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Abstract

We investigate rough differential equations with a time-dependent reflecting lower barrier, where
both the driving (rough) path and the barrier itself may have jumps. Assuming the driving signals allow
for Young integration, we provide existence, uniqueness and stability results. When the driving signal
is a cadlag p-rough path for p € [2,3), we establish existence to general reflected rough differential
equations, as well as uniqueness in the one-dimensional case.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Stochastic differential equations (SDEs) with reflecting barriers or boundary conditions have
a long history in probability theory going back to Skorokhod [38]. Since the early works [26,33,
38,39,41] regarding reflected diffusions in a half-space, there has been a considerable effort to
deal with various generalizations, such as more intricate boundary conditions (see e.g. [29,37])
or more complex stochastic processes, like fractional Brownian motion (see e.g. [20]) and
general semimartingales (see e.g. [19,28,34]). Associated properties of these reflected diffusions
have been widely studied as well, such as approximation results and support theorems, see
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e.g. [3,27,35]. The theoretical study of reflected SDEs and of the closely related Skorokhod
problem has been additionally motivated by their many applications, such as in queuing theory
and statistical physics, see e.g. [7,32].

A fresh perspective on stochastic differential equations was initiated by Lyons, providing
a pathwise analysis of SDEs, first using Young integration [31], and then by introducing the
theory of rough paths [40], which allows one to treat various random noises, such as fractional
Brownian motion and continuous semimartingales. The rough path approach to stochastic
differential equations has been celebrated for offering many advantages and new insights; for an
overview see for instance the introductory textbook [21]. A first pathwise analysis of reflected
SDEs was presented by [17,20] using Young integration, and by [1,5] using the more powerful
theory of rough paths.

The aim of the present work is to provide a pathwise analysis of differential equations
reflected at a cadlag time-dependent barrier L: [0, T] — R" of finite p-variation. More
precisely, for a cadlag path A: [0, T] — R of finite g-variation and a cadlag path X : [0, T] —
R? of finite p-variation with ¢ € [1,2) and p € [2, 3) satisfying 1/g + 1/p > 1, we study the
differential equation

dY, = fi(Y))dA, + fo(Yy)dX, +dK,, te][0,T], (1.1

where the solution Y is reflected at the time-dependent barrier L, that is, ¥/ > LI for
i =1,...,n, and the reflector term K: [0, T] — R”" is a non-decreasing process fulfillmg
a standard mlmmahty condition.

In the first part of the paper we suppose that the second vector field is trivial, i.e. f> = 1.
In this case classical Young integration [42] is sufficient to define the remaining integral
in (1.1), and we can thus treat (1.1) as a reflected Young differential equation. Under standard
assumptions on the vector field, we show the existence and uniqueness of a solution to (1.1)
using a Banach fixed point argument. Moreover, we prove that the solution map (A, X) +—
(Y, K) is locally Lipschitz continuous with respect to both the p-variation distance and to the
Skorokhod J; p-variation distance. These results provide a comprehensive pathwise analysis
of reflected Young differential equations. In particular, our results complement the existing
literature (cf. [1,17,20]) in terms of the pathwise stability of the solution map, which constitutes
one of the central advantages of a pathwise analysis of SDEs. For instance, pathwise stability
results allow one to prove support and approximation results, as well as large deviation
principles for stochastic differential equations, cf. [23].

In the second part we consider general vector fields f; and f5. In this case Young integration
is no longer sufficient. We therefore assume that X is a cadlag p-rough path in order to
define the second integral in (1.1) as a rough integral, turning (1.1) into a reflected rough
differential equation (reflected RDE). For this purpose we rely on the cadlag rough path theory
of forward integration recently introduced in [22,24], a generalization of the now classical
theory of continuous rough paths which also allows processes with jumps. Indeed, general
semimartingales can be lifted to cadlag rough paths, as well as many other stochastic processes,
such as suitable Gaussian processes, Dirichlet processes and Markov processes, see [9,24,30].
Hence, a cadlag rough path approach to (1.1) significantly enlarges the class of well-posed
reflected SDEs. As already pointed out in [1] and [12], reflected rough differential equations
face significant new challenges compared to the treatment of classical RDEs, the main reason
being the lack of regularity of the Skorokhod map, particularly its lack of Lipschitz continuity
of the space of controlled paths (see Section 3).

We establish the existence of a solution to the reflected RDE (1.1) based on Schauder’s
fixed point theorem and p-variation estimates for the Skorokhod map due to [17]. While
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Schauder’s fixed point theorem is a classical argument in the context of differential equations,
the present setting allowing driving signals A and X with jumps requires careful analysis,
particularly in the introduction of a suitable compact set on the space of cadlag controlled
paths. So far existence results for reflected RDEs are only known for continuous driving signals,
see [1,5,12,36]. Similar results have been obtained in the context of sweeping processes with
pathwise perturbations [8,18] and path-dependent rough differential equations [2,4], both also
covering reflected RDEs.

We then prove the uniqueness of the solution to the reflected rough differential equation (1.1)
in the one-dimensional case, that is, when the solution Y is real-valued. For multidimensional
reflected RDEs a general uniqueness result cannot hold, as observed by Gassiat [25], who
provides a linear RDE in n = 2 dimensions reflected at O with infinitely many solutions. For
one-dimensional reflected RDEs driven by continuous rough paths uniqueness was obtained
by [12] in the case L = 0 and by [36] in the case of time-dependent barriers L. The approach
of [12] (as well as [36]) relies fundamentally on the sewing lemma and the rough Groénwall
inequality of [13], for which the continuity of the driving paths seems to be crucial, see
Remark 4.5. Therefore, in order to treat the cadlag setting, our proof of uniqueness utilizes a
novel approach based on a contradiction argument. Remarkably, this proof is rather transparent
and is surprisingly short, particularly in the special case of continuous driving paths.

Organization of the paper: In Section 2 we provide existence, uniqueness and stability
results for reflected differential equations driven by signals allowing for Young integration. In
Section 3 we prove the existence of solutions to multidimensional reflected rough differential
equations. Finally, we provide a uniqueness result for one-dimensional reflected RDEs in
Section 4.

1.1. Basic notation

Let us start by introducing some standard definitions and notation used throughout the paper.
A partition P = P([s, t]) of the interval [s, f] is a set of essentially disjoint intervals covering
[s,2], i.e. P = {[u;,uiv1] : s = up < u; < --- < u, = t}. The mesh size of a partition
P is given by |P| := max{|u;+; —u;| : i =0,...,n — 1}. Given a metric space (E, d), the
set D([0, T]; E) denotes the space of all cadlag (right-continuous with left-limits) paths from
[0, T] into E. For p > 1, the p-variation of X € D([0, T]; E) over the interval [s, ¢] is defined
by
b
X p 5.1 = ( sup Y d(X,, X»P) :
PCls,t] [u,v]eP
where the supremum is taken over all finite partitions P of the interval [s,¢], and the
sum denotes the summation over all intervals [u,v] € 7P. Recall that, for every s €
[0, T], the function [s,T] > ¢ +~ | X]|l, s, 1S non-decreasing and right-continuous with
1 XNl p1s,s1 = limy s | Xl 15,1 = O (see [24, Lemma 7.1]), and the function (s, t) — ||X||§,[w]
is superadditive, i.e. ||X||Z,[S‘u] +1X17 < 1X1? for0 <s <u <t <T. See [0,

plu.t] — pils.t]
Section 2.2] for these and further properties of p-variation seminorms. Moreover, we set!

1 X1 15,0 = sup [ Xl p.s,u1-
u<t

' One can similarly define ||X||,(s,/1, but since all the paths we consider are cadlag, this always coincides with
HX”p,[x.t]-
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A path X € D([0, T]; E) is said to have finite p-variation for some p € [1, 00) if || X||, j0,7] <
oo. We will denote the space of all cadlag paths of finite p-variation by D?([0, T']; E).

The space R” is equipped with the Euclidean norm | - |. For two real numbers x,y € R
we set x A y := min{x, y} and x V y := max{x, y}, and we write the positive part of a vector
x=0 .., eR” as

[x]7 = (x"1", ..., [x"1")  where X7 =x' voO. (1.2)
For two paths X = (X',..., X") € D([0,T]; R") and Y = (Y',...,Y") € D([0, T]; R") we
write X < Y to mean that X’ < Y forevery i =1,...,n.
Whenever X € D([0, T]; B) takes values in a Banach space (B, | - ||), we will write
| Xloo = sup,fo.7y 1 X: || for the supremum norm and we will use the abbreviations
X=X — X, X,_ = lim X, and AX, = X— =X, — X,
s—>t,5<t

The space of linear maps from RY — R” is denoted by £L(R?; R") and we write C’b‘ =
C f(R“; L(@R4; R™)) for the space of k-times differentiable (in the Fréchet sense) functions
f:R" — L(R? R") such that f and all its derivatives up to order k are continuous and
bounded. We equip this space with the norm

Ifllck = 1 flloo + D flloo + -+~ + ID* floo»

where || - || denotes the supremum norm on the corresponding spaces of operators.

Let (B, || - ||) be a normed space and f, g: B — R two functions. We shall write f < g or
f < Cg to mean that there exists a constant C > 0 such that f(x) < Cg(x) for all x € B.
Note that the value of such constants may change from line to line, and that the constants may
depend on the normed space, e.g. through its dimension or regularity parameters. If we want
to emphasize the dependence of the constant C on some particular variables «;, ..., «,, then
we will write C = C,,

2. Reflected Young differential equations

In this section we shall study reflected differential equations driven by paths A: [0, T] — R¢
with sufficiently regularity to allow for Young integration. More precisely, we assume that
A € DI([0, T]; RY), X € DP([0, T]; R") and L € D?([0, T]; R") with ¢ € [1,2) and p > ¢
such that 1/p+1/g > 1. Given f € Cﬁ and y € R", we seek for two paths Y € D?([0, T]; R")
and K € D'([0, T1; R") satisfying the reflected Young differential equation

t
Yt=y+/ fY)dA; + X, + K, tel0,T], 2.1
0

such that, for everyi = 1,...,n,
(@ Y/ > L forallt €0, T],
(b) K': [0, T] — R is a non-decreasing function such that K} = 0, and

t
/ (Y] — L) dK; =0, t €0, 7], (2.2)
0

where the integral in (2.2) is understood in the Lebesgue—Stieltjes sense.

In the reflected Young differential equation (2.1) the integral fot f(Yy)dA; is well-defined as
a Young integral, in the sense of [42]; see also [24, Section 2.2]. In particular, we recall that,
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for X € DP([0, T]; RY) and Y € DI([0, T1; L(R?; R™)), the Young integral

t
Yrer = 1li udu,vy
/ Am, 2 YuXu
[u,v]eP

exists (in the classical mesh Riemann—Stieltjes sense) whenever 1/p + 1/g > 1, and comes
with the estimate

t
/ Y, dX, — Y, X,
s

< CpgllY llgrs.nll XN p.s.e15 2.3)

where the constant C,, , depends only on p and g.

Let us remark that, in the presence of jumps, it is crucial to take left-point Riemann sums to
define the Young integral since, for instance, mid- or right-point Riemann sums approximation
lead in general to different limits. This is in contrast to Young integration for continuous paths.
Moreover, we note that the Young integral itself ¢ fot Y, dX, is a cadlag path and its jump
at time ¢ € (0, T'] is given by

A(/ Yrer> =Yt7AXt.
0 t

Remark 2.1. Despite our focus here on Young integration in the sense described above, it
is actually necessary to instead define the integral in (2.2) in the Lebesgue—Stieltjes sense.
Suppose for instance that A = 0, X = 0, L = 0 and y = 0. Then, for any fixed u € (0, T'],
setting ¥, = K; = 1y, defines a solution (¥, K) of (2.1) such that (2.2) holds in the Young (or
equivalently Riemann—Stieltjes) sense, essentially because the left-endpoint always lies before
the jump. Thus, Young integration does not correctly capture the minimality property for K in
the cadlag setting.

The problem of proving existence and uniqueness results for reflected (stochastic) dif-
ferential equations is known to be closely related to the so-called Skorokhod problem, as
originally introduced by Skorokhod [38]. Since our approach to the reflected Young differential
equation (2.1) relies on the Skorokhod problem, we shall recall some properties of the Sko-
rokhod problem in the next subsection and provide some basic estimates regarding p-variation
semi-norms as groundwork for later purposes.

2.1. Skorokhod problem and p-variation estimates

Let Y,L € D([0, T]; R") be such that Y, > Lj. A solution to the Skorokhod problem
associated with the path Y and the lower barrier L, is a pair (Z, K) € D([0,T]; R") x
D([0, T]; R") such that

@ Z =Y, +K, =L, fort €[0,T],

(b) Ko=0and K = (K',..., K"), where K' is non-decreasing function such that

t
/ (Zl — LHdK! =0, for all t € [0, T],
0

for every i = 1, ..., n, where the integral is understood in the Lebesgue—Stieltjes sense
as before.
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It is well-known, that the Skorokhod problem has a unique solution (Z, K), see e.g.
[6, Theorem 2.6 and Remark 2.7]. Moreover, we introduce the associated Skorokhod map S
by

S:(Y,L)— (Z,K)

where (Z, K) is the solution to the Skorokhod problem given (Y, L), and we set
SiY,L):=Z7Z and S(Y,L) =K

As the following result from [17] shows, the Skorokhod map S turns out to be a Lipschitz

continuous map with respect to the p-variation distance.

Theorem 2.2 (Theorem 22in [17]). Let Y, L, Y,L e D([0, T]; R”) and assume that Yo > L
and Yy > Lo Let (Z,K) = S(Y.L) and (Z,K) = S(Y,L) be the solutions of the
corresponding Skorokhod problems. We have

1Z = Zllpjo.ry < C(nY —Yllpg0.r+ 1Yo — Yol + IL — Lllpjo.r1 + Lo — Zo|)
and

1K = Rllpior = C(IY = Pllppo.r + 1Yo = Fol + 1L = Lllpo.m + 1Lo = Lol),
where the constant C depends only on the dimension n.

By setting 17, = Y, and i, = L for all t € [0, T], we see that, under the assumptions of
Theorem 2.2, we also have

Zl p. 10,71 + 1K pjo,77 < C<||Y||p,[0,T] + ||L||p,[0,T])~ 2.4)

Remark 2.3. The Lipschitz continuity of the Skorokhod map with respect to the supremum
norm is a classical result, see the works [14,15] and [16], which treat the Skorokhod map on
various (intricate) domains and with different types of reflections. Notably, it was observed
in [20] that the Skorokhod map § is not Lipschitz continuous with respect to Holder distances.
Hence, it is essential to work with p-variation distances to treat reflected differential equations
using the Skorokhod map, even when considering continuous driving signals A and X.

For later convenience, we collect here various useful estimates for p-variation norms.

Lemma24. [f1<qg<p<oo rel[l,oo)and X € D([0, T]; R"), then
1 X1l p.10.11 < ”X”q 0.7, I Xlloo0.71 < [Xol + 1 X|lrj0.7) and

1-4
”X”p [0,7]1 = = ”X”q [0, T]”X”r,[oyp]']-

Proof. The first inequality follows immediately from the corresponding result for classical /7
spaces. The second inequality is straightforward to see by noting that

[X:] < 1 Xol + [Xo| = [Xol + [IX|l0,71

for every t € [0, T']. For the third inequality we observe that

”X”p 0.7] = ”X”q [0, T]< Sl[l(?T] |Xs,t|pq> = ”X”q .10, T]||X| r[() T

and the result follows. O
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Lemma 2.5. There exists a constant C,, depending only on the dimension n, such that

1 X1,0,71 < CallX |l p,10,71 (2.5)

for every monotone path X: [0, T] — R” (i.e. any path X such that each of its n components
X [0,Tl—= R, i =1,...,n, is monotone) and every p > 1.

Moreover, we may take C; = 1, so that for any one-dimensional monotone path X, the
p-variation norm || X ||, 10,77 is independent of p.

Proof. It is clear that

[Xo,71 < 1 X p.10,71 < 11 X110,71 (2.6)

for any path X and any p > 1. Suppose now that each of the components X': [0, T] — R,
i =1,...,n, is monotone. Let us consider the p-variation of X with distance in R” measured
using the /'-norm rather than the usual Euclidean />-norm, so that [x| = Y ", |x|. Since X is
monotone, it is then straightforward to see that || X||1 0,77 = | Xo,7|. Combining this with (2.6),
we obtain || X||1,0,77 = | X|lp 10,77 for every p > 1.

To change back to the usual Euclidean norm, we recall that norms on finite-dimensional
spaces are equivalent, so that (2.5) holds for a suitable constant C,,. [

Lemma 2.6. Let X € DP([0, T]; R"). For any 0 <s <t < T, we have

1
(IX15 0y +1AX007)” < 1K ptsin < DX pgsr + 1A%0]

where we recall that || X || p.1s.0) == sup, ., 1 Xl p,1s,u1-

Proof. For the first inequality, note that
P P P
XU o+ IX DDy < IXDD 4

for all s < u < ¢, and take the limit as u ' t.
For the second inequality, let P = {s = ugp < u; < --- < u, = t} be a partition of the
interval [s, t]. By Minkowski’s inequality, we have

n—2

n—1 1 1
P P
(Z |X”iv”i+l |p> = (Z |X“i~“i+l |p + |X”n—l~,t* + AXf|p>
i=0 i=0

n—2 1
P
< (Z | X |7+ |Xu,1_],t|f’) + 14X,

i=0

and we conclude by taking the supremum over all partitions P of the interval [s, 7]. O

2.2. Existence and uniqueness result

In this subsection we show the existence of a unique solution to the reflected Young
differential equation (2.1). We recall that we call (¥, K) a solution to the reflected Young
differential equation (2.1) driven by A e D4([0,T]; RY) and X e DP([0, T];R") with
reflecting barrier L € DP([0, T]; R") if Y, K € D?([0, T]; R") satisfy (2.1), and if for every
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(@) Y/ > Li forall t €0, T],
(b) K':[0,T] - Risa non-decreasing function such that Ké =0, and

t
/ Y/ —L)H)dKi =0  forevery te[0,T].
0

Theorem 2.7. LetT >0, f € C,%, q €[1,2) and p € [q, 00) such that 1/p +1/q > 1. Let
yeR", Ae D0, T]; RY), X € DP([0, T]; R") and L € DP([0, T1; R") such that y > L.
There exists a unique solution (Y, K) to the reflected Young differential equation (2.1).

Before coming to the proof of Theorem 2.7, we first need the following stability result
regarding Young integration.

Lemma 28. Let f € Cé, and let g € [1,2) and p > q such that 1/p + 1/q > 1. Let
A Ae D0, T]; RY), Y, Y € DP([0, T]; R"), and suppose there exists some t € (0, T] such
that ||Y||p,[()y,] < 1. Then

’ f f(¥)dA, - / (P dA,
0 0

p:10.1]
= Cpl Fllez (1Yo = Tol + 1Y = Pllpgo ) 140001 + 14 = Al 0.

where the constant C, , depends only on p and q.

Proof. For any subinterval [s, u] C [0, ¢], we have
f f(¥)dA, — / f(¥)dA, / (f(Y,) = f(¥,)) dA,.' +

SIS — FOIDAsul + 1 FX) = FOprso | All g 5,01
+ |f(Ys)||As,u - As,u| + ”f(Y)”pA,[x,u)”A - A”q,[s,u]a

where we applied (2.3) to obtain the last inequality. Hence, we deduce that

” / Y, da, — / F(7)dA,
0 0 p,[0,1]

S = FDllollAllpo.0 + 1FX) = FD 0.1l Allg.10.0
1 MlloollA = Allpjo.1 + 1 fF Dl p.10.0 1A = Allg. [0

S ((10 = Tol + 1Y = Pllps00) (1A llg00 + 141 0001)

+ 114 = Allgjo.n + 14 = Allp o),

=

/ f(¥,)d(A — A),

| f(Y)— f(f’)||,,,[o,,] was bounded using [24, Lemma 3.1]. Since p > g, the first inequality in
Lemma 2.4 yields the assertion. [

where in the last line we used the fact that ||f(17)||,,,[0,,] < ||17||,,,[0,l] < 1, and the term

We are now ready to establish the existence of a unique solution to the reflected Young
differential equation (2.1), the key ingredients being the Skorokhod map and Banach’s fixed
point theorem. Recall that the space D”([0, T']; R") is a Banach space with respect to the
p-variation norm |Xo| + || X|[.10,7) for X € DP([0, T]; R") (see e.g. [10, Proposition 7.2]).
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Proof of Theorem 2.7. Step I: Local solution. For t € (0, T] we define the map

M;: DP([0,t]; R") — DP([0,t]; R") by M(Y):=38 (y + /0. fY,)dA, + X, L).
That is, we have

MX)=y+ /0 f(Y,)dA, + X + K, where K = 82<y + /0 f(Y,)dA, + X, L).

Note that a unique fixed point of the map M,, along with the corresponding process K obtained
from the Skorokhod map S, are together the unique solution to the reflected Young differential
equation (2.1) over the time interval [0, #]. To show the existence of a unique fixed point, it is
sufficient to verify that the map M, satisfies the assumptions of Banach’s fixed point theorem
([43, Theorem 1.A]) for some sufficiently small ¢ € (0, T'].

Invariance. We define the closed ball

B, :={Y € D’([0,t1;R") : Yo=y, [I¥lp0. <1}
Let Y € ;. By (2.3), for any subinterval [s, u] C [0, t], we have

5 |f(YS)AS,u| + ”f(Y)”p,[x,u)”A”q,[s,u] + |Xs.u|»

/ f¥r)dA, + Xy

from which it follows that

‘ / f(¥,)dA, + X S I MllollAllp.o.1 + 1 Ml p.0.0 1 Allg 0.0 + 11X 0.0
0

p.10.1]
S ISl IAlg. 0.0 + 11X p.0.05

where we have used the first inequality in Lemma 2.4, and the fact that || f(¥)llp 0. S
1Yl 10,7 < 1. Hence, from the estimate (2.4) we get

IM 00 = C1 (17 1A N0+ 1X T g0 + 1L p10.0)

for some constant C; depending only on p, g and n. Since A, X and L are right-continuous,
the functions t +— |[|Allg 0.1, t — I Xllp0n and ¢ — |IL|l, 0, are non-decreasing and
right-continuous, see [24, Lemma 7.1]. Hence, there exists #; € (0, T'] sufficiently small such
that

C1(||f||c}g||A||q,[o,z1] + 11X 10,000 + L1 poj0,7) <1

and it follows that for any 7 € (()J t1], the closed ball B; is invariant under the map M;.
Contraction property. Let Y, Y € B, for some ¢ € (0, t;]. By Lemma 2.8, we have

/' FOV)dA, + X — / F(7)dA, — X
0 0

< Il 1Y = Yl p. 0.0l Allg.0.0-
p,10,1]

By the first estimate in Theorem 2.2, we then have that
IMY) = MiD)lp1o1 < Call 2 1Y = FllpponllAllg.1o.

for some constant C, depending only on p, g and n. Choosing #, € (0, t;] sufficiently small so
that C2||f||cg IAllg.10, < %, it follows that, for any ¢ € (0, t;], the map M, is a contraction on
B;. Applying Banach fixed point theorem provides a unique Y € B; (together with a reflector
term K € D'([0, t]; R")) satisfying the reflected Young differential equation (2.1) for any
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t € (0, ]. Note that any solution Y e D([0, T]; R") (and K € D'([0, T1; R™)) to the reflected
Young differential equation (2.1) belongs to the ball B; for sufficiently small ¢t € (0, £,], and
thus Y =Y and K = K on [0, ¢] for any ¢ € [0, 1,].

Step 2: Global solution. Due to Step 1, we know that there exists a unique solution (¥, K)
to the Young differential equation (2.1) on every interval [s, ¢) provided || Ally 5.0, 1 X 15,00
and ||L||p s, are sufficiently small such that

1
C1(|If||cl ANl 5,00 + 11X 1 p, 15,00 + 1Ll ps.n) + Callfll ezl Allg s = 5 2.7

Note that the condition (2.7) is independent of the initial condition y. By the right-continuity
of A, X and L, for every § > 0 there exists a partition P ={0 =1 <t <--- <ty =T} of
[0, T'] such that

||A||‘I»[ti~ti+1) + ”X“P»[tiv’iJrl) + ”L”P,[ti,fiﬂ) <34

forall i = 0,..., N — 1. Now we choose § > 0 such that the qondition (2.7) holds for
every [s,t] € P. Hence, we can iteratively obtain a solution (Y*, K') to the reflected Young
differential equation (2.1) on each interval [#;, t;;1) with initial condition

Yt,- = Ytl-f + f(Yt,-—)AAt,- + AX[,- + AKt,-,
with
AK[,’ = [Lfl' - Yt,'— - f(Yl,'—)AAt,‘ - AXI;]+5 (28)

where [-]T denotes the positive part, in the sense of (1.2). The resulting paths Y, K €
D?([0, T]; R") thus provide a solution to the reflected Young differential equation (2.1) on
[0, T].

The minimality of the reflector term K and the perservation of the local jump structure
under Young integration (see [24, Lemma 2.9]) ensure that (2.8) is the only valid choice for
the jump AK;, . The uniqueness of (¥, K) on [0, T'] follows from this and the local uniqueness
established in Step 1. O

2.3. Stability results

One of the key advantages of a pathwise analysis of stochastic differential equations are
pathwise stability results regarding the solution map associated to a differential equation, which
maps the driving signals, in our case A and X, to the solution Y of the differential equation.
Accordingly, in this subsection we derive stability results for the reflected Young differential
equation (2.1). The first one is with respect to the p-variation distance.

Proposition 2.9. Let f € C2, q € [1,2) and p € [q, o0) such that 1/p+1/q > 1. Let (Y, K)
and (Y, K) be the unique solutions of the reflected Young differential equation (2.1) given the
data y,y € R", A, A € DI([0, T]; RY), X, X € DP([0,TL; R") and L, L € Dr([0, T]; R")
respectively, where as usual y > Ly and y y= Lo. Suppose that the norms || All4. 10,71, ||A||q 0.7
1 X1l 10,775 ||X||,,_[0,T], LIl 10,77 and ||L||,,,[0,T] are all bounded by a given constant M > 0.
Then,

1Y = ¥y + 1K = Kl po.7)
< CM,f(ly — y| —+ ||A — A~||q,[O,T] + ||X - )2||[;’[(),T] + |L0 - i‘0| + ”L - Z‘“[’-,[O,T]>

for some constant Cy ¢ depending on M, ||f||c§, p,q and n.
88



A.L. Allan, C. Liu and D.J. Promel Stochastic Processes and their Applications 142 (2021) 79-104

Proof. Step 1: Local estimate for sufficiently small intervals. We recall from the proof of
Theorem 2.7 that the unique solution of (2.1) satisfies ||Y], 5, < 1, whenever the interval
[s, ¢) is sufficiently small such that (2.7) holds for the data (A, X, L). Thus, by Lemma 2.8, on
any interval [s, ¢) such that (2.7) holds for both (A, X, L) and (A, f(, f,), we have that

” f'f(Yr)dAr +X—ff(17,)dA, - X
0 0

p.ls,t)
S (Y =Yl 4+ 1Y = Yppen) 1Al + 1A = Allgis + 1X = Xllp1s0)-

By the estimates in Theorem 2.2, we then have

1Y = Yllpisoy + 1K = Kl piso

< c((m — Y+ 1Y = Yl is0) 1 Allg s + 1A = Allg 5.0

X = Xllpsy + 1Yy = Yl + 1L = Ll ps0y + |1 Ls — m)

for some constant C depending on p, g and n. If we suppose that the interval [s, ¢) is sufficiently
small that

1
Cllf 2l Allg. 5.0 = 5 (2.9)
then, after rearranging, we obtain

1Y = Vllpts0 + 1K = Klpis ) ) ) 2.10)
SHA = Allg s +1Ys =Yl + 11X = Xllpis.y + 1 Ls — Ll + 1L = Ll 1s.0)-
Step 2: Estimating the “big” jumps. We estimate
|AK, — AK,|
=|[L: = Yo — F(V,)AA, — AX,|" = [Li — Yoo — f(Yi0)AA, — AX,]T| 21D
SIL, — Ll + Yo — Y| +|AA, — AA,| + |AX, — AX,|,

where the multiplicative constant indicated by the symbol < depends on || f ||C11 and on the
bound M. Moreover,

|AY, — AY,| = |f(Y;iL)AA, + AX, + AK, — f(Y,_)AA, — AX, — AK,|
S|Yo — Y|+ |AA, — AA,| + |AX, — AX,| + |AK, — AK,| (2.12)
S|Ye — Y| +1AA, — AA,| + |AX, — AX,| + |L, — L,|.
Combining (2.11) and (2.12), we obtain
|AY, — AY,| + |AK, — AK,|
S|V — Y|+ |AA, — AA,| +|AX, — AX,| + |L, — L,| (2.13)
<Y = Y|+ Y = Vppn + |AA, — AA,| +|AX, — AX,| + L, — Li|.
By the second inequality in Lemma 2.6 we have
1Y = Yllps.r + 1K = Kll sy
<Y =Ylppn + 1K = Kllpon +14Y, = AV + |AK, — AK,|.
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Combining the estimates (2.10) and (2.13) and substituting into the above, we obtain
1Y = Yl + 1K = Kl
S, |Ys - Ysl + ”A - A”q,[s,t) + ”X - X”p,[s,l) + |Ls - Ls| + ”L - L”p,[s,t)
+1AA = AA |+ AKX, — AX/| + L — Lil.
By the first inequality in Lemma 2.6, we deduce that

”Y_Y”p[s;]'i‘”K K”p[”]

S =Bl 1A = AP g+ 1X = KW o + 1Ly — Lol” + 1L = LI

(2.14)

Step 3: Global estimate. So far we have shown that the estimate (2.14) holds for every pair
of times s < ¢ such that the conditions (2.7) and (2.9) hold.

Since the functions (s, 1) = [[A[l] ;. (s, 0) = [IXIID (0 (5, 0) = LIS .,y (and similarly
for A, X, L) are superadditive and bounded by M9 v MP, there exists a partition P = {0 =
to < --- < ty = T}, where the number of intervals N depends only on M, ||f||Cg, p,q and n,
such that (2.7) and (2.9) hold on each interval [¢;, ;1) fori = 0,..., N — 1. Thus, for each
i=0,...,N—1, we have

1Y = F12 o + 1K = K1
S, =T l" 4 1A= AP
+IL—L)?

pilti titr]

F X =X !

1Ly — Ly

4,1t 14 piltiti

piltitip1]”
Writing |Y;, — )7[,.| <Y, — Y’i—ll + |Y — ?”[I[—l’tiJ and similarly for L — L, and pasting the
estimate (2.14) on different intervals together, we see that

Iy — Yy (K —KIp

poltistig plii, t,+1]

_, _
< Yo — Yol + |Lo — Lol +Z(||A AN 11y + 1X = XD
j=0

p, [tj t]+l]

Fup
L= LID )

We recall the standard estimate
1

P
Y = Pllppor < N7 (ZHY Y||,,[,,,,+,]>

i=0

which holds similarly for K — K. Putting this together, and recalling that the number of
partitions N depends only on M, | f ”C,%’ P, q and n, the desired result follows. [

In probability theory one often likes to work with a variety of different distances on the
Skorokhod space D([0, T']; R"). Following [24, Section 5.1], we can immediately reformulate
the stability result (Proposition 2.9) in terms of a Skorokhod J; p-variation distance. To this
end, we let A be the set of all time-changes, that is, increasing bijective functions A: [0, T] —
[0, T'], and write [[A]| := sup, ;912 (t) — ¢ for A € A.

We define two Skorokhod J; p-variation distances, namely

op 0,11 ((Y, K), (¥, K)) i= inf (A V (1Y oA = Yy o1+ 1K 02 — Kl p.0,71)
reA
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and
Gpgr0.ri((A, X, L), (A, X. L))
= inf (v (14 02 = Allyory + 1X 0 & = Kllppory + 1L 0% = Ll pp0r)-

Corollary 2.10. Let f € C,,, q € [1,2) and p € [q,00) such that 1/p + 1/q > 1. Let

v,y eR" A, Ae D"([() T1; RY), X, X,L,L¢ D?([0, T]; R") such that y > Ly and y > Lo
Let (Y, K) and (Y K) be the unique solutions of the reflected Young differential equation (2.1)
corresponding to the data (y, A, X, L) and (y, A, X, L), respectively. Suppose that the norms
1Al 071 NAllg 0.7 IXpo.r1 1XIpg0.71 IL1p0.r1 and |ILllp. 0,71 are all bounded by a
given constant M > 0. Then

Op10.11((Y K0, (7, K)) = Car g (Iy = 51+ 1Lo = Lol + 6 0m1((A, X, 1), (A, X, L)

for some constant Cy ¢ depending on M, ”f”C,f’ p,q and n.

Proof. Let ¢ > 0. By the definition of the Skorokhod distance, there exists a A € A such that
v (14 04 = Allgpo.r1 41X 04 = Kllpgor) + 1L 0 & = Lipj0)
<Gpq0r((A, X, L), (A, X, L) +e.
Since p-variation norms are invariant under time-changes, it is straightforward to observe that
(Y oA, K o)) is the unique solution of the reflected Young differential equation (2.1) with data
(y,AoA, X ok, LoAi). Hence, by Proposition 2.9, we have that
p0.1((Y, K). (Y, K) < I+ 1Y 0k = Pl o + 1K 0 = Kl 071
SR+ 1y = F1+ 1A 02 = Allgo.r + I1X 0 A = Xl 0,71 + | Lo — Lol
+IIL ok — Ly o.1
Sy =31+ 1Lo = Lol +6,.4.0m1((A, X, L), (A, X, L) + &.

Letting ¢ — 0, we obtain the result. [

3. Reflected RDEs — Existence

In order to develop a pathwise theory for reflected differential equations covering stochastic
differential equations driven by, e.g. Lévy processes or martingales, Young integration is in
general not sufficient. To treat such processes one needs to significantly extend the theory of
Young integration to be able to deal with paths of lower regularity. One such extension is given
by the theory of rough paths initiated by Lyons [40]. In the next subsection we recall the notion
of integration with respect to cadlag rough paths, following the works of Friz—Shekhar [22]
and Friz—Zhang [24].

3.1. Cadlag rough paths

Let Ay = {(s,t) € [0,T]> : s < t} be the standard 2-simplex. For a two-parameter
function X: Ar — RI*? we define

2
P P
”X“%,[s,t] = < Sllp Z |Xu,v|2>

PCls.fl, vep
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where the supremum is taken over all partitions of the interval [s, t]. We write Dg(AT; R%)
for the space of all functions X: Ay — R?*? which satisfy ||X|| 2 0.1 < 00 and such that the
maps s — X, for fixed ¢, and ¢ — X, for fixed s, are both cadlag. Moreover, we set

AX; =X, = lim X, for re(0,T].

s—>t,5<t

The fundamental definition of a cadlag rough path was first introduced in [22, Definition 12].
For p € [2,3) a pair X = (X, X) is called a cadlag p-rough path over R? if

() X € D”([0, T]; R%) and X € D% (Ar; RY),
(11) Xx,t - Xs,u - Xu,l = Xs,u & Xu,l for 0 Ss<uc=stc=< T.

In component form, condition (ii) states that X'SJ ;= X’s’ w— X;j P = X’WX,ﬁt for every i and j.
We denote the space of cadlag p-rough paths by D?([0, T']; R%). On the space D?([0, T]; R9)
we use the natural seminorm

XM, 5,1 = WX ptsr + 1Kl 2 .15 for (s,1) € Ar,
and distance

I1X; Xllp 5.1 = 1X = Xllp o1 + IX=Xllp oy, for (s,0) € Ar,
whenever X = (X, X), X = (X, X) € D?([0, T]; R").

Suppose that X = (X, X) € D?([0, T]; RY) is a cadlag p-rough path for p € [2,3). A pair
(Y, Y") is called a controlled path with respect to X if

Y € D’([0,T; R"), Y' e DP([0,T]; LRY;R") and RY e Dg(AT; R™),
where RY is defined by
R, =Y, —Y/X,, for (s, 1) € Ar.

The space of controlled paths is denoted by V}’;([O, T1; R™), and Y’ is called Gubinelli dgri\iative
of Y (with respect to X). For two controlled paths (Y, Y’) € VY([0, T];R") and (Y,Y’) €
V}’;([O, T1; R™) we introduce

1Y, Y p, sy = 1Yl 1Y+ 1Y N pgsr + IRV g g
and

dy 3 sV Y5 VY = 1Y = Yl + IR = RVl g gy
for (s, 1) € Ar. The linear space V5([0, T]; R") of controlled paths equipped with the norm
l-, Il p,fo,77 is a compete metric space, cf. [24, Section 3.2].

Given p € [2,3), X = (X, X) € D?([0, T]; R?) and (Y, Y') € V)Iz([O, T1; R"), the rough
path integral

t

Y. dX, = lim Y. Xuo +Y'X, 0, 1) e Ar, 3.1

./s IP((5.1Dl—0 2 v T (s.1) € A7 -1
[u,v]eP([s,t])

exists (in the classical mesh Riemann-Stieltjes sense), and comes with the estimate

Y
< C(IR g oy IX st + 1Y s 1K g 1)

t
/ Yr er - YsXx,t - Ys/xs,t
K

for some constant C depending only on p; see [24, Proposition 2.6]. As already mentioned for
Young integration with respect to cadlag paths, it is crucial to take left-point Riemann sums in
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the definition of the cadlag rough path integral (3.1). Moreover, let us remark that the rough
path integral ¢ — fot Y, dX, is again a cadlag path and its jump at time ¢ € (0, T'] is given by

A(/ Yrer> :YffAXt“r‘Yt,iAXf,
0 t
see [24, Lemma 2.9].

Lemma 3.1. Letr f € C,‘j. Let X = (X, X) € D([0, T]; RY) be a cadlag p-rough path for
some p € [2,3), and suppose that (Y,Y') € Vﬁ([O, T1; R") is a controlled path such that
1Yol + 1Y\l p.ro, 71 + ||RY||%[0’T] < M for some M > 0. Then, (f(Y),Df(Y)Y') is a controlled
path, and

< Cupp (L4 1X15 10X 0,71

’ f () dX,
0

p.10.7]

Proof. By [24, Lemma 3.5], we have (f(Y),Df(Y)Y") € Vi([0, T]; LRY; R")) for f € Cj.
Since

t ) A
(Er) dXr (¥) dX,
/ f(Yr)er' =fY)Xs: + Rsfgf | <Xl + R'sf,otf ,
s
it follows that
/ f(¥)dX, SX ooy + ”Rfoﬂmax,
0 p,10,T] %,[O,T]

S A+ X5 10,7 1K o715
where in the last line we used [24, Lemma 3.6]. [
Lemma 3.2. Let f € Cj. Let X = (X, X), X = (X, X) € D?([0, T]; RY) be two cadlag p-

rough paths for some p € [2,3), and let (Y, Y') € VE([0, T]; R") and (Y, Y') € V;([O, T1; RY)
be controlled paths. Suppose that |||X|||p,[0’T] <M, |||)~(|||p,[0,7] <M,

Yol + 1Y lp oy + IR g jo.ry < M and Yl + 1Y llp o1+ IR I3 0.7y < M,
for some M > 0. Then

‘ / F)dX, — / f(@)dX,
0 0

p.10.7]
< Cunpp (1Yo = ol + 1Y = Tl + 1Y = ¥'llp 10,7

+IRY = R 1g go.r1 + 1% Xllpjom ).

Proof. Since

/ ' f)dX, — / l (V) dX,

s S § F(Y)dX, ) F(¥r) dX,
SN X — Xsol + 1K) = FINX | + ‘Rff,of - Rxff’[ ,
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it follows that

/ (V) dX, — / (T dX,
0 0 p.10,T]

SIX = Xl + 1FX) = FDllooto. 11 X N1 p0.71
Jo F¥dXr _ pfo f(Fr)dX,
HIRY R I2.10.77-

Noting that | f(¥) — f(Dlljor1 S 1Yo— Yol + [f¥) = f(¥)llpj0.7r). and employing
[24, Lemma 3.7], we deduce the desired estimate. [

3.2. Existence result for reflected RDEs

The aim of this section is to establish existence of solutions to reflected differential equations
driven by cadlag p-rough paths for p € [2,3). We consider a cadlag p-rough path X €
DP([0, T]; RY) and a barrier L € D?([0, T]; R"). We seek a controlled path (Y, Y’) together
with a process K satisfying the reflected rough differential equation (reflected RDE)

t
o=yt [ f00K K reloT) 32)
0
where the integral is defined in the sense of (3.1), such that, for everyi =1,...,n,

(@ Y/ > Liforallt €[0,T],
(b) K': [0, T] — R is a non-decreasing function such that K = 0, and

t
/ (i —LdKi =0,  1€[0,T], (3.3)
0

where the integral in (3.3) is understood in the Lebesgue—Stieltjes sense.

We call a triple (Y, Y’, K) a solution to the reflected RDE (3.2) if (¥, Y’) € V¥([0, T]; R")
and K € D'([0, T]; R") satisfy (3.2) together with the conditions (a), (b). We remark that in
general we cannot expect the Gubinelli derivative Y’ to be uniquely determined by the RDE,
but that the natural choice is known to be Y’ = f(Y). We refer to [21, Sections 6.2 and 8.4]
for a more detailed discussion on the Gubinelli derivative and its uniqueness in the context of
continuous rough paths.

Remark 3.3. The natural generalization of the reflected Young differential equation (2.1)
would arguably be the more general equation:

t t
Yr=y+/ fl(Ys>dAs+/ AY)AX, + K, 1[0, T,
0 0

subject to the conditions (a) and (b) above, where A € DY([0, T]; R?) and X € D”([0, T]; RY)
for p € [2,3)and 1 < g < p such that 1/p + 1/g > 1. However, since there is a canonical
way to enhanced A and X to a joint rough path (see [22, Proposition 14 and 34]), this equation
can be readily reformulated into the form of (3.2).

Remark 3.4. The rough integral fot f(Yy)dX; appearing in the reflected RDE (3.2) is under-
stood as the forward rough integral as developed in [24], which corresponds to Itd integration
in a semimartingale setting. Alternatively, one can define the rough integral fot f(Yy)dX; based
on geometric rough integration as introduced in [9], which corresponds to Markus integration
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in a semimartingale setting. While Markus’ geometric formulation would certainly lead to a
natural formulation of reflected RDEs in a cadlag setting, the development of a Markus type
theory for reflected RDEs requires a significantly different framework and methods compared
to the present work; see [9] for the Markus type theory for (non-reflected) RDEs.

The main result of this section is stated in the following theorem.

Theorem 3.5. For p € [2,3) and T > 0 let X = (X,X) € D?([0, T1: RY) be a cadlag
p-rough path, L € DP([0, T]; R") and f € C;. Then, for every y € R" with y > Lg there
exists a solution (Y, Y', K) to the reflected RDE (3.2) on [0, T].

The proof of the existence result provided in Theorem 3.5 is split into two parts. We first
rely on Schauder’s fixed point theorem to obtain a solution on sufficiently small intervals. In
the second part we apply a pasting argument to construct a global solution, where we need
to treat the finitely many “big” jumps of the driving signal by hand, similarly to the proof of
Theorem 2.7.

Proof of Theorem 3.5. Step 1: Local solution. Since the rough path X = (X, X) is cadlag, the
map ¢ > [|IX]l| o, is right-continuous with [| X[, ;0,0 = 0. Hence, there exists a #; € (0, T]
such that [[X]l[, 0 < 1 for every t € (0,n]. Let us fix a g € (p,3). For 1 € (0,1,] we

introduce the solution map M, on the space of controlled paths by
M, VR ([0, 1]; R") — Vi ([0, 1]; R"),
where M;(Y,Y') = (Sl(y +Z,L), f(Y)) with Z, = /u f¥,)dX,, uel0,1].
: 34
First note that the map M, is well-defined. Indeed, for (¥, Y’) € V;I(([O, t]; R") we have
(Z, f(Y)) € VO, t]; R") cf. [24, Remark 2.8]. That is, we have
Zuw = f(Y)Xuo + RY forall (u,v) € 4,

u,v’
where RZ € D% (A,; R"). Since
Sl(y + Z, L)u,v = Zu,u + Kuzv = f(Yu)Xu,v + RMZU + KZ

u,v

where

K% :=8(y+Z,L)e D'([0,1]; R") and f(Y)e D([0, t]; R"),
we see that

RSIO+ZDL .= RZ L K7 e D3 (A, RY),

so that M, (Y, Y') € V}([0, 1]; R™).

We note that any fixed point of the map M,, along with the corresponding process
K obtained from the Skorokhod map S, are together a solution to the reflected RDE (3.2)
over the time interval [0, ¢]. To show the existence of a fixed point, it is sufficient to verify
that the map M, satisfies the assumptions of Schauder’s fixed point theorem (see e.g. [43,
Theorem 2.A and Corollary 2.13]) for sufficiently small ¢ € (0, #;]. Recall that V;I(([O, t]; R")
equipped with the controlled path norm ||, -||4,0,] 1S @ Banach space, cf. [24, Section 3.2].
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For ¢ € (0, t;] we define the ball

Yo=y, Yo = fO), IYllpj0n =1,
||R || P [0, t] 1
By = (Y, Y) e Ve([0,1; R") - ||V’ ”p v < < C1(|||X|||,, o) T Il pv)s s
IR W gy < CoUIX Iy + 1L 1 o)
for all (u,v) € 4,

for some suitable constants C;, C; > 1 depending only on f, p and n, which will be
specified later. Let us remark that the ball B, is a closed set with respect to |-, -|l4.10.1]-
Indeed, convergence in ||, -||4 10,7 implies uniform convergence, and since every sequence in
B, has uniformly bounded p-variation, the uniform convergence ensures that its limit is again
an element of B, by the lower semi-continuity of p-variation norms, see e.g. [10, (P7) in
Section 2.2].

Compactness of the ball B;. Due to the closedness of B; it is sufficient to show that B; is
relatively compact. Further, due to the interpolation estimate for g-variation (see Lemma 2.4)
and the lower semi-continuity of p-variation norms, it is sufficient to show that B, is relatively
compact with respect to the supremum norm. This follows since 5, is uniformly bounded in
the supremum norm and equi-regulated by the definition of B;, see [11, Proposition 1].

Invariance. We shall show that there exists a , € (0, #;] such that, for every ¢ € (0, ;]
we have M,: B, — B,. Let (Y,Y’) € B, be a controlled path with remainder RY and
let (u,v) € A;. Recall that M,(Y,Y") = (S;(y + Z, L), f(Y)) and thus the conditions
Siy+ Z,L)) =y and f(Yy) = f(y) are fulfilled. It remains to ensure the other conditions
required in the definition of B, are also fulfilled for sufficiently small 7. Using the fact that
X0 0. < 1 WY pgoy < L IRY g g0, < 1 and [Y] < %31+ 1Y lp o < 1 flloc + 1. we
have from [24, Lemma 3.6] that

V4
IO twn S UX N tuwn + IRY 12w and RN oy S WX -

Since ||RY||%[M7U] < C(lIXIll,fu,v1 + LN p.[u.01)> We then have that

I p.tuvr = Crp(L+ COUXIN 1,0y + LN p1u01) (3.5)

for a constant C;, > 1 depending only on f and p. Moreover, since K# is non-decreasing,
by Lemma 2.5, we have that | KZ|| 2 [u,v] < ||KZ||[,,[M,U]. Therefore, applying Theorem 2.2 and
Lemma 3.1 gives

z z
IK M2 g S WK M ptwwr S NZHppewr + 1L pauor S WX oy + 1L p w00
Since RS10V+2.L) = RZ 4+ K7 we get

RS2 oy < URPN g oy + KN g sy < CrpUX My gy + 1N p ) (3:6)

for some constant C r,p = 1 depending only on f, p and n.
We now choose C; = Cy,,(14+Cy,,) and C, = Cy,,. With these choices, the estimates (3.5)
and (3.6) become
I ptevr < CrlIXN p, g + 1L e, v1)s
IRSTOF2EN p 1y < CoUIX g + 1L,
which hold for all (1, v) € 4,,.
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We then choose 1, € (0, #;] sufficiently small such that
WX 10,101 + 111 p.10.51 < min{CT', €5, 3.7

so that in particular we have || f(Y)l[.j0.,) < | and ||R51()’+Z’L)||g,[m2J < 1. Thus, for every
t € (0, r,] we have shown that M (Y, Y’) € B, for all (Y, Y’) € B,, that is, that M,: B, — B,.

Continuity. We shall show that the map M, : B, — B, is (1 — 2/q)-Holder continuous with
respect to the controlled path norm |-, -|l4.0., for every ¢ € (0, #,]. For (¥,Y’), (Y,Y) € B,
we write

Z, = / f(v,)dX, and Z, = f f(¥Y,)dX, for u e l0,1).
0 0

We need to estimate
dx x,4.00M: (Y, Y); MY, Y1) = dy x. g 10.0(S1(y + Z, L), f(Y); Si(y + Z, L), f(Y))
=1/ @) = fFD)lg.00
+ [RSIOTAD — RSIOTED g
Since RSIO+Z.L) — RZ 4 KZ and RSI0+Z.L) — RZ 1 K7 we have
|RSI0+Z.L) _ RSI(”Z*L)H%,[OJ] < |R% - RZ”%,[O,:] + K% - KZ”%,[O,[]'

The interpolation estimate in Lemma 2.4 gives

- - 2 5 1-2
VA VA VA Z\4 V4 V4 q
1KZ = KZllg 10 < 1KZ = K21 K7 = K1),

and Theorem 2.2 implies that
IK* = K Mlg10.1 S 1Z = Zllg10.-

We recall from the inequalities (3.5), (3.6) and (3.7), that || f(Y)ll4. 0.7 < 1FX)lp.0,01
||RZ||1,[0,,] =< ||RZ||g,[(),,] < 1 and, by Lemma 2.5, that ||KZ||1,[0,t] S, ||KZ||g,[o,z]
Combining the above estimates, we thus deduce that

dx x.q.0.0(M (Y, Y'); M,(Y, Y"))

—_ —

IA A

2 2

~ 172 ~ 1—= ~ 1—=
SIFX) = FDlly o+ IR” = RNy 6+ 1Z = Zlly 1

Using [24, Lemma 3.7] and Lemma 3.2 we can bound the terms on the right-hand side, thus
obtaining

~ o~ ~ o~ _2
dx.x.q.00M (Y, Y'Y, MY, Y)) S dxxgon, Y ¥, ¥) 4.

Step 2: Global solution. From Step 1, we know that there exists a solution (Y, Y’, K) to the
reflected RDE (3.2) on every interval [s, t) such that ||X|||, s,y and [|L|l, s, are sufficiently
small that they satisfy the bound in (3.7). Note that the condition (3.7) is independent of
the initial condition y. By the right-continuity of X and L, the maps ¢ +— ||X]||, ., and
t + |[L|lp.1s.n are right-continuous with [|X|[l, s = [ILllp.s.57 = O, for every s € [0, T].
Hence, for every 6 > 0 there exists a partition P = {0 = 1) < t; < --- < ty = T} of the
interval [0, T'] such that

0.1/ PRTAPIN el (V21 PR I
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foralli =0,..., N — 1. By choosing § = min{Cl_l, Cz_l}, we ensure that the condition (3.7)
holds for every [s,#] € P. Hence, we can iteratively obtain a solution (Y, f(Y), K) to the
reflected RDE (3.2) on each interval [#;, t;1) with initial condition

Yt,‘ = Yt,‘— + f(Yf,'—)AXI,' +Df(Yti—)f(Yfi—)AXl‘i + AKliv
with

AK[[ = [Lli - Yf - f(Yli—)AXl,' - Df(Yr,-—)f(Yt,-—)AXr,-]+, (38)

where [-]T denotes the positive part. The minimality of the reflector term K and the
perservation of the local jump structure under rough integration (see [24, Lemma 2.9]) ensure
that (3.8) is the only valid choice for the jump AKj,.

Pasting the solutions on different intervals together, we obtain a solution (Y, Y’, K) =
(Y, f(Y), K) to the reflected RDE (3.2) on [0, T]. O

For Young and rough differential equations without reflection one can rely on Banach’s
fixed point theorem in order to show the existence of a unique solution. This strategy was
still possible to implement in the case of reflected Young differential equations as we saw in
Section 2. However, the situation for reflected rough differential equations is more intricate,
and one is unable to rely on Banach’s fixed point theorem.

Remark 3.6. Recall that the solution map M, associated to a (non-reflected) RDE is known
to be locally Lipschitz continuous for sufficiently small 7, that is

M, VR0, 11; R") — VE(0, 11, R"),  via M, (Y,Y') = (y+ f 'f<Yr>er,f<Y>),
0

is locally Lipschitz continuous, see the proof of [24, Theorem 3.8]. Since the Skorokhod map S
is also Lipschitz continuous, one might expect the solution map M, associated to reflected
RDEs, as defined in (3.4), to be locally Lipschitz continuous as well. However, this seems not
to be the case, essentially because the controlled path space Vy([0, ]; R") is equipped with a
stronger norm than p-variation. Indeed, one needs to consider

VE([0, T]; R") € DP([0, T];: R") ® D% (Ar; RY).

This makes a significant difference when extending the Skorokhod map from the p-variation
space to the space of controlled paths. While the map

S: VR0, TT; R") — VI([0, TI; R") via (Y,Y)+> (Y +K,Y)

is Lipschitz continuous with respect to the distance |- || ,.j0,71+ | - | p,jo, 77 (taking (Y +K, Y’) as
input), the extension S is only locally Holder continuous with respect to distance dy x. p.10.T]>
as shown by the interpolation argument used in the proof of Theorem 3.5. To improve the
Holder continuity of S to (local) Lipschitz continuity with respect to the distance dyy. 10,71 1,
unfortunately, impossible; see [12, Section 3.1] for a discussion on this in the case of continuous
driving signals.

4. Reflected RDEs — Uniqueness in one-dimension

For multidimensional reflected differential equations driven by p-rough paths with p > 2, it
is known that uniqueness of solutions does not hold in general. Indeed, Gassiat [25] provides
a linear rough differential equation in » = 2 dimensions reflected at 0 which possesses
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infinitely many solutions. However, for one-dimensional reflected RDEs (i.e. the solution Y
of the RDE is real-valued) uniqueness does hold for reflected differential equations driven by
continuous rough paths, as proven by Deya et al. [12], see also [36]. The next theorem provides
a uniqueness result for reflected one-dimensional RDEs driven by cadlag p-rough paths, i.e. for
the case when n = 1.

Theorem 4.1. For p € [2,3) let X = (X, X) € D?([0, T1; R?) be a cadlag p-rough path,
L e DP([0,T];R) and f € Cg with n = 1. Then, for every y € R with y > L, there exists
at most one solution (Y,Y', K) with Y' = f(Y) to the one-dimensional reflected RDE (3.2).

Proof. Let (Y,Y’,K) = (Y, f(Y),K)and (Y,Y', K) = (Y, f(Y), K) be two solutions of the
reflected RDE (3.2) given X, L and y. Note that if ¥ and Y are identical then K and K are
also identical, as the corresponding Skorokhod problem has a unique solution. We assume for
a contradiction that

Yo # Y,

for some a € (0, T]. _
Step 1. Let u be the last time before a that the two solutions Y and Y were equal, i.e.

u:=sup{s €[0,a): ¥, = 175}. 4.1
We claim that
Y,=Y,. 4.2)

To see this we first note that, by the definition of u, there exists a sequence of times (7 )i>1
such that Y,, =Y, for all k, and rx /" u as k — oo. If ry = u for any k then we are done, so
we may instead assume that r;, < u for all k. We observe that

AYu = f(Yu—)AXu + Df(YLt—)f(Yu—)AXu + AKu (43)
and similarly for Al?u. Since Y, = I?,k for all k, and r, / u as k — o0, we have that
Y, =Y,_. Since AK, is uniquely determined by Y,_, AX,, AX, and L, by the relation

AKM =[L,— Y, — f(Yu—)AXu - Df(Yu—)f(Yu—)AXu]Jra

we see that AK, = AK,, and it then follows from (4.3) that (4.2) does indeed hold.

Purely for notational simplicity, we shall henceforth assume without loss of generality that
u = 0, i.e. that the two solutions separate immediately after time 0. Indeed, it then follows
from (4.1) that

Y, #Y, forall se(0,al. (4.4)

Step 2. We split the remainder of the proof into two cases. Namely, either there exists a
time [ € (0, a] such that the function

s KX—I?S

is monotone on the interval [0, /], or there does not.
Let us first assume that there does not exist such a time /. It then follows that there exists a
strictly decreasing sequence of times (¢;);>1 with ¢; € (0,a] and #; \( 0 as j — 00, such that

Kt2ka’2k—] - KlZlo >0 and K’2k+1’t2k - K12k+lat2k <0,
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for every k > 1. Since K and K are both non-decreasing, this implies in particular that
Ky > 0and Ky, 1, > 0 for every k > 1.

Since, by definition, the reflector K only increases when Y hits the barrier L, it follows that
there exists another strictly decreasing sequence of times (r;);>1 with r; € (¢j41, t;] for every
Jj > 1, such that

Y, =L, and Y, =L, forall k> 1.
AsY, =L, < ~,2k_1 and Y,, |, # ?rzk_] (by (4.4)), and similarly at time ry;, we see
that

Yo | < 17,2,(71 and Y, > f’er for all &k > 1.

If the solutions Y and Y were continuous, then it would follow immediately from the
intermediate value theorem that there must exist a positive time (and actually infinitely many
such times) s € (0, a] such that Yy = Y, contradicting (4.4). Since our paths are only assumed
to be cadlag, we must argue differently, as, at least in principle, the solutions may “jump over
each other” infinitely many times.

Step 3. For each k > 1, we let

Sk = il’lf{l‘ > Ik . Y; < Yt},

which defines another strictly decreasing sequence of times (sy)>1 such that s, 0 as k — 0.
By right-continuity, we have that Yy, < ¥, which, by (4.4), implies that

Y, <Y, forall k> 1.
It is clear that Y, > ¥,,_, but if ¥y, = Y,,— then a very similar argument to the one in Step
1 above would imply that Y, = Y;,, which would contradict (4.4). Thus, we must have that
Yy > Y, forall k>1. (4.5)

Since 17”, > Y, > Ly, the minimality of the reflector K implies that AIZS,( = 0. We thus
have that

0>Y, — ¥y =Yy — Yo+ (f(Yyo) — F(¥;,0))AX,,
+ (Df Yy ) f (V) = DF Yy ) f (Y5 )) AKX, + AK .
Rearranging and using the fact that K is non-decreasing, we obtain
0<¥Y,_— ﬁ.k_

< —(f(¥yo) — f(Xy D)) AXy — (Df(Yyo) f(¥yo) — Df (Vs ) f (Y, 0)) AX, .

As f € C}, we deduce the existence of a constant C > 0, depending only on || f ||CZ, such that
Yo = Tyl = Yy = Ty 114X, |+ 14%,,1).

Since Y, _ — ka_ # 0 by (4.5), we deduce that
|AX, | + AKX, | > C™' forevery k> 1,
from which we conclude that

P
p 2 £ _
1X115 10,01 ||X||%[O,a] > 2 =00,

oo
> Y |AX P+ |AK, |
k=1

contradicting the assumption that X = (X, X) is a p-rough path.
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Step 4. Recall that in Step 2 we split the proof into two cases. We now proceed to the second
case. Namely, we suppose that there exists a time [ € (0, a] such that the function s > K;—Kj
is monotone on the interval [0, []. In particular, it follows from Lemma 2.5 that

1K — 1%||%[0,,] =K — K|, forall re(0,1] (4.6)
Using (4.6), Theorem 2.2, and an elementary estimate for controlled rough paths, we have that

1K = Kllz 0.1 = 1K = Kllp0.0

S H f () dX, — / f(FdX,
0 0

p,10,7]
<If(Y)— f(?)”p,[o,t]||X||p,[0.t] + H Rl fO)dXr _ pfo f(¥r)dX,

2jon’
Let 6 > 1. As is clear from the structure of controlled rough paths, we have
o Y )%
1Y = Y'llp0.n+8IR" —R I3 10,1

< 1FO) = FDllp o +8 | ROTIDXr — Rlo 107 3%

+48IK — Ig”g,[o,z]

210,11

SIFO) = FDllppo.0+8 | ROSTIXr — Rl 10X

510,11

+81Y = Yl p 0.1 X p.go.e)-
Applying [24, Lemma 3.7], we obtain
1Y = 7'llp 00+ IR = R llg 0.
= C(IR" = RV Nz jo0 + A+ (1Y = P'llp 10,0+ IR = R¥llg p0,0 ) Il 0.1 )

for some constant C > 0, independent of both § > 1 and r € (0,/]. Let us now choose
6 =14 C. Then, we get

1Y =Y'llp 0.0 +IRY =RY Il 10, < C<2+C>(||Y’—?’||p,[o,t]+||RY—RY||g,[o,,])|||xn|p,[o,,].

Since the rough path X = (X,X) is cadlag, the function 7 + [IX[l, 0, is itself right-
continuous (see [24, Lemma 7.1]), so we may choose ¢ € (0,!] sufﬁciently small such
that C2 + OIXIl 0. = % It then follows from the above that ||Y' — Y'||, 0. = O

and |R" — R"[|p o,y = O, and hence that [|Y — Yy = 0. Thus, ¥ = Y on [0,1],
contradicting (4.4). O

Remark 4.2. In the proof of Theorem 4.1, the assumption that the solution to the reflected
RDE (3.2) is one-dimensional is only crucial in Steps 2 and 3. In particular, the estimates in
Step 4 may be reproduced without any additional difficulty in the multidimensional case. Thus,
even in the multidimensional case, if non-uniqueness does occur, at time u say, then there does
not exist an / > 0 such that the function s > K, — IE'X is monotone on the interval [u, u + [].
It then follows, as we argued in Step 2, that uniqueness can only be lost directly after hitting
the barrier, and that all solutions must hit the barrier infinitely many times immediately after
uniqueness is lost. Indeed, this is precisely what happens in the counterexample of Gassiat,
cf. the proof of [25, Theorem 2.1].
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While one cannot expect to obtain uniqueness for general multidimensional reflected RDEs,
equations with specific vector fields can still be treated with the arguments developed in the
proof of Theorem 4.1. To this end, we introduce following class of vector fields.

Definition 4.3. We say that a map f belongs to the class L3, if f € C}(R"; L(R?; R")) and
is such that each of its n components is given by a function f;, i.e.

LFO®)] = fi(y; x) foreach i=1,...,n,

where, for eachi =1, ..., n, the map f;: R" x RY - R only depends on its first i arguments,
that is,

[0t ey Vs X) = fiO1s ooy Yis Yidds - -+ Yps x)  for all y,ieR”,xeRd.

The structure of the vector fields in ]Lz allows one to recover uniqueness by successively
applying the arguments of the proof of Theorem 4.1 to each of the n components of the equation
in turn. We thus immediately obtain the following corollary.

Corollary 44. For p € [2,3), let X = (X,X) € DP([0, T]; R?) be a cadlag p-rough path,
L € DP([0, T); R") and y € R" such that y > Lo. If f € L3, then there exists at most one
solution (Y,Y', K) with Y' = f(Y) to the reflected RDE (3.2).

Remark 4.5. If the driving signal X and barrier L are continuous, then one can also prove
uniqueness for the one-dimensional reflected RDE (3.2) via the rough Gronwall lemma of [13],
see [12] and [36]. This strategy crucially relies on the uniqueness argument of the sewing
lemma (cf. [12, Lemma 1]), which is in turn related to the existence of a suitably regular
(i.e. continuous) control function. However, in the presence of jumps it is not so straightforward
to find such a regular control function. This approach thus does not seem feasible for the general
cadlag setting considered here.

More precisely, assuming L = 0, in [12] the authors applied a rough It6 formula (see
e.g. [21, Section 7.5]) to A(Y,!, Y?) — h(Y], Y?), where Y! and Y? are solutions to (3.2) and
h is a C*-function which approximates the function (y', y?) — |y! — y2|. If X is continuous,
then one can split this term into = ; + Rf, ,» where = ; is a germ for the increment of the rough
integrals A(Y,', Y?)—h(Y,!, Y?) and the remainder term R!, satisfies R", < w(s, 1)*/? for some
regular control function w. Then, since 3/p > 1, by the uniqueness argument in the sewing
lemma, Rf,’q, possesses the same bound (up to a universal constant) as the one for §R", =
855 = S5 — S50 — Zuy- Since 85y, is computable, one obtains a bound for the remainder
R!', and therefore a bound for the increment A(Y,', Y?) — h(Y], Y}) ~ |Y! = Y?| — Y] — Y7,
which then allows one to use the rough Gronwall lemma.

In order to apply this approach for the general case (i.e. when X only has cadlag
paths), one needs to invoke the generalized sewing lemma, see e.g. [24, Theorem 2.5]; in
particular, one needs to find two (potentially non-regular) controls w;, w; such that |Rff,,| <
f (s, t—)wzﬂ(s+, t) with « + B > 1. Let us consider the same decomposition h(Ytl, Yt2) —
h(Y!, Y} = EZ;,+R!, as in the continuous case. A careful inspection of the rough Itd formula
reveals that Rf,‘,, contains a term B,(Xj,, X;,) for some bilinear form B; depending only on
D?h, Y}, Y? and f. Clearly, it is a priori only bounded by IX 1 p.5.11X1l g .y instead of the
desired bound || X ||, s, IX]| 2 (1> SO that we have to move this term from Rf’, to the germ
=+ This problem is not present in the continuous case as both terms are equal, since X has
no jumps. As a consequence, the “cadlag germ”, denoted by é&,, is much more intricate than
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the “continuous germ Z.+ (keeping in mind that one has to include the jump part arising from
the Itd formula into =), and therefore the computation of (Lm, would become very involved.

This observation shows that the proof methodology based on a rough Gronwall lemma is
very difficult to extend to the general case. The situation becomes even more complex when
dealing with general time-dependent barriers L as successively done in [36]. On the other hand,
the approach introduced in the proof of Theorem 4.1 provides an alternative, relatively simple
way to obtain uniqueness of solutions to reflected RDEs, even when jumps are allowed in both
the driving rough path X and in the barrier L.
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