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Abstract

We investigate rough differential equations with a time-dependent reflecting lower barrier, where
oth the driving (rough) path and the barrier itself may have jumps. Assuming the driving signals allow
or Young integration, we provide existence, uniqueness and stability results. When the driving signal
s a càdlàg p-rough path for p ∈ [2, 3), we establish existence to general reflected rough differential

equations, as well as uniqueness in the one-dimensional case.
c⃝ 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Stochastic differential equations (SDEs) with reflecting barriers or boundary conditions have
long history in probability theory going back to Skorokhod [38]. Since the early works [26,33,
8,39,41] regarding reflected diffusions in a half-space, there has been a considerable effort to
eal with various generalizations, such as more intricate boundary conditions (see e.g. [29,37])
r more complex stochastic processes, like fractional Brownian motion (see e.g. [20]) and
eneral semimartingales (see e.g. [19,28,34]). Associated properties of these reflected diffusions
ave been widely studied as well, such as approximation results and support theorems, see

∗ Corresponding author.
E-mail addresses: andrew.allan@math.ethz.ch (A.L. Allan), chong.liu@maths.ox.ac.uk (C. Liu),

proemel@uni-mannheim.de (D.J. Prömel).
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e.g. [3,27,35]. The theoretical study of reflected SDEs and of the closely related Skorokhod
problem has been additionally motivated by their many applications, such as in queuing theory
and statistical physics, see e.g. [7,32].

A fresh perspective on stochastic differential equations was initiated by Lyons, providing
pathwise analysis of SDEs, first using Young integration [31], and then by introducing the

heory of rough paths [40], which allows one to treat various random noises, such as fractional
rownian motion and continuous semimartingales. The rough path approach to stochastic
ifferential equations has been celebrated for offering many advantages and new insights; for an
verview see for instance the introductory textbook [21]. A first pathwise analysis of reflected
DEs was presented by [17,20] using Young integration, and by [1,5] using the more powerful

heory of rough paths.
The aim of the present work is to provide a pathwise analysis of differential equations

eflected at a càdlàg time-dependent barrier L : [0, T ] → Rn of finite p-variation. More
precisely, for a càdlàg path A : [0, T ] → Rd of finite q-variation and a càdlàg path X : [0, T ] →

Rd of finite p-variation with q ∈ [1, 2) and p ∈ [2, 3) satisfying 1/q + 1/p > 1, we study the
ifferential equation

dYt = f1(Yt ) dAt + f2(Yt ) dX t + dKt , t ∈ [0, T ], (1.1)

here the solution Y is reflected at the time-dependent barrier L , that is, Y i
t ≥ L i

t for
= 1, . . . , n, and the reflector term K : [0, T ] → Rn is a non-decreasing process fulfilling

a standard minimality condition.
In the first part of the paper we suppose that the second vector field is trivial, i.e. f2 = 1.

In this case classical Young integration [42] is sufficient to define the remaining integral
in (1.1), and we can thus treat (1.1) as a reflected Young differential equation. Under standard
assumptions on the vector field, we show the existence and uniqueness of a solution to (1.1)
using a Banach fixed point argument. Moreover, we prove that the solution map (A, X ) ↦→

(Y, K ) is locally Lipschitz continuous with respect to both the p-variation distance and to the
korokhod J1 p-variation distance. These results provide a comprehensive pathwise analysis
f reflected Young differential equations. In particular, our results complement the existing
iterature (cf. [1,17,20]) in terms of the pathwise stability of the solution map, which constitutes
ne of the central advantages of a pathwise analysis of SDEs. For instance, pathwise stability
esults allow one to prove support and approximation results, as well as large deviation
rinciples for stochastic differential equations, cf. [23].

In the second part we consider general vector fields f1 and f2. In this case Young integration
s no longer sufficient. We therefore assume that X is a càdlàg p-rough path in order to
efine the second integral in (1.1) as a rough integral, turning (1.1) into a reflected rough
ifferential equation (reflected RDE). For this purpose we rely on the càdlàg rough path theory
f forward integration recently introduced in [22,24], a generalization of the now classical
heory of continuous rough paths which also allows processes with jumps. Indeed, general
emimartingales can be lifted to càdlàg rough paths, as well as many other stochastic processes,
uch as suitable Gaussian processes, Dirichlet processes and Markov processes, see [9,24,30].
ence, a càdlàg rough path approach to (1.1) significantly enlarges the class of well-posed

eflected SDEs. As already pointed out in [1] and [12], reflected rough differential equations
ace significant new challenges compared to the treatment of classical RDEs, the main reason
eing the lack of regularity of the Skorokhod map, particularly its lack of Lipschitz continuity
f the space of controlled paths (see Section 3).

We establish the existence of a solution to the reflected RDE (1.1) based on Schauder’s

xed point theorem and p-variation estimates for the Skorokhod map due to [17]. While
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Schauder’s fixed point theorem is a classical argument in the context of differential equations,
the present setting allowing driving signals A and X with jumps requires careful analysis,
particularly in the introduction of a suitable compact set on the space of càdlàg controlled

aths. So far existence results for reflected RDEs are only known for continuous driving signals,
ee [1,5,12,36]. Similar results have been obtained in the context of sweeping processes with
athwise perturbations [8,18] and path-dependent rough differential equations [2,4], both also
overing reflected RDEs.

We then prove the uniqueness of the solution to the reflected rough differential equation (1.1)
n the one-dimensional case, that is, when the solution Y is real-valued. For multidimensional
eflected RDEs a general uniqueness result cannot hold, as observed by Gassiat [25], who
rovides a linear RDE in n = 2 dimensions reflected at 0 with infinitely many solutions. For
ne-dimensional reflected RDEs driven by continuous rough paths uniqueness was obtained
y [12] in the case L = 0 and by [36] in the case of time-dependent barriers L . The approach
f [12] (as well as [36]) relies fundamentally on the sewing lemma and the rough Grönwall
nequality of [13], for which the continuity of the driving paths seems to be crucial, see
emark 4.5. Therefore, in order to treat the càdlàg setting, our proof of uniqueness utilizes a
ovel approach based on a contradiction argument. Remarkably, this proof is rather transparent
nd is surprisingly short, particularly in the special case of continuous driving paths.

Organization of the paper: In Section 2 we provide existence, uniqueness and stability
esults for reflected differential equations driven by signals allowing for Young integration. In
ection 3 we prove the existence of solutions to multidimensional reflected rough differential
quations. Finally, we provide a uniqueness result for one-dimensional reflected RDEs in
ection 4.

.1. Basic notation

Let us start by introducing some standard definitions and notation used throughout the paper.
A partition P = P([s, t]) of the interval [s, t] is a set of essentially disjoint intervals covering

s, t], i.e. P = {[ui , ui+1] : s = u0 < u1 < · · · < un = t}. The mesh size of a partition
is given by |P| := max{|ui+1 − ui | : i = 0, . . . , n − 1}. Given a metric space (E, d), the

et D([0, T ]; E) denotes the space of all càdlàg (right-continuous with left-limits) paths from
[0, T ] into E . For p ≥ 1, the p-variation of X ∈ D([0, T ]; E) over the interval [s, t] is defined

y

∥X∥p,[s,t] :=

(
sup

P⊂[s,t]

∑
[u,v]∈P

d(Xu, Xv)p
) 1

p

,

here the supremum is taken over all finite partitions P of the interval [s, t], and the
um denotes the summation over all intervals [u, v] ∈ P . Recall that, for every s ∈

0, T ], the function [s, T ] ∋ t ↦→ ∥X∥p,[s,t] is non-decreasing and right-continuous with
X∥p,[s,s] := limt↓s ∥X∥p,[s,t] = 0 (see [24, Lemma 7.1]), and the function (s, t) ↦→ ∥X∥

p
p,[s,t]

s superadditive, i.e. ∥X∥
p
p,[s,u] + ∥X∥

p
p,[u,t] ≤ ∥X∥

p
p,[s,t] for 0 ≤ s ≤ u ≤ t ≤ T . See [10,

Section 2.2] for these and further properties of p-variation seminorms. Moreover, we set1

∥X∥p,[s,t) := sup
u<t

∥X∥p,[s,u].

1 One can similarly define ∥X∥p,(s,t], but since all the paths we consider are càdlàg, this always coincides with
∥X∥ .
p,[s,t]
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A path X ∈ D([0, T ]; E) is said to have finite p-variation for some p ∈ [1, ∞) if ∥X∥p,[0,T ] <

. We will denote the space of all càdlàg paths of finite p-variation by D p([0, T ]; E).
The space Rn is equipped with the Euclidean norm | · |. For two real numbers x, y ∈ R

we set x ∧ y := min{x, y} and x ∨ y := max{x, y}, and we write the positive part of a vector
x = (x1, . . . , xn) ∈ Rn as

[x]+ := ([x1]+, . . . , [xn]+) where [x i ]+ := x i
∨ 0. (1.2)

or two paths X = (X1, . . . , Xn) ∈ D([0, T ];Rn) and Y = (Y 1, . . . , Y n) ∈ D([0, T ];Rn) we
rite X ≤ Y to mean that X i

≤ Y i for every i = 1, . . . , n.
Whenever X ∈ D([0, T ]; B) takes values in a Banach space (B, ∥ · ∥), we will write

X∥∞ := supt∈[0,T ] ∥X t∥ for the supremum norm and we will use the abbreviations

Xs,t := X t − Xs, X t− := lim
s→t, s<t

Xs and ∆X t := X t−,t = X t − X t−.

The space of linear maps from Rd
→ Rn is denoted by L(Rd

;Rn) and we write Ck
b =

k
b (Rn

;L(Rd
;Rn)) for the space of k-times differentiable (in the Fréchet sense) functions

f : Rn
→ L(Rd

;Rn) such that f and all its derivatives up to order k are continuous and
ounded. We equip this space with the norm

∥ f ∥Ck
b

:= ∥ f ∥∞ + ∥D f ∥∞ + · · · + ∥Dk f ∥∞,

here ∥ · ∥∞ denotes the supremum norm on the corresponding spaces of operators.
Let (B, ∥ · ∥) be a normed space and f, g : B → R two functions. We shall write f ≲ g or

f ≤ Cg to mean that there exists a constant C > 0 such that f (x) ≤ Cg(x) for all x ∈ B.
ote that the value of such constants may change from line to line, and that the constants may
epend on the normed space, e.g. through its dimension or regularity parameters. If we want
o emphasize the dependence of the constant C on some particular variables α1, . . . , αn , then
e will write C = Cα1,...,αn .

. Reflected Young differential equations

In this section we shall study reflected differential equations driven by paths A : [0, T ] → Rd

ith sufficiently regularity to allow for Young integration. More precisely, we assume that
A ∈ Dq ([0, T ];Rd ), X ∈ D p([0, T ];Rn) and L ∈ D p([0, T ];Rn) with q ∈ [1, 2) and p ≥ q
uch that 1/p+1/q > 1. Given f ∈ C2

b and y ∈ Rn , we seek for two paths Y ∈ D p([0, T ];Rn)
nd K ∈ D1([0, T ];Rn) satisfying the reflected Young differential equation

Yt = y +

∫ t

0
f (Ys) dAs + X t + Kt , t ∈ [0, T ], (2.1)

uch that, for every i = 1, . . . , n,

(a) Y i
t ≥ L i

t for all t ∈ [0, T ],
(b) K i

: [0, T ] → R is a non-decreasing function such that K i
0 = 0, and∫ t

0
(Y i

s − L i
s) dK i

s = 0, t ∈ [0, T ], (2.2)

where the integral in (2.2) is understood in the Lebesgue–Stieltjes sense.

n the reflected Young differential equation (2.1) the integral
∫ t

0 f (Ys) dAs is well-defined as
Young integral, in the sense of [42]; see also [24, Section 2.2]. In particular, we recall that,
82
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for X ∈ D p([0, T ];Rd ) and Y ∈ Dq ([0, T ];L(Rd
;Rn)), the Young integral∫ t

s
Yr dXr := lim

|P|→0

∑
[u,v]∈P

Yu Xu,v,

exists (in the classical mesh Riemann–Stieltjes sense) whenever 1/p + 1/q > 1, and comes
with the estimate⏐⏐⏐⏐ ∫ t

s
Yr dXr − Ys Xs,t

⏐⏐⏐⏐ ≤ C p,q∥Y∥q,[s,t)∥X∥p,[s,t], (2.3)

where the constant C p,q depends only on p and q .
Let us remark that, in the presence of jumps, it is crucial to take left-point Riemann sums to

define the Young integral since, for instance, mid- or right-point Riemann sums approximation
lead in general to different limits. This is in contrast to Young integration for continuous paths.
Moreover, we note that the Young integral itself t ↦→

∫ t
0 Yr dXr is a càdlàg path and its jump

at time t ∈ (0, T ] is given by

∆

(∫
·

0
Yr dXr

)
t
= Yt−∆X t .

emark 2.1. Despite our focus here on Young integration in the sense described above, it
s actually necessary to instead define the integral in (2.2) in the Lebesgue–Stieltjes sense.
uppose for instance that A = 0, X = 0, L = 0 and y = 0. Then, for any fixed u ∈ (0, T ],
etting Yt = Kt = 1{t≥u} defines a solution (Y, K ) of (2.1) such that (2.2) holds in the Young (or
quivalently Riemann–Stieltjes) sense, essentially because the left-endpoint always lies before
he jump. Thus, Young integration does not correctly capture the minimality property for K in
he càdlàg setting.

The problem of proving existence and uniqueness results for reflected (stochastic) dif-
erential equations is known to be closely related to the so-called Skorokhod problem, as
riginally introduced by Skorokhod [38]. Since our approach to the reflected Young differential
quation (2.1) relies on the Skorokhod problem, we shall recall some properties of the Sko-
okhod problem in the next subsection and provide some basic estimates regarding p-variation
emi-norms as groundwork for later purposes.

.1. Skorokhod problem and p-variation estimates

Let Y, L ∈ D([0, T ];Rn) be such that Y0 ≥ L0. A solution to the Skorokhod problem
ssociated with the path Y and the lower barrier L , is a pair (Z , K ) ∈ D([0, T ];Rn) ×

D([0, T ];Rn) such that

(a) Z t = Yt + Kt ≥ L t for t ∈ [0, T ],
(b) K0 = 0 and K = (K 1, . . . , K n), where K i is non-decreasing function such that∫ t

0
(Z i

s − L i
s) dK i

s = 0, for all t ∈ [0, T ],

for every i = 1, . . . , n, where the integral is understood in the Lebesgue–Stieltjes sense
as before.
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It is well-known, that the Skorokhod problem has a unique solution (Z , K ), see e.g.
[6, Theorem 2.6 and Remark 2.7]. Moreover, we introduce the associated Skorokhod map S
by

S : (Y, L) → (Z , K )

where (Z , K ) is the solution to the Skorokhod problem given (Y, L), and we set

S1(Y, L) := Z and S2(Y, L) := K .

As the following result from [17] shows, the Skorokhod map S turns out to be a Lipschitz
continuous map with respect to the p-variation distance.

Theorem 2.2 (Theorem 2.2 in [17]). Let Y, L , Ỹ , L̃ ∈ D([0, T ];Rn) and assume that Y0 ≥ L0
and Ỹ0 ≥ L̃0. Let (Z , K ) = S(Y, L) and (Z̃ , K̃ ) = S(Ỹ , L̃) be the solutions of the
corresponding Skorokhod problems. We have

∥Z − Z̃∥p,[0,T ] ≤ C
(
∥Y − Ỹ∥p,[0,T ] + |Y0 − Ỹ0| + ∥L − L̃∥p,[0,T ] + |L0 − L̃0|

)
and

∥K − K̃∥p,[0,T ] ≤ C
(
∥Y − Ỹ∥p,[0,T ] + |Y0 − Ỹ0| + ∥L − L̃∥p,[0,T ] + |L0 − L̃0|

)
,

where the constant C depends only on the dimension n.

By setting Ỹt = Y0 and L̃ t = L0 for all t ∈ [0, T ], we see that, under the assumptions of
Theorem 2.2, we also have

∥Z∥p,[0,T ] + ∥K∥p,[0,T ] ≤ C
(
∥Y∥p,[0,T ] + ∥L∥p,[0,T ]

)
. (2.4)

emark 2.3. The Lipschitz continuity of the Skorokhod map with respect to the supremum
orm is a classical result, see the works [14,15] and [16], which treat the Skorokhod map on
arious (intricate) domains and with different types of reflections. Notably, it was observed
n [20] that the Skorokhod map S is not Lipschitz continuous with respect to Hölder distances.
ence, it is essential to work with p-variation distances to treat reflected differential equations
sing the Skorokhod map, even when considering continuous driving signals A and X .

For later convenience, we collect here various useful estimates for p-variation norms.

emma 2.4. If 1 ≤ q ≤ p < ∞, r ∈ [1, ∞) and X ∈ D([0, T ];Rn), then

∥X∥p,[0,T ] ≤ ∥X∥q,[0,T ], ∥X∥∞,[0,T ] ≤ |X0| + ∥X∥r,[0,T ] and

∥X∥p,[0,T ] ≤ ∥X∥

q
p

q,[0,T ]∥X∥
1−

q
p

r,[0,T ].

roof. The first inequality follows immediately from the corresponding result for classical l p

paces. The second inequality is straightforward to see by noting that

|X t | ≤ |X0| + |X0,t | ≤ |X0| + ∥X∥r,[0,T ]

or every t ∈ [0, T ]. For the third inequality we observe that

∥X∥
p
p,[0,T ] ≤ ∥X∥

q
q,[0,T ]

(
sup

s,t∈[0,T ]
|Xs,t |

p−q
)

≤ ∥X∥
q
q,[0,T ]∥X∥

p−q
r,[0,T ],

nd the result follows. □
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Lemma 2.5. There exists a constant Cn , depending only on the dimension n, such that

∥X∥1,[0,T ] ≤ Cn∥X∥p,[0,T ] (2.5)

or every monotone path X : [0, T ] → Rn (i.e. any path X such that each of its n components
X i

: [0, T ] → R, i = 1, . . . , n, is monotone) and every p ≥ 1.
Moreover, we may take C1 = 1, so that for any one-dimensional monotone path X, the

p-variation norm ∥X∥p,[0,T ] is independent of p.

roof. It is clear that

|X0,T | ≤ ∥X∥p,[0,T ] ≤ ∥X∥1,[0,T ] (2.6)

or any path X and any p ≥ 1. Suppose now that each of the components X i
: [0, T ] → R,

= 1, . . . , n, is monotone. Let us consider the p-variation of X with distance in Rn measured
sing the l1-norm rather than the usual Euclidean l2-norm, so that |x | =

∑n
i=1 |x i

|. Since X is
onotone, it is then straightforward to see that ∥X∥1,[0,T ] = |X0,T |. Combining this with (2.6),
e obtain ∥X∥1,[0,T ] = ∥X∥p,[0,T ] for every p ≥ 1.
To change back to the usual Euclidean norm, we recall that norms on finite-dimensional

paces are equivalent, so that (2.5) holds for a suitable constant Cn . □

emma 2.6. Let X ∈ D p([0, T ];Rn). For any 0 ≤ s < t ≤ T , we have(
∥X∥

p
p,[s,t) + |∆X t |

p
) 1

p
≤ ∥X∥p,[s,t] ≤ ∥X∥p,[s,t) + |∆X t |

where we recall that ∥X∥p,[s,t) := supu<t ∥X∥p,[s,u].

Proof. For the first inequality, note that

∥X∥
p
p,[s,u] + ∥X∥

p
p,[u,t] ≤ ∥X∥

p
p,[s,t]

for all s < u < t , and take the limit as u ↗ t .
For the second inequality, let P = {s = u0 < u1 < · · · < un = t} be a partition of the

interval [s, t]. By Minkowski’s inequality, we have(n−1∑
i=0

|Xui ,ui+1 |
p
) 1

p

=

(n−2∑
i=0

|Xui ,ui+1 |
p
+ |Xun−1,t− + ∆X t |

p
) 1

p

≤

(n−2∑
i=0

|Xui ,ui+1 |
p
+ |Xun−1,t−|

p
) 1

p

+ |∆X t |,

nd we conclude by taking the supremum over all partitions P of the interval [s, t]. □

.2. Existence and uniqueness result

In this subsection we show the existence of a unique solution to the reflected Young
ifferential equation (2.1). We recall that we call (Y, K ) a solution to the reflected Young
ifferential equation (2.1) driven by A ∈ Dq ([0, T ];Rd ) and X ∈ D p([0, T ];Rn) with
eflecting barrier L ∈ D p([0, T ];Rn) if Y, K ∈ D p([0, T ];Rn) satisfy (2.1), and if for every
85
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= 1, . . . , n,

(a) Y i
t ≥ L i

t for all t ∈ [0, T ],
(b) K i

: [0, T ] → R is a non-decreasing function such that K i
0 = 0, and∫ t

0
(Y i

s − L i
s) dK i

s = 0 for every t ∈ [0, T ].

Theorem 2.7. Let T > 0, f ∈ C2
b , q ∈ [1, 2) and p ∈ [q, ∞) such that 1/p + 1/q > 1. Let

y ∈ Rn , A ∈ Dq ([0, T ];Rd ), X ∈ D p([0, T ];Rn) and L ∈ D p([0, T ];Rn) such that y ≥ L0.
here exists a unique solution (Y, K ) to the reflected Young differential equation (2.1).

Before coming to the proof of Theorem 2.7, we first need the following stability result
egarding Young integration.

emma 2.8. Let f ∈ C2
b , and let q ∈ [1, 2) and p ≥ q such that 1/p + 1/q > 1. Let

A, Ã ∈ Dq ([0, T ];Rd ), Y, Ỹ ∈ D p([0, T ];Rn), and suppose there exists some t ∈ (0, T ] such
hat ∥Ỹ∥p,[0,t] ≤ 1. Then ∫

·

0
f (Yr ) dAr −

∫
·

0
f (Ỹr ) d Ãr


p,[0,t]

≤ C p,q∥ f ∥C2
b

((
|Y0 − Ỹ0| + ∥Y − Ỹ∥p,[0,t]

)
∥A∥q,[0,t] + ∥A − Ã∥q,[0,t]

)
,

here the constant C p,q depends only on p and q.

roof. For any subinterval [s, u] ⊆ [0, t], we have⏐⏐⏐⏐ ∫ u

s
f (Yr ) dAr −

∫ u

s
f (Ỹr ) d Ãr

⏐⏐⏐⏐ ≤

⏐⏐⏐⏐ ∫ u

s
( f (Yr ) − f (Ỹr )) dAr

⏐⏐⏐⏐ +

⏐⏐⏐⏐ ∫ u

s
f (Ỹr ) d(A − Ã)r

⏐⏐⏐⏐
≲ | f (Ys) − f (Ỹs)||As,u | + ∥ f (Y ) − f (Ỹ )∥p,[s,u)∥A∥q,[s,u]

+ | f (Ỹs)||As,u − Ãs,u | + ∥ f (Ỹ )∥p,[s,u)∥A − Ã∥q,[s,u],

here we applied (2.3) to obtain the last inequality. Hence, we deduce that ∫
·

0
f (Yr ) dAr −

∫
·

0
f (Ỹr ) d Ãr


p,[0,t]

≲ ∥ f (Y ) − f (Ỹ )∥∞∥A∥p,[0,t] + ∥ f (Y ) − f (Ỹ )∥p,[0,t]∥A∥q,[0,t]

+ ∥ f (Ỹ )∥∞∥A − Ã∥p,[0,t] + ∥ f (Ỹ )∥p,[0,t]∥A − Ã∥q,[0,t]

≲ ∥ f ∥C2
b

((
|Y0 − Ỹ0| + ∥Y − Ỹ∥p,[0,t]

)(
∥A∥q,[0,t] + ∥A∥p,[0,t]

)
+ ∥A − Ã∥q,[0,t] + ∥A − Ã∥p,[0,t]

)
,

where in the last line we used the fact that ∥ f (Ỹ )∥p,[0,t] ≲ ∥Ỹ∥p,[0,t] ≤ 1, and the term
∥ f (Y ) − f (Ỹ )∥p,[0,t] was bounded using [24, Lemma 3.1]. Since p ≥ q, the first inequality in
Lemma 2.4 yields the assertion. □

We are now ready to establish the existence of a unique solution to the reflected Young
differential equation (2.1), the key ingredients being the Skorokhod map and Banach’s fixed
point theorem. Recall that the space D p([0, T ];Rn) is a Banach space with respect to the
p-variation norm |X0| + ∥X∥p,[0,T ] for X ∈ D p([0, T ];Rn) (see e.g. [10, Proposition 7.2]).
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Proof of Theorem 2.7. Step 1: Local solution. For t ∈ (0, T ] we define the map

Mt : D p([0, t];Rn) → D p([0, t];Rn) by Mt (Y ) := S1

(
y +

∫
·

0
f (Yr ) dAr + X, L

)
.

That is, we have

Mt (Y ) = y +

∫
·

0
f (Yr ) dAr + X + K , where K = S2

(
y +

∫
·

0
f (Yr ) dAr + X, L

)
.

Note that a unique fixed point of the map Mt , along with the corresponding process K obtained
rom the Skorokhod map S, are together the unique solution to the reflected Young differential
quation (2.1) over the time interval [0, t]. To show the existence of a unique fixed point, it is
ufficient to verify that the map Mt satisfies the assumptions of Banach’s fixed point theorem

([43, Theorem 1.A]) for some sufficiently small t ∈ (0, T ].
Invariance. We define the closed ball

Bt :=
{
Y ∈ D p([0, t];Rn) : Y0 = y, ∥Y∥p,[0,t] ≤ 1

}
.

Let Y ∈ Bt . By (2.3), for any subinterval [s, u] ⊆ [0, t], we have⏐⏐⏐⏐ ∫ u

s
f (Yr ) dAr + Xs,u

⏐⏐⏐⏐ ≲ | f (Ys)As,u | + ∥ f (Y )∥p,[s,u)∥A∥q,[s,u] + |Xs,u |,

from which it follows that ∫
·

0
f (Yr ) dAr + X


p,[0,t]

≲ ∥ f (Y )∥∞∥A∥p,[0,t] + ∥ f (Y )∥p,[0,t]∥A∥q,[0,t] + ∥X∥p,[0,t]

≲ ∥ f ∥C1
b
∥A∥q,[0,t] + ∥X∥p,[0,t],

where we have used the first inequality in Lemma 2.4, and the fact that ∥ f (Y )∥p,[0,t] ≲
∥Y∥p,[0,t] ≤ 1. Hence, from the estimate (2.4) we get

∥Mt (Y )∥p,[0,t] ≤ C1

(
∥ f ∥C1

b
∥A∥q,[0,t] + ∥X∥p,[0,t] + ∥L∥p,[0,t]

)
for some constant C1 depending only on p, q and n. Since A, X and L are right-continuous,
the functions t ↦→ ∥A∥q,[0,t], t ↦→ ∥X∥p,[0,t] and t ↦→ ∥L∥p,[0,t] are non-decreasing and
right-continuous, see [24, Lemma 7.1]. Hence, there exists t1 ∈ (0, T ] sufficiently small such
that

C1
(
∥ f ∥C1

b
∥A∥q,[0,t1] + ∥X∥p,[0,t1] + ∥L∥p,[0,t1]

)
≤ 1

and it follows that for any t ∈ (0, t1], the closed ball Bt is invariant under the map Mt .
Contraction property. Let Y, Ỹ ∈ Bt for some t ∈ (0, t1]. By Lemma 2.8, we have ∫

·

0
f (Yr ) dAr + X −

∫
·

0
f (Ỹr ) dAr − X


p,[0,t]

≲ ∥ f ∥C2
b
∥Y − Ỹ∥p,[0,t]∥A∥q,[0,t].

By the first estimate in Theorem 2.2, we then have that

∥Mt (Y ) − Mt (Ỹ )∥p,[0,t] ≤ C2∥ f ∥C2
b
∥Y − Ỹ∥p,[0,t]∥A∥q,[0,t]

for some constant C2 depending only on p, q and n. Choosing t2 ∈ (0, t1] sufficiently small so
that C2∥ f ∥C2

b
∥A∥q,[0,t2] ≤

1
2 , it follows that, for any t ∈ (0, t2], the map Mt is a contraction on

t . Applying Banach fixed point theorem provides a unique Y ∈ Bt (together with a reflector
erm K ∈ D1([0, t];Rn)) satisfying the reflected Young differential equation (2.1) for any
87
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t ∈ (0, t2]. Note that any solution Ỹ ∈ D([0, T ];Rn) (and K̃ ∈ D1([0, T ];Rn)) to the reflected
Young differential equation (2.1) belongs to the ball Bt for sufficiently small t ∈ (0, t2], and
thus Y ≡ Ỹ and K ≡ K̃ on [0, t] for any t ∈ [0, t2].

Step 2: Global solution. Due to Step 1, we know that there exists a unique solution (Y, K )
to the Young differential equation (2.1) on every interval [s, t) provided ∥A∥q,[s,t), ∥X∥p,[s,t)
and ∥L∥p,[s,t) are sufficiently small such that

C1
(
∥ f ∥C1

b
∥A∥q,[s,t) + ∥X∥p,[s,t) + ∥L∥p,[s,t)

)
+ C2∥ f ∥C2

b
∥A∥q,[s,t) ≤

1
2
. (2.7)

ote that the condition (2.7) is independent of the initial condition y. By the right-continuity
f A, X and L , for every δ > 0 there exists a partition P = {0 = t0 < t1 < · · · < tN = T } of
0, T ] such that

∥A∥q,[ti ,ti+1) + ∥X∥p,[ti ,ti+1) + ∥L∥p,[ti ,ti+1) ≤ δ

or all i = 0, . . . , N − 1. Now we choose δ > 0 such that the condition (2.7) holds for
very [s, t] ∈ P . Hence, we can iteratively obtain a solution (Y i , K i ) to the reflected Young

differential equation (2.1) on each interval [ti , ti+1) with initial condition

Yti = Yti − + f (Yti −)∆Ati + ∆X ti + ∆Kti ,

with

∆Kti =
[
L ti − Yti − − f (Yti −)∆Ati − ∆X ti

]+
, (2.8)

where [ · ]+ denotes the positive part, in the sense of (1.2). The resulting paths Y, K ∈

D p([0, T ];Rn) thus provide a solution to the reflected Young differential equation (2.1) on
[0, T ].

The minimality of the reflector term K and the perservation of the local jump structure
under Young integration (see [24, Lemma 2.9]) ensure that (2.8) is the only valid choice for
the jump ∆Kti . The uniqueness of (Y, K ) on [0, T ] follows from this and the local uniqueness
established in Step 1. □

2.3. Stability results

One of the key advantages of a pathwise analysis of stochastic differential equations are
pathwise stability results regarding the solution map associated to a differential equation, which
maps the driving signals, in our case A and X , to the solution Y of the differential equation.
Accordingly, in this subsection we derive stability results for the reflected Young differential
equation (2.1). The first one is with respect to the p-variation distance.

Proposition 2.9. Let f ∈ C2
b , q ∈ [1, 2) and p ∈ [q, ∞) such that 1/p +1/q > 1. Let (Y, K )

nd (Ỹ , K̃ ) be the unique solutions of the reflected Young differential equation (2.1) given the
ata y, ỹ ∈ Rn , A, Ã ∈ Dq ([0, T ];Rd ), X, X̃ ∈ D p([0, T ];Rn) and L , L̃ ∈ D p([0, T ];Rn)

respectively, where as usual y ≥ L0 and ỹ ≥ L̃0. Suppose that the norms ∥A∥q,[0,T ], ∥ Ã∥q,[0,T ],
∥X∥p,[0,T ], ∥X̃∥p,[0,T ], ∥L∥p,[0,T ] and ∥L̃∥p,[0,T ] are all bounded by a given constant M > 0.
Then,

∥Y − Ỹ∥p,[0,T ] + ∥K − K̃∥p,[0,T ]

≤ CM, f

(
|y − ỹ| + ∥A − Ã∥q,[0,T ] + ∥X − X̃∥p,[0,T ] + |L0 − L̃0| + ∥L − L̃∥p,[0,T ]

)
for some constant C depending on M, ∥ f ∥ 2 , p, q and n.
M, f Cb
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Proof. Step 1: Local estimate for sufficiently small intervals. We recall from the proof of
heorem 2.7 that the unique solution of (2.1) satisfies ∥Y∥p,[s,t) ≤ 1, whenever the interval

s, t) is sufficiently small such that (2.7) holds for the data (A, X, L). Thus, by Lemma 2.8, on
ny interval [s, t) such that (2.7) holds for both (A, X, L) and ( Ã, X̃ , L̃), we have that ∫

·

0
f (Yr ) dAr + X −

∫
·

0
f (Ỹr ) d Ãr − X̃


p,[s,t)

≲
(
|Ys − Ỹs | + ∥Y − Ỹ∥p,[s,t)

)
∥A∥q,[s,t) + ∥A − Ã∥q,[s,t) + ∥X − X̃∥p,[s,t).

By the estimates in Theorem 2.2, we then have

∥Y − Ỹ∥p,[s,t) + ∥K − K̃∥p,[s,t)

≤ C
((

|Ys − Ỹs | + ∥Y − Ỹ∥p,[s,t)
)
∥A∥q,[s,t) + ∥A − Ã∥q,[s,t)

+ ∥X − X̃∥p,[s,t) + |Ys − Ỹs | + ∥L − L̃∥p,[s,t) + |Ls − L̃s |

)
for some constant C depending on p, q and n. If we suppose that the interval [s, t) is sufficiently
small that

C∥ f ∥C2
b
∥A∥q,[s,t) ≤

1
2

(2.9)

hen, after rearranging, we obtain

∥Y − Ỹ∥p,[s,t) + ∥K − K̃∥p,[s,t)

≲ ∥A − Ã∥q,[s,t) + |Ys − Ỹs | + ∥X − X̃∥p,[s,t) + |Ls − L̃s | + ∥L − L̃∥p,[s,t).
(2.10)

Step 2: Estimating the “big” jumps. We estimate

|∆Kt − ∆K̃t |

=
⏐⏐[L t − Yt− − f (Yt−)∆At − ∆X t

]+
−

[
L̃ t − Ỹt− − f (Ỹt−)∆ Ãti − ∆X̃ t

]+
⏐⏐

≲ |L t − L̃ t | + |Yt− − Ỹt−| + |∆At − ∆ Ãt | + |∆X t − ∆X̃ t |,

(2.11)

here the multiplicative constant indicated by the symbol ≲ depends on ∥ f ∥C1
b

and on the
ound M . Moreover,

|∆Yt − ∆Ỹt | = | f (Yt−)∆At + ∆X t + ∆Kt − f (Ỹt−)∆ Ãt − ∆X̃ t − ∆K̃t |

≲ |Yt− − Ỹt−| + |∆At − ∆ Ãt | + |∆X t − ∆X̃ t | + |∆Kt − ∆K̃t | (2.12)

≲ |Yt− − Ỹt−| + |∆At − ∆ Ãt | + |∆X t − ∆X̃ t | + |L t − L̃ t |.

ombining (2.11) and (2.12), we obtain

|∆Yt − ∆Ỹt | + |∆Kt − ∆K̃t |

≲ |Yt− − Ỹt−| + |∆At − ∆ Ãt | + |∆X t − ∆X̃ t | + |L t − L̃ t | (2.13)

≤ |Ys − Ỹs | + ∥Y − Ỹ∥p,[s,t) + |∆At − ∆ Ãt | + |∆X t − ∆X̃ t | + |L t − L̃ t |.

y the second inequality in Lemma 2.6 we have

∥Y − Ỹ∥p,[s,t] + ∥K − K̃∥p,[s,t]

≤ ∥Y − Ỹ∥p,[s,t) + ∥K − K̃∥p,[s,t) + |∆Yt − ∆Ỹt | + |∆Kt − ∆K̃t |.
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Combining the estimates (2.10) and (2.13) and substituting into the above, we obtain

∥Y − Ỹ∥p,[s,t] + ∥K − K̃∥p,[s,t]

≲ |Ys − Ỹs | + ∥A − Ã∥q,[s,t) + ∥X − X̃∥p,[s,t) + |Ls − L̃s | + ∥L − L̃∥p,[s,t)

+ |∆At − ∆ Ãt | + |∆X t − ∆X̃ t | + |L t − L̃ t |.

By the first inequality in Lemma 2.6, we deduce that

∥Y − Ỹ∥
p
p,[s,t] + ∥K − K̃∥

p
p,[s,t]

≲ |Ys − Ỹs |
p
+ ∥A − Ã∥

p
q,[s,t] + ∥X − X̃∥

p
p,[s,t] + |Ls − L̃s |

p
+ ∥L − L̃∥

p
p,[s,t].

(2.14)

Step 3: Global estimate. So far we have shown that the estimate (2.14) holds for every pair
of times s < t such that the conditions (2.7) and (2.9) hold.

Since the functions (s, t) ↦→ ∥A∥
q
q,[s,t], (s, t) ↦→ ∥X∥

p
p,[s,t], (s, t) ↦→ ∥L∥

p
p,[s,t] (and similarly

for Ã, X̃ , L̃) are superadditive and bounded by Mq
∨ M p, there exists a partition P = {0 =

t0 < · · · < tN = T }, where the number of intervals N depends only on M, ∥ f ∥C2
b
, p, q and n,

such that (2.7) and (2.9) hold on each interval [ti , ti+1) for i = 0, . . . , N − 1. Thus, for each
= 0, . . . , N − 1, we have

∥Y − Ỹ∥
p
p,[ti ,ti+1] + ∥K − K̃∥

p
p,[ti ,ti+1]

≲ |Yti − Ỹti |
p
+ ∥A − Ã∥

p
q,[ti ,ti+1] + ∥X − X̃∥

p
p,[ti ,ti+1] + |L ti − L̃ ti |

p

+ ∥L − L̃∥
p
p,[ti ,ti+1].

Writing |Yti − Ỹti | ≤ |Yti−1 − Ỹti−1 | + ∥Y − Ỹ∥[ti−1,ti ] and similarly for L − L̃ , and pasting the
estimate (2.14) on different intervals together, we see that

∥Y − Ỹ∥
p
p,[ti ,ti+1] + ∥K − K̃∥

p
p,[ti ,ti+1]

≲ |Y0 − Ỹ0|
p
+ |L0 − L̃0|

p
+

i∑
j=0

(
∥A − Ã∥

p
q,[t j ,t j+1] + ∥X − X̃∥

p
p,[t j ,t j+1]

+ ∥L − L̃∥
p
p,[t j ,t j+1]

)
.

We recall the standard estimate

∥Y − Ỹ∥p,[0,T ] ≤ N
p−1

p

(N−1∑
i=0

∥Y − Ỹ∥
p
p,[ti ,ti+1]

) 1
p

hich holds similarly for K − K̃ . Putting this together, and recalling that the number of
artitions N depends only on M, ∥ f ∥C2

b
, p, q and n, the desired result follows. □

In probability theory one often likes to work with a variety of different distances on the
korokhod space D([0, T ];Rn). Following [24, Section 5.1], we can immediately reformulate

he stability result (Proposition 2.9) in terms of a Skorokhod J1 p-variation distance. To this
nd, we let Λ be the set of all time-changes, that is, increasing bijective functions λ : [0, T ] →

[0, T ], and write ∥λ∥ := supt∈[0,T ] |λ(t) − t | for λ ∈ Λ.
We define two Skorokhod J1 p-variation distances, namely

σp,[0,T ]((Y, K ), (Ỹ , K̃ )) := inf
(
∥λ∥ ∨ (∥Y ◦ λ − Ỹ∥p,[0,T ] + ∥K ◦ λ − K̃∥p,[0,T ])

)

λ∈Λ
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and

σ̂p,q,[0,T ]((A, X, L), ( Ã, X̃ , L̃))

:= inf
λ∈Λ

(
∥λ∥ ∨ (∥A ◦ λ − Ã∥q,[0,T ] + ∥X ◦ λ − X̃∥p,[0,T ] + ∥L ◦ λ − L̃∥p,[0,T ])

)
.

Corollary 2.10. Let f ∈ C2
b , q ∈ [1, 2) and p ∈ [q, ∞) such that 1/p + 1/q > 1. Let

y, ỹ ∈ Rn , A, Ã ∈ Dq ([0, T ];Rd ), X, X̃ , L , L̃ ∈ D p([0, T ];Rn) such that y ≥ L0 and ỹ ≥ L̃0.
Let (Y, K ) and (Ỹ , K̃ ) be the unique solutions of the reflected Young differential equation (2.1)
corresponding to the data (y, A, X, L) and (ỹ, Ã, X̃ , L̃), respectively. Suppose that the norms
∥A∥q,[0,T ], ∥ Ã∥q,[0,T ], ∥X∥p,[0,T ], ∥X̃∥p,[0,T ], ∥L∥p,[0,T ] and ∥L̃∥p,[0,T ] are all bounded by a
given constant M > 0. Then

σp,[0,T ]((Y, K ), (Ỹ , K̃ )) ≤ CM, f

(
|y − ỹ| + |L0 − L̃0| + σ̂p,q,[0,T ]((A, X, L), ( Ã, X̃ , L̃))

)
for some constant CM, f depending on M, ∥ f ∥C2

b
, p, q and n.

Proof. Let ε > 0. By the definition of the Skorokhod distance, there exists a λ ∈ Λ such that

∥λ∥ ∨

(
∥A ◦ λ − Ã∥q,[0,T ] + ∥X ◦ λ − X̃∥p,[0,T ] + ∥L ◦ λ − L̃∥p,[0,T ]

)
< σ̂p,q,[0,T ]((A, X, L), ( Ã, X̃ , L̃)) + ε.

Since p-variation norms are invariant under time-changes, it is straightforward to observe that
(Y ◦λ, K ◦λ) is the unique solution of the reflected Young differential equation (2.1) with data
(y, A ◦ λ, X ◦ λ, L ◦ λ). Hence, by Proposition 2.9, we have that

σp,[0,T ]((Y, K ), (Ỹ , K̃ )) ≤ ∥λ∥ + ∥Y ◦ λ − Ỹ∥p,[0,T ] + ∥K ◦ λ − K̃∥p,[0,T ]

≲ ∥λ∥ + |y − ỹ| + ∥A ◦ λ − Ã∥q,[0,T ] + ∥X ◦ λ − X̃∥p,[0,T ] + |L0 − L̃0|

+ ∥L ◦ λ − L̃∥p,[0,T ]

≲ |y − ỹ| + |L0 − L̃0| + σ̂p,q,[0,T ]((A, X, L), ( Ã, X̃ , L̃)) + ε.

etting ε → 0, we obtain the result. □

. Reflected RDEs — Existence

In order to develop a pathwise theory for reflected differential equations covering stochastic
ifferential equations driven by, e.g. Lévy processes or martingales, Young integration is in
eneral not sufficient. To treat such processes one needs to significantly extend the theory of
oung integration to be able to deal with paths of lower regularity. One such extension is given
y the theory of rough paths initiated by Lyons [40]. In the next subsection we recall the notion
f integration with respect to càdlàg rough paths, following the works of Friz–Shekhar [22]
nd Friz–Zhang [24].

.1. Càdlàg rough paths

Let ∆T := {(s, t) ∈ [0, T ]2
: s ≤ t} be the standard 2-simplex. For a two-parameter

unction X : ∆T → Rd×d we define

∥X∥ p
2 ,[s,t] :=

(
sup

P⊂[s,t]

∑
|Xu,v|

p
2

) 2
p

[u,v]∈P
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where the supremum is taken over all partitions of the interval [s, t]. We write D
p
2 (∆T ;Rd )

or the space of all functions X : ∆T → Rd×d which satisfy ∥X∥ p
2 ,[0,T ] < ∞ and such that the

aps s ↦→ Xs,t for fixed t , and t ↦→ Xs,t for fixed s, are both càdlàg. Moreover, we set

∆Xt := Xt−,t = lim
s→t, s<t

Xs,t for t ∈ (0, T ].

The fundamental definition of a càdlàg rough path was first introduced in [22, Definition 12].
or p ∈ [2, 3) a pair X = (X,X) is called a càdlàg p-rough path over Rd if

(i) X ∈ D p([0, T ];Rd ) and X ∈ D
p
2 (∆T ;Rd ),

(ii) Xs,t − Xs,u − Xu,t = Xs,u ⊗ Xu,t for 0 ≤ s ≤ u ≤ t ≤ T .

n component form, condition (ii) states that Xi j
s,t − Xi j

s,u − Xi j
u,t = X i

s,u X j
u,t for every i and j .

We denote the space of càdlàg p-rough paths by D p([0, T ];Rd ). On the space D p([0, T ];Rd )
we use the natural seminorm

|||X|||p,[s,t] := ∥X∥p,[s,t] + ∥X∥ p
2 ,[s,t], for (s, t) ∈ ∆T ,

nd distance

∥X; X̃∥p,[s,t] := ∥X − X̃∥p,[s,t] + ∥X − X̃∥ p
2 ,[s,t], for (s, t) ∈ ∆T ,

whenever X = (X,X), X̃ = (X̃ , X̃) ∈ D p([0, T ];Rn).
Suppose that X = (X,X) ∈ D p([0, T ];Rd ) is a càdlàg p-rough path for p ∈ [2, 3). A pair

(Y, Y ′) is called a controlled path with respect to X if

Y ∈ D p([0, T ];Rn), Y ′
∈ D p([0, T ];L(Rd

;Rn)) and RY
∈ D

p
2 (∆T ;Rn),

here RY is defined by

RY
s,t = Ys,t − Y ′

s Xs,t for (s, t) ∈ ∆T .

The space of controlled paths is denoted by V p
X ([0, T ];Rn), and Y ′ is called Gubinelli derivative

of Y (with respect to X ). For two controlled paths (Y, Y ′) ∈ V p
X ([0, T ];Rn) and (Ỹ , Ỹ ′) ∈

V p
X̃

([0, T ];Rn) we introduce

∥Y, Y ′
∥p,[s,t] := |Ys | + |Y ′

s | + ∥Y ′
∥p,[s,t] + ∥RY

∥ p
2 ,[s,t]

nd

dX,X̃ ,p,[s,t](Y, Y ′
; Ỹ , Ỹ ′) := ∥Y ′

− Ỹ ′
∥p,[s,t] + ∥RY

− RỸ
∥ p

2 ,[s,t],

or (s, t) ∈ ∆T . The linear space V p
X ([0, T ];Rn) of controlled paths equipped with the norm

·, ·∥p,[0,T ] is a compete metric space, cf. [24, Section 3.2].
Given p ∈ [2, 3), X = (X,X) ∈ D p([0, T ];Rd ) and (Y, Y ′) ∈ V p

X ([0, T ];Rn), the rough
path integral∫ t

s
Yr dXr := lim

|P([s,t])|→0

∑
[u,v]∈P([s,t])

Yu Xu,v + Y ′

uXu,v, (s, t) ∈ ∆T , (3.1)

exists (in the classical mesh Riemann–Stieltjes sense), and comes with the estimate⏐⏐⏐⏐ ∫ t

s
Yr dXr − Ys Xs,t − Y ′

sXs,t

⏐⏐⏐⏐ ≤ C
(
∥RY

∥ p
2 ,[s,t)∥X∥p,[s,t] + ∥Y ′

∥p,[s,t)∥X∥ p
2 ,[s,t]

)
for some constant C depending only on p; see [24, Proposition 2.6]. As already mentioned for
Young integration with respect to càdlàg paths, it is crucial to take left-point Riemann sums in
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the definition of the càdlàg rough path integral (3.1). Moreover, let us remark that the rough
path integral t ↦→

∫ t
0 Yr dXr is again a càdlàg path and its jump at time t ∈ (0, T ] is given by

∆

(∫
·

0
Yr dXr

)
t
= Yt−∆X t + Y ′

t−∆Xt ,

see [24, Lemma 2.9].

Lemma 3.1. Let f ∈ C3
b . Let X = (X,X) ∈ D p([0, T ];Rd ) be a càdlàg p-rough path for

some p ∈ [2, 3), and suppose that (Y, Y ′) ∈ V p
X ([0, T ];Rn) is a controlled path such that

|Y ′

0| + ∥Y ′
∥p,[0,T ] + ∥RY

∥ p
2 ,[0,T ] ≤ M for some M > 0. Then, ( f (Y ), D f (Y )Y ′) is a controlled

ath, and ∫
·

0
f (Yr ) dXr


p,[0,T ]

≤ CM, f,p(1 + ∥X∥
2
p,[0,T ])|||X|||p,[0,T ].

roof. By [24, Lemma 3.5], we have ( f (Y ), D f (Y )Y ′) ∈ V p
X ([0, T ];L(Rd

;Rn)) for f ∈ C3
b .

Since⏐⏐⏐⏐ ∫ t

s
f (Yr ) dXr

⏐⏐⏐⏐ = | f (Ys)Xs,t + R
∫

·

0 f (Yr ) dXr
s,t | ≲ |Xs,t | +

⏐⏐⏐⏐R
∫

·

0 f (Yr ) dXr
s,t

⏐⏐⏐⏐,
t follows that ∫

·

0
f (Yr ) dXr


p,[0,T ]

≲ ∥X∥p,[0,T ] +

R
∫

·

0 f (Yr ) dXr

 p
2 ,[0,T ]

≲ (1 + ∥X∥
2
p,[0,T ])|||X|||p,[0,T ],

here in the last line we used [24, Lemma 3.6]. □

emma 3.2. Let f ∈ C3
b . Let X = (X,X), X̃ = (X̃ , X̃) ∈ D p([0, T ];Rd ) be two càdlàg p-

ough paths for some p ∈ [2, 3), and let (Y, Y ′) ∈ V p
X ([0, T ];Rn) and (Ỹ , Ỹ ′) ∈ V p

X̃
([0, T ];Rn)

be controlled paths. Suppose that |||X|||p,[0,T ] ≤ M, |||X̃|||p,[0,T ] ≤ M,

|Y ′

0| + ∥Y ′
∥p,[0,T ] + ∥RY

∥ p
2 ,[0,T ] ≤ M and |Ỹ ′

0| + ∥Ỹ ′
∥p,[0,T ] + ∥RỸ

∥ p
2 ,[0,T ] ≤ M,

or some M > 0. Then ∫
·

0
f (Yr ) dXr −

∫
·

0
f (Ỹr ) dX̃r


p,[0,T ]

≤ CM, f,p

(
|Y0 − Ỹ0| + |Y ′

0 − Ỹ ′

0| + ∥Y ′
− Ỹ ′

∥p,[0,T ]

+ ∥RY
− RỸ

∥ p
2 ,[0,T ] + ∥X; X̃∥p,[0,T ]

)
.

roof. Since⏐⏐⏐⏐ ∫ t

s
f (Yr ) dXr −

∫ t

s
f (Ỹr ) dX̃r

⏐⏐⏐⏐
≤ | f (Ys)∥Xs,t − X̃s,t | + | f (Ys) − f (Ỹs)∥X̃s,t | +

⏐⏐⏐⏐R
∫

·

0 f (Yr ) dXr
s,t − R

∫
·

0 f (Ỹr ) dX̃r
s,t

⏐⏐⏐⏐,
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it follows that ∫
·

0
f (Yr ) dXr −

∫
·

0
f (Ỹr ) dX̃r


p,[0,T ]

≲ ∥X − X̃∥p,[0,T ] + ∥ f (Y ) − f (Ỹ )∥∞,[0,T ]∥X̃∥p,[0,T ]

+ ∥R
∫

·

0 f (Yr ) dXr − R
∫

·

0 f (Ỹr ) dX̃r ∥ p
2 ,[0,T ].

Noting that ∥ f (Y ) − f (Ỹ )∥∞,[0,T ] ≲ |Y0 − Ỹ0| + ∥ f (Y ) − f (Ỹ )∥p,[0,T ], and employing
24, Lemma 3.7], we deduce the desired estimate. □

.2. Existence result for reflected RDEs

The aim of this section is to establish existence of solutions to reflected differential equations
riven by càdlàg p-rough paths for p ∈ [2, 3). We consider a càdlàg p-rough path X ∈

p([0, T ];Rd ) and a barrier L ∈ D p([0, T ];Rn). We seek a controlled path (Y, Y ′) together
ith a process K satisfying the reflected rough differential equation (reflected RDE)

Yt = y +

∫ t

0
f (Ys) dXs + Kt , t ∈ [0, T ], (3.2)

here the integral is defined in the sense of (3.1), such that, for every i = 1, . . . , n,

(a) Y i
t ≥ L i

t for all t ∈ [0, T ],
(b) K i

: [0, T ] → R is a non-decreasing function such that K i
0 = 0, and∫ t

0
(Y i

s − L i
s) dK i

s = 0, t ∈ [0, T ], (3.3)

where the integral in (3.3) is understood in the Lebesgue–Stieltjes sense.

e call a triple (Y, Y ′, K ) a solution to the reflected RDE (3.2) if (Y, Y ′) ∈ V p
X ([0, T ];Rn)

nd K ∈ D1([0, T ];Rn) satisfy (3.2) together with the conditions (a), (b). We remark that in
eneral we cannot expect the Gubinelli derivative Y ′ to be uniquely determined by the RDE,
ut that the natural choice is known to be Y ′

= f (Y ). We refer to [21, Sections 6.2 and 8.4]
or a more detailed discussion on the Gubinelli derivative and its uniqueness in the context of
ontinuous rough paths.

emark 3.3. The natural generalization of the reflected Young differential equation (2.1)
ould arguably be the more general equation:

Yt = y +

∫ t

0
f1(Ys) dAs +

∫ t

0
f2(Ys) dXs + Kt , t ∈ [0, T ],

ubject to the conditions (a) and (b) above, where A ∈ Dq ([0, T ];Rd ) and X ∈ D p([0, T ];Rd )
or p ∈ [2, 3) and 1 ≤ q ≤ p such that 1/p + 1/q > 1. However, since there is a canonical
ay to enhanced A and X to a joint rough path (see [22, Proposition 14 and 34]), this equation

an be readily reformulated into the form of (3.2).

emark 3.4. The rough integral
∫ t

0 f (Ys) dXs appearing in the reflected RDE (3.2) is under-
tood as the forward rough integral as developed in [24], which corresponds to Itô integration
n a semimartingale setting. Alternatively, one can define the rough integral

∫ t
0 f (Ys) dXs based

n geometric rough integration as introduced in [9], which corresponds to Markus integration
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in a semimartingale setting. While Markus’ geometric formulation would certainly lead to a
natural formulation of reflected RDEs in a càdlàg setting, the development of a Markus type
theory for reflected RDEs requires a significantly different framework and methods compared
to the present work; see [9] for the Markus type theory for (non-reflected) RDEs.

The main result of this section is stated in the following theorem.

Theorem 3.5. For p ∈ [2, 3) and T > 0 let X = (X,X) ∈ D p([0, T ];Rd ) be a càdlàg
p-rough path, L ∈ D p([0, T ];Rn) and f ∈ C3

b . Then, for every y ∈ Rn with y ≥ L0 there
xists a solution (Y, Y ′, K ) to the reflected RDE (3.2) on [0, T ].

The proof of the existence result provided in Theorem 3.5 is split into two parts. We first
ely on Schauder’s fixed point theorem to obtain a solution on sufficiently small intervals. In
he second part we apply a pasting argument to construct a global solution, where we need
o treat the finitely many “big” jumps of the driving signal by hand, similarly to the proof of
heorem 2.7.

roof of Theorem 3.5. Step 1: Local solution. Since the rough path X = (X,X) is càdlàg, the
ap t ↦→ |||X|||p,[0,t] is right-continuous with |||X|||p,[0,0] = 0. Hence, there exists a t1 ∈ (0, T ]

uch that |||X|||p,[0,t] ≤ 1 for every t ∈ (0, t1]. Let us fix a q ∈ (p, 3). For t ∈ (0, t1] we
ntroduce the solution map Mt on the space of controlled paths by

Mt : Vq
X ([0, t];Rn) → Vq

X ([0, t];Rn),

where Mt (Y, Y ′) :=
(
S1(y + Z , L), f (Y )

)
with Zu :=

∫ u

0
f (Yr ) dXr , u ∈ [0, t].

(3.4)

First note that the map Mt is well-defined. Indeed, for (Y, Y ′) ∈ Vq
X ([0, t];Rn) we have

(Z , f (Y )) ∈ Vq
X ([0, t];Rn) cf. [24, Remark 2.8]. That is, we have

Zu,v = f (Yu)Xu,v + RZ
u,v, for all (u, v) ∈ ∆t ,

where RZ
∈ D

q
2 (∆t ;Rn). Since

S1(y + Z , L)u,v = Zu,v + K Z
u,v = f (Yu)Xu,v + RZ

u,v + K Z
u,v

here

K Z
:= S2(y + Z , L) ∈ D1([0, t];Rn) and f (Y ) ∈ Dq ([0, t];Rn),

e see that

RS1(y+Z ,L)
:= RZ

+ K Z
∈ D

q
2 (∆t ;Rn),

so that Mt (Y, Y ′) ∈ Vq
X ([0, t];Rn).

We note that any fixed point of the map Mt , along with the corresponding process
K obtained from the Skorokhod map S, are together a solution to the reflected RDE (3.2)
ver the time interval [0, t]. To show the existence of a fixed point, it is sufficient to verify
hat the map Mt satisfies the assumptions of Schauder’s fixed point theorem (see e.g. [43,
heorem 2.A and Corollary 2.13]) for sufficiently small t ∈ (0, t1]. Recall that Vq

X ([0, t];Rn)
equipped with the controlled path norm ∥·, ·∥ is a Banach space, cf. [24, Section 3.2].
q,[0,t]
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For t ∈ (0, t1] we define the ball

Bt :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩(Y, Y ′) ∈ V p
X ([0, t];Rn) :

Y0 = y, Y ′

0 = f (y), ∥Y ′
∥p,[0,t] ≤ 1,

∥RY
∥ p

2 ,[0,t] ≤ 1,

∥Y ′
∥p,[u,v] ≤ C1(|||X|||p,[u,v] + ∥L∥p,[u,v]),

∥RY
∥ p

2 ,[u,v] ≤ C2(|||X|||p,[u,v] + ∥L∥p,[u,v]),
for all (u, v) ∈ ∆t

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ,

or some suitable constants C1, C2 ≥ 1 depending only on f, p and n, which will be
pecified later. Let us remark that the ball Bt is a closed set with respect to ∥·, ·∥q,[0,t].
ndeed, convergence in ∥·, ·∥q,[0,t] implies uniform convergence, and since every sequence in
t has uniformly bounded p-variation, the uniform convergence ensures that its limit is again
n element of Bt by the lower semi-continuity of p-variation norms, see e.g. [10, (P7) in
ection 2.2].

Compactness of the ball Bt . Due to the closedness of Bt it is sufficient to show that Bt is
elatively compact. Further, due to the interpolation estimate for q-variation (see Lemma 2.4)
nd the lower semi-continuity of p-variation norms, it is sufficient to show that Bt is relatively
ompact with respect to the supremum norm. This follows since Bt is uniformly bounded in
he supremum norm and equi-regulated by the definition of Bt , see [11, Proposition 1].

Invariance. We shall show that there exists a t2 ∈ (0, t1] such that, for every t ∈ (0, t2]
e have Mt : Bt → Bt . Let (Y, Y ′) ∈ Bt be a controlled path with remainder RY and

et (u, v) ∈ ∆t . Recall that Mt (Y, Y ′) = (S1(y + Z , L), f (Y )) and thus the conditions
1(y + Z , L)0 = y and f (Y0) = f (y) are fulfilled. It remains to ensure the other conditions

equired in the definition of Bt are also fulfilled for sufficiently small t . Using the fact that
||X|||p,[0,t] ≤ 1, ∥Y ′

∥p,[0,t] ≤ 1, ∥RY
∥ p

2 ,[0,t] ≤ 1, and |Y ′
u | ≤ |Y ′

0| + ∥Y ′
∥p,[0,t] ≤ ∥ f ∥∞ + 1, we

ave from [24, Lemma 3.6] that

∥ f (Y )∥p,[u,v] ≲ ∥X∥p,[u,v] + ∥RY
∥ p

2 ,[u,v] and ∥RZ
∥ p

2 ,[u,v] ≲ |||X|||p,[u,v].

ince ∥RY
∥ p

2 ,[u,v] ≤ C2(|||X|||p,[u,v] + ∥L∥p,[u,v]), we then have that

∥ f (Y )∥p,[u,v] ≤ C f,p(1 + C2)(|||X|||p,[u,v] + ∥L∥p,[u,v]) (3.5)

or a constant C f,p ≥ 1 depending only on f and p. Moreover, since K Z is non-decreasing,
y Lemma 2.5, we have that ∥K Z

∥ p
2 ,[u,v] ≲ ∥K Z

∥p,[u,v]. Therefore, applying Theorem 2.2 and
Lemma 3.1 gives

∥K Z
∥ p

2 ,[u,v] ≲ ∥K Z
∥p,[u,v] ≲ ∥Z∥p,[u,v] + ∥L∥p,[u,v] ≲ |||X|||p,[u,v] + ∥L∥p,[u,v].

Since RS1(y+Z ,L)
= RZ

+ K Z , we get

∥RS1(y+Z ,L)
∥ p

2 ,[u,v] ≤ ∥RZ
∥ p

2 ,[u,v] + ∥K Z
∥ p

2 ,[u,v] ≤ Ĉ f,p(|||X|||p,[u,v] + ∥L∥p,[u,v]) (3.6)

or some constant Ĉ f,p ≥ 1 depending only on f, p and n.
We now choose C1 = C f,p(1+ Ĉ f,p) and C2 = Ĉ f,p. With these choices, the estimates (3.5)

nd (3.6) become

∥ f (Y )∥p,[u,v] ≤ C1(|||X|||p,[u,v] + ∥L∥p,[u,v]),

∥RS1(y+Z ,L)
∥ p

2 ,[u,v] ≤ C2(|||X|||p,[u,v] + ∥L∥p,[u,v]),

which hold for all (u, v) ∈ ∆ .
t1
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We then choose t2 ∈ (0, t1] sufficiently small such that

|||X|||p,[0,t2] + ∥L∥p,[0,t2] ≤ min{C−1
1 , C−1

2 }, (3.7)

so that in particular we have ∥ f (Y )∥p,[0,t2] ≤ 1 and ∥RS1(y+Z ,L)
∥ p

2 ,[0,t2] ≤ 1. Thus, for every
∈ (0, t2] we have shown that Mt (Y, Y ′) ∈ Bt for all (Y, Y ′) ∈ Bt , that is, that Mt : Bt → Bt .

Continuity. We shall show that the map Mt : Bt → Bt is (1 − 2/q)-Hölder continuous with
respect to the controlled path norm ∥·, ·∥q,[0,t] for every t ∈ (0, t2]. For (Y, Y ′), (Ỹ , Ỹ ′) ∈ Bt

we write

Zu :=

∫ u

0
f (Yr ) dXr and Z̃u :=

∫ u

0
f (Ỹr ) dXr for u ∈ [0, t].

We need to estimate

dX,X,q,[0,t](Mt (Y, Y ′);Mt (Ỹ , Ỹ ′)) = dX,X,q,[0,t](S1(y + Z , L), f (Y );S1(y + Z̃ , L), f (Ỹ ))

= ∥ f (Y ) − f (Ỹ )∥q,[0,t]

+ ∥RS1(y+Z ,L)
− RS1(y+Z̃ ,L)

∥ q
2 ,[0,t].

ince RS1(y+Z ,L)
= RZ

+ K Z and RS1(y+Z̃ ,L)
= R Z̃

+ K Z̃ , we have

∥RS1(y+Z ,L)
− RS1(y+Z̃ ,L)

∥ q
2 ,[0,t] ≤ ∥RZ

− R Z̃
∥ q

2 ,[0,t] + ∥K Z
− K Z̃

∥ q
2 ,[0,t].

The interpolation estimate in Lemma 2.4 gives

∥K Z
− K Z̃

∥ q
2 ,[0,t] ≤ ∥K Z

− K Z̃
∥

2
q
1,[0,t]∥K Z

− K Z̃
∥

1−
2
q

q,[0,t],

and Theorem 2.2 implies that

∥K Z
− K Z̃

∥q,[0,t] ≲ ∥Z − Z̃∥q,[0,t].

We recall from the inequalities (3.5), (3.6) and (3.7), that ∥ f (Y )∥q,[0,t] ≤ ∥ f (Y )∥p,[0,t] ≤ 1,
∥RZ

∥ q
2 ,[0,t] ≤ ∥RZ

∥ p
2 ,[0,t] ≤ 1 and, by Lemma 2.5, that ∥K Z

∥1,[0,t] ≲ ∥K Z
∥ p

2 ,[0,t] ≤ 1.
Combining the above estimates, we thus deduce that

dX,X,q,[0,t](Mt (Y, Y ′);Mt (Ỹ , Ỹ ′))

≲ ∥ f (Y ) − f (Ỹ )∥
1−

2
q

q,[0,t] + ∥RZ
− R Z̃

∥
1−

2
q

q
2 ,[0,t]

+ ∥Z − Z̃∥
1−

2
q

q,[0,t].

sing [24, Lemma 3.7] and Lemma 3.2 we can bound the terms on the right-hand side, thus
btaining

dX,X,q,[0,t](Mt (Y, Y ′);Mt (Ỹ , Ỹ ′)) ≲ dX,X,q,[0,t](Y, Y ′
; Ỹ , Ỹ ′)1−

2
q .

Step 2: Global solution. From Step 1, we know that there exists a solution (Y, Y ′, K ) to the
reflected RDE (3.2) on every interval [s, t) such that |||X|||p,[s,t) and ∥L∥p,[s,t) are sufficiently
small that they satisfy the bound in (3.7). Note that the condition (3.7) is independent of
the initial condition y. By the right-continuity of X and L , the maps t ↦→ |||X|||p,[s,t] and
t ↦→ ∥L∥p,[s,t] are right-continuous with |||X|||p,[s,s] = ∥L∥p,[s,s] = 0, for every s ∈ [0, T ].
Hence, for every δ > 0 there exists a partition P = {0 = t0 < t1 < · · · < tN = T } of the
interval [0, T ] such that

|||X||| + ∥L∥ ≤ δ
p,[ti ,ti+1) p,[ti ,ti+1)
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for all i = 0, . . . , N − 1. By choosing δ = min{C−1
1 , C−1

2 }, we ensure that the condition (3.7)
olds for every [s, t] ∈ P . Hence, we can iteratively obtain a solution (Y, f (Y ), K ) to the
eflected RDE (3.2) on each interval [ti , ti+1) with initial condition

Yti = Yti − + f (Yti −)∆X ti + D f (Yti −) f (Yti −)∆Xti + ∆Kti ,

with

∆Kti = [L ti − Yti − − f (Yti −)∆X ti − D f (Yti −) f (Yti −)∆Xti ]
+, (3.8)

where [ · ]+ denotes the positive part. The minimality of the reflector term K and the
perservation of the local jump structure under rough integration (see [24, Lemma 2.9]) ensure
that (3.8) is the only valid choice for the jump ∆Kti .

Pasting the solutions on different intervals together, we obtain a solution (Y, Y ′, K ) =

(Y, f (Y ), K ) to the reflected RDE (3.2) on [0, T ]. □

For Young and rough differential equations without reflection one can rely on Banach’s
fixed point theorem in order to show the existence of a unique solution. This strategy was
still possible to implement in the case of reflected Young differential equations as we saw in
Section 2. However, the situation for reflected rough differential equations is more intricate,
and one is unable to rely on Banach’s fixed point theorem.

Remark 3.6. Recall that the solution map M̃t associated to a (non-reflected) RDE is known
to be locally Lipschitz continuous for sufficiently small t , that is

M̃t : V p
X ([0, t];Rn) → V p

X ([0, t];Rn), via M̃t (Y, Y ′) :=

(
y +

∫
·

0
f (Yr ) dXr , f (Y )

)
,

is locally Lipschitz continuous, see the proof of [24, Theorem 3.8]. Since the Skorokhod map S
is also Lipschitz continuous, one might expect the solution map Mt associated to reflected
RDEs, as defined in (3.4), to be locally Lipschitz continuous as well. However, this seems not
to be the case, essentially because the controlled path space V p

X ([0, t];Rn) is equipped with a
stronger norm than p-variation. Indeed, one needs to consider

V p
X ([0, T ];Rn) ⊂ D p([0, T ];Rn) ⊗ D

p
2 (∆T ;Rd ).

his makes a significant difference when extending the Skorokhod map from the p-variation
pace to the space of controlled paths. While the map

S̃ : V p
X ([0, T ];Rn) → V p

X ([0, T ];Rn) via (Y, Y ′) ↦→ (Y + K , Y ′)

s Lipschitz continuous with respect to the distance ∥·∥p,[0,T ] +∥·∥p,[0,T ] (taking (Y + K , Y ′) as
nput), the extension S̃ is only locally Hölder continuous with respect to distance dX,X,p,[0,T ],
s shown by the interpolation argument used in the proof of Theorem 3.5. To improve the
ölder continuity of S̃ to (local) Lipschitz continuity with respect to the distance dX,X,p,[0,T ] is,
nfortunately, impossible; see [12, Section 3.1] for a discussion on this in the case of continuous
riving signals.

. Reflected RDEs — Uniqueness in one-dimension

For multidimensional reflected differential equations driven by p-rough paths with p > 2, it
s known that uniqueness of solutions does not hold in general. Indeed, Gassiat [25] provides

linear rough differential equation in n = 2 dimensions reflected at 0 which possesses
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infinitely many solutions. However, for one-dimensional reflected RDEs (i.e. the solution Y
f the RDE is real-valued) uniqueness does hold for reflected differential equations driven by
ontinuous rough paths, as proven by Deya et al. [12], see also [36]. The next theorem provides
uniqueness result for reflected one-dimensional RDEs driven by càdlàg p-rough paths, i.e. for

he case when n = 1.

heorem 4.1. For p ∈ [2, 3) let X = (X,X) ∈ D p([0, T ];Rd ) be a càdlàg p-rough path,
L ∈ D p([0, T ];R) and f ∈ C3

b with n = 1. Then, for every y ∈ R with y ≥ L0, there exists
t most one solution (Y, Y ′, K ) with Y ′

= f (Y ) to the one-dimensional reflected RDE (3.2).

roof. Let (Y, Y ′, K ) = (Y, f (Y ), K ) and (Ỹ , Ỹ ′, K̃ ) = (Ỹ , f (Ỹ ), K̃ ) be two solutions of the
eflected RDE (3.2) given X, L and y. Note that if Y and Ỹ are identical then K and K̃ are

also identical, as the corresponding Skorokhod problem has a unique solution. We assume for
a contradiction that

Ya ̸= Ỹa

for some a ∈ (0, T ].
Step 1. Let u be the last time before a that the two solutions Y and Ỹ were equal, i.e.

u := sup
{
s ∈ [0, a) : Ys = Ỹs

}
. (4.1)

e claim that

Yu = Ỹu . (4.2)

o see this we first note that, by the definition of u, there exists a sequence of times (rk)k≥1

uch that Yrk = Ỹrk for all k, and rk ↗ u as k → ∞. If rk = u for any k then we are done, so
e may instead assume that rk < u for all k. We observe that

∆Yu = f (Yu−)∆Xu + D f (Yu−) f (Yu−)∆Xu + ∆Ku (4.3)

nd similarly for ∆Ỹu . Since Yrk = Ỹrk for all k, and rk ↗ u as k → ∞, we have that
Yu− = Ỹu−. Since ∆Ku is uniquely determined by Yu−, ∆Xu , ∆Xu and Lu by the relation

∆Ku = [Lu − Yu− − f (Yu−)∆Xu − D f (Yu−) f (Yu−)∆Xu]+,

e see that ∆Ku = ∆K̃u , and it then follows from (4.3) that (4.2) does indeed hold.
Purely for notational simplicity, we shall henceforth assume without loss of generality that
= 0, i.e. that the two solutions separate immediately after time 0. Indeed, it then follows

rom (4.1) that

Ys ̸= Ỹs for all s ∈ (0, a]. (4.4)

Step 2. We split the remainder of the proof into two cases. Namely, either there exists a
ime l ∈ (0, a] such that the function

s ↦→ Ks − K̃s

s monotone on the interval [0, l], or there does not.
Let us first assume that there does not exist such a time l. It then follows that there exists a

trictly decreasing sequence of times (t j ) j≥1 with t j ∈ (0, a] and t j ↘ 0 as j → ∞, such that

K − K̃ > 0 and K − K̃ < 0,
t2k ,t2k−1 t2k ,t2k−1 t2k+1,t2k t2k+1,t2k

99



A.L. Allan, C. Liu and D.J. Prömel Stochastic Processes and their Applications 142 (2021) 79–104

t

A
t

I
i
s
t
e

w
B

I
1

h

R

A

S

f

c

for every k ≥ 1. Since K and K̃ are both non-decreasing, this implies in particular that
Kt2k ,t2k−1 > 0 and K̃t2k+1,t2k > 0 for every k ≥ 1.

Since, by definition, the reflector K only increases when Y hits the barrier L , it follows that
here exists another strictly decreasing sequence of times (r j ) j≥1 with r j ∈ (t j+1, t j ] for every
j ≥ 1, such that

Yr2k−1 = Lr2k−1 and Ỹr2k = Lr2k for all k ≥ 1.

s Yr2k−1 = Lr2k−1 ≤ Ỹr2k−1 and Yr2k−1 ̸= Ỹr2k−1 (by (4.4)), and similarly at time r2k , we see
hat

Yr2k−1 < Ỹr2k−1 and Yr2k > Ỹr2k for all k ≥ 1.

f the solutions Y and Ỹ were continuous, then it would follow immediately from the
ntermediate value theorem that there must exist a positive time (and actually infinitely many
uch times) s ∈ (0, a] such that Ys = Ỹs , contradicting (4.4). Since our paths are only assumed
o be càdlàg, we must argue differently, as, at least in principle, the solutions may “jump over
ach other” infinitely many times.

Step 3. For each k ≥ 1, we let

sk := inf
{
t > r2k : Yt < Ỹt

}
,

hich defines another strictly decreasing sequence of times (sk)k≥1 such that sk ↘ 0 as k → ∞.
y right-continuity, we have that Ysk ≤ Ỹsk which, by (4.4), implies that

Ysk < Ỹsk for all k ≥ 1.

t is clear that Ysk− ≥ Ỹsk−, but if Ysk− = Ỹsk− then a very similar argument to the one in Step
above would imply that Ysk = Ỹsk , which would contradict (4.4). Thus, we must have that

Ysk− > Ỹsk− for all k ≥ 1. (4.5)

Since Ỹsk > Ysk ≥ Lsk , the minimality of the reflector K̃ implies that ∆K̃sk = 0. We thus
ave that

0 > Ysk − Ỹsk = Ysk− − Ỹsk− +
(

f (Ysk−) − f (Ỹsk−)
)
∆Xsk

+
(
D f (Ysk−) f (Ysk−) − D f (Ỹsk−) f (Ỹsk−)

)
∆Xsk + ∆Ksk .

earranging and using the fact that K is non-decreasing, we obtain

0 < Ysk− − Ỹsk−

< −
(

f (Ysk−) − f (Ỹsk−)
)
∆Xsk −

(
D f (Ysk−) f (Ysk−) − D f (Ỹsk−) f (Ỹsk−)

)
∆Xsk .

s f ∈ C3
b , we deduce the existence of a constant C > 0, depending only on ∥ f ∥C2

b
, such that

|Ysk− − Ỹsk−| ≤ C |Ysk− − Ỹsk−|

(
|∆Xsk | + |∆Xsk |

)
.

ince Ysk− − Ỹsk− ̸= 0 by (4.5), we deduce that

|∆Xsk | + |∆Xsk | ≥ C−1 for every k ≥ 1,

rom which we conclude that

∥X∥
p
p,[0,a] + ∥X∥

p
2
p
2 ,[0,a]

≥

∞∑
k=1

|∆Xsk |
p
+ |∆Xsk |

p
2 = ∞,

ontradicting the assumption that X = (X,X) is a p-rough path.
100



A.L. Allan, C. Liu and D.J. Prömel Stochastic Processes and their Applications 142 (2021) 79–104

i

U

L

A

f
δ

n
I
t
u
c

Step 4. Recall that in Step 2 we split the proof into two cases. We now proceed to the second
case. Namely, we suppose that there exists a time l ∈ (0, a] such that the function s ↦→ Ks − K̃s

s monotone on the interval [0, l]. In particular, it follows from Lemma 2.5 that

∥K − K̃∥ p
2 ,[0,t] = ∥K − K̃∥p,[0,t] for all t ∈ (0, l]. (4.6)

sing (4.6), Theorem 2.2, and an elementary estimate for controlled rough paths, we have that

∥K − K̃∥ p
2 ,[0,t] = ∥K − K̃∥p,[0,t]

≲

 ∫
·

0
f (Yr ) dXr −

∫
·

0
f (Ỹr ) dXr


p,[0,t]

≤ ∥ f (Y ) − f (Ỹ )∥p,[0,t]∥X∥p,[0,t] +

R
∫

·

0 f (Yr ) dXr − R
∫

·

0 f (Ỹr ) dXr
 p

2 ,[0,t]
.

et δ ≥ 1. As is clear from the structure of controlled rough paths, we have

∥Y ′
− Ỹ ′

∥p,[0,t] + δ∥RY
− RỸ

∥ p
2 ,[0,t]

≤ ∥ f (Y ) − f (Ỹ )∥p,[0,t] + δ

R
∫

·

0 f (Yr ) dXr − R
∫

·

0 f (Ỹr ) dXr
 p

2 ,[0,t]
+ δ∥K − K̃∥ p

2 ,[0,t]

≲ ∥ f (Y ) − f (Ỹ )∥p,[0,t] + δ

R
∫

·

0 f (Yr ) dXr − R
∫

·

0 f (Ỹr ) dXr
 p

2 ,[0,t]

+ δ∥Y ′
− Ỹ ′

∥p,[0,t]∥X∥p,[0,t].

pplying [24, Lemma 3.7], we obtain

∥Y ′
− Ỹ ′

∥p,[0,t] + δ∥RY
− RỸ

∥ p
2 ,[0,t]

≤ C
(
∥RY

− RỸ
∥ p

2 ,[0,t] + (1 + δ)
(
∥Y ′

− Ỹ ′
∥p,[0,t] + ∥RY

− RỸ
∥ p

2 ,[0,t]

)
|||X|||p,[0,t]

)
or some constant C > 0, independent of both δ ≥ 1 and t ∈ (0, l]. Let us now choose
= 1 + C . Then, we get

∥Y ′
−Ỹ ′

∥p,[0,t]+∥RY
−RỸ

∥ p
2 ,[0,t] ≤ C(2+C)

(
∥Y ′

−Ỹ ′
∥p,[0,t]+∥RY

−RỸ
∥ p

2 ,[0,t]

)
|||X|||p,[0,t].

Since the rough path X = (X,X) is càdlàg, the function t ↦→ |||X|||p,[0,t] is itself right-
continuous (see [24, Lemma 7.1]), so we may choose t ∈ (0, l] sufficiently small such
that C(2 + C)|||X|||p,[0,t] ≤

1
2 . It then follows from the above that ∥Y ′

− Ỹ ′
∥p,[0,t] = 0

and ∥RY
− RỸ

∥ p
2 ,[0,t] = 0, and hence that ∥Y − Ỹ∥p,[0,t] = 0. Thus, Y = Ỹ on [0, t],

contradicting (4.4). □

Remark 4.2. In the proof of Theorem 4.1, the assumption that the solution to the reflected
RDE (3.2) is one-dimensional is only crucial in Steps 2 and 3. In particular, the estimates in
Step 4 may be reproduced without any additional difficulty in the multidimensional case. Thus,
even in the multidimensional case, if non-uniqueness does occur, at time u say, then there does

ot exist an l > 0 such that the function s ↦→ Ks − K̃s is monotone on the interval [u, u + l].
t then follows, as we argued in Step 2, that uniqueness can only be lost directly after hitting
he barrier, and that all solutions must hit the barrier infinitely many times immediately after
niqueness is lost. Indeed, this is precisely what happens in the counterexample of Gassiat,
f. the proof of [25, Theorem 2.1].
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While one cannot expect to obtain uniqueness for general multidimensional reflected RDEs,
quations with specific vector fields can still be treated with the arguments developed in the
roof of Theorem 4.1. To this end, we introduce following class of vector fields.

efinition 4.3. We say that a map f belongs to the class L3
b, if f ∈ C3

b (Rn
;L(Rd

;Rn)) and
is such that each of its n components is given by a function fi , i.e.

[ f (y)(x)]i = fi (y; x) for each i = 1, . . . , n,

where, for each i = 1, . . . , n, the map fi : Rn
×Rd

→ R only depends on its first i arguments,
hat is,

fi (y1, . . . , yn; x) = fi (y1, . . . , yi , ỹi+1, . . . , ỹn; x) for all y, ỹ ∈ Rn, x ∈ Rd .

The structure of the vector fields in L3
b allows one to recover uniqueness by successively

pplying the arguments of the proof of Theorem 4.1 to each of the n components of the equation
n turn. We thus immediately obtain the following corollary.

orollary 4.4. For p ∈ [2, 3), let X = (X,X) ∈ D p([0, T ];Rd ) be a càdlàg p-rough path,
L ∈ D p([0, T ];Rn) and y ∈ Rn such that y ≥ L0. If f ∈ L3

b, then there exists at most one
olution (Y, Y ′, K ) with Y ′

= f (Y ) to the reflected RDE (3.2).

Remark 4.5. If the driving signal X and barrier L are continuous, then one can also prove
uniqueness for the one-dimensional reflected RDE (3.2) via the rough Grönwall lemma of [13],
ee [12] and [36]. This strategy crucially relies on the uniqueness argument of the sewing
emma (cf. [12, Lemma 1]), which is in turn related to the existence of a suitably regular
i.e. continuous) control function. However, in the presence of jumps it is not so straightforward
o find such a regular control function. This approach thus does not seem feasible for the general
àdlàg setting considered here.

More precisely, assuming L = 0, in [12] the authors applied a rough Itô formula (see
.g. [21, Section 7.5]) to h(Y 1

t , Y 2
t ) − h(Y 1

s , Y 2
s ), where Y 1 and Y 2 are solutions to (3.2) and

h is a C3-function which approximates the function (y1, y2) ↦→ |y1
− y2

|. If X is continuous,
hen one can split this term into Ξs,t + Rh

s,t , where Ξs,t is a germ for the increment of the rough
ntegrals h(Y 1

t , Y 2
t )−h(Y 1

s , Y 2
s ) and the remainder term Rh

s,t satisfies Rh
s,t ≤ ω(s, t)3/p for some

egular control function ω. Then, since 3/p > 1, by the uniqueness argument in the sewing
emma, Rh

s,t possesses the same bound (up to a universal constant) as the one for δRh
sut =

Ξsut := Ξs,t − Ξs,u − Ξu,t . Since δΞsut is computable, one obtains a bound for the remainder
Rh

s,t and therefore a bound for the increment h(Y 1
t , Y 2

t ) − h(Y 1
s , Y 2

s ) ∼ |Y 1
t − Y 2

t | − |Y 1
s − Y 2

s |,
hich then allows one to use the rough Grönwall lemma.
In order to apply this approach for the general case (i.e. when X only has càdlàg

aths), one needs to invoke the generalized sewing lemma, see e.g. [24, Theorem 2.5]; in
articular, one needs to find two (potentially non-regular) controls ω1, ω2 such that |Rh

s,t | ≤

α
1 (s, t−)ωβ

2 (s+, t) with α + β > 1. Let us consider the same decomposition h(Y 1
t , Y 2

t ) −

h(Y 1
s , Y 2

s ) = Ξs,t + Rh
s,t as in the continuous case. A careful inspection of the rough Itô formula

eveals that Rh
s,t contains a term Bs(Xs,t ,Xs,t ) for some bilinear form Bs depending only on

2h, Y 1
s , Y 2

s and f . Clearly, it is a priori only bounded by ∥X∥p,[s,t]∥X∥ p
2 ,[s,t] instead of the

esired bound ∥X∥p,[s,t]∥X∥ p
2 ,(s,t], so that we have to move this term from Rh

s,t to the germ
s,t . This problem is not present in the continuous case as both terms are equal, since X has
o jumps. As a consequence, the “càdlàg germ”, denoted by Ξ̃ , is much more intricate than
s,t
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the “continuous germ” Ξs,t (keeping in mind that one has to include the jump part arising from
the Itô formula into Ξ̃s,t ), and therefore the computation of δΞ̃sut would become very involved.

This observation shows that the proof methodology based on a rough Grönwall lemma is
ery difficult to extend to the general case. The situation becomes even more complex when
ealing with general time-dependent barriers L as successively done in [36]. On the other hand,
he approach introduced in the proof of Theorem 4.1 provides an alternative, relatively simple
ay to obtain uniqueness of solutions to reflected RDEs, even when jumps are allowed in both

he driving rough path X and in the barrier L .
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