
benefits through postprocessing diminish, which is especially apparent for TIGGE in
Chapter 4. Although Hemri et al. (2014) conclude for station-based data that calibration
will improve the direct model output of weather prediction models for the foreseeable
future, these highly skillful TIGGE predictions leave limited room for benefits through
postprocessing – especially when verified against reanalyses.

This hypothesis is confirmed by the results of the case study in Chapter 6, in which
we compare the benefits of postprocessing against observational data versus analysis
data. The positive impact on the forecast skill is greater at stations than on a grid.
Although postprocessing remains effective for all forecasting horizons up to 15 days, the
effect decreases with increasing lead times and appears to diminish for gridded data, in
contrast to the observational data.

Although the impressive univariate performance results by TIGGE in Chapter 4
might be partially attributed to the verification against reanalyses, as a multi-model
ensemble, TIGGE combines truly independent forecast ensembles from different weather
centers. For deterministic forecasts, Ebert (2001) states that merging them from multiple
NWP centers produces an EPS with greater skill than the contributing NWP models
provide individually. Within the TIGGE project, not only the deterministic forecasts,
but the whole EPSs are united to generate the multi-model ensemble. While each of the
contributing EPSs might be subject to biases and dispersion errors, the combination of
them transcends much of the individual shortcomings.

For the future of postprocessing in weather forecasting, the ultimate aim should be
to account for all three types of dependences – spatial, temporal, and inter-variable.
Such would enable the production of coherent, calibrated and physically realistic forecast
fields that benefit the end user.
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