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Abstract

Cardinality estimation remains a critical task in query processing. Query opti-
mizers rely on the accuracy of cardinality estimates when generating execution
plans, and, in approximate query answering, estimated cardinalities affect the
quality of query results.

In this thesis, we present multiple new cardinality estimation techniques.
The techniques differ vastly by the query under consideration. For single rela-
tion queries, we use the principle of maximum entropy to combine information
extracted from samples and histograms. For join size estimation, we rely on
a model that requires one to find estimates for the intersection size of join
attributes. For queries with multiple joins, sketches serve as compact represen-
tations of join results that are combined via a data structure that approximates
the joint frequency distribution of join attributes. In addition, we present a
technique to transform selection predicates into a representation that allows
estimators based on machine learning to effectively learn query result cardinal-
ities.

For each cardinality estimator presented in this thesis, we precisely define its
problem scope, the construction process, and how to obtain estimates. Then, we
compare to state-of-the-art cardinality estimators and run a thorough evaluation
with queries over multiple data sets. Based on our observations, we analyze the
strengths and limitations of each of our cardinality estimators and identify its
preferred use case.
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Zusammenfassung

Kardinalitätsabschätzung ist weiterhin ein gewichtiges Thema im Bereich An-
fragebearbeitung. Für die Generierung von Auswertungsplänen verlassen sich
Anfrageoptimierer auf die Güte von Kardinalitätsschätzern. Außerdem beein-
flussen Kardinalitätsschätzungen die Qualität von Anfrageergebnissen im Be-
reich approximative Anfragebearbeitung.

Diese Dissertation präsentiert mehrere neue Techniken zur Kardinalitäts-
abschätzung. Diese Techniken unterscheiden sich stark in den Anfragen, auf
die sie sich beziehen. Für einzelne Relationen greifen wir auf die Maximum-
Entropie-Methode zurück, um Informationen aus Stichproben und Histogram-
men zu kombinieren. Zur Schätzung von Joinergebnisgrößen verwenden wir ein
Modell, welches auf Schätzungen von Attributschnittmengen aufbaut. Für An-
fragen mit mehreren Join Operationen dienen uns Sketch-Datenstrukturen zur
kompakten Abbildung von Joinergebnissen. Über eine weitere Datenstruktur,
welche die gemeinsame Häufigkeitsverteilung von Joinattributen approximiert,
können die Sketch-Datenstrukturen zu einer Kardinalitätsschätzung kombiniert
werden. Über dies hinaus präsentieren wir eine Technik zur Transformation
von Selektionsprädikaten in eine Form, welche es Kardinalitätsschätzern, die
maschinelles Lernen anwenden, erlaubt, Ergebniskardinalitäten erfolgreich zu
lernen.

Für jeden der in dieser Dissertation vorgestellten Kardinalitätsschätzern
definieren wir seinen Anwendungsbereich, die notwendigen Schritte zur Erstel-
lung sowie das Verfahren, um eine Schätzung zu erhalten. Anschließend ziehen
wir einen Vergleich zu anerkannten existierenden Kardinalitätsschätzern und
unterziehen die Kardinalitätsschätzer einer gründlichen Evaluierung an Hand
von Anfragen über verschiedene Datensätze. Basierend auf den Beobachtun-
gen, die wir dabei erheben, analysieren wir die Stärken und Schwächen jedes
unserer Kardinalitätsschätzer und identifizieren seinen jeweiligen empfohlenen
Anwendungsbereich.
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Chapter 1

Introduction

The problem of estimating cardinalities, i.e., query result sizes, remains a crit-
ical task in the area of database systems. Query optimizers use cardinality
estimates as crucial parameters to cost functions which determine query plan
selection. In particular, the query optimizer requests estimates for the cardinal-
ity of intermediate results during plan generation. While the earliest cardinality
estimation techniques date back to the advent of cost-based query optimization
in 1979 [78], cardinality estimation remains an active research topic [23,47,54].
Note that cardinality estimation is not a purely academic problem. Both theo-
retical [66] and empirical findings [53] indicate that query execution times are
reduced when cardinality estimates improve. This claim is further supported
by ongoing efforts of the database industry to invent more accurate cardinality
estimation techniques [9].

This thesis contributes new cardinality estimation techniques for specific
queries or relational algebra expressions. The contribution includes cardinal-
ity estimation techniques for queries over different numbers of relations, from
a single relation over a join expression to multiple joins. We believe that there
are no real-world queries without selection predicates. Hence, all our estimation
techniques support selection predicates. The cardinality estimation techniques
presented in this thesis differ vastly by the query under consideration. For sin-
gle relation queries, we use the principle of maximumum entropy to combine
information extracted from samples and histograms. For join size estimation,
we rely on a model that requires one to find estimates for the intersection size
of join attributes. For multiple joins, sketches serve as compact representations
of join results that are combined via a data structure that approximates the
joint frequency distribution of join attributes. In addition, we transform selec-
tion predicates into a representation that allows estimators based on machine
learning to effectively learn query result cardinalities.

The thesis is structured as follows: Section 2 outlines how database systems
process queries and where cardinality estimates are used. Section 3 presents
prerequisites of the following chapters, e.g., discusses how we measure estima-
tion errors. Then, in Section 4, we discuss existing state-of-the-art cardinality
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12 CHAPTER 1. INTRODUCTION

estimation techniques and what their shortcomings are. Sections 5, 7, 8, and
9 form the core of this work and present the cardinality estimation techniques
that this thesis contributes. The unmentioned Section 6 introduces and analyses
data structures extensively used in Sections 7 and 8. Finally, in Section 10, we
draw a conclusion.



Chapter 2

Query Processing

In this section, we present foundations of relational database systems and illus-
trate how queries are processed. We do so by following the flow of a query from
the point in time it enters the database system to the point at which its result
is delivered.

All database systems allow users to query the stored data by formulating a
query statement using a query language. Most query languages are declarative,
in the sense that a query describes a query result but not how to compute it.
The most common query language in general, and in particular for relational
data, is SQL. An example query written in SQL is:

SELECT A, B, C

FROM R1, R2, F

WHERE R1.K = F.R1 AND R2.K = F.R2

AND R.A < 5 AND R.B > 7 AND R2.C = ’X’;

To compute the result, a query must be taken as input and be processed by
the database system. On a high level, the database system architecture consists
of two components, the compile-time system (CTS) and the run-time system
(RTS). The flow of a query through the database system is as follows [62]:

Query−−−−→ CTS
Execution−−−−−−−→

Plan
RTS

Query Result−−−−−−−−−→

That is, as a query enters the database system, the CTS translates the query
to an execution plan. An execution plan specifies the steps that must be taken
to compute the query result.

As we will see, cardinality estimation, the topic of this thesis, plays a crucial
role for the creation of the execution plan. Hence, we take a closer look at
the CTS. When the query enters the CTS, it is parsed and translated into an
internal representation [62, 73]. In textbook query optimization, this process is
called canonical translation and operator trees serve as internal representations.
An operator tree is an abstract representation of an execution plan. The result

13



14 CHAPTER 2. QUERY PROCESSING

of the canonicial translation of the above example query is the following operator
tree:

πA,B,C

σR1.K=F.R1 ∧ R2.K=F.R2 ∧ R.A<5 ∧ R.B>7 ∧ R2.C=′X′

×

R1 R2

The initial operator tree leaves space for optimization. The optimization
step is performed by the query optimizer, which, traditionally, builds on three
components [53]:

1. plan enumerator,

2. cost model,

3. cardinality estimator.

The task of the plan enumerator is to enumerate operator trees that correspond
to correct execution plans. For instance, for the example query, the plan enu-
merator may generate the following two operator trees:

πA,B,C

▷◁HJ
R2 .K=F .R2

▷◁HJ
R1 .K=F .R1

σR2.C=′X′

R2

F

σR1.A<5

σR1.B>7

R1

πA,B,C

▷◁HJ
R1 .K=F .R1

▷◁HJ
R2 .K=F .R2

σR1.B>7

σR1.A<5

R1

F

σR2.C=′X′

R2

In the operator trees, ▷◁HJ
p denotes a hash join with predicate p, where we as-

sume the hash table is built on the right input. Note that the two operator trees
differ in both join order and selection predicate order. Which one is preferable?
Of course the operator tree that translates to the execution plan we can evaluate
faster. Or, in general, the one that has cheaper cost subject to some metric that
is reflected in a cost model. While the true, measured cost is known only after
plan execution, the goal of query optimization is to identify the cheapest plan
- or at least a cheap plan - before executing any plan. Hence, the cost of plans
must be predicted.

Usually, cost models are (deterministic) functions in the number of rows,
i.e., the cardinality, of their inputs. For instance, a simple cost function is Cout.
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For an operator tree T , Cout(T ) is the sum of all output cardinalities. We define
Cout as

Cout(T ) :=





|T |, if T = op(Tinner), op ∈ {σ,π,Γ}
|T |+ Cout(Tleft) + Cout(Tright), if T = Tleft ▷◁ Tright

0, if T is base relation

Note how the outcome of Cout is completely determined by the cardinality of
intermediate results. Clearly, since the cardinalities of intermediate results are
generally unknown, they must be estimated. Only then the query optimizer can
identify the execution plan with the lowest predicted cost. Hence, cardinality
estimation - the topic of this thesis - is a critical factor for successful query op-
timization. We detail on the definition of cardinality and cardinality estimation
in the next section.

A side note on cost functions: If you ask a database user about her expec-
tations of a database system, the answer probably involves her queries to have
low execution times. Clearly, Cout does not directly describe execution times,
after all its output is not even a time unit. However, a cost function that assigns
the lowest predicted cost to the fastest plan is useful since the query optimizer
does exactly what the database user expects. In fact, Wolf et al. [91] observed
a high positive correlation between Cout and execution time.

Coming back to the big picture: Once the query optimizer has chosen an
operator tree, it is translated into the execution plan - recall the difference
between the two described above. The execution plan is then forwarded to the
RTS. Within the RTS, a component called the query evaluation engine evaluates
the execution plan and returns the query result. While many techniques to
implement the RTS could be discussed, we do not go into depth since this is
not necessary in the context of this thesis.

To sum up, this section presents the high-level architecture of database sys-
tems and the critical role of cardinality estimation in query processing.
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Chapter 3

Prerequisites

In this section, we discuss relevant prerequisites. In particular, we discuss the
foundations of cardinality estimation. First, Section 3.1 focuses on the cardinal-
ity aspect. Then, we focus on the estimation part.

3.1 Cardinality and Selectivity

In the context of relational database systems, relational algebra expressions
represent (sub-)queries, e.g., σp(R) or R ▷◁q S, where R and S are relations and
p and q are predicates. Since relational algebra is closed under all operations,
the result of a relational expression is always a relation. Throughout this thesis,
we operate on bags or multisets, like in SQL.

Given a database instance, each relational expression E has a corresponding
cardinality

|E|,

i.e., the number of (not necessarily distinct) tuples in the result from evaluat-
ing E.

The term selectivity is closely related to cardinality. In general, a selectivity
s is a ratio in [0, 1]. Selectivities are defined as relative cardinalities

|E1|
|E2|

,

where E1, E2 are relational expressions with |E1| ≤ |E2|. Selectivities are used
in the context of selection predicates and join predicates. The selectivity sp of
selection predicate p applied to relation R (not neccessarily a base relation) is
defined as

sp =
|σp(R)|
|R| . (3.1)

17
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For a join R ▷◁p S, where R,S are relations and p the join predicate, the join
selectivity is defined as

sp =
|R ▷◁p S|
|R× S| =

|R ▷◁p S|
|R| · |S| (3.2)

When sp < sq, we say that predicate p is more selective than predicate q. Note
the perhaps counterintuitive jargon: The more selective a predicate is, the lower
its selectivity.

The selectivity sp of some selection predicate p over some relation R can be
interpreted in two ways:

1. The ratio of tuples in R that satisfy p.

2. The probability that an arbitrary tuple from R satisfies p. Hence, p is
treated as an event, in the sense of probability theory.

Note that, again, R can either be a base relation or the result of an arbitrary
relational algebra expression. For join expressions R1 ▷◁p R2, the ratio or prob-
ability is with respect to |R1 ×R2|.

Selectivities allow us to express the cardinality of some complex relational
algebra expression in terms of simpler expressions. For instance, consider the
cardinality of the following expression:

|σp1
(R1) ▷◁pJ

σp2
(R2)|

which, according to Equation (3.2), equals to

spJ
· |σp1

(R1)| · |σp2
(R2)|

and, according to Equation (3.1), this equals to

spJ
· (sp1

|R1|) · (sp2
|R2|).

In relational algebra expressions that contain multiple predicates, one pred-
icate might influence the selectivity of another predicate. In the sense of selec-
tivities as probabilities: predicate outcomes are dependent events. The above
notation of selectivities is not well-suited to denote the selectivity of one pred-
icate conditioned on another predicate. Hence, we use s(p1|p2) to denote that
the selectivity of predicate p1 given predicate p2 is true. Then, for the expression
|σp1(σp2(R))| we have:

s(p1 ∧ p2) · |R| = s(p2|p1) · s(p1) · |R|

We will come back to the cardinality of a conjunction of predicates over one
relation in Section 5.



3.2. CARDINALITY ESTIMATION 19

Name Definition Minimum Symmetric Relative
Absolute error |x− e| 0
Squared error (x− e)2 0

Relative error | |x−e|
x 0 ✓

Q-error max(xe ,
e
x ) 1 ✓ ✓

P-error e−x
min(x,e) 0 ✓ ✓

Log change log( ex ) 0 ✓ ✓

Table 3.1: List of common error measures

3.2 Cardinality Estimation

We defined cardinality in the previous section. This section discusses aspects of
finding an estimate e for a cardinality x.

While state-of-the-art cardinality estimation techniques are presented in Sec-
tion 4, this section focuses on criteria for good cardinality estimation and de-
scribes the old but versatile System R estimator.

3.2.1 Error Measures

To measure the accuracy of an estimator, e.g., a cardinality estimation tech-
nique, a measure of accuracy is needed. We refer to this measure of accuracy
as error measure. An error measure is a function in a value x and its estimate
e that returns an error value. Table 3.1 lists commonly used error measures.
In general, an error measure has a unique minimum error, 0 for most error
measures. To evaluate the quality of an estimator, one usually either (1) theo-
retically analyses a function that describes the distribution of errors around true
values, or (2) empirically evaluate observed errors. – Statisticians call the second
approach sampling from the (perhaps unknown) error distribution function.

In any case, errors are aggregated to evaluate the quality of an estimator. For
instance, in classic statistics it is common to analyze the bias and variance of an
estimator. However, other perspectives on an estimator can be thought of and
are, in many practical applications, more relevant. In particular, quantile errors,
i.e., the error observed (either theoretically or empirically) at some quantile.
Common quantile errors include the median error, 95% error, 99% error or the
maximum/100% error. For most estimators, the latter is of interest in empirical
tests only since most error distribution functions are unbounded.

In this work, estimators are evaluated using various techniques. However,
the bulk of the analysis relies on empirical evaluations, using real-world data
sets, of 95% and 99% quantile errors where the q-error serves as error measure.
We justify this choice:
Why empirical over theoretical evaluations? (1) The main problem is that
the true error distribution function is usually unknown. Approximations based
on the normal distribution or central limit theorem usually lead to distribution
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functions that do not describe the reality well enough to justify choosing one
cardinality estimator over another. (2) In addition, it cannot be assumed that
q-errors are normally distributed.
Why quantiles over averages? (1) Quantiles allow for clear statements: For
instance, 99% of the errors lay below the value of the 99th quantile. Averages
do not allow for such statements. Unlike quantiles, averages do not help us
to understand the distribution of errors and, hence, it remains unclear if the
average error represents a typical error. (2) In the corporate world, quantiles
are commonly used in service level agreements. For instance, Microsoft Azure’s
Cosmos DB makes certain latency guarantees for the 99th quantile of read
and write operations [1, 6]. To offer such guarantees, knowledge of quantiles is
essential.
Why q-error? Why use the q-error qe(x, e) = max

�
e
x ,

x
e

�
to measure the

deviation of estimate e from value x instead of commonly known errors like the
absolute error |e−x| or relative error |e−x|/x? This is not a marginal question.
In the following, we assume e, x > 0 since some error measures are undefined
otherwise. Note that this is no restriction in cardinality estimation.

Argument 1: The absolute error and relative error are insufficient error mea-
sures in the context of model selection in general [84], not just in the area of
query optimization. While it may be obvious to see that an absolute error met-
ric, like |e − x|, is a bad choice, it is harder to see that the commonly used
relative error |e − x|/x is insufficient for its asymmetry. Choosing e = 0, one
notes that the worst possible error of an underestimate is 1. However, in case
of overestimation the error is unbounded. This property of the relative error
causes an unacceptable systematic preference for estimators that underestimate.
In model selection, an error metric should be relative and asymmetric [84], as
is the case for the q-error.

Argument 2: In the following, we present an argument from [62] for choosing
the q-error as the right error measure in the context of cardinality estimation
for query optimization.

Assume, without loss of generality, that our goal is to estimate the cardinality
of multiple joins over filtered relations:

σp1
(R1) ▷◁p1,2

. . . ▷◁pn−1,n
σpn

(Rn)

Denote by si the selectivity of selection predicate pi. Further denote by si,j the
join selectivity of join predicate pi,j if it exists and let si,j = 1 otherwise. Let
N = {1 . . . n} be the set of indices from the above relational algebra expression.
Denote by E an expression that joins an arbitrary subset S ⊆ N of filtered
relations. Then, when assuming predicate independence, the cardinality of E
is:

|E| = (
Y

i∈S

si)(
Y

i,j∈S

si,j)(
Y

i∈S

|Ri|)
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Denote by bsi the estimate for si. Then

ˆ|E| =(
Y

i∈S

bsi)(
Y

i,j∈S

si,j)(
Y

i∈S

|Ri|)

=(
Y

i∈S

si/si)(
Y

i∈S

bsi)(
Y

i,j∈S

si,j)(
Y

i∈S

|Ri|)

=(
Y

i∈S

bsi/si)|E|

Observe that some i ∈ S correspond to overestimates bsi/si > 1, while some
others correspond to underestimates bsi/si < 1. However, during plan generation
using dynamic programming all S ⊆ N are considered. Hence, since for some
S ⊆ N only underestimates and for some others only overestimates occur, we
cannot expect that errors cancel out. Instead, to minimize the estimation error,
we should minimize each miss-estimation factor:

Y

i∈S

max

� bsi
si
,
si
bsi

�

This product is minimized by minimizing each of its factors. Since the factors
are exactly the definition of the q-error, no other error measure is suited better
to minimize error propagation of selectivity estimates of selection predicates.
Furthermore, since the above reasoning can be repeated for the join predicates,
the result is not restricted to selection predicates.

Argument 3: Another argument for the q-error is a theorem that links es-
timated query plan costs to true query plan costs via the q-error [44]. Recall
that the cost of a query plan is a function in the cardinality of its subplans, cf.
Cout from Section 2. In the following, we present the theorem:

Theorem 1. Let Σ = {E1 . . . En} be the query plans for some query Q from
which the query optimizer chooses. Denote by C(Ei) the estimate for the cost
M(Ei) of some query plan Ei. If for all Ei ∈ Σ,

qe(M(Ei), C(Ei)) ≤ k (3.3)

for some constant k, then

qe(M(Echosen),M(Eopt)) ≤ k2 (3.4)

where

Eopt := arg min
Ei∈Σ

M(Ei)

Echosen := arg min
Ei∈Σ

C(Ei)

denote the cheapest plan and the plan chosen by the query optimizer, respectively.
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Proof. Without loss of generality, assume Eopt and Echosen are unique, i.e.,
there exists exactly one minimum. Clearly, the query optimizer chooses Echosen

over Eopt , despiteM(Eopt) < M(Echosen), since C(Echosen) is an underestimate
or (not exclusive) C(Eopt) is an overestimate. In any case, by Equation (3.3),

M(Echosen) ≤ kC(Echosen)

M(Eopt) ≥ (1/k)C(Eopt)

It follows that

qe(M(Eopt),M(Echosen)) = max

�
M(Eopt)

M(Echosen)
,
M(Echosen)

M(Eopt)

�

=
M(Echosen)

M(Eopt)

≤ kC(Echosen)

(1/k)C(Eopt)

≤ kC(Eopt)

(1/k)C(Eopt)

= k2

which proves Equation (3.4).

3.2.2 Estimators

To give a detailed description of a classic and versatile estimator, this section
describes the approach by System R. The section also highlights the many (un-
realistic) assumptions upon which the cardinality estimator builds.

The publication of the System R cardinality estimator [78] dates back to 1979
and is still used by some database systems today. In System R, the cardinality
of a relational algebra expression

σp(×n
i=1Ri),

where Ri is a base relation or the result of a subquery, is estimated as

s(p)
nY

i=1

|Ri|.

The predicate p might be complex, like A>5∧B=’Mannheim’∧ (C=1∨C=2)∧
K=FK. To derive a selectivity estimate for such predicates, Selinger et al.
propose the formulas given in Table 3.2. First, note that we can think of types
of predicates that are not listed in the table. Hence, the System R cardinality
estimator is not complete, on which we detail at the end of this section. Let
A and B denote attributes, c, c1, c2 denote constants, L denote a list of values,
and Q denote a subquery. For some attribute A, minA,maxA, dA denote A’s
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Predicate Estimate Precondition Assumption

A = c 1/dA dA known uniform distribution

1/10

A > c maxA −c
maxA −minA

maxA,minA known unif. dist. & unif. spread

1/3

c1 ≤ A ≤ c2
c2−c1

maxA −minA
maxA,minA known unif. dist. & unif. spread

1/4

¬p 1− s(p)

p1 ∧ p2 s(p1) · s(p2) predicate independence

p1 ∨ p2 s(p1) + s(p2)− s(p1∧p2) inclusion-exclusion principle

A = B 1/max(dA, dB) dA, dB known key/foreign-key join

1/dX dX , X∈{A,B} known

1/10

A IN L min(0.5, s(A = c) · |L|) elements in L are distinct

A IN Q |Q| / Q
Ri∈Q |Ri| selectivity linear in |Q|,

referential integrity

Table 3.2: The System R selectivity estimation formulas by Selinger et al. [78].

minimum value, maximum value, and number of distinct values, respectively.
For several types of predicates, Table 3.2 lists more than one possible estimate.
For instance, the selectivity of A = c is estimated as 1/dA if dA is known,
and as 1/10 in absence of any knowledge. The estimate with the strictest
precondition is always preferable and listed first for each each type of predicate.
Note that (1) no precondition requires more knowledge than minA,maxA, dA,
for some attribute A. Further note that, (2) even in absence of any knowledge,
a cardinality estimate can be given.

The rightmost column in Table 3.2 lists assumptions under which an estimate
is accurate. We take a closer look at these assumptions in the following. Note
that the selectivity estimate of all selection predicates builds on the uniform
distribution assumption, i.e., each v ∈ A has the same frequency. Also, for
each constant c in a selection predicate, to which values of an attribute A
are compared to, it is assumed that c ∈ [min(A),min(A)]. In addition, for
range predicates, uniform spread is assumed, i.e., the values v ∈ A are spread
uniformly over the A’s domain max(A) − min(A) + 1. Multiple selectivities
are combined under the predicate independence assumption. In particular, the
selectivity of the conjunction p1 ∧ p2 is estimated as the product of the two
unconditional selectivities s(p1) · s(p2), rather than s(p1) · s(p2|p1).

For disjunctions, the inclusion-exclusion principle is applied, which is always
a valid rewrite. However, note that the inclusion-exclusion principle replaces
the selectivity of one disjunction of n predicates by 2n − 1 selectivities of con-
junctive predicates, i.e., all non-empty subsets of the n predicates. This can
be seen by applying the rewrite in Table 3.2 recursively. After the rewrite, the
selectivity of 2n − n− 1 conjunctive predicates must be estimated, and to each
of them the predicate independence assumption is applied. Hence, selectivity
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estimation for both conjunctions and disjunctions of predicates relies on the
predicate independence assumption.

Note that A IN L can be rewritten to
W

vi∈L A=vi. However, instead of ap-
plying the estimate for disjunctions, assuming that the elements in L are distinct
allows for a simpler estimate. If all elements in L are distinct, then no two pred-
icates are true at the same time and, hence, the selectivity of all conjunctions is

zero. Then, s(A IN L) = s(
W

vi∈L A=vi)
dist.
=

P
vi∈L s(A=vi)

unif.
= s(A=c) · |L|.

For a predicate of the form A IN Q, System R assumes that the selectivity is
linear in |Q|. First, note that the estimate |Q| / Q

Ri∈Q |Ri| is indeed a number
in [0, 1] since the cardinality of Q is at most the product of the cardinalities of
its relations. For the case when Q is of the form πB(σp(S)) and the referential
integrity πD

A (R) ⊆ πD
B (S) holds, Selinger et al. justify the estimate, which co-

incides with s(p). If s(p) = 1, then also the selectivity estimate is 1. This is
accurate since R.A contains S.B with certainty, due to the referential integrity
assumption. For s(p) < 1, Selinger et al. assume the chance that R.A is still
in S.B reduces proportionally to the selectivity of p. For subqueries involving
multiple predicates and relations, Selinger et al. express hope that the estimate
remains accurate.

Thus, we conclude that in System R the selectivity estimate of a single
predicate is accurate only when uniform distribution and uniform spread holds.
On top of that, the selectivity of a combination of predicates is accurate when
predicate independence holds. These assumptions are frequently violated. –
Good for all researchers who contributed new cardinality estimation techniques
since Selinger’s 1979 paper [78].

Note that the approach is not complete. By complete we mean that, for an
arbitrary relational algebra expression, a cardinality estimate can be derived.
For completeness, we mention the following with respect to the system R esti-
mator: Selection predicates of type A like ’MA*’ and non-equi join predicates,
e.g., A < B, are not considered. In addition, queries containing GROUP BY and
UNION remain unmentioned. Also, projections and semijoins find no attention,
which might be justified with respect to the cardinality of SQL queries. - Unless
a query contains DISTINCT.



Chapter 4

State of the Art

In this section, existing approaches to cardinality estimation are discussed. Sec-
tions 4.1 to 4.4 cover the different classes of cardinality estimators. In Section
4.5, the shortcomings of existing approaches are discussed.

Note that some chapter-specific related work will also be discussed in the
later sections of this thesis.

4.1 Sampling

In sampling, one observes a subset of a population to estimate something about
the whole population. Sampling is versatile and used in many different sciences.
An excellent overview of sampling techniques can be found in the book by
Thompson [83].

The simplest sampling-based cardinality estimator is Bernoulli sampling,
also known as Simple Random Sampling. To estimate the selectivity of
a (complex) predicate p over a single relation R, we draw a sample R′ ⊆ R.
Each tuple in R′ is drawn independently and with the same probability. Then,

the selectivity of p is estimated as ŝ =
|σp(R

′)|
|R′| . To obtain an estimate for the

cardinality |σp(R)|, we simply compute ŝ · |R|. For join size estimation using
Bernoulli sampling, we first draw a sample R′ from table R and a sample S′

from table S. Then, the join selectivity is estimated as
|R′▷◁pJ

S′|
|R′|·|S′| . In Bernoulli

sampling, we essentially sample from the cross product, as illustrated in the
following. Suppose R′ is a 1% sample of R. Then we expect to have 1% of R′s
join tuples. Further suppose S′ is a 0.2% sample of S. Then we expect that
each tuple in R′ finds 0.2% of the matching tuples in S. Hence, in expectation,
we only have a tiny 1% · 0.2% = 0.002% sample of the join. Thus, Bernoulli

sampling is simply a |R′|
|R|

|S′|
|S| fraction of the cross product. A similar observation

was made in the Aqua paper by Acharya et al. [10].

Correlated sampling by Vengerov et al. [86] is used for join size estimation
and addresses the problem that Bernoulli sampling draws independent samples.

25
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In correlated sampling, instead of sampling tuples independently, a hash func-
tion h that uniformly maps join attribute values to [0, 1] is used to decide which
tuples to sample. A sample R′ with expected size sR · |R| consists of all tuples
whose join attribute value has a hash value less than some sR ∈ (0, 1]. The
sample of S′ is obtained in the same fashion. An unbiased join size estimate is

1
min(sR,sS) |R′ ▷◁pJ

S′|. For skewed data, the variance of this estimator is large,

though. For instance, if one join attribute value occurs very frequently, then ei-
ther all tuples with that value are in the sample or none. This effect is illustrated
in the following example: Consider the case where 50 join attribute values in S
are heavy hitters that occur very frequently and make a large contribution to
the join size. Suppose we choose sS = 0.01 to draw an expected 1% sample of
S. This means that with probability roughly (1− 0.01)50 > 60%, none of those
tuples are included in S′, causing us to underestimate by a large factor. Chen
and Yi made a similar observation [23].

In 2017, Chen and Yi presented two-level sampling for join size estimation
[23], where a sample is drawn in two steps. The first step is similar to correlated
sampling, the join attribute values of each tuple are hashed to [0, 1]. At least
one tuple with hash value less than some sR ∈ (0, 1] is added to the sample R′.
All other tuples with hash value less than sR are added to the sample R′ only
with the level two probability qR. Denote by R′(v) the sample tuples with join
attribute value v. Then the two-level join size estimate is

1
min(sR,sS)

P
v∈R.K∩S.B

�
|R′(v)|−1

qR
+ 1

��
|S′(v)|−1

qS
+ 1

�
.

The −1/ + 1 compensates for the tuple that is sampled with probability sR,
whereas all other tuples are sampled with probability sR · qR. The authors use
a slightly different notation. Observe that for q = 1, two-level sampling and
correlated sampling are the same. Chen and Yi point out that the level one
probability sR can differ per join attribute value. They argue that two-level
sampling improves correlated sampling by reducing the variance. We agree.
Then, Chen and Yi extend their argument for selection predicates: ”it is ob-
vious that the variance can only become smaller under selection predicates. As
pointed out in [86], this is a major advantage of sampling based approaches.
[...] Essentially, we optimize for the worst case; when predicates are present,
the variance can only be smaller” [23]. While we agree with the first sentence,
we consider it as misleading. The last sentence argues that the worst case oc-
curs for queries without selection predicates, which is exactly the opposite of
our opinion. To observe why the above statement by Chen and Yi is not valid,
recall that the variance of an estimator bJ for join size J is

V ar( bJ) = E[( bJ − J)2]
discrete

=
nX

i=1

pi( bJi − J)2

where the pi’s denote the probabilities of the n possible join size estimates
bJi. The problem is that the statement by Chen and Yi ignores that the join
size J differs depending on the selection predicates! As a result, one compares
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(non-relative) differences from different entities of J (Comparing apples and
oranges). This conflicts with the insights that justify the q-error (and equivalent
error measures). To put it in other words: An estimate that is off by 100
from a join size of 2000 is acceptable, but not so for a join size of 20. The
authors’ first sentence is misleading since only the relative variance would have
captured this. Huang et al. [39] published a technique that is similar to two-level
sampling, but simpler. Wang and Chan propose to improve two-level sampling
by learning a discrete distribution from a sample [88]. Note that correlated
and two-level sampling draw samples for a specific join attribute. For joins on
different attributes, new samples must be drawn.

4.2 Histograms

This section discusses histograms, in particular frequency histograms. A his-
togram is a data structure that approximates the frequency distribution of some
domain D, e.g., the values of some attribute. To approximate the frequency dis-
tribution of D via histogram, D is split in n partitions. Each partition induces a
bucket. A bucket contains the number of values in D that fall into that bucket’s
partition.

The number of tuples in a value range Q := [q1, q2] (think of a range predi-
cate) is at least the sum of the frequencies in the buckets that Q contains [80],
and at most the sum of the frequencies in the buckets that Q intersects [80]. A
bucket, with bucket range P := [p1, p2], is contained by Q if P is a subinterval
of Q. The bucket intersects Q if the intersection of P and Q is not empty.

Histograms differ in their partitioning scheme, and some also in their intra-
bucket approximation scheme. Well-known partitioning schemes include Equi-
width [48], Equi-depth [72], Max-diff and v-optimal [74], as well as q-optimal
[63]. Different bucketing schemes induce different complexity for construction
and when queried. For instance, for construction, the simple equi-width [48],
requires only the minimum and maximum values in a column. Then, each of

the n buckets has width max(T.A)−min(T.A)+1
n and the histogram can be built in

a single run over the data. The bucket corresponding to some value v ∈ A can

be accessed directly via its zero-based index
j

val−min(A)
max(A)−min(A)+1 · nA

k
.

The domain D on which a histogram is built can be multi-dimensional, i.e.,
D can consist of more than one attribute. Samet gives an overview over multi-
dimensional histograms [76]. STHoles is a multi-dimensional histogram that
is specifically designed for selectivity estimation [21]. Multi-column statistics
for join size estimation must be built on the join result. IBM DB2 supports
multi-column histograms with up to 100 buckets on statistical views [3].

4.3 Sketches

Sketches are small summaries of data. A sketch is constructed by a streaming
algorithm, i.e., an algorithm that makes a fixed number of passes, usually one,
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Sketch Unary Op. Binary Op. Citation

HyperLogLog Distinct count Size of union/intersection [31]
AKMV Distinct count Size of union/intersection/ [18]

set difference/join
AGMS Self join size Join size [13]
Fast-AGMS Self join size Join size [25]
KLL Quantiles [42]
Manku Quantiles [57]

Table 4.1: This table describes what value sketches approximate when either
used in isolation or in combination with sketches for other attributes.

over the data. After construction, a sketch allows one to estimate some value,
e.g., the distinct count of some attribute or some attribute’s median value.
In addition, some sketches can be combined with sketches for other attributes
to obtain a different type of estimate. For instance, the combination of some
sketches allows to obtain an estimate for the intersection size of two attributes
or some join size. Table 4.1 lists, for a selection of sketches, the value the sketch
estimates when used alone (Unary Op.) and when used in combination with a
sketch for a different attribute (Binary Op.). In addition, the original paper of
each sketch is cited.

In the context of this thesis, distinct count sketches and join size sketches
matter. The distinct count sketches AKMV and HyperLogLog are described
in the prerequisites, in Section 6. For distinct count sketches, we exploit a
property that many sketches share: mergeability. Suppose we have n sketches
for n partitions of some attribute A. Then mergeability states that one can
merge the n sketches into one sketch that is the indistinguishable from a sketch
that was built on all partitions of A directly.

To estimate join sizes, several sketches were invented. Rusu gives a good
summary [75]. All join size sketches work in a similar fashion, as described in
the following. To build a join size sketch, one iterates over an attribute and in-
crementally updates a matrix of counters. Each row in the matrix approximates
the frequency distribution of that attribute. To estimate the size of a join, one
multiplies two sketches. Sketch multiplication is defined as the row-wise inner
product of counter matrices. The result is a row of numbers, of which one serves
as the join size estimate. The choice depends on the sketch and how its counters
are filled. The AGMS and Fast-AGMS sketch take the median [13,25], whereas
the Count-Min sketch takes the minimum [27]. Unlike samples or histograms,
sketches cannot incorporate predicates. Since each sketch can be large (many kB
or MB), storing many join size sketches per relation, to merge them as needed,
may not be admissible. Recently, Izenov et al. published a notable approach [41]
to estimate the result cardinalities of queries with multiple joins over attributes
of different domains. Their approach relies on fast-AGMS sketches and a tech-
nique called sketch merging. Cai et al. [22] presented an interesting approach
to estimate upper bounds for join sizes but, as they note in Appendix C, query
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optimization time exceeds query execution time and takes more than an hour
for their benchmark queries.

4.4 Machine Learning

Since recent years, it became popular to apply machine learning techniques to
cardinality estimation. Simply speaking, these techniques learn a mapping from
query to its result cardinality. The learning step, also referred to as training,
usually requires a training set of queries and their corresponding result cardinal-
ities. All machine leaning estimators have in common that they do not consume
a query, e.g., a SQL string, directly. Instead, a numerical representation of a
query, called feature vector, is consumed. A function that maps a query to its
feature vector is called query featurization technique (QFT).

Kipf et al. featurize queries into different sets and learn their cardinalities
with a specific Multi Set Convolutional Network (MSCN) architecture [47]. This
approach supports both base table and join size estimates with multiple predi-
cates. However, its QFT is lacking domain knowledge and explainability, since it
learns an implicit black box featurization through its structure during training.

Woltmann et al. [93] extend the earlier approach [47] to handle arbitrary
subsets of a database schema by training several local models. While this ap-
proach reduces the disadvantages of Kipf et al., this work only examines one
type of QFT for one predicate per attribute.

Yang et al. present Naru [94]. They use autoregressive models for learning
the conditional joint probability for point queries. This introduces computa-
tional overhead to estimate range queries, since their estimate is the sum over
multiple point queries. Additionally, the order of attributes needs to be fixed,
which makes generalization difficult. The authors illustrate the time and mem-
ory costs very well. One epoch of training, using their data, takes 50-75 seconds.
After training, around 100 estimates can be produced per second, each estimate
uses the full power of an NVIDIA V100 GPU. Naru uses a very simple QFT
that also only allows one predicate per attribute. The authors do not present
details about its impact on the models’ quality. A similar approach by Hasan
et al. [35], who acknowledge the impact of query featurization on the models’
quality but do not further research in this direction.

Dutt et al. [28] present similar approaches to [47, 93], but focus on the es-
timator models’ complexity, like memory footprint and training time, being as
small as possible. This work supports gradient boosting as a lightweight model
architecture but does not detail the impact of QFTs.

Hilprecht et al. present an approach [38] to learn a model directly from
the data, without the need for a training set of queries. It uses Sum-Product-
Networks (SPN) to model the attribute value distributions of each base table.
For multi-predicate queries over joins, the outputs of the base table models are
combined. The approach relies to some extent on sampling for finding matching
join attributes for the construction of SPN. Similar to Kipf et al., DeepDB
implicitly learns a black box featurization for queries.
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4.5 Shortcomings

In the previous sections, we have discussed existing approaches to cardinality es-
timation. Some of the shortcomings of existing cardinality estimation techniques
were already outlined in the previous sections. This section concisely summa-
rizes the shortcomings of current techniques. Thus, it demonstrates where there
is potential to improve the current state.

1. Sampling

• For selective selection predicates, no tuple in a sample may qualify.
This results in bad estimates for the number of qualifying tuples
in a table. This problem was recognized, and attempted to solve,
before [37].

• For joins, joining two Bernoulli samples usually results in an empty
join result, even without selection predicates.

• For correlated sampling and two-level sampling for join size estima-
tion, selective predicates may still cause bad estimates. In addition,
the samples are drawn for specific join attributes. This might re-
sult in many samples per table. Furthermore, as Chen and Yi point
out [23], for multi-table joins, the sample may be specific for a given
query graph shape.

2. Histograms

• Consider query 6 of the TPC-H benchmark:

SELECT sum(l_extendedprice * l_discount) as revenue

FROM lineitem

WHERE

l_shipdate >= date ’1994-01-01’

AND l_shipdate < date ’1995-01-01’

AND l_discount between 0.06 - 0.01 AND 0.06 + 0.01

AND l_quantity < 24

While a database system may maintain histograms for each of the at-
tributes l shipdate, l discount, and l quantity, it is unlikely that
a 3-dimensional histogram for these three attributes is maintained.
It is not trivial how to combine the knowledge from these three es-
timates to obtain an estimate for the result cardinality of the above
query. In particular, all existing approaches fall short when there
additionally exists a sample, and we want to use both the histograms
and the sample to obtain a consistent estimate.

3. Join Size Sketches

• While join size sketches are artful data structures with some prov-
able statistical properties, their application in query optimization is
limited. As we have noted in the introduction, in the context of this
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thesis, only queries with selection predicates matter. However, cur-
rent join size sketches cannot incorporate predicates after they are
constructed.

4. Machine Learning

• Many machine learning techniques are not as versatile as commonly
believed. In particular, no machine learning model for cardinality
estimation operates on a SQL string. Instead, a numerical repre-
sentation of the query serves as input to the model. The class of
queries that can be transformed to a numerical representation is of-
ten very limited, e.g., only one selection predicate per attribute [35].
In addition, the type of selection predicates are limited. For instance,
predicates on strings as like %foo are usually not supported.

• Considering that multiple machine learning models are needed for the
data stored in a database system, their time and space consumption
is very large for a typical statistics catalog.

• The number of training queries needed to obtain good estimates on
unseen queries is very high. Obtaining the training queries usually
comes at a significant cost, as was noted in [38]. Either, training
queries are generated, which has high computational cost. Or, they
are obtained from query logs, but then we must wait for the query
log to contain a sufficient number of representative queries.

• After all, the accuracy of (current) machine learning models for car-
dinality estimation is not very convincing [47].

Our new cardinality estimation techniques, presented in the following sections,
are designed to address some of the above shortcomings and improve the state
of the art in cardinality estimation.
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Chapter 5

Selection Predicates over
Single Relations

5.1 Introduction

This chapter presents an approach to estimate the selectivity of multiple predi-
cates over a single relation. Selectivities are estimated by available information.
Many database systems maintain synopses, e.g., histograms, and, in addition,
provide sampling facilities. The crux of the matter is how to utilize this infor-
mation: Consider a query with predicates p1 ≡ A > 5, p2 ≡ B between 2.7

and 3.5, and p3 ≡ C = ’green’ over a relation R with attributes A, B and
C. Suppose the system provides histograms over the single attributes that give
approximate selectivities for p1, p2, and p3 as well as a multi-dimensional his-
togram that approximates the joint distribution of B and C and, thus, gives
an approximate selectivity for p2 ∧ p3. Furthermore, assume that the system
maintains a sample of R. One possibility of finding estimates for the unknown
selectivities of p1 ∧ p2 and p1 ∧ p2 ∧ p3 is to simply compute the ratio of qual-
ifying entries in the sample. However, if R is large and the selectivities of the
predicates are low, the quality of this estimate is often insufficient. Another
approach is to derive estimates solely based on the known synopses. Elaborate
methods based on the principle of maximum entropy have been developed by
Markl et al. to consistently process multi-dimensional synopses [58]. The ques-
tion remains how to utilize both synopses and sampling to estimate selectivities.
To the best of our knowledge, Yu, Koudas and Zuzarte are the only ones who
have attempted to answer this question [95]. As the main problem, they con-
sider selectivities obtained from sampling that are inconsistent with selectivities
obtained from synopses, e.g., the selectivity of p1 ∧ p2 derived from a sample
may be larger than the selectivity of p1 as provided by a histogram, regardless
of the fact that both cannot hold true simultaneously. Hence, their idea is to
refine estimates derived from sampling until they comply with the selectivities
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known from synopses. However, as we will see later, their approach has limited
capabilities.

In this chapter, we introduce CSE, a novel approach to selectivity estimation
for conjunctive queries for single relations, that consistently combines sampling
and synopses. To this end, for each selectivity derived from a sample and each
selectivity obtained from a synopses structure, we construct intervals that con-
tain the true selectivity either guaranteed or with high probability. We then
go on to produce selectivity estimates by solving an optimization problem that
is constrained to these intervals. A key property of our approach is that it
can incorporate multi-dimensional synopses. Moreover, our approach proves
robust in our evaluation in all scenarios. In particular, our approach not only
outperforms existing state-of-the-art methods in a scenario where the selectiv-
ities of some of the predicates found in a query are known precisely, but also
performs best in real-world scenarios where synopses provide selectivities with
approximation errors. This is due to our method that extracts intervals, in-
stead of point-estimates, from sampling and synopses to overcome the issue of
estimating selectivities based on inaccurate approximations.

The remainder of the chapter is structured as follows: In the next section, we
discuss some preliminaries and introduce our notation. We then present related
work in Section 5.3. In Section 5.4, we introduce our CSE approach. Section 5.5
contains an extensive evaluation of our approach in terms of prediction accuracy
and run time in comparison to other state-of-the-art approaches under scenarios
with varying parameters. To the best of our knowledge, we are the first who
consider synopses with approximation errors in our evaluation, as it is the case
in real-world scenarios. Finally, we summarize the contents of this chapter.

5.2 Preliminaries

In this section, we introduce the notation used in this chapter and discuss pre-
liminaries. A conjunctive query P , defined as a conjunction of n simple predi-
cates or boolean factors, over a relation R represents the starting point of our
discussion.

P := p1 ∧ p2 ∧ · · · ∧ pn

A predicate is simple if it compares an attribute value to a literal. We denote
by N = {1, . . . , n} the index set of P .

5.2.1 Predicates and Selectivities

A selectivity is a value in the interval [0, 1] and is defined as the fraction of entries
in a data set or relation that satisfies some specified predicate. We distinguish
selectivities induced by predicates that are defined by two formulae. For both,
the argument X is a subset of the index set N of a given conjunctive query P ,
i.e., X ⊆ N . The first formula is defined as

Fβ(X) :=
^

i∈X

pi,
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i.e., Fβ(X) is a conjunction of those predicates whose index is contained in X.
In case X = ∅, we define Fβ(X) ≡ true.

The second formula is defined as

Fγ(X) :=
^

i∈X

pi ∧
^

i∈N\X
¬pi,

i.e., Fγ(X) defines the minterms of the conjunctive query P . For a boolean
function of n variables, a minterm is defined as a conjunction in which each of
the n variables appears exactly once, possibly in its complement form.

To illustrate the difference in the formulae and their consequence on the
selectivity, consider the conjunctive query p1 ∧ p2 ∧ p3 with index set N =
{1, 2, 3}. Let X = {1, 3} ⊆ N . Then β(X) is the selectivity of Fβ(X) =
p1 ∧ p3, which we call the β-selectivity of X. Similarly, γ(X) is the selectivity
of Fγ(X) = p1 ∧ p3 ∧ ¬p2, which we call the γ-selectivity of X.

Note that for all X, the β-selectivity β(X) is greater than or equal to the
γ-selectivity γ(X). This is because Fγ(X) contains at least the predicates in
Fβ(X), and additional predicates imply a lower or at most unchanged selectivity.
For the same reason, we have that β(X ′) ≥ β(X) for all X,X ′ ⊆ N with
X ⊃ X ′. Furthermore, note that from our definition above Fβ(∅) ≡ true, it
follows that β(∅) = 1 since every entry in a data set or relation satisfies this
condition.

Observe that both Fβ and Fγ depend only on X ⊆ N . Since all X ⊆ N
form the power set of N , which is known to contain 2n elements, the number of
β- and γ-selectivities is 2n each.

Finally, observe that all X ⊆ N can be numbered by bitvectors bv(X) :=
(dn, . . . , d1), where di = 1 if i ∈ X, and di = 0 otherwise, for 1 ≤ i ≤ n.
Therefore, without introducing ambiguity, we refer to a formula or selectivity
likewise by its characteristic bitvector bv(X) for some set of indices X.

5.2.2 Relation between β- and γ-selectivities

Every conjunctive query Fβ(X) can be expressed as the disjunction of those
minterms Fγ(Y ) that positively contain at least the literals in Fβ(X) [30, Chapt.
3.9]. For instance, for conjunctive query p1∧p2 and Fβ({1}) = p1, the minterms
that positively contain at least the literals in Fβ({1}) are Fγ({1}) = p1 ∧ ¬p2
and Fγ({1, 2}) = p1 ∧ p2 and, thus, we have that p1 ≡ (p1 ∧ ¬p2) ∨ (p1 ∧ p2).

It follows that every β-selectivity β(X), X ⊆ N can be computed from γ-
selectivities as

β(X) =
X

X⊆Y⊆N

γ(Y ), (5.1)

or in words: β(X) is composed of those γ(Y ) where at least the predicates
contained in Fβ(X) occur positively in Fγ(Y ). Figure 5.1 illustrates the rela-
tionship between β-selectivities and γ-selectivities according to Equation 5.1 for
the previous example p1 ∧ p2.
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Figure 5.1: Grey ellipses mark the γ-selectivities that contribute to each β-
selectivity for the conjunctive query p1 ∧ p2.

Note that we can compute allX ⊆ Y ⊆ N efficiently by considering bitvector
bv(X) and enumerating all bitvectors bv(Y ) that contain a 1 at least at those
positions where bv(X) contains a 1 since

{Y |N ⊇ Y ⊇ X} ⇐⇒ {Y |bv(X) = bv(X)&bv(Y )},
where & denotes bitwise AND. Observe that β(∅) is the sum of all complete
conjuncts, since all Y ⊇ ∅.

As an example, consider the conjunctive query p1 ∧ p2 and let X = {1}b=01.
Then the set of all Y ⊇ X is {{1}, {1, 2}}b={01, 11} and β({1}) = γ(01)+γ(11).

5.2.3 Matrix Representation

Since for all X ⊆ N Equation 5.1 gives one linear equation, together these equa-
tions form a system of linear equations b = Cx with vectors b = (β(∅), . . . ,β(N))T

and x = (γ(∅), . . . , γ(N))T , where T as superscript denotes transposed, and de-
sign matrix C, to which we refer as the complete design matrix. For zero-based
indexing, the definition of the 2n × 2n matrix C follows directly from the enu-
meration of summands in Equation 5.1:

Ci,j =

(
1 if bv(i) ⊆ bv(j)

0 else
(5.2)

Note that C is Boolean and each row indicates which γ-selectivities contribute
to a β-selectivity. Furthermore, note that we assume the β(X) in b and the
γ(X) in x to be sorted in ascending order of their bitvector-value bv(X).

Consider the example system Cx = b for p1 ∧ p2:



1 1 1 1
0 1 0 1
0 0 1 1
0 0 0 1







γ(00)
γ(01)
γ(10)
γ(11)


 =




β(00)
β(01)
β(10)
β(11)


 .

Given all γ-selectivities, compute all β-selectivities as Cx. In case that we
are given all β-selectivities, we (conceptually) compute all γ-selectivities by
inverting C and computing C−1b.
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Note that it is easy to see that the matrix C is indeed invertible by observing
that it is upper-triangular with no zeros on the main diagonal.

5.2.4 A Linear System Induced by Synopses

Synopses structures, like histograms, sketches or wavelets, approximate the dis-
tribution of single attributes or attribute groups. In terms of our notation,
synopses structures provide β-selectivities. Ideally, a database system would
maintain synopses over all possible combinations of attributes in the database.
Selectivity estimation would be easy then, since for every conjunctive query P
with index set N , we could simply obtain the selectivity of P , i.e., β(N), from
the synopses structures. Additionally, we could obtain the selectivity β(X) for
all X ⊆ N and formulate the linear system b = Cx that we saw in the previ-
ous section. Unfortunately though, since the number of attribute combinations
grows exponentially in the number of attributes, it is infeasible to maintain
synopses for all attribute groups. In reality, synopses are only available for low-
dimensional attribute groups. For instance, a database system may maintain
single attribute statistics, referred to as 1D synopses, and statistics for attribute
combinations of two attributes, referred to as 2D synopses. In this section, we
derive a system of equations similar to that in the previous section, but this
time induced by the synopses maintained in a database system.

As before, let N be the index set of a given conjunctive query P . Suppose
we know, due to synopses, the β-selectivities β(X) for some but not all X ⊆ N .
We collect these X in a set G, to which we refer as the knowledge set, since
it specifies the β-selectivities that are known from synopses. Denote by b the
corresponding |G|-dimensional vector of β-selectivities β(X), X ∈ G to which
we refer as the known selectivities. Each β-selectivity in b induces a linear
equation defined by Equation 5.1. Together these equations form the linear
system b = Ax, where x = (γ(∅), . . . , γ(N))T holds all γ-selectivities and A is a
|G| × 2n design matrix defined as follows

Ai,j =

(
1 if bv(Gi) ⊆ bv(j),

0 else.

We refer to A as the partial design matrix. Note that every partial design matrix
A is simply the selection of those rows in the complete design matrix C that
correspond to equations for which the β(X) is known. Furthermore, note that
for the linear system b = Ax we assume the β(X) in b, the γ(X) in x, and the
sets of indices X in the knowledge set G to be sorted in ascending order by
their bitvector-value bv(X). Finally note that, unless all X ⊆ N are part of the
knowledge set G, the linear system Ax = b is underdetermined. Thus, assuming
Ax = b is solvable, there exist infinitely many solutions for x.

As an example, consider the conjunctive query p1 ∧ p2 ∧ p3 with index
set N = {1, 2, 3} over the attributes A,B,C of some relation R. Let p1 ≡
A between 1 and 10 with a selectivity of 0.1, p2 ≡ B ≤ 100 with a selec-
tivity of 0.2 and p3 ≡ C = 5 with a selectivity of 0.01. Assume the database
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system maintains statistics for each individual attribute and multivariate statis-
tics for the attribute group A,B. Then, the knowledge set is G = {{∅}, {1},
{2}, {1, 2}, {3}}b={000, 001, 010, 011, 100}. The β-selectivity of each simple pred-
icate is already given above. For p1 ∧ p2 suppose a selectivity of 0.05; note that
it would be 0.02 if p1 and p2 were independent. Then, the system of linear
equations Ax = b is




1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
0 0 0 0 0 0 1 1







γ(000)
γ(001)
γ(010)
γ(011)
γ(100)
γ(101)
γ(110)
γ(111)




=




1
0.1
0.2
0.05
0.01




,

where solutions for vector x, i.e., (γ(000), γ(001), . . . , γ(111))T are admissible if
all γ-selectivities lay in [0, 1].

In general, the linear system b = Ax captures all knowledge that is available
due to synopses in a database system. In [58] the linear system b = Ax is given
in implicit form, where Markl et al. substitute the design matrix A by so-called
components induced by the elements of the knowledge set.

Note that by now we have assumed that synopses structures allow us to
know some β-selectivity. This is not correct. Synopses structures approximate
β-selectivities, and we will see the impact of this distinction in later sections.

5.3 Existing Approaches

In this section, we discuss existing approaches that relate closely to this chapter.
Recall that System R [78] assumes predicate independence. A novel heuris-

tic by Microsoft [9] takes statistical relationships into account by assuming
that there naturally exist similar statistical relationships among attributes.
Since database systems usually store statistics for at least all single columns,
the β-selectivity for each of the n simple predicates in a query can be ex-
tracted. In a next step, these selectivities are sorted in ascending order, i.e.,
β(1) ≤ β(2) ≤ · · · ≤ β(n). The core idea is then to take the first k selectivities

and compute an estimate as
Qk

i=1 β(i)
0.5(i−1)

. Note that this implies that n− k
selectivities do not contribute to the estimate. However, since β(i + 1) ≥ β(i)

and due to the exponential back-off, the factor β(i)0.5
(i−1)

converges to the limit
1, where it does not change to the product and, therefore, to the estimate any-
way. The Microsoft SQL Server Team choses k = 4 and justifies their choice
with the rapid speed of convergence. To give some intuition for this choice of
k, note that for an estimate computed with k = 4 to differ from an estimate

computed with k = 5 by 50%, i.e., s
1/16
5 = 0.5, the fifth most selective selectiv-

ity s5 must have a value of around 0.00002. In their work on synopses-based
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HASE(b, R′)

Input: known selectivities b,
sample R′

Output: estimated selectivity for conjunctive query P
1 let {wj , j ∈ R′} be a set of variable weights
2 let {Ij , j ∈ R′} be a set of indicator vectors, cf. text.
3 let c be a constant dampening vector
4 minimize

w
cD(w)

subject to 1
m

P
j∈R′ wj · Ij = b

5 return 1
m

P
j∈{Ij=1|j∈R′} wj

consistent selectivity estimation via maximum entropy [58], Markl et al. show
how to exploit all available synopses to obtain more accurate estimates. Their
method is based on the principle of maximum entropy. Thus, in absence of
knowledge, their estimator assumes independence. One benefit of maximum
entropy is its interpretability: When estimates are bad, more information on
attribute combinations not satisfying the independence assumption is needed.
To find the desired selectivities, Markl et al. formulate an optimization problem.
The objective is to find the γ-selectivities that maximize the entropy subject to
the constraints given by the system of equations Ax = b that we have introduced
in Section 5.2.4. However, in case that Ax = b is unsolvable, there exists no
solution to the optimization problem. Ax = b is unsolvable if the β-selectivities
in b are mutually inconsistent, which means that not all selectivities in b can
hold true at the same time. Such inconsistencies occur because synopses struc-
tures usually only yield approximations for selectivities. To ensure that Ax = b
is solvable, Markl et al. adjust the β-selectivities in b when necessary. The ad-
justments are computed in a minimal way with respect to a metric. Different
approaches exist in the literature to compute minimal adjustments of b, based
on l1-norm [58] and based on lq-norm [65]. Once a solution for the vector of
γ-selectivities x is found, Equation 5.1 is applied to obtain estimates for the
unknown β-selectivities.

To the best of our knowledge, Yu et al., in their HASE paper [95], were the
first and only ones who combined selectivities from sampling and synopses. The
core idea is to introduce variables that compensate for differences between sam-
pling and synopses. Then, find the smallest compensation factors possible. In
the following, we describe in a nutshell how HASE works. Note that we have re-
formulated and simplified their problem specification to make it consistent with
our notation: As before, let N denote the index set of a given conjunctive query
P . Assume, due to some synopses, we are given a 1+|N |-dimensional vector b
of β-selectivities containing the β-selectivity when no predicate is applied, i.e.,
1, and the β-selectivity of each simple predicate in the given conjunctive query.
b is regarded to be a vector of true selectivities. In addition, suppose we have a
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random sample R′, |R′|=m from the table under consideration R, |R|=M . As-
sociated with each sample tuple j ∈ R′ is a 1+|N |-dimensional indicator vector
Ij that indicates which simple predicates a sample tuple qualifies. In particular,
we set Ij0=1 for all sample tuples, and Iji=1, 1 ≤ i ≤ |N | if sample tuple j
satisfies pi and Iji=0 otherwise. Note that those sample tuples that satisfy the
conjunctive query P have Ij = 1, i.e., all entries are set to one.

Further note that, based on the sample, the estimate for the b is bsmpl =
1
m

P
j∈R′ Ij . However, due to the imprecise nature of sampling, we expect

the sampling-selectivities to be inconsistent with the synopses-selectivities, i.e.,
bsmpl ̸= b Hence, Yu et al. associate a weight wj with each sample tuple j ∈ R′.
Then, an admissible solution satisfies 1

m

P
j∈R′ wj · Ij = b. In general, there

exist infinitely many of such assignments for the weights. The objective is to
find the one with a minimal sum of (mapped) weights. The weight vector w is
mapped using a distance function D and a dampening vector c, that associates
a user-defined dampening factor with each component in w. Then, the final
selectivity estimate for the conjunctive query P is 1

m

P
j∈{Ij=1|j∈R′} wj , i.e.,

the the sum over the weights of those tuples that qualify the conjunctive query
P , normalized by the sample size m. A codification of this process is given in
Algorithm HASE. Note that we have simplified the problem statement of Yu
et al. by assuming each tuple from R is included in the sample R′ with equal
probability.

The limitation of HASE is that they can handle 1-dimensional synopses only.
A generalization to multi-dimensional synopses introduces potential mutual in-
consistencies, however they do not consider methods to overcome inconsistencies
in the known selectivities. In addition, as we will see in our evaluation, HASE
fails at exploiting the potential of combining sampling and synopses in terms of
accuracy.

5.4 Combined selectivity estimation

In this section, we present CSE, a novel technique to estimate the selectivities
for some conjunctive query P . Section 5.4.1 demonstrates how to construct
sampling bounds by deriving confidence intervals for all γ-selectivities associ-
ated with P . Section 5.4.2 shows how to derive bounds on β-selectivities from
synopses. In Section 5.4.3 we show how to formulate a constrained optimization
problem where the constraints are given by the bounds obtained in Sections
5.4.1 and 5.4.2. The optimal solution to this optimization problem serves as the
selectivity estimate. One approach to compute the optimal solution is presented
in Section 5.4.4.

5.4.1 Sampling Bounds

Sampling allows to estimate the selectivity of any type of predicate. It is well-
known that an unbiased estimate of the selectivity of some conjunctive query
can be obtained by counting the number of qualifying samples and dividing it by
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Figure 5.2: Hypergeometric distributions with parameters M=1000, m=20,
and KX∈{50, 500, 800}.

the sample size. However, if the number of qualifying samples is low, the quality
of the estimate is often insufficient. Here we want to investigate a method that
uses a sample to construct confidence intervals for γ-selectivities such that the
true γ-selectivity is contained in the interval with high probability.

Assume we draw a random sample of size m from a population of size M .
Say we observe that kX items in the sample satisfy the predicate Fγ(X) corre-
sponding to some X ⊆ N , where N refers to the index set of some conjunctive
query. The goal is to determine KX , the number of items in the population
that qualify, since KX/M = γ(X). Clearly, using M , m, kX , we cannot find an
approximation for KX that is guaranteed to be correct.

However, we can bring certainty, to an arbitrary degree, to sampling by con-
structing confidence intervals [γl(X), γu(X)] with high confidence levels. Later,
we use these confidence intervals to estimate unknown β-selectivities.

We model sampling as an urn problem with the following characteristics: (1)
each item either qualifies or does not qualify, (2) we draw without replacement.
This urn problem induces the hypergeometric distribution [51, Chapt. 3.2]

Pr(Z = kX) =

�
KX

kX

��
M−KX

m−kX

�
�
M
m

� ,

where Pr(Z = kX) denotes the probability of drawing exactly kX items that
qualify in m draws. Figure 5.2 illustrates the hypergeometric distribution func-
tion for M=1000, m=20, and KX∈{50, 500, 800}. Note that the hypergeo-
metric distribution is a discrete distribution; the lines between the points are
only drawn to better illustrate its shape. Observe that, unlike the normal dis-
tribution, the hypergeometric distribution is unsymmetrical and bounded. In
addition, its shape heavily depends on KX .
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# qual. items lower bound upper bound

0 0 11681.2
1 21.1726 13516.3
2 164.683 15254.2
3 405.334 16921.9
4 716.157 18535.9
5 1080.77 20106.9
6 1488.34 21642.6
7 1931.26 23148.5
8 2403.93 24628.8
9 2902.12 26087
10 3422.51 27525.7
20 9438.11 41177.3
30 16316.4 54025.3
40 23677.9 66411.7
50 31362.3 78486.2
100 72512.8 136193
200 161231 245273
500 447753 552247
1000 988319 1000000

Table 5.1: Wilson Score interval bounds for a population of size 1M and a
sample of size 1k.

Recall that our goal is to construct a confidence interval for KX . Hence, we
must determine the pair of random variables lower-KX , denoted by Kl

X , and
upper-KX , denoted by Ku

X , such that

Pr(Kl
X ≤ KX ≤ Ku

X) = 1− α,

where α ∈ (0, 1). Then, [Kl
X ,Ku

X ] is a confidence interval for KX with con-
fidence level 1 − α. We experimentally found α = 10−3 to be a good value.
Therefore, we are quite certain the true cardinality KX lays in the computed
bounds.

Unfortunately, exact methods are computationally expensive [82]. However,
assuming m ≪ M , the hypergeometric distribution coincides with the binomial
distribution1, where the parameters are the sample size m and the success prob-
ability KX

M . Indeed, a plot of the binomial distribution with parameters m=20
and KX∈{ 50

M , 500
M , 800

M } is practically indistinguishable from Figure 5.2, which
is why we do not show the plot.

Due to the shape of the binomial distribution, it is not univocal how to
derive a confidence interval for

�
Kl

X

M
,
Ku

X

M

�
=: [γl(X), γu(X)].

Hence, several methods have been invented, e.g. Wilson Score interval [90],
Jeffreys interval [20], and Clopper–Pearson interval [24]. We found the Wilson

1which refers to sampling with replacement
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GetSamplingBounds(P, n,N, S,m,α)

Input: conjunctive query P with n predicates and index set N ,
sample S of size m,
significance level α.

Output: lower bounds for all γ-selectivities in vector xl.
upper bounds for all γ-selectivities in vector xu.

1 let counts be an associative array
2 for each t ∈ S
3 let X be a bitvector of size n
4 for i = 0 to n
5 if pi(t)
6 X[i] = 1
7 else
8 X[i] = 0
9 counts[X] = counts[X] + 1

10 z = QuantileStandardNormalDist(1− α
2
)

11 let xl and xu be associative arrays of size 2n

12 for each X ⊆ N
13 kX = counts[bv(X)]

14 T = z
q

z2 − 1
m

+ 4kX(1− kX
m

) + (4 kX
m

− 2) + 1

15 xl[X] = (2kX + z2 − T )/(2(m+ z2))
16 xu[X] = (2kX + z2 + T )/(2(m+ z2))

17 return (xl, xu)

Score interval method with continuity correction [69] to be a good method. The
method is derived by the Yate’s chi-squared test, that is used to test how likely
it is that differences in observations occur by chance. The interval boundaries
are efficiently computed as

�
2kX + z2 − T

2(m+ z2)
,
2kX + z2 + T

2(m+ z2)

�
, (5.3)

where T = z
q

z2 − 1
m + 4kX(1− kX

m ) + (4kX

m − 2)+ 1, and z denotes the 1− α
2

quantile of a standard normal distribution. However, if no sample items qualify,
the lower bound must be taken as 0. Similarly, if all items qualify, the upper
bound must be taken as 1.

Table 5.1 illustrates how the interval bounds close in in the number of qual-
ifying items for a population of size 106, a sample of size 103 and a confidence
level 1− α of 0.999.

Algorithm GetSamplingBounds describes how to compute [γl(X), γu(X)]
for all X ⊆ N . The result is stored in two vectors xl and xu for which it holds
that

xl ≤ x ≤ xu, (5.4)
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with high probability. The algorithm first computes kX for all X ⊆ N in a
single pass over the sample. Then, Equation 5.3 is applied to compute lower
and upper bounds given a significance level α. The input is the conjunctive
query P with n simple predicates and index set N , a sample S of size m and
significance level α.

A notable property is that if the confidence interval is wide for some X it
must be tighter for others, since each item in the sample must qualify the γ-
predicate corresponding to some X ⊆ N . To see that, recall the discussion of
minterms in Section 5.2.

5.4.2 Synopses Bounds

We have seen in Section 5.2.4 that synopses structures provide β-selectivities
for certain single attributes or attribute groups. As mentioned in the related
work section, provided β-selectivities are usually approximations of the true β-
selectivity of some predicate. As such, they are subject to approximation errors.
Approximation errors occur since synopses like histograms approximate selec-
tivities based on frequencies and boundaries of buckets as well as assumptions
regarding the distribution of values in histogram buckets. This can cause a sys-
tem of equations induced by synopses Ax = b to be unsolvable. As mentioned
in the related work section, in such cases Markl et al. propose adjustments of
the β-selectivities in the vector b to make Ax = b solvable. However, adjusting
selectivities adds a time-consuming step to the selectivity estimation process,
cf. [58], where adjusting took longer than estimation.

Figure 5.3: Example histogram with an example range predicate.

Here, we investigate an approach that relies on boundaries of histogram
buckets. Figure 5.3 shows an example histogram that approximates the distri-
bution of an attribute Age. The bar ranging from the first to the third bucket
represents a range predicate. Clearly, since we have a histogram for Age, the
index of this predicate would be part of the knowledge set G. However, the only
thing we actually know is that the frequency of the second bucket is part of the
result frequency, since the range of the predicate spans further than the bucket.
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The frequencies of the first and third bucket can only be approximated via an
intra bucket approximation scheme, that is, e.g., simply assuming an uniform
distribution. Such assumptions can translate to wrong approximations, which
ultimately lead to unsolvable systems of equations induced by synopses Ax = b.

Hence, we use bucket boundaries to derive an interval that contains the
true frequency. In our example, this interval ranges from the frequency of the
second bucket to the cumulated frequencies of the first three buckets. In general,
the lower bound of the interval is the sum of the frequencies of all buckets
contained by some predicate p. The upper bound of the interval is the sum of
the frequencies of all buckets intersected by p. Note that a selectivity is simply
the relative counterpart of a frequency. Therefore, for a given conjunctive query
P with index set N , we can derive a lower bound βl(X) and an upper bound
βu(X) for each X in the knowledge set G.

The bounds depend on the bucketing scheme of a histogram. In commercial
database systems, histograms with different bucketing schemes can be found.
Oracle uses top frequency histograms and equi-depth histograms. By default,
the maximum number of buckets is 254 [2]. In IBM DB2, they employ equi-
depth histograms with a maximum of 100 buckets [4]. In Microsoft SQL Server
or Azure SQL Database, respectively, maxdiff histograms with a maximum of
200 buckets are used [7]. For multi-dimensional synopses, we recommend his-
tograms with tight bounds, e.g., [80].

SAP HANA uses maxdiff histograms and q-optimal histograms, i.e., his-
tograms with a maximum multiplicative error for estimates [5]. Q-optimal his-
tograms give intra bucket guarantees that allow one to specify the width of the
bounds upon histogram construction. Hence, given an obtained frequency, the
bounds are already known.

The obtained lower bound βl(X) and upper bound βu(X) for each X in G
then allow us to formulate the system of inequalities

bl ≤ Ax ≤ bu, (5.5)

where bl = (βl(∅), . . . ,βl(N))T is the vector of known lower bounds and bu =
(βu(∅), . . . ,βu(N))T the vector of known upper bounds. Note that we always
have that βl(∅) = βu(∅) = 1. Assuming the synopses is up-to-date and was not
built on a sample but the complete data, this system of inequalities is consistent
and solvable. Thus, we can find solutions for x, the vector of γ-selectivities.

5.4.3 Estimating Selectivities: The Optimization Problem

Suppose we are given sampling bounds xl and xu as stated in Inequality 5.3
and, in addition, synopses bounds bl and bu as stated in Inequality 5.5. In this
section, we show how to constrain an optimization problem to these bounds for
the purpose of selectivity estimation.

For the objective function, we adopt the maximum entropy principle [58],
since we consider it reasonable to assume independence in absence of knowledge.
The entropy is maximized by the most uniform admissible solution. In vector
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form, the entropy function is given by −xT log(x) and can be maximized by
minimizing its negative form. Note that in principle, every convex objective
function allows one to find a global optimum.

Then, using the negated entropy function as objective function and the
bounds from sampling and synopses as constraints, we formulate the constrained
optimization problem

minimize
x

xT log(x)

subject to bl ≤Ax≤bu,

xl ≤x≤xu.

(5.6)

The solution vector x serves as an estimate for all γ-selectivities. By applying
Equation 5.1 to all X ⊆ N , we obtain estimates for all β-selectivities.

Note that the optimization problem is subject to two types of constraints:
(1) bounds on variables, often referred to as box constraints, and (2) linear
inequality constraints. Furthermore, note that the objective function is strictly
convex, which allows one to find the global minimum by searching for a local
one. Strict convexity of a multidimensional function can be shown by proving
that its Hessian matrix is positive definite.

Further note that, in rare cases, the solution space of Problem 5.6 is empty.
One solution to this problem is to widen the bounds and try to solve the problem
again. Another possibility is to find a solution that minimizes the constraint
violation, e.g., in l1-norm. We apply a solver that implements the latter, as
discussed in Section 5.4.4.4.

Example: Suppose we want to estimate the selectivity of a conjunctive query
that only contains one predicate p with index set {1}. In the preliminaries we
observed that the selectivity of no predicate being applied β(∅) is always 1. How-
ever, assume for the sake of the graphical illustration of the optimization prob-
lem in Figure 5.4 that we only know bl = (βl(∅)) = (0.3) and bu = (βu(∅)) = (1)
for the lower and upper bounds on β-selectivities, respectively. In addition, sup-
pose that sampling, as described in Section 5.4.1, gives us xl = (γl(0), γl(1))T =
(0.1, 0.05)T for the lower bounds and xu = (γu(0), γu(1))T = (0.6, 0.7)T for the
upper bounds on γ-selectivities, where γ(0) denotes the selectivity of ¬p and
γ(1) denotes the selectivity of p. Then our knowledge induces the following
optimization problem

minimize
x

xT log(x)

subject to (0.3) ≤
�
1 1

�
x≤(1),

�
0.1
0.05

�
≤x≤

�
0.6
0.7

�
,

where
�
1 1

�
defines the 1 × 2 design matrix that corresponds to matrix A in

optimization problem 5.6.
The optimal solution is x = (0.367, 0.367) and is marked as the point of Max

Entropy in Figure 5.4. Note that this point is no vertex. Furthermore, note
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Figure 5.4: Graphical representation of an optimization problem example for
a single predicate.

that the sum over all estimated γ-selectivities given in vector x does not add up
to 1, since we did not set βl(∅) = βu(∅) = 1 in this example.

The final estimate for the selectivity of p, denoted by β(1), is obtained by
applying Equation 5.1, which yields β(1) =

P
{1}⊆Y⊆N γ(Y ) = 0.367.

5.4.4 Solving the Optimization Problem

In this section, we describe Mehrotra’s predictor-corrector algorithm, which
can be applied to Problem 5.6. Note that this section is complementary to
the previous one: Those who are not interested in how to solve optimization
problems may skip this section. We thank Oliver Kolb, former professor for
mathematical optimization at University of Mannheim, for his assistance in the
writing of this section.

Mehrotra’s algorithm is well-established and implemented in optimization
libraries such as IPOPT [87], which we apply. The algorithm belongs to the
class of interior point methods, which find an optimal solution by following a
path through the feasible region.
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5.4.4.1 Rewrite

We rewrite the constraints in Problem 5.6 to simplify the discussion of Mehro-
tra’s predictor-corrector algorithm. Note that no rewrite is required to apply
IPOPT. After the rewrite of the constraints, the optimization problem is sub-
ject to greater-equals inequality constraints only. To this end, we leave Ax ≥ bl

unchanged and write Ax ≤ bu ⇐⇒ −Ax ≥ −bu. For the variable constraints,
we make use of the 2n × 2n identity matrix I and rewrite x ≥ xl to Ix ≥ xl and
x ≤ xu to −Ix ≥ −xu.

Then, the rewritten problem is given by

minimize xT log(x)

subject to




A
−A
I
−I


x≥




bl

−bu

xl

−xu


.

(5.7)

We write Mx ≥ c as the short version of the constraints and denote by m the
number of rows in M or c.

5.4.4.2 Optimality Conditions

An optimal solution to optimization problem 5.7 satisfies the Karush-Kuhn-
Tucker conditions. In our case we have

log(x) + e−MTλ = 0 (5.8a)

Mx− y − c = 0 (5.8b)

yiλi = 0 i = 1, 2, . . . ,m (5.8c)

y,λ ≥ 0 (5.8d)

where 5.8a states that the gradient with respect to x of the Lagrangian for
Problem 5.7 ∇xL(x, y,λ) must be zero. log(x) + e with e = (1, 1, . . . , 1)T is
the gradient of the objective function xT log(x). Condition 5.8b states that
the constraints in Problem 5.7 must hold. Here, y ∈ R|G|+|G|+2n+2n is a slack
vector that compensates for the inequalities Mx − c ≥ 0. The conditions 5.8c
state that either (1) constraint i is active, meaning its slack variable yi is zero
and constraint i effectively imposes an equality constraint at this point, or (2)
constraint i is inactive at this point, then its Lagrange multiplier λi must be
zero. Hence, an equivalent way of writing conditions 5.8c is (Mx− c)iλi = 0 for
i = 1, 2, . . . ,m.

Since our objective function is strictly convex and all our constraints are
linear, the aforementioned necessary conditions are also sufficient.

Mehrotra’s predictor-corrector algorithm finds a solution that satisfies the
optimality conditions in 5.8 in an iterative process. In each iteration, a new
iterate is computed as

(x, y,λ) + α(∆x,∆y,∆λ),
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where (x, y,λ) is the current iterate, (∆x,∆y,∆λ) is the search direction and
α is the step size.

Conceptually speaking, while iterating, the search direction handles optimal-
ity conditions 5.8a-5.8c, while the step size selection provides an α that respects
condition 5.8d and the sufficient decrease condition, which will be discussed
later.

5.4.4.3 Search Direction

When determining the search direction we do two things. (1) We ignore 5.8d.
(2) We do not force yiλi to be zero in 5.8c, but to be a pre-defined fraction
σ ∈ [0, 1] of the average value of the pairwise products in y and λ, i.e., µ :=
1/m

Pm
i=1 yiλi = yTλ/m. A choice of σ > 0 tends to allow for larger step sizes,

since y and λ are biased towards positivity. The system we obtain for the search
direction is

F (x, y,λ) :=



log(x) + e−MTλ

Mx− y − c
Y Λe− σµe


 = 0, (5.9)

where Y := diag(y1, y2, . . . , ym) and Λ := diag(λ1,λ2, . . . ,λm).

Those solutions to Equation 5.9 that additionally satisfy y,λ > 0 represent
the so-called central path that leads to an optimal solution as σµ approaches
zero, since the optimality conditions, stated in 5.8, are then satisfied.

We then formulate the following linear approximation F̂ for F to predict a
search direction

F̂ (x+∆xp, y +∆yp,λ+∆λp) = F (x, y,λ) + J(x, y,λ)



∆xp

∆yp

∆λp


 ,

where J(x, y,λ) denotes the Jacobian of F .

Equations 5.9 tell us to find a root of F , and hence, we set F̂ (x+∆xp, y +
∆yp,λ + ∆λp) = 0. Computing −F (x, y,λ) and plugging in the values for F
and J , we get



L′ 0 −MT

M −I 0
0 Λ Y





∆xp

∆yp

∆λp


 =




−L+MTλ
−Mx+ y + c
−Y Λe+ σµe


 , (5.10)

where L := log(x) + e and L′ := ∂L
∂xi

= diag(1/x) denotes the Hessian of

the objective function. Solving this system for (∆xp,∆yp,∆λp)T is called the
predictor step. Its result can be used as a search direction. Note that for σ = 0
the search direction is the same as in Newton’s method in optimization when
solving 5.8a - 5.8c.

However, additionally performing a so-called correction step, defined by the
following system, tends to reduce the number of iterations until convergence [70,
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Chapt. 14.2, 16.6]



L′ 0 −MT

M −I 0
0 Λ Y





∆xc

∆yc

∆λc


 =




0
0

−∆Xp∆Spe


 , (5.11)

where we solve for (∆xc,∆yc,∆λc)T . Finally, the search direction for the cur-
rent iteration becomes (∆xp,∆yp,∆λp) + (∆xc,∆yc,∆λc).

5.4.4.4 Step Size

In each iteration, a step size α is selected such that the by now ignored condition
5.8d, stating y,λ ≥ 0, is satisfied. The maximum step size we consider is αmax =
max{α ∈ (0, 1] : (y,λ) + α(∆y,∆λ) ≥ τ(y,λ)}, which satisfies the condition
(y,λ)+α(∆y,∆λ) ≥ 0 with a buffer controlled by τ ∈ (0, 1). In addition, a step
size α must lead to a sufficient decrease of a so-called merit function. A merit
function combines the two goals, reducing the objective function and satisfying
the constraints, in one function. For our problem, a valid merit function is

ϕ(x, y) = xT log(x)− v||Mx− y − c||, (5.12)

where v is a penalty parameter and can be chosen to be the largest Lagrange
multiplier λi in λ, but many other choices exist [70, Chapt. 15.4, 18.3], and
|| · || can be chosen to be the l1-norm. With regard to solvability of Problem
5.6, the merit function ϕ gives interesting insights. For a solvable problem, the
second term of ϕ eventually vanishes, and the merit function coincides with the
objective function. While given an unsolvable problem, as ϕ is decreased, we
find a solution that minimizes the constraint violation.

Then, to find an α ∈ (0,αmax] that provides a sufficient decrease of the
merit function ϕ, we perform a backtracking line search, where we start with
α = αmax and iteratively decrease α until

ϕ(x+α∆x, y+α∆y) ≤ ϕ(x, y) + ηαD∆x,∆yϕ(x, y), (5.13)

where η ∈ (0, 1) and D∆x,∆yϕ(x, y) denotes the directional derivative of ϕ(x, y)
in the direction ∆x and ∆y, see [70, Chapt. A.2] for details.

5.4.4.5 Starting Point

A starting point has to satisfy only the positivity constraints x, y,λ > 0. In
particular, it is not required to lay in the feasible region. However, the choice of
the starting point impacts how fast the algorithm converges. Various heuristics
exist [70, Chapt. 14.2, 16.6]. In our case, we choose x0 = (xl + xu)/2 and leave
the initialization of y and λ to IPOPT [87].

5.4.4.6 Exit Condition and Codification
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CSE(bl, bu, xl, xu, ϵ,maxDuration)

1 let Mx ≥ c be the constraints as written in Eq. 5.7
2 let y be a slack vector

3 Choose (x(0), y(0),λ(0)) > 0
4 k = 0
5 maxTimePoint = Time() +maxDuration
6 repeat

7 (x, y,λ) = (x(k), y(k),λ(k))
8 µ = yT ∗ λ/m
9 Choose σ ∈ [0, 1]

10 Solve eq. 5.10 to obtain (∆xp,∆yp,∆λp)
11 Solve eq. 5.11 to obtain (∆xc,∆yc,∆λc)
12 (∆x,∆y,∆λ) = (∆xp,∆yp,∆λp)

+(∆xc,∆yc,∆λc)
13 Choose τ ∈ (0, 1)
14 α = max{α ∈ (0, 1] : (y,λ)+α(∆y,∆λ) ≥ τ(y,λ)}
15 while Eq. 5.13 not satisfied
16 α = α/2

17 (x(k+1), y(k+1),λ(k+1)) = (x, y,λ)+α(∆x,∆y,∆λ)
18 k = k + 1

19 until ||(x(k), y(k),λ(k))−(x(k−1), y(k−1),λ(k−1))|| < ϵ
or Time() > maxTimePoint

20 return Cxk

Ideally, we iterate until the optimality conditions, stated in 5.8, are satisfied.
However, a practical convergence criterion is to terminate when the distance be-
tween consecutive iterates ||(x(k), y(k),λ(k))− (x(k−1), y(k−1),λ(k−1))|| is smaller
than some small value ϵ, since we cannot expect to make significant progress
beyond this point. Here, || · || denotes l2-norm. In many applications, though,
it is critical to obtain a fast estimate. We account for that by a maximum
time span. Of course, time constraints provide no guarantees with respect to
optimality.

Algorithm CSE shows the complete pseudo code. The parameters are syn-
opses bounds bl and bu, sampling bounds xl and xu, as well as arguments to
test the exit condition as described above. In line 1, the system Mx ≥ c is
formulated as in Equation 5.7. Then, a slack vector y is introduced. In line 5,
the latest time point for another iteration is determined. Then, in each itera-
tion, µ and σ are computed to determine how much optimality condition 5.8c
is relaxed. A simple strategy is to always choose σ = 0. For a description of
adaptive choices, as used in IPOPT, see [70, Chapt. 14.2, 19.3]. Next, predictor
and corrector steps are performed by solving Equation 5.10 and 5.11, respec-
tively, to obtain a search direction. To determine a step size α, we first find
the maximum step size α that preserves the positivity condition 5.8d with some
specified buffer τ ∈ (0, 1), e.g., τ = 0.005. Then, we iteratively halve α until the
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sufficient decrease condition, given by Inequality 5.13, is satisfied. The current
iterate plus a step of length α in the search direction gives the new iterate. Af-
ter the last iteration, the vector of all estimated β-selectivities Cxk is returned,
where C denotes the complete design matrix introduced in Section 5.2.3.

5.5 Experimental Evaluation

We evaluate our approach (CSE ) and compare it to the accuracy and run
time of several existing estimation techniques that we have seen in the related
work sections. To this end, we consider the sophisticated methods by Yu et
al. (HASE ) [95] and Markl et al. (MaxEntropy) [58]. In addition, we include
Microsoft’s exponential back-off estimator (MsExpBackOff ) [9] as an up-to-date
industry approach as well as simple random sampling (Sampling), i.e., the num-
ber of qualifying samples divided by the sample size, as a sampling-only estima-
tor in our evaluation. Lastly, in the first part of our evaluation, we consider the
estimates obtained by applying the independence assumption (Ind. Ass.). The
following table shows for each estimator the type of information it processes:

Estimator Sampling Synopses
CSE ✓ ✓
HASE ✓ ✓
MaxEntropy ✓
MsExpBackOff ✓
Sampling ✓
Ind. Ass. ✓

Note that HASE, MsExpBackOff and Ind. Ass. all process only one-dimensional
synopses, i.e., single column statistics. Furthermore, note that MaxEntropy
requires adjustment steps when processing multi-dimensional synopses as de-
scribed in Section 5.3. For further details, recall the description of each model
given in the related work section. If nothing else is mentioned, we model a data
management system that provides estimators with a 1% sample of the data,
as in related work [26, Chapt. 2], and one-dimensional histograms as well as
two-dimensional histograms that capture correlations present in the data.

We use two real-world data sets in our experiments. (1) The forest cover
type (forest) data set [56], which is popular in the machine learning commu-
nity and contains more than 580k entries with 55 attributes. (2) The second
data set represents joined data from the daily global historical climatology net-
work (weather) [60, 61]. It comprises daily observations of climate records and
contains about 3.4M entries with 7 attributes.

In our experiments, we consider different test scenarios that are defined by
a data set and a number of predicates. For each test scenario, we run 10’000
conjunctive queries as in

SELECT ∗ FROM dataset
WHERE p1 and . . . and pn
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where each pi represents a range predicate over an attribute A with constants
c1, c2

A between c1 and c2

The range predicates pi are generated by drawing a random unused attribute A
and choosing two random values from A’s domain. The smaller value is used for
c1 and the larger value is used for c2. In case A’s domain has only two values,
e.g., 0 and 1, we set c1 = c2. This effectively creates a point predicate.

5.5.1 Accuracy

In this subsection, we look at the accuracy of estimates. The error metric used
to measure the deviation between a selectivity estimate ŝ and the true selectivity
s is the q-error, which we have introduced in Section 3.2.1.

Notice that the q-error is undefined in case either the estimated or the true
selectivity is zero. We configured all queries to return a non-empty result, hence,
we do not have to worry about the true selectivity being zero. In addition,
we programmed all estimators to estimate that at least one entry qualifies.
Therefore, we do not have to worry about the estimated selectivity being zero.
In a query optimization context, this makes sense to prevent faulty prunings in
query plans.

5.5.1.1 The Idealistic Case: Synopses Without Approximation Er-
rors
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Figure 5.5: Sorted q-errors for the weather data set given one and two-
dimensional synopses without approximation errors and a 1% sample.
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We first consider the idealistic case where histograms yield perfectly accu-
rate selectivities. Note that in reality, no database system has access to such
histograms. We include this case to pick up the scenario that was considered
in the related works on MaxEntropy [58] and HASE [95], where approximation
errors were not considered.

In [58] queries with 3 predicates find special attention. Figure 5.5a shows the
q-errors sorted in ascending order for each estimator for queries with 3 predicates
over the weather data set. Note that the longer a curve remains flat, the better
the corresponding estimator. We make the following observations in Figure 5.5a.
(1) CSE and HASE tend to be the best-performing models, supporting the idea
of combining synopses and sampling. (2) HASE mostly resembles Sampling.
(3) For some queries MaxEntropy outperforms Sampling, while for others, it is
the other way around. In particular, as we will see later Sampling has good
accuracy when enough samples qualify. The accuracy of MaxEntropy is good
when the true selectivity is indeed near the point of maximum entropy subject to
its constraints. (4) The difference between CSE and MaxEntropy or Sampling,
respectively, illustrates the benefit of combining synopses and sampling as we
propose it. (5) Microsoft’s exponential back-off estimator is less accurate than
the other estimators.

The largest queries considered in [95] contain 5 predicates. Figure 5.5b shows
the accuracy of each estimator for queries of this size for the weather data set.
Observe that (1) the curves of all estimators are shifted to the upper left as
the number of predicates is increased from 3 to 5. This shift captures how se-
lectivity estimation gets harder in the number of predicates in the conjunctive
query. (2) The accuracy of HASE aligns with the accuracy of Sampling. (3)
MaxEntropy worsens less than HASE or Sampling. (4) Microsoft’s exponential
back-off estimator performs significantly worse than all other estimators. Stat-
ically assuming a certain degree of correlation does not seem to be the key to
success.

5.5.1.2 The Realistic Case: Synopses With Approximation Errors

In this subsection, we consider the realistic case where synopses structures,
such as histograms, yield selectivities with approximation errors. We model
q-optimal histograms [63], as can be found in SAP HANA [5], that guaran-
tee a user-specified maximum multiplicative error for estimates, for which we
choose a value of 2. Therefore, for each β-selectivity we want to provide to
an estimator, we take the true β-selectivity, multiply it with a uniformly dis-
tributed multiplicative error in the range [0.5, 2], and provide the product to
the estimator.

Under this scenario, MaxEntropy requires adjustments of the provided selec-
tivities as discussed in Section 5.3. We compute adjustments that are optimal
under lq, as described in [65]. CSE instead sets the lower bounds to 0.5× β(X)
and the upper bounds to 2 × β(X) for each provided selectivity β(X) and is
guaranteed to yield a feasible optimization problem. HASE, MsExpBackOff
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Figure 5.6: Sorted q-errors given one- and two-dimensional synopses with
approximation errors and a 1% sample.

and Sampling operate as before, since they do not process multi-dimensional
synopses.

Figure 5.6 shows the sorted q-errors for queries with 7 predicates for both
the weather and the forest data set. Taking a closer look, we make the following
observations. (1) Depending on the data set, synopses-based estimators like
MaxEntropy or sampling-based estimators yield more accurate estimates, cf.
Figure 5.6a, where MaxEntropy outperforms Sampling, and Figure 5.6b, where
Sampling outperforms MaxEntropy. (2) Generally, CSE does not perform (sig-
nificantly) worse than the best of MaxEntropy and Sampling. This makes it a
robust estimator. In addition, in most cases CSE clearly produces the best es-
timates. (3) HASE performs no better than Sampling. (4) MsExpBackOff only
considers the four most selective one-dimensional predicates, hence, it ignores
three given selectivities. As a result, MsExpBackOff lags far behind the other
estimators for both data sets.

5.5.1.3 Bias of Estimator

In this section we empirically analyze the bias of CSE. For this purpose we rely
on the p-error, which functions like a signed version of the q-error. Recall, from
Section 3.2.1, that the p-error is defined as p-error(x, e) = e−x

min(e,x) for a value

x and an estimate e. Note that throughout this section, CSE uses a sample of
size 1.000 tuples.

Figure 5.7 shows the p-errors for the forest data set for several estimators
where the synopses that were provided for the estimators do not contain errors.
As usual, the bottom and top of the box are the first and third quartiles, and
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Figure 5.7: P-errors for the forest data set given perfect synopses.

the band in between represents the median. The lower and upper end of the
whiskers represent the 1% and 99% percentile, respectively.

In the lower part of the picture, we see the independence assumption and
Microsoft’s exponential back-off estimator. While Independence assumption is
median-unbiased, the factor by which it underestimates the cardinality can be
much larger than the factor by which it overestimates the cardinality. Hence,
Microsoft proposed the exponential back-off to correct for those severe underes-
timates. However, their estimator is biased towards overestimation and in some
cases severely overestimates the result cardinality.

Looking at the plots for MaxEntropy and CSE, we observe that they seem
to serve as unbiased estimators in this setting and underestimates are not sig-
nificantly worse than overestimates. Hence, we conclude that 2-dimensional
synopses without approximation errors suffice for the forest data set to produce
unbiased estimates when assuming independence subject to the known synopses.

Note that we set the width of the synopses bounds of CSE to be the approx-
imation error in the synopses. Hence, if synopses without approximation errors
are given, the lower and upper synopses bounds of CSE are equal.

The picture for MaxEntropy and CSE changes when we consider synopses
with approximation errors, cf. Figure 5.8. The errors, introduced as described in
section 5.5.1.2, bias MaxEntropy and CSE towards underestimation. However,
less severe in the case of CSE; note the difference in the scales for the plots of
CSE and MaxEntropy.

Of course, dependencies are data set specific. Hence, in Figure 5.9, we
look at the plots for the weather data set. Independence assumption is now
rather biased towards overestimation. Even knowledge about 2-dimensional
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Figure 5.8: P-errors for the forest data set where synopses have approximation
errors.
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Figure 5.9: P-errors for the weather data set given perfect synopses.

dependencies does not completely change this pattern, as can be depicted from
the plot for MaxEntropy. As before, Microsoft’s exponential back-off estimator
tends to overestimate result cardinalities, less severe, however, than in the forest
data set. As before, CSE produces unbiased estimates.
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As in the forest data set, synopses with approximation errors increase the
underestimates for CSE and MaxEntropy rather than they increase the overes-
timates, cf. Figure 5.10.
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Figure 5.10: P-errors for the weather data set where synopses have approxi-
mation errors.

The errors of CSE strongly depend on the width of the synopses bounds,
cf. Figure 5.11. In the title of the plots we refer to the width of the synopses
bounds as hist. width. When the bounds are set to have a width of four (factor
of two away from the given estimate in both directions) while the estimates do
not contain errors, then the estimates still look as in the case where the synopses
have approximation errors. Hence, the synopses bounds of CSE should be kept
as tight as possible.

The last row in Figure 5.11 shows the reverse case where the width of the
synopses bounds is 1, while the estimates contain approximation errors. Obvi-
ously, this setup yields to catastrophic estimates since, in case of overestimation,
the true value is overestimated by a large factor.
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Figure 5.11: Impact of width of synopses bounds on p-error distribution of
CSE in the forest data set.

5.5.1.4 Common Aspects in Sampling and CSE

We now further investigate the impact of applying sampling, in addition to
exploiting synopses, as we do it. Figure 5.12a shows a boxplot representation of
the errors in the number of qualifying sample tuples for the forest data set. As
usual, the bottom and top of the box are the first and third quartiles and the
band in between represents the median. The lower and upper end of the whiskers
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Figure 5.12: Q-errors in the number of qualifying samples for 7 predicate
queries and a sample size of 1.000 for the forest data set.
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Figure 5.13: Q-errors in the number of qualifying samples for 7 predicate
queries and a sample size of 1.000 for the weather data set.

represent the 1% and 99% percentile, respectively. The last box aggregates the
errors of all queries with more than 19 qualifying samples.

Observe how the errors of Sampling in Figure 5.12a decrease as more samples
qualify, i.e., the estimates become more accurate. A practical way to see why the
errors decrease is to observe how the confidence intervals close in in the number
of qualifying samples. Since our approach incorporates sampling, it roughly
follows this desirable trend, however, starting from a much lower error-level
for few qualifying samples, cf. the y-axis-scales in Figures 5.12a with the ones
5.12b for CSE given accurate synopses and 5.12c for CSE given synopses with
approximation errors (inacc. synopses). This is a competitive edge our approach
gains over approaches that do not incorporate sampling. For comparison, Figure
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5.13 shows the plots for the weather data set. Note that almost all samples had
no qualifying tuple for the queries of the weather data set. When the boxplot
for the q-errors is missing for a specific number of qualifying sample tuples, then
there was no such sample.

One might get the impression that sampling is the method of choice in almost
all cases, since the errors become acceptable quickly in the number of qualifying
samples. This is a misperception, since the case where very few samples qualify
are the dominant ones. For instance, in the experiments conducted to produce
the graphs in Figure 5.12, in more than 7,000 out of 10,000 queries with 7 simple
predicates the sample had zero qualifying tuples. In the case of the weather data
set, this is even more severe: 9968 out of 10,000 queries had zero qualifying
tuples. Consequently, only 32 times there was a sample with qualifying tuples.

Figure 5.14 shows only the largest q-errors for simple random sampling,
CSE with accurate synopses (QE 1), and CSE with synopses that contains
approximation error (QE 2) for both the forest and the weather data set.

For comparison with a different technique to obtain sampling bounds, the
plots in the right column (Figures 5.14b and 5.14d) show the maximum errors
of CSE when using alpha/omega bounds, as described in [64], and Wilson Score
intervals with a confidence level 1 − α = 0.9998. Note that in most cases the
choice between alpha/omega and Wilson Score is irrelevant since the errors are
located close to each other or coincide (when no difference can be observed), irre-
spective of whether the synopses is accurate or contains approximation errors.
Taking a closer look we note that CSE using Wilson Score tends to produce
more accurate estimates since we can identify cases where ◦ is closer to the
x-axis than • and cases where ∆ is closer the x-axis than ▲.
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(a) forest data set. Simple Random Sam-
pling and CSE with both synopses with
and without approximation errors.
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(b) forest data set, CSE with Alpha Omega
bounds and 1− α = 0.9998 conf. lvl inter-
vals.
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(c) weather data set. Simple Random
Sampling and CSE with both synopses with
and without approximation errors.
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(d) weather data set, CSE with Alpha
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Figure 5.14: Max Q-Error in the number of qualifying tuples for 7 boolean
factors

5.5.1.5 q-θ-acceptability

In this section we look at the q-θ-acceptability of various estimators. This
measure puts estimates in two categories: acceptable and unacceptable. q-θ-
acceptability is given if
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• an estimate and the true value differ from each other by a factor of at
most q

• or if both the estimate and the true value have a value of at most θ.

See [63] for details.
In this evaluation, we consider q ∈ {2, 4} and θ ∈ {100, 1000}. Tables

5.2, 5.3, and 5.4 illustrate the q-θ-acceptability for various estimators for the
weather data set and the forest data set. In the headline of each table, estimator
specifies the cardinality estimator, synQe denotes the q-errors in the provided
synopses as described in Section 5.5.1.2, noBf denotes the number of simple
predicates per conjunctive query, and total the number of queries evaluated
with this estimator. Each column qXtY denotes the number of queries that are
X-Y-acceptable, in the sense of the above definition of q-θ-acceptability.

In addition to the estimators we have already seen in the previous sections,
we include SmplMe, that is, we derive the most independent solution subject
to sampling bounds. This is the result we obtain when we run CSE without
synopses bounds. We included SmplMe to demonstrate that it is a bad ap-
proach, as can be seen by looking at the q-θ-acceptability rates of SmplMe for
any number of boolean factors. In the absence of synopses it is better to rely
on classic sampling estimators, like SmplSrs.

Independence assumption and Microsoft exponential back-off have their lim-
itations, cf. for instance Table 5.3 column q2t100 where, even without errors in
the provided synopses, for 5 boolean factors, only 65% of the IndAss estimates
and only 16% of the MsExpBackOff estimates are acceptable.

The advantage of CSE is its robustness in comparison to MaxEntropy and
SimplSrs. For instance in Table 5.3, column q2t100, noBf=5, and synQe=2, we
have that only around 6100 out of 10.000 MaxEntropy estimates are acceptable
but around 7100 of the CSE estimates are. In Table 5.2, column q2t100, noBf=3
SmplSrs produces around 8200 acceptable estimates, whereas CSE produces
around 9600 acceptable estimates in case of no errors in the synopses, i.e.,
synQe=1, and still 8800 acceptable estimates when we have synQe=2.
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estimator synQe noBf total q2t100 q2t1000 q4t100 q4t1000

SmplMe - 3 10000 1295 1295 1852 1852
SmplSrs - 3 10000 8260 9035 8500 9275

CSE 1 3 10000 9628 9820 9760 9874
Hase 1 3 10000 7620 8437 8649 9435

MaxEntropy 1 3 10000 9745 9908 9877 9960
MsExpBackOff 1 3 10000 6514 7557 7348 8245

IndAss 1 3 10000 8279 8826 8906 9268
CSE 2 3 10000 8880 9282 9622 9808
Hase 2 3 10000 7723 8542 8453 9242

MaxEntropy 2 3 10000 8712 9205 9340 9611
MsExpBackOff 2 3 10000 5932 7093 6845 7852

IndAss 2 3 10000 7517 8136 8549 8962
SmplMe - 5 10000 231 231 332 332
SmplSrs - 5 10000 9261 9762 9329 9830

CSE 1 5 10000 9534 9820 9678 9855
Hase 1 5 10000 9172 9677 9344 9848

MaxEntropy 1 5 10000 9676 9936 9824 9966
MsExpBackOff 1 5 10000 5744 7965 5999 8142

IndAss 1 5 10000 8619 9321 8922 9459
CSE 2 5 10000 9282 9728 9624 9901
Hase 2 5 10000 9157 9663 9285 9790

MaxEntropy 2 5 10000 9080 9591 9348 9730
MsExpBackOff 2 5 10000 5394 7712 5667 7892

IndAss 2 5 10000 8186 9049 8544 9255
SmplMe - 7 10000 8 8 18 18
SmplSrs - 7 10000 9848 9967 9859 9978

CSE 1 7 10000 9722 9868 9762 9870
Hase 1 7 10000 9849 9968 9860 9979

MaxEntropy 1 7 10000 9940 10000 9979 10000
MsExpBackOff 1 7 10000 5102 8729 5197 8737

IndAss 1 7 10000 9495 9911 9587 9923
CSE 2 7 10000 9853 9969 9904 9981
Hase 2 7 10000 9846 9967 9860 9980

MaxEntropy 2 7 10000 9785 9915 9815 9920
MsExpBackOff 2 7 10000 4649 8458 4719 8465

IndAss 2 7 10000 9191 9824 9301 9842

Table 5.2: q-θ-acceptability of various estimators for the weather data set
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estimator synQe noBf total q2t100 q2t1000 q4t100 q4t1000

SmplMe - 3 10000 3219 3219 4896 4896
SmplSrs - 3 10000 8175 9364 8792 9833

CSE 1 3 10000 9752 9929 9910 9972
Hase 1 3 10000 5732 6973 8800 9744

MaxEntropy 1 3 10000 9787 9953 9937 9987
MsExpBackOff 1 3 10000 4738 5790 6857 7608

IndAss 1 3 10000 7504 8537 8766 9353
CSE 2 3 10000 7870 8561 9409 9692
Hase 2 3 10000 6135 7395 8226 9246

MaxEntropy 2 3 10000 7278 8136 8804 9259
MsExpBackOff 2 3 10000 3696 4702 6033 6783

IndAss 2 3 10000 5683 6745 8061 8697
SmplMe - 5 10000 1787 1787 2650 2650
SmplSrs - 5 10000 7331 9373 7978 9830

CSE 1 5 10000 9267 9922 9776 9971
Hase 1 5 10000 6265 8380 7995 9736

MaxEntropy 1 5 10000 9261 9922 9776 9976
MsExpBackOff 1 5 10000 1604 3301 3113 4610

IndAss 1 5 10000 6578 8572 8128 9327
CSE 2 5 10000 7147 8854 8759 9715
Hase 2 5 10000 6029 8079 7357 9152

MaxEntropy 2 5 10000 6171 8159 7599 8982
MsExpBackOff 2 5 10000 1383 2892 2591 3951

IndAss 2 5 10000 5109 7175 7027 8406

Table 5.3: q-θ-acceptability of various estimators for the forest data set: 3 and
5 boolean factors.
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estimator synQe noBf total q2t100 q2t1000 q4t100 q4t1000

SmplMe - 7 10000 1209 1293 2225 2307
SmplSrs - 7 10000 7544 9581 8069 9886

CSE 1 7 10000 9070 9910 9685 9969
Hase 1 7 10000 7213 9253 8158 9850

MaxEntropy 1 7 10000 9053 9907 9682 9971
MsExpBackOff 1 7 10000 787 2669 1296 3073

IndAss 1 7 10000 6817 8990 8148 9518
CSE 2 7 10000 7215 9118 8541 9701
Hase 2 7 10000 6809 8757 7539 9292

MaxEntropy 2 7 10000 6739 8963 7710 9413
MsExpBackOff 2 7 10000 704 2383 1133 2713

IndAss 2 7 10000 5571 7987 6971 8661
SmplMe - 10 10000 1137 9561 2416 9777
SmplSrs - 10 10000 8069 9689 8448 9897

CSE 1 10 10000 9242 9966 9734 9992
Hase 1 10 10000 8078 9693 8567 9911

MaxEntropy 1 10 10000 9224 9966 9729 9994
MsExpBackOff 1 10 10000 426 2148 505 2196

IndAss 1 10 10000 7710 9553 8508 9747
CSE 2 10 10000 8025 9610 8683 9819
Hase 2 10 10000 7862 9384 8183 9580

MaxEntropy 2 10 10000 7931 9600 8348 9740
MsExpBackOff 2 10 10000 385 1862 458 1910

IndAss 2 10 10000 6627 8956 7478 9213

Table 5.4: q-θ-acceptability of various estimators for the forest data set: 7 and
10 boolean factors.
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5.5.2 Dimensionality of the Given Synopses and Sample
Size
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Figure 5.15: Sorted q-errors for queries with 7 predicates for the forest data
set.

Multi-attribute statistics are well-established in the research community.
However, many database systems still maintain only single attribute statistics.
In this subsection, we show how the accuracy of MaxEntropy and CSE changes
as we provide one- or two-dimensional synopses. Ideally, more information re-
sults in more accurate estimates. Indeed, we observe that for each estimator
in each test scenario the estimates improve as we go from one-dimensional syn-
opses to two-dimensional synopses if the selectivities provided by the synopses
structures have no approximation errors. As discussed earlier, though, this is
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an unrealistic assumption. In the realistic case, where synopses are subject
to approximation errors, we observe in some test scenarios that the estimates
become worse as more approximated selectivities were provided. Figure 5.15a
compares the sorted q-errors of MaxEntropy for one-dimensional (1D) and one-
and two-dimensional (2D) synopses. Note how the estimates improve in the
idealistic case of synopses without approximation errors (w/o app. err.) but
how they worsen in the case of synopses with approximation errors (w/ app.
err.). This means that an estimator might perform better using less than all
available information. However, this effect is data-dependent. For the weather
data set, we do not observe this effect: more synopses always result in better
estimates in all test scenarios for the weather data set.

Figure 5.15b shows the same graphs for CSE. This time in both cases, syn-
opses with or without approximation errors, the estimates improve as we go
from one-dimensional to one- and two-dimensional synopses. Since the same
holds for the weather data set and different numbers of predicates, we conclude
that CSE is robust in the sense that additional synopses have no negative im-
pact on the estimates. Note that it is irrelevant how CSE 2D inacc performs in
comparison to CSE 1D acc, since CSE 1D acc represents a hypothetical case.
Figure 5.15c illustrates that the graphs look similar even if the sample used in
CSE is only of size 1.000. Compared to the 1% sample, a sample of size 1.000
is more than a factor of 5 smaller for the forest data set. We observed that the
results with a sample of size 1.000 are similar in many cases. From an industry
point of view, that is good news since many database systems use such small
samples.

Finally, note that CSE is designed for multi-dimensional synopses in combi-
nation with a sample, and we advise its application primarily in that context.
In principle, CSE can be even applied to a sample only. However, it is not ad-
visable to do so since the most independent solution subject to sampling bounds
is a terribly wrong estimate!

5.5.3 Information Gain

This short section shows that 1-dimensional and 2-dimensional synopses do not
suffice to capture all dependencies in a data set. To this end, we show that the
forest data set serves as a counter example. In particular, if 1-dimensional and
2-dimensional synopses would capture all dependencies, then higher-dimensional
synopses would not improve the estimates of an estimator that fully exploits all
available information. MaxEntropy is such an estimator.

Figure 5.16 shows the q-errors for estimates produced by MaxEntropy given
synopses of different dimensions for the forest data set. In the plot, xD means we
provide MaxEntropy with x-dimensional synopses and y-dimensional synopses,
for all y <x. For instance, 3D means we provide MaxEntropy with 3-dimensional
synopses as well as 2-dimensional and 1-dimensional synopses. Note that the
synopses are free of approximation errors.
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Figure 5.16: Information gained by histograms of additional dimensionality

By looking at Figure 5.16, we conclude that higher-dimensional synopses
helps to improve estimates. Hence, dependencies that are not captured by 1-
dimensional and 2-dimensional synopses exist.

5.5.4 Confidence Level of Sampling Bounds

To produce a selectivity estimate as described in Section 5.4.3, CSE uses sam-
pling bounds. In Section 5.4.1 we showed how to compute the Wilson score
confidence interval as one possibility to derive sampling bounds. A parameter
for confidence intervals is the error rate α, which determines the confidence level
1 − α. We use α = 10−3 to produce intervals with a confidence level of 99.9%
in all experiments in the other sections of the evaluation. In this section, we
show that this value of α is a reasonable choice and, in particular, that CSE is
not very sensitive to the value chosen for α.

In this section, we consider 1 − α ∈ {90%, 99.9%, 99.999%}. Figure 5.17
shows the plot for a sample size of 1.000 tuples for the forest data set and
weather data set where all queries contained 7 boolean factors. (1) Note that
the differences are rather small. (2) In Figure 5.17a a confidence level of just
90% yields the best estimates followed by a confidence level of 99.9% an then
99.999%. However, in 5.17b the order is reversed. Hence, 1 − α = 99.9%
represents a middle way.
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Figure 5.17: Confidence Levels for 1k sample. Synopses with approximation
errors.

Figure 5.18 shows the same plots as Figure 5.17, but for a sample size of 1%.
Recall that for both data sets, forest and weather, a sample size of 1% results in
samples of a size that is much larger than 1.000 tuples. Note that for both data
sets 1− α = 90% gives the best estimates. However, the optimization problem
underlying CSE finds an optimal solution only in 99.91% of the cases. Whereas,
for 1− α = 99.9%, it finds the optimal solution in 99.98% of the cases. Hence,
1− α = 99.9% results in a more robust estimator.

Robustness can greatly impact the accuracy of estimates for specific queries.
We now investigate queries where CSE did not find an optimal solution for
1 − α ∈ {90%, 99.9%, 99.999%}. Note that until now our plots showed the
sorted q-errors of each estimator individually. In the following, we present ta-
bles that show for specific queries the q-errors obtained for CSE with 1 − α ∈
{90%, 99.9%, 99.999%}. We include queries with different boolean factors, in-
dicated by noBf. The column Exit shows the exit status of the solver for the
optimization problem:

• ✓ denotes Solve Succeeded or Solved To Acceptable Level

• U denotes User Requested Stop

• The dots . . . denote Maximum Iterations Exceeded

• E denotes Infeasible Problem Detected (never observed)

Note that the solver terminates if iter > 10 ∧ lT ime > 1s ∨ iter > 3000 where
the first term of the disjunction refers to U and the second refers to the dots . . . .

Prominent cases where a larger confidence level 1−α increases accuracy can
be found in the forest data set where the sampling bounds were derived from
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Figure 5.18: Confidence Levels for 1% sample. Synopses with approximation
errors.

a sample of size 1.000 where the q-error for CSE with 1 − α = 90% was larger
than 2000, while for CSE with 1 − α = 99.9% it was lower than 2. Similarly,
in the weather data set where the sampling bounds were derived from a sample
of size 1.000, we can find queries where CSE with 1 − α = 90% produced an
estimate that was off by a factor 12.000, while CSE with 1−α = 90% estimated
the true selectivity.

Hence, there exist cases where finding the optimal solution with respect to
the optimization problem is important. We conclude that 1−α should be chosen
to be small as long as the chance is small that CSE does not find an optimal
solution.
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queryIdx noBf QE,90% Exit QE,99.9% Exit QE,99.999% Exit

6744 3 2086.70 . . . 1.94 ✓ 1.94 ✓
57 3 462.00 . . . 4.32 ✓ 1.72 ✓

725 3 234.19 . . . 1.80 ✓ 1.74 ✓
5840 3 94.87 . . . 5.27 ✓ 3.45 ✓
2785 3 74.00 . . . 3.09 ✓ 2.80 ✓
378 3 72.00 . . . 3.65 ✓ 3.65 ✓

6447 3 70.26 . . . 2.40 ✓ 2.40 ✓
3072 3 62.00 . . . 1.09 ✓ 1.09 ✓
2724 3 58.00 . . . 1.29 ✓ 1.29 ✓
6109 3 37.00 . . . 2.65 ✓ 2.65 ✓
3021 3 35.00 . . . 1.19 ✓ 1.19 ✓
351 3 30.78 . . . 1.21 ✓ 1.84 ✓

2734 3 19.96 . . . 6.15 . . . 3.54 . . .
4388 3 14.00 . . . 14.00 ✓ 14.00 ✓
1394 3 12.00 . . . 1.77 ✓ 1.55 ✓
4353 3 9.24 . . . 5.36 ✓ 4.87 ✓
5901 3 5.06 . . . 2.48 ✓ 2.41 ✓
2907 3 5.01 . . . 1.18 ✓ 1.16 ✓
3811 3 5.00 . . . 1.85 ✓ 1.85 ✓
3009 3 4.75 . . . 1.74 ✓ 1.74 ✓
6539 3 4.06 . . . 2.34 ✓ 2.23 ✓
1411 3 3.78 . . . 3.10 ✓ 2.91 ✓
5046 3 3.46 . . . 1.07 ✓ 1.07 ✓
4156 3 3.41 . . . 1.50 ✓ 1.02 ✓
6715 3 3.30 . . . 1.07 ✓ 2.04 ✓
3272 3 3.00 . . . 4.01 ✓ 2.48 ✓
5458 3 2.91 . . . 1.28 ✓ 1.10 ✓
3403 3 2.65 . . . 1.27 ✓ 1.20 ✓
6801 3 2.55 . . . 1.30 ✓ 1.14 ✓
3318 3 2.43 . . . 1.07 ✓ 1.36 ✓
2810 3 2.22 . . . 1.46 ✓ 2.54 ✓
3717 3 2.01 . . . 1.13 ✓ 1.17 ✓
5247 3 2.00 . . . 1.19 ✓ 1.19 ✓
2219 3 2.00 . . . 3.69 ✓ 3.73 ✓

7 3 1.89 . . . 1.25 ✓ 1.28 ✓
3409 3 1.88 . . . 3.00 ✓ 2.86 ✓
6119 3 1.64 . . . 1.16 ✓ 1.38 ✓
582 3 1.64 . . . 1.09 ✓ 1.33 ✓

5895 3 1.36 . . . 1.95 ✓ 1.96 ✓
1565 3 1.31 . . . 1.96 ✓ 2.53 ✓
2849 3 1.28 . . . 1.32 ✓ 1.30 ✓
6649 3 1.24 . . . 3.10 ✓ 2.98 ✓
807 3 1.17 . . . 1.71 ✓ 1.80 ✓

3144 3 1.17 . . . 1.26 ✓ 1.25 ✓
6110 3 1.10 . . . 1.05 ✓ 1.17 ✓
5710 3 1.06 . . . 1.08 ✓ 1.14 ✓
6650 3 1.05 . . . 2.01 ✓ 2.01 ✓
3118 3 1.04 . . . 1.32 ✓ 1.37 ✓
4138 3 1.00 . . . 1.94 ✓ 2.85 ✓
5722 3 1.00 . . . 1.00 . . . 1.00 . . .

Table 5.5: Forest data set and 1k sample. Synopses with approximation errors.
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queryIdx noBf QE,90% Exit QE,99.9% Exit QE,99.999% Exit

4061 3 90.01 . . . 1.49 ✓ 1.49 ✓
16334 4 70.02 . . . 5.00 ✓ 5.00 ✓
6975 3 57.00 . . . 1.25 ✓ 1.65 ✓
975 3 40.00 . . . 9.78 ✓ 9.78 ✓

49635 7 18.00 U 18.00 ✓ 18.00 ✓
8865 3 10.83 . . . 1.03 ✓ 1.03 ✓
3055 3 9.00 . . . 1.27 ✓ 1.27 ✓
5947 3 8.00 . . . 2.31 ✓ 2.31 ✓
9660 3 8.00 . . . 1.48 ✓ 1.48 ✓
3072 3 5.81 . . . 12.60 ✓ 12.72 ✓

15874 4 5.71 . . . 3.93 ✓ 5.04 ✓
7033 3 5.49 . . . 1.51 ✓ 1.31 ✓

10215 4 4.92 . . . 2.57 ✓ 2.57 ✓
725 3 4.73 . . . 1.83 ✓ 1.12 ✓

3302 3 4.00 . . . 3.71 ✓ 3.71 ✓
1563 3 3.44 . . . 1.06 ✓ 1.02 ✓
2734 3 3.44 . . . 1.06 ✓ 1.64 ✓
7264 3 3.26 . . . 5.07 ✓ 5.24 ✓

18471 4 3.17 . . . 1.52 ✓ 1.00 ✓
47684 7 3.00 U 3.00 ✓ 3.00 ✓
5093 3 2.51 . . . 2.29 ✓ 2.39 ✓
2810 3 2.37 . . . 1.09 ✓ 1.79 ✓
9578 3 2.14 . . . 1.06 ✓ 1.43 ✓
3792 3 2.13 . . . 1.05 ✓ 1.05 ✓
9686 3 2.03 . . . 1.28 ✓ 2.09 ✓

49920 7 2.00 U 2.00 U 2.00 ✓
50330 8 2.00 U 2.00 ✓ 2.00 ✓
4737 3 1.96 . . . 1.16 ✓ 1.50 ✓
2907 3 1.85 . . . 1.20 ✓ 1.19 ✓
1583 3 1.72 . . . 1.21 ✓ 1.21 ✓
6010 3 1.65 . . . 5.36 ✓ 9.18 ✓

14375 4 1.56 . . . 1.19 ✓ 1.72 ✓
9212 3 1.54 . . . 3.99 ✓ 6.00 ✓
4291 3 1.53 . . . 1.17 ✓ 1.67 ✓
5523 3 1.50 . . . 1.04 ✓ 1.04 ✓
3933 3 1.42 . . . 1.13 ✓ 1.13 ✓
5306 3 1.32 . . . 1.77 ✓ 2.16 ✓
4921 3 1.24 . . . 1.51 ✓ 1.73 ✓
9810 3 1.18 . . . 1.46 ✓ 1.69 ✓
9991 3 1.08 . . . 1.10 ✓ 1.14 ✓
7508 3 1.06 . . . 1.08 ✓ 1.18 ✓
1801 3 1.06 . . . 1.09 ✓ 1.20 ✓
6699 3 1.03 . . . 1.18 ✓ 1.30 ✓
2509 3 1.00 . . . 1.00 ✓ 1.00 ✓
8109 3 1.00 . . . 1.97 ✓ 1.97 ✓

19394 4 1.00 . . . 1.00 ✓ 1.00 ✓
20858 5 1.00 U 1.00 ✓ 1.00 ✓
30441 6 1.00 U 1.00 ✓ 1.00 ✓
49405 7 1.00 U 1.00 ✓ 1.00 ✓
54879 8 1.00 U 1.00 U 1.00 U

Table 5.6: Forest data set and 1% sample. Synopses with approximation
errors.



74 CHAPTER 5. SELECTION PREDICATES OVER SINGLE RELATIONS

queryIdx noBf QE,90% Exit QE,99.9% Exit QE,99.999% Exit

27 3 12486.80 . . . 3.63 ✓ 3.63 ✓
39 3 12481.40 . . . 1.00 ✓ 1.00 ✓

249 3 12481.40 . . . 1.00 ✓ 1.00 ✓
472 3 12481.40 . . . 16.29 ✓ 16.29 ✓
523 3 6240.69 . . . 3.20 ✓ 5.31 ✓
597 3 656.91 . . . 1.37 ✓ 1.62 ✓
545 3 124.81 . . . 13.80 ✓ 13.80 ✓
132 3 124.15 . . . 2.18 ✓ 2.13 ✓
282 3 71.69 . . . 1.12 ✓ 1.12 ✓
103 3 52.00 . . . 1.84 ✓ 1.35 ✓
125 3 37.00 . . . 37.00 ✓ 37.00 ✓
176 3 29.85 . . . 9.20 . . . 5.30 . . .
308 3 28.00 . . . 1.59 ✓ 1.62 ✓
210 3 13.27 . . . 4.09 . . . 2.35 . . .
390 3 12.48 . . . 2.58 ✓ 4.59 ✓
89 3 12.00 . . . 2.02 ✓ 2.11 ✓

444 3 12.00 . . . 2.59 ✓ 2.81 ✓
220 3 11.37 . . . 3.50 ✓ 2.02 ✓
525 3 10.38 . . . 3.20 ✓ 1.84 ✓
171 3 7.02 . . . 2.16 ✓ 1.93 ✓
576 3 6.67 . . . 1.60 ✓ 1.46 ✓
366 3 6.36 . . . 2.50 ✓ 2.50 ✓
106 3 6.00 . . . 1.78 ✓ 1.78 ✓
226 3 5.00 . . . 5.00 . . . 5.00 . . .
143 3 4.64 . . . 2.70 ✓ 2.86 ✓
40 3 3.00 . . . 1.07 ✓ 1.09 ✓
65 3 3.00 . . . 5.95 ✓ 2.83 ✓

221 3 3.00 . . . 1.38 ✓ 1.38 ✓
461 3 2.47 . . . 1.95 ✓ 1.95 ✓
246 3 2.13 . . . 1.02 ✓ 1.02 ✓

2 3 2.00 . . . 11.56 ✓ 11.56 ✓
86 3 2.00 . . . 2.00 ✓ 2.00 ✓

204 3 2.00 . . . 1.45 ✓ 1.45 ✓
222 3 2.00 . . . 315.17 ✓ 315.17 ✓
372 3 2.00 . . . 24.53 ✓ 27.59 ✓
463 3 2.00 . . . 2.33 ✓ 5.17 ✓
497 3 2.00 . . . 1.35 ✓ 1.35 ✓
287 3 1.44 . . . 2.24 ✓ 2.24 ✓
601 3 1.32 . . . 1.80 ✓ 2.05 ✓
573 3 1.21 . . . 3.06 ✓ 3.80 ✓
205 3 1.00 . . . 1.00 ✓ 1.00 ✓
225 3 1.00 . . . 4.66 ✓ 3.36 ✓
236 3 1.00 . . . 1.00 ✓ 1.00 ✓
248 3 1.00 . . . 1.59 ✓ 1.59 ✓
340 3 1.00 . . . 1.00 ✓ 1.00 ✓
361 3 1.00 . . . 8.43 ✓ 8.43 ✓
465 3 1.00 . . . 1.63 ✓ 1.63 ✓
539 3 1.00 . . . 1.84 ✓ 1.84 ✓
543 3 1.00 . . . 1.00 ✓ 1.00 ✓
574 3 1.00 . . . 1.00 ✓ 1.00 ✓

Table 5.7: Weather data set and 1k sample. Synopses with approximation
errors.
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queryIdx noBf QE,90% Exit QE,99.9% Exit QE,99.999% Exit

35 3 363.77 . . . 1.00 ✓ 1.00 ✓
6234 3 360.17 . . . 2.14 ✓ 2.14 ✓
6834 3 360.15 . . . 2.50 ✓ 2.49 ✓
1368 3 180.09 . . . 1.22 ✓ 1.22 ✓
3976 3 180.09 . . . 2.00 ✓ 2.00 ✓
5690 3 94.60 . . . 1.00 ✓ 1.00 ✓
7242 3 46.46 . . . 1.25 ✓ 1.25 ✓
7128 3 45.16 . . . 1.85 ✓ 1.85 ✓
6181 3 38.98 . . . 4.55 ✓ 4.53 ✓

10407 4 37.72 . . . 6.34 ✓ 6.34 ✓
10009 4 6.87 . . . 2.12 . . . 1.22 ✓
10043 4 6.87 . . . 2.12 ✓ 1.22 ✓
10063 4 6.87 . . . 2.12 ✓ 1.22 ✓
10136 4 6.87 . . . 2.12 ✓ 1.22 ✓
10241 4 6.87 . . . 2.12 ✓ 1.22 ✓
10446 4 6.87 . . . 2.12 . . . 1.22 ✓
10477 4 6.87 . . . 2.12 ✓ 1.22 ✓
8224 3 4.73 . . . 1.83 ✓ 1.12 ✓
7831 3 4.73 . . . 1.89 ✓ 1.89 ✓
3051 3 4.26 . . . 1.65 ✓ 1.00 ✓
7862 3 4.26 . . . 1.68 ✓ 1.00 ✓
8432 3 3.63 . . . 2.84 ✓ 2.84 ✓
8279 3 3.60 . . . 1.23 ✓ 1.23 ✓

10018 4 3.44 . . . 1.06 ✓ 1.64 ✓
10281 4 3.44 . . . 1.06 ✓ 1.64 ✓
10714 4 3.44 . . . 1.06 ✓ 1.25 ✓
4045 3 3.05 . . . 1.19 ✓ 1.13 ✓
3634 3 3.04 . . . 1.18 ✓ 1.38 ✓

10280 4 2.90 . . . 1.07 ✓ 1.05 ✓
3758 3 2.82 . . . 1.18 ✓ 1.17 ✓
3139 3 2.51 . . . 1.35 ✓ 1.07 ✓
7232 3 2.29 . . . 1.42 ✓ 2.46 ✓

10297 4 2.29 . . . 1.42 ✓ 2.46 ✓
3394 3 2.13 . . . 1.21 ✓ 1.47 ✓
7410 3 2.13 . . . 1.09 ✓ 1.13 ✓
6019 3 2.00 . . . 1.26 ✓ 1.26 ✓
666 3 1.86 . . . 1.18 ✓ 1.13 ✓

1729 3 1.80 . . . 1.59 ✓ 1.59 ✓
5097 3 1.80 . . . 2.25 ✓ 2.24 ✓
6926 3 1.73 . . . 1.96 ✓ 1.96 ✓

10488 4 1.72 . . . 1.89 ✓ 2.35 ✓
10530 4 1.72 . . . 1.89 ✓ 2.26 ✓
2307 3 1.42 . . . 1.44 ✓ 1.44 ✓
731 3 1.18 . . . 1.04 ✓ 1.00 ✓

8881 3 1.16 . . . 1.19 ✓ 1.48 ✓
471 3 1.09 . . . 1.01 ✓ 1.08 ✓

8135 3 1.07 . . . 1.02 ✓ 1.08 ✓
10029 4 1.00 . . . 1.41 ✓ 1.00 ✓
10166 4 1.00 . . . 3.62 ✓ 4.27 ✓
10742 4 1.00 . . . 1.00 ✓ 1.32 ✓

Table 5.8: Weather data set and 1% sample. Synopses with approximation
errors.
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5.5.5 Runtime
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(b) 5 predicates
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(c) 7 predicates

Figure 5.19: Sorted runtimes given one- and two-dimensional synopses with
approximation errors.

We performed single-threaded runtime measurements on a machine with
Intel Skylake i5-6500 CPU with a clock rate of 3.20GHz with 16GB RAM. The
machine is operated by a 64-bit linux. We employ the IPOPT library [87] to
solve the optimization problem underlying our approach.

We only look at the run times of CSE, HASE and MaxEntropy. Our im-
plementation of HASE applies the algorithm based on Newton’s method with a
multiplicative distance function. Both the algorithm and the distance function
are described in the paper [95]. By MaxEntropy we refer to the approach by
Markl et al. that applies iterative scaling [58] to solve the underlying optimiza-
tion problem. Note that Sampling and MsExpBackOff run orders of magnitude
faster since they perform only simple arithmetics instead of solving optimiza-
tion problems. Furthermore, we do not consider the cost of drawing a sample or
extracting information from synopses structures; we are only interested in the
time it takes to produce an estimate, given some information.

Figure 5.19 shows the run times of CSE, HASE and MaxEntropy for several
problem sizes, i.e., various numbers of simple predicates. Note that we consider
the realistic case where synopses are subject to approximation errors.

Looking at Figure 5.19a, we note that (1) MaxEntropy works best in about
20% of all queries containing three simple predicates. That is, the overhead to
get the algorithm started is low. (2) Furthermore, the graph of MaxEntropy
suggests that the runtime heavily depends on the known selectivities that define
the constraints. (3) HASE and our approach CSE both seem to be much more
independent of the values of the selectivities in the optimization problem. (4)
HASE runs slower than our approach.
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To see how the algorithms scale in the problem size, we analyze Figures
5.19a, 5.19b and 5.19c. Looking at the graphs of MaxEntropy, we observe that
the runtime grows exponentially in the number of predicates which the authors
stated themselves [58]. In their future work section, they suspect an algorithm
based on Newton’s method to be faster. Indeed, this has been shown to be
true [36]. In addition, note that our approach solves the maximum entropy
approach, as Markl et al. have stated it, when setting all lower and upper bounds
on the variables to 0 and 1, respectively, and imposing equality constraints on
the β-selectivities.

Hase and CSE both scale well. Looking closely, we observe that the relative
difference between HASE and CSE shrinks, i.e., HASE has better asymptotic
properties. Let us look at the changes in the underlying optimization problem
as we increase the number of simple predicates form n to n + 2: The number
of variables in the optimization problem quadruples since the number of γ-
selectivities grows from 2n to 2n+2 = 4 × 2n for both HASE and CSE. Only
in CSE, a box constraint is associated with each variable, cf. Problem 5.6.
For both approaches, the number of constraints induced by one-dimensional
synopses grows from n to n + 2. Additionally, CSE has constraints due to

two-dimensional synopses which grow by a factor of 4n + 2 from n(n−1)
2 to

(n+2)((n+2)−1)
2 = (4n+ 2)n(n−1)

2 .

5.6 Summary

We proposed CSE, a novel approach to combine sampling with synopses for
the purpose of estimating the selectivity of conjunctive queries. The results
of our experiments suggest that CSE indeed leads to more accurate selectivity
estimates. Using two real-world data sets and a large number of queries, we at-
tempted to show the strengths and limitations of our own approach and various
other state-of-the-art approaches. Depending on the patterns in the data set,
a purely sampling-based estimator or a purely synopses-based estimator yields
better selectivity estimates. Our approach, however, yields estimates that are at
least as accurate as the estimates of the best competing estimator. This makes
CSE a robust estimator, whose applicability does not depend on the data set.
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Chapter 6

Sketches for Intersection
Size Estimation

In this section, we discuss the sketches AKMV and HyperLogLog and how to
use them for intersection size estimation. Both sketches, and the techniques
for intersection size estimation, become relevant in later chapters of this thesis.
Note that, unlike the other chapters, this chapter discusses and analyses only
existing techniques.

6.1 AKMV Sketch

AKMV sketches play an important role in Section 7 as well as Section 8. Hence,
this section introduces AKMV sketches and their predecessor KMV sketches.
As part of the following discussion, we use relations R and T with attribute
sets C and D, respectively. The k minimum value sketch (KMV) [15] is a
synopsis that allows to estimate the number of distinct values (NODV) in a
multiset. In our context, the multiset under consideration consists of the values
in R.C. A KMV is constructed in a single pass over R.C and requires only a
constant amount of memory. The basic idea is simple: To construct a KMV,
hash each entry in R.C to [0, 1] and keep track of the k smallest hashes, where
k is some fixed number. We refer to the tracked hashes by the totally ordered
set H := {h1 < h2 < · · · < hk}. Then, to estimate the NODV in R.C, use hk

as an indicator. In particular, a large hk indicates few distinct entries in R.C
and, vice versa, a small hk indicates many distinct input entries in R.C. As a
formula, the KMV estimate for the NODV is

bdKMV =

(
k/hk , if d > k

k , else
(6.1)

where d := |R.C|d := |πD
C (R)|, i.e., the number of distinct values in R.C. As the

formula suggests, for fewer than k distinct values, the estimate is the true value.

79
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For simplicity, we use only one deterministic global hash function H : ◦ → [0, 1]
that is capable of hashing any input to [0, 1]. To simplify the exposition, we
always assume the common case d > k. Unless explicitly stated otherwise, all
KMVs/AKMVs share the same fixed parameter k.

The augmented KMV (AKMV) by Beyer et al. [18] is an extension of KMV.
The main idea of AKMV is to augment the KMV by counters to track the
multiplicity by which each hash is seen during construction. The counters enable
one to estimate the NODV in a multiset that is the intersection, union, or
difference of other multisets. For instance, three AKMVs can be used to estimate
the NODV in the intersection of three multisets. In the following, we formally
define AKMVs, introduce the multiset operations they support, and show how
AKMVs are used for NODV estimation.

We formally define an AKMV for R.C as SR.C := (HR.C , ηR.C), where HR.C

denotes the set of the k smallest hashes we know from KMV, and the function
ηR.C : [0, 1] → N returns the tracked multiplicity of h if h ∈ HR.C . Otherwise,
if h ̸∈ HR.C , we define ηR.C(h) = 0.

AKMVs support the multiset operations union ∪, intersection ∩, and mul-
tiset difference \. Let SR.C ,ST.D be two AKMVs. The result of SR.C ◦ ST.D,
where ◦ ∈ {∪,∩, \}, is a new AKMV SR.C◦T.D. For brevity, let E := R.C ◦T.D.
The set of hashes HE in SE is defined as the k smallest hashes in HR.C ∪HT.D

and each h ∈ HE has multiplicity

ηE(h) =





ηR.C(h) + ηT.D(h) , if ◦ = ∪
min(ηR.C(h), ηT.D(h)) , if ◦ = ∩
max(ηR.C(h)− ηT.D(h), 0) , if ◦ = \

(6.2)

Note that intersect and subtract operations can cause hashes with a multiplicity
of zero. In case of intersection, this indicates that some entry was present only
in one of R.C and T.D.

The appropriate NODV estimate for an arbitrary AKMV S must reflect
the number of hashes with multiplicity greater zero, to which we refer as p :=
|{hi∈H | η(hi) > 0}|. Equation 6.1 is not applicable for AKMVs, since p is not

reflected. Instead, the formula to compute the NODV estimate bdAKMV of S is

bdAKMV =
p

k
· k − 1

max(H)
(6.3)

In the formula, the first fraction is the ratio of tuples with multiplicity greater
zero. The second fraction is almost the KMV estimate from Equation 6.1 -
Beyer et al. have shown that decrementing the numerator by 1 is necessary to
make the estimator unbiased [18].

Example: Consider AKMV S = (H, η) = ({0.0002 < 0.003 < 0.008 <
0.015}, (30, 50, 0, 40)). Observe that max(H)=0.015 and p=3 hashes have mul-

tiplicity greater zero. Hence, assuming k=4, the NODV estimate bdAKMV of S
is 3/4 · (4−1)/0.015 = 150.
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6.2 HyperLogLog

This section first introduces the HyperLogLog sketch. Originally, HyperLogLog
was designed for NODV estimation only. Then, we present three techniques to
estimate intersection sizes using HyperLogLog sketches. Two of these techniques
were invented only in the recent years.

6.2.1 HyperLogLog Sketch

Finding the NODV in a stream/data set in a single pass over the data is easy
using memory linear in the NODV. For instance, using a hash set, one can find
the exact NODV with memory O(n) for n distinct values.

A HyperLogLog sketch (HLL) [32] allows to estimate the NODV in a single
pass over the data with much less memory. The idea is simple: Suppose you are
interested in the number of different people in your various WhatsApp group
chats. Assume that the last few digits in a phone number are (uniformly)
random. Then, since digits range from 0-9, the chance that a specific digit in
a phone number has value 0 is 1/10. Hence, the chance that a phone number
ends in 00 is 1/100. Put differently, one expects that you have group-chatted
with around 100 different people if one phone number ends in 00 and no other
phone number ends in more zeros.

HLL applies this logic to binary numbers. Equal distribution of the input
numbers is achieved via hashing. To avoid heavy overestimates through a hash
value that, by coincidence, ends in many zeros, HLL applies stochastic averaging
[32]. That is, the first k bits of an b-bit hash value are used as an index in an
array of 2k counters. The remaining b−k bits are used to count the number of
trailing zeros. Each counter stores the maximal number of trailing zeros (plus
one) among all hash values mapped to this counter. Finally, to estimate the
NODV, the (harmonic) mean over the counters is computed. Since each counter
only processed an average portion of 1/2k of the input domain, the final estimate
is the mean scaled up by a factor of 2k (and multiplied by a constant).

The memory footprint of an HLL is very small. Since n distinct hash values
can be represented with log2(n) bits, and we can count the number of zeros in a
hash value with log2 of the hash value’s bits, the memory consumption of each
counter is log2(log2(n)). Hence, with m = 64 counters as in [33], an HLL for a
stream with up to 109 distinct values requires only 64 · log2(log2(109)) ≈ 0.3kb.

It can be shown that the estimator is practically unbiased. The variance
decreases proportionally in the number of counters. To be more precise, the
standard error is 1.04√

m
for an HLL of m counters.

Consider the following example to illustrate the memory consumption and
estimation error. With m = 64 counters, we approximately determine the
NODV in a stream with up to 109 distinct values with only 64·log2(log2(109)) ≈
0.3kb. In real applications, one usually uses 1 byte per counter, so 64B in
total [33]. According to Flajolet, due to the central limit theorem, estimation
errors follow a normal distribution. Hence, we expect to overestimate in only
1% of the cases by more than an additive term of 2.326 · 1.04√

64
= 0.3024, where
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2.326 is the 99th percentile of the normal distribution. By symmetry of the
normal distribution, the same argument holds for underestimation.

6.2.2 HyperLogLog Intersection Size Estimation

To the best of our knowledge, the three established approaches are: (1) The
inclusion-exclusion principle, which builds on basic set theory, (2) Ertl’s ap-
proach, which is based on a Poisson model [29], and (3) the binomial mean
lookup (BML) approach from Microsoft by Nazi et al. [68]. [68] do not ex-

plicitly mention intersection size but the inclusion coefficient |M1∩M2|
|M1| , where

M1,M2 are multisets. However, an intermediate result of their method is an
estimate for the intersection size.

In the following discussion, we denote the two HLLs that are intersected
by HK and HF , and use K and F as shorthand notations for πK(R) and
πF (S):

6.2.2.1 Inclusion-Exclusion Principle

Asking for the number of unique values in some multiset or data column is
equivalent to asking for the cardinality of a set filled with the same data. From
basic set theory we know that

|K ∪ F | = |K|+ |F |− |K ∩ F |,
and can simply solve for the intersection size

|K ∩ F | = |K|+ |F |− |K ∪ F |.
To estimate |K∪F |, we must merge the two HLL sketchesHK , HF . LetHK , HF

have m counters each and denote by H[i] the value of the ith counter. Then,
HK∪F with counter values HK∪F [i] = max(HK [i], HF [i]), 0 ≤ i < m is the
result of merging HK with HF . The NODV estimate of HK∪F is an estimate
for the NODV in K ∪ F . In fact, this estimate is also equal to the NODV
estimate of an HLL built on K ∪ F [29].

It is possible that the HLL estimate for |K ∪ F | exceeds the estimate for
|K|+ |F |. In this case, as a sanity bound, one should return 0 or a small default
minimum intersection size to prevent faulty prunings in query plans, e.g. 0.5.

Another notable effect of the inclusion-exclusion principle occurs for HLL
sketches where the values of all counters in K’s sketch are greater than the
values of all counters in F’s sketch. In this case, the estimates for |K| and
|K ∪ F | are equal. Therefore, the estimate for |K ∩ F | is |F |, i.e., the upper
bound of the intersection size.

6.2.2.2 Binomial Mean Lookup

The key aspect of BML is a multivariate function f that maps |K|, |F | and
|K ∩ F | to the probability that HK [i] ≤ HF [i], i.e.,

f(|K|, |F |, |K ∩ F |) ⇝ Pr(HK [i] ≤ HF [i]).
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The definition of f is lengthy and involves different cases, it can be found in the
paper [68]. Therefore, we use ⇝ to describe the output.

Giving a frequentist argument, [68] define the probability Pr(HK [i] ≤ HF [i])
as the relative frequency

Pr(HK [i] ≤ HF [i]) :=
Pm−1

j=0 �HK [j]≤HF [j]

m , (6.4)

where � denotes the indicator function. Since Pr(HK [i] ≤ HF [i]) is the same
for all counters i, we simply write P .

In order to estimate the intersection size |K ∩ F |, one must conceptually
compute f−1. Nazi et al. argue that f is monotonically increasing and, therefore,
f−1 exists [68]. |K| and |F | are considered as constants since their values are
approximately known from HK and HF , and, hence,

f−1
|K|,|F |(P ) ⇝ |K ∩ F |.

However, [68] do not explicitly define the function f−1. Instead, they use the
function f and the observed probability P , defined as above in Eq. (6.4), to
test different values for x ∈ [0,max(|K|, |F |)] until f(|K|, |F |, x) = P is found.
The matching x is the estimate for the intersection size. Since f is monotoni-
cally increasing [68], the authors propose bisection method/binary search to find
the intersection size estimate in logarithmic time O(log(max(|K|, |F |))). More
efficient algorithms are Brent’s method [19] and TOMS 748 [12].

6.2.2.3 Ertl’s Approach

In his statistical model [29], Ertl assumes that the number of distinct values
and the counter values in an HLL sketch are Poisson distributed. The Poisson
distribution’s single non-negative parameter λ expresses the rate at which new
unique values are inserted into the sketch.

To estimate the intersection size of two HLL sketches HK and HF , Ertl as-
sumes that pairwise distinct elements are inserted into HK and HF at rates λK

and λF , respectively. In addition, further unique elements are inserted into both
sketches at rates λ∩. That is, λ∩ defines the intersection size of HK and HF .
Note that λK , λF , and λ∩ are unknown, and the goal is to approximate λ∩ in
order to estimate the intersection size.

Ertl derives the joint probability mass function f that gives the probability
that the counters in HK equal the values in a vector CK and that the counters
in HF equal the values in a vector CF , denoted by Pr(HK

i = cK ∧HF
i = cF ):

f(λK ,λF ,λ∩, C
K , CF ) →

nY

i=1

Pr(HK
i = CK

i ∧HF
i = CF

i ),

where Pr(HK
i = cK ∧ HF

i = cF ) denotes the probability that counter i in
HK equals entry i in CK . The Poisson assumption implies independence of
HLL counters and, hence, probabilities can be multiplied. The definition of
Pr(HK

i = cK ∧HF
i = cF ) can be found in the original paper [29].
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For CK and CF , Ertl chooses the counter values observed in HK and HF .
Then we must solve the optimization problem

max
λK ,λF ,λ∩

f(λK ,λF ,λ∩ | CK , CF )

subject to the constraint that λK ,λF ,λ∩ > 0.
After finding an optimal solution and the corresponding optimal parameter

λ∗
∩, the expected intersection size is computed. Since E[Poisson(λ∗

∩)] = λ∗
∩, the

estimated intersection size is simply λ∗
∩.

Ertl points out that there is more than one optimal solution to the above
optimization problem. Hence, the estimated intersection size depends on the
solution we find. In Newton’s method the optimal solution depends on the
initial values for the parameters λK ,λF ,λ∩. Ertl suggests to use values derived
based on the Inclusion Exclusion Principle, which we presented in 6.2.2.1. This
often yields an initial solution that is already an optimal solution or close to
one.

6.3 Evaluation

6.3.1 Hash Function

As we have seen, both AKMV and HLL sketches can be used for NODV es-
timation and, more importantly in the context of this thesis, intersection size
estimation. For both sketches, their size and hash function are important pa-
rameters. For AKMV, size corresponds to the number of hash values stored.
For HLL, size corresponds to the number of counters. Both use a hash function
to hash the elements from the multiset they represent.

For the hash functions, we consider the functions listed below, where x is
the input value to be hashed. c1, c2, c3 denote constants that are chosen
randomly but only once before the first call to any of the hash functions. By
a**b we denote ab. Recall that AKMV computes estimates based on normalized
hash values in [0, 1]. This normalization is not captured by the below hash
functions. To ensure AKMV operates correctly, either each computed hash
must be normalized. This is the approach we take in our implementation. Or
one operates on integer hash values and only normalizes to compute an estimate.

name definition
murmur x ^= x >> 16; x *= 0x85ebca6b; x ^= x >> 13;

x *= 0xc2b2ae35; x ^= x >> 16; return x;

fibonacci b = 2654435769; a = b * (1.0 / 2**32 );

z = a * x; return floor(n * (z - floor(z)));

boncz return ((x >> 21) ^ (x >> 13) ^ (x >> 7) ^ (x));

crc32 return __builtin_ia32_crc32si(x, c1);

poly1 return x * c1 + c2;

poly4 return x**3 * c1 + x**2 * c2 + x * c3 + c4
To analyze the accuracy of AKMV and HLL, we perform the following ex-

periment, in which the hash function h and size m are parameters: For 100
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sketches, all of the same type X ∈ {HLL,AKMV}, with size parameter m and
hash function h, we incrementally insert 1 million values into each sketch. After
each insert, we record the largest q-error among all 100 sketches for the estimate
of the current NODV. Finally, we output the largest q-error over all inserts.

In Table 6.1 and Table 6.2, we report the results of the aforementioned
experiment for different hash functions and sizes. As shown in the second col-
umn of the tables, we chose the size parameter such that, in the ith row, both
sketches have the same memory footprint. For AKMV, all hash functions have
a reasonable accuracy, as the number of values stored grows large. For HLL,
fibonacci and boncz perform notably bad. We favor hash functions that perform
reasonable well in both sketches. For the remainder of this section, we fix the
hash function for AKMV to poly 1 and the hash function for HLL to murmur.

#val size[B] murmur fibonacci boncz crc32 poly 1 poly 4
1 4 106 106 106 106 106 106

2 8 5910.63 30.40 2.00 911.94 14.27 2210.45
4 16 25.02 10.17 1.33 29.54 4.77 28.27
8 32 4.85 4.17 1.14 4.85 1.95 5.16
16 64 2.78 1.92 1.07 3.20 1.33 3.17
32 128 1.88 1.34 1.06 2.10 1.18 1.96
64 256 1.56 1.15 1.03 1.95 1.09 1.60

128 512 1.37 1.07 1.02 1.50 1.05 1.39
256 1024 1.28 1.04 1.01 1.34 1.02 1.31

Table 6.1: Max Q-Error original AKMV (#sketch=100, #insert=106).

#ctr size[B] murmur fibonacci boncz crc32 poly 1 poly 4
4 4 15.66 1000000.00 18.30 19.06 17.65 74.73
8 8 8.32 500000.00 18.15 9.62 7.96 5.18
16 16 3.56 250000.00 17.88 3.51 4.00 3.12
32 32 2.06 111111.11 17.85 2.67 3.83 2.18
64 64 2.00 52631.58 17.84 1.84 3.68 1.70

128 128 2.00 26315.79 17.81 1.47 3.41 1.50
256 256 1.40 13157.89 17.81 1.43 2.91 1.28
512 512 1.33 6578.95 17.80 1.35 2.75 1.25
1024 1024 1.25 3289.47 17.80 1.24 2.65 1.25

Table 6.2: Max Q-Error HyperLogLog. (#sketch=100, #insert=106).

6.3.2 Intersection Size Estimation

In this section, we compare the accuracy of the different intersection size estima-
tion methods based on HLL and AKMV. To this end, we perform the following
experiment: Let K and F be sets, initially empty. To fill K and F , we it-
erate over the values from 1 to 1.1 million. With a 90% chance, a value is
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inserted in either (or both) sets K or F . Into which set a value v is inserted
depends on two parameters, the probabilities p isec and p K. With probability
p isec, v is inserted into both K and F . With probability p K v is inserted
into K. Consequently, with probability 1 - p isec - p K v is inserted into F
only. Once no more values are inserted into K and F , we build two sketches
XK , XF , X ∈ {HLL,AKMV}. Then, an estimate for |K ∩ F | is derived from
XK and XF .

Tables 6.3 to 6.11 show the accuracy of the different intersection size es-
timation techniques based on both sketches AKMV and HLL. The results of
each table are comparable since the size parameters to AKMV and HLL are
chosen such that they have the same memory consumption. In the headline of
the tables, p isec and p K denote the two aforementioned probabilities, given
as a per mille number. avg-qe-est and max-qe-est denote the average and maxi-
mum q-error of estimator est ∈ {akmv, bml, ibe}, where bml is a shorthand for
binomial mean lookup and ibe is a shorthand for the technique by Ertl. Note
that we do not show results for the inclusion-exclusion principle. However, the
inclusion-exclusion principle estimate serves as the start point for ibe. As was
shown in [29], ibe estimates are more accurate than inclusion-exclusion principle
estimates.

In the following, we discuss some interesting findings from the tables. The
q-errors of all estimation techniques reduce in the size of the sketches. For each
estimator, we can identify at least one case where this estimator is the most
accurate. In most cases though, binomial mean lookup is the most accurate
estimator. The estimates of bml and ibe tend to be similar. This comes by no
surprise, since both estimates are derived from the same synopsis. While the
AKMV estimate tends to be the most inaccurate for a given memory budget,
AKMV with twice the memory budget generally holds up with the HLL-based
estimators. Especially for larger values of p isec, this phenomenon can be ob-
served by comparing one of the HLL-based estimates with the AKMV from the
table with the next larger memory budget. For instance, for p isec=200 and
p K=100, we have avg-qe-bml=1.11 and avg-qe-akmv=179.64 in Table 6.8, but
avg-qe-akmv=1.26 in Table 6.9.

Based on the results of tables 6.3 to 6.11, we conclude that intersection
size estimation via binomial mean lookup using HLLs is the most attractive
approach.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 989.74 1109.00 173.79 1096.00 190.15 1096.00
1 100 989.74 1109.00 306.87 1096.00 334.18 1096.00
1 200 989.74 1109.00 439.67 1096.00 511.66 1096.00
1 500 989.74 1109.00 545.16 1109.00 606.97 1109.00
5 50 4950.30 5243.00 698.40 5170.00 695.79 5170.00
5 100 4950.30 5243.00 1221.52 5170.00 1241.71 5170.00
5 200 4950.30 5243.00 1687.74 5194.00 1943.09 5170.00
5 500 4950.30 5243.00 2238.17 5243.00 2485.66 5243.00

10 50 9900.68 10287.00 1398.67 10247.00 1420.33 10247.00
10 100 9900.68 10287.00 2462.18 10247.00 2522.84 10247.00
10 200 9900.68 10287.00 3318.18 10247.00 3875.29 10247.00
10 500 9900.68 10287.00 4376.18 10287.00 4844.16 10287.00
50 50 49503.37 50400.00 6055.78 50163.00 6017.10 50163.00
50 100 49503.37 50400.00 10343.89 50297.00 10626.31 50297.00
50 200 49503.37 50400.00 13843.57 50233.00 16017.55 50297.00
50 500 49503.37 50400.00 20099.93 50297.00 20530.89 50400.00

100 50 99002.80 100192.00 9644.32 99846.00 9802.49 99838.00
100 100 99002.80 100192.00 15702.74 100159.00 16554.74 99838.00
100 200 99002.80 100192.00 21405.32 99928.00 25258.26 99966.00
100 500 99002.80 100192.00 34395.55 100192.00 31395.05 100192.00
200 50 198002.02 199437.00 10179.02 199339.00 10872.91 199339.00
200 100 198002.02 199437.00 16753.54 199339.00 18873.03 199339.00
200 200 198002.02 199437.00 23504.59 199339.00 28614.30 199174.00
200 500 198002.02 199437.00 48669.90 199372.00 37779.40 199372.00
500 50 495003.92 497088.00 1387.33 495821.00 3614.98 496138.00
500 100 495003.92 497088.00 3169.56 495890.00 5842.71 496484.00
500 200 495003.92 497088.00 7871.79 496720.00 8615.53 496484.00
500 500 495003.92 497088.00 30443.64 496754.00 10991.69 496484.00

Table 6.3: Observed q-errors for AKMVs with 1 values and HLLs with 4 coun-
ters.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 987.50 1109.00 315.87 1096.00 326.56 1096.00
1 100 987.50 1109.00 510.86 1096.00 555.65 1096.00
1 200 987.50 1109.00 561.21 1096.00 797.75 1109.00
1 500 987.50 1109.00 582.70 1109.00 951.15 1109.00
5 50 4897.97 5243.00 1467.41 5170.00 1477.30 5170.00
5 100 4897.97 5243.00 2308.37 5194.00 2505.52 5171.00
5 200 4897.97 5243.00 2520.44 5194.00 3762.76 5194.00
5 500 4897.97 5243.00 2509.30 5243.00 4680.25 5243.00

10 50 9705.25 10287.00 2906.71 10247.00 2927.48 10247.00
10 100 9705.25 10287.00 4585.90 10287.00 5042.25 10287.00
10 200 9705.25 10287.00 4925.02 10247.00 7490.03 10287.00
10 500 9705.25 10287.00 4919.51 10287.00 9198.63 10287.00
50 50 44538.77 50400.00 12545.36 50243.00 13490.90 50243.00
50 100 44538.77 50400.00 17564.06 50297.00 22972.28 50297.00
50 200 44538.77 50400.00 19542.84 50233.00 33846.73 50297.00
50 500 44538.77 50400.00 22036.67 50297.00 41706.78 50400.00
100 50 79795.08 100070.00 17378.33 99878.00 23760.97 99966.00
100 100 79795.08 100070.00 23107.40 100159.00 39355.39 100159.00
100 200 79795.08 100070.00 28145.28 100070.00 57554.31 100159.00
100 500 79795.08 100070.00 34702.53 100192.00 71166.86 100192.00
200 50 125891.37 199437.00 10064.91 199339.00 29659.64 199339.00
200 100 125891.37 199437.00 16258.09 199339.00 49797.85 199339.00
200 200 125891.37 199437.00 28535.66 199197.00 72607.34 199257.00
200 500 125891.37 199437.00 44175.40 199192.00 95875.08 199313.00
500 50 123952.26 496720.00 546.05 496832.00 5099.54 496832.00
500 100 123952.26 496720.00 1041.24 496832.00 10050.18 496832.00
500 200 123952.26 496720.00 2971.25 496832.00 18118.79 496832.00
500 500 123952.26 496720.00 10858.36 496832.00 26980.89 496832.00

Table 6.4: Observed q-errors for AKMVs with 2 values and HLLs with 8 coun-
ters.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 985.85 1109.00 405.98 1096.00 465.85 1096.00
1 100 985.85 1109.00 360.10 1095.00 640.59 1096.00
1 200 985.85 1109.00 415.59 1096.00 726.56 1109.00
1 500 985.85 1109.00 440.63 1109.00 764.53 1109.00
5 50 4850.70 5243.00 1811.01 5171.00 2178.26 5171.00
5 100 4850.70 5243.00 1582.73 5194.00 2968.36 5194.00
5 200 4850.70 5243.00 1785.83 5194.00 3430.45 5194.00
5 500 4850.70 5243.00 1716.64 5243.00 3700.54 5194.00
10 50 9497.68 10287.00 3243.24 10247.00 4219.80 10247.00
10 100 9497.68 10287.00 2980.28 10247.00 5815.96 10287.00
10 200 9497.68 10287.00 3351.75 10247.00 6646.28 10287.00
10 500 9497.68 10287.00 3209.78 10247.00 7104.91 10235.00
50 50 40042.40 50400.00 5720.51 50129.00 14481.88 50233.00
50 100 40042.40 50400.00 9225.72 50163.00 20567.79 50233.00
50 200 40042.40 50400.00 11369.17 50233.00 24706.39 50400.00
50 500 40042.40 50400.00 12810.81 50278.00 27229.20 50400.00
100 50 64568.56 99966.00 4645.37 99825.00 15851.88 99878.00
100 100 64568.56 99966.00 7916.27 99878.00 23180.05 99878.00
100 200 64568.56 99966.00 12597.57 99877.00 30615.88 99878.00
100 500 64568.56 99966.00 17055.81 99966.00 36011.26 100192.00
200 50 80112.00 199372.00 892.84 199079.00 6852.10 199203.00
200 100 80112.00 199372.00 2308.49 199076.00 12040.84 199257.00
200 200 80112.00 199372.00 6200.13 199057.00 17828.00 199203.00
200 500 80112.00 199372.00 13566.37 199054.00 24458.12 199203.00
500 50 32128.61 496720.00 1.24 5.80 50.90 496832.00
500 100 32128.61 496720.00 1.26 10.93 50.92 496832.00
500 200 32128.61 496720.00 1.30 19.36 1.28 12.75
500 500 32128.61 496720.00 446.93 495933.00 397.41 496832.00

Table 6.5: Observed q-errors for AKMVs with 4 values and HLLs with 16 coun-
ters.



90 CHAPTER 6. SKETCHES FOR INTERSECTION SIZE ESTIMATION

p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 983.07 1109.00 318.09 1094.00 639.32 1109.00
1 100 983.07 1109.00 348.53 1095.00 758.56 1109.00
1 200 983.07 1109.00 394.19 1109.00 797.61 1109.00
1 500 983.07 1109.00 474.55 1109.00 827.47 1109.00
5 50 4788.45 5243.00 1348.82 5171.00 2987.91 5176.00
5 100 4788.45 5243.00 1539.33 5172.00 3545.99 5243.00
5 200 4788.45 5243.00 1755.59 5194.00 3787.26 5194.00
5 500 4788.45 5243.00 1957.18 5243.00 4017.38 5243.00

10 50 9220.57 10287.00 2220.72 10247.00 5654.10 10287.00
10 100 9220.57 10287.00 2724.68 10217.00 6688.29 10287.00
10 200 9220.57 10287.00 3221.60 10247.00 7264.06 10287.00
10 500 9220.57 10287.00 3665.67 10247.00 7717.05 10247.00
50 50 34364.76 50400.00 3190.04 50129.00 13879.24 50400.00
50 100 34364.76 50400.00 5542.39 50173.00 18506.00 50400.00
50 200 34364.76 50400.00 8577.16 50233.00 22607.34 50400.00
50 500 34364.76 50400.00 13137.60 50400.00 26432.79 50400.00

100 50 47342.95 99966.00 843.22 99901.00 8022.39 100192.00
100 100 47342.95 99966.00 2616.74 99732.00 13528.42 100192.00
100 200 47342.95 99966.00 6924.36 99779.00 20755.88 100192.00
100 500 47342.95 99966.00 14773.52 100192.00 26936.56 100192.00
200 50 41046.47 199372.00 21.04 197816.00 516.35 198533.00
200 100 41046.47 199372.00 120.06 198514.00 1805.14 199083.00
200 200 41046.47 199372.00 1130.06 199076.00 4238.91 198995.00
200 500 41046.47 199372.00 7427.55 199079.00 7863.86 199192.00
500 50 4159.49 496720.00 1.15 2.48 1.15 2.58
500 100 4159.49 496720.00 1.16 2.33 1.16 2.64
500 200 4159.49 496720.00 1.18 4.01 1.18 3.48
500 500 4159.49 496720.00 1.24 14.52 1.20 4.24

Table 6.6: Observed q-errors for AKMVs with 8 values and HLLs with 32 coun-
ters.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 976.22 1109.00 144.34 1087.00 666.58 1109.00
1 100 976.22 1109.00 193.63 1095.00 675.47 1096.00
1 200 976.22 1109.00 237.17 1109.00 683.12 1109.00
1 500 976.22 1109.00 360.07 1109.00 697.60 1109.00
5 50 4599.38 5243.00 513.86 5171.00 2969.07 5176.00
5 100 4599.38 5243.00 735.45 5171.00 3083.74 5194.00
5 200 4599.38 5243.00 915.65 5176.00 3147.33 5194.00
5 500 4599.38 5243.00 1362.29 5176.00 3267.26 5243.00

10 50 8507.76 10287.00 751.56 10287.00 5239.31 10287.00
10 100 8507.76 10287.00 1260.92 10287.00 5550.65 10287.00
10 200 8507.76 10287.00 1636.84 10221.00 5813.45 10287.00
10 500 8507.76 10287.00 2419.29 10247.00 5962.09 10247.00
50 50 22767.09 50400.00 368.47 49977.00 6769.56 50243.00
50 100 22767.09 50400.00 1033.47 50002.00 9863.83 50243.00
50 200 22767.09 50400.00 2264.68 50100.00 12784.59 50400.00
50 500 22767.09 50400.00 6378.62 50171.00 14803.21 50400.00

100 50 20363.10 99878.00 11.17 98696.00 1387.53 99584.00
100 100 20363.10 99878.00 130.28 99570.00 3220.43 100192.00
100 200 20363.10 99878.00 694.77 99719.00 6317.65 99928.00
100 500 20363.10 99878.00 4567.67 99872.00 8814.70 99872.00
200 50 6890.96 199372.00 1.14 3.03 1.17 3.98
200 100 6890.96 199372.00 1.20 3.80 1.22 6.47
200 200 6890.96 199372.00 1.27 16.60 140.57 198465.00
200 500 6890.96 199372.00 615.12 198563.00 397.58 198629.00
500 50 1.30 8.41 1.12 1.81 1.12 1.76
500 100 1.30 8.41 1.12 1.73 1.13 1.84
500 200 1.30 8.41 1.12 1.87 1.14 1.88
500 500 1.30 8.41 1.15 2.30 1.15 2.15

Table 6.7: Observed q-errors for AKMVs with 16 values and HLLs with
64 counters.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 959.07 1109.00 43.60 1056.00 658.11 1109.00
1 100 959.07 1109.00 70.08 1087.00 672.86 1109.00
1 200 959.07 1109.00 90.78 1082.00 686.61 1109.00
1 500 959.07 1109.00 190.63 1109.00 699.25 1109.00
5 50 4256.18 5243.00 44.77 5092.00 2784.83 5184.00
5 100 4256.18 5243.00 119.19 5131.00 2892.14 5184.00
5 200 4256.18 5243.00 195.11 5176.00 3036.50 5184.00
5 500 4256.18 5243.00 504.70 5194.00 3144.21 5243.00

10 50 7163.89 10287.00 43.76 10060.00 4565.64 10287.00
10 100 7163.89 10287.00 145.81 10121.00 4965.43 10287.00
10 200 7163.89 10287.00 292.07 10181.00 5308.71 10287.00
10 500 7163.89 10287.00 792.18 10235.00 5446.12 10247.00
50 50 10146.75 50400.00 1.60 10.11 2362.94 50129.00
50 100 10146.75 50400.00 1.84 108.08 3972.82 50129.00
50 200 10146.75 50400.00 81.15 49856.00 6213.29 50163.00
50 500 10146.75 50400.00 1037.27 50139.00 7038.14 50171.00

100 50 4000.89 99781.00 1.26 3.10 90.37 99386.00
100 100 4000.89 99781.00 1.38 4.90 416.82 99358.00
100 200 4000.89 99781.00 11.37 99177.00 853.16 99570.00
100 500 4000.89 99781.00 219.39 99185.00 1426.90 99707.00
200 50 179.64 198509.00 1.11 1.58 1.11 2.04
200 100 179.64 198509.00 1.16 2.21 1.14 2.50
200 200 179.64 198509.00 1.19 3.05 1.16 2.84
200 500 179.64 198509.00 1.27 6.19 1.18 3.04
500 50 1.18 3.39 1.07 1.36 1.10 1.45
500 100 1.18 3.39 1.07 1.41 1.10 1.54
500 200 1.18 3.39 1.08 1.49 1.11 1.57
500 500 1.18 3.39 1.09 1.83 1.11 1.60

Table 6.8: Observed q-errors for AKMVs with 32 values and HLLs with
128 counters.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 928.59 1109.00 46.89 63.48 567.16 1109.00
1 100 928.59 1109.00 66.35 117.67 537.28 1109.00
1 200 928.59 1109.00 71.48 1021.00 490.81 1109.00
1 500 928.59 1109.00 119.87 1077.00 428.80 1096.00
5 50 3643.08 5243.00 10.12 13.29 2096.94 5184.00
5 100 3643.08 5243.00 14.02 23.56 2113.42 5184.00
5 200 3643.08 5243.00 17.42 5011.00 1939.14 5176.00
5 500 3643.08 5243.00 89.19 5137.00 1696.53 5184.00

10 50 5170.78 10287.00 5.54 7.39 2863.48 10287.00
10 100 5170.78 10287.00 7.46 11.71 3038.18 10287.00
10 200 5170.78 10287.00 8.95 9931.00 2880.56 10287.00
10 500 5170.78 10287.00 99.15 10184.00 2491.90 10287.00
50 50 1956.45 50400.00 1.85 2.46 159.85 49913.00
50 100 1956.45 50400.00 2.24 3.45 496.59 50107.00
50 200 1956.45 50400.00 2.33 4.13 710.02 50054.00
50 500 1956.45 50400.00 17.61 49371.00 672.33 49983.00

100 50 169.69 99511.00 1.38 1.83 1.13 2.47
100 100 169.69 99511.00 1.58 2.08 1.16 2.53
100 200 169.69 99511.00 1.62 2.57 20.99 99201.00
100 500 169.69 99511.00 11.70 99242.00 11.09 98903.00
200 50 1.26 6.44 1.14 1.43 1.08 1.50
200 100 1.26 6.44 1.24 1.60 1.10 1.69
200 200 1.26 6.44 1.27 1.70 1.11 1.98
200 500 1.26 6.44 1.27 1.95 1.12 1.99
500 50 1.12 1.91 1.05 1.27 1.09 1.38
500 100 1.12 1.91 1.04 1.24 1.09 1.38
500 200 1.12 1.91 1.06 1.29 1.09 1.43
500 500 1.12 1.91 1.06 1.37 1.09 1.44

Table 6.9: Observed q-errors for AKMVs with 64 values and HLLs with
256 counters.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 866.43 1109.00 50.38 63.22 629.61 1109.00
1 100 866.43 1109.00 98.87 124.28 634.39 1109.00
1 200 866.43 1109.00 123.08 187.73 654.23 1096.00
1 500 866.43 1109.00 137.76 267.20 686.33 1109.00
5 50 2600.80 5243.00 10.81 12.86 2145.91 5171.00
5 100 2600.80 5243.00 20.47 24.22 2378.56 5184.00
5 200 2600.80 5243.00 25.41 37.91 2592.01 5184.00
5 500 2600.80 5243.00 27.97 52.25 2812.80 5194.00

10 50 2700.04 10287.00 5.88 7.05 2607.00 10287.00
10 100 2700.04 10287.00 10.67 12.84 3330.69 10287.00
10 200 2700.04 10287.00 13.17 20.13 3842.61 10222.00
10 500 2700.04 10287.00 14.44 26.01 4366.48 10247.00
50 50 80.72 49923.00 1.92 2.30 15.98 49524.00
50 100 80.72 49923.00 2.84 3.39 199.38 50133.00
50 200 80.72 49923.00 3.42 4.61 556.52 50041.00
50 500 80.72 49923.00 3.52 5.42 1021.51 50008.00

100 50 1.27 6.64 1.43 1.66 1.09 1.72
100 100 1.27 6.64 1.86 2.25 1.11 1.73
100 200 1.27 6.64 2.20 2.84 1.13 2.20
100 500 1.27 6.64 2.17 2.98 11.74 98919.00
200 50 1.16 2.30 1.18 1.39 1.06 1.36
200 100 1.16 2.30 1.37 1.59 1.06 1.45
200 200 1.16 2.30 1.58 1.95 1.08 1.52
200 500 1.16 2.30 1.52 2.00 1.08 1.54
500 50 1.08 1.57 1.04 1.18 1.04 1.22
500 100 1.08 1.57 1.07 1.24 1.04 1.28
500 200 1.08 1.57 1.17 1.33 1.04 1.25
500 500 1.08 1.57 1.21 1.44 1.05 1.30

Table 6.10: Observed q-errors for AKMVs with 128 values and HLLs with
512 counters.
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p isec p K avg-qe-akmv max-qe-akmv avg-qe-bml max-qe-bml avg-qe-ibe max-qe-ibe
1 50 766.52 1109.00 50.62 59.62 530.39 1109.00
1 100 766.52 1109.00 100.09 121.08 504.76 1109.00
1 200 766.52 1109.00 195.38 235.65 453.53 1109.00
1 500 766.52 1109.00 197.53 278.70 403.03 1096.00
5 50 1396.48 5243.00 10.87 12.40 1258.35 5184.00
5 100 1396.48 5243.00 20.72 23.60 1386.78 5184.00
5 200 1396.48 5243.00 39.69 44.96 1356.13 5171.00
5 500 1396.48 5243.00 40.09 51.68 1194.06 5194.00

10 50 771.29 10182.00 5.91 6.75 882.38 10222.00
10 100 771.29 10182.00 10.79 12.18 1249.23 10222.00
10 200 771.29 10182.00 20.25 22.73 1297.54 10213.00
10 500 771.29 10182.00 20.52 25.72 1112.88 10182.00
50 50 1.28 6.25 1.93 2.20 1.11 1.81
50 100 1.28 6.25 2.86 3.21 6.10 49607.00
50 200 1.28 6.25 4.69 5.23 6.12 49631.00
50 500 1.28 6.25 4.76 5.91 6.11 49319.00

100 50 1.18 2.94 1.43 1.61 1.06 1.41
100 100 1.18 2.94 1.87 2.11 1.08 1.53
100 200 1.18 2.94 2.74 3.04 1.09 1.61
100 500 1.18 2.94 2.84 3.51 1.10 1.68
200 50 1.11 2.01 1.18 1.32 1.04 1.21
200 100 1.11 2.01 1.37 1.54 1.04 1.28
200 200 1.11 2.01 1.75 1.99 1.05 1.32
200 500 1.11 2.01 1.92 2.30 1.06 1.42
500 50 1.06 1.33 1.02 1.14 1.04 1.16
500 100 1.06 1.33 1.06 1.18 1.04 1.18
500 200 1.06 1.33 1.16 1.28 1.04 1.19
500 500 1.06 1.33 1.36 1.50 1.04 1.18

Table 6.11: Observed q-errors for AKMVs with 256 values and HLLs with
1024 counters.
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Chapter 7

Two-way Joins

7.1 Introduction

This chapter presents a new join size estimation technique. Note that join size
estimation is critical in query optimization, since estimation errors propagate
exponentially through joins and lead to slow query plans [40]. In the world
of relational database systems, key/foreign-key joins are frequent and hence
play an important role [10, 67]. The main difficulty in key/foreign-key join
size estimation arises from selection predicates that are applied to the relations
before they are joined [23,86].

The problem scope considered in this chapter is to estimate the size of an
equi-join of two filtered relations R and S, i.e.,

|σpR
(R) ▷◁pJ

σpS
(S)|,

where pJ is a key/foreign-key equality join predicate. For now, assume pR and
pS both are range predicates. Note that point predicates (=) and half-open
predicates are special range predicates. We will see later that pR and pS can be
generalized to more complex types of predicates. The above join scenario occurs
frequently in relational database systems, e.g., in a data warehouse where a fact
table joins with a dimension table after a predicate has been applied to each
table.

Many existing join size estimation techniques rely on the well-established
formula

|σpR
(R) ▷◁pJ

σpS
(S)| = spJ

· |σpR
(R)× σpS

(S)|,

where spJ
denotes the selectivity of pJ , and |σpR

(R) × σpS
(S)| denotes the

cross product size of the filtered relations, which equals |σpR
(R)| · |σpS

(S)|.
To estimate join sizes, several techniques were developed. The simplest [78]
relies on (unrealistic) independence and uniformity assumptions. Sampling for
join size estimation [23, 86] is versatile but selective selection predicates can
cause inaccurate join size estimates [88]. A different approach are join size

97
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sketches [13, 25], but sketches are built after selection predicates have been
applied.

In this work, we consider a different join size model, which has no notion
of join selectivity. In pictures, joins are often illustrated as the intersection of
join attributes in a Venn diagram. Yet a join can be much larger than the
intersection size of the join attributes. For join attributes R.K and S.F , the
relationship between join size and intersection size is expressed in a formula by
Allen Van Gelder [85], which is the basis of our work,

|σpR
(R) ▷◁R.K=S.F σpS

(S)| = α · I,

where I is the intersection size of the filtered join attribute values, i.e. I :=
|πK(σpR

(R)) ∩ πF (σpS
(S))|, which is a lower bound for the join size, and α is

called the average multiplicity [85]. Let R′ = σpR
(R) and S′ = σpS

(S). Then α
is the average number of times a join attribute value occurs in the join result,
that is,

α := 1
I
P

v∈R′.K∩S′.F |σK=v(R
′)| · |σF=v(S

′)|

=
|R′ ▷◁R′.K=S′.F S′|

|R′.K ∩ S′.F | .

For a non-empty join, the average multiplicity α must be greater than or equal
to 1. We define α = 0 for joins with empty intersection size to prevent division
by 0.

Applying the definitions of join selectivity, average multiplicity, and intersec-
tion size to a join R ▷◁R.K=S.F S indeed yields the true join size |R ▷◁R′.K=S′.F

S| for both the selectivity and the multiplicity based formula.
To illustrate the formula α · I, consider the following example tables

R

K B
1 2
2 7
3 3
4 1
5 2

S

F Z
1 3
2 10
2 2
2 5
2 8
3 7
3 8
4 2
5 5

and the example query

σB≥3(R) ▷◁R.K=S.F σ4≤Z≤10(S).

Let R′:=σB≥3(R) and S′:=σ4≤Z≤10(S). The tuples shaded in gray are the
ones that qualify the selection predicate. Then, the intersection size of the join
attribute values is

I = |R′.K∩S′.F | = |{2, 3}∩{2, 3, 5}| = 2.
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R Table with schema
{K int primary key, B int}.

S Table with schema {F int foreign

key references R, Z int}.
pR A range selection predicate c1 ≤ R.B ≤ c2,

where c1 and c2 are query-specific constants.

pS A range selection predicate d1 ≤ S.Z ≤ d2,
where d1 and d2 are query-specific constants.

pJ The join predicate R.K = S.F .

πD
X Projection on attribute X with duplicate removal.

HLL Abbreviation for HyperLogLog sketch.

BT A bucket sketch for table T .

Freq Counts number of inserts into a bucket.

CtrFreq Counter Frequency. Optional field in buckets of a
bucket sketch. Approximates multiplicity of keys.

FK Foreign key.

Key table Table with the key attribute of a key/FK join.

FK table Table with the FK attribute of a key/FK join.

NODV Number of distinct values.

CAMA Constant Average Multiplicity Assumption

Table 7.1: Symbols and abbreviations.

For the average multiplicity, we have

α =
1

I
X

v∈R′.K∩S′.F

|σK=v(R
′)|·|σF=v(S

′)|,

which gives 1
2 (3+2) = 2.5. Finally, the join size is

α·I = 2.5·2 = 5,

which is indeed the true join size.
As stated in the problem scope, we present an estimation method for the

key/foreign-key join of two filtered relations. We apply the formula α·I. There-
fore, we present several formulas to estimate the average multiplicity α. We
evaluate recent developments in the area of intersection size estimation which
do not consider predicates [29, 68]. However, a data structure we designed,
called the bucket sketch, allows one to consider simple predicates and estimate
the average multiplicity α and the intersection size I of a join of two filtered
relations.

The remainder of this chapter is structured as follows: Section 7.2 presents
our join size estimation method. Then, in Section 7.3, we evaluate this method
and compare it to various other estimators. Finally, in Section 7.4, we summa-
rize the contents of this chapter.

Throughout the chapter, we use the relations R and S, the selection predi-
cates pR and pS , and the join predicate pJ . All are given in Table 7.1.
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Figure 7.1: Bucket sketch BR is constructed for relation R. For join size
estimation, a bucket sketch BS for relation S must be constructed as well.

7.2 Join Size Estimation with Bucket Sketches

As presented in the introduction, our join size estimation technique allows to
estimate the size of the key/foreign-key join σpR

(R) ▷◁pJ
σpS

(S) via the for-
mula α · I, where I is the intersection size of the join attribute values of pJ in
σpR

(R) and σpS
(S), and α is the average multiplicity of the intersection values

in the join.
The following sections are structured as follows: Section 7.2.1 presents the

bucket sketch, a data structure we construct offline for relations R and S, as
illustrated in Figure 7.1. For a given join query, the high level procedure to esti-
mate a join size is illustrated in Figure 7.2. Bucket sketches handle the selection
predicates pR and pS . Via bucket sketches, we also obtain intersection size esti-
mates subject to filter predicates, as presented in Section 7.2.1.4. Section 7.2.2
presents formulas to estimate the average multiplicity α. Section 7.2.3 analyzes
the estimation error and presents confidence intervals. Section 7.2.4 discusses
generalizations of our approach.

7.2.1 Bucket Sketch

We present the bucket sketch, a data structure used for average multiplicity and
intersection size estimation. A bucket sketch must be built for relations R and
S, respectively. This subsection is structured as follows: Section 7.2.1.1 presents
the structure of a bucket sketch, Section 7.2.1.2 shows how to construct a bucket
sketch from an input relation. Sections 7.2.1.3 and 7.2.1.4 show how to estimate
certain expression sizes from one and two bucket sketches, respectively.

7.2.1.1 Structure

A bucket sketch BT is defined in terms of a non-overlapping partitioning of a
relation T along some partitioning attribute T.G. Each partition defines the
range of a bucket in the bucket sketch BT . Each bucket contains an HLL sketch
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Figure 7.2: Join size estimation using BR and BS to derive an estimated aver-
age multiplicity bα and estimated intersection size bI for query σc1≤R.B≤c2(R) ▷◁pJ

σd1≤S.Z≤d2(S).

that is used to approximately count the NODV of an attribute T.J , to which
we refer as the HLL attribute. We will later discuss that any type of distinct
count sketch can be used, e.g., AKMV. However, as we have seen in the previous
chapter, Chapter 6, and will see again in the evaluation section of this chapter,
the best accuracy is achieved with HLL. Instead of a single attribute, T.J can
be an attribute set, which corresponds to a conjunctive join predicate. The
only requirement for T.J is to be hashable. In addition to the HLL sketch, each
bucket contains a Freq field that counts the number of tuples that belong to that
bucket. Note that G and J can either be the same or differ, but must belong
to the same relation T . In Section 7.3.7, we show that, using the appropriate
intersection size estimation technique, HLL sketches with as few as 8 counters
suffice – the size of a single 64-bit pointer!

As indicated by the parentheses in Figure 7.1, the buckets of a key table
bucket sketch BR optionally contain the CtrFreq field (short for counter fre-
quency), which is used to store the sum of the frequencies of the matching FKs.
More formally, let P ⊆ R be the partition that defines the range of some bucket
BR[i] of BR. Then, BR[i].CtrFreq = |P ▷◁pJ

S|. Note that the frequency of an
FK attribute value v is the same as v’s multiplicity in an unfiltered join.

For the bucket sketch, we use the equi-width partitioning scheme, defined

as |dom|
n , where |dom| = max(T.G)−min(T.G)+1 and n is the number of buck-
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Algorithm 1 (Gray lines (2, 7, 14) are optional.)

ConstructSketches(R, nR, S, nS)

Input: Relations R and S,
number of buckets nR, nS in bucket sketches

Output: Bucket sketches BR and BS

1 Let BS be a bucket sketch with nS buckets
2 Let CtrFreqHT be a hash table
3 for each tuple s ∈ S
4 idx = GetBucketIndex(s.Z )
5 BS [idx].HLL. insert(s.F )
6 BS [idx ].Freq += 1
7 CtrFreqHT [s.F ] += 1 // initially zero
8
9 Let BR be a bucket sketch with nR buckets

10 for each tuple r ∈ R
11 idx = GetBucketIndex(r .B)
12 BR[idx].HLL. insert(r .K )
13 BR[idx ].Freq += 1
14 BR[idx ].CtrFreq += CtrFreqHT [r.K]
15 return BR,BS

ets [48]. If the min and max value of T.G are known, e.g., in the statistics catalog
of the database system, we construct a bucket sketch in a single pass over the
data as in [14]. Otherwise, we perform an additional pre-processing pass over
the data to determine the min and max value, adding up to two passes.

To determine the bucket BT [idxv ] corresponding to a value v ∈ T.G, we
could store the bucket boundaries and perform a binary search. Instead, we
apply a direct access method and avoid storing the bucket boundaries: Say our
memory budget allows for nmax = 128 buckets, where nmax is always a power
of two. If |dom| > nmax, we choose the number of buckets n := nmax and find
the bucket of a value v ∈ T.G as

idxv = (v −min(T.G)) ≫ shiftby ,

where ≫ denotes logical bit shift right and shiftby is the number of bits we need
for the domain minus the number of bits we have for indexing, i.e., shiftby :=
⌈log2(|dom|)⌉ − log2(n).

In case |dom| ≤ nmax, we have n := |dom| buckets and simply com-
pute idxv = v−min(T.G). This is beneficial for attributes with small domains
like nationkey in TPC-H.

7.2.1.2 Construction

The bucket sketches BR and BS of relations R and S are built offline as
described in Algorithm 1. The gray lines (2, 7, 14) are optional and must be
executed only if CtrFreq is used in BR. Upon creation of a bucket sketch, all
fields are initialized to zero. To populate BS , iterate over S (line 3). For each
tuple, find the index corresponding to s.Z and insert the FK value s.F into the
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Algorithm 2

GetMergedSketches(B, Q)

Input: A bucket sketch B,
a query Q, selects from table B is built on

Output: Two merged HLL sketches
1 Let H⌊∪⌋, H⌈∪⌉ be HLLs with m counters set to zero
2 for each bucket ∈ B
3 if IsContained(bucket, Q)
4 for i = 0 to m−1
5 H⌊∪⌋[i] = max

�
H⌊∪⌋[i], bucket .HLL[i]

�

6 if IsIntersected(bucket, Q)
7 for i = 0 to m−1
8 H⌈∪⌉[i] = max

�
H⌈∪⌉[i], bucket .HLL[i]

�

9 return H⌊∪⌋, H⌈∪⌉

HLL. Additionally, the insert frequency is incremented. Line 7 (gray) uses the
temporary hash table created in line 2 to count the frequency of each FK.

The bucket sketch BR for relation R is constructed in the same fashion as
BS . For each tuple in R (line 10), we find the corresponding bucket, insert the
key value r.K into the HLL and increment the insert frequency. In line 14,
BR[idx ].CtrFreq sums the frequencies of the FKs corresponding to r.K values
in this bucket. Note that double counting entries of CtrFreqHT is impossible
since the key attribute values in K are unique.

7.2.1.3 One Bucket Sketch: Estimating Distinct Counts after Selec-
tions

It is not difficult to see that a bucket sketch BT , partitioned by attribute T.G
and with T.J as the HLL attribute, can be used to estimate

D := |πD
J ((σpT

(T )))|,

where πD denotes projection with duplicate removal on T.J and pT is a selection
predicate on T.G. That is, one can estimate the NODV in T.J after a selection
on T.G. To process a selection predicate over multiple buckets in BT , the HLLs
in the buckets must be mergeable [11]. Mergeability is given if two HLLs H1 and
H2 for multisets M1 and M2, respectively, can be used to derive an HLL H∪
such that H∪ = HM1∪M2 , where equality of HLLs means that all their counters
have the same value. As shown in [29], if H1, H2, and H∪ have m counters
each, H∪[i] is found by setting H∪[i] = max(H1[i], H2[i]), where 0 ≤ i ≤ m−1
and H[i] references counter i in H.

We repeatedly apply this merge operation in Algorithm 2. The inputs are a
bucket sketch B and a query Q. Q holds the selection predicate pT from above.
The outputs are the two HLLs H⌊∪⌋ and H⌈∪⌉ created in line 1. Starting in line
2, we loop over the buckets in B and merge H⌊∪⌋ with the HLL of all buckets
contained by predicate pT . Similarly, we mergeH⌈∪⌉ with all buckets intersected
by pT . Finally, H⌊∪⌋ and H⌈∪⌉ are returned. A note on implementation details:
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Algorithm 3

EstimateJoinSize(BR,BS , Q,R, S)

Input: Bucket sketches BR, BS ,
a join query Q,
key table R and FK table S

Output: Join size estimate
1 HR

⌊∪⌋, H
R
⌈∪⌉ = GetMergedSketches(BR, Q)

2 HS
⌊∪⌋, H

S
⌈∪⌉ = GetMergedSketches(BS , Q)

3
4 // Estimate average multiplicity bα, details in Sec. 7.2.2
5 if PredOnKeyTableOnly(Q)
6 if not CtrFreqUsed(BR)
7 bα = Formula 7.3(S)
8 else
9 bα = Formula 7.4(BR)

10 else if PredOnBothTables(Q) ∨
PredOnFKTableOnly(Q)

11 bα = Formula 7.5(BS)
12 else // No selection predicates
13 return |S|
14

15 // Estimate intersection size bI
16 bI =

q
|HR

⌊∪⌋ ∩HS
⌊∪⌋| · |HR

⌈∪⌉ ∩HS
⌈∪⌉|

17

18 return bα · bI // Return join size estimate

(1) Instead of looping over all buckets, the relevant buckets can be extracted
from the query range. (2) Intel’s SIMD instruction mm max pu8 merges 8 HLL
counters at once.

Ignoring HLL estimation errors, |H⌊∪⌋|, i.e., the NODV as estimated by
H⌊∪⌋, is a lower bound for D. Equivalently, |H⌈∪⌉| is an upper bound for D.
Our estimate is the geometric mean

bD :=
q
|H⌊∪⌋| · |H⌈∪⌉|, (7.1)

since the geometric mean of |H⌊∪⌋| and |H⌈∪⌉| minimizes the factor by which
we under- or overestimate at most.

7.2.1.4 Two Bucket Sketches: Estimating Join Sizes after Selections

In this section, we outline how to estimate the join size

J := |σpR
(R) ▷◁pJ

σpS
(S)|,

where the relations and predicates are defined as in Table 7.1. Figure 7.2 gives
an overview. First, two bucket sketches BR and BS are used to process the
range predicates, then average multiplicity and intersection size for the filtered
relations are estimated as bα and bI, respectively. Finally, the join size estimate
is bJ := bα · bI.
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The high-level procedure to estimate a join size is shown in Algorithm 3.
Here, we also consider the case where not both relations are filtered before
joining. The inputs to Algorithm 3 are bucket sketches BR, BS , and a join
query Q, which also specifies the range predicates. The relations R and S are
handed in for ease of notation. First, the merged HLL sketches HR

⌊∪⌋, H
R
⌈∪⌉ and

HS
⌊∪⌋, H

S
⌈∪⌉ are computed by calling Algorithm 2. Then, the average multiplicity

is estimated, which Section 7.2.2 discusses in detail. The estimate depends on
which of the relations R and S are filtered. If only the key table R is filtered
(line 5) and BR has no CtrFreq counters, then bα is the result of Formula (7.3),
which only relies on rudimentary table and column statistics of the FK table S.
If the optional CtrFreq variable in the buckets of BR is used, then Formula (7.4)
determines bα. In the two cases where either both tables or only the FK table is
filtered (line 10), bα is determined by Formula (7.5). If no relation is filtered, the
join size (estimate) is |S|, since in a key/FK join without selection predicates
each FK finds one matching key and, hence, the join size is always the size of
the FK table.

Next, an estimate for the intersection size

I = |πK(σpR
(R)) ∩ πF (σpS

(S))|

is derived. Let HM1 , HM2 be HLLs for multisets M1,M2. We denote by
|HM1

∩HM2
| an estimate for |M1∩M2|. To compute |HM1

∩ HM2
|, recall the

methods from Chapter 6, in particular Section 6.2.2. Irrespective of the method,
in line 16 in Algorithm 3, we derive the intersection size estimate bI from the
four merged HLL sketches HR

⌊∪⌋, H
R
⌈∪⌉, HS

⌊∪⌋, and HS
⌈∪⌉ computed in lines 1

and 2. Ignoring the estimation errors, |HR
⌊∪⌋∩HS

⌊∪⌋| is a lower bound for I since
only the two merged HLLs from buckets contained by pR and pS are intersected.
|HR

⌈∪⌉∩HS
⌈∪⌉| is an upper bound for I since the two merged HLLs from all buck-

ets intersected by pR and pS are intersected. Their geometric mean minimizes
the multiplicative factor by which we under- or overestimate at most and hence

bI :=
q

|HR
⌊∪⌋ ∩HS

⌊∪⌋| · |HR
⌈∪⌉ ∩HS

⌈∪⌉|. (7.2)

Finally, we have bJ = bα · bI for the estimated join size, which is returned in line
18.

7.2.2 Average Multiplicity Estimation

In this section, we present formulas to derive bα, an estimate for the average
multiplicity α. We consider the queries |σpR

(R) ▷◁ S|, |R ▷◁ σpS
(S)|, and

|σpR
(R) ▷◁ σpS

(S)|.

7.2.2.1 Case |σpR
(R) ▷◁R.K=S.F S|

In relational algebra, we have that |R ▷◁R.K=S.F S| = |S|, since each tuple in
the FK table S finds one match in the key table R. It follows that the average
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multiplicity is |S|
|πD

S.F (S)| . For |σpR
(R) ▷◁R.K=S.F S|, our first estimate builds

on the assumption that, on average, pR does not change α. We call this the
constant average multiplicity assumption (CAMA) and it induces the estimate

bαBase :=
|S|

|πD
S.F (S)| , (7.3)

where S.F denotes the FK join attribute. The accuracy of the estimate bαBase

depends on the relationship between the average multiplicity α and the predicate
pR. This relationship is influenced by the correlation between the join attribute
R.K and the attribute pR is applied to, and the degree of skew in the FK
attribute S.F .

We can discard CAMA if the bucket sketch BR provides the optional CtrFreq
field. Let PR be the set of indices of buckets in BR intersected by the selection
predicate pR. Then, we obtain an estimate as

bαCtrFreq :=
P

i∈PR
BR[i].CtrFreqP

i∈PR
BR[i].Freq . (7.4)

The denominator approximates |πD
S.F (σ(R)pR ▷◁ S)| well since each key R.K

is inserted into BR only once. Only in cases where many keys in R.K have no
matching FK, it is likely to obtain an underestimate.

7.2.2.2 Case |R ▷◁pJ
σpS

(S)|
We derive the average multiplicity based on properties of referential integrity.
Recall that, for key/foreign-key joins, we have that |R▷◁pJ

S|=|S|. Since pS does
not harm referential integrity, all values in σpS

(S) still find one match in R. It
follows |R▷◁pJ

σpS
(S)|=|σpS

(S)|.
Clearly, we could stop here and estimate the selectivity of pS . However, we

show that an accurate estimate for α can be derived, and this estimate will be
used in Section 7.2.2.3.

From the above discussion it follows that the average multiplicity is α =
|R▷◁pJ

σpS
(S)|

|πK(R)∩πF (σpS
(S))| =

|σpS
(S)|

|πD
F (σpS

(S))| . Let PS be the set of indices of buckets in BS

intersected by the selection predicate pS . The estimate bαFK is simply

bαFK :=
\|σpS

(S)|
|cπD

F (σpS
(S))|

:=
P

i∈PS
BS [i].Freq

|HS
⌈∪⌉|

. (7.5)

The denominator is derived by merging HLLs in BS . For the numerator, instead
of using Freq , any single relation cardinality estimator is applicable. Perfect
estimates for |σpS

(S)| and |πD
F (σpS

(S))| always yield bα = α.

7.2.2.3 Case |σpR
(R) ▷◁pJ

σpS
(S)|

We propose to use Formula (7.5). The estimates are accurate if CAMA holds.
We show the accuracy of this approach in the evaluation, in particular in Sec-
tion 7.3.2.1. To illustrate CAMA, recall the example from the introduction. We
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had α=2.5 and I=2, resulting in a true join size of 5. With accurate inputs, we
have αFK= 6

3=2, which yields the estimate αFK ·I = 2·2 = 4, not far off the true
join size. For comparison, the independence assumption as in System R [78]
yields sB≥3·s4≤Z≤10·|R▷◁S| = 2

5 · 69 ·9 = 2.4, a significant underestimate.

7.2.3 Error Analysis

We present 95% confidence intervals for D and I based on their estimates bD
and bI from Eq. (7.1) and (7.2) respectively.

We start with the analysis of the error for a single bucket sketch as used for bD
subject to predicate pT for table T∈{R,S}. For the merged HLL from buckets
contained by pT , i.e., H⌊∪⌋, only the error of HLL applies. HLLs estimation
errors are normaly distributed [32], which implies that a 95% confidence interval
is bounded by ϵHLL:=1.96·SEHLL, where SEHLL:=

1.04√
m

is the standard error of

an HLL with m counters [32]. It follows that a 95% confidence interval for the
true NODV in the contained buckets is

|H⌊∪⌋| ± ϵHLL.

Let δ=|H⌈∪⌉|−|H⌊∪⌋| denote the estimated NODV in the intersected but not
contained buckets. In the worst cases, all or none of the δ distinct values are
covered by pT . The lower bound estimate reflects the case that none of the
δ distinct values is covered by pT and is given by |H⌊∪⌋|−ϵHLL, but at least
one, since we assume no query has an empty result. The upper bound estimate
reflects the case that all of the δ distinct values are covered by pT and is given
by |H⌈∪⌉|+ϵHLL.

The regret [43], the (expected) worst case multiplicative error, is minimized
by their geometric mean

q
(|H⌊∪⌋|− ϵHLL) · (|H⌈∪⌉|+ ϵHLL)

which we approximate by bD, computed as in Eq. (7.1). Finally, observe the
following regarding the geometric mean of two numbers a, b:

√
a · b ·∆ = b ⇐⇒ ∆ =

q
b
a (7.6)

and ∆−1 satisfies
√
a · b ·∆−1 = a.

With Eq. (7.6), we have with 95% confidence

D ∈
"
bD
s

|H⌊∪⌋|
|H⌈∪⌉|

− ϵHLL, bD
s

|H⌈∪⌉|
|H⌊∪⌋|

+ ϵHLL

#
(7.7)

That is, D deviates from bD by a factor of at most
q

|H⌈∪⌉|
|H⌊∪⌋|+ϵHLL. This

factor can be handed to the query optimizer as a reliability measure.
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Adding/subtracting ϵHLL in the above interval bounds is justified by the
following inequality, where a, b are HLL estimates of value d:

√
a · b ·∆ = d ⇐⇒ ∆ = d√

a·b ≤ b+ϵHLL√
a·b ≤

q
b
a+ϵHLL,

where the first inequality holds true with 95% confidence in the worst case and
the second inequality holds true if

√
a · b ≥ 1.

We now analyze the error of bI subject to two predicates pR and pS using
two bucket sketches BR and BS . The rationale is similar as before. However, for
HLL intersection using BML we do not know the standard deviation or a similar
metric. Note that [68] derive error bounds from a function that approximates
the relationship between counters in the HLL sketches, but those bounds do not
match our observations. We present 95% predictive confidence intervals [16],
computed as described in Section 7.3.2.2. The lower and upper error bound of
this interval are ϵ−BML := −0.75 · k and ϵ+BML := 0.53 · k respectively, where k
is the smaller NODV estimate, as obtained from the two merged HLLs to be
intersected.

Then, with 95% confidence, the true intersection of the contained buckets in
BR and BS lies in

h���HR
⌊∪⌋∩HS

⌊∪⌋

���+ ϵ−BML,
���HR

⌊∪⌋∩HS
⌊∪⌋

���+ ϵ+BML

i
.

However, the lower bound is at least one, since we assume no query result is
empty. Note that ϵ−BML is a negative number. Further note that |HR

⌊∪⌋∩HS
⌊∪⌋|+

ϵ−BML, but at least one, is also the lower bound estimate for I.
The upper bound estimate is the intersection size estimate of the merged

HLLs from intersected buckets plus the upper error bound

���HR
⌈∪⌉ ∩HS

⌈∪⌉

���+ ϵ+BML

Again, the regret is minimized [43] by the geometric mean

r�
|HR

⌊∪⌋ ∩HS
⌊∪⌋|+ ϵ−BML

�
·
�
|HR

⌈∪⌉ ∩HS
⌈∪⌉|+ ϵ+BML

�

which we approximate by bI, computed as in Eq. (7.2). Hence, for an estimate
bI, with 95% confidence

I ∈
h
bI ·∆bI + ϵ−BML,

bI ·∆−1
bI + ϵ+BML

i
, (7.8)

where ∆bI :=

r
|HR

⌈∪⌉∩HS
⌈∪⌉|

|HR
⌊∪⌋∩HS

⌊∪⌋|
follows from Eq. (7.6).
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7.2.4 Extensions and Limitations

An extension to multiple predicates on one column, e.g. A≤c2∧A̸=c3∨A>c3 is
straightforward. Still, the merged HLL sketches H⌊∪⌋ and H⌈∪⌉, corresponding
to the contained and intersected buckets, are found via Algorithm 2. All other
steps remain unchanged.

An extension to multi-column predicates is feasible for disjunctions, e.g.,
A≥ c1 ∨ B≤c2. Note that traditional histograms do not support this. In our
method, each predicate is handed to Algorithm 2 separately. Then, the outputs
HA

⌊∪⌋ andHB
⌊∪⌋ are merged. SimilarlyHA

⌈∪⌉ andHB
⌈∪⌉ are merged. All other steps

remain unchanged. For the average multiplicity estimate, we recommend αBase.

Conjunctive predicates on different columns require an HLL representation
after intersect operations. Zhou et al. [97] present an approach. All other steps
are the same as for disjunctions.

Negated predicates can be handled well, e.g., a negated range predicate is
equivalent to the disjunction of two ranges.

Bucket sketches are designed for the very common key/foreign-key joins.
For many-to-many joins between tables R and S, intersection size estimation I
remains the same. For average multiplicity, one obtains two estimates bαR

FK and
bαS
FK via Eq. (7.5), one estimate for each bucket sketch. On average, each join

value occurs bαR
FK times in R and bαS

FK in S. The join size estimate is bI·bαR
FK ·bαS

FK .
Implicitly, the estimate for many-to-many joins assumes uniformity of the join
columns.

To avoid CAMA, one must explicitly count multiplicities, e.g. via AKMV
sketches [17]. To use AKMV sketches, essentially no change has to be made to
the bucket sketch, except for the replacement of the sketch. For intersection
size estimation, one then uses the AKMV technique, which we presented in
Section 6.1. This also addresses the uniformity assumption for many-to-many
joins. However, the memory consumption for AKMV sketches is larger.

Bucket sketches are insert-updateable. For a tuple (g, j), find the bucket
corresponding to g, insert j into the HLL and increment the Freq field. HLLs do
not support deletions and, hence, bucket sketches are not delete-updateable. [68]
describe how to extend HLLs to support a limited number of deletions.

For a non-numerical partitioning attribute, bucket indexing is adjusted ac-
cordingly, e.g., via binary search over bucket boundaries or via dictionary encod-
ing as in [94]. For small domains, one can build one bucket per category/distinct
value. The latter simplifies estimation as the buckets contained and intersected
by some predicate are the same.

7.3 Evaluation

In our evaluation, we use the data sets (1) TPC-H with a scale factor of 1,
(2) data sets generated as described in Section 7.3.1, as well as (3) the two
real-world data sets Instacart [8], and the IMDb [55].
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All queries in this evaluation follow the structure of the following two types
of queries: σpR

(R)▷◁pJ
S and σpR

(R)▷◁pJ
σpS

(S), where pJ is a fixed equality
join predicate, and pR and pS are range selection predicates, e.g., c1≤R.B≤c2
for attribute R.B. c1 and c2 are generated by randomly picking two values from
the domain of B. The smaller value is assigned to c1 and the larger value to c2.
Thus, note that all selection predicates in this evaluation are range predicates.
We ran 1,000 queries (at least) for all results we present. Note that we do
not consider R▷◁pJ

σpS
(S) queries since their result size can be estimated using

single table cardinality estimation.
The q-error, defined as max

�
e
v ,

v
e

�
for an estimate e of value v, is an error

metric that links directly to plan quality [66] and is hence a de facto standard
in query optimization. However, to illustrate under- and overestimates, we use
the symmetric relative difference, defined as e−v

min(v,e) . Taking the absolute of

this error and adding one, yields the q-error.
For our approach we use bucket sketches with 128 buckets. The HLL of

each bucket has 8 counters. A join size estimate is always bα·bI. The bucket
sketches use Microsoft’s Binomial Mean Lookup estimator [68], which we know
from Section 6.2.2, to estimate intersection sizes. The average multiplicity es-
timate bα depends on the query. In case of σpR

(R)▷◁pJ
S, we give the join size

estimates using bαBase from Formula (7.3) and bαCtrFreq from Formula (7.4). In
case of σpR

(R)▷◁pJ
σpS

(S), we use bαFK from Formula (7.5) as the average multi-
plicity estimate and give two join size estimates: one where the numerator and
denominator in Formula (7.5) are the true values (Our approach ideal), and a
second where a bucket sketch derives estimates (Our approach real).

We use the following estimators for comparison: (1) Bernoulli sampling,
(2) correlated sampling [86], (3) two-level sampling [23], (4) System R [78], and,
(5) Local deep learning [93] trained with 100k queries and their recommended
architecture. For the sampling-based estimators, the (expected) sample size is
0.1% the table size, but at least 100 tuples. A description of all these estimators
is given in the related work section, Section 4.

7.3.1 Data Generation

For the interested reader, we describe the creation process of our generated data
sets. Note that our evaluation additionally uses TPC-H and two real-world data
sets.

We generated 36 data sets. Each with key table R and FK table S, defined
as in Table 7.1. We always have |S|=3M . The key table size varies, {|R| ∈
1k, 10k, 100k, 1M}. Note that |R| determines the domain of the FK attribute
S.F .

The key attribute R.K simply contains the values 1, . . . , |R|. The values of
R.B are sampled uniformly from [0, |R|]. Equivalently, the values of the S.Z
are sampled uniformly from [0, |S|]. The skewed FK attribute values in S.F are
generated as follows: First, each key from R.K is inserted once in the first |R|
slots of S.F . If |R|=1M , the remaining S.F values are inserted following a Zipf
distribution Z(Θ, 1M), where we use Θ ∈ {0, 0.5, 1}. Each v ∈ {1, . . . , |R|} is
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added zv·(|S|− |R|) times to S.F , where zv denotes the relative frequency of v
in the aforementioned distribution Z(Θ, 1M).

For |R| ∈ {1k, 10k, 100k}, instead of using Z(Θ, |R|), we derive a distribution
from Z(Θ, 1M). The motivation is improved comparability by having Θ have
the same effect on the join size for different |R|. In particular, for a selection
predicate q ≡ 1 ≤ R.K ≤ x·|R| with x ∈ [0, 1], we want that |σq(R)▷◁pJ

S| is the
same for all |R| we use. However, this is not the case for Zipf distributions with
different domain sizes. Hence, for |R| ∈ {1k, 10k, 100k}, the relative frequency
of 1 is the sum of the first 1M

|R| relative frequencies zv, the relative frequency of

2 is the sum of the next 1M
|R| relative frequencies zv, and so on.

The relationship between attributes in a set A is controlled by a correlation
parameter ρ. Instead of Pearson correlation coefficient, which measures linear
correlation only, our ρ means that all attributes in A are first sorted, and then
an expected fraction of 1−ρ in each attribute is randomly shuffled. For ρ, we
use 0.2, 0.5, and 0.8.

Combining each |R| ∈ {1k, 10k, 100k, 1M} with each Θ ∈ {0, 0.5, 1} and
each ρ ∈ {0.2, 0.5, 0.8} gives 36 different data sets.

7.3.2 Accuracy Join Size Estimation

Figure 7.3 shows the accuracy of our approach and the competing estima-
tors for the third-party data sets TPC-H, Instacart and IMDb. In addition,
tables and 7.2 and 7.3 show the corresponding worst errors, i.e., the most neg-
ative and most positive p-error values. In Figure 7.3a, we look at the join
σps nationkey

(Supplier)▷◁σpl orderkey
(Lineitem) from TPC-H. Lineitem is a fact table

with around 6M entries and Supplier a smaller dimension table with 10k en-
tries. Before joining, each relation is filtered. All sampling methods do mostly
well. However, as the 95% quantile shows, underestimates by a large factor
occur. While sampling is very versatile, a major problem is that one may not
find any, or only very few, join tuples after selective predicates were applied
to the samples. This is especially reflected in the worst case errors: The most
negative/positive errors for Bernoulli sampling are -783825 / 12.27369. For
correlated sampling we have -1835033 / 4.41. For two-level sampling they are
-1369075 / 8.84. Note that the smallest errors all occur in cases where no sam-
ple tuples qualify, in which case the default estimate of 0.5 is returned. This
means that there was a query where no sample tuples for correlated sampling
qualified but the actual join size was larger than 900k! The System R approach
underestimates by a factor of ≥ 10 in more than 25% of the queries. The most
negative/positive errors are -186482 / -0.08. The local deep learning estimator
avoids heavy underestimates, but tends to overestimate. This is also reflected
by the most negative error of -30 and the most positive error of 99.21. Our
approach gives good estimates, with the median error around 0 in the idealistic
case, and slightly above 0, but below 1, in the realistic case. The most nega-
tive/positive errors are -260.84 / 1.38 for the idealistic approach and -114.04 /
24.02 for the realistic approach.
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(a) TPC-H:
σps nationkey (Supplier) ▷◁ σpl orderkey (Lineitem)
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(b) TPC-H:
σpp size (Parts) ▷◁ σpl orderkey (Lineitem)
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(c) Instacart:
σphour of day (Orders) ▷◁

σpproduct id (Orders Products)
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(d) IMDb from Join Order Benchmark:
σpproduction year (Title) ▷◁

σpcompany id (Movie Companies)

Figure 7.3: Errors for different estimators in the third-party data sets. The
whiskers show the 5% and 95% percentile.

The results for σpp size
(Parts) ▷◁ σpl orderkey

(Lineitem) are shown in Figure
7.3b. Bernoulli Sampling performs badly, with a huge median estimation error,
since in many cases no join tuples are found in the samples. The most neg-
ative/positive errors for Bernoulli sampling are -4414351 / 42.16. Correlated
sampling performs best, but the sample size can be significantly larger than ex-
pected, as it must sample all tuples with certain join attribute values. The most
negative/positive errors are -8683 / 1.25. For the other estimators, the most
negative/positive errors are: -827145 / 15.50 for two-level sampling, -91407 /
-0.08 for System R, -97/29.03 for local deep learning, -175.50 / 46.65 for our
approach ideal, and 1065.27 /28.58 for our approach real.

Figure 7.3c shows the largest join in this evaluation, coming from the real-
world Instacart data set: σphour of day

(Orders)▷◁σpproduct id
(Orders Products). Or-
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ders contains around 3M entries, and Orders Products is a fact table with
>32M entries. System R underestimates by a factor of 10 for more than 25%
of the queries. The local deep learning estimator appears to be biased to-
wards overestimates. Bernoulli sampling fails in many cases. Correlated and
two-level sampling perform great. Our approach has very low errors as well.
Also note the the most negative and most positive errors in Table 7.3. Fig-
ure 7.3d shows the results for the IMDb data set with query σpproduction year

(Title)
▷◁σpcompany id

(Movie Companies), the sampling-based estimators suffer from heavy
underestimates. Note that Bernoulli sampling underestimates by a factor of
≥ 1′000 in more than 50% of the queries, two-level sampling still in 5% of the
queries. Our approach overestimates, the median error is +2.02 for the idealistic
case and +2.08 for the realistic case.

Supplier ▷◁ Lineitem Parts ▷◁ Lineitem
Estimator most neg. most pos. most neg. most pos.

Bernoulli Sampling -783825 12.27 -4414351 42.17
Correlated Sampling -1835033 4.42 -8683 1.26
Two-Level Sampling -1369075 8.85 -827145 15.5

System R -186482 -0.08 -91407 -0.08
Deep Learning -30 99.21 -97 29.03

Our approach ideal -260.84 1.38 -175.5 46.65
Our approach real -114.05 24.02 -1065.27 28.59

Table 7.2: Most negative/positive errors for the TPC-H queries from Figure
7.3.

Instacart IMDb
Estimator most neg. most pos. most neg. most pos.

Bernoulli Sampling -10890095 35.05 -1973979 416.21
Correlated Sampling -3011 2.43 -7821 16.86
Two-Level Sampling -129121 2.02 -18415 8.66

System R -2316152 12.18 -11595 20490.92
Deep Learning -1123 27.65 -137 4028.37

Our approach ideal -565.16 239.36 -269.81 946.54
Our approach real -4256.61 221.46 -602.78 1124.2

Table 7.3: Most negative/positive errors for Instacart and IMDb queries from
Figure 7.3.

For both Figure 7.3c and Figure 7.3d also note the corresponding worst
errors in Table 7.3.

Figure 7.4 and Figure 7.5 show the errors for queries σpR
(R)▷◁pJ

σpS
(S)

over the generated data sets. Recall that the generation of the data sets is de-
scribed in Section 7.3.1. Both figures show results for data sets with different
degrees of skew in the foreign key attribute, and different degrees of correla-
tion among the attributes. In Figure 7.4, the key table R contains only 1,000
tuples. Bernoulli Sampling produces large errors. Correlated sampling and



114 CHAPTER 7. TWO-WAY JOINS

Skew: 1

Correlation: 0.2

Skew: 1

Correlation: 0.5

Skew: 1

Correlation: 0.8

Skew: 0.5

Correlation: 0.2

Skew: 0.5

Correlation: 0.5

Skew: 0.5

Correlation: 0.8

Skew: 0

Correlation: 0.2

Skew: 0

Correlation: 0.5

Skew: 0

Correlation: 0.8

Ber
no

ul
li 
Sam

pl
in
g

C
or

re
la
te

d 
Sam

pl
in
g

Tw
o-

Le
ve

l S
am

pl
in
g

Sys
te

m
 R

O
ur

 a
pp

ro
ac

h 
id
ea

l

O
ur

 a
pp

ro
ac

h 
re

al

Ber
no

ul
li 
Sam

pl
in
g

C
or

re
la
te

d 
Sam

pl
in
g

Tw
o-

Le
ve

l S
am

pl
in
g

Sys
te

m
 R

O
ur

 a
pp

ro
ac

h 
id
ea

l

O
ur

 a
pp

ro
ac

h 
re

al

Ber
no

ul
li 
Sam

pl
in
g

C
or

re
la
te

d 
Sam

pl
in
g

Tw
o-

Le
ve

l S
am

pl
in
g

Sys
te

m
 R

O
ur

 a
pp

ro
ac

h 
id
ea

l

O
ur

 a
pp

ro
ac

h 
re

al

1e+01
0e+00

-1e+01

-1e+03

-1e+05

1e+01
0e+00

-1e+01

-1e+03

-1e+05

1e+01
0e+00

-1e+01

-1e+03

-1e+05

E
rr

o
r 

(Z
e
ro

 i
s
 b

e
s
t)

Figure 7.4: Errors for different estimators for generated data. The whiskers
show the 5% and 95% percentile. Key table is is 1k. Foreign key table size is
3M.

two-level sampling work great with underestimates slightly more severe than
overestimates. Our approach works just as good but with a slight tendency
to overestimate. System R performs surprisingly well. Looking at a 100 times
bigger key table, Figure 7.5, we see all sampling-based estimators perform sig-
nificantly worse, especially when skew and correlation is high. Our approach
is less vulnerable to large relations, as a bucket sketch is always built on the
complete relation.
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Figure 7.5: Errors for different estimators for generated data. The whiskers
show the 5% and 95% percentile. Key table is is 1k. Foreign key table size is
3M.

Figure 7.6 shows two plots for the case when only the key table is filtered.
Our approach with bαBase is shown as Our approach Base, and with bαCtrFreq

as Our approach CtrFreq . Again the deep learning estimator seems to struggle
with both real-world data sets, Instacart and IMDb. All other estimators give
good estimates for most of the queries. However, Bernoulli sampling and System
R have large estimation errors for 5% of the queries. Comparing the errors of
System R and our approach with bαBase, the results indicate that CAMA is more
realistic than the independence assumption.
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(a) Instacart:
σphour of day (Orders) ▷◁ Orders Products
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(b) IMDb from Join Order Benchmark:
σpproduction year (Title) ▷◁ Movie Companies

Figure 7.6: Errors for different estimators in the third-party data sets. The
whiskers show the 5% and 95% percentile.

Instacart IMDb
Estimator most neg. most pos. most neg. most pos.

Bernoulli Sampling -5621523 18.49 -3485091 25.8
Correlated Sampling -0.31 0.41 -909 1.77
Two-Level Sampling -8.05 1.63 -28213 1.34

System R -2738581 15.21 -17978 12512.8
Deep Learning -712 - 1.91 -47 16814.19

Our approach Base -1.28 1.86 -108.42 3.76
Our approach Ctr -1.00 -0.33 -211.07 1.54

Table 7.4: Most negative/positive errors for the boxplots from Figure 7.6.

7.3.2.1 Accuracy Average Multiplicity Estimation

This section analyses the accuracy of average multiplicity estimation.
We begin with the estimator bαBase for queries of the form |σpR

(R) ▷◁R.K=S.F

S|. For different degrees of correlation and skew in the generated data sets, Fig-
ure 7.7 illustrates how well this formula predicts the average multiplicity in the
selectivity of pR. In the plot, each black cross denotes the average multiplicity
α as observed after applying one selection predicate pR with selectivity as in-
dicated by the x-axis. The blue line denotes the estimated average multiplicity
bαBase. The first row of the plots shows that correlation does not affect the
quality of the estimate if there is no skew. In that case, we have bαBase = α.
The reason is that it does not matter which primary keys are selected, since all
R.K values match an equal number of FK values in S.F .

Similarly, as shown in the lower left corner, high skew has a low impact on
the quality of the estimate if the correlation between the join attribute R.K and
the selection attribute is low, unless the selectivity of pR is close to zero. Low
correlation means that those values in R.K with many matching foreign keys
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(a) R table size: 1M;
α before selection pR: 3

Skew: 1

Correlation: 0.2

Skew: 1

Correlation: 0.5

Skew: 1

Correlation: 0.8

Skew: 0.5

Correlation: 0.2

Skew: 0.5

Correlation: 0.5

Skew: 0.5

Correlation: 0.8

Skew: 0

Correlation: 0.2

Skew: 0

Correlation: 0.5

Skew: 0

Correlation: 0.8

0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

1e+03

1e+04

1e+05

1e+03

1e+04

1e+05

1e+03

1e+04

1e+05

Selectivity of selection predicate pR

A
v
e

ra
g

e
 M

u
lt
ip

lic
it
y

(b) R table size: 1,000;
α before selection pR: 3,000

Figure 7.7: Each plot compares observed average multiplicities α (black
crosses) with the estimate bαBase(blue line) as by Formula (7.3). Each plot
refers to a different degree of skew in the foreign keys S.F and a different degree
of correlation between the join predicate R.K and the selection predicate R.B.

in S.F are independent of the attribute values to which pR is applied. Hence,
any selection, as chosen by pR, yields a similar average multiplicity. Selectivities
close to zero impose a problem. Here it might be that only a single tuple of R
is selected and its multiplicity with S.F may be either very large or low. As the
selectivity of pR approaches 1, the predicate loses its effect and the observed
average multiplicities converge to the estimate bαBase.

The estimates become inaccurate for highly skewed values in S.F and high
correlation between R.K and the selection attribute in pR, as shown in the plots
in the lower right corner of Figure 7.7. In addition, in these cases the estimates
worsen as the size of R is reduced from one million to one thousand, cf. Figures
7.7a and 7.7b, since in a small relation a value in R.K finds, on average, much
more matches in S.F .

As expected, the estimates can be improved with the estimator bαCtrFreq from
page 106, cf. Figure 7.8. Each boxplot shows the p-error distribution for one
correlation and skew combination. Note that the estimates are very accurate.

For queries of the form |R ▷◁pJ
σpS

(S)| and |σpR
(R) ▷◁pJ

σpS
(S)|, we have

presented the estimator bαFK . Recall that, for queries of the form |R ▷◁pJ

σpS
(S)|, perfect estimates for |σpS

(S)| and |πD
Y (σpS

(S))| result in bαFK = α.
Indeed this can be empirically observed, cf. Figure 7.9a. For comparison, cf.
Figure 7.9b, we show that an estimate that relies only on the selectivity of pS
gives good estimates only if the data is not too skewed and correlated. The two
blue lines each show a fitted curve through the observed α values. For no skew
and low correlation, there clearly exists a mapping between the selectivity of pS
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Figure 7.8: Distribution of errors between true and estimated average multi-
plicity as by Formula (7.4). Each box plot corresponds to one skew and cor-
relation combination from Figure 7.7 and is computed over 1,000 queries. The
whiskers show the 5% and 95% percentile.
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σpS (S)|, we observe bαFK = α for ac-
curate inputs to Formula (7.5). For
all other correlation and skew combi-
nations the plot looks the same.
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(b) α is not a function of the selectivity
of pS if correlation and skew is high.

Figure 7.9: R table size is 1M. S table size is 3M. Average multiplicity before
pS is 3.

and α. However, for high skew and high correlation, one cannot predict α from
the selectivity of pS .

Finally, we confirm that the above observations for bαFK and bαCtrFreq hold
in the real-world data sets Instacart and IMDb. Figure 7.10 shows the errors
for average multiplicity estimation. Figure 7.10a refers to the queries from Fig-
ure 7.3c and shows a scatter plot with observed average multiplicities on the
x-axis and estimates as produced by Formula 7.5, bαFK , on the y-axis. Points
above the diagonal blue line represent overestimates, points below represent un-
derestimates. The most negative/positive error is −11.40/0.59. Figure 7.10b
refers to the queries σpproduction year

(Title) ▷◁ Movie Companies. The estimates on
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Figure 7.10: Scatter plot for observed average multiplicities (x-axis) and esti-
mates (y-axis).

the y-axis are produced by Formula 7.4, i.e., bαCtrFreq . The most negative/posi-
tive error is −0.09/0.53. In addition, note that most observations are clustered
around the naive estimate bαBase=2.4.

7.3.2.2 Confidence interval for BML

In this section, we present a 95% predictive confidence interval [16] for HLL
intersection using BML. We use the naive method and the asymmetric extension
described in their appendix [16].

For sets K and F , we generated all combinations of |K|, |F |∈{50, 102, 103,
104, 105} and |K∩F |∈{.001, .005, .01, .02, .1, .5, .7, .9}·min(|K|, |F |). We con-
sider only cases where |K∩F |≥10. For each combination, we built 1,000 HLL
pairs HLLK ,HLLF , each pair with a different hash function.

Let ϵBML:= |HLLK∩HLLF |− |K∩F | be the signed residual [16]. Further,
let k=min(|K|, |F |) ≈ min(|HLLK | , |HLLF |) be the largest possible intersection
size. In Table 7.5 we report the lower bound ϵ(k)−BML and upper bound ϵ(k)+BML

of the 95% predictive confidence interval [16] for different k. Clearly, the width of
the interval depends on k. However, dividing the bounds by k yields normalized
interval bounds that remain approximately stable for different k. Hence, we
average and set ϵ−BML:=− 0.75·k and ϵ+BML:=0.53·k. Finally, the 95% predictive

confidence interval is |K∩F | ∈ |HLLK∩HLLF |+
(
ϵ−BML

ϵ+BML

.
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k ϵ(k)−BML ϵ(k)+BML
ϵ(k)−BML

k

ϵ(k)+BML

k

50 -29 25 -0.58 0.50
100 -70 53 -0.70 0.53
1000 -804 579 -0.80 0.57

10,000 -8455 5429 -0.84 0.54
100’000 -81524 53483 -0.81 0.53

Table 7.5: Predictive 95% confidence interval of HLL intersection

|R| Bernoulli Correlated Two-level Learn. Bsketch

1k 24.8 24.8 - 372.7 7.2 - 8.2 ≈ 1700 3.6
10k 24.8 24.8 - 375.2 7.2 - 10.8 ≈ 1700 3.6
100k 24.8 24.8 - 364.7 7.3 - 11.8 ≈ 1700 3.6
1M 32.0 32.0 - 246.0 10.4 - 15.7 ≈ 1700 3.6

Table 7.6: Memory consumption in kilobytes. |R| shows the number of rows in
the key table. The FK table has 3M rows in all cases. Our approach, Bsketch,
is listed last.

7.3.3 Memory Consumption

Table 7.6 shows the memory consumption in kilobytes for the different ap-
proaches. System R is not listed due to its negligible memory costs. For each
estimator, we give the range of observed memory footprints when applied to
the generated data sets. The expected size of the sample of a relation T is
max(0.1%|T |, 100). Each tuple has size 8 bytes: two integers or one pointer.
The memory consumption of Bernoulli sampling is always predictable. For
correlated sampling and two-level sampling, the actual sample size depends
on skew. For two-level sampling the memory consumption stays within tight
bounds. The memory consumption of correlated sampling can vary by a large
factor. For local deep learning, we list the size of the materialized model, which
has a size of around 1.7MB.

We use two bucket sketches with 128 buckets each. Each bucket contains
one 4 byte Freq field and one HLL sketch with 8 counters, each of size 1 byte.
Additionally, the buckets of key table R each contain one CtrFreq field. Hence,
our approach consumes 2·128·(4B+8B)+128·4B=3584B. Sketches summarize
a lot of data with very little memory. For this reason, our approach has a small
memory footprint. Consider this: With 3584 bytes you could only sample 448
8-byte tuples.

7.3.4 Time Consumption

The construction time for a bucket sketch is in O(n). Single-threaded construc-
tion takes 13, 85, 815, and 8’196 microseconds for tables with 1k, 10k, 100k, and
1M entries, respectively. To further improve construction time, multiple bucket
sketches can be constructed in parallel and then merged into one bucket sketch.
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Key table FK table Inc-Exc BML Ertl

1’000 3’000’000 3 31 20
10’000 3’000’000 3 40 38

100’000 3’000’000 4 47 26
1’000’000 3’000’000 4 56 55

Table 7.7: Microseconds to Estimate I from two Bucket Sketches.

n Size |CtrFreqHT|* Mean abs(Error) 95% abs(Error)

8 0.22 KB 4 KB 21.56 72.67
16 0.45 KB 4 KB 11.76 45.07
32 0.90 KB 4 KB 6.93 20.87
64 1.79 KB 4 KB 3.17 9.21

128 3.58 KB 4 KB 2.25 5.47
256 7.17 KB 4 KB 1.68 4.53
512 14.34 KB 4 KB 1.51 4.22

*temporary, only during construction

Table 7.8: Space-Accuracy Tradeoff

Table 7.7 shows the average time it takes to estimate an intersection size
from two bucket sketches in microseconds. The fastest approach is to use
inclusion-exclusion principle (Inc-Exc) as the underlying estimation method.
Most time is consumed by the bucket sketches, which must handle the selection
predicates and output a merged HLL sketch, as described in Section 7.2.1. Bino-
mial mean lookup by Microsoft (BML) and Ertl’s approach (Ertl) have similar
estimation times. For both approaches, the estimation time depends on the size
of the key table, which determines the possible intersection size, i.e, the search
space for an estimate. For comparison, the deep learning approach averages
around 10’000µs=10ms, where we used TensorFlow’s C API.

7.3.5 Space-Accuracy Tradeoff

Table 7.8 shows, for different numbers of buckets, the memory footprint as well
as the absolute mean error and absolute 95% error quantile as observed over the
generated data sets and queries from Figure 7.4. Size denotes the size in KB for
two bucket sketches with n buckets each and with the optional CtrFreq field in
the bucket sketch of the FK table. Note that Size is the memory consumption
for storing a bucket sketch pair after construction. The optional CtrFreq field
requires a temporary hash table CtrFreqHT (see Algorithm 1 line 2) during
construction. CtrFreqHT holds one integer for each distinct join attribute value,
which results in |CtrFreqHT | = 4KB for Figure 7.4. For comparison, for the
join between Supplier and Lineitem from TPC-H |CtrFreqHT | would be 40KB.
Note that the 95% error quantile levels out at n = 128, which motivates this
choice in our evaluation.
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7.3.6 Equi Width vs. other Partitioning Schemes

We discussed the structure of bucket sketches in Section 7.2.1.1, where we de-
fined that bucket sketches partition a partitioning attribute via equi width. Re-
call that, unlike frequency histograms, the bucket of a partition does not count
the number of tuples that fall into that partition. Instead, the number of dis-
tinct values in the HLL attribute is counted, where the HLL attribute is generally
different from the partitioning attribute. Also note that a proper partitioning
scheme requires that all HLL attributes with the same partitioning attribute
value fall into the same bucket.

In this section, we analyze the accuracy of bucket sketches under different
partitioning schemes. In particular, we compare equi width (EqW) to the two
partitioning schemes NoDv0 and NoDv1. NoDv0 and NoDv1 were first defined
in a thesis by a student at the University of Mannheim [77]. The motivation for
these partitioning schemes is to improve estimates for |πD

J ((σpT
(T )))|, where J

is the HLL attribute. NoDv0 and NoDv1 are inspired by equi depth partitioning
from histograms [72]. Recall that, in histograms, equi depth induces buckets
with an equal number of tuples. In the following, we give the definition of the
three bucketing schemes:

• EqW: The partitioning attribute is divided into n buckets of equal width.
The time complexity to construct a bucket sketch is in O(|R|), for some
relation R.

• NoDv0: First, sort a table based on the partitioning attribute. Then, to
construct a bucket sketch, iterate over the table and expand the current
bucket b by all tuples with the next distinct partitioning attribute value
as long as the (approximated) number of distinct HLL attributes values
in b does not exceed a threshold θ. The total number of buckets in the
bucket sketch is known only after construction. The time complexity to
construct a bucket sketch is in O(|R| log(|R|)), for some relation R.

• NoDv1: Same as NoDv0, except for the following difference. Denote by
V all tuples with the next distinct partitioning attribute value. If adding
all tuples V increased the (approximated) number of HLL attributes in
the current bucket beyond 2 · θ, then the tuples V are placed in a separate
bucket.

Recall Section 7.2.1.3, where we have seen how to use bucket sketches for
NODV estimation in filtered relations. In the following, we compare the ac-
curacy of an estimate for |πD

J ((σpT
(T )))| under the above bucketing schemes.

To this end, we repeat an experiment from [77], in which the HLL of each
bucket has 64 counters: Let T be a set of relations, defined as described below.
Each relation T ∈ T has partitioning attribute G and HLL attribute J , and
|T | = 1 million. For each partitioning scheme, we construct histograms with
θ ∈ {50, 100, 200, 500, 1000}, where EqW is given as many buckets as NoDv1
requires. Then, for 10,000 randomly generated range predicates over T .G, we
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obtain an estimate for the NODV in J for each constructed histogram. We
report the estimation errors over all queries and over all relations in Table 7.9.

Looking at Table 7.9, we note that (1) EqW has the lowest average error (2)
NoDv0 and NoDv1 have lower maximum errors than EqW, except for the case
θ = 1000, and (3) there is no observable difference between NoDv0 and NoDv1.
Note that for queries where either the NODV or its estimate is larger than 4θ,
NoDv1 leads to more accurate estimates than EqW and NoDv0 in [77]. Further
note that, given NoDv1 partitioning, [77] proved q-θ-acceptability guarantees for
the estimates of |πD

J ((σpT
(T )))|. As of now, it remains open if these guarantees

can be carried over to intersection size estimation.

type theta avg(q-error) max(q-error)

EqW 50 1.08 110.67
EqW 100 1.19 124.76
EqW 200 1.32 150.60
EqW 500 1.81 199.63
EqW 1000 3.36 118.83

NoDv0 50 1.16 49.37
NoDv0 100 1.29 58.15
NoDv0 200 1.58 81.13
NoDv0 500 2.38 95.21
NoDv0 1000 3.36 118.83
NoDv1 50 1.16 49.37
NoDv1 100 1.29 58.15
NoDv1 200 1.58 81.13
NoDv1 500 2.38 95.21
NoDv1 1000 3.36 118.83

Table 7.9: Average and maximum q-errors under different partitioning
schemes.

We take a closer look at the errors in Table 7.10, where we report the fraction
of estimates whose q-errors fall into some range. Again, for θ = 1000 all par-
titioning schemes lead to the same errors. EqW is the partitioning scheme for
which most estimates have a q-error ≤ 2. Partitioning via NoDv0 and NoDv1
again leads to indistinguishable estimation errors. Notably, only for EqW er-
rors larger 100 are observed and in some cases EqW has the highest fraction
of large estimation errors (≥ 10). For instance, for θ = 100, 0.28% of EqW
estimates have an error ≥ 10, while only 0.19% of NoDv0/NoDv1 estimates
have such high errors. However, for some choices of theta, e.g., θ = 200, this
pattern is reversed. Only 0.49% of EqW estimates have an error ≥ 10, while
0.68% of NoDv0/NoDv1 estimates have such high errors. Favoring simplicity,
we conclude that EqW is a good partitioning scheme for the bucket sketch.

For the interested reader, we detail on T , the set of relations used in the
above experiment. For each combination of the following parameters, T con-
tains three randomly generated tables: For each column G and J , the attribute
value ranges are [0, T/x], where x ∈ {1, 5, 25, 100, 500}. To simulate correla-
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type theta q ≤ 2 2 ≤ q ≤ 5 5 ≤ q ≤ 10 10 ≤ q ≤ 100 q ≥ 100

EqW 50 99.25 0.55 0.11 0.09 0
EqW 100 98.26 1.2 0.27 0.28 0
EqW 200 96.89 2.15 0.47 0.49 0
EqW 500 80.63 16.1 2.14 1.15 0.01
EqW 1000 54.83 27.83 11.28 6.14 0

NoDv0 50 96.93 2.57 0.41 0.09 0
NoDv0 100 93.17 5.88 0.77 0.19 0
NoDv0 200 87.21 9.75 2.37 0.68 0
NoDv0 500 72.83 18.18 5.93 3.08 0
NoDv0 1000 54.83 27.83 11.28 6.14 0
NoDv1 50 96.93 2.57 0.41 0.09 0
NoDv1 100 93.17 5.88 0.77 0.19 0
NoDv1 200 87.21 9.75 2.37 0.68 0
NoDv1 500 72.83 18.18 5.93 3.08 0
NoDv1 1000 54.83 27.83 11.28 6.14 0

Table 7.10: Fraction of q-errors in different error ranges for different parti-
tioning schemes.

tion among attributes, columns are either sorted or not sorted. To introduce
skew, the attribute values of both G and J are generated in [0, 1], and then
scaled up, via an exponential probability distribution function with parameter
λ ∈ {0.1, 0.2, 1, 2, 5}. To avoid that only small values occur as heavy hitters,
which is a property of the exponential distribution, we shift each generated value
vi of attribute X ∈ {G, J} by setting vi = (vi +

z
2 ) mod z, where z = |πD

X(T )|.
This shift applies to either no column or only G or only J (but not both).

7.3.7 Intersection Size Estimation Subject to Predicates

In Section 6, we have introduced and analyzed different intersection size esti-
mation techniques. In this section, we reinvestigate intersection size estimation
to verify that the earlier results still hold when the input relations to the inter-
section are subject to selection predicates.

7.3.7.1 Counters per HLL

First, we compare the three intersection size estimators discussed in Section
6.2.2 using join queries subject to selection predicates over our generated data
sets, where we vary the key table size between 1k, 10k, 100k, and 1M entries.
Table 7.11 shows several error quantiles for Microsoft’s BML [68] and Ertl’s
approach [29] for HLLs with 8 and 64 counters. Note that the 1% quantile
shows the smallest error of the 1% largest underestimates, and the 99% quan-
tile the smallest error of the 1% largest overestimates. The largest estimation
errors occur for large key table sizes. Especially Ertl’s approach tends to un-
derestimate as the range of possible intersection sizes increases. However, the
estimates significantly improve as we increase the number of counters from 8
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Binomial Mean Lookup

Size Counters 1% 10% 25% 50% 75% 90% 99%

1k 8 -18.95 -0.43 -0.12 0.12 0.41 0.73 1.45
1k 64 -63.00 -7.41 0.00 0.23 0.44 0.66 0.97

10k 8 -45.98 -0.74 -0.42 -0.11 0.17 0.47 2.82
10k 64 -44.98 -0.47 -0.21 0.00 0.17 0.34 2.67

100k 8 -41.39 -0.61 -0.07 0.28 0.75 1.44 10.61
100k 64 -41.37 -0.15 0.12 0.36 0.75 1.29 11.25

1M 8 -70.02 0.07 0.44 1.06 2.27 4.57 25.01
1M 64 -67.23 0.25 0.51 1.04 2.20 4.62 24.60

Ertl’s Approach

Size Counters 1% 10% 25% 50% 75% 90% 99%

1k 8 -17.90 -0.23 0.02 0.27 0.61 1.00 1.86
1k 64 -17.69 -0.10 0.08 0.25 0.46 0.69 0.98

10k 8 -49.41 -0.58 -0.29 -0.00 0.30 0.63 2.95
10k 64 -45.19 -0.46 -0.21 0.01 0.17 0.33 2.32

100k 8 -24483 -125.38 -0.26 0.22 0.67 1.27 3.45
100k 64 -8029 -24.82 -0.14 0.15 0.37 0.62 1.29

1M 8 -122222 -10860 -0.28 0.57 1.25 2.21 8.30
1M 64 -43381 -165 0.05 0.37 0.61 0.87 3.16

Table 7.11: Binomial Mean Lookup & Ertl’s Approach: Error quantiles. 1%
shows the largest underestimates. 99% shows the largest overestimates. Size is
the size of the key table, which is also the maximal possible intersection size.

to 64. Looking at Microsoft’s BML, note the much lower worst case under-
estimates. Furthermore, the estimation errors are mostly the same, for HLL
sketches with 8 counters and 64 counters. The reason is that their mapping
from intersection size to the relationship between the counters of two sketches
is independent of the size of the sketches.

For the inclusion-exclusion principle, we only present some numbers. With
an median error around 0 for all key table sizes, the estimator is practically
median unbiased. However the 1% largest underestimation errors are -18.94,
-46.69, -43e3, and -19e4 for key table size 1k, 10k, 100k and 1M.

7.3.7.2 Comparison with AKMV

We rerun the queries from Section 7.3.2 for the Instacart and IMDb dataset.
This time, instead of the join size, we want to estimate the intersection size. We
consider all three HLL estimators from Section 6.2.2 when used with 8 counters
in a bucket sketch of 128 buckets. In addition, we revisit the AKMV intersection
size estimator from Section 6.1. To give AKMV a realistic chance, we give the
AKMV of each bucket space for 32 hash values (16 times the size of an HLL).

Figure 7.11 shows the results when both, the key and the foreign key
table are subject to selection predicates. Figure 7.12 and Figure 7.13 show
the results when only the key table and the foreign key table, respectively,
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Figure 7.11: Pred on Both

are filtered. In the tables, BML denotes Binomial Mean Lookup, IBE denotes
Ertl’s approach, and IEP denotes inclusion-exclusion principle. There is no clear
winner. BML performs well in all cases. In particular, in no case BML is the
worst estimator. In many cases, cf. Tables 7.12 and 7.13, AKMV is the worst
estimator. However, in Figure 7.12b, q-errors > 10 occur more frequently for
estimates of IBE and IEP than for AKMV. The results support BML as a good
estimator for intersection size estimation, also subject to selection predicates.
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Figure 7.12: Pred only on Key Table
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Figure 7.13: Pred only on Foreign Key Table
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7.4 Summary

We presented a technique to estimate the size of a key/foreign-key join of two
filtered relations. Our technique builds on a model that was developed decades
ago [85] and has gained only little attention since. For deriving a join size esti-
mate, we presented a memory-efficient data structure, the bucket sketch, which
we use to estimate the intersection size of two data columns after a selection. In
addition, we presented formulas to estimate the average multiplicity of a join.
Our evaluation takes several state-of-the-art sampling-based join size estimators
into account, yet the performance of our approach is very competitive. In par-
ticular, in our experiments, our estimator is less prone to heavy underestimates.



Chapter 8

Multiple Joins

8.1 Introduction

In this chapter, the problem we solve is to estimate the result cardinality of
queries containing multiple joins. Consider, for instance, a star query in which
the two dimension tables D1, D2 join with the fact table F:

SELECT count(*)

FROM D1 JOIN F ON D1.A = F.A JOIN D2 ON D2.B = F.B

WHERE D1.X < 5 AND D2.Y != "foo";

Our approach to derive estimates relies on two data structures: (1) Well-
established AKMV sketches [18], which we enhance with new operations, in-
cluding operations for two-way joins. As well as (2) the translation grid, a novel
data structure that helps to estimate the size of multi-way joins. To motivate
translation grids, observe that in the above example query, the joint frequency
distribution between F.A and F.B influences the size of the three-way join. Here,
translation grids come into play. Translation grids allow to determine attribute
value pairs that exist, with non-zero frequency, in a joint frequency distribution.
We refer to this existence criterion as joint existence distribution (JED). How-
ever, instead of operating on actual attribute values, translation grids operate
on hashes. In particular, translation grids track pairs of hashes that exist, or
might exist, in a pair of AKMV sketches.

Figure 8.1 gives an overview of our approach for the above example query.
Before processing queries, the translation grid and AKMVs are built for the
fact table F . This is illustrated by the dashed arrows pointing from F to the
translation grid and the AKMVs SF.A, SF.B . After that, to estimate the result
cardinality of the example query, the small dimension tables D1 and D2 are first
filtered and then used to construct AKMVs SD1.A and SD2.B , respectively1.
Then, two-way joins are handled by combining individual AKMV sketches into

1Alternatively, bucket sketches can be used, where buckets contain AKMVs instead of
HLLs.

129
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Translation
Grid 

Figure 8.1: High level overview of our approach.

SD1.A=F.A and SF.B=D2.B . Next, a translation grid processes the combined
AKMV sketches SD1.A=F.A, SF.B=D2.B . Finally, based on the output of the
translation grid, i.e., two new AKMVs S ′

D1.A=F.A, S ′
F.B=D2.B , the query result

cardinality is estimated.

The remainder of this chapter is structured as follows: Section 8.2 presents
new operations for AKMV sketches. In Section 8.3, we present the translation
grid data structure. Then, we evaluate our approach in Section 8.4. Finally,
Section 8.5 summarizes this chapter.

8.2 New Operations for AKMV Sketches

This section extends AKMV sketches by two new estimators and one new op-
eration.

As in Section 6.1, where AKMV sketches have been introduced, this chap-
ter makes use of relations R and T with attribute sets C and D, respec-
tively. As earlier, for an AKMV built on attribute R.C, k denotes the num-
ber of tracked hashes and we always assume the common case k < d, where
d := |R.C|d := |πD

C (R)|. For simplicity, we use only one deterministic global
hash function H : ◦ → [0, 1] that is capable of hashing any input to [0, 1]. As
in [17], all lemmata assume that H is collision-free. Unless explicitly stated
otherwise, all KMVs/AKMVs share the same fixed parameter k.
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For an AKMV SE constructed on some expression E, we define its distinct
ratio as the fraction of tracked hashes, i.e. k/|E|d. We say that an AKMV with
distinct ratio x is an x-AKMV. In Section 8.3.4, we apply the distinct ratio as a
scaling factor. The below lemma shows how to estimate the distinct ratio of SE .

Lemma 8.2.1. Recall that, for some AKMV SE, we denote by pE := |{hi∈HE :
η(hi)>0}| the number of tracked hashes with multiplicity greater zero. An esti-
mate for the distinct ratio of SE is

pE
bdAKMV

.

Proof. We distinguish two cases.

Case 1. SE was built on E. Then, we have that k = pE. In addition, by Beyer
et al. [17] it holds that E[bdAKMV ] = |E|d.

Case 2. E = E1 ◦ E2 and SE = SE1 ◦ SE2 . In this case, some hashes h ∈
HE might have multiplicity ηE(h) = 0, e.g., when ◦ = ∩. Then, pE ≤ k
reflects the reduced number of hashes we track from E. As in the previous case,
E[bdAKMV ] = |E|d by [17].

Note the following relationship between the distinct ratio of an AKMV and
the number of tracked hashes k. Let SR.C be an x-AKMV, i.e., has distinct
ratio x, for attribute C of base table R. Then, k = |HR.C | = x · |R.C|d.

Next, we define a multiplication operation for AKMV sketches. Then, we
show that the result of multiplying two AKMVs SR.C ,ST.D gives an AKMV for
the expression πC(R ▷◁C=D T ), or, equivalently, πD(R ▷◁C=D T ). Recall the
illustration of our approach in Figure 8.1. As we will see, AKMV multiplication
is the operation we need to combine AKMVs such that they approximate two-
way join results.

Definition 8.2.1. Let SR.C ,ST.D be two AKMVs. Their product

SR.C · ST.D

gives a new AKMV SE, where HE contains the k smallest hashes in HR.C∪HT.D

and the multiplicity of each h ∈ HE is ηE(h) = ηR.C(h) · ηT.D(h).

Lemma 8.2.2. Let SE = SR.C · ST.D. Then, SE has, in expectation, the prop-
erties of an AKMV for πC(R ▷◁C=D T ).

Proof. Recall correlated sampling [86], which we described in Section 4.1. We
first show that the AKMVs SR.C ,ST.D are equivalent to compressed correlated
samples, a term we define below. Then we show that SE = SR.C · ST.D behaves,
in expectation, like a compressed correlated sample.
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A correlated sample R′ ⊆ R for attribute C of relation R is defined as the
multiset

R′ = {r ∈ R : H(r.C) < sR}b,
where sR ∈ [0, 1] is some expected sample rate.

Suppose we’re only interested in the number of times each r.C, r ∈ R′ occurs
in the correlated sample R′. Further suppose, instead of knowing r.C, we’re
satisfied with its hash H(r.C). Then we can define the compressed correlated
sample R′

comp as the set of pairs

R′
comp := { (H(r.C), |{ri∈R′ : ri.C = r.C}b|) : r ∈ R′},

where the set notation eliminates duplicate pairs. Observe that R′
comp matches

the specification of AKMV SR.C . The only difference is that R′
compHash is defined

in terms of the expected sample ratio sR while SR.C is defined in terms of its
fixed size k. Clearly, the above reasoning also holds true for a correlated sample
T ′ for attribute D of relation T . Hence, AKMVs on base relations are equivalent
to compressed correlated samples.

It remains to show how SE relates to compressed correlated samples. Denote
by concat(r, t) a function that concatenates two input tuples r, t. Then, by [86],

E′ = R′ ▷◁C=D T ′ = {concat(r, t) : r ∈ R′, t ∈ T ′, r.C = t.D}b
is a correlated sample of E = R ▷◁C=D T . Clearly, the compressed correlated
sample of E′ is

E′
comp = { (H(e.C), |{ei∈E′ : ei.C = e.C}b|) : e ∈ E′}

which does not match the hashes HE and their multiplicities of SE since (1)
only HE might contain hashes whose multiplicity is zero and (2) HE might not
contain all hashes contained in E′

comp for its fixed size k. However, by [18], HE

constitutes a uniform random sample of the hashes in E′
comp. Thus, the expected

properties of SE match those of the compressed correlated sample E′
comp, which

matches the specification of an AKMV built on E.

Hence, AKMV multiplication allows us to derive AKMVs for join results
from base table AKMVs. However, note that the derived AKMV SE is not
necessarily equal to an AKMV constructed on πC(R ▷◁C=D T ), since only SE

might contain hashes with multiplicity zero.
Next, we observe that, in addition to NODV estimation, an AKMV SE can

be used to estimate the cardinality c := |E|, i.e., the number of not necessarily
distinct values in E.

Lemma 8.2.3 (cardinality estimate). Let ME :=
P

h∈HE
ηE(h) be the summed

multiplicities of the hashes in HE of AKMV SE. An estimate for the cardinality
c of relational algebra expression E is

bcAKMV :=
ME

k
· k − 1

max(HE)
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Proof. Note that for each h ∈ HE , the multiplicity ηE(h) is the number of times
a value v ∈ E with H(v) = h occurs in E, and this value is known by SE . Recall
that by [18] HE is a random sample of the hashed values of E. It follows that

E[ME

pE
] = |E|

|E|d , where pE := |{hi∈HE | η(hi) > 0}|, is an unbiased estimate for

the average multiplicity of the values in E. It then follows that

E

�
ME

pE
· bdAKMV

�
= |E| = c.

Then, plugging in the definition of bdAKMV shows that

ME

pE
· bdAKMV =

ME

pE
· pE
k

· k − 1

max(HE)
=

ME

k
· k − 1

max(HE)
.

Corollary 8.2.1. bcAKMV of SR.C · ST.D is an unbiased estimate for

|πC(R ▷◁C=D T )|

.

Proof. Denote by SE∗ an AKMV built on E∗ = πC(R ▷◁C=D T ). By Lemma 8.2.3,
it holds that E[bcAKMV (SE∗)] = |E∗|.

Further, let SE = SR.C ·ST.D. By Lemma 8.2.2, it holds thatE[bcAKMV (SE)] =
E[bcAKMV (SE∗)].

Thus, we have that E[bcAKMV (SE)] = |E∗|.

Due to Corollary 8.2.1 the size of an equi-join can be estimated from two
AKMVs constructed for the join attributes in the base tables. Note that
|πC(R▷◁C=DT )| = |πD(R▷◁C=DT )| = |R▷◁C=DT |.

Example: Suppose SR.C = ({0.0002< 0.003< 0.015< 0.05}, (3, 5, 4, 8)) and
ST.D = ({0.0002 < 0.003 < 0.008 < 0.015}, (10, 10, 10, 10)). The product of
SR.C · ST.D is SE = ({0.0002 < 0.003 < 0.008 < 0.015}, (30, 50, 0, 40)). Since
ME = 120 is the sum of the multiplicities, the join size |R▷◁C=DT | is estimated
as bcAKMV =120/4 · (4−1)/0.015 = 6000.

8.3 Translation Grids

This section presents the translation grid, a data structure that approximates
the joint existence distribution (JED), which we first mentioned in Section 8.1.
In the following, we give a formal definition of JED. Suppose we have a relationR
with attributes/attribute sets A and B. Then, the JED of (R.A,R.B) is defined
as the characteristic function

1πA,B(R)(a, b) =

(
1, (a, b) ∈ πA,B(R)

0, else,
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Algorithm 4 Translation grid construction.

Construct(R,A,B, m, n, hAmax, hBmax)

Input: Relation R,
attribute sets A,B of R
two numbers m, n
largest hash values hAmax, hBmax in AKMVs of R.A and R.B

Output: Translation grid T (R.A,R.B)
1 Let T be a translation grid of m× n tiles
2 for t ∈ R
3 hA = H(t.A)
4 hB = H(t.B)
5 if hA > hAmax or hB > hBmax : continue
6 tile = T .tile ref(hA, hB)
7 tile.BA.insert(hA)
8 tile.BB .insert(hB)
9 return T

where a and b are from the domains of attributes A and B, respectively. That
is, 1πA,B(R) indicates whether a combination of A,B values occurs in R. To
approximate the JED of (R.A,R.B), different approaches could be thought of.
We present translation grids as our approach to approximate JEDs. Trans-
lation grids entirely operate on hashed attribute values of R.A and R.B. In
particular, those hashes that exist in AKMVs SA,SB of R.A, R.B, respectively.
Then, translation grids connect those hashes from SA,SB that correspond to
combinations of R.A,R.B values that occur in R.

The example query from the introduction describes a situation where trans-
lation grids are useful. Given AKMVs for each column D1.A,D2.B, F.A, F.B,
we can apply AKMV multiplication to obtain AKMVs SD1.A▷◁F.A, SD2.B▷◁F.B

for the two-way joins. Then, the translation grid connects those hashes in
SD1.A▷◁F.A with hashes in SD2.B▷◁F.B that exist in the JED of (F.A, F.B).

8.3.1 Structure

A translation grid T (R.A,R.B) is a two-dimensional grid of m × n tiles. For
each tuple t ∈ R, the pair of hashes (H(t.A), H(t.B)), where H is the same hash
function as for AKMV, maps to one tile. Each tile maintains two Bloom filters
BR.A,BR.B . All (H(t.A), H(t.B)) corresponding to the same tile are inserted
into the respective Bloom filters BR.A,BR.B of that tile. As we will see, the
fact that we insert hashes into the Bloom filters of the tiles of translation grid
T (R.A,R.B), allows us to test whether a hash pair (hA, hB) from two AKMVs
SR.A,SR.B corresponds to attribute values in R.

8.3.2 Construction

The construction of translation grid T (R.A,R.B) happens in a single run
over relation R. The construction of T (R.A,R.B) takes place after the con-
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Figure 8.2: Construction of translation grid.

struction of AKMVs SR.A,SR.B . Algorithm 4 describes the translation grid
construction process. For an illustration, see Figure 8.2. The arguments are rela-
tion R, with attribute sets A and B, and the desired dimensions of T (R.A,R.B)
specified by m and n. In addition, the parameters hAmax and hBmax are the
largest hash values found in any AKMV of S.A and S.B, respectively. In line 1,
T (R.A,R.B) is initialized with the bits of the two Bloom filters of each tile set
to zero. Then, we iterate over each tuple t ∈ R and hash each t.A and t.B. In
line 5, all hash pairs (hA, hB) with hA>hAmax ∨ hB>hBmax are discarded, i.e.,
we discard all hash combinations that are definitely not tracked by AKMVs.
Filtering unnecessary (hA, hB) values helps to significantly reduce the size of a
translation grid, or, equivalently, increase the accuracy it delivers for a given
space consumption. For the remaining hash pairs (hA, hB), the corresponding
tile is identified, and each hash is inserted in its respective Bloom filter. Finally,
T (R.A,R.B) is returned.

Example: Suppose we build a translation grid T (R.A,R.B) with 2× 2 tiles
on the attribute values of R depicted in Figure 8.2. Suppose hAmax = 0.05
and hBmax = 0.3. Let hAborder = hAmax/2 = 0.025 define the boundary of
the tiles in the R.A dimension, and hBborder = hBmax/2 = 0.15 in the R.B
dimension. With respect to the values of R.A, let H(′a′) 7→ 0.03, H(′b′) 7→
0.002, H(′c′) 7→ 0.07. And with respect to the values of R.B, let H(1) 7→
0.2, H(2) 7→ 0.45, H(3) 7→ 0.001. Then, the tuples <′ a′, 2 > and <′ c′, 2 > are
discarded for the check in line 5 of Algorithm 4. As illustrated in Figure 8.2,
the tuple <′ b′, 3 > is inserted into the bottom left tile. The tuple <′ b′, 1 > is
inserted into the bottom right tile.

8.3.3 Translation

By translating, we denote the process of finding combinations of hashes
from two input AKMVs SR.A,SR.B that T (R.A,R.B) has seen during con-
struction. All qualifying combinations of hashes are output in two new AKMVs
S ′

R.A,S ′
R.B . Note that, in the context of multi-way join size estimation, the in-

put AKMVs SR.A,SR.B are each the result of an intersect or multiply operation
with another AKMV.
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Algorithm 5 Translation grid, translation of AKMVs.

Translate(T ,SR.A,SR.B)

Input: Translation grid T ,
two input AKMVs SR.A,SR.B

Output: Two output AKMVs S′
R.A,S′

R.B

1 Let S′
R.A,S′

R.B be two empty AKMVs
2 for hA ∈ SR.A with ηR.A(hA) > 0
3 for hB ∈ SR.B with ηR.B(hB) > 0
4 tile = T .tile ref(hA, hB)
5 if tile.BA.contains(hA) and tile.BB .contains(hB)
6 S′

R.A.insert(hA, ηR.A(hA))
7 S′

R.B .insert(hB, ηR.B(hB))
8 return S′

R.A,S′
R.B

Algorithm 5 describes how to translate two input AKMVs using a translation
grid. For each combination of hashes (hA, hB) with multiplicity greater zero,
i.e., ηR.A(hA)>0 ∧ ηR.B(hB)>0 , the corresponding tile is identified in line 4.
Then, in line 5, we test if hA exists in BA and if hB exists in BB of the identified
tile. Note that, as always with Bloom filters, false positives are possible. All
combinations of hashes (hA, hB) that pass the test are tracked in the two output
AKMVs S ′

R.A,S ′
R.B . Essentially, the output AKMVs S ′

R.A,S ′
R.B , as returned

in line 8, are filtered versions of SR.A,SR.B . As we will see in the next section,
S ′

R.A,S ′
R.B are proper AKMVs that can be used for cardinality estimation.

Example: Let T (S.J1, S.J2) be a translation grid, defined as follows:
BJ1:{.05}, BJ2:{.7} BJ1:{.11}, BJ2:{.21, .27} BJ1:{.22, .25}, BJ2:{.21}
BJ1:{.05}, BJ2:{.1, } BJ1:{.11}, BJ2:{.111} BJ1:{.25}, BJ2:{.1}
BJ1:{.05}, BJ2:{.02} BJ1:{}, BJ2:{} BJ1:{.22, .25}, BJ2:{.007}

Further, let SJ1 = {< .05, 3 >,< .11, 5 >,< .22, 0 >,< .25, 1 >} be an AKMV
for R ▷◁R.J1=S.J1 S, derived from two AKMVs via multiplication in the sense
of Definition 8.2.1. Accordingly, let SJ2 = {< .02, 2 >,< .1, 0 >,< .21, 2 >,<
.27, 1 >, } be AKMV for S ▷◁S.J2=T.J2 T . Then, Translate(T (S.J1, S.J2),
SJ1,SJ2) outputs the new AKMVs S ′

J1 = {< .05, 6 >,< .11, 5 >,< .25, 2 >}
and S ′

J2 = {< .02, 2 >,< .21, 3 >,< .27, 1 >}.

8.3.4 Estimation Properties of Translation Grids

This section presents two Lemmata that describe how translation grids can be
used, in conjunction with AKMVs, for cardinality estimation.

First, we define an ideal translation grid to which we refer as a lossless
translation grid.

Definition 8.3.1 (Lossless translation grid). A lossless translation grid T (R.A,
R.B), correctly determines for each hA ∈ SR.A, hB ∈ SR.B iff (hA, hB) corre-
sponds to a tuple in R. There are no false-positives in a lossless translation
grid.
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A lossy translation grid is one that is not lossless (produces false-positives).
In the following lemma, we combine a lossless translation grid with two

AKMVs. To understand the Lemma, recall that by a x-AKMV we refer to an
AKMV that tracks a fraction x of the hashes seen during construction.

Lemma 8.3.1. Let T (R.A,R.B) be a lossless translation grid of relation R with

|R|=|R.A|d=|R.B|d. As before, denote by bdAKMV and bcAKMV the NODV esti-
mate and the cardinality estimate (cf. Lemma 8.2.3) obtained from an AKMV S,
respectively. Suppose a x-AKMV SR.A, x ∈ [0, 1], and a 1.0-AKMV SR.B are
translated by T (R.A,R.B). Then

E[bdAKMV (S ′
R.A)] = E[bcAKMV (S ′

R.A)] = |R|,

holds for the output AKMV S ′
R.A.

Proof. Since SR.B is a 1.0-AKMV, i.e., tracks all hashes seen during construc-
tion, it follows that each hash h ∈ SR.A necessarily finds all its matches in
T (R.A,R.B). In addition, since T (R.A,R.B) is a lossless translation grid,
there are no false positive matches for h ∈ SR.A. Thus, S ′

R.A = SR.A.
Finally, E[bcAKMV (SR.A)] = |R| holds by Lemma 8.2.3, andE[bcAKMV (SR.A)] =

E[bdAKMV (SR.A)] since neither R.A nor R.B contain duplicates.

Note that the above lemma does not hold for S ′
R.B . However, we clearly

do not want to rely on 1.0-AKMVs. Luckily, the following lemma comes to the
rescue.

Lemma 8.3.2. Suppose the same setting as in Lemma 8.3.1, but this time SR.B

is a y-AKMV, where y ∈ [0, 1]. It follows that

E

�bcAKMV (S ′
R.A)

y

�
= |R|

.

Proof. In expectation, each h ∈ SR.A finds a ratio of y of its matches in
T (R.A,R.B). Since T (R.A,R.B) is a lossless translation grid no false posi-
tives are found. Thus, we must scale up bcAKMV (S ′

R.A) by y.

Note that, from symmetry, also E
h
bcAKMV (S′

R.B)
x

i
= |R| holds. In our evalu-

ation, we present an experiment to illustrate Lemma 8.3.2.
Observation: Lemma 8.3.2 is applicable for multi-way join size estimation.

For instance, let E1, E2 be relational expressions with key attributes A,B,
respective, and T (F.A, F.B) a translation grid for a relation F with foreign
key attributes A,B. Assume AKMVs SE1.A,SF.A,SF.B ,SE2.B exist. Applying
Lemma 8.3.2 to the output AKMVs of Translate(T (F.A, F.B), SF.A · SE1.A,
SF.B · SE2.B) gives an estimate for |E1 ▷◁E1.A=F.A F ▷◁F.B=E2.B E2|. Section
8.4 presents an experiment on multi-way join size estimation.
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Corollary 8.3.1. An indicator for a lossy translation grid is to test if

bcAKMV (S ′
R.A)

y
̸≈ bcAKMV (S ′

R.B)

x

.

Proof. From symmetry of Lemma 8.3.2, it follows that E
h
bcAKMV (S′

R.A)
y

i
=

E
h
bcAKMV (S′

R.B)
x

i
. Corollary 8.3.1 is essentially the contraposition. The con-

traposition holds true if one the premises of Lemma 8.3.2 are violated, one of
which is that T (R.A,R.B) is a lossless translation grid.

Note that Corollary 8.3.1 makes a statement under uncertainty. For in-

stance, T (R.A,R.B) may be a lossless translation grid but bcAKMV (S′
R.A)

y differs

significantly from bcAKMV (S′
R.B)

x simply because, by chance, one estimate deviates
significantly from its expected value.

8.4 Evaluation

In our evaluation, we present multiple experiments. Our experiments are de-
signed to demonstrate the validity of the statements from sections 8.2 and 8.3
and to analyze the accuracy of our approach for result size estimation of queries
involving multiple joins.

Experiment 1:
Let R: [{A,B}] with |R|=|R.A|d=|R.B|d=1000. We construct SR.A as 0.3-
AKMV and SR.B is a y-AKMV, where y takes the values specified in Table 8.1.
Recall the relationship between the distinct ratio and number of tracked hashes
described below Lemma 8.2.1. Hence, SR.A tracks 300 hashes and SR.B tracks
y · 1000 hashes, i.e., between 100 and 1000 hashes. The lossless translation grid
T (R.A,R.B) is approximated by |R.A|d × |R.B|d tiles. We denote

cA := bcAKMV (S ′
R.A)

and
cB := bcAKMV (S ′

R.B).

Clearly, if Lemma 8.3.2 holds, we expect

cA/y ≈ cB/0.3 ≈ 1000.

Table 8.1 shows the result. Indeed, even for y=0.1, we have cA/y ≈ 1000.
For comparison, we include cA, cB. Note how cA decreases as y decreases, since
each h ∈ S ′

R.A finds fewer and fewer matches in T (R.A,R.B).
How many hash pairs (hA, hB) are inserted into T (R.A,R.B) during con-

struction? By line 5 in Algorithm 4, only hashes possibly tracked by AKMVs
are inserted into T (R.A,R.B). Hence, we expect 0.3·y ·|R| many inserts, cf. the
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Figure 8.3: Results of Experiment 2: Scatterplot (left), errors over all queries
(middle), errors over selective queries (right).

last column of Table 8.1. The second to last column shows the actual number of
inserts. Observe that the actual number is both small and close to the expected
number. Note that the number of distinct inserts is the same since neither R.A
nor R.B contains duplicates.

Experiment 2:
Recall the star query from the introduction. For varying selection predicates,
we estimate the query result cardinality, i.e.,

|σpD1
(D1) ▷◁D1.A=F.A F ▷◁F.B=D2.B σpD2

(D2)|.

The dimension tables have |D1|=1000 and |D2|=2000 rows, respectively, and
the attributes A,B refer to their respective primary key. The fact table

F := {[i, j]|i∈[0, |D1|), j∈[0, |D2|), i

|D1|≥
j

|D2| }

has the skewed foreign key attributes F.A, F.B that are correlated with each
other. Its size is |F |=1, 000, 000. The cardinality of a query result is influenced

y cA cA/y cB cB/0.3 ins. exp. ins.
1 1075.48 1075.48 300.471 1001.57 300 300
0.9 949.591 1055.1 291.39 971.3 265 270
0.8 838.086 1047.61 295.724 985.746 234 240
0.7 715.79 1022.56 288.319 961.063 200 210
0.6 600.688 1001.15 287.529 958.431 168 180
0.5 504.093 1008.19 288.892 962.974 141 150
0.4 414.077 1035.19 297.449 991.497 116 120
0.3 316.527 1055.09 296.691 988.969 87 90
0.2 209.791 1048.95 317.068 1056.89 58 60
0.1 111.541 1115.41 326.231 1087.44 30 30

Table 8.1: Results of Exper. 1. As expected cA
y ≈ cB

0.3 ≈ 1000.
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by the selection predicates

pD1 ≡ D1.A<c1, pD2 ≡ D2.B≥c2,

where we compute results for all combinations with non-zero cardinality of
c1∈{100, 200, . . . , 1000}, c2∈{0, 200, 400, . . . , 1800}. Hence, the true cardinality
varies between 10k and 1M. We make the following assumption: Since D1, D2
are small, AKMVs Sπr(σpD1

(D1)),Sπt(σpD2
(D2)) can be built on the fly. Since

F is large, SF.A,SF.B and T (F.A, F.B) must be computed offline, i.e. not per
query. All AKMVs are of size k=100. An estimate for the query result size is
obtained in three steps:

1. Compute SJ1 := SF.A · Sπr(σpD1
(D1)) and SJ2 := SF.B · Sπt(σpD2

(D2)).

2. Obtain (S ′
J1,S ′

J2) = Translate(T (F.A, F.B),SJ1,SJ2).

3. Estimate the cardinality as bcAKMV (S ′
J1)/br, where br is the estimated dis-

tinct ratio of S ′
J2, cf. Lemma 8.2.1.

In Figure 8.3, for each query, we show three different cardinality estimates. (1)
An estimate obtained by a lossless translation grid, which tracks only 5200 ≈
0.5% · |F | pairs of hashes. The size of only 5200·2·4B = 41.6KB demonstrates
the practicability of lossless translation grids. (2) A lossy 100× 100 translation
grid, in which only 2600 tiles are actually used. Each tile contains only two
32-bit Bloom filters. Hence, the used tiles consume only 2600·2·4B = 20.8KB ,
corresponding to only 0.26% of F ’s memory footprint, assuming each tuple in
F consists of 2 integers of 32-bit. (3) For comparison, we show the System
R [79] estimator, as implemented in Postgres version 13.2. In Figure 8.3, the
scatterplot on the left shows the correlation between the observed and estimated
cardinality. The best estimates are obtained when using the lossless translation
grid, the lossy translation grid produces slightly worse estimates. System R
significantly overestimates, since its assumptions do not hold. The boxplots
in the middle of Figure 8.3 illustrate the q-error for each estimator from the
scatterplot. The boxplots on the right are restricted to only the challenging
queries with selectivity of pD1 less than 0.5. Note how the errors significantly
worsen for System R when looking only at the more selective queries. The
estimates by the lossless and lossy translation grid are less affected.

Experiment 3:
This experiment tests Corollary 8.3.1. We reuse the setup and notation from
Experiment 1. For translation grids with different dimensions dimA × dimB,
we use x-AKMV SR.A and y-AKMV SR.B to test if

cA

y
̸≈ cB

x
=⇒ lossy.

The results are shown in Table 8.2. Recall that a lossy translation grid produces
false positives. Hence, when there are more inserts into the output AKMVs,
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dimA dimB x y kA kB cA/y cB/x ins. found lossy

1000 250 0.30 0.80 300 800 1047.61 985.746 234 234 ×
1000 62 0.30 0.80 300 800 1047.61 985.746 234 234 ×
1000 31 0.30 0.80 300 800 1047.61 994.207 234 240 ✓
1000 15 0.30 0.80 300 800 1047.61 998.438 234 249 ✓
1000 7 0.30 0.80 300 800 1047.61 1070.36 234 303 ✓
250 7 0.30 0.80 300 800 1047.61 1104.2 234 356 ✓
7 7 0.30 0.80 300 800 1312.88 3380.31 234 58753 ✓
125 125 0.30 0.10 300 100 1115.41 1087.44 30 30 ×
7 7 0.30 0.10 300 100 2615.44 1499.91 30 210 ✓
125 125 0.10 0.10 100 100 1044.93 1133.66 11 11 ×
7 7 0.10 0.10 100 100 1763.1 1587.12 11 36 ✓
7 62 0.10 0.10 100 100 1763.1 1133.66 11 21 ✓

Table 8.2: Results of Exper. 3. As expected cA
y ̸≈ cB

x =⇒ lossy.

|πD
A (R)| |πD

B (R)| TGdim x x̂ hashcount d̂AKMV(S ′
R.A) kA kB

150 133 2000 1.00 1.00 150 149.98 300 400
150 133 20 1.00 1.00 150 149.98 300 400
500 333 2000 0.20 0.19 55 282.42 100 100
500 333 20 0.20 0.19 55 282.42 100 100
500 333 20 0.10 0.08 13 153.97 50 50
500 333 20 0.04 0.05 4 75.08 20 30
333 250 20 0.15 0.17 27 163.24 50 50
333 250 20 0.03 1.29 1 0.78 10 10
250 200 20 0.20 0.20 38 190.80 50 50
34 100 5 0.29 0.29 10 35.07 10 10
33 41 5 0.30 0.29 10 34.65 10 10
31 33 5 0.97 0.99 30 30.31 30 30
31 33 20 0.97 0.99 30 30.31 30 30
31 33 100 0.97 0.99 30 30.31 30 30

Table 8.3: Quality of distinct ratio estimator.

denoted by found, than values stored in the translation grid, denoted by ins., we
are sure the translation grid is lossy. The last column Table 8.2 marks the lossy
translation grids. As expected, when cA

y ̸≈ cB
x then lossy = ✓. Also, observe

the rate at which ins. decreases in x and y. Finally, note that from x and y it
follows that SR.A and SR.B track kA = x · |R.A|d and kB = y · |R.B|d hashes,
respectively. For convenience, the table also shows kA and kB .

Experiment 4:
Recall that our estimators use the distinct ratio x of an x-AKMV. As we have
seen in Lemma 8.2.1, for AKMVs that were not built on base relations but are,
e.g., the product AKMV multiplication, the distinct ratio can be estimated as
SE is pE

bdAKMV
. This experiment evaluates the accuracy of this estimate.

Let R : [{A,B}] with |R| = 1000. Table 8.3 shows, for relations with dif-
ferent attribute domain sizes |πD

A (R)|, |πD
B (R)| for which a translation grid of
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dimension TGdim × TGdim is built, the distinct ratio x and its estimate x̂ of
the output AKMV S ′

R.A. hashcount denotes the number of hashes stored in
the output AKMV S ′

R.A. The last two columns kA and kB show the number of
hashes SR.A and SR.B track, respectively. Note that the estimates have a good
accuracy, except for the case highlighted in bold. Clearly, x̂ is an overestimate
since the distinct ratio must be in [0, 1]. However, it comes by no surprise that
this estimate is inaccurate, since it is derived from an AKMV with only one
hash value stored.

Experiment 5:
We present an experiment where we estimate the result cardinality of the fol-
lowing chain query with 4 relations and one selection predicate:

σp1(r1) ▷◁r1.k=r2.fk r2 ▷◁r2.k=r3.fk r3 ▷◁r3.k=r4.fk r4,

where |r1| = 1000, |r2| = 3000, |r3| = 9000, |r4| = 27000 and p1 := r1.k < |r1|
4 .

The key ri.k of each relation ri contains the values [0, |ri| − 1] and all foreign
keys fk are uniformly distributed.

In this experiment, we use two lossless translation grids T (r2.k, r2.fk) and
T (r3.k, r3.fk). In addition, we have base table AKMVs with k = 300. The

goal is to obtain an estimate \|r1234| for the result cardinality of the above chain
query, to which we refer as |r1234|. Recall that we first use AKMV multiplica-
tion to combine base table AKMVs. We denote Srij = Sri · Srj . Further recall
thatTranslate takes two AKMVs Srij ,Srjk as input and outputs two modified
AKMVs S ′

rij ,S ′
rjk. Conceptually (the actual parameterization of Translate

differs from the following), there are two orderings of Translate to obtain
\|r1234|. We either compute

O1 := Translate(Translate(Sr12,Sr23),Sr34)

or
O2 := Translate(Sr12,Translate(Sr23,Sr34)).

Since each Translate operation gives two output AKMVs, there are 4 esti-

mates per Translate ordering to obtain \|r1234|.
In the following, we use T as a short hand notation for the Translate

function and denote by T(Srij ,Srjk).S ′
rij access to the output AKMV S ′

rij .
Further denote by |T(Srij ,Srjk).S ′

rij | the join size estimate obtained from S ′
rij .

In the following we report the different estimates. The true join size is |r1234| =
6750. The 4 estimates for ordering O1 are:

• |T(T(Sr12,Sr23).S ′
r12,Sr34).S ′′

r12| = 21564

• |T(T(Sr12,Sr23).S ′
r23,Sr34).S ′′

r23| = 2666

• |T(T(Sr12,Sr23).S ′
r12,Sr34).S ′

r34| = 32346

• |T(T(Sr12,Sr23).S ′
r23,Sr34).S ′

r34| = 10449
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While the 4 estimates for ordering O2 are:

• |T(Sr12,T(Sr23,Sr34).S ′
r23).S ′

r12| = 1650

• |T(Sr12,T(Sr23,Sr34).S ′
r34).S ′

r12| = 3680

• |T(Sr12,T(Sr23,Sr34).S ′
r23).S ′′

r23| = 4651

• |T(Sr12,T(Sr23,Sr34).S ′
r23).S ′′

r34| = 3680

As in the previous experiments, we expected all estimates to be approxi-
mately equal. However, observe that the estimates have significantly diverged.
The smallest estimate is 1650, while the largest is 32346. Similar divergence
occurs for different choices of p1 and selection predicates on other tables. The
two questions that follow are:

1. Why do the estimates diverge?

2. Can we combine the different estimates into one?

Regarding question one, we note that each output AKMV is derived differently.
Hence, the diverged estimates can be explained by the tracked hashes, and
corresponding multiplicities, that each output AKMV has left after two rounds
of Translate. A similar problem occurs in join size estimation with AGMS
sketches [75]. Each AGMS is essentially an array of counters. Each counter
can be regarded as an estimator and all counters have the same expected value,
yet the observed counter values usually differ significantly. Clearly, this is due
to the variance of the estimator. As Huang et al. [39] have shown, join size
estimation always comes with a high variance. Let J = T1 ▷◁T1.X=T2.Y T2 be
the join of tables T1, T2. Then, by Huang et al. [39], the best estimator for
|J | that is based on a synopses of b bits, e.g., a sample or a sketch, must have
variance at least proportional to min(|T1|, |T2|) · |T1.X ∩ T2.Y |/b.

Regarding question 2, we again look at AGMS sketches. In AGMS, the
solution to combine the many different estimates is to first compute multiple
averages, each computed over a chunk of counters. Then, the median over the
averages serves as the final estimate. It remains open what the best way is to
combine the different estimates in our case. A simple approach is to ignore the
two largest and two smallest estimates and average over the remaining estimates
obtained by the output estimates. We refer to this approach as the incomplete

average estimate (IAE). For the above query, the IAE is \|r1234| = 5615, with
a q-error of around only 1.2. Motivated by this result, we repeat the above
experiment for AKMV parameter k ∈ {500, 300, 100} and different predicates

p1 = r1.k < |r1|
v , where v ∈ {2, 3, . . . , 10}. To estimate the result cardinality

|r1234|, we apply the IAE. We report the results in Table 8.4. Observe that
for large AKMVs, k = 500, IAE yields good estimates in all cases, even for
queries where p1 is selective, which is the case when v is large. For AKMVs
with k = 300, we observe good estimates, except for the selective queries with
v ∈ {8, 9, 10}. For small AKMVs with k = 100, note that no estimate can be
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k v |r1234| \|r1234| q-error

500 2 5469 13500 2.46
500 3 3853 8991 2.33
500 4 3361 6750 2.00
500 5 2432 5400 2.22
500 6 1767 4482 2.53
500 7 1595 3834 2.40
500 8 1100 3375 3.06
500 9 749 2997 3.99
500 10 708 2700 3.80
300 2 9389 13500 1.43
300 3 8608 8991 1.04
300 4 5615 6750 1.20
300 5 3732 5400 1.44
300 6 3377 4482 1.32
300 7 855 3834 4.48
300 8 5 3375 596.82
300 9 5 2997 531.30
300 10 5 2700 478.65
100 2 107256 13500 7.94
100 3 107771 8991 11.98
100 4 116979 6750 17.33
100 5 113203 5400 20.96
100 6 95703 4482 21.35
100 7 40 3834 95.21
100 8 - 3375 -
100 9 - 2997 -
100 10 - 2700 -

Table 8.4: Average over output AKMV estimates. Two largest/smallest esti-
mates are ignored.

obtained for the selective queries with v ∈ {8, 9, 10}, since no tracked hashes
are left in the output AKMVs. We conclude that, in cases where the different
estimates of the output AKMVs have diverged, the IAE seems to be a reasonable
heuristic.

8.5 Summary

We presented a novel approach to estimate query result sizes for queries con-
taining multiple joins. Our approach relies on two novelties. (1) New operations
for AKMV sketches, in particular distinct ratio estimation, AKMV multiplica-
tion for two-way join approximation, and cardinality estimation. (2) A novel
data structure called translation grid that partitions the hash space of AKMVs
and tracks combinations of hashes from two AKMVs in such a way that they
approximate the joint existence distribution of two attributes/attribute sets. In
our evaluation, we analyzed the accuracy of our approach and experimentally
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tested the validity of certain properties of translation grids. We demonstrated
that our approach allows to estimate the cardinality of three-way joins with good
accuracy. In addition, we discussed a join query over four relations where we
have seen that even if the estimates of different output AKMVs diverge, we can
combine them into one estimate, even though it remains open what approach
to combine diverged estimates is best.
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Chapter 9

Query Featurization

9.1 Introduction

For some years now, Machine Learning (ML) has been applied to the cardi-
nality estimation problem [38, 47, 93, 94]. However, surprisingly, there has been
very little research yet on how to present queries to a machine learning model.
Machine learning models do not simply consume SQL strings. Instead, a SQL
string is transformed into a numerical representation. This transformation is
called query featurization and is defined by a query featurization technique
(QFT). This chapter is concerned with QFTs for queries with many selection
predicates. In particular, we consider queries that contain both predicates over
different attributes and multiple predicates per attribute.

First, we provide some background knowledge. In general, ML means ar-
bitrary function approximation. The function that underlays the cardinality
estimation problem in databases is

query × data → cardinality (9.1)

Note that the data component often remains unmentioned even though it is
relevant since the query result of SELECT count(*) FROM R WHERE R.A < 5

differs, depending on the content in R. Nonetheless, in this chapter, we assume
the data to be fixed and substitute Equation 9.1 for the two-step mapping

query → vector → cardinality (9.2)

The mapping query → vector is denoted by query featurization and benefits
from expert knowledge. Query featurization is necessary since machine learning
models do not consume SQL strings. Instead, a numerical representation of
the query is consumed. Techniques for query featurization are in the focus
of this chapter. The second mapping vector → cardinality is the machine
learning part and benefits from ML knowledge, in particular algorithm choice
and parameter tuning.

147
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Despite the fact that all learning-based cardinality estimation techniques
need query featurization, most current approaches do not focus on the query
featurization part [47, 93]. For instance, Kipf et al. learn the featurized repre-
sentation of a query from simple per-predicate featurizations. However, learned
query featurization leads to obfuscated query representations that ultimately
result in sub-optimal query result size estimates. We argue that there is no
need for learning-based query featurization and that a smart query featuriza-
tion technique (QFT) can be identified and implemented. Hence, this chapter
focuses on improved QFTs.

The contribution of this chapter is the result of a fruitful collaboration with
PhD candidate Lucas Woltmann from TU Dresden. In particular, we present
three novel QFTs. We compare their pros and cons, especially how well they
represent queries and how different types of ML models benefit from good query
featurization in terms of estimation accuracy and the number of queries needed
for training. In particular, we present the following findings:

• A formal definition of good query featurization, to which we refer to as
lossless query featurization. To the best of our knowledge, we are the first
to define requirements for query featurization. The definition is presented
in Section 9.3 and motivates the design of our QFTs.

• We present (one established and) two novel QFTs for conjunctive queries,
i.e., queries whose predicates are connected by AND. Unlike [94], we con-
sider queries with multiple predicates per attribute.

• We present one additional QFT for queries including both conjunctions
as well as disjunctions, i.e., predicates connected by OR. To the best of our
knowledge, we are the first to consider disjunctions in ML-based cardinal-
ity estimation.

• We provide an extensive evaluation showing the effect of QFT on the
estimation accuracy of several established machine learning models. In
particular, we consider MSCN [47], local neural networks [93], and gradient
boosting [28, 59]. As part of our evaluation, we also consider the impact
of QFTs on estimation accuracy under query drift and different numbers
of training queries.

Outline. The structure of the chapter is as follows: In the next section,
we outline preliminaries in terms of query featurization and machine learning.
Then, in Section 9.3, we present our three new QFTs and discuss their ad-
vantages and limitations in detail. In Section 9.4, we focus on implementation
details of our QFTs as part of learning-based cardinality estimators. Next, we
evaluate our new QFTs under different ML models with two data sets in Sec-
tion 9.5. In Section 9.6, we discuss how to generalize our approach, for instance
to queries with string predicates and aggregations. Finally, we draw a conclusion
and discuss future work.
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9.2 Preliminaries

In this section, we first present techniques to obtain feature vectors from queries.
In particular, we discuss existing query featurization techniques for selection
predicates and join predicates. Then, we present how machine learning models
use feature vectors, and briefly discuss two well-known machine learning models.

9.2.1 State of the Art in Query Featurization

In this section, we present existing techniques for query featurization techniques
– QFTs. Recall that a QFT encodes a query Q into a numerical vector, named
feature vector. This feature vector then serves as input to a machine learning
model – in particular one used for cardinality estimation. In query featurization,
the critical part is the encoding of the predicates and joins from input query Q.
This section first presents two approaches, Singular Predicate Encoding and
Predicate Set Convolution, to featurize selection predicates. Then, we discuss
how to featurize queries containing joins. A word on the jargon we use. We
either say a QFT featurizes a query or we say a QFT encodes a query, or certain
parts thereof, in a feature vector. We use the terms featurization and encoding
interchangeably.

9.2.1.1 Selection Predicate Featurization

First, we focus on the encoding of selection predicates. We describe how ex-
isting approaches featurize simple predicates, i.e., a predicate that compares
an attribute value to a literal using one of the comparison operators in {=
, >,<,≥,≤, ̸=}. In particular, we present the predicate featurization methods
by [35, 47, 93]. All three methods featurize selection predicates in two steps.
The first step is to featurize each individual predicate in a query. This step is
the same in all three methods. Then, the featurizations of each predicate are
combined. As we will see, in this second step, [35, 93] differ from [47].

To encode a predicate like A > 5, the predicate is split and encoded into
three parts. (1) Attribute A is encoded in a one-hot vector, i.e., only one entry
is set, like 001 for a relation with three attributes, (2) the literal 5 is encoded

to 5−min(A)
max(A)−min(A) , which is always a number in [0, 1], and (3) the comparison

operator > is encoded to a binary vector with 3 entries, using the mapping
outlined in the following table:

comparison featurization
= 100
> 010
>= 110
< 001
<= 101
<>, ! = 011
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The featurization of A > 5 could then look like this:

001|{z}
A

010|{z}
>

0.27|{z}
5

To combine multiple selection predicates, there exist two approaches:
In Singular Predicate Encoding, as used in [35, 93], for a table with m

attributes, the feature vector F has 4·m entries. Since specific entries in the
feature vector are reserved for each attribute, there is no need to encode the
attribute id itself. For m = 3 and a query with predicates A > 5 AND B = 7,
the query featurization looks like:

Az }| {
010|{z}
>

0.27|{z}
5

Bz }| {
100|{z}
=

0.15|{z}
7

third attributez }| {
000|{z}
no

0.0|{z}
pred.

Note that all entries are set to 0 for attributes for which the query contains no
predicate. Further note that there can only be up to one predicate per attribute
and there is no (good) way to support disjunctions, so all predicates must be
connected by AND.

Predicate Set Convolution, as used in [47], builds on deep sets [96], which
is a technique to featurize sets. First, each selection predicate is featurized using
the above method. Then, all per-predicate featurizations are collected in a set P .
Finally, a mapping from P to a feature vector F for the predicates is learned
during training. The advantage of Predicate Set Convolution is that it supports
multiple predicates per attribute. However, disjunctions are not supported. In
addition, Predicate Set Convolution as a QFT does not allow for statements in
terms of generalization.

9.2.1.2 Join Featurization

We now focus on query featurization for queries containing joins. In particular,
this section discusses how to handle the tables and join predicates contained in
some input query Q. Again, there are two general approaches to featurize joins:

With local models, as used in [35,93,94], one model is built per sub-schema,
i.e., either per base table or per join result. To estimate the result cardinality of
some query, the selection predicates in the query are featurized and forwarded
to the corresponding local models. The advantages are that (1) the size of the
feature vector remains small and (2) when data in some tables change, only the
models for sub-schemata containing this table have to be retrained. At first
sight, a downside is the number of models, since there are 2n − 1 sub-schemata,
i.e., combinations of n tables. However, in real applications, this number is
reduced by relying on System R formulas [78,92] where models are built exactly
for those sub-schemata for which the assumptions from [78], i.e., uniformity and
independence assumptions, do not hold.

On the other hand, a global model, as used in [47, 50], represents a sin-
gle estimator capable to estimate result cardinalities for all queries containing
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arbitrary sub-schemata of n tables. In global models, the feature vector of a
featurized query must also represent the accessed tables. Assuming that ta-
bles are joined following their key/foreign-key relationships, any QFT can be
adapted to global models by appending a binary vector to the feature vector,
where each entry corresponds to a specific table. For instance, for tables 1,
2, 3, and 4, the binary vector 1101 corresponds to a query where tables 1, 2,
and 4 are joined (following their key/foreign-key relationships). For compari-
son, 0100 corresponds to a query on base table 2. In MSCN [47], the approach
taken is slightly different. First, each table contained in the query is represented
by a unique one-hot vector. Next, all one-hot vectors are collected in one set.
Similarly, all join predicates are collected in a separate set. Then, exactly as
described for Predicate Set Convolution, a mapping from sets to feature vectors
is learned based on the deep sets technique [96].

9.2.2 Machine Learning Models

Now that we have seen how to obtain feature vectors, this section presents the
basics of machine learning (ML). In addition, this section introduces two types
of ML models, neural networks and gradient boosting, that are commonly used
for cardinality estimation. In our evaluation in Section 9.5, we report on the
accuracy of ML models under the different QFTs presented in Section 9.3.

In general, a ML model is a function bf that maps a feature vector F ∈ Rd,
where d is the dimension of the feature space, to a label or target y from some
target domain Y .

bf : Rd → Y, F 7→ y, (9.3)

where bf is an approximation for the relation f ⊆ Rd×Y . A characteristic of ML
approaches is that bf is not defined explicitly but retrieved in a process called
training or learning. In supervised learning, to which we restrict this section,
the training to obtain bf is based on a training set Strain = {(Fi, yi)} ⊆ f . If
the target Y is a continuous variable, like a selectivity, then training means to
solve a regression problem, like in classical statistics. For the reminder of this
section, we restrict ourselves to regression problems.

After training, bf can be applied to an arbitrary feature vector F . Computing
bf(F) is called a forward pass. When evaluating the accuracy of bf with either a
validation set or test set1 Seval = {(Fi, yi)} ⊆ f , we usually observe that not all
forward passes lead to the correct target value. Instead, in terms of the equation

bf(Fi) = yi + εi (9.4)

we observe that εi ̸= 0 for some (or even all) 1 ≤ i ≤ |Seval|.
The errors εi have two sources: reducible error and irreducible error [89].

Reducible errors occur when bf does not perfectly describe f . Reducible errors
can be reduced by improved training methods and larger training sets. We

1Validation sets are used for hyperparameter tuning, while test sets are used to evaluate
model accuracy.
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define that Rd fully depends on Y via f if f is a function Rd → Y (instead of a
relation). Irreducible errors occur if and only if Y does not fully depend on Rd

via f . Then, we might observe the following in a training set Strain ⊆ f :

∃(F1, y1), (F2, y2) ∈ Strain : F1 = F2 ̸⇒ y1 = y2, (9.5)

i.e., determinism is violated, which generally reduces the accuracy of a ML
model bf . With respect to Equation 9.2 from the introduction, the problem
from Equation 9.5 occurs for queries with different result cardinalities but equal
feature vectors. The irreducible error cannot be reduced by improved train-
ing. However, it is not as irreducible as its name suggests. In Section 9.3, we
come back to the irreducible error and present a desired property for query
featurization techniques to reduce the irreducible error.

9.2.2.1 Neural Networks

Neural networks have been applied to various problems in DBMS [47, 49, 93].
Neural networks are able to solve supervised ML problems by modeling the
dependencies within the problem as a black box. With increasing hardware
performance over the last years, their training has become feasible on a large
scale. Therefore, it seems to be evident that the database community relies on
neural networks to solve the complex problem of cardinality estimation. Here,
we focus on Multi-layer Perceptron or Feed-forward Networks (NN) and Multi
Set Convolutional Networks (MSCN) because previous work has shown that
these kinds of neural networks work best for queries with joins on complex
schemata [47, 93]. In our evaluation in Section 9.5, we use the original network
architecture from [47] and [93]. To show both the importance and versatility of
query featurization, we extend [47, 93] to use our new QFTs.

9.2.2.2 Gradient Boosting

It has been observed that neural networks can be too complex and their training
time takes too long. Hence, [28] proposes to use smaller and faster models, based
on Gradient Boosting (GB). GB is a tree-based approach where weak learners
are combined based on the residuals of a preceding learner. The GB estimator
sums over P weak predictors bFp, each with weight λp, and adds a constant c.

f̂(F) =
PX

p=1

λp
bFp(F) + c (9.6)

In our case, each weak predictor bFp is a simple decision tree. The general
structure of GB models makes them very fast in training and forward passes.
In our evaluation in Section 9.5, we show that GB trains and converges faster
than the neural network approaches. Therefore, smaller training sets, and thus
shorter training times, suffice to reach a given level of accuracy. Like with the
neural network approaches, we combine GB with different QFTs and compare
the performance of the QFT × ML model combinations.
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All neural networks and GB models are input-agnostic, i.e., for a fixed input
vector length, they can work with any numeric vector presented to them. This
is very useful in the context of this work, since it allows us to vary the QFT
without having to modify the models’ architecture.

Finally, note that we also tested simpler models, like linear regression and
support vector regression. However, we do not include these ML models in the
further discussion and evaluation, since their estimates are worse by a significant
factor.

9.3 Query Featurization

Query featurization is the process of encoding a query Q in a numerical vector,
named feature vector. This feature vector then serves as input to a machine
learning model.

This section presents three novel query featurization techniques (QFTs),
where we focus on the encoding of selection predicates. The three novel QFTs
are Range Predicate Encoding, Universal Conjunction Encoding, and Limited
Disjunction Encoding. We restrict our scope to simple predicates, where an
attribute value is compared to a literal using one of the comparison operators in
{= , > ,< ,≥ ,≤ , ̸= }. We consider conjunctions as well as certain disjunc-
tions of predicates. We also consider arbitrarily many predicates per attribute.
Our QFTs can be applied to either a single table or, using the techniques pre-
sented in Section 9.2.1, to queries containing joins. Extensions to groupings and
certain string predicates are discussed in Section 9.6.

The better a feature vector represents the predicates in a query, the better
the query featurization technique. As part of our assessment of QFTs, we use
the terms information loss and lossless from the field of data compression and
apply the following definition.

Definition 9.3.1 (Result-lossless query featurization). Suppose we are given a
database instance D. Let SQ = {Qi} be a set of queries over D.

Let g be a function that maps queries to feature vectors, i.e., a QFT. We
say the feature vector Fi = g(Qi) is a result-lossless featurization of query Qi

if ∄Qj ∈ SQ, i ̸= j : Fi = Fj ∧ Ri ̸= Rj, where Ri and Rj denote the results of
query Qi and Qj, respectively.

If, for all 1 ≤ i ≤ |SQ|, Fi is a result-lossless query featurization, then we
call g a result-lossless QFT of SQ.

For instance, the query set SQ might contain all range queries over some
specific relation that exists in the database. Result-lossless query featurization
means that all relevant information from a query is retained in its feature vector.
Hence, as Figure 9.1 illustrates, no two queries with different results map to the
same feature vector.

Note that the definition makes a statement about query results Ri rather
than cardinalities |Ri|, which is the topic of this chapter. The motivation for the
definition of result-lossless query featurization is its generality. To illustrate this
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Queries
Feature 
Vectors

Query 
Results 

Figure 9.1: Illustration of result-lossless query featurization. When two queries
have different results, their feature vector cannot be the same.

generality, suppose g is a result-lossless QFT for some query set SQ. Further
suppose we are interested in some value e(Ri), rather than the result Ri itself.
For instance, e(Ri) may be one of |Ri|, |πD

A (Ri)|, or |Ri ▷◁A=A Ri|, where A
is an attribute of Ri. Then it is easy to see that g preserves for all Qi ∈ SQ
that ∄Qj ∈ SQ, i ̸= j : Fi = Fj ∧ e(Ri) ̸= e(Rj). This follows directly from the
fact that |{Ri}| ≥ |{e(Ri)}| for all (deterministic) functions e. Hence, we say
that g is also a e-lossless QFT. For the remainder of this chapter, we restrict
our interest to cardinality-lossless QFTs, i.e., e(Ri) = |Ri|. With respect to
the topic of this chapter, we refer to cardinality-lossless QFTs simply as lossless
QFTs.

The following lemma captures a desired effect of lossless QFTs.

Lemma 9.3.1. Given a database instance D, SQ = {Qi}, and SF = {Fi}.
Further suppose we are given a QFT g : SQ → SF and a function h : SQ →
R, which returns the query result cardinality of a query, and the relation f ⊆
{(g(Q), h(Q)|Q ∈ SQ)}, which is approximated via bf .

If g is a lossless QFT, then bf has no irreducible errors.

Proof. By the definition of lossless QFT, ∀Qi ∈ SQ it holds that

∄Qj ∈ SQ, i ̸= j : g(Qi) = g(Qj) ∧ h(Qi) ̸= h(Qj).

From this we must proof that bf has no irreducible errors, which holds if f is a
function. We prove the lemma by contradiction. Suppose f is not a function.
Then

∃Qi,Qj ∈ SQ, i ̸= j : g(Qi) = g(Qj) ∧ h(Qi) ̸= h(Qj).

However, this is already contradicts the assumption that g is a lossless QFT.
Hence, f must be a function. It follows that bf has no irreducible errors.

Note that a QFT is not either lossless or lossy. Instead, a QFT is lossless
for a certain class of queries. When a QFT is not lossless for a class of queries,
we say that information loss occurs, since an ML algorithm, to which feature
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vectors serve as input, cannot distinguish between different input queries with
the same feature vector representation.

The following shows that the previously discussed Singular Predicate En-
coding is not a lossless QFT for queries with multiple predicates on some at-
tribute A. Recall that Singular Predicate Encoding can represent only one
predicate per attribute. Hence, for queries with up to one predicate on A, Sin-
gular Predicate Encoding is a lossless QFT. However, for queries with multiple
predicates on A, the information about all but one predicate is lost. Thus, both
selective queries with many predicates on attribute A and less selective queries
with few predicates on A may induce the same feature vector. Hence, the result
cardinality of a query does not fully depend on its feature vector.

9.3.1 Range Predicate Encoding

This section presents a straightforward but useful extension of Singular Predi-
cate Encoding as discussed in Section 9.2.1. More evolved techniques are dis-
cussed in the next two sections. Range Predicate Encoding is a QFT that allows
to encode, per attribute, either (1) a range predicate, where both open or closed
ranges are supported, or (2) an equality predicate. In the existing work, range
predicates were discussed in [94], but since their model was optimized for point
queries, their cardinality estimate for queries containing range predicates is the
sum of cardinality estimates for multiple point queries, which is computation-
ally feasible only for small, discrete ranges. For large ranges, [94] employs a
sampling technique.

Our predicate encoding technique builds on the observation that, in data-
bases, all types of point and range predicates can be encoded to closed ranges.
For instance, A = 5 becomes [5, 5] and A ≤ 5 becomes [min(A), 5]. While the
difference between range predicates including or excluding endpoints is often
marginal, this can still be addressed: For integer attributes it is easy to see that
A < 5 corresponds to [min(A), 4] and for decimal attributes we can use a small
step size, e.g. [min(A), 4.9]. Since this is beneficial for some ML models, all
ranges are normalized to [0, 1] using the min and max values of each attribute.

The benefit of Range Predicate Encoding is that all queries with up to
one equality, open range, or closed range predicate per attribute are featurized
losslessly. Queries with multiple predicates per attribute are not supported.
Neither are disjunctions, so all predicates must be connected by AND.

9.3.2 Universal Conjunction Encoding

The QFTs discussed thus far could be read of directly from the query but share
one common caveat: Only a limited number of predicates can be encoded in the
feature vector without information loss. The problem is inherent to the previous
featurization techniques: SQL queries are of arbitrary length, but feature vectors
have a fixed length!

Universal Conjunction Encoding builds on the observation that both the
number of attributes in the data set, denoted by m, and the domain of each
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attribute remains constant. Hence, while the same attribute may occur in mul-
tiple predicates, we use the fact that no query references more than m distinct
attributes. The idea that follows is to (1) partition the domain of each at-
tribute, (2) give each partition one entry in the feature vector, and (3) assign
a value to each entry that indicates whether the partition it represents satisfies
the predicates in query Q. This technique allows us to encode queries with
arbitrarily many simple predicates connected via AND. To implement this idea,
we discretize the domain of each attribute A into nA = min(n, |A|d) partitions,
where n denotes some maximum number of partitions per attribute, e.g., 64,
and |A|d denotes the number of distinct values in A. The feature vector entry
corresponding to v ∈ A has zero-based index

min

�j val −min(A)

max(A)−min(A)
· nA

k
, nA−1

�
.

Hence, the partition each entry represents consists of consecutive values. Each
feature vector entry indicates whether the corresponding partition qualifies the
predicates in Q. We use 0 to indicate that no value qualifies, 1

2 to indicate
that some values qualify, and 1 to indicate that all values qualify. Note that
the numbers 0, 1

2 , 1 denote categories; they do not have the meaning of real or
decimal numbers. The concatenation of the per-attribute featurization yields
the total feature vector.

Note that the optimal choice of the maximum number of partitions n depends
on the frequency distribution of the values in the m attributes. In general,
we observe that each partition covers 1/n of the domain of some attribute A.
Hence, with n=32, each partition covers roughly 3% of an attribute’s domain.
In fact, our evaluation (Sec. 9.5.3) supports n=32 as a reasonable heuristic.
For attributes with high skew, a larger n may be necessary. Observe that it is
easy to extend our approach to choose an attribute-specific n. One could also
apply sophisticated partitioning techniques from the field of histograms, like
v-optimal [74] and q-optimal [63] partitioning.

Example: Let R be a table with numeric attributes A, B, and C. Suppose
min(A)= -9, max(A)= 50, min(B)= 0, max(B)= 115 and C contains only val-
ues in {1, 2}. Let n=12 be the maximum per-attribute feature vector length.
Then, a query over R with predicates A < 7 AND B >= 30 AND B <= 100 AND

B <> 66 induces the feature vector shown below. To easily reconstruct the ex-
ample, the orange-colored indices show the largest attribute value each feature
vector entry refers to. Ignore the teal-colored entries for now:

A<7z }| {
1
−5

1
0
1
5

1
2
10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50
0.32

30≤B≤100 ∧ B ̸=66z }| {

0
9
0
19

0
28

1
2
38

1
47

1
57

B ̸=66

1
2
67

1
76

1
86

1
95

1
2

105

0
115

0.48

no pred.z }| {
1
1
1
2
1.0

With respect to A < 7, note that 7 maps to the fourth entry in the vector
of A since, according to the above zero-based index formula, we have that

min
�j

7−(-9)
50−(-9) · 12

k
, 12−1

�
= 3 This fourth entry is set to 1

2 . All entries to
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the left are 1 to indicate that values smaller than 7 qualify. Accordingly, all
entries to the right, but within the bounds of A’s vector, are 0. Since there
is no predicate on attribute C, and its domain consists of only two values, C’s
featurization is the all-one vector 11. To reproduce the rest of the example,
handle the predicates on B accordingly.

Algorithm 6 describes the steps taken to featurize a query Q. Ignore the teal-
colored lines for now, they are discussed later. In line 1, we define a map M
that associates each attribute A, where A is an attribute in the relation under
consideration, to a vector with nA entries (see above). Initially, all nA entries
in each mapped vector MA are set to 1. Then, starting in line 2, for each
predicate p in query Q, p is decomposed into the attribute A it refers to, its
comparison operator op, and the literal val to which A is compared. A and
val are then used to compute the index idx of the vector entry corresponding
to val . If the vector entry MA[idx] is 1, it is set to 1

2 . In particular, MA[idx]
can only be decreased, e.g., once it is zero, it remains zero. Then in lines 7 to
17, depending on the comparison operator op, vector entries that correspond to
attribute values which do not qualify p are set to 0. Hence, each predicate p sets
specific entries to 0 (or 1

2 ). This captures the property that further predicates
in a conjunction can make a query only more selective. The final feature vector,
returned in line 22, is the concatenation of all per-attribute vectors.

Strictly speaking, if multiple distinct values correspond to a single feature
vector entry, Universal Conjunction Encoding is not a lossless QFT for queries
with arbitrary conjunctions of simple predicates. However, the following lemma
captures a convergence property that holds.

Lemma 9.3.2. Let A be a set of attributes and Q a query with an arbitrary
conjunction of simple predicates over a subset of A. Denote by Fn the feature
vector as produced by Algorithm 6 for query Q, where n denotes the maximum
number of feature vector entries per attribute in A.

Then, the sequence (Fn)n∈N converges to a lossless query featurization (cf.
Definition 9.3.1).

Proof. We proof the lemma by showing that (Fn)n∈N is an eventual constant
sequence, for which convergence is known.

In general, a sequence (ai)i∈N is a function N → X that maps natural num-
bers to objects from the codomain X. An eventual constant sequence is one
where there exists n0 ∈ N such that an = an0 , ∀n > n0, n ∈ N. By the definition
of Universal Conjunction Encoding, Fn contains nA = min(n, |A|d) entries for
each A ∈ A, where |A|d denotes the number of distinct attributes in A. Let
ndvmax := max({|A|d : A ∈ A}). Clearly, for all n > ndvmax, we have that
Fn = Fndvmax

. Hence, the sequence (Fn)n∈N is eventually constant. By [34, p.
42], all eventual constant sequences converge.

Hence, for large feature vectors where each entry corresponds only to one
distinct value of an attribute, Universal Conjunction Encoding is a lossless query
featurization for all queries with arbitrary conjunctions of simple predicates. For
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Algorithm 6 Query featurization using Universal Conjunction Encoding

FeaturizeArbitraryConjunction(Q)

1 Let M map attributes to all-one per-attribute vectors
2 for p ∈ Predicates(Q)
3 A, op, val = Decompose(p)
4 nA = GetEntryCount(A)

5 idx = min
�j

val−min(A)
max(A)−min(A)

· nA

k
, nA−1

�

6 if MA[idx] == 1: MA[idx] =
1
2

7 if op ∈ {”=”, ”is”}
8 MA[!idx] = 0
9 elseif op ∈ {”>”, ”>=”}

10 MA[0 : idx ] = 0
11 minA = max(minA, val) // initially min(A)
12 elseif op ∈ {”<”, ”<=”}
13 MA[idx+1 : Len(MA)] = 0
14 maxA = min(maxA, val) // initially max(A)
15 elseif op ∈ {”! =”, ”<>”}
16 // do nothing
17 notsA ∪=val // initially empty set
18 for A ∈ Attributes(M)
19 cA = CountBetween(notsA,maxA,minA)
20 rA = max(maxA−minA − cA, 0)
21 Append(MA, rA / (max(A)−min(A)+1)
22 return Concat all(M) // feature vector F

smaller feature vectors, this featurization loses only information up to the size
of the partition that a feature vector entry represents.

So far, we did not discuss the teal lines in Algorithm 6. Here, per-attribute
selectivity estimates are appended to the feature vector. The per-attribute
selectivity estimate of some attribute A is the ratio of distinct values from all
distinct values in A’s domain that qualify the selection predicates on A. A is
assumed to be an integer attribute. In the teal lines of Algorithm 6, this estimate
is obtained as the size of A’s domain that qualifies rA divided by the total size
of A’s domain max(A) − min(A) + 1. This corresponds to an estimate under
uniformity assumption like in [78]. The model benefits when the partitions in
the feature vector are coarse-grained or when trained on a few queries.

Note that for attributes with sufficiently small domain sizes, one feature
vector entry corresponds to one distinct value of some attribute. In our imple-
mentation of Algorithm 6, we recognize this case and set entries only to 0 or 1
(but not 1

2 ). For brevity, we omitted this aspect in Algorithm 6.
Further note that only line 6 of Algorithm 6 sets feature vector entries to

1
2 . In particular, for predicates of the form A ≤ c or A ≥ c, the partition
corresponding to c is always set to 1

2 , even in cases where the partition fully
qualifies. Similarly, for predicates of the form A < c or A > c, the partition
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corresponding to c might not qualify at all but is still set to 1
2 . To improve this

behavior, line 6 would need to be adjusted. A possible extension would then
also be to store in each entry the ratio of qualifying distinct values from the
corresponding partition, instead of only 0, 1

2 , or 1. For instance, if the partition
of an entry MA[i] corresponds to the values from 5 to 10 of integer attribute A,
then a predicate A ≤ 8, would set MA[i] =

8−5+1
10−5+1 = 2

3 .

9.3.3 Limited Disjunction Encoding

To the best of our knowledge, Limited Disjunction Encoding is the first QFT
that is designed to take both conjunctions and disjunctions, i.e. predicates con-
nected by AND as well as OR, into account. Limited Disjunction Encoding is
essentially a generalization of Universal Conjunction Encoding. Note that oth-
ers [94] have mentioned disjunctions, but only referred to the inclusion-exclusion
principle.

Before we present Limited Disjunction Encoding, we address its limitations
- the name already suggests that we cannot handle arbitrary disjunctions. We
restrict ourselves to the following class of queries:

Definition 9.3.2 (Mixed query). A compound predicate PA for some at-
tribute A is an arbitrary combination (AND/OR) of arbitrarily many simple pred-
icates on A. A mixed query is a conjunction of the compound predicates for
an arbitrary subset of attributes.

For example, the following mixed query asks for orders in the TPC-H dataset
from either 1994 or 1996, with July 4th excluded in both years, that are either
in progress (P) or finished (F) and with a price range from 1000 to 2000:
SELECT * FROM Orders WHERE

(o orderdate >= ’1994-01’ AND o orderdate <= ’1994-12’

AND o orderdate <> ’1994-07-04’

OR

o orderdate >= ’1996-01’ AND o orderdate <= ’1996-12’

AND o orderdate <> ’1996-07-04’) AND

(o orderstatus = ’P’ OR o orderstatus = ’F’) AND

(o totalprice > 1000 AND o totalprice < 2000);

Note that the query contains three compound predicates, each enclosed by
parentheses. Our example, as well as the original TPC-H and TPC-DS queries,
illustrates disjunctions with both categorical data and ordinal data. Note that
mixed queries do not have to follow a CNF or DNF form.

As for this class of queries, disjunctions occur only locally, i.e., per attribute,
it is sufficient for our approach to address them at this level. The key idea of
Limited Disjunction Encoding is to regard each conjunction in each compound
predicate as a query that can be featurized using Universal Conjunction Encod-
ing. Then, for each compound predicate, the per-conjunction featurizations can
be merged by taking the entry-wise max over all per-conjunction featurizations.
This merging technique captures the property that additional disjunctions make
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queries only less selective. As in the previous section, the final feature vector is
the concatenation of all per-attribute vectors.

Example: Recall table R from the example in the previous section. We fea-
turize the mixed query

SELECT * FROM R WHERE

(A > -2 AND A <= 30 AND A != 7 OR A >= 42) AND B >= 39.5.
The compound predicate on A consists of two conjunctions. For each con-
junction, a featurized representation is generated using Universal Conjunction
Encoding. In particular, A > -2 AND A <= 30 AND A != 7 is featurized to

0 1
21

1
2111

1
20000| {z }

−2<A≤30∧A̸=7

and A >= 42 is featurized to

0000000000 1
21| {z }

A≥42

.

The above per-conjunction vectors must then be merged by taking the entry-
wise max, i.e.,

0 1
21

1
2111

1
200

1
21| {z }

−2<A≤30∧A̸=7∨A≥42

The compound predicate on B only consists of B >= 39.5, which is regarded
as one conjunction. The featurized representation is

0000 1
211111111| {z }
B≥39.5

.

As in the example from the previous section, since attribute C is not mentioned
in the query, its featurization is the all-one vector 11. The concatenation of the
per-attribute vectors gives the final feature vector for the above mixed query:

0 1
21

1
2111

1
200

1
21| {z }

−2<A≤30∧A̸=7∨A≥42

B≥39.5z }| {
0000 1

211111111 11
no pred.

.

For the sake of brevity, we do not include per-attribute selectivity estimates,
which were illustrated in teal in the previous section.

Algorithm 7 outlines the implementation of Limited Disjunction Encoding.
As before, the input is query Q, and we start with a map from attributes to
vectors. Then, for each compound predicate cp, a vector with all entries set to
zero is created. The subroutine Attr(cp) returns the attribute of cp, and V
contains nAttr(cp) many entries. Recall that cp is a disjunction of multiple con-
junctions. Starting in line 4, each conjunction is regarded as a query that serves
as input to Algorithm 6, which returns a feature vector f . Then, to capture the
property that further disjunctions make queries only less selective, V is merged
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Algorithm 7 Query featurization using Limited Disjunction Encoding

FeaturizeLimitedDisjunction(Q)

1 Let M map attributes to all-one per-attribute vectors
2 for cp ∈ CompoundPredicates(Q)
3 Let V be an all-zero feat. vec. for attr(cp)
4 for d ∈ Split(cp, ”OR”)
5 f = FeaturizeArbitraryConjunction(d)
6 V = entrywise max(V, f)
7 M[Attr(cp)] = V
8 return Concat all(M)

by taking the entry-wise maximum for each entry in V and its corresponding
entry in f . For simplicity, assume that the subroutine entrywise max knows
which entries in f refer to V . The final per-attribute V is stored in M. As be-
fore, the concatenation of all per-attribute vectors gives the final feature vector
for input query Q.

Since merging feature vectors as in line 6 of Algorithm 7 directly resembles
the semantics of OR, and the feature vectors to be merged converge to a lossless
feature vector by Lemma 9.3.2, it follows that Limited Disjunction Encoding
converges to a lossless query featurization of mixed queries.

9.4 Implementation

This section outlines how we adopt different ML models to use our QFTs. In
our implementation, the code of the QFTs is independent of the ML model.
Hence, each ML model may use any QFT. As discussed in Section 9.2.2, we
focus on NN, MSCN, and GB models.

9.4.1 Local Models

The local model approach can be implemented with both NN and GB since
local models operate on sub-schemata and, therefore, can be any arbitrary ML
model [93]. We decide to use the original NN from [93] and a modified version
where each neural network is replaced by a GB model. Of course, we adjust the
necessary hyperparameters.

Extending NN and GB to use different QFTs is straightforward. The model’s
architecture remains as is and only the feature vectors presented to a model
change. To achieve this, the code pipeline is adjusted so that queries flow
through the configured QFT routine.
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9.4.2 Global Models

As a common representative for global models in cardinality estimation, we ex-
tended the MSCN [45] implementation to use our new QFTs. Since in MSCN
query featurization is intertwined with the model, we briefly outline our adjust-
ments.

To featurize a query, MSCN splits the components of the query and collects
them in three sets of feature vectors. The three sets of feature vector are: (1) a
set of featurized join predicates, as described in 9.2.1.2, (2) a set of pairs, each
consisting of a featurized table name, simply a one hot vector, together with a
base table sample vector (details below), and (3) a set of featurized selection
predicates. We briefly detail on the base table sample vector. First, note that
MSCN is not a purely synopses based estimator. Instead, if available, MSCN
additionally relies on base table samples. For a base table sample T ′

i ⊆ Ti of
table Ti, the corresponding base table sample vector has length |T ′

i |, where each
entry T ′

i,j is either 0 or 1. If the jth sample qualifies the selection predicates
from the query that refer to Ti, then T ′

i,j = 1, otherwise T ′
i,j = 0.

Our QFTs address the featurization of the selection predicates. The other
two vector sets remain untouched by our implementation. To retain the set logic
of MSCN, we featurize all selection predicates referencing the same attribute
into one feature vector. Each per-attribute feature vector is then labeled by
the attribute id and collected in a set. This set serves as the set of featurized
selection predicates for MSCN, exactly as in the original implementation [45].

9.5 Evaluation

This section presents our experimental evaluation. We evaluate all QFT × ML
model combinations. In the evaluation, we use two different data sets under
different query workloads. We evaluate estimation accuracy under different sce-
narios, take memory consumption into account, and compare our best QFT ×
ML model combination to other established cardinality estimators. In particu-
lar, we give empirical answers to the following questions:

• Which QFT leads to the best estimation accuracy?

• Does the number of attributes or selection predicates explain dispersion
in estimation accuracy?

• Does query drift impact estimation accuracy?

• Does the QFT choice impact training convergence?

• What is the time & memory cost of QFTs and models?

• What QFT × ML model combination do we recommend?

• How does our favored QFT × ML model combination compare to estab-
lished cardinality estimation techniques?
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Data sets & query workloads. We use two real-world data sets together
with corresponding query workloads. The first data set, forest cover type (for-
est) [56] is popular both in the machine learning and cardinality estimation
community and contains more than 580k entries with 55 attributes. For forest,
we generate a query workload with conjunctive queries, i.e., predicates con-
nected by AND. We draw k, 1≤k≤55 distinct attributes uniformly at random
and randomly generate a closed range predicate for each. Additionally, we gen-
erate l, 0≤l≤5 non-equality (̸=) predicates, for each of the k chosen attributes,
that exclude values from the aforementioned range, where l is drawn uniformly
at random. For instance, one of the queries from our evaluation is:
SELECT count(*) FROM forest

WHERE A7 >= 160 AND A7 <= 225 AND

A8 >= 45 AND A8 <= 237 AND A8 <> 220 AND A8 <> 186

In addition, we generate a second query workload with mixed queries, in the
sense of Definition 9.3.2. The generation is the same as for conjunctive queries,
except that we repeat the generation for the per-attribute predicates between
m, 1≤m≤3 times and concatenate them via OR. For an example see the query
below Definition 9.3.2. For both conjunctive and mixed queries, we generated
100k training queries and another 25k test queries.

As a second data set, the Internet Movie Database (IMDb) [53] is used.
IMDb contains data on more than 2.5 million movies with around 4 million
actors from more than 135 years. For testing, we use JOB-light, a collection of
70 hand-written SQL queries containing joins from [47]. The JOB-light queries
contain between 2 and 5 joins. The selection predicates are only conjunctions
of 1 to 5 predicates on 1 to 4 different attributes. The queries contain at most
one range per attribute. For training, 231k generated training queries are used.
In all query workloads, since training and test sets are disjoint, test set leakage
is avoided.

Error metric. We use the q-error metric [66], defined as max(xe ,
e
x ), to

measure the deviation between a cardinality x and its estimate e. The q-error
is a relative and symmetric metric. Essentially all relevant work on ML-based
cardinality estimation employs the q-error [28, 35, 38, 47, 93, 94]. In our evalua-
tion, we consider only queries with non-empty results, and all estimates are ≥ 1.
Hence, we can ignore that the q-error is undefined for zero inputs. Note that

the relative error |e−x|
x is an insufficient metric for its systematic preference to

estimators that underestimate [84].

Experimental setup. All QFTs are implemented in Python. For the NN,
we use the Keras/TensorFlow implementation provided by the authors of [93].
The GB models are built with lightGBM. MSCN and its modifications are built
upon the code published alongside the paper [45]. We ran all experiments on a
computer with a AMD A10-7870K Radeon R7 CPU, where we did not use the
integrated Radeon R7 GPU unit. The computer has 32 GB of main memory
and a NVIDIA Tesla K20c GPU. The neural networks are trained only with the
hyperparameters from their papers due to long training times. The GB models,



164 CHAPTER 9. QUERY FEATURIZATION

on the other hand, are trained with full hyperparameter tuning implying the
presented results are based on the best configurations.

Abbreviations. Throughout this section, the following abbreviations serve
as labels in plots:

simple Singular Predicate Encoding

range Range Predicate Encoding

conjunctive Universal Conjunction Encoding

complex Limited Disjunction Encoding

GB Gradient Boosting

NN Feed-Forward Network

MSCN Multi Set Convolutional Network

Unless stated otherwise, Universal Conjunction Encoding and Limited Disjunc-
tion Encoding use 64 per-attribute entries each.

9.5.1 Quality under All QFT × Model Combinations

In this section, we analyze the estimation accuracy of all QFT × ML model
combinations discussed in this chapter. Recall that the new QFTs presented
in this chapter are Range Predicate Encoding (range), Universal Conjunction
Encoding (conjunctive), and Limited Disjunction Encoding (complex). Singular
Predicate Encoding (simple) serves as a benchmark comparison. The QFTs
are combined with the ML models feed-forward neural network (NN), gradient
boosting (GB), and Multi-Set Convolutional Network (MSCN).

Figure 9.2 shows the estimation errors observed for the forest data set. As
usual, the bottom and top of a box are the 25% and 75% quantiles, and the
middle band is the median. The lower and upper whiskers show the 1% and 99%
percentiles, respectively. All boxplots refer to the conjunctive query workload,
except for Limited Disjunction Encoding. Limited Disjunction Encoding refers
to the mixed query workload, for which, to the best of our knowledge, no good
comparison exists. To indicate this difference, we separate the plots of Limited
Disjunction Encoding by a vertical line.

We note three things in Figure 9.2: (1) Given the Singular Predicate En-
coding and Range Predicate Encoding QFT, the local model choice, GB or NN,
does not make a significant difference. Note that for MSCN + simple, we show
the original model from [47] but without a sample. Here, MSCN clearly out-
performs GB + simple and NN + simple. (2) Given the Universal Conjunction
Encoding and Limited Disjunction Encoding QFTs, GB and MSCN outperform
NN. And (3), given the GB or MSCN model, Universal Conjunction Encoding
and Limited Disjunction Encoding clearly outperform the other two QFTs.

In Figure 9.3, we explore the estimation accuracy for different numbers of
attributes mentioned in the queries. We only show GB since NN underperforms
GB over all number of attributes and MSCN performs worse than GB on joins
queries, as will be shown later. Observe how the accuracy worsens for all QFTs
in the number of attributes. Further observe that Universal Conjunction Encod-
ing outperforms Singular Predicate Encoding and Range Predicate Encoding.
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Figure 9.2: Error distribution by QFT × ML model combination. Dataset is
forest. Limited Disjunction Encoding shows errors for mixed query workload.
All other QFTs are for conjunctive query workload.

Note that while disjunctions are generally regarded as challenging in cardinality
estimation, Limited Disjunction Encoding performs about as well as Universal
Conjunction Encoding.

Figure 9.4 shows the estimation accuracy by number of predicates in the
queries, again only for GB. Note that queries with two predicates refer to queries
with a single range predicate, one predicate for the lower bound and the other
one for the upper bound. Further, note that queries with three predicates refer
to queries with one closed range predicate from which one value is excluded by a
not-equal predicate. For its limited predicate encoding abilities, the observation
that only Singular Predicate Encoding struggles with two predicates meets the
expectation. Accordingly, as we go from two to three predicates, we observe a
spike in the 99% error quantile (upper whisker) of Range Predicate Encoding.
Observe that the accuracy further worsens as the number of predicates increases.
Universal Conjunction Encoding and Limited Disjunction Encoding perform
more consistently over varying numbers of predicates.

For queries containing joins, we report the JOB-light results in Table 9.1,
which shows for each QFT × ML model combination the errors of the mean, me-
dian, 99% quantile, and maximum. Since JOB-light consists of only 70 queries,
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Figure 9.3: Estimation errors per QFT in the number of attributes men-
tioned in the queries.

the 99% quantile contains all errors except the worst outlier. For the feed-
forward neural network model, Universal Conjunction Encoding significantly
outperforms the other two QFTs. Overall, the estimates of GB + range are best.
This comes as no surprise, since JOB-light queries contain at most one point
predicate or range predicate per attribute. Universal Conjunction Encoding
was configured to have 8 per-attribute entries for the NN and 32 per-attribute
entries for GB. Limited Disjunction Encoding is not shown since JOB-light does
not contain disjunctions and, hence, the feature vectors of Limited Disjunction
Encoding and Universal Conjunction Encoding are equal.

Recall from Section 9.2.1.2 that for queries containing joins, there is a differ-
ence between local and global models. While Table 9.1 shows only local models,
we address global models separately in Table 9.2 and focus on MSCN. MSCN
w/o mods refers to the original MSCN from [47]. MSCN + conj is a modified
version that uses our Universal Conjunction Encoding QFT. Observe that the
errors in MSCN, both on average and over all quantiles, are significantly re-
duced with our QFT. In addition, note the gap between the accuracy of global
and local models. Since the local model NN and the global model MSCN are
both neural network approaches, we again show NN + conj in the last line of
Table 9.2 to illustrate their difference. Observe that NN + conj has significantly
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Figure 9.4: Estimation errors per QFT in the number of predicates in the
queries.

lower errors than both MSCN w/o mods and MSCN + conj. Since the global
model MSCN struggles with joins, we recommend to use local models.

Recall that, in Universal Conjunction Encoding and Limited Disjunction
Encoding, we append per-attribute selectivity estimates to the feature vectors.
In Table 9.3 we investigate the effect of these estimates. For multiple QFT ×
ML model combinations, we show results obtained with per-attribute selectivity
estimates (w/ attrSel) and without per-attribute selectivity estimates (w/o at-
trSel). Note that in most cases the difference is marginal. However, the benefit
is that in all cases except one, the worst case error (max) is reduced.

9.5.2 Comparison with Other Estimators

We identified GB + Universal Conjunction Encoding as the best estimator for
conjunctive queries. For mixed queries (conjunctions and disjunctions), GB +
Limited Disjunction Encoding is our best estimator. In this section, we compare
our best query QFT × ML model combinations to the following estimators:

• Postgres is the cardinality estimator from PostgresSQL version 13.2., es-
sentially independence assumption.
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model + QFT mean median 99% max

NN + simple 144.47 10.67 2507.34 3331.07
NN + range 110.23 7.60 2050.50 3573.30
NN + conj 19.97 5.74 129.45 134.37
GB + simple 4.03 1.88 34.06 56.39
GB + range 3.92 1.65 29.77 45.51
GB + conj 8.88 1.52 106.10 114.55

Table 9.1: 70 hand-written JOB-light join queries

model + QFT mean median 99% max

MSCN w/o mods (global) 138.94 11.23 4209 5460
MSCN + conj (global) 119.83 5.26 1465 1811
NN + conj (local) 19.97 5.74 129 134

Table 9.2: JOB-light join queries: Local vs. Global Models

• Sampling is a 0.1% Bernoulli sample of the data. The sample is drawn
independently per query.

• Multi-set Convolutional Network (MSCN) without modifications, where
we did not use the optional sampling to solely judge the prediction accu-
racy of the ML model itself.

Recall that a detailed description of existing estimators is given in the related
work, Section 4.

Figure 9.5 shows our best and the competing estimators for both the mixed
and conjunctive query workload over the forest data set. In the plot, the query
workload is partitioned by the number of attributes in each query. We discuss
the Conjunctive Queries first. In the plot, note that all estimators lose accuracy
with an increasing number of attributes. The accuracy of the Postgres estimator
is worse compared to both ML approaches. For sampling, we observe a familiar
phenomenon: It works in most cases, but has large tail errors. MSCN performs
well, but the error varies a lot for different runs, as presented in [94]. Note,
though, the difference between MSCN and our approach (GB + conj ). In some

model mean median 99% max

GB+conj w/ attrSel 2.65 1.12 20.19 4709.14
GB+conj w/o attrSel 2.93 1.23 25.78 3876.95

GB+comp w/ attrSel 2.95 1.11 18.31 6051.11
GB+comp w/o attrSel 2.92 1.06 16.00 8823.52

NN+conj w/ attrSel 3.65 1.36 19.80 23912.81
NN+conj w/o attrSel 4.00 1.28 16.93 38377.30

NN+comp w/ attrSel 5.08 1.21 37.54 16482.75
NN+comp w/o attrSel 39.74 3.20 268.39 246047.41

Table 9.3: Effect of per-attribute selectivity estimates
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Figure 9.5: Our best QFT × ML model combinations (GB + conj./complex)
are compared to established estimators. We consider both query workloads
(conjunctive and mixed) for the forest data set. The figure shows the q-error
distributions for different numbers of attributes in the queries.

cases, as specified by the number of attributes, we significantly outperform
MSCN.

Looking at the Mixed Queries, we again note that all estimates worsen in
the number of attributes mentioned in the queries. We observe that the Post-
gres estimator performs worst. For sampling, we again note bad tail errors. Our
approach (GB + complex ) has a slightly larger median and 75% error but signif-
icantly lower 99% errors than sampling. Since the standard implementation of
MSCN does not support disjunctions, its performance cannot be demonstrated
for this query workload.

9.5.3 Feature Vector Length

This section compares the accuracy of Universal Conjunction Encoding with
different feature vector lengths and their respective memory consumption. In
Section 9.3.2, we discussed that the number of per-attribute entries in the feature
vector is a free parameter that can be varied. Table 9.4 shows the results
for the JOB-light query workload for {8, 16, 32, 64, 256} per-attribute entries.



170 CHAPTER 9. QUERY FEATURIZATION

no. entries mean median 99% max

8 16.98 1.63 149.51 169.90
16 11.49 1.52 111.61 123.06
32 8.88 1.52 106.10 114.55
64 20.13 1.90 278.45 313.93
256 86.68 1.69 1347.91 1539.26

Table 9.4: Accuracy for different feature vector lengths

Note that one additional entry is always used for the per-attribute selectivity
estimate (printed in teal in the illustration in Section 9.3.2). The ML model
used is gradient boosting. We observe that, for the JOB-light workload, the best
choice is 32 per-attribute entries for Universal Conjunction Encoding. When the
number of entries is smaller than 32, information loss dominates, i.e., the feature
vector is too far away from a lossless query featurization, thus causing larger
errors. For more than 32 entries, the ML model struggles to learn the patterns
encoded in the feature vector, which happens when the feature vector is too
long, given the number of training queries.

9.5.4 Concept Drift

This section is concerned with how well eight QFT × ML model combinations
generalize to unseen input/output pairs. In particular, concept drift describes
the change of input and/or output characteristics. We make the following ob-
servation.

Key observation. At any point in time, the data stored and/or queries exe-
cuted in a DBMS may change abruptly and drastically.

This observation does not apply to all machine learning tasks. For instance,
cats in image recognition usually do not change their shape abruptly and dras-
tically (evolution takes time).

9.5.4.1 Query Drift

This section presents an experiment where we simulate query drift. In this
experiment, we use query workloads with different characteristics for training
and testing. In particular, we use low-dimensional queries for training, i.e.,
queries mentioning at most two distinct attributes per query. For testing, we
use high-dimensional queries, i.e., queries mentioning at least three distinct
attributes per query. Here, the changed feature vectors are query drift for the
ML model. In particular, the more attributes mentioned in the predicates of a
query, the fewer entries are set to 1 in the query’s feature vectors. In addition,
the output characteristics, i.e., the query result sizes, change, which makes it
hard for a model to generalize. The low-dimensional queries, used for training,
have a mean query result size of 174 566 and 307 093 for the conjunctive and
mixed workload, respectively. The high-dimensional queries, used for testing,



9.5. EVALUATION 171

GB NN

1
2

3
5

8

sim
ple

range

conjunctiv
e

complex

sim
ple

range

conjunctiv
e

complex

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

1e+01

1e+03

1e+05

q
e
rr

o
r

Figure 9.6: Training on queries with up to two attributes in query. Testing on
queries with at least three attributes. Not all featurization/model combinations
compensate this query drift well.

however, have mean query result sizes of only 79 805 and 131 376. Hence, in
order to maintain a good estimation accuracy during testing, the model must, on
average, produce estimates less than half as large as during training. Figure 9.6
shows the corresponding plots. The rows with 3, 5, and 8 attributes correspond
to the test queries. The rows with 1 or 2 attributes correspond to the training
queries, which we normally do not show, but are meant to illustrate the impact
of the query drift. For GB, all featurizations generalize notably well. This
can be observed by comparing Figure 9.6 to Figure 9.3, which shows the same
aspects, but without query drift. When taking a closer look, we note that the
99% quantile error for the 8-attributes case is larger in Figure 9.6 than it was
in Figure 9.3.
The right column of Figure 9.6 illustrates the case for the NN. For NN, a clear
difference between low-dimensional training queries (≤ 2 attributes) and high-
dimensional test queries (> 2 attributes) can be noted. The notable difference
indicates that the NN overfits during training. In addition, the overfitting effect
seems less severe for Limited Disjunction Encoding (complex) and Universal
Conjunction Encoding (conjunctive) than for Range Predicate Encoding (range)
and Singular Predicate Encoding (simple).
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training GB
queries conj comp range simple

10k 5.96 4.71 58.23 76.93
20k 4.31 4.11 56.07 63.98
30k 3.83 3.79 45.82 58.32
40k 3.43 3.83 43.74 54.23
50k 3.24 3.72 32.48 51.20
100k 2.93 2.96 32.50 47.29

training NN
queries conj comp range simple

10k 28.44 17.91 283.20 386.20
20k 19.70 12.18 232.70 325.50
30k 13.15 10.44 98.17 267.80
40k 19.56 5.88 70.69 313.70
50k 8.32 4.45 57.37 149.02
100k 5.71 5.08 74.2 130.3

Table 9.5: Average estimation error for different model/size/featurization com-
binations. Forest data set.

9.5.4.2 Data Drift

Over time, the data stored in a database changes and all cardinality estimators
become outdated. In ML, this is known as data drift. This section discusses how
to react to data drift. We start by reporting measured run times for learning
an estimator for 125k mixed queries for the forest data set. Note though that
only 100k of the queries are used for training.

Generation/execution ≈3.5 days

Featurization ≈1.5 minutes

Training GB: 6 sec, NN: 22 min, MSCN: 41min

Based on these numbers, we conclude that how to obtain queries and result
cardinalities is critical. In Snowflake [81], queries and their result cardinalities
can be derived from query logs or profiles. Featurization and training are rather
cheap, in particular for estimators like GB. Since reinforcement learning is slow
when looking at cumulated run times [71], we simply recommend to reconstruct
models after data drift occurred. For deciding when to reconstruct, we recom-
mend to follow Larson et al. [52], who propose to base the decision on query
feedback.

9.5.5 Training Convergence

We report on how the average error changes in the number of training queries
in Table 9.5. First, we observe that for all QFT × ML model combinations,
the average error decreases, as the number of training queries increases. Next,
note that the errors for NN are significantly larger than for GB. Finally, observe
that, given the number of training queries, Universal Conjunction Encoding and
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QFT Simple Range Conj. Comp.

µs per query 21.6 29.7 43.2 72.9

Table 9.6: Time consumption of QFTs for forest dataset

Limited Disjunction Encoding have significantly smaller average errors for both
GB and NN than the other QFTs.

9.5.6 Time & Memory Consumption

In Table 9.6, we report on the time consumption of each QFT. The table shows
the average time to featurize the forest workload queries. We note two things:
(1) All QFTs run fast. All QFTs take significantly less than 100µs to featurize
a query. (2) The time to featurize a query grows in the complexity of the QFT,
with Singular Predicate Encoding being the fastest and Limited Disjunction
Encoding being the slowest.

In our experiments, the average time each ML model takes to estimate the
result cardinality of one query is 26µs for GB, 29µs for NN, and 33ms for
MSCN. In addition, we list the estimation times reported in [28, 47, 94]. Dutt
et al. observe an estimation time of around 100µs for GB and NN. For MSCN,
Kipf et al [47] report estimation times of ”a few milliseconds” while Yang et
al [94] report a median estimation time of around 20ms. We suspect the factors
that explain the differences are machine architecture, implementation details,
and the queries considered.

We also report on the memory consumption of each estimator considered in
this evaluation. Since Postgres relies on independence and uniformity assump-
tions, its estimator’s memory footprint is negligible. For sampling, the size of a
0.1% sample depends on the data. For the forest dataset (142 MB in the Postgres
DB), the sample consumes around 142 kB. For MSCN, we report the number
of trainable parameters used for the selection predicates. In general, MSCN
learns 8 linear transformations, implemented via torch.nn.linear, where the
trainable parameters are the entries of a matrix and a bias vector. Two linear
transformations are responsible for selection predicates and we only report their
memory footprint. The bias vector of the two linear transformations has 256
entries each and the matrices have the dimensions (55+4)× 256 and 256× 256,
resulting in a memory footprint of 320 kB for the trainable parameters, where
we assumed only float32. Gradient boosting (GB) is the smallest estimator with
only 4.8 kB memory consumption. Thus, we confirm results from [28], who ob-
served that ML models can be small. The NN is the largest estimator with a
footprint of more than 1 MB.

9.6 Discussion

This section discusses extensions and limitations of our approach to make it
applicable for general-purpose cardinality estimation.
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GROUP BY clauses. To the best of our knowledge, thus far, only Kipf et
al. [46] covered GROUP BY clauses in ML-based cardinality estimation. However,
GROUP BY clauses can significantly impact query result sizes. We outline how
to featurize GROUP BY clauses such that combination with any QFT is easy.
Suppose a binary vector with as many entries as attributes in the table under
consideration, and we have defined some arbitrary mapping from attributes
to vector entries. Then, this vector exactly describes the GROUP BY clause by
setting the entry of each of the grouping attributes to 1. For instance, suppose
we have the 5 attributes A1 to A5, then 01010 exactly corresponds to the clause
GROUP BY A2, A4.

Note that cardinality estimation for queries containing aggregations, like
min/max/avg, but no GROUP BY clause is simple: The query result size is al-
ways 1.

String predicates. Universal Conjunction Encoding and Limited Disjunc-
tion Encoding support string predicates of the form C like a %. Consider, for
example, a column where all entries are strings of lower case letters, i.e., [a-z]*.
With 26 entries in the per-attribute vector, each entry corresponds to the most
significant letter of a word, e.g. words starting with d are represented by the
fourth entry. For enhanced accuracy, more entries can be used, e.g. one can
have 26*13 entries and the first entry corresponds to all words starting with aa

and ab, but words starting with ac correspond to entry 2. Predicates like C

like %a , however, are not supported.
Multi-dimensional histograms. Recall that for Universal Conjunction

Encoding and Limited Disjunction Encoding, we partition each attribute do-
main. Then, each partition is represented by an entry in the feature vector.
It should be noted that this is essentially the same as defining a bucketing
scheme for a multi-dimensional histogram, where buckets correspond to rectan-
gular partitions, as in [21]. Training using Universal Conjunction Encoding or
Limited Disjunction Encoding then essentially means to learn the frequencies
in each partition. The similarity between multi-dimensional histograms and
ML-models for cardinality estimation was noted before [28].

9.7 Summary

We presented three new query featurization techniques (QFTs) and their impact
on learning-based cardinality estimation. To the best of our knowledge, we are
the first to consider queries containing both conjunctions and disjunctions of
predicates for learning-based cardinality estimation. Previous QFTs either do
not support disjunctions or only by rewriting to conjunctions. One key aspect
of our work is to formally define desired properties of QFTs, i.e., lossless query
featurization. Our QFTs are derived from this definition. The experimental
evaluation indicates that using our QFTs leads to more accurate cardinality
estimates. We find that our QFTs are robust since we examine the query work-
loads from different view points, like the number of predicates, attributes men-
tioned, and also query drift. In addition, our QFT × ML model combinations
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compete well against established cardinality estimators. We demonstrated that
our QFTs are model-independent by using them as a plug-in featurization layer
for existing ML models. Hence, other researchers may choose to use our QFTs
for their work on ML models.
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Chapter 10

Conclusion and Outlook

In this thesis, we presented multiple novel cardinality estimation techniques. In
the following, we summarize our contribution. The first contribution is CSE
from Chapter 5, a novel approach to combine sampling with synopses for the
purpose of estimating the selectivity of conjunctive queries. CSE proved to be
a robust estimator with estimates at least as accurate as the estimates of the
best competing estimator. Then, to the best of our knowledge, Chapter 6 pre-
sented the first detailed comparative analysis of intersection size estimation via
AKMV sketches and HyperLogLog sketches. We found Binomial Mean Lookup
to be a well-suited estimator for intersection size estimation. In Chapter 7, we
presented a technique to estimate the size of a key/foreign-key join of two fil-
tered relations. The key to derive a join size estimate is a memory-efficient data
structure, the bucket sketch, which we have used to estimate the intersection
size of two attribute sets after a selection predicate. Then, in Chapter 8, the
focus shifted to multiple join queries. We presented an estimator that relies
on two novelties. First, new operations for AKMV sketches. Second, trans-
lation grids, which track combinations of hashes from two AKMVs in a way
that allows to approximate the joint existence distribution of two attribute sets.
Finally, Chapter 9 presented three new query featurization techniques and their
impact on learning-based cardinality estimation. To the best of our knowledge,
we were the first to consider queries containing both conjunctions and disjunc-
tions of predicates in the context of learning-based cardinality estimation. After
testing queries with a varying number of predicates and attributes mentioned
in a query, as well as varying result cardinalities, we found that our query fea-
turization techniques are not just versatile, but also robust.

For future work, we see multiple directions. For CSE, it would be interesting
to combine samples and synopses of base tables for the purpose of join selec-
tivity estimation. Another possible direction of research in the area of join size
estimation is the design of further methods for intersection size estimation and
average multiplicity estimation. In particular, methods that are more versatile
with respect to the selection and join predicates supported. For the multiple
join size estimation approach using translation grids, it would be important to

177



178 CHAPTER 10. CONCLUSION AND OUTLOOK

solve the problem of having AKMVs with either zero tracked hashes or only
tracked hashes with a multiplicity of zero. This problem relates to sampling-
based approaches with zero qualifying samples. In terms of query featurization
for machine learning models, we see research to support arbitrary disjunctions
of predicates, instead of only certain disjunctions, as relevant future work. In
addition, we see queries with nested sub-queries, arbitrary string predicates, or
group-by clauses as a relevant research direction.
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