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1 | INTRODUCTION

In mathematical biology and mathematical ecology, one of the significant topics is to discuss the
long-term coexistence between two or more species. Particularly, it is important to study the long-
term coexistence of predator-prey systems. It is renowned that biological diversity has become
increasingly important at present such as reducing the risk of natural hazard, safeguarding natu-
ral resource (timber, water, and coal) security, and so on. Cross-diffusion systems in the last few
decades have received the best treatment to simulate the spatial-temporal patterns by the scien-
tists in many fields. In this work, we study the following strongly coupled cross-diffusion system
without self-diffusion:

rc3tu = D0, (u + duv) + F(u,v), x € (0,L), t >0,
0;v = 0,(Dy0,0 — yo(u,v)o,,u) + G(u,v), xe€(,L), t >0,

< du(x,t) =0d,v(x,t) =0, x=0,L, t>0, @
u(x,0) = uy(x), v(x,0) = vy(x), x € (0,L).

The population densities of prey and predator are denoted by u(x, t) and v(x, t), respectively. D;
and D, are both positive constants and stand for the diffusion rates of prey and predator. y is a
prey-taxis parameter. The reaction functions are given by F and G. The main purpose of this paper
is to study the bifurcation analysis with respect to d and y constants.

In this paper, we assume that F(u,v), G(u,v), and ¢(u,v) fulfill F,G € C*(R xR;R), ¢ €
C3(R x R;R), and satisfy the following hypotheses:

(H1) F(u*,v*) = G(u*,v*) = 0 for some u* > 0, v* > 0: system (1) always possesses an interior
(positive) constant equilibrium (u*, v*);

(H2) F;; <0G, < 0: the effect of crowding since the carrying capacity of environment is limited;

(H3) F}; <0G, > 0: the dynamical behavior of population since predators hunt preys,

where we use notations

55 (WU, o = =, 00), Fiy = o= (u,v%), - 2)

Fi=
ov

Y du
as the partial derivatives of F evaluated at (u*, v*) and the same for G, which are also applicable
throughout the rest of this work.

Our main theoretical contribution utilizes for model (1) in its general form, and our numerical
tests are delivered for this model comprising double Beddington-DeAngelis functional responses
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or Beddington-DeAngelis and Tanner functional responses, that is,

uv cuv
Fu,v)=u—-u>- ——, Gu,v) = —dv+ —,
(u,0) 1+au+pv (w.0) 1+au+pv

or (3)
2

duv G(u,v) =ryv — >

F(u,v) = rju — bu?> - ———,
w0)=r 1+au+pv yu

Here, b, c,d, r1, 175, a, 8, ¥, and ¢ are all positive constants.
The multidimensional version of (1) reads

’6[u = D;A(u + duv) + F(u,v), xeQ, t>0,

0,v =V -(D,Vuv— yp(u,v)Vu) + G(u,v), x€Q,t>0,
< Opu(x,t) = 9,v(x,t) =0, x€oQ, t>0, @

u(x,0) = ug(x), v(x,0) = vy(x), xeQ,
where Q denotes a bounded domain in R"(n > 1) with C* boundary 0Q. The divergence oper-
ator can be described by V = (6871’ 6672, s %) and the Laplace operator can be defined by A =

42 -
2?—1 Pt The outer normal derivative can be regarded as d,,.
=1 3.

Model (4) can be utilized to model the temporal and spatial evolution process of population
densities of predator and prey in a higher-dimensional space. It simulates the ecological case
that predator species diffuse by a combination of advection and pure diffusion and prey species
diffuse by cross-diffusion. Here, the advection is along the gradient of prey population density.
Accordingly, when predator forages prey prey-tactically, we can term this directed movement as
prey-taxis. D; and D, are two measurements which illustrate the tendency of random dispersals
of prey and predator; the positive constant y reflects the rate of intrinsic tactic interaction, and the
bivariate function ¢(u, v) describes the strength of tactic interaction with respect to u and v. Local
kinetics functions F(u, v) and G(u, v) proposed by (3) are of the Beddington-DeAngelis and Tan-
ner type functional responses which were introduced by Beddington,' DeAngelis,” and Tanner?
almost simultaneously. Biologically speaking, the homogeneous Neumann boundary condition is
applicable when and only when the habitat is hermitic; thus, the population migration across Q
is impossible. The remaining coefficients in (4) possess the following meanings in biology or ecol-
ogy: r; and r, are the intrinsic growth rates of prey and predator, respectively; a can be regarded
as the degree of saturation for an alternative prey; 8 can illustrate the interference of predator;
y can be treated as the carrying capacity of natural environment for the predator with respect to
food quality provided by prey; § measures the consumption rate. We refer the reader to Ref. 4 and
the references therein for further studies for Beddington-DeAngelis and Tanner systems and the
model coefficients.

Without loss of generality for our theoretical research, we consider nonconstant steady states
of system (1) in 1D comprising abstract kinetics functions, though our main results carry over
to a higher-dimensional space. Particularly, we perform the numerical results of model (1) with
Beddington-DeAngelis and Tanner functional responses (3). In addition, it is obvious via a direct
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calculation that model (1) possesses a unique positive equilibrium (u*, v*), where

[ria = b+ ryy(rf — O] + VIria — b + ryy(r1f — 8)12 + 4bri(a + r,fy)
2b(a + ryBy) ’

W= vt =ryyu’,

or

_ad+fe—c+/(ad+pc—cP+4fcd | (1 —ut)ut
- 28¢c T d ’

u*

©)

In Section 5, we, for double Beddington-DeAngelis functional responses, still postulate that
c>dl+a), (6)

which is necessary for ensuring u* < 1 and v* > 0, that is, the existence of a positive equilibrium.

1.1 | Systems without cross-diffusion and prey-taxis

For planar differential systems (two-component predator-prey ordinary differential equation
(ODE) models), if they possess a unique interior equilibrium, we generally postulate that global
stability and local stability of these equilibria are equivalent. As proved by Hsu and Huang,” this
hypothesis can be valid for the corresponding ODE model. In 2018, Luo ° constructed a trans-
formation w = 2 to prove the global stability of the equilibrium by utilizing scalar parabolic
techniques suchxas comparison principle and iteration method. Unfortunately, it is verified in
Ref. 7 that global stability and local stability are not equivalent generally for the corresponding
ODE model. It is spectacular that the researchers in Ref. 7 proposed a detailed bifurcation analy-
sis, that is, the presence of branch G of two limit cycles embracing the interior equilibrium which
possesses local stability and presence of a bifurcating branch S of semistable limit cycles. In 1988,
two mathematicians and an ecologist considered a temperature-dependent model for predator-
prey mite outbreak interactions on fruit trees,® and their numerical tests have been confirmed
due to the coexistence of persistent oscillations and stable equilibrium. For further bifurcation
analysis, the reader can refer to Refs. 9, 10 and the references therein.
Ifd = y = 0, model (4) degenerates to the corresponding pure reaction-diffusion model

0,u = D;Au + F(u,v), xe, t>0,
0, = D,Av + G(u,v), xeQ, t>0,
J ™
Opu(x, t) = dpv(x,t) =0, xeodQt >0,
u(xa 0) = uO(x)’ U(x7 0) = UO(x)7 X e Qa

and it has been widely investigated by many biologists, ecologists, and mathematicians. As previ-
ously mentioned, the global asymptotic stability has been proved by Luo ® under the circumstance
of multidimensional bounded region. In addition, the permanence of two-component system is
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possible due to the persistence of unique positive equilibrium.* The nonexistence and existence
of nonconstant steady states can be derived by utilizing energy technique and degree approach
and involving a priori estimates. In 2005, Peng and Wang ' have demonstrated that model

. _ 3,2 Sw
(7) with F(u,v) = ryu — bu TrawtBo’

Tanner system) possesses no interior nonconstant steady states if one of the following situations

2
G(u,v) =rv — ;—u, and 8 = 0 (the renowned Holling-

can be satisfied: D; is large or & is small, or D, is large and r,y < % or % =r,y > r;. Neverthe-
less, system (7) with 8 = 0 exists positive nonconstant steady states if D, is large enough and the
remaining coefficients must be controlled within a reasonable scope. It is easy to expand these
parameter conditions in parallel for the discussion of (7). Two years later, they also proposed that
the homogeneous equilibrium (u*, v*) of (7) with 8 = 0 has locally asymptotic stability when

1\’ 2(r1 + 1Y)
1+
(1) + 252 ®
and it possesses global stability when the rest of parameters have been selected in a suitable inter-
val. By applying an interesting iterative method, the global stability theorem has been improved
by Qi and Zhu.!> More precisely, Theorem 1 in Ref. 12 claims that the positive equilibrium pos-
sesses globally asymptotic stability when d = d(x, t) is strictly continuous, bounded and positive
in Q % [0, 00) and % < 1. Accordingly, under these circumstances, the nonexistence of non-
n

constant steady states has been proved. Hopf bifurcation and Turing instability of both partial
differential equation (PDE) and ODE systems have been studied by Li et al.'* A step further,
they obtain presuppositions to guarantee the stability of the bifurcating periodic solution and
decide the direction of bifurcation. In addition, bifurcation analysis, such as Hopf bifurcation and
steady-state bifurcation, has been described by Ma and Li.'* Traveling-wave analysis of (7) with
B = 0in 1D is released by Ghazaryan et al,"> where fronts are structured by applying the theory
of rotated vector fields and geometric singular perturbation theory. Finally, by utilizing a recent
generalization of the entry-exit function, they have also constructed periodic traveling waves of
relaxation oscillation type. We must point that there are abundant works on reaction-diffusion
predator-prey models.

When $ > 0, it means that the mutual interferences from predator will be considered. Conse-
quently, we are convinced that it is useful and profound to simulate system (7) since it contains
the former simulations and extends them.

1.2 | Cross-diffusion models with prey-taxis

With the fast developments of modern sciences, pure reaction—diffusion models could not meet
demands to rapid renewal of techniques. There are numerous researches focus on other kinds of
diffusive models to beyond traditional reaction-diffusion processes such as the well-known prey-
taxis, Shigesada-Kawasaki-Teramoto (SKT) cross-diffusion'® and advection in bio-mathematics.
The general SKT cross-diffusion system is described by

{atu = A[(Dl + dllu + dlzv)u] + F(u, U),
©)

0;v = A[(D;y + dyu + dyyv)v] + G(u, v),
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where D; (i = 1, 2) stand for the diffusion rates of species u or v; d;; (i = 1, 2) are the self-diffusion
rates of species u and v, respectively; d;, and d,; are the cross-diffusion rates of species u and v,
respectively. F(u,v) and G(u, v) can be treated as two local kinetics functions. u(x, t) and v(x, t)
are the population densities of preys and predators in location x and at time ¢. At first, it was pro-
posed in 1979 and utilized to simulate spatial segregation mechanisms of creatures in dynamics of
population. Cross-diffusion effect illustrates the species flux generated by mutual interferences.
From a particle standpoint, d;, and d,; may be negative and positive. In the same way, the pop-
ulation moves toward higher density of another population if the cross-diffusion rate is negative
and the species tends to lower density of another species if the cross-diffusion rate is positive.
Unfortunately, nearly all researches in biomathematics have a confusing hypothesis that d > 0
for convenience of discussion or realistic principle in biology.'’->* Therefore, their models cannot
illustrate various phenomena in a precise way. If all creatures are profit and avoid loss, then why
there exist suicide phenomena? Profiting and avoiding loss is to survive, which contradicts suicide,
and suicide is not a rare phenomenon. “The survival of the fittest,” proposed by the renowned
British biologist Darwin, is a slogan that virtually preempted all debate. Biologically speaking,
death means elimination, particularly for the weak. For instance, walruses or lemmings would
plan to kill themselves, which is termed as suicide clusters phenomena. In light of this, d < 0 can
be used to explain abnormal or extreme phenomena in biology and ecology.'”-**

Another apparent ecological property of predator is their capacity of detecting the distribution
in space of prey, and then hunting their food in high density via taxis mechanism. In 1987, Kareiva
and Odell > have first introduce the prey-taxis model. This complicated phenomenon is renowned
to be significant in natural cybernetics. Sapoukhina et al ?° pointed out that prey can be obtained
by predator under a lower level economic threshold. One significant theoretical issue in predator—
prey relationship is to determine circumstances on the distributions in space and coexistence of
predator and prey, especially for heterogeneous patterns. We need to indicate that taxis mecha-
nism does not lie solely in predator-prey model. It also exists in chemotaxis, quantum physics, and
so on. Chemotactically speaking, biological cells move along or against the concentration gradient
of chemicals. The generalized reaction-diffusion model comprising prey-taxis can be performed
as

2_1; =D;Au+ y;V - (uVv) + F(u,v),
; (10)

where y; > 0 are the taxis coefficients of prey (i = 1) and predator (i = 2), respectively. The other
coefficients or functions are the same as in SKT model (9). Mathematical researches and numer-
ical simulations of these models have been proposing and improving quickly during the past
two decades. From a mathematical standpoint, spread or directional migration of population can
be simulated by cross-diffusion model or advection system by comprising prey’s density gradi-
ent. In 1987, two American zoologists 25 introduced a mechanistic method, simulated as partial
differential equations comprising advection effect and spatial diffusion, to describe and under-
stand that the aggregation of predator can be impacted by restricted searching area. A great
number of reaction-diffusion models have been introduced and studied to simulate predator-
prey interactions with taxis effect from then on. For instance, by comprising different kinetic
functions, systems with prey-taxis in the form of (4) have been discussed by several researchers
(see Refs. 27-32). The researchers of these literatures devote to global existence, bifurcation
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analysis, traveling waves, and pattern formations. Predator-prey cross-diffusion systems have
been studied extensively by Refs. 33-37. There also exist numerous articles on two species chemo-
taxis systems,** " three species (two-prey and one-predator, or one-prey and two-predator)
systems with prey-taxis ** and without prey-taxis.* =4

Consequently, it is theoretically significant and ecologically realistic to research the pattern
formation of (4) in view of cross-diffusion effect and prey-taxis interaction, especially for the devel-
opment course and pattern structure of the corresponding coexistent interior steady states which
reveal fascinating spatial patterns. Furthermore, we will exhibit in Section 5 that cross-diffusion
models with prey-taxis possess abundant patterns as indicated by Refs. 17, 45, 46 (chemotaxis sys-
tems with logistic growth). For more detailed references about chemotaxis, we refer readers to the
review papers.*” *® To sum up, we need to take various factors into consideration when studying
and simulating these biomathematical models.

1.3 | Volume-filling and group defense

The binary function ¢(u,v) can illustrate the intension of tactic interaction, and it also acts a
significant role in the spatial pattern formations of (1). In 2009, Lee et al*’ shows that positive
spatial patterns generated by homogeneous solution will be inhibited by tactic interaction for
¢* = (u*,v*) > 0. Recently, Wang et al* further demonstrates that patterns can be supported by
tactic interaction for ¢* < 0. It simulates an unambiguous type of naturally realistic predator-
prey interactions of prey’s swarm defense or volume-filling (avoiding chronic overcrowding) in
predators. Volume-filling can be regarded as the hypothesis that predators would not move toward
high-density regions. Accordingly, it avoids overcrowded situation. From a living organisms stand-
point, readers are advised to refer to the relative works of Hillen and Painter™” °! and the references
cited therein. To simulate this impact, we have to propose the following two assumptions:

(1) For any v > 0, we have ¢(0,v) > 0;
(2) Forallu > M;, ¢(u,v) < 0, where M, is a positive constant.

That is remarkable when compared with the simplest prey-taxis term yV - (VVu) (see Refs. 10, 17,
28, 52).

Another significant property of predator-prey models is the power of preys’ group defense. It
certainly depends on the large amount of them. Preys will be attacked by predator if the number
of prey is not enough, but going overboard is kind of a turn off. Preys can also attack predators for
keeping predators away from their area if the amount of predators is not enough. It means that
the relationship between predator and prey is relative, that is, their statuses can be converted each
other under certain conditions. To model this relationship, we need to suppose d can be negative.
This defense behavior depends on population density may result in a transformation to repulsive
effect at high population density by intuition. For group defense mechanism, readers are advised
to refer to the relative works>> >* and the references cited therein. To illustrate this mechanism,
we have to introduce the following two assumptions:

(3) For any u > 0, we have ¢(u,0) = 0;
(4) Forallv > M,, ¢$(u,v) < 0, where M, is a positive constant.
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We need to indicate that it is sufficient to postulate that ¢* < 0 since we consider group defense or
volume-filling for theoretical analysis. In addition, spatial-temporal patterns will occur and form
one of positive solutions if the tactic effect is negative and strong. In Section 5, by setting ¢(u, v) =
uv(M — u), we describe the spatial-temporal pattern formations of our numerical examples.

1.4 | Structure of the paper and main results

The main results of this work are the existence and stability of positive nonconstant steady states
of (1) under hypotheses (H1)-(H3). More precisely, we studied the influences of d on the y bifur-
cation, which is explicitly given in Section 5.2, and vice versa y for d bifurcation. The organization
of the paper are as follows. First, we introduce linear stability of the unique interior equilibrium
(u*,v*) corresponding to (1) in Section 2. This theoretical analysis points out that cross-diffusion
effect can also stabilize the positive equilibrium when the cross-diffusion is repulsive (d > 0) or
attractive (d < 0). This contains and extends the work of Li,'” where the positivity of d is needed.
In addition, if d = 0, we can observe that taxis interactions also have similar influence generated
from swarm defense of prey and volume-filling of predator, that is, prey-taxis destabilizes the pos-
itive equilibrium if y¢(u, v) < 0 (prey-taxis is repulsive), and taxis effect stabilizes predator-prey
interaction (see Ref. 30) if y¢(u,v) > 0 (prey-taxis is attractive). This contains and extends the
research of Lee et al.?? In Section 3, we conduct the bifurcation analysis and obtain the existence
of nonconstant steady states of (1) by treating d and y as a bifurcation parameter. Section 4 gives
a detailed analysis about stability of those positive bifurcating solutions. Section 5 proposes sev-
eral numerical examples of (1) with Beddington-DeAngelis and Tanner functional responses to
describe and verify our main results. Finally, we give a conclusion of the current theoretical results
and propose discussions for future research projects.

2 | LINEARIZED INSTABILITY DRIVEN BY CROSS-DIFFUSION AND
PREY-TAXIS

For studying the spatial-temporal pattern formations of generalized 1D system (1), we utilize a
technique which is originally applied to analyze the homogeneous solutions’ stability. By the
transformation (U, V) = (u — u*,v — v*), one gets the approximative system
U, =~ Di(1+dv*)U,y + D1du*V,, + F, U+ F,;V, xe€(0,L), t >0,
Vim DV — x¢"Uyxyx + G.U + GV, x e (0,L), t >0, 1)
U,(x,t) =V, (x,t) =0, x=0,L, t>0.
Here and throughout the rest part of this work, we define ¢* = ¢(u*,v*) for convenience.
Accordingly, we can derive the stability matrices via (11) as follows:

kr 2 km 2
_D1(1+dv*)<f> +F, —D1du*<T) +F;
M, = , kEN, (12)

2 2
L kT " kr %
X¢<T> + G, —D2<T> + G,
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and the homologous characteristic equation for u can be performed as
u? = Tr(M;)u + Det(M;) = 0. (13)
Here,
kr 2
Tr(M}) = —[D;(1 4+ dv*) + D, ] (T) + Fi + G, (14)

and

K\ K\ K\
Det(Mk)=<D1(1+dv*)<Tn> —F;><D2<Tﬂ> —G§>+<D1du*<%> —F;j>
2
()(45*(]%”) +G£i>

(15)
4 2 2
k (K [k ,
=D1D2(1+du*)<Tﬂ —D1(1+dv*)G{,"(Tﬂ> —DZF;;<T”> +FIG!
4 2 2
+D1du*)(¢*<kTﬂ> +D1du*G;j<kL—ﬂ> —)(¢*F{§<k%r> —FiG;.
—(D1+D,)

Thanks to the hypothesis (H2), we can notice that Tr(M} ) < 0 for each k € Nwhen d > 5
1

Consequently, M, possesses an eigenvalue u(k) and Re(u(k)) > 0 if and only if Det(M;) < 0.

—(D1+Dy)

1
from the present studies about cross-diffusion system. Almost all the existing literatures in math-

ematical biology have postulated that the cross-diffusion coefficient d is positive.'” ** Actually, in
many of the models negative d is allowed to describe the aggregation effects.

Remark 1. From the condition d > , we can discover that our work is entirely different

It is well-known that the eigenvalues of (12) can determine the stability of (u*, v*). Then one
gets the corresponding lemma.

Lemma 1. Postulate the hypotheses (H1)-(H3) hold and d > 0. Define
N 2 * km 2 * « k7 2 * *
D,(1 +dv )<?) —F D2(7> ~G: )+ (Didu (7) —F*\G:
Xk = , keN,. (16)

(e () o ()

Then the following cases hold:

(1) When ¢p(u*,v*) = 0, the positive equilibrium (u*, v*) has local asymptotic stability;
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908 | LUO ET AL.

(2) When ¢(u*,v*) < 0, the positive equilibrium (u*, v*) possesses local asymptotic stability for y <
min Y and it is unstable for y > min yy;
keNy keNy

(B) When ¢(u*,v*) > 0, the positive equilibrium (u*, v*) possesses local asymptotic stability for y >
max yj and it is unstable for y < max yj.
keN, keN,

Proof. If both eigenvalues of (12) possess a negative real part for each k € N, then the positive
equilibrium (u*, v*), with respect to (1), is stable. Conversely, if there exists a k, € N to guaran-
tee M, having an eigenvalue with positive real part, then the positive equilibrium (u*, v*), with
respect to (1), is unstable. Det(M),) can be treated as a linear function with respect to y for each
k € N,. Thus, we can perform Det(M}.) as

Det(My) = <F — D,du* (k”> >¢< ) Ot = 20)- a7

We only need to prove case (3) since (1) and (2) can be regarded as the same discussion. Thanks
to (H3), we have F;; — Dldu*(kfﬂ)2 < 0 due to d > 0. By ¢p(u*,v*) > 0 in case (3), we can obtain
at once that the real part of one eigenvalue of M}, is positive if Det(M, ) < 0. Let us put it another
way, it means that y; — y > 0. The proof is completed now. [ |

Due to F; < 0, we have that the cases d > 0 and d = 0 can be discussed together. Meanwhile,
mingen, Xy of case (2) and max;cy, xj of case (3) are well-defined. ¢(u*, v*) > 0 is widely appre-
ciated by researchers as pointed out by the widely appreciated work of Lee et al,*° that is, the
positive equilibrium can be stabilized by tactic interaction, which can also inhibit the spatial pat-
tern formations. On the contrary, ¢(u*, v*) < 0 means that the positive equilibrium is destabilized
by prey-taxis; accordingly, there is reason to believe that tactic interaction plays a significant role
in the nontrivial pattern formation. Furthermore, we hope we can reveal the attractive effect
(xxr > 0), the repulsive effect (y; < 0) and their different impacts to system (1). Meanwhile, we
note that the case y,¢(u*,v*) < 0 exists in both two situations, and consequently, the positive
solution will be unstable if this situation occurs.

If y, < 0foreach k € N, (u*, v*) always possesses asymptotic stability and ¢(u*, v*) > 0, we
hope spatial-temporal patterns of system (1) can be formulated only when y < 0, which can be
utilized to explain how the population density of prey affects the diffusion of predator. It is obvious
that the repulsion of prey-taxis, case (2) or (3) in Lemma 1, favors the nonexistence or existence
of nonconstant steady states. To sum up, the retreat of predator is closely related to the nontrivial
pattern formations in predator-prey models from the point of view of advection interaction.>

As previously mentioned, when the cross-diffusion rate d is negative, system (1) also has its
great relevance. For d < 0, we have the following lemma.

Lemma 2. Postulate the hypotheses (H1)-(H3) hold. Ifd < 0 and F}; > Dldu*(%)z, we have:

(1) When ¢(u*,v*) = 0, the positive equilibrium (u*, v*) has local asymptotic stability;
(2) When ¢(u*,v*) < 0, the positive equilibrium (u*, v*) possesses local asymptotic stability for y >

Iglax Xi and it is unstable for y < max )(k,
eNy
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(3) When ¢(u*,v*) > 0, the positive equilibrium (u*, v*) possesses local asymptotic stability for y <
min Y, and it is unstable for y > min Y.
keNy keNy

Proof. The proof is similar to that of Lemma 1 and is omitted here. [ |

Due toDldu*(%)2 = MaXyen, Dldu”‘(%ﬂ)2 ford < 0,wehave F}; — Dldu*(%ﬂ) > Oforeachk €
N, . It is essential to postulate that F}; > Dldu*(%)2 in Lemma 2 for the sign-preserving property
of Det(M},). Lemma 2 tells us that the dynamical behavior of preys is also a significant factor
for the nontrivial pattern formations of predator—prey models. The cross-diffusion term 9, (duv)
is termed attractive for d < 0, otherwise it is called repulsive (d > 0). From the point of view of
biology, it is meaningful and interesting that the dynamics of prey is also impacted by the pressure
of population densities from other species. It is easy to understand that d illustrates the tendency
that the prey keeps away from the predator when it is positive. Conversely, d < 0 means that the
prey tends to the predator for the stability of their system.

Based on the above arguments, we have reason to believe that the cross-diffusion rate d can be
also used to discuss the spatial distributions of predator-prey models. Denote

4 2
~DiD( ) + (DG + Do + 2 FD( T ) - (FiG; ~ FiGy)
s , keN,.  (18)

4 2
(D1 Dyv* + D1“*2(¢*)<kL—n> — (D1v*Gy — Dlu*G;)(kL—n>

We can derive the following two lemmas.
Lemma 3. Assume the hypotheses (H1)-(H3) hold and y > 0. Then the following cases hold:

(1) When ¢(u*,v*) = 0, the positive equilibrium (u*, v*) has local asymptotic stability;

) When¢(u*,v*) < Dt , the positive equilibrium (u*, v*) possesses local asymptotic stability for
u*y

d > max d;, and it is unstable for d < max dy. if and only if (D,v* + w iy (E)? < v*Gy —
keN, keN, L
uGy);
(3) When ¢(u*,v*) > _5*20

d < min dy and it is unstable for d > min d.
keNL keNL

, the positive equilibrium (u*, v*) possesses local asymptotic stability for

—D,v* . L N
If x =0 or ¢(u*,v*) = —=2%  we obtain that the positive equilibrium (u*,v*) possesses local
u*y

asymptotic stability for d < min d and it is unstable for d > min dj.
keNy keNy

Proof. Suppose that both eigenvalues of (12) have a negative real part for each k € N,. Then
the interior equilibrium (u*, v*) with respect to (1) has stability. On the contrary, if there exists a
ko € N, such that M), has an eigenvalue and its real part is positive, then the interior equilibrium
(u*, v*) with respect to (1), is unstable. Det(M, ) can be treated as a linear function with respect to
d for each k € N,. Thus, we can perform Det(M,) as

2 2
Det(M,,) = l(Dzv* +u X¢*)<kTﬂ> + WGE - v*Gj)] D, <'%”> (dy, — d). 19)
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910 | LUO ET AL.

We only need to prove case (3) since (1) and (2) can be treated as the same consideration. Based on
(H2) and (H3), we have u*G,, — v*G;; > 0. By ¢(u*, v*) > —— in case (3), we can obtain at once
u*y

that the real part of one eigenvalue of M is positive if Det(M},) < 0. Let us put it another way, it
means that d; — d > 0. The proof is completed. [ |

Lemma 4. Suppose the hypotheses (H1)-(H3) hold and y < 0. Then, the following cases hold:

(1) When ¢p(u*,v*) = 0 the positive equlllbrlum (u v*) has local asymptotic stability;
) When ¢(u*,v*

d < min dy and it is unstableford > min dy;
keN, keN,

*) possesses local asymptotic stability for

3) When ¢p(u*, v*

ford > max dj and lt is unstable for d < max d; when and only when (D,v* + u )2 <
keN, keN, L

(V*Gy; — u*G;)).

Proof. The proof is similar to that of Lemma 3. Hence we omit it. [ |

3 | EXISTENCE OF NONCONSTANT POSITIVE STEADY STATES

By Crandall-Rabinowitz bifurcation theory® and its user-friendly version,”” we discuss the
existence of nonnegative nonconstant steady states for model (1).

3.1 | Local bifurcation around the positive constant steady state

More precisely, we consider interior nonconstant solutions of the undermentioned general model

D;(u + duv)’ + F(u,v) =0, x € (0,L),
Dy — yp(u,v)u’)Y + Gu,v) =0, x €(0,L), (20)
u'(x)=v'(x) =0, x=0,L.

Throughout the rest part of this paper, }}""’ refers specifically to the differentiation with respect to
location x. By treating d and y as bifurcation parameters, we discuss the impacts of cross-diffusion
mechanism or tactic interaction on the formation of spatial-temporal patterns and perform (20)
as the undermentioned form

F(u,v,d, ) =0, (u,0,d, y) e XX XXRXR, (21
where
D;(u + duv)’ + F(u,v)
F(u,v,d, x) = (22)
(D" — yp(u,v)u’Y + G(u,v)
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and
X = {w € H*0,L)|w'(0) = w'(L) = 0}. (23)

For y fixed, we use the notation Fy(u,v,d) = F(u,v,d, ) and F,(u,v, x) = F(u,v, d, y) for fixed
d.In (23), w = u or v. Some facts are collected as follows:

* F;and F, are two continuously differentiable mapping from X X X x Rto Y X VY, Y = L*(0,L);

* Fy(u*,v*,d)=0and F,(u*,v", y) =0foranyd € Rand y € R;

* It is obvious via a direct computation that, for any fixed (&, 0) € X X X, the Fréchet derivative
of F; or F, is performed as

D,(1+do" + D,div” + F,u+F,v
@+ dop +p, ) e

D, F,(ii,0,d) =D i F, (4,0,y) = B B 5 _ _
(ot o Dv" — y(¢u' + @' (P, u + ¢,0)) + G,u + G,v

where we utilize the tilde mark to define the value of the function achieved at (i, 0).

Define e = (u,v)” and perform (24) into

Dy ) Fa(ii, 0, d)(u, v) = Dy, )F, (@, 0, x)(u,v) = Moe” + Fo(x, e, '), (25)
where
D,(1+dv) Ddi
My = B , (26)
- x¢ D,
and
Fu+F,v
Fo= 20,0 ~/ ~” ~U ’ ~ ~ : @7
_)f(¢ u' + (i (¢uu + ¢UU)) )+ Gyu+ Gyu

The operator in (24) is strictly elliptic if and only if M, is positive-definite, that is,
Tr(M,) = D;(1 + dv) + D, > 0 and Det(M,) = D;D,(1 4+ dv) + D, ypdii > 0.  (28)

Moreover, Agmon’s condition is satisfied with 6 € [— % %] in view of Remark 2.5 (case 2) in Ref. 57.
Together with Theorem 3.3 and Remark 3.4 in Ref. 57, D, Fq(#, U, d) or D, ,,)F, (%, U, d) stands
for a Fredholm operator with index zero.

Now, we search for possible bifurcation values by verifying necessary conditions proposed by
Crandall and Rabinowitz,’© that is,

Z(Dgyp)Fa(u*, v, d)) # {0} or Z(DgyF,(u*,v*,d)) # {0}, (29)
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912 | LUO ET AL.

where Z means the null space of the corresponding linear operator. First, by setting (i, D) =
(u*,v*) in (24), one gets

D;(1 + dv*)u” + D;du*v” + Fiu + Fjv >

Dy, Fa(u*, 0", d)(u, v) = Dy ) F, (u*, 07, x)(u,0) =
) ot Dyv" — y¢*u” + Giu + Gjv

(30)
Thus, the above null space contains solutions to the following model:
D;(1 + dv* v’ + Dydu*v" + Fju+ Fjv =0, x€(0,L),
D" — y¢*u"” + Giu+ Giv =0, x €(0,L), (31)
u(x)=v'(x)=0, x=0,L.

To check the necessary conditions mentioned above, we denote (u(x), v(x)) as a solution of (31)
and perform it into the eigen-expansions

u—Zakcos , U—Zbkcos— (32)

where a; and by, are coefficients to be determined. To prove (29), it is equivalent to find nontrivial
(ak, by) such that

2

k)’ k
—D1(1+dv*)<Tn> +F:  —Dydu* <L”> FE .
< >:<),keN. (33)

2
km N km N by 0
M*(T) + Gy, D2< T ) + Gy

We obtain that the value of determinant corresponding to the coefficient matrix in (33) equals to
zero. We notice that k = 0, thanks to (H2) and (H3), can be effortlessly ruled out due to F;.G;; —
F}G;; # 0. We get from direct computation that (29) is satisfied at y = y; (or d = d;) for any
positive integer k and

(i aon(i2) = r2) (ma(2) = 6t) + (Daawr(£) - £ e

Xk = 2 2
T T
(Ff?‘Dld“*(f) )‘75*(7)
or
km 4 * * s« [ KT 2 * sk * vk
_D1D2<T> +(DIGL}+D2FM+X¢ FU)(T) _(FuGU_FUGu)
dy = (34)

4 2
(D1Dyv* + Dy x¢?)(Z) = (Do G; - DG ()
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Note that (34) is equivalent to (16) or (18). Furthermore, it is obvious that
dim(Z(D ) Fg(u*,v*,dy))) = dim(Z(D,,F, (u*,v*, x;))) =1 and Z(Dg,)Fq(u*,v*, dy)) =
Z(Dy,)F (u*,v*, x1)) = span{(u;, v,)}, where

2
km "
D2<—) -Gy
d:(u,v)= L > ,1|cos krx £ (Qx,1)cos ka,
«f kT * L
1 () +6i

(35)

2
S(kY _ pr

. * ok D1(1+dv )( L > Fu kmx A kmx

X (uk,vk) =11, > cos £ (1,Py)cos -

L
F! —Dldu*<k7”)

where we use d : and y : for the case that d and y are treated as bifurcation parameters, respec-
tively. The possible bifurcation value can be found out by (34) (the formulas of y; and d; ). Now,
we deliver our first theoretical result of this work which claims that the local bifurcation does
appear at (u*,v*, d;) or (u*,v*, y;) foreach k € N,.

Theorem 1. Assume that, besides the bifurcation parameters d and y, all the other coefficients in
system (20) are positive and hypotheses (H1)-(H3) are satisfied. Postulate that

4
{ID\D,(1 + dv")F}¢"] + Dydu¢* [Ddu’ Gy, — Dy (1 + dv )Gy — DoF; 11k (T )
. o () ,
+ Dydu ¢ (FiGL — Fi G +10)( T ) # Fig"(FiGi - FiG)
or

4
[D,D(D0*G — Dyu*GE) — (DG + DyF + x*F*)(Dy Dyv* + Dyu x¢*)] ]2k2<z)

2
+ (D" + Dy xd*)FiGy — FSG(P + k(T ) # (D17 G} = Dy G)(FLG — FiGy).
(36)

Then, for any k € N, there exists a positive constant € to guarantee system (20) possesses positive
nonconstant solutions (u (s, x), i (s, x), di(s)) or (u(s, x), Vi (s, x), xi(s)) for s € (—e,€), which
bifurcates from (u*,v*, d;) or (u*,v*, xx). Here, d;.(s) € R (or x(s) € R) and (ui (s, x), vi(s, X)) €
X X X are smooth functions with respect to s. Meanwhile, around (u*, v*, dy.), the bifurcating branch
can be parameterized as

de(s) = {(uk(ss x)’ Uk(S, x)7 dk(s))ls € (_E, 6)} or Y)(k(s) = {(u'k(s’ x)7 vk(s7 x)! ){k(s))ls € (_er €)}
(37)
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914 | LUO ET AL.

with

d: (Uk(s, k)7 Uk(S, k)) = (u*7 U*) + S(Qk7 1) Cos k7LT_x + S(glk(sa x)’ ng(s’ x)),

d : di(s) = dj + sC, + s>°C, + O(s?),
X (38)

X 5, 05 0) = (0,0 4 5(1, P €05 S (8355, 3), 5, ),

X ¢ xe(s) = xx +5C5 + 5°Cy + O(s3),

where Cy, C,, C3, and C, are constants, (1. (s, x), €51 (s, X)) and (&1 (s, x), {5k (s, X)) are two elements
in a closed complement W, of Z(D(,,, Fq(u*,v*, dy)) and Z(D, , F, (u*,v*, xi)), respectively, in
X x X with

(glk(os X), §2k(0s X)) = (07 O) or (glk(oa X), §2k(0’ X)) = (0: 0)’ (39)

L
sz{(u,v)EXxX’/ uZu+vadx=O}, (40)
0

and (u;’;, U:) described in (35). Moreover, (u; (s, x), Uk (s, x), di(s)) (or (uy (s, x), vk (s, x), xr(5))) is a
solution of model (20) and all positive nonconstant solutions of model (20) around (u*, v*, d; ) have
to stay on the curve Y g, (s) (or Y,,, (s)).

Proof. By applying the bifurcation theory of Crandall-Rabinowitz,”® we only need to verify the
following transversality condition:

d Kok %%
aD(u,u)F;((u U5, 0, v))

& m}((D(u,U)F)((u*a V¥, XK))
X=Xk

or (41)

d
_D(u,U)Fd(u*a U"‘» d)(u'k9 UZ)

dd & 2Rd(D(u,v)Fd(u*a v*, dy)),

d=dy,

where R, and R, are two ranges of D, ,nF, (u*, v*, xi) and D, ) Fq(u*, v*, d), respectively. In

X=Xk ¢*uk*

—D,v*u — Dyt
= Uk T e ) (43)
d=dk 0

aD(u,U)F)((u*’ v¥, X)(u;;, Uk)

and

ﬁD(u,U)Fd(u , U7, d)(uk9 Uk)
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If (41) does not hold, there exists a nontrivial pair (@, 0), which fulfills-

D,(1 +dv*)a” + Dydu*c” + Fia + F)0 0 )
D,0" — x¢*i” + Gii + G¥o A\ —pru
or
Dy(1 +dv")@” + Dydu*o” + Fia+F;o \ _ (-Dw*u” — Du*v!” “5
D0 — x¢*u" + Gl + Giv 0 '
Plugging

- krx - krx
ﬂ=I;)dkcosT, U=I;)bkcosT, (46)

into the last equations yields

2 2
km “ ok "
—Dl(l +dU*)<T> +Fu —Dldu (T) +FU (C_lk> 0
= 2 (47)
2 2 - o [ km
kr N kr . by i
)((}5*(?) +Gu —D2<T> +GU ( L >

or

kmr 2 km 2
—D1(1+dv*)<T> +FZ —Dldu*<T> +FZ C_lk . 2 ke 2
( >= D () + 0w ()

2 2 i
km N km N by 0
W(T) + G _D2<T> to
(48)

Together with two formulas of y, and dj in (34), we check immediately that the coefficient
matrices in (47) and (48) are singular. However, the right-hand side of the equation is nonzero.
Accordingly, this contradiction guarantees that the transversality condition has been checked.
Consequently, the theory of bifurcation from simple eigenvalues proposed by Crandall and Rabi-
nowitz can verify the statements of this theorem. In the end, we need to request x; # x; for each
k # j (k € N, ) for the applicability of the bifurcation theory from simple eigenvalue. In light of
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direct computation, one obtains

4 2
DiD,(1+dv")( )+ [Dydu'G; - Dy(1 +dv*)G; - DoF;)( )+ FiG; - FiG;

_Dldu*¢*<k7ﬂ>4 + F;¢*<’%”)2

jm

. 4 2
D,D,(1 + dv*)(%) +[D,du*G: — Dy(1 + dv*)G: — D,F] (T) +F:G! — FiG}

# N 2
e (2] i ()
or (49)

4 2
k % % s [ K % vk % vk
_D1D2<Tﬂ> +(D1GU+D2Fu+X¢ FU)(%) _(Fqu_FUGu)

4 2
(D1Dyv* + D)) = (Do Gy - DG ()

. 4 . 2
~DiD;(Z) +(DiG} + DoF; + x¢°F)(2) - (FiG; - FiGy)

N 2
(D1 Dyv* + Dyu* x¢*) ( % ) — (Dv*G; - Dﬂ”‘@:)(% )
It is equivalent to (36). The proof is completed now. [ |

Thanks to Lemmas 1-4 and Theorem 1, steady-state bifurcation appears at an accurate position
where the positive equilibrium (u*, v*) loses its stability and shifts to nontrivial spacial patterns
since the cross-diffusion rate d or the prey-taxis parameter y crosses their critical bifurcation val-
ues. Obviously, the occurrence of those nontrivial positive solutions is due to the impacts of the
value of d or y.

Remark 2. The main theoretical results in this section are also applicable to high-dimensional
cases, but the structures of Neumann eigenvalues are not as clean as in the one dimension situa-
tion.

3.2 | Global bifurcation analysis for multidimensional case in (4)

Throughout the entire paper, we suppose that the model (1) always exist a positive constant solu-
tion e* = (u*,v*). In addition, we regard the parameter of cross-diffusion or nonlinear prey-taxis
« as a bifurcation parameter, where « = d or y. Consequently, we derive the following lemma in
view of the original Crandall-Rabinowitz bifurcation theory>® and its user-friendly version.”’

Lemma 5 (Theorem 4.3 in Ref. 57). Let X and Y be real Banach spaces. Postulate that W represents
an open connected set in R X X and (s, e*) € W and F stands for a continuously differentiable
mapping from W into Y. Assume that

(1) Forall(s,e*) € W, F(s,e*) =0;
(2) The partial derivative D, F(+, €) exists and is continuous in (s, e) near (s, e*);
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(B) R(DF(sy,e")) is closed, dimKer(DF(sy,e*)) =1 and codimR(DcF(+y,e*)) =1 for some
(ep, &) EW;
(4) D..F(+p,e*)ey & R(DF(+p,€e*)), where ey € X spans Ker(DeF(s(,e*)).

Let z be any closed complement of span{e,} in Y. Then, there exist an open interval I, = (—¢,€) and
continuously differentiable functions y : Iy —» Rand ¢ : Iy — z such that «(0) = «(, (0) = 0, and
ife(s) = e* + sey + sp(s) for s € I then

F(+(s),e(s)) = 0. (50)

In addition, in any sufficiently small neighborhood of («, €*) in W, the entire solution set for F(y,e) =
0 consist of the line (», e*) and the curve (+(s), e(s)). Furthermore, if

(5) D.F(e,e)isa Fredholm operator for all («,e) € W, then the curve («(s), e(s)) is contained in C,
which represents a connected component of S, where S = {(«,e) € W,F(1,e) = 0,e # e*} and
either C is not compact in W or C contains a point («*,e*) with «* # «.

Let us stipulate that

<A(u + duv) + F(u,v) >
F(.,e) = , (51)
Av — yV(uVu) + G(u,v)

where e = (u, v). Throughout the entire paper, « = d or y. Therefore, the solutions of the following
elliptic system of (1):

F(.,e)=0, x € Q,

52)
du Jv (
5—5—0, x €90Q

can represent the positive steady states of system (1).

In this section, we will deduce the global bifurcation theorems when we regard the cross-
diffusion rate d or the coefficient of nonlinear prey-taxis y as a bifurcation parameter. First, we
have to check that all hypotheses introduced by Lemma 5 are fulfilled for the system (20) under
some suitable cases. Assume that 4 > 0 stands for a simple eigenvalue of the following elliptic
model:

(53)
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We need to provide some notations which will be utilized in our proof.

X =2 (u,v) € [W>"(Q)]? ou _dv _ 0,x €9Q ¢,
dv  ov

W, ={(d,u,v) € R x X|d # 0,u > 0,v > 0},
W, ={(x,u,v) € RXX|x #0,u > 0,v > 0},

V=l @P, G

Z4 ={(u,v) e X

/ [(A + dv*)A = Fy,(u™, v*)u + (du*A — F,(u*, v*))v]p = 0},
Q

Z, ={(u, v) € X / [(v* A + G,(u*, v*Du + (-1 + G,(u*, v ))v]yp = 0},
Q

where r > n and g is termed as a normalize eigenfunction with respect to 1.
For convenience, we denote that

O =1+dyv* +doyu*v* #0, (55)

where

o = [F,(u,v") = ][ = G,(u",v)] + F,(u*, v)[yv*1 + G, (u", v")] (56)
0 w A yv*d + G, (u*,v*)] — v*A[-1 + G, (u*, v¥)] '

Theorem 2. Suppose that

(i) A > 0can be regarded as a simple eigenvalue of (53).

(i) (u,v) is any nonnegative solution of multidimensional version stationary problem of (20) and
there exists a constant C > 0 which is independent of u and v to guarantee ||u|| -~ < C and
vl < C.

(iii) d and y can satisfy the following condition Lrdv. , dow

+®2

> 0.

Then, we have

() Whend = dy # 0 and

1 * o dyurv*
A+ \/( +®dv + X@Z )[Fu(u*, v9)G,(u*, v*) — G, (u*, v )F,(u*,v*)], (57)
then for the positive equilibrium (u*,v*), a bifurcation of nonconstant solution of multidi-
mensional version stationary problem of (20) will bifurcate at d = d,. In a neighborhood of
the bifurcation point,

(d,u,v) = (d(s), u(s) + s[(1 + dj)A — F,(u*, v")]p + s¢,(s), v(s) + s[du*A — F,(u*,v*)]p + s&,(s)).
(58)
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can parameterize the bifurcating branch, where ({1,¢,) belongs to Z; and d(0) = d,, u(0) =
u*, v(0) = v*, (£1(0),$>(0)) = (0,0).

(II) Meanwhile, the bifurcating branch can be regarded as a part of a connected component Cy of
the set S 4, where

Sq ={d,u,v)|(d,u —u*,v —v*) € Wy,F(d,u — u*,v —v*) =0, (u,v) # (u*,v*)}, (9)

and C, either includes a point (d, u, v), where (d,u — u*,v — v*) € dW, or is unbounded in
d.
(III) Finally, Cy is unbounded in d whend > 0 ord < 0 and

(i) A +#F,(@1,0) > 0and 1% > 0 for all semitrivial equilibria (i1, 0) and (0, 0);

(ii) G,(41,0) #0o0r A # G,(i1,0) > 0.

Proof. In view of the traditional version of Crandall-Rabinowitz bifurcation theory, it can only
be utilized when d,, is a monotone function for 4. Motivated by Ref. 57, we discover that the user-
friendly version (Lemma 5) can solve this problem.
First, we need to linearize F(d, u, v) with corresponding (u, v) at e*, and get
( 1+ dv®)Au + du*Av + F,(u*, v*)u + F,(u*,v*)v )
D pyF(d, u*, v*)(u,v) = (60)

—xV*Au + Av + G, (u*, v")u + G,(u*, v*)v

It is obvious by a direct computation that the derived function D F(d, u, v) possesses continuity
and differentiability with corresponding d, u, and v in W,. Next, we need to obtain the possible
global bifurcation point with a remarkable rate d. To achieve this aim, we must point out that we
cannot apply the implicit function theorem if d # 0. Let us put it another way, it means that the
corresponding elliptic model

1+ dv*)Au + du*Av + F,(u*, v )u + F,(u*,v*)v =0, x € Q,

— xU*Au + Av + G,(u*, v*)u + G,(u*,v*)v = 0, x € Q, (61)
ou dv

—=_=0, oQ

v ov x €

has a nontrivial solution, that is, we can get a nontrivial solution to satisfy
D,y F(d, u*,v*)(u,v) = 0.

Any pair of functions in X will be defined by (u,v). Hence, series of mutually orthogonal
eigenfunctions of model (53) with constant vector multipliers can be used to expand u and v for
(u,v) €Y. In addition, when (u, v) is nonzero, one of these eigenfunctions in these expansions
is at least nonzero. Postulate that ¢ with respect to 4 represents such a normalized eigenfunction
and [, p*dx = 1.

For abbreviation, we stipulate that U and V will be applied to replace f o Uy and /Q vg. By the
homogeneous Neumann boundary conditions, multiplying the equations of u and v in the last
equations by ¢ and integrating on Q by parts, the following system with respect to U and V

< — (1 +dv)A+F,(u*,v*)  —du*ld+ F,(u*, U*)> <U>
=0 (62)

XU A+ G, (u*,v*) -1+ G,(u*,v*) \%
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is derived. Model (62) possesses nontrivial solutions when and only when

— A+ dv)A+F,(u*,v*) —du*A + F,(u*,v*)
=0, (63)
XU A+ G, (u*,v*) — 1+ Gy(u*,v*)

which means that

_ [Fu*,0") = 4[4 = G,(u*, v)] + Fy(u™, v)[yv*d + G, (u*, v7)]

d=dy= 64
0 WA xv*A + Gy (u*, v%)] — v*A[=1 + G, (u*, v*)] 64)

In what follows, we need to deduce that all the hypotheses of the user-friendly version of the

Crandall-Rabinowitz theorem are fulfilled if the conditions of Theorem 4 hold when d = d,. It is

easy to validate that condition (1) can be satisfied. Now, the proof can be divided into three steps.
Step 1: The validation of condition (5) of Lemma 5.

‘We denote
1+dv du 2dVv - Vu + F(u,v)
M,(d,e) = , f(d,e,Ve) = (65)

—xv 1 —xVv - Vu+G(u,v)

for e = (u,v)T. Thus, system (51) can be described as
F(d,e) = —M,(d,e)[Ae]” + f(d,e,Ve) = 0. (66)
It is easy to perform the linearization of F(d, e) at e as
D.F(d,e)u = —M;(e)Au — M,(u)Ae — M;(Ve) - Vu — J(e)u, (67)

where u = (u;, u,),
d1u1 d1u2 2dVu 2dVvu
M,(a) = , M3(Ve) = (68)
—xu; O —xVu —xVvu
and J(e) can be treated as the Jacobian matrix
F,(u,v) Fy(u,v)
J(e) = . (69)
G,(u,v) Gy(u,v)

Now, we need to consider the value range of d and y to guarantee tr(M,(d,e)) >0 and
det(M;(d, e)) > 0. We obtain the following condition:

+dv*  dy

5 o2 > 0. (70)

Consequently, M;(d, e) satisfies the Assumption (2.6) in Ref. 57. Meanwhile, Agmon’s lemma can
be satisfied with 6 € [—%, %] in view of Remark 2.5 (case 3) in Ref. 57. Therefore, based on Corol-
lary 2.11 of Ref. 57, D, F(d, e) stands for a Fredholm operator with index 0 which means that the
validation of condition (5) of Lemma 5 is completed.

Step 2: The validation of condition (3) of Lemma 5.

1uN A 0952 T WS TTTT OT/10p/LI00 A8 |1 AIRIq1RUIUO// SCIY WO Papeojumoq ‘€ ‘€202 ‘065697 T

)//:sdny) suonipuo) pue swie | 3 88S " [£20z/S0/TT] uo ArigiTauljuo AB|IA ' BYULR A %OUIO! ] IGSTE) &

fopm

85L8017 SUOWIWOD) BAITeaID 9|edt|dde aup Aq peusenob ae sejoiie VO ‘88N Jo sajnl 10§ Aeiq18UluQ /8] UO (SUONIPUO-P



LUO ET AL. | 921

In this step, we need to validate that condition (3) of Lemma 5 can be satisfied according to the
hypotheses of Lemma 5 and Theorem 2. Based on (61), we can get

Au u
+ M, =O,xEQ,a—u=a—v=O,x669. (71)
Av v v odv
Here,
F,(u*,v*) du*G,(u*,v") Fy,(u*,v*) du*G,(u*,v")
® 0 ® ®
X(; F(u*,0%) + (1 + dv*)G, (u*, v*) %Fv(u*, V") + (1 + dv")G, (u*, v*)

It is clear by a direct computation that

det(M) =2 F, o), (', 0) = B LG, 0 )F a0+

F,(u*,v")G,(u*,v*)

dyu*v*
®2

XU* ES ® * *
o7 Fu(u’, UIF, (", ) +

du*(1 + dv*)
(€]

_ du'(1+dv‘)G

) (U7, 0)G (U, v") —

F,(u*,v*)G,(u*,v*)
1+ dv*
(€]

_(1+4dv* + dyu*v*
- (C] 02

G,(u*, v)F,(u",v*) + G, (u*,v)G,(u",v")

) [Fu(u*’ U*)Gu(u*9 U*) - Gu(u*a U*)Fu(u*’ Ux)]

>0.
(73)

Now, we consider the eigenvalues of the matrix M,. It is easy to obtain the characteristic
equation of the matrix M, as follows:

F,(u*,v*) du*G,(u*,v") F,(u*,v*) du*G,(u*,v*)

K © © ® ® o
o Fu’ 0 + (A +dv")G, " v")  —p+ To=F,(u', v7) + (1 +dv)Gy(u”, v%)
(74)
Clearly, we can regard o; = 1 > 0 as one of the eigenvalues of M,. Thus,
oy = L(LEAE L Y N wr,0)G, (", v7) — Gy, v, 0] (79)
A (C) 02
can be defined as another eigenvalue of M,. Hence, if
1+dv*  dyu*v* ) . .
A # ( o T e >[Fu(u*,v*)Gv(u',v ) = Gy (u, v)F, (u*, v)], 76)
ODE part
Dif fusion part
then M, possesses two positive different eigenvalues o; = 1 > 0 and
72 = 1(Ht 4 T YiF 096,01 - Gy oOF 0L )
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By (71) and reversible transformation, we deduce that

AU o, 0\ /U
+ =O,xEQ,a—U=a—V=O,xeaQ. (78)
AV 0 o, /J\V ov.  ov

Consequently, if o, cannot be treated as an eigenvalue of (53), we can get that U =0 and V =
cp, where ¢ stands for a constant, and o; = 1 represents an eigenvalue of (53). In view of the
reversibility of transformation, one gets u = c;p and v = c,¢, where c¢; and c, are all constants.
Therefore, we get dim ker(D.F(d,, e*)) = 1. By (62), we obtain

ker(D.F(dy, e*)) = span{[(1 + dv*)A — F,(u*,v*)]e, (du*A — F,(u*, v*))p}. (79)

It is obvious via a simple verification that R(D.F(d,, e*)) = 1 since D.F(d, e) stands for a Fred-
holm operator with index 0. Thus, the check of condition (3) is completed. We synchronously
finish the proof of (I) of this theorem.

Step 3: The validation of conditions (2) and (4) of Lemma 5.

Define

_ ([ +dv*)A = F,(u*,v")]p
Uo = ( [du*A — F,(u*, 09)]g > (80)

Based on (60), one gets

(8D)

ulAv + vAu
0 .

Dd(u,U)F(d, u,v)(u,v) = (

In addition, Dy, F(d, u,v) possesses continuity. It implies that the check of condition (2) is
completed. Plugging u* and v* into the above equality yields

L u*Av + v*Au
Dy, F(d, u*, v*)(u,v) = 0 , (82)
which means that
—A*[(A + dv)A - F,(u*,v*)] — Au*[du*A — F,(u*, v*
D) F(dg, u*, v*)(u, v)Uy = ( 8 ) ul 0)] [ ol )
(83)
Assume that
Dd(u,v)F(dO! u*, v*)UO € R(D(u,v)F(dO, u*, U*))s (84)
then we can find some particular u and v such that
Dy p)F(dy, u*, v*)(u, ) = Dy, F(dg, u*, v*)U,. (85)
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It follows that
1+ dv*)Au + du*Av + F,(u*, v*)u + F,(u*,v*)v

= —Av*[(1 + dv*)A — F,(u*,v*)]e — Au*[du*A — F,(u*,v)]e, x € Q,

] - XU Au + Av + G,(u*, v )u + G,(u*,v*)v =0, x € Q, (86)
ou dv
LE—E—O, x € QL.
By the same form of (62), we can immediately obtain
( — (1 +dv)1+ F,(u*,v*) —du*A+ F,(u*, v*)) (U)
(87)
xU*A + G, (u*,v*) -1+ Gy(u*,v*) A%

(—Av*[(l + dv*)A — F,(u*,v*)] — Au*[du*A — F,(u*, v*)] )
0 .

Obviously, it is impossible because the corresponding determinant of the coefficient matrix on the
left-hand side is 0 based on (63). Consequently, we obtain a contradiction and derive that

Dd(u,v)F(dO! u*, v*)UO & R(D(u,v)F(dO, u*, U*))s (88)

which illustrates that the validation of condition (4) of Lemma 5 is completed.
Having said all of above, we see immediately that all conditions of Lemma 5 have been validated
to be satisfactory, which deduces that C, have to fulfill one of the following three cases:

(i) €y has a point (d*,u*, v*) with d* # d,.
(ii) Cy has a point with (d,u — u*,v — v*) € IW,.
(iii) C,isunbounded (joints to o0) in R X X.

Note that interior (positive) solutions of the corresponding elliptic system (20) will bifurcate from
(d,u*,v*)if d = d,. Consequently, (i) can be excluded immediately. The semitrivial equilibria are
denoted by

(11,0) and (0, 0). (89)

Evaluating at (2, 0) yields

(90)

Au + diiAv + F, (1, 0)u + F,(11,0)v
Av + G,(11,0)u + G,(1i,0)v

D(u,v)F(d, ,0)(u,v) = (

By combining with implicit function theorem, we can immediately obtain that the nondegeneracy
of (i1, 0) if and only if the following two cases are occur:

G)A#Fﬂaﬁ)>0mm5%?2>a

(ii) G,(,0) # 0 or A # G,(11,0) > 0.
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The similar discussion can be derived for (0, ©). Consequently, (ii) can also be excluded immedi-
ately. By the condition of Theorem 2, we see at once that any positive solution (u, v) for system (20)
possesses boundedness in the norm of L*(Q) x L®(Q). We obtain at once that u, v € C>*%*(Q) for
some a € (0, 1) in view of the Schauder estimates. Together with the Sobolev embedding theorem,
we derive at once that any positive solution (u, v) of system (20) is bounded in the norm of X. To
sum up, C, possesses boundedness in d, which describes that the validation of condition (2) of
Lemma 5 is finished. In the meantime, the proofs of (IT) and (IIT) of Theorem 2 are finished too.
The proof of Theorem 2 is completed now. [ |

For convenience, we also define that

A=1+dv* +dyou*v* #£0, (91)
where
_ (1 + dv)A? {d[u*G,(u*,v*) — v*G,(u*, v*)] — [F,(u*,v*) + G,(u*, v*)]}1
Xo = v*A(F,(u*,v*) — du*d) v*A(F,(u*, v*) — du*l)

N F,(u*,v*)G,(u*,v*) — F,(u*, v*)G,(u*,v*)
UFA(F ,(u*, v*) — du*2) '
(92)

If we choose y as a bifurcation parameter, then we have the following theorem by the same
method.

Theorem 3. Assume that

(i) A > 0 can be regarded as a simple eigenvalue of (53).
(i) (u,v) is any nonnegative solution of multidimensional version stationary problem of (20) and
there exists a constant C > 0 which is independent of u and v to guarantee ||u|| -~ < C and

lollze < C. v
(iii) In addition, d and y can satisfy the following condition HTU + %

> 0.
Then, we have

(@) When y = xo # 0and

* d syk
A# \/( L +Adv + XXZU >[Fu(u*, V)G, (u*, v*) — G, (u*, v )F,(u*,v*)],  (93)
then for the positive equilibrium (u*, v*), a bifurcation of nonconstant solution of multidimen-
sional version stationary problem of (20) will bifurcate at y = x,. In a neighborhood of the
bifurcation point,

(X? u, U) = (X(s)v u(S) + S[_XU*/‘L - Gu(u*’ U*)]Eb + sgl(s)v U(S) + S[A - Gv(u*v U*)]th + ng(s))'
(94)
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can parameterize the bifurcating branch, where (§1,§5) belongs to Z,, and x(0) = x,, u(0) =
u*, v(0) = v*, (§1(0), §,(0)) = (0,0).

(II) Meanwhile, the bifurcating branch can be regarded as a part of a connected component C, of
the set S I where

S, = {0 u,)(x,u—u*,v—v*) € W,,F(y,u —u*,v—v*) =0,(u,v) # W, v*)}, (95

and C, either includes a point (), u,v), where (y,u — u*,v —v*) € GWX, or is unbounded in
x- Furthermore, Cy is unbounded in y when y # 0.

4 | STABILITY OF NONCONSTANT POSITIVE STEADY STATES

In this section, the instability and stability of the spatially nonconstant steady states are obtained
by Theorem 1. Under the general functional responses, we will offer exact formulas and criteria
to get the stability of the bifurcating solutions and the direction of steady-state bifurcations of (1).
Employing classical analysis from Ref. 58, our results focus on the linear stability of perturbations
with a study of the spectral analysis of (20).

For this purpose, we have the following approach. Based on ¢(u,v) € C3, F(u,v) € C4,
G(u,v) € C* and (uy, vy, di) (or (uy, vy, xi)) represent C3-smooth functions with respect to s, and
accordingly, in view of Theorem 1.18 in Ref. 56, u; (s, x) and vy (s, x) can be expanded as follows:

-

d : up(s, k) = u* + sQy cos kn’Tx + 52®,(x) + 53D, (x) + O(s%),

d : vi(s, k) = v* + scos k7£_x + 529, (x) + 53W,(x) 4+ O(s3),
J (96)

x - ug(s,k) = u* + scos k7£_x + 52®5(x) + $3D4(x) + O(s3),

k
x : Uk(s, k) = v* + sPy cos % + 525 (x) + $3W4(x) + O(s%),

\

where P; and Q,, are introduced by (35), (®;,¥;) € W for i = 1,2, 3,4, and the high-order terms
O(s%) in uy (s, x) and vy (s, x) are assumed in H2-norm. Accordingly, one gets

-

krx
d : Dyu)(s, k) = sD;Qj cos” % + 52D, 9/ (x) + $°D; )/ (x) + O(s?),

k

d : Dyv)/(s, k) = sD, cos” ? + 52D, W7 (x) + s°D, W) (x) + O(s?),

3 (97)
k

X : Dyu)/(s, k) = sD; cos” % + 57Dy @Y (x) + $*D; @) (x) + O(s*),

X : Dov)/(s, k) = sD,Py cos” k7LT—x + 52D, ¥ (x) + s°D, W) (x) + O(s?).

“

Furthermore, by the Taylor’s expansion functions of two variables, we obtain
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926 LUO ET AL.

d : F(u(s, x), v, (s, x)) =F* + s[(F,ij + F})cos k7Lr_x
2 * * 1 * 2 * kﬂx
+s*|F;®, + F;¥, + §(Fuqu + 2F;,Q, + Fi,) cos? -

* * * * kmx * * kmx
+ 53 [FuCDZ + F}%, + (F;,Q, + Fi,)®, cos < + (Fi,Qy + Fi,))¥, cos 5

1, . . . kmx
+8(FuuuQi + 3Fuqu}2c + 3Fuvak + Fvuu)cos3 T + 0(33)»

. k
x : Gu(s, x), v, (s, x)) =G* + s [(GZ + G;P;)cos %
2 a * 1 % * + 2 2 kﬂx
571G ®; + G5 + E(G;" +2G;, Py + Gy, P}) cos -
3 * * * * kzx * * kmx
S |Gi®, + GiY, + (Gyy, + G, P )®; cos -t (G}, + G, P )Y; cos -

k
4- (Gm +3G}Py + 3G}, P? + Gy, P?) cos® % +0(s%),

(98)

!
W (s, x)vi(s, x)) =sv* cos” krx + 2 |v*®” + Py cos kmx cos’ kmx
k k L 1Tk L L

!/ !/
l @ +Pk(<I> cos k7£_x> + <1I’1 cos’ k7£_x> ] + 0(s%),

3 (99)

/!
(ur (s, x)V" (s, x)) =su* cos” kmx + 82 | u*P” 4+ Q[ cos kmx cos’ kmx
k k L 1Tk L L

/ /
l *II‘"+Qk< cos k7£_x> + <d>1 cos’kZ—x> l +0(s3),

and
' ’ ” kﬂx " kmx kmx
(P (s, x), vy (s, X)uy (5, X)) =s¢* cos < [qb DY + (¢, + doPy) <cos < cos’ T > ]
) . , kmx kmx
+ 53 [¢*<I>j( + (¢ + PiPy) <¢>3 cos T) + ¢ <<I>3 cos’ T)

! !
kmx 1 . ) kmx kmx
+¢; <lIf3 cos’ T) + E(gbf;u + 25, P + ¢30Pi)(cos2 5 cos’ T) ]

+ O(s3).
(100)
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In the following, we show that Y, (s) (or Y, (s)) is pitchfork bifurcation if C; =
C3 = 0

Lemma 6. Postulate that all hypotheses in Theorem 1 are satisfied. Then foranyk € N, C; = C3 =
0 and two bifurcation branches Y4, (s) and Y, (s) around (u*, v*, dy) and (u*, v*, xy), respectively,

are pitchfork.

Proof. Plugging (96)—(100) and (38) into the first and second equations in (20), respectively, and
combining their s*>-terms, one gets

1. kmx
— D@ — |F® + Fy W, + z(FWQi + 2F;,Q + F,) cos? T]

/
=C,(u* + v*) cos” krx +diD; | (0*®) + u*P”) + (1 + Q)| cos kmx cos’ krx ,
1 L k 1 1 1 L L

and (101)

1, .. kmx
DY) + G, @5 + G ¥; + > Gl + 2G Py + GyuP}) cos? -

/
= C3¢* cos” kz_x + Xk lqﬁ*d)g’ + (¢ + d5Py) <cos k% cos’ Iaz_x) ] .

Multiplying the last equality by cos ]% and integrating from O to L yields

L

2
2L o[ k7T N kmx
Cl z_(kn'—)2¢*{ l—D1(1+de )<T> +Fu] 4/0 ‘1)1 COSTdX

kr\ L kmx
+ l—Dldku*<T> +Ffj] / Y, cos de},
0

and (102)

L
2L L kT . krx
C3 = —W{ l%k¢ <T> +Gu] A (1)3 Cos de

k) r k
+l_D2<Tn> +G{,"] / ‘I@cos%xdx}.
0

2
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Plugging (38) and (96)-(100) into the equations of u and v, respectively, and equating s*>-terms,
one gets

% # 1 . * " kmx
DY + G @, + Gy, + 5(GuuQi +2G;,Qx + Gi,) cos? -
/
=x [915*‘1"{ + (4;Qk + ¢Z‘)<COS kz—x cos’ kZ—x> ] :
and (103)

. S P k
Dy®Y + F®s + FyWs + S(Fy, + 2F, P + F3,P?) cos® 2=

/
=—dD, l(v*CD;’ +u ) + (P + 1)<cos k7£_x cos’ k7£_x> l )

By multiplying (103) by cos kLﬂ and integrating from 0 to L yields

k'’ - k k'’ g k
—D;(1 +d,v*) x +F; / ®, cos Lxdx + |-D,d,u* s +F} / Y, cos ﬂdx =0
L . L L . L

and

L

2
CI>3cosk7Lr—xdx+ [—D2<k—n) +Gl’§]/ lI’3cosk£dx=0.
0

(104)

Let us put it another way, due to (®;,¥;) € W as denoted in (40), one gets

L

k\ L k K\ k
—Dydut (L) +F /q>1cosixdx+ D,A+du) (L) -F /lplcosixdx=0
L ; I L I

0

t kmx k' r krx
+ G} / ®; cos —dx + —)(kgb*(—) -G, / Y, cos —dx = 0.
. L L . L

(105)
Together with (102) and (105), we obtain
2 2 L
o k7 " < km . kmx
—D1(1+de )<T> +Fu —Dldku'<T> +FU /(; (I)l CoS de <O )
2 2 L - 0
k
“Dida (*E) 4 E Dy +d) () —F / W, cos X dx
L L o L

(106)
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LUO ET AL. 929

and

K\ K\’ L krx
)(k¢ <T> +G; —D2<T> +GU /) ¢3COSTdX <0 )
2 2 L - 0 )
km . «f km . krx
_D2<T> +GU _Xk¢ (T) _Gu /0 IP3COSTdX

Clearly, Two coefficient matrices in (106) and (107) are not singular. Then we have

(107)

t krx g kmx t kmx t kmx
/ ®, cos ——dx = / ¥, cos ——dx = / ®;cos ——dx = / ¥, cos ——dx = 0. (108)
0 L 0 L 0 L 0 L

In view of (102) and (108), we see at once that C; = C; = 0. Consequently, Two bifurcation
branches Yy, (s) and Y,, (s) around (u*,v*,d;) and (u*,v", i), respectively, have pitchfork
type. |

Rotational direction of Yg4 (s) (or Y,, (s)) with s = 0 together with wave mode number k
determine the stability of the local branch around (u*, v*, d}) (or (u*, v*, xi)).

Next, we introduce another main theorem of this work, which offers some criteria to guarantee
the stability of bifurcation solutions derived in Theorem 1.

Theorem 4. Postulate that hypotheses (H1)-(H3) hold, and all the assumptions of Theorem 1 are
satisfied.

—D,v*

(1) Suppose that ¢p* <
Theorem 1. Postulate that dy,, = gn,i\Jn dy. Then deo (8), s € (—e¢,¢) is stable for C, > 0, and it is
ENy

and y < 0. Denote Yy, as a bifurcating branch of (20) deduced from

unstable for C, < 0. In addition, for any k # k, Yq, (s), s € (—¢,¢), is always unstable;
(2) Suppose that ¢* < —Dpv”

u*

Theorem 1. Postulate that dko = IEneNljx dy. Then, deo (8), s € (—¢,¢) is stable for C, < 0, and it
ENL

and x > 0. Denote Y4, as a bifurcating branch of (20) deduced from
is unstable for C, > 0 and (D,v* + u*)(q&*)(%)z < (V*Gy — u*G,). In addition, for any k # ky,
Yy, (s), s € (—¢,€), is always unstable.

Proof. The proof is similar to that of Theorem 3.2 in Ref. 55. We only need to change d > 0 to
d # 0. Hence, it is omitted. [ |

The prey-taxis term ¢ is termed repulsive for ¢* < 0, otherwise it is called attractive (¢* > 0).
We can obtain at once the following corollary.

Corollary 1. Postulate that hypotheses (H1)-(H3) hold, and all the assumptions of Theorem 1 are
satisfied.

(1) Postulate that ¢p* > _DZU‘, X <0,andd;, = Igna’\l‘x dy. Then deo (8), s € (—¢,€) isstable for C; <
uty eNy

0, and it is unstable for C, > 0 and (D,v* + u*)(gb*)(%)2 < (v*Gy — u*G;,). In addition, for any
k # ko, Yq, (5), s € (—¢,¢), is always unstable;

1uN A 0952 T WS TTTT OT/10p/LI00 A8 |1 AIRIq1RUIUO// SCIY WO Papeojumoq ‘€ ‘€202 ‘065697 T

)//:sdny) suonipuo) pue swie | 3 88S " [£20z/S0/TT] uo ArigiTauljuo AB|IA ' BYULR A %OUIO! ] IGSTE) &

fopm

85L8017 SUOWIWOD) BAITeaID 9|edt|dde aup Aq peusenob ae sejoiie VO ‘88N Jo sajnl 10§ Aeiq18UluQ /8] UO (SUONIPUO-P



930 | LUO ET AL.

—D,v*

b
u*y

(2) Postulate that ¢* > X >0,anddy, = IgniNn di. ThenYg, (5), s € (—¢,¢) is stable for C; >
ENy

0, and itisunstable for C, < 0. In addition, forany k # k, Yq, (s), s € (—¢,€), isalways unstable.

Remark 3. The bifurcation solution corresponding to Yy, (s) can be treated as an equilibrium of (1)
due to the stability of this bifurcation branch. In Section 6, we propose more detailed mathematical
calculations for evaluating C, in light of model coefficients.

For prey-taxis parameter y, we also have the following theorem and corollary.

Theorem 5. Postulate that hypotheses (H1)-(H3) hold, and all the assumptions of Theorem 1 are
satisfied.

(1 Suppose that ¢* < 0 and d > 0. Denote Y, as a bifurcating branch of (20) deduced from The-
orem 1. Postulate that y, = IzniNn Xk- Then, YXkO (8), s € (—¢,¢) is stable for C, > 0, and it is
ENy

unstable for C4 < 0. In addition, for any k # ko, Y,, (s), s € (=€, €), is always unstable;
(2) Suppose that * < 0 and d < 0. Denote Y, as a bifurcating branch of (20) deduced from The-
orem 1. Postulate that y;, = ’Icnééx Xk- Then, Y)(ko (8), s € (—¢,¢) is stable for C4, < 0, and it is
ENG

unstable for C4 > 0. In addition, for any k # ko, Y,,, (8), s € (—¢,¢), is always unstable.

Corollary 2. Postulate that hypotheses (H1)-(H3) hold, and all the assumptions of Theorem 1 are
satisfied.

(1) Postulate that ¢* > 0, d > 0 and x;, = Igé%)i Xk- Then Y){ko (8), s € (—¢,¢€) is stable for C4 < 0,

and it is unstable for C4 > 0. In addition, forany k # ko, Y, (s), s € (—¢,¢), is always unstable;
(2) Postulate that ¢* > 0, d <0 and y, = I{n,i\Jn Xk Then YXkO (8), s € (—¢,¢€) is stable for C4, > 0,
ENG

and it is unstable for C4 < 0. In addition, for any k # ko, Y,, (s), s € (—¢, €), is always unstable;

In light of Theorems 4-5 and Corollaries 1-2, one can obtain the choice mechanism of stable
wave patterns for other predator—prey systems with cross-diffusion effect and prey-taxis inter-
action. When the spatial mode (u;(s, x), U (s, X)) possesses stability, the wave number k of this
pattern must be the positive integer that maximizes (or minimizes) the bifurcating value d; (or
i) if the cross-diffusion rate d # 0 (or the prey-taxis y # 0). Accordingly, a local bifurcating
branch Yy, (or Y,, ) must be the largest one on the d-axis (or y-axis) and shifts to the bottom
at (u*, v*, d;) (or (u*, v*, xi)), or vice versa, if it is stable. The other branches are meaningless due
to the loss of stability at least for the neighborhood of the bifurcating point. The visualized descrip-
tion of stability analysis from Theorems 4-5 and Corollaries 1-2 can be performed by Figure 1 in
detail.

Thanks to Lemmas 1-2, Theorems 4-5, and Corollaries 1-2, we conclude that the positive equi-
librium (u*, v*) will lose stability to stable wave pattern cos koLﬂ by the bifurcation of steady state
if d (or y) goes beyond the marginal value lgel%)i dy (or lgreler\lﬁ xi) under the predator (or prey)

attractive circumstance and the threshold lines IgniNn dy (or IgniNn Xr) under the predator (or prey)
eN, eNy

repulsive situation.
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ﬂX

[ Ty
L A

/

(a) Case 1. (b) Case 2.

FIGURE 1 Casel:(1)d; = mind, when ¢* < D and y < 0; (2)d;, = min d;, when ¢* > P and
0 keN, urx 0 keN, ury
X >0;,(3) xy, = iniNn Xk When ¢* <0and d > 0; (4) xi, = }{niNn X when ¢* > 0and d < 0. Case 2: (1)

eN, eN,

-D, -D

dy, = max d, when ¢* <
keN, u*

* and X > 0;(2) d;,, = max d, when ¢* >
u*y keN,

¢* <0andd < 0;(4) xy, =£11%X)(kwhen¢* >0andd > 0.
ENy

2 and X <0;(3) xi, = max y; when
X keN,

Remark 4. As a general case, determining such marginal wave value k by the model coefficients is
impossible since the traditional Crandall-Rabinowitz bifurcation theory has limitations. Actually,
it holds

4 2
k * * * k * * * k
—D,D,(2) +(D,G; + DF; + 29 F) (2 ) = (FiGi - FiGi)

lim d,= Ilim
k—o0,keN, k—o0,keN,

4 2
(DD, + Dy x¢)(£) - (D*G; - D))

-D
=Py,
DZU* + “*X¢* L—0+

(paor(5) -r) (o) ~6:) () -rc)e

li = i
k—»oi,ll‘?ef\hxk k—)oclz,ll‘?eNJr ‘ . 2 o 2
ripar(5) o (5)
L L
_D(1+dv") lim
- —dU*¢* _L—>OJr Ak

(109)

In other words, if the interval length L is sufficient small, d;, (or y;) for any given k is an approx-

imation of ._Dz (or D,(1+dv?) ). If the effect of the prey-taxis vanishes, that is, y = 0, then
Dyv*+u* y¢* —du*¢*
for any given k, d; =~ —L for small L. Conversely, when the impact of cross-diffusion disappears,
U*
km
Dy Dy(—)?

that is, d = 0, then y =~ F*—¢’]:’ which means that y; = {ngjx xi for ¢* > 0and y; = IgniNn Xk
v eNy eNy

for ¢* < 0. For determining such marginal wave value k, by the model coefficients, the traditional
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932 | LUO ET AL.

Crandall-Rabinowitz bifurcation theory can be only applied to the case of reaction-diffusion
model with prey-taxis based on a sufficient small L. Fortunately, the user-friendly version of
this bifurcation theory proposed by Shi and Wang®’ can remedy this deficiency. We can easily
understand that the monotone solution does not have to be the only stable mode for each case. In
addition, we can obviously discover that k,, with respect to L, is nondecreasing, even increasing.

Remark 5. By giving a monotone solution of (20) in (0, L), we can establish the corresponding
nonmonotone steady states in a sufficient long interval via periodic extension and symmetry of
monotone steady state at ---, —3L, —2L, —L, 0, L, 2L, 3L, ---.

In Theorems 4-5, the signs of C, and C, determine the stability of marginal bifurcating
branch. Actually, similar to the computation in (102) for C; and C;, we can exactly obtain
the representation of C, and C,, which are postponed to the Appendix due to the direct but
tedious computations.

5 | NUMERICAL SIMULATIONS

Numerical examples can verify these theoretical results. In this section, we need to describe and
check our main results via numerical simulations of (1). At first, we need to illustrate the effects
of cross-diffusion rate d and prey-taxis coefficient y for the local stability of cross-diffusion model
with prey-taxis.

5.1 | Numerical examples for choosing d as a bifurcation parameter

Without loss of generality, we select the Beddington-DeAngelis and Tanner kinetic functions
given by (3). Even if the initial data are chosen as a perturbation of homogeneous equilibrium,
our mathematical experiments can also demonstrate that prey-taxis model with Beddington-
DeAngelis and Tanner functional responses can occur miscellaneous remarkable spatiotemporal
patterns with interesting structures. In following, we take

¢(u,v) = uv(M —u) (110)

as a sensitivity function, which means that the species of prey can protect themselves, or even
attack predator species (d < 0) in a group if the density value of population exceeded the threshold
level M.

For two kinetic functions F(u, v) and G(u, v), model coefficients in (3) are selected tobe r; = 2,
b=1,6=1,a=1,8=1,r, =2,and y = 2. Itis obvious via a simple computation that (1) exists
a unique interior equilibrium

o) = (5+\/E 10 +21/65

~ (1.3062, 5.224
o 3 > (1.3062, 5.2249),

(111)

Fy(u*,v*) = —1.1858, F,(u*,v*) =-0.0531, G,(u*,v*) =38, G,(u*,v*)=-2.
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20 20
15[ 15

20

(a) x > 0. (b) x <O0.
FIGURE 2 The graph of d, with respect to 4,
Meanwhile, the swarm defense threshold in (110) is chosen to be M = 0.5, which implies ¢* ~

—5.5021.
In light of the basic theory of elliptic equations, the eigenvalue problem

-¢" =29, x€(0,L),
¢ =0, x=0,L,

a12)

has a simple eigenvalue sequence A, = (k%)z, k =0,1,2,.... The corresponding normalized
eigenfunctions can be performed by
1
gok(x) = k= Os
VL
(113)
2 kmx
or(x) = \/;cos <T> k> o.
Setting D; = 0.4, D, = 40, and plugging them into the formula of d; and ) lead us to
=Dy D, + (DyGy + DyFy + x$*F)Ay — (FGy — FiGy)
o (D Dyv* + Dlu*)(¢*)/1]2{ — (D1v*G}; — Dyu*G;)) Ay
(114)

—164% — (48.2320 + 0.2922y);, — 2.7964
= k , keN,.
(83.5984 + 2.8747)A; + 8.35981

By setting y = 5 (red), 10 (orange), 15 (green), and 20 (blue), respectively, we obtain Figure 2A.
By setting y = —5 (red), —10 (orange), —15 (green), and —20 (blue), respectively, we obtain
Figure 2B.

We can also choose two Beddington-DeAngelis kinetic functions described by (3). System

parameters in (3) are chosen as o = L B = i, ¢ = 6,and d = 2. It is clear by a direct calculation

15’ 10
that (1) exists a unique interior equilibrium

(u*,v*) ~ (0.4154,0.7285),

Fi(u*,v*) = —0.4024, Fi(u*,v*) = —0.2749, Gi(u*,v*) = 3.4294, Gi(u*,v*) = —0.3506.
(115)
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o200 40 w0
(a) x > 0. (b) x <0.

FIGURE 3 The graph of d; with respect to 4,

Meanwhile, the swarm defense threshold in (110) is chosen to be M = 2.8227, which implies ¢* =
0.7285. Setting D, = 1, D, = 1, and plugging them into the formula of d lead us to

—D1D,A; + (DG}, + DoFy, + x¢*FAy — (F,G; — FiGy)
- (D, Dyv* + Dlu*)(¢*)/1i — (D1v*Gy; — Du*G;) A

(116)
—22 = (0.7530 + 0.2003)A;. — 1.0838

(07285 +0.30267)A2 + 1.6800;,

, keN,.

By setting y = 0.25 (red), 0.5 (orange), 0.75 (green), and 1 (blue), respectively, we obtain
Figure 3A. By setting y = —1 (red), —2 (orange), —3 (green), and —4 (blue), respectively, we obtain
Figure 3B.

For the last two types of functional responses, we can easily deduce the following remark.

Remark 6. We can obtain the impact of y by studying the formulas of d;.. The conclusions are as
follow:

(1) Whend;, = ]En%x di > 0and y > 0(or y < 0), the value of dy, = Ign%x d; and the correspond-
eN, eN,

ing k, will be reduced by increasing the value of y;
(2) Whend,, = in%x di <0and y > 0(or x < 0), the value of dj, = IEnENLX d; and the correspond-
eNy eN,

ing ko will be increased by increasing the value of y.

5.2 | Numerical examples for choosing y as a bifurcation parameter
Setting D; = 0.4, D, = 40, and plugging them into the formula of y; lead us to

D,D,(1 + dv*)2? — [D,Gi(1 + dv*) + D,F} — Dyu*GydlAy + (FiGi — FiGy)
B —Dydu*¢*A2 + Fi¢* Ay

Xk

(117)
16(1 + 5.2249d)A2 — (48.2320 — 8.3598d)A;, + 2.7964

—2.8747dA; — 0.29221

, keN,.
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FIGURE 4 The graph of y; with respect to 4,

By setting d = 0.5 (red), 1 (orange), 1.5 (green), and 2 (blue), respectively, we obtain Figure 4A.
By setting d = —10 (red), —20 (orange), —30 (green), and —40 (blue), respectively, we obtain
Figure 4B.

Remark 7. We can obtain the impact of d by studying the formulas of y;. The conclusions are as
follow:

(1) When y, = Ign%x Xk > 0and d > 0, the value of y;, = Igna’\l‘x Xk and the corresponding kg will
eNy eN,

be decreased by increasing the value of d;
(2) When y, = Ign%x Xk <0andd > 0, the value of y;, = Iina’\l‘x Xk and the corresponding k, will
eN, eNy

be increased by decreasing the value of d.

For double Beddington-DeAngelis functional responses, we plug the same coefficients in (115)
into the formula of y; and obtain

_DiDy(1+dv)A2 — [D,G5(1 + dv*) + DyF; — Dy Gidly + (F;G; — FiG)
A —Dydur¢* A2 + Fip*ay

(118)
(1 +0.7285d)A; + (0.7530 + 1.6800d); + 1.0838

, keN,.
~0.3026dA2 — 0.20034;, *

By setting d = 0.1 (red), 0.2 (orange), 0.3 (green), and 0.4 (blue), respectively, we obtain
Figure 5A. By setting d = —1 (red), —2 (orange), —3 (green), and —4 (blue), respectively, we obtain
Figure 5B.

Remark 8. We can also obtain the impact of d by studying the formulas of y;. The conclusions
are as follow:

(1) When y;, = Ign%x Xk <0andd > 0, the value of y;,, = Igna’\l‘x Xk and the corresponding k, will
eN, eNy

be increased by increasing the value of d;
(2) When y;, = max y; <0 (or y;, = min y; <0) and d < 0, the value of y; = max y, (or
0 keN, 0 keNy 0 keN,

Xiy = IgniNn Xi) and the corresponding k, will be increased by increasing the value of d.
ENy
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FIGURE 5 The graph of y, with respect to 4,

In terms of Remarks 7 and 8, we see that the pattern formations of system (4) not only depend
on the signs of d or y but also on the functional responses (F(u, v) and G(u, v)) and the diffusion
rates (D; and D,).

Meanwhile, Figure 5B shows an interesting phenomenon that the maximal and the minimal
values of y can coexist with the different positive integers k and k in a same model. In other

words, the local stability interval for y is [ ]zn,i\ln Xi> max xi]ifwe treat y asabifurcation parameter.
KEN+ 7 keN,

In addition, this interval will tend to 0 when we increase the value of d (d < 0).

Remark 9. From the above experimental results, we verify that the local stability might appear
in the following four cases, (1) d >0, y > 0; (2)d >0, y <0;(3)d <0,y >0;(4)d <0, ¥ <0,
which are meaningful in the modeling.

5.3 | Numerical examples for nonconstant steady states: d is a
bifurcation parameter

We choose the same system parameters in Section 5.1. In Figure 6, we draw the numerical solutions
of (1) with double Beddington-DeAnglis functional responses and (110) under the spatial area
(0,300) and the initial condition (u((x), vg(x)) = (u*, v*) + 0.001 cos 47 x, which are small distur-

bances of positive equilibrium. We can easily calculate via (116) to obtain that ine’\llx d,=dnp=
ENy

—1.58. Hence, —1.58 can be regarded as a critical bifurcation value and kq = 72 can be treated as a
positive stable wave integer. Meanwhile, cos 7327”0)( = cos 6:—: represents the pattern of stable wave
which implies that the homogeneous equilibrium (u*, v*) loses its stability. We need to notice
that the initial conditions possess the profiles of space by involving perturbations cos 47 x; but,
the patterns formate in terms of the mode of stable wave cos 6:—; These figures verify our main
theoretical results in the stability of bifurcating branches.

Furthermore, we offer a detailed illustration on the impacts of cross-diffusion rate d for spatial-
temporal patterns in (1) with double Beddington-DeAnglis functional responses. Since M > u*
implies ¢* > 0, a smaller cross-diffusion rate d is conducive to the congregation and spatial
heterogeneity of prey in (1). Our experimental results demonstrate that population densities
evolve into spiculate functions if d is smaller than a certain threshold. We can also discover that
cross-diffusion models contain a control mechanism about population densities, that is, the max-
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FIGURE 6 Spatiotemporal pattern formations of positive nonconstant steady states of (1) with
Beddington-DeAnglis and Tanner functional responses and (110) over Q = (0, 300). Model coefficients are
selected the same as Section 5.1. Initial conditions are selected (uy(x), vy(x)) = (u*, v*) + 0.001 cos 47 x.

imum value of congregation densities are maintained below some threshold values despite the
cross-diffusion rate d is getting smaller.

5.4 | Numerical examples for nonconstant steady states: y is a
bifurcation parameter

We choose the same system parameters in Section 5.1. In Figure 7, we draw the numerical solutions
of (1) with Beddington-DeAnglis and Tanner functional responses and (110) under the spatial
area (0,400) and the initial condition (uy(x), vy(x)) = (u*, v*) + 0.001 cos 47 x, which are small
disturbances of positive equilibrium. We can easily calculate via (117) to obtain that lgé&&ﬁ Xk =

Xa9 & —4.43. Thus, the related discussion similar to Figure 6 can be derived. At the same time,
Figure 7E,F shows that the appearance of time-periodic modes over (0,400).

In Figure 8, we focus on the impact of spatial region length on the positive stable wave inte-
ger if y has been selected nearby the critical value of bifurcation. Model coefficients and initial
conditions are chosen to be the same as those for Section 5.1 and Figure 7, respectively. The
spatial region length L are selected to be 300, 400, 500, and 600. In light of (16), we can easily
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FIGURE 7 Spatiotemporal pattern formations of nonconstant steady states of (1) with
Beddington-DeAnglis and Tanner functional responses and (110) over Q = (0,400). Model coefficients are
selected the same as Section 5.1. Initial conditions are selected (u,(x), vy(x)) = (u*, v*) + 0.001 cos 47 x.

obtain the critical value of bifurcation via a simple calculation, that s, y3; ~ —4.4300 (1 ~ 0.1501),
Xag9 & —4.4375(A ~ 0.1481), e ~ —4.4292 (1 ~ 0.1518), and y74 ~ —4.4300 (4 ~ 0.1501). Conse-

quently, in terms of Corollary 2, (u*, v*) is unstable to the pattern of stable wave cos BZTHOx, cos %,

621X 74X . . . . pe .
cos o0 and cos 00 respectively. Figure 8 has demonstrated these numerical verifications. By
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FIGURE 8 Stabilization and pattern formation of nonconstant steady states with perturbations of (u*, v*).
Model coefficients are selected the same as Section 5.1. Actually the simulations are done in the time-dependent
case and the pictures we proposed are the projections of all the graphs for t = 0 to ¢ = 100. Initial conditions are
selected (uy(x), vy(x)) = (u*,v*) + 0.001 cos 47rx. These graphs admirably describe the stable wave pattern choice
mechanism. Furthermore, a larger spatial region length can lead to more aggregations than a smaller one.
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increasing the length of spatial region, the positive stable wave integer will also grow. In addi-
tion, a larger spatial region length can lead to more aggregations than a smaller one. The work
introduced by Painter and Hillen* has investigated the influence of the spatial region length L
on the stable wave pattern of Keller-Segel systems involving logistic growth by numerical exper-
iments. However, it is not explicitly shown how to find out the positive stable wave integer and
the corresponding profile via model coefficients. The current work gives a complete version of the
formulation in (16) and (18).

In Figure 8, one can observe that chaotic patterns turn to stationary patterns if the spatial region
length L increases. Rigorous mathematical discussion of this interesting phenomenon is out of the
scope of our research direction.

6 | CONCLUSION AND DISCUSSION

In this work, the existence and stability of positive nonconstant steady states of general cross-
diffusion models with prey-taxis are studied. The main conclusions can be summarized in the
following four aspects:

* The results of this work are not only new but also include some previous works. When d = 0,
model (1) will reduce to a reaction-advection—diffusion system with taxis interaction, chemo-
taxis model, or competition model. It depends on two kinetic functions F(u,v) and G(u,v).
When y = 0, model (1) will reduce to a cross-diffusion model with prey cross-diffusion effect.

* We can discover that both cross-diffusion rate d and prey-taxis parameter y can be viewed as
two bifurcation parameters. Both of them have separate formulas (16) and (18), that is, d; and
Xk to obtain the critical values of bifurcations.

* d < 0 describes the aggregation effects among the species. Therefore, we should not exclude
this case since nonconstant steady states can also obtain when d < 0.

* Small domain can guarantee the critical value of y; or d;, and can be maintained at a nonzero
value. It means that the coexistence of cross-diffusion effect and taxis interaction also has
opportunity to obtain the local stability of (u*, v*), even d < 0.

‘We need to point out that our theoretical framework is not restricted to predator-prey systems.
We claim that it might also be applied in competition model, symbiosis system, and so on. For
instance, Wang et al> have introduced three interesting competition models in bounded domain
with homogeneous Neumann boundary condition and initial data

u; = V- (D1Vu + yup(v)Vou) + (a; — byu — c;o)u,
(119)
tv; = DyAL + (ay — byu — V),
uy = A[(Dy + priu + prpv)ul + (a; — biu — cyv)u,
(120)
v, = A[(D3 + pa1u + p2p0)0] + (ay — byu — ),
and
u, =V-(D;Vu+ y®,(u,v)Vu) + (a; — byu — cyv)u, -
121
v, =V - (D,Vu + y®,(u,v)Vu) + (a; — bju — c;v)u.
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It is easy to check by a simple computation that system (125) has a unique positive equilibrium

, a;C; — aCy a2b1 - a1b2
u* o*) = , 122
( ) <b102 —byer bicy — by ) (122
when and only when
c a b b a c
2ceXclor <2< (123)
C a bz b2 a Cy
In addition, the signs of F;;, F};, G;;, and G, should be reconsidered. Thus we have
bi(ayc; — aqc
Ff=a, - 2byut — cv* = 2@ ZA0) o
byc; — by
F; = —cu* <0,
(124)

G; = —bzv* < 0,

c(a1by — azby)

<0
bic; = byey

G} = ay — byu™ —2¢,0* =

when and only when 9ca hgeh o4 a
¢ Gy b, by az 2
In the Lotka—Volterra kinetic functions F(u, v) = (a; — byu — ¢c;v)u and G(u, v) = (ay — byu —

¢,U)v, we can derive the following cross-diffusion model:

0;u = D10y, (u + duv) + (a1 — byju — c;v)u,
(125)

0,V = 0,(D,0,U — x¢(u,v)du) + (a, — byu — cv)v.
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APPENDIX A: ADDITIONAL MATERIALS

We obtain the orientations of the pitchfork bifurcations Yg, (s) and Y,, (s) of model (20) with
generalized kinetic functions F and G. In light of Theorems 4-5 and Corollaries 1-2, the unique
local stable branch has to be deo (s) (or Y)(k0 (8)), s € (—¢,€). Meanwhile, the stability of deo (s)
(or Y)(k0 (s))is confirmed via the rotational direction, and all the others are always unstable. When
C, <0 (or C4 < 0), each bifurcation branch Yy, (s) (or Y, (s)) is moving down. When C, > 0 (or
C4 > 0), each bifurcation branch Yy, (s) (or Y, (s)) is moving up. Accordingly, we must confirm
the sign of C, (or C,) for the stability of the stationary solutions of model (1).

A.1 | The expression of C,

Our computations can be applied for each positive integer k. For evaluating C,, the whole deriva-
tion process are as follow. Plugging the asymptotic expansions (96)—(99) into the first equation of
(20), and equating s*-terms, one gets

. . . y kmx y y kmx
D,®] + F;®, + F;¥, + (F;;, Q) + F;;,)®, cos - + (Fi,Qp + Fi))¥, cos I

+ E(FuuuQi + 3FuuuQi + 3F1'quk + FUUU)C0S3 T

! ! ! !
k k k k
=—d,D, |:v*¢),2’ + Qy <®’1 cos ?) + <1IJ1 cos’ ?) +uP + (1111 cos ?) + <<I>l cos’ %) ]

k
+ C,(u* + v*) cos” ?

(A1)

We cite the following equalities which can be evidently derived via a direct computation to deduce
more accurate formula of C,.

L L
/ A. cos? k”_xdx = 1 / A, <1 + cos 2kmx >dx, (A.2)
0 L 2 J, L
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L

L ’
k k k272 2k

/ (A( cos ﬂ) cos gy = X7 / A. cos ﬂxdx,
. L L  J, L

. ) . (A3)
2.2
/ (A. cos’ k7r_x> cos kn—xdx = 1k7 / A, <cos 2kx 1>dx,
o L L 212 J, L
where A=®orV¥,.=1,2,3,or4,and
L . .
/ cos* krx dx = (sin(4rk) + 8sin(2wk) + 127k) - L _ EL,
o L 327k 8
L k kex\'  k
1 / <cos2 X cos’ ﬂ) cos X dx (A.4)
] L L L
k’m?  —L(zk tan*(7rk) + tan’ (k) + 27k tan® (k) + 7 tan(zrk) + k) _ k2>
| L2 8mk(tan*(k) + 2 tan’(7k) + 1) 8L °

By multiplying (A.1) by cos ]“LT—x and integrating from O to L, we obtain in light of (A.2)—-(A.4) that

dx

L L L
2L kmx kmx 2kmx
G=———17——|C ) —dx+C ¥y —dx+C )
2 (kﬂ)Z[Dl(u* I v*)] < 11 /0 , COS 2 X 12/0 , COS T X 13/0 1 COS

k 2kmx t k
+Cyy / ¥, cos 7 dx + Cys / ®,dx +Cig / Y.dx + C17>.
0 0 0

(A.5)

Here,

N 2
k [k
Cn=-D;(1+ dkv*)<%> +F,, Cpp= —de1u¥<Tn> +Fy,
1\ (kz\* 1 Lop (k) 4 2
Ci3 = —diD, <Q - E) <T> + E(F;qu +Fu), Cia = _Edel (T) + E(F;UQk *Fo).
1 e\l 1 1 e\l 1
Cis = _Edel (T) + E(F:qu +Fy), Ci6 = _Edel <T> + E(F:UQk o).
L * 3 * 2 * *

Cur = (1@} + 3@+ 3 Qs + Five).

(A.6)
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Extracting s3-terms in the equation of v in (20), one gets

, , kmx kmx
DY) + G;®, + G)¥; + (G;;,Qk + Gy, )@, cos % + (G, Q. + G )W, cos %

1 . . N kmx
+ E(Gin + 3G,0Q; + 3G, Qk + Gpp) cos® —=

/ ’ ,
: (A7)
=X l¢*@;’ + (¢ZQk + ¢Z) <CI)’1 cos k%) + ¢;,k¢ (@1 cos’ kzx> + ¢U <lPl cos’ k7ll:x>

/
+§(¢uuQi + 2¢,Qk + ¢UU)<0052 < cos’ T) ] .

By multiplying (A.7) by cos k? and integrating from O to L, we obtain in light of (A.2)-(A.4) that

km ? L kmx km L kmx
<X¢*<T> +G;>/ CI)Z Ccos de+ < D2< I > +G3>/ IPZCOS de :CIS,
0 0

(A.83)

where

k7r 1, . N L 2kmx
C18 - X ¢u k+ ¢v -5 + E(Guqu + Guu) (Dl COoS T dx
0

L

1 1 * *
§X¢U + E(Gquk + GUU)> / lI‘1 cos
0

1 1 . L
Y u Y G;u G;:v &,d
<2)(¢ " G0+ ))/0 \dx

dx

2kmx
L

L

1 1,
§X¢U + E(Gquk + GUU)> / lI"ldx
0

2
" L
X(‘puqu + 2¢uqu + ¢UU)< > + (G;kmuQi + 3GZqui + 3G;Uva + Gl;vv)> R

(A9)

Meanwhile, due to (®,,¥,) € W as denoted by (40), we obtain that

L

km N L kmx L k7 ? N kmx
Dz L — GU (1)2 Ccos de + ){¢ T + Gu lpz CoS de =0. (AlO)
0 0
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In light of (A.8) and (A.10), we have

kmr 2 kr 2 L krx
s M * _ o * 1) d
xXe <L> +G; D2<L> + G} /0 2 Cos ——dx Cry
R 5 ; = o ) (A1)
km kr . krx
D2<T> —-G* X¢*<T> +G; /0 ¥, cos de
Solving the last matrix equation yields
L L
krx Ap / krx Ay
@, cos —dx = —, Y, cos —dx = —=, (A12)
/0 2 L Ay’ Jy 7 L Ao
where
2 2 2 2 2
km . L kT . ok .
A10=<D2<T> _Gu> +<)(¢ (T) +Gu> , A11=C18<X¢ <T> +Gu>,
(A13)

km 2
A12:C18<_D2<T> +G3>-

The final step will evaluate fOL ®, cos 2kLﬂx dx, /OL ¥, cos ZkL—ﬂxdx, [OL ®,dx, and fOL ¥, dx. By
integrating (101) and (103) from O to L, we derive that
L }
/ <I>1dx _L(FZuQi + ZF;UQk + F;U)
0 4
( ‘ ”> - . (A14)
W G/t L(GQ; + 2G5 Qi + Gi)
Yidx -
0 4
Solving the last matrix equation yields
L L
B B
/ ®,dx = =L, / ¥ dx = =2, (A.15)
0 BlO 0 BlO

where

L[(FZuQi + ZF:ZUQk + F;U)G;JL - (G;uQi + ZGZva + G;U)F;]
4 I
L[(FZuQi + ZFZUQI{ + F;ka)G: - (GZuQIZc + ZGZUQIC + G:U)FZ]
12 = .
4

By = F,;,G; — F;G,;, By = —

(A.16)
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Multiplying (101) and (103) by cos Zanx and integrating from 0 to L lead us to

2 2 L
2km . 2k , 2kmx
— * - * _ Ll it *
D;(1+dv )( T > +F;, D,du < T ) +F} /0 ®, cos I dx <B13)
2 2 L = 9
. [ 2k . 2km . 2kmx By,
xX¢ <T> + G, _D2<T> + G} /0 ¥, cos T dx
(A.17)
where
L(FZuQi + ZF;UQk + F;U) k?m?
B3 =— 3 + 57 diD1Qk,
(A.18)
L(G;uQi + ZGZUQk + G:v) k?m?
Bl4 = - 3 + 5T del'
Solving the last matrix equation yields
0 2kmx E 0 2kmx E
®, cos dx = =2, / ¥, cos dx = =12, (A19)
/L ! L Eyp J, ! L Eqo
where
2 2
2k 2k
Eyo =<D1(1 + dv*)(%) —F;)<D2<T”> - G,’j>
2 2
2 , 2
+ (Dldu* <¥> —F;‘)(;@*(%) + G;>,
(A.20)

2 2
Ey =Bl3<—D2<2kT”> + Gj) —Bl4<—D1du*<2an> +Fj>,
2 2
2km " . 2km "
Eyp =B14<—D1(1+dv*)<T> +Fu> —B13<X¢ <T> +Gu>.

In view of (36), we indicate that E;, is always nonzero. Together with (A.12), (A.15), and (A.19), C,
in (A.5) can be represented in light of model coefficients.

A.2 | The expression of C,
Our computations can be utilized for each positive integer k. For evaluating C,, the whole deriva-
tion process are as follow. Plugging the asymptotic expansions (96)-(98) and (100) into the second
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equation of (20), and equating $3-terms, we obtain

+ (G;;, + G, Py )W cos krx

, krx
DY) (x) + G, @4 + G¥y + (G, + Gy P ) @3 cOs —— T

L

= (Guuu + 3G Pi + 3G P2 + Gy, PY) cos k%x

/ / /
. (A.21)
=Xk lcp*d):" + (5 + ¢§Pk)<d>’3 cos k7£_x> + ¢ <<I>3 cos’ k%) + ¢ <1I‘3 cos k%)

!
1 .
+§(¢;ju +2¢% Pi + ¢;UPi)<cos2 _k7£x cos’ _k7£x) ] + C4¢* cos”’ _kzrx.

By multiplying (A.21) by cos k;r—x and integrating from O to L, we obtain in light of (A.2)-(A.4) that

L L L
2L kmx kmx 2kmx
C, = ®,cos —dx+C ¥, cos —dx +C ®; cos
4 (kn)2¢*< 21/ 4 7 22/0 4 7 23/0 3

L 2kmx L L
+C24 / lpg Ccos I dx + C25 / <I>3dx + C26 / ‘I‘3dx + C27>.
0 0 0

dx

(A22)

Here,

km 2 km
C21=)(k¢*<f> +G,, Cyp= D2<L> + Gy,

km

2
1 1 km 1 "
Cx )(k<§¢f; + ¢$Pk> (T) + E(G + GPi), Cou = —2)(k¢v< > + E(GZU + GiuPr)s

1 km 1 kr 1
C25 = 2 k¢u< > + E(G;u + G;ka)’ C26 Xk¢v< ) + E(GZU + G:ka)’

km

* * * * * * L
Cy = l%k(¢uu +2¢,,P + ¢vai) <T) + (Guuu + 3G Pr + 3Guva2 + GUUUPS)] 16

(A.23)

Extracting s3-terms in the equation of u in (20), one gets

k , k
D, @] + Fi®, + Fi¥, + (Fi, + F,P,)®; cos % + (F2, + F,P,)W,5 cos ?

kmx
+ (Fuuu + 3FlquPk + 3F;UUP2 + F;UUPS)COS T

! ! ! !
=—d.D, [U*CIJ;’ + (CID’3 cos Zﬂ) + <‘P3 cos’ kLﬂ> +u'¥) + Py (‘I‘g cos laz_x) (CD3 cos’ k;[:—x) ]

(A.24)
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Multiplying the last equality by cos kLix and integrating from O to L, one gets

km r kmx 2%\’ r kmx
-D,(1+dv*)( — | +F; / ®,cos —dx + | —D,du*| — | +F; / Y, cos ——dx = Cy,
L 0 L L 0 L

2

(A.25)
where
2 L
1 km 1 2kmx
C28 =<—§de1 <T> + <Pk - §>(F;u +F;UPk)> A ¢'3 COoS I dx
2 L

1 km 1, . " 2kmx
+ <—§de1 <T> + E(Fuv +FUUPk)> /0 W5 cos 7 dx

1 kr\o 1 L A26
+ | —=diD;| — + —(F;u + F;qu) dydx (A.26)

2 L 2 o

1 kr\o 1 L
+<_§d"D1<T> +§(F;§U+F§jvpk)>/0 Widx

L \
+ E(Fjuu + 3F P + 3F 5, Py + FpPY).

Meanwhile, due to (®4, ¥,) € W as denoted by (40), we obtain that

2 L
—D,du* Zkn +F} / ®, cos kﬂ—xdx + | D;(1 +dv¥) kn
L . L L

2

L krx
—F; / Y, cos de =0.
0

(A.27)
In view of (A.25) and (A.27), one gets
2 2 L
km 2k kmx
_ * e * _ * *
Di(1+dv )< I > +F; D;du <_L > +F} /0 d, cos < dx <Czs>
2 2 L - ’
kmx 0
—Dldu*<2kTﬂ> +F} D1(1+dv*)<kL—ﬂ> —F; /0 Y, cos de
(A.28)
Solving the last matrix equation yields
t kmx A L kmx A
@, cos ——dx = ==L, / W, cos ——dx = =2, (A.29)
/0 4 L Ay’ Jy ¢ L Ay
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LUO ET AL. 951
where
Ay =czg< —D,du* <2’z”> +F;j>, (A.30)
Ay, = C28<D1du (2'z”> —Fj;).
The final step will evaluate fOL @, cos 2k”dx f ¥, co sZk”xdx f ®;dx, and f ¥.dx. By

integrating (101) and (103) from O to L, we derlve that

L * % p2
/ ydx _L(F + 2F,;, Py + F3,P})
0

R E = 4 (A.31)
G* G* L L(G};y, + 2G;;, P + Gy PY)
u v uv

Widx -
/ 4

Solving the last matrix equation yields

L L
B B
/ @ydx = 72, / Widx = 22, (A32)
0 20 0 20

where

, L[(Fyyy + 2F;, P + F,POGy — (G, + 2G5, Pic + G5, PF
By = FuGy = FyGy, By = —

4 >
L[(F;,km + ZFSUPk + F:UPIZ{)G; - (G;u + 2Gstk + G:UP]%)F;]
B22 = 4 .
(A.33)
Multiplying (101) and (103) by cos Zk% and integrating from O to L lead us to
2kn’ 2%k’ t 2kmx
—D;(1 + dv¥) +FZ —Dydu*( — ) +F} / ®; cos ——dx
L 0 L <B23>
2 2 L - ’
. 2k , 2k . 2kmx By,
X¢*< ) +G* —D< ) +G* / Y5 cos dx
L u 2 L v 0 L
(A.34)
where
L(Fy, + 2F; P + FouPY)  k2p2
323 = - - Xk¢ ’
8 2L
(A.35)

B, = L(GZu + ZGZUPk + Givpi) k2m? p
24 =~ 3 Y7 Xi® P
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Solving the last matrix equation yields

L L
2kmx Exn / 2kmx E»
®; cos dx = =, Y, cos dx = =, A.36
/0 } L Ex' Jy } L Es (4.36)

where

2
Es —<D1(1+d *)<2kﬂ> —F;><D2<2an> —Gf;k>
2% 2%k’
(Dldu < L”) —F;‘><X¢*<Tﬂ> +G;>,
Ex =Bz3< D2<2lzﬂ> +G$)—Bz4< —D,du* < lzn) +F3>,
2km 2k 2
Ey =Bz4< D;(1+dv *)< ) +FZ>—323<X¢*<T> +GZ>-

In view of (36), we indicate that E,, is always nonzero. Together with (A.29), (A.32), and (A.36),
C, in (A.22) can be represented in light of model coefficients.

(A.37)

A.3 | Example

In this example, we select the Holling-II and Tanner kinetic functions given by (3). It means that
B = 0. For the sake of simplicity, wesetD; =1,D, =1,r; =2,r,=1,b=1,6 =1l,a=1,y =1,
and L = 2. We choose d = 0 and y as a bifurcation parameter. It is easy to see that

(u*,v*) _ ((rla —-b-— 7‘27/5) + \/(Zrlljz —b-— 72}/5)2 + 4br1a,r2yu*> _ (\/5, \/E) (A38)

Based on the above constant steady state, we obtain

—2-3V2 V2

F) = = , Gy=1, G)=—

v T e

- —14-38 1 B}
F;u \/_ uv_ ’FU:O’
a+v23 (1427

= V2, Giy = V2, Giy=-V2 Gl =3, Giuw =2 Glpy=1, Gjy, =0,
Dl("{)z—F; a+ ﬁ)Z("{)2+<z+sﬁ>
Fpo —2+2)
o () - ril[pa(te) -t - [(5) 22| () ]+ 2
2

Xie = > =
o () o (3)

P, =

E}

(A.39)
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In the following, we take
¢(u,v) = uv(M —u) (A.40)
as a sensitivity function. If M = 2\/5, we have

¢ =22, ¢ =0, ¢¥ =2, ¢5, =—-2V2, ¢*, =0, ¢, =0. (A.41)

Therefore, if we denote (I%T)2 = A, we have

k 243V2 ke \ V2
[(T) T [<T> s o @AHLOTIDA+D)

— — 2 _ —
C, = ¥ 1~ —0585s ~ —1.70711% — 3.53551 — 1.8284,
_1+ 2
(A.42)
km 2
2 2
k)" 243V2 | (e V2 %
[( L ) + (1+\/5)2] [( L ) +1] + 142 a+ \/5)2(%) +(2+3\/§)
Cys = 5 : 5 \/5
12 —2+vy)
2
| 50 V2R (Z) +@+3v2)
+ —_] — —
2 1+v2 (A.44)
A+ 1.071D)(A + 1) 5.82841 + 6.2426
~< YT —0.7071 | === ) + 0.5(—2.41421 — 4)
=(1.20714% 4 2.51 + 2)(1.85374 + 1.8284) — 1.20714 — 2
=2.2376A3 + 6.84131% + 7.07131 + 1.6568,
2 2
km 24342 kz V2 e \ 2
B (o G e O PR C L e
%= +5 +
V2,2 2 1+2
1+4/2
(GA+1.071D)A+1)
~< 6560 +0.3536 ) +0.5(2.41421 + 4)
=0.603512 + 2.45701 + 3,
(A.45)
2
k
) A+ V2 (F) +@+3v2)
Cos ==|—V2 + ~ 0.5(—2.41424 — 4) = —=1.20714 — 2, (A.46)

~(1+2)
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n' + T 2
[(kj (i:\/-)ZH f) ] 51 Y (1+\/§)2<k7”) +(2+3V2)
+2[v2+
23 2 1+42

_(@A+1071DA+1)
1.6569

+ 0.3536) +0.5(2.41421 + 4)

= — 0.60351%2 — 0.04281 + 1,

(=) 222 |(2) ]+ 25 |

(A.47)

Cy = —

~

NG 16
1+2
K\ K\ :
a+V2r(Z) +e+3v2)  [a+vr(Z) +e+3vd)| |
+|6-6 +3 =
~2+12) -2+12) 16

((A+1.0711D)A+1) 0125) 40125 | (64 3497062 +37.4558\ (582847 +6.2426 2
~ 4.6863 : : 3.4142 —3.4142

=1.30621% + 4.06331 + 3.7286,

(A.48)
L
kmx
/0 ®, cos de
1 * ® * L 2kmx F
<<Pk_;)(Fuu+FuU uv UUPk).lg) lII3COS —dx ) v
K\ 2 g
T % 2
—(Dl(y) —FL;) — ()
(z(Fuu +Fuqu)f0 (Dde + E(Fuu +FUUPk)_/0 III3dx)Fu
+
km 2 s ? 2
- Dl(?) _Fu _(FU)
1L_6(F;:uu + 3F$uUPk + 3F;:va2 + F:vvpi)F:; L
+ = —/ Y, cos i3 dx
km 2 % ) 0
~(p(2) -F; e
— — _ 2_ 3
(=1.7071A — 2.3284)[—1.7990 + 0.1716(1.70714 + 2.8284)]( 149383 20‘41729;’1_22:‘20;3% 85355 )(—0.5858)

—(1 + 1.0711)2 — 0.3431

22.2154+83.34821+120.2381%+82.91094° +23.31354*
1212-2.6274
—(A +1.0711)2 — 0.3431

0.5- 0.1716< )(—0.5858)

+
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0.5[~1.7990 + 0.1716(1.70714 + 2.8284)] (2.05356 + 2.590981 + 0.72854812) (—0.5858)
+
—(1 + 1.0711)2 — 0.3431

| 05 0.1716(~0.260083 — 1116031 — 1. 3320812)(—0.5858)
—(1 + 1.0711)2 — 0.3431

., 0-125[—0.2498 — 0.4263(1.70712 + 2.8284)|(~0.5858)
—(A+ 1.0711)2 — 0.3431

_ 4.54499 + 34.16931 + 57.82831% + 34.7568A° + 2.26431* — 3.250551°

) A.49
3.91576 + 5.62842A — 15.256942 — 25.706443 — 1214 ( )

L(F;,+2F;, P +F3,PY) @ *> <2k_7r)2_ «
L ks <—8 7 Xk®* J\ D> . G,

@ dx =
/0 seos T <D1<2,;,,>2_F:><D2<27> _G;;> F*<xk¢*(2"”) +G;)

L(Gy,+2G;;, Pi+Gy,P}) k2m?
(—8 + = X$" P

o ) ) ) (m 7

( 243y )(/1+1)+ V2
14— s\[ 2 (A+V2)P++3V2) _|_2\/—/1 (Hmz 2
+v2¢ (422 -2+V2) V2 o34

(41 +1)

1+\f

( 24+3V2 > V2
A+1)+

4]+ 2+3\/§ 8\/_/1 (1+\ﬁ)2 142 +1
a+v2y ——1@2\64

2
(14v2)°2+2+3V2) A+V224+2+3V2) V2
( V2422 e -2+V2) ﬁ( -2+V2) > ><_ ﬁ)

1+
+
24312
2432 V2 <’1+(1+ﬁ>2> !
(4/1+(1+ﬁ)2>(4ﬂ.+1)+m 8\/5& i =
142
2432 V2
2W2h (’” (Hﬁ;z)(’“ G | arvirsessvd \ [ V2
—fﬁ-zﬁ-a -2+V2) 1+V2
+
( 24312 >( 1)+ V2
2
<4/1+ 2+3f>(4/1+1)+ 8\/—/1 (142 1442 +1
(1+v/2)2 —ﬁa\/ﬂ

_—4.49383 — 20.4793A — 20.0239A> — 8.53551°
- 1212 — 2.6274 ’

(A.50)
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L
/ ¥, cos
0

2kmx

<L(G;u+2G;;Pk+G$LPi) N kZz . ><D1<2k7{> _ F$>

L

dx =

() - r2) (p2(22) - ) - (s (3) w2

L(Fy+2F PtFo Pp) | K " W 2km N
<—k i (14 )()(k¢ ( ) +Gu>

8
+

(o) ) (o) =) () )

2
(1+V222+(2+3V2) A+V222+(2+3V/2) 2432
2 2 ————— 4
< V2 + 22 VD HCHEVD) ey \/‘< 2 > >< /1+(1+\/§)2>

z+3\f) \V2
A+D)+—=
a3+ 252 ) 47 4 D+ 8\/_/1< Qo SACN |
1+V27 R 2\/—/1
243V/2
221 (/1+(1+\/E)2)(/1 1)+1+\f (1+V22A+(2+31/2) AL+ 2+3V2
- ayEa ~2+V2) (1+/2)2

+
243v2 V2

222 ) A1)+ 2
PPRTRELLICE FFY IR A s\/E/l( T ST +1
a+ \/_)2 1+ 2 _%.2\/5./1

2+3V2 V2
S14-8V2 2 (14V2PA+e+3VD) (“m)(ﬂm—ﬁ
8\/5/1 +1
1+V2r V22 -eaVD) e VZ 2o
+

< \/— ( 2432 ) 1 NA

24342 RISV v

42+ >( +1)+ = 8 N ‘1
V2
(1+v2 ~E i
(/1+ 2+3V2 > ( 2+3V2 ) S V2
2\/51 (1+\f)2 \/_/1 (1+\/’)2 VY ‘1
H\[ 22 H( VERPNESY
+ - —
(A+ 24312 )(/1+1)+_2
41 + 2432 4r+1)+ 8\/5& a+y2? 142 41
a+v2p 1+V2 ~ 2 a4
1412
22.2154 + 83.34824 + 120.2384° + 82.9109A° + 23.31351*
B 1272 — 2.6274 :
(A.51)
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/L ®ad L[(F::u + ZFZUPI{ + F:UP]%)G: - (GZu + ZGZka + GITUP}%)F:;]
X =— p— "
0o 4(F;G; — FiGy)

2
_14-8V/2 5 (1+\/5)2("T”> +(2+3V2)
V2P +V22 ~@+V2)

_8
1+V/2
2 ) 2 (A.52)
V242 2(1“/5)2(’%) +243V2) NG a+V2? () +@3va) | | Zya
—@+V2) —+V2) V2
* 8
1+V2

~0.17682 + 0.0536 + 0.25 + 0.5(1.70711 + 1.8284) + 0.25(1.70714 + 1.8284)?
=2.05356 + 2.590981 + 0.72854812,

k
A(F, G, — FyGy)

/L L[(FZu + 2F;L)Pk + F:vPZ)G: - (G;u + 2GZka + G;kvpi)F;]
‘I‘3dx =
0

2
1482 2 V2R (E) +e43v2)
V2P a+V2p -2+V2)

8
1+2
ke \2 ke \2 ’
V342 2(1+ﬁ>2({) +(2+31/2) /3 V2R () +@3v2) | |Zamsys
-2+v2) -2+v2) (1+V2p
B 8
1+V/2

~0.17681 + 0.0536 — 0.4571 + 0.9142(1.70714 + 1.8284) — 0.4571(1.70712 + 1.8284)?

= —0.260083 — 1.116031 — 1.3320842.
(A.53)

It means that

Cs
L

L L
2L kmx kmx 2kmx
== 1) it 1) it 16))
g <C21 /0 4 €08 —+ dx + Cy, /0 4C0s — dx + Cy; /0 3 C08 — dx

r 2kmx t L
+Cyy / ¥, cos T dx + Cys / ydx + C26/ Y.dx + C27>
0 0 0

~

~ —m [(=1.70712% — 3.53551 — 1.8284)
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4.54499 + 34.16931 + 57.82831% + 34.756813 + 2.26431* — 3.250551°
3.91576 + 5.628421 — 15.256912 — 25.706413 — 1214

4.54499 + 34.16931 + 57.82831% + 34.75681° + 2.26431* — 3.250551°

+(A+1
@+1 3.91576 + 5.628421 — 15256912 — 25.706443 — 1224

—4.49383 — 20.47931 — 20.023912% — 8.535513

+(2.23761% + 6.84131% + 7.07131 + 1.6568
( ) 1212 — 2.6274

22.2154 + 83.34821 + 120.2384% + 82.910913 + 23.31351*

+(0.60351% 4+ 2.45701 + 3
( ) 1212 — 2.6274

+(=1.20711 — 2)(2.05356 + 2.590981 + 0.72854812)
+(=0.60351% — 0.04281 + 1)(—0.260083 — 1.116031 — 1.3320812)

+(1.30624% + 4.06331 + 3.7286))

—94.4959 — 544.7341 — 1277.91A% — 1533.76A% — 1022.331* — 417.8941° — 170.1691° — 86.883517 — 23.7166A°
—11.07531 — 15.919412 + 43.1526A3 + 72.7081% + 33.940815 ’

(A.54)
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