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VII

Summary

How fast is this car approaching? What is the probability that it will rain today?

How severe are the symptoms of this patient? Such quantitative judgments require

inferring a continuous criterion from a number of cues or features of the judgment

object (e.g., the color of the clouds). Judgments such as these are a central cognitive

process which guides our decisions and behavior in our everyday life. For over half

a century, researchers are investigating how people make such judgments, which

information they rely on, how they combine different types of information, and how

the environment or the task affect the processes underlying these judgments by

using computational models of the theorized cognitive process.

It is the goal of my thesis to improve and extend these models of quantitative

judgments. In three articles, I implement and test improved state-of-the art versions

of existing models, highlight and solve issues in the way these models are currently

used, and extend the scope and possibilities of these models of quantitative judg-

ments. In the first manuscript, I develop, test, and apply a hierarchical Bayesian

version of the RulEx-J model, which is used to measure the relative contribution of

rule- and exemplar-based processes in people’s judgments. The manuscript shows

that the Bayesian RulEx-J model allows to estimate parameters more accurately

and how it can be used to test hypotheses about latent parameters. The second

manuscript shows that the current practice of not differentiating between direct re-

trieval of a trained exemplar and genuine judgments in the responses of participants

leads to a biased estimation of parameters and reduced fit of exemplar-models. The

manuscript also presents a solution to this problem by introducing a latent-mixture

extended exemplar model which integrates a direct-recall process of trained exem-

plars. In the third manuscript, I demonstrate how to model people’s judgments of

even complex and realistic stimuli by extracting the necessary cues from pairwise

similarity ratings.

In sum, the results of the three manuscripts described here contribute to the

model-based study of the cognitive processes underlying people’s judgments. By im-

plementing state-of-the-art methods, improving upon current practices, and broad-

ening the scope of the existing research, the results reported in this thesis add to

the development, testing, and application of theories of quantitative judgments.





IX

Manuscripts

This thesis is the result of research conducted in the context of the research

training group “Statistical Modeling in Psychology” (SMiP) at the University of

Mannheim. It is based on three articles, one of which has been published, one which

is currently in press, and one which has been submitted for publication.

The three manuscripts aim at improving and extending models of quantitative

judgments. First, I develop and test a hierarchical Bayesian implementation of the

RulEx-J model to better measure the relative contribution of rule- and exemplar-

based processes (Manuscript I). Second, I demonstrate how the analysis of a typical

multiple-cue judgment experiment leads to biased parameter estimates of exemplar

models (Manuscript II). Third, I show how models of quantitative judgments can be

used to model judgments of non-artificial complex stimuli where the cues represent-

ing these stimuli and needed for the judgment models are not known beforehand

(Manuscript III).

In the main text of this thesis, I provide a summary of the three manuscripts.

Detailed description of the methods and statistical analyses can be found in the

original manuscripts appended to this thesis.

MANUSCRIPT I

Izydorczyk, D., & Bröder, A. (in press). Measuring the mixture of rule-based and

exemplar-based processes in judgment: A hierarchical Bayesian approach. De-

cision.

MANUSCRIPT II

Izydorczyk, D., & Bröder, A. (2021). Exemplar-based judgment or direct recall:

On a problematic procedure for estimating parameters in exemplar models of

quantitative judgment. Psychonomic Bulletin & Review, 28, 1495–1513.

MANUSCRIPT III

Izydorczyk, D., & Bröder, A. (2022). What is the airspeed velocity of an unladen

swallow? Modeling numerical judgments of realistic stimuli. [Manuscript sub-

mitted for publication]. Department of Psychology, University of Mannheim.
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1 Introduction

In recent years, much of the discourse about problems of psychology as a science

revolved about the “replication crisis”, the low replicability rate of many well es-

tablished findings (Klein et al., 2018; Open Science Collaboration, 2015; Pashler &

Wagenmakers, 2012; Wiggins & Christopherson, 2019). Many suggestions to solve

the crisis focused on changes in research practices, data collection, data analysis, and

publication procedures (e.g., Asendorpf et al., 2013; Benjamin et al., 2018; Dienes,

2016; Nosek et al., 2012). In addition, building on arguments already made decades

ago, many authors have argued that the lack of well-specified and strong theories in

psychology has also contributed to the replication crisis, or might even be the cause

of it (Fried, 2020; Lykken, 1991; Meehl, 1978, 1990a, 1990b; Muthukrishna & Hen-

rich, 2019; Oberauer & Lewandowsky, 2019). To improve upon this “theory crisis”,

researchers have called for the use of computational models as a solution to build

stronger theories to advance psychology as a science (Borsboom et al., 2021; Far-

rell & Lewandowsky, 2010; Guest & Martin, 2021; Haslbeck et al., 2021; Oberauer

& Lewandowsky, 2019; Smaldino, 2017, 2020; Wills & Pothos, 2012). Computa-

tional models are formalized instances of scientific theories (Guest & Martin, 2021;

Lamberts, 2005). Compared to vague verbal theories, a theory formalized through

mathematical equations or in a computational programming language makes the un-

derlying ideas and assumptions more explicit, allows to derive precise and testable

predictions, and to compare models of different theoretical accounts of the same

phenomenon (Batchelder et al., 2017; Farrell & Lewandowsky, 2018).

One research area where computational models are already common is the area

of quantitative or numerical judgments1. Examples of quantitative judgments are

judging the size of a tree, the grade of a bachelor thesis, or the severity of a pa-

tient’s disease. Quantitative judgments such as these, of different importance and in

different contexts, are fundamental to our everyday life. Questions about the struc-

ture of the information people use to make their judgments, how they integrate

information, and how the task, the environment or individual difference affect the

judgment process have generated a wealth of research (see Bröder & Hilbig, 2017;

1Since the quantitative judgments of participants in the experiments reported in this thesis are
expressed on a numerical scale, I use both terms (“quantitative” and “numerical”) interchange-
ably in this context.
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Goldstein & Hogarth, 1997, for an overview). In order to answer these questions,

different computational models of the theorized cognitive processes have been de-

veloped (Albrecht et al., 2020; B. Brehmer, 1994; Bröder et al., 2017; Juslin et al.,

2003; von Helversen & Rieskamp, 2008).

However, although the focus in the discussion of computational models in light

of the replication crisis is often about translating theories into a testable model,

psychological science can only progress by considering all aspects of the research

process: the models themselves, as formalized instances of scientific theories; the

experimental paradigms and measurements used to produce data; the statistical

techniques used to relate the models to the data, to compare competing models,

as well as to test hypotheses on parameters of these models; and the substantive

questions that we want to answer with our theories (Nilsson et al., 2011; Smaldino,

2019; Wilson & Collins, 2019).

Therefore, the goal of this dissertation is to improve and extend existing models

of quantitative judgments and the way they are used on multiple dimensions. Specif-

ically, I develop and thoroughly test a hierarchical Bayesian version of the RulEx-J

model, which allows more accurate estimates of latent parameters than the original

formulation (Manuscript I); I highlight and solve a severe problem that results from

the combination of exemplar models and the experimental paradigm in multiple-cue

judgments (Manuscript II); and I show how cognitive models of quantitative judg-

ments can be used to study judgments of complex naturalistic stimuli, expanding

the possibilities of the existing models (Manuscript III). With this, my thesis con-

tributes at improving the way cognitive models are used in research on quantitative

judgments and thereby paving the way for future theoretical developments and new

possibilities of applications for models of quantitative judgments.

In Chapter 2, I first give a brief overview of the history of research on quantitative

judgments. Next, I present the general experimental paradigm used in the research

on quantitative judgments, which is also used in all three manuscripts. Further,

I give a brief introduction into the different cognitive process people are assumed

to use to make their judgments and show how they are modeled. Finally, I review

which factors influence which processes people rely on, how both processes interact

with each other, and how the relative contribution of each process can be measured

through the RulEx-J model.

In Chapter 3, I present different ways to improve and extend models of quantita-

tive judgments in three manuscripts. In Manuscript I, I develop and thoroughly test
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a hierarchical Bayesian implementation of the RulEx-J model, which allows estimat-

ing parameters more accurately and enables to better test hypothesis of differences

in parameters between groups. In Manuscript II, I show that the combination of

experimental paradigm and exemplar model as used in the multiple-cue judgment

literature leads to biased estimation as well as impaired validity of parameters.

Finally, in Manuscript III, I extend the possibilities of the existing models of quan-

titative judgments by showing how they can be used to investigate the underlying

processes of judgments of natural stimuli where the cues are not known beforehand.

In Chapter 4, I conclude this thesis by discussing the implications of all three

manuscripts for the field of quantitative judgments and by addressing open questions

and highlighting avenues for future research.

With this thesis, I uncover and solve several weaknesses in the way cognitive

models are currently used in the field of quantitative judgments. I therefore not

only advance the current state of the literature on quantitative judgments, but

also contribute to establishing and testing theories about the processes underlying

people’s judgments. In addition, my thesis expands the possibilities of the field

by opening up new research areas, where the existing theories and models can be

applied.
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2 Theoretical Foundations

The beginning of research on quantitative multiple-cue judgments can be traced

back to one of the most influential theoretical contributions to the field of Judgment

and Decision-Making (JDM) in general: Egon Brunswik’s lens model (Brunswik,

1952; Goldstein & Hogarth, 1997). Brunswik (1952, 1955) proposed that objects in

the environment and their properties, such as the size of an object, the intelligence

of a person, or the calorie content of a dessert, cannot be perceived directly by

our sensory organs. Rather, these distal variables have to be inferred on the basis

of proximal cues, which a person can perceive directly (e.g., the size of the retinal

image of an object, the vocabulary a person uses, the sweetness of the dessert).

However, the cues in the environment are only probabilistically related to the distal

variable, since each cue contains only incomplete information about it. Therefore,

people can integrate multiple cues in order to construct a judgment of the distal

variable (for an overview see Goldstein, 2004; Hammond and Stewart, 2001).

Hammond (1955) suggested that Brunswik’s principles of perception could be

used to study clinical judgments: A clinician cannot perceive the underlying condi-

tion of a patient directly, but has to rely on multiple and, in isolation, ambiguous

cues to come to a diagnosis. By using linear regression models, Hammond (1955) in-

vestigated how accurately clinical psychologists are able to judge patient’s IQ scores

based on their Rorschach tests and what specific information the clinicians relied on

to make these judgments. Hammond’s usage of the Brunswikian approach to study

more complex judgments generated a wealth of research and new methodological

developments, which were later synthesized in the Social Judgment Theory (SJT,

B. Brehmer & Joyce, 1988; Doherty & Kurz, 1996; Hammond et al., 1975).

The SJT assumes that people’s judgments of a criterion (i.e., the quantity be-

ing estimated) are based on the integration of multiple sources of information (i.e.,

the cues) and that linear regression models and related approaches can be used

to analyze the judgments of participants (Cooksey, 1996; Doherty & Kurz, 1996;

Hammond et al., 1975). In the following years, SJT has been applied in a variety

of different domains, such as teachers’ grading policies (A. Brehmer, 1988), person-

ality judgments (Hirschmüller et al., 2013), metamemory (Bröder & Undorf, 2019),

employment interviews (Gorman et al., 1978), risk judgments (Earle & Cvetkovich,
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1988), and meteorological forecasting (Stewart, 1989), to investigate how accurate

people’s judgments are, which cues they use to make their judgments, and how

people combine information from different cues (for on overview, see Brehmer &

Brehmer 1988, Doherty & Kurz, 1996, Karelaia & Hogarth, 2008).

Over the decades, the focus of judgment research shifted from investigating

how accurate people’s judgments are and what cues they use, to understanding

the psychological processes behind these judgments, how the task or individual

differences influence the judgment process, and how different judgment processes

interact. In line with research on category learning, two qualitatively distinct types

of processes have been proposed, which rely on different knowledge representations:

Rule-based processes and exemplar-based processes (Allen & Brooks, 1991; Erick-

son & Kruschke, 1998; Hahn & Chater, 1998; Juslin et al., 2003; Karlsson et al.,

2008; Sloman, 1996). This shift in research focus was also paralleled by changes in

the experimental paradigm used to investigate these new research questions. These

changes in the experimental paradigm, however, come along with certain problems,

as I will show in Manuscript II and III of this thesis. In the next sections, I first briefly

introduce the general research paradigm used in the current multiple-cue judgment

literature and thus the experiments reported in this thesis. Next, I introduce rule-

and exemplar-based processes and give an overview of research investigating how

the environment and task structure influence which process is used by participants

and how these processes interact. Finally, I introduce the RulEx-J model which is

one of the most recent models of quantitative judgments and part of Manuscript I

and III of this thesis.

2.1 The Multiple-Cue Judgment Experiment

Brunswik’s work and the research around the SJT are also the foundation for the

experimental study of quantitative multiple-cue judgments, where participants rely

on multiple cues to make their judgments on a continuous scale. While this tradi-

tional research on multiple-cue judgments has typically involved probabilism (i.e.,

cues are only probabilistically related to the criterion) and a large set of unique and

complex stimuli with many cues (e.g., Einhorn et al., 1979; Hoffman, 1960), the

current research in the last two decades after the work of Juslin et al. (2003) orients

itself towards the experiments conducted in categorization research by using few

simple artificial stimuli with a low number of deterministic cues (e.g., Estes, 1994;
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Hoffmann et al., 2014; Juslin et al., 2003; Medin & Schaffer, 1978). Table 1 shows

exemplary stimuli which are similar in their complexity and structure to the stimuli

used in many multiple-cue judgment experiments (e.g., Bröder et al., 2010; Hoff-

mann et al., 2018; Trippas & Pachur, 2019). In a multiple-cue judgment task, people

are asked to judge the criterion value of several stimuli, which can differ on multiple

cues. For instance, the fictitious flowers in Table 1 can differ on three binary features,

petal color (red/blue), leave form (thin/thick), and petal form (round/star-shaped).

The criterion (e.g., the price of the flower) and the cues are deterministically related

through the linear additive rule c = 1 + 2× cue1 + 3× cue2 + 4× cue3.

Table 1

Example stimuli of an multiple-cue judgment experiment

Stim. Cue 1 Cue 2 Cue 3 Crit. Training
leave form petal form petal color price in e

0 0 0 1

1 0 0 3 ✓

0 1 0 4 ✓

1 1 0 6

0 0 1 5 ✓

1 0 1 7

0 1 1 8 ✓

1 1 1 10

Note. The criterion and the cues are related through the function c = 1+2× cue1+

3× cue2 + 4× cue3.

The typical experiment consists of two phases, a training phase and a testing

phase. In the training phase of the experiment, participants are presented with

a number of training stimuli (the exemplars). For example, in Table 1 four of the

eight possible stimuli are selected as exemplars. In order to learn the exemplars, their

criterion values, and the relationship between cues and criterion values, participants

repeatedly have to judge the criterion value of these exemplars (i.e., the price in
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this example) over the course of multiple blocks and they receive feedback about

the correct criterion values. In the testing phase, participants then have to judge

old stimuli (the exemplars) and new stimuli.

2.2 Rule-Based Processes

In line with the SJT, rule-based process models assume that people combine and

integrate cue information according to some abstracted rule to make a judgment

(Juslin et al., 2003). The rule, according to which the information of multiple cues

is integrated, is often assumed to be a linear additive function (Einhorn et al., 1979;

Hoffmann et al., 2019; Juslin et al., 2008; Juslin et al., 2003). For instance, if people

are asked to judge the calorie content of a dessert they might combine the cues

“sweetness”, “amount of cream”, and “fruits” in a linear addition fashion. The two

main reasons for this often assumed linear additive rule are the limited processing

capacity of the cognitive system and the (experimental) environment itself.

According to Juslin et al. (2008), capacity limitations of our cognitive system

constrain the judgment process to a serial and additive integration of cues. This

view is supported by research showing that people are quite good at learning linear

additive rules and that they show a preference for using these types of rules (e.g.,

Ashby et al., 2001; B. Brehmer, 1974, 1994; Fischbein et al., 1985; Hoffmann et al.,

2014; Hoffmann et al., 2018; Kalish et al., 2004; Mcdaniel & Busemeyer, 2005).

Further, people’s explicit judgment rules or cue weights are often compatible with

linear regression models (Einhorn et al., 1979; Lagnado et al., 2006). In addition,

although people are in principle able to learn non-linear, multiplicative or more

complex rules, they have more difficulties doing so (Bott & Heit, 2004; B. Brehmer,

1969; Hammond & Summers, 1965; Mellers, 1980). Finally, the actual relationship

between cues and criterion values is often linear in the everyday environment (B.

Brehmer, 1994) and even more so in experimental settings (e.g., Bröder & Gräf,

2018; Juslin et al., 2003; von Helversen, Herzog, et al., 2014; Wirebring et al., 2018).

Juslin et al. (2003) formalized the assumption of an additive linear integration

of multiple cues as follows:

Jp = w0 +
n

∑

i=1

cuei × wi, (1)



2 Theoretical Foundations 9

where Jp is the judged criterion of an object p (the probe) based on the intercept

w0 and the cue weights wi corresponding to the n cues. This rule-based model,

sometimes referred to as cue abstraction model, is quite flexible and does not nec-

essarily imply a compensatory processing of all cues, but can also mimic simpler

strategies or heuristics (like the lexicographic rule) focusing on one or only few cues

by choosing appropriate (zero) cue weights (Bröder, 2000; Gigerenzer & Goldstein,

1996; Gigerenzer et al., 1999). The predictions of the rule-based model in Equa-

tion (1) for the exemplary experiment in Table 1 are shown in Figure 1. Since the

training stimuli in Table 1 allow a perfect abstraction of the linear rule (i.e., perfect

recovery of the cue weights), the predictions of the rule-based model are identical

to the actual criterion values.

Figure 1

Predictions of the rule- and exemplar-based models based on the training stimuli in
Table 1

Rule Model Exemplar Model

0 2 4 6 8 10 0 2 4 6 8 10

2

4

6

8

10

Criterion

P
re

d
ic

te
d

 J
u

d
g

m
en

t

Training no yes

Note. Predictions for the exemplar model are made with an assumed s = .10.

In general, it is often assumed that rule-based processes (especially learning and

execution) pose high working memory demands (e.g., Ashby & O’Brien, 2005; B.

Brehmer, 1994; Hoffmann et al., 2019; Juslin et al., 2008). One reason for that is

that it has been suggested that people learn bivariate cue-criterion relationships

(i.e. the cue weights wi) by comparing sequentially presented objects and relating

the difference in the criterion values of the objects to the difference in cue values,

resulting in a trial-by-trial updating of cue weights during learning (B. Brehmer,
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1974; Hoffmann et al., 2019; Juslin et al., 2008). Therefore, the previous judgment

object(s) and their criterion values have to be maintained in working memory to then

make a cue-wise comparison with the next judgment object. In addition, when the

judgment is made, the cues have to be mentally integrated according to the learned

rule. Recent empirical evidence supports the assumption that working memory is

crucial in rule-based processes. For instance, Hoffmann et al. (2019) found that a

formal learning model incorporating working memory constraints best predicted

participants judgments in a task where the environment (i.e., the rule relating the

cues to the criterion) changed after 200 trials and thus participants had to relearn

the cue weights. In addition, several studies have shown that induced cognitive

load or lower individual working memory capacity are related to lower judgment

accuracy when people relied on a rule-based process (Hoffmann et al., 2014; Juslin

et al., 2008; McDaniel et al., 2014).

Although rule-based processes are successful in predicting peoples judgments in

many different tasks and situations, already Hammond and Brehmer (1973) pro-

posed that in some tasks people rather rely on specific memories than on rules.

Correspondingly, Juslin and colleagues (2008, 2003) suggested that judgments fol-

lowing more complex relationships of cues and criterion are actually not based on

abstracted rules, but on past exemplars stored in memory. Drawing on categoriza-

tion research, they provided a more formal account of this type of process in the

form of exemplar models, which do not assume that people use abstracted rules to

make their judgments, but instead that they rely on the storage and retrieval of

past instances.

2.3 Exemplar-Based Processes

The assumption behind exemplar models is that people store previously encountered

objects and their criterion values (i.e., the exemplars) as separate traces in episodic

long-term memory (Estes, 1986; Hintzman, 1986; Medin & Schaffer, 1978). In line

with Brunswik’s assumption about the perception of distal variables, it is assumed

that these stored exemplars are represented in memory by a number of attributes

or cues (Bower, 1967; Estes, 1994; Fiedler, 1996). A new, to-be-judged object (i.e.,

the probe) acts as an retrieval cue to access the information stored in memory. The

judgment of this new object is made by retrieving previously encountered exemplars

from memory and then integrating the criterion values of these past exemplars based
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on their similarity to the probe, where more similar exemplars have more impact

on the judgment. Based on Shepard’s law of generalization (Shepard, 1957, 1987),

it is assumed that similarity is a function of the distance in psychological space

between the probe and an exemplar based on the feature- and cue-dimensions which

are used to mentally represent these objects (Medin & Schaffer, 1978; Nosofsky,

1986). Staying with the example of judging the calorie content of a dessert, when

judging a new dessert, one would recall past desserts where the calorie content was

(approximately) known (e.g., from the nutrition facts label). The calorie content of

the new dessert will then be judged according to the similarity of this new dessert to

the past desserts, whereby more similar past desserts will have a stronger influence

on the judgment than dissimilar ones.

Although exemplar models originated and are most prominent in the research

area of categorization (Medin & Schaffer, 1978; Nosofsky, 1986), they have been

used in a variety of domains, such as memory (Hintzman, 1984), function learn-

ing (DeLosh et al., 1997), associative learning (Jamieson et al., 2012), social judg-

ments (Fiedler, 1996; Smith & Zárate, 1992), decision-making (Bröder et al., 2010),

Bayesian inference in human cognition (Shi et al., 2010), and language (Goldinger,

1996). Juslin and colleagues (2003, 2002) were the first to apply exemplar-models

to quantitative judgments. They showed that exemplar-based models could predict

people’s judgment better than the hitherto common rule-based models when the

relationship between cues and criterion was non-linear, which generated a wealth

of research using exemplar-based models to study multiple-cue judgments (e.g.,

Hoffmann et al., 2013; Mata et al., 2012; Pachur & Olsson, 2012; Rosner & von

Helversen, 2019; von Helversen & Rieskamp, 2008; Wirebring et al., 2018).

The formal exemplar model used by Juslin et al. (2003), which is also used in

Manuscripts I and II of this thesis, is based on the Context Model of Medin and

Schaffer (1978), but extended to account for continuous judgments (Juslin et al.,

2003; Juslin & Persson, 2002). The context model is the first mathematical for-

mulation of an exemplar-based model, which was later further developed into the

Generalized Context Model (GCM, Nosofsky, 1984, 2011; Wills & Pothos, 2012).

The context model as well as related models used in the multiple-cue judgment

literature, implicitly assume an integrative retrieval of exemplars where all previ-

ously encountered exemplars and their criterion values are retrieved from memory

and then integrated into the final judgment (cf., Albrecht et al., 2020; Nosofsky

& Palmeri, 1997). The similarity of the probe to each of the exemplars acts as a
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weight in the integration of all exemplar criterion values into the final judgment.

More similar exemplars receive more weight and thus their criterion values have a

higher impact on the final judgment (Estes, 1994; Medin & Schaffer, 1978). For-

mally, the similarity S between a probe p and an exemplar e is computed by the

multiplicative similarity rule for binary cues (Medin & Schaffer, 1978):

S =
n
∏

i=1

di with di =







1 if pi = ei

si if pi ̸= ei

(2)

where n is the number of cues or features used to represent the objects. For each

cue i, it is determined whether the cue values of the probe p and the exemplar e

are equal. If they are equal, di has the value one, otherwise, di equals si. The si

parameters are defined on the interval [0, 1] and determine how strongly a mismatch

of objects on the corresponding cue affects the overall similarity S. The closer si gets

to zero, the more important the cue i becomes. Also, the closer si is to one, the more

irrelevant the corresponding cue is. According to Medin and Schaffer (1978), the si

parameters can be interpreted as attention parameters, where the si parameter of a

cue i is lower when the dimension is attended to and thus the perceived similarity

of two stimuli is lower, when the stimuli differ on this cue (but see Izydorczyk &

Bröder, 2021, for a different interpretation). For instance, according to Equation (2),

the similarity between the first two stimuli in Table 1 is S = s1×1×1 = s1, since only

the first cue is different in both objects. When the s1 parameter is low, indicating

a high attention to this dimension, the similarity between probe and exemplar is

also low. The original context model assumes that each cue has a different attention

parameter (Medin & Schaffer, 1978). However, empirical evidence showed that a

simplified version with a single s parameter (i.e., si = s) often provides a better or

equal fit to actual judgment data than the more complex version with separate s

parameters for each cue dimension (Hoffmann et al., 2013, 2014; von Helversen &

Rieskamp, 2008, 2009a). Thus, the simplified version with only a single s parameter

is used often instead of the full model. The judged criterion value of the probe Jp

is then a similarity-weighted average of all k exemplars:

Jp =

∑k

j=1
Sj × cj

∑k

j=1
Sj

(3)

where cj is the criterion value of an exemplar j. Figure 1 shows the prediction
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of the exemplar model for the example stimuli in Table 1, assuming a constant s of

.1. There are two important differences when the predictions of the exemplar model

in Figure 1 are compared with the predictions of the rule model. First, while the

prediction accuracy of the rule model does not differ between trained exemplars

(i.e., old items) and non-trained stimuli (i.e., new items), the prediction accuracy

of the exemplar model is higher for old items than for new items. Second, the rule

model has no difficulties extrapolating beyond the range of criterion values of the

exemplars. However, the exemplar model is not able to extrapolate beyond the range

of learned criterion values and thus predicts large judgment errors for the two most

extreme stimuli (the flowers with the lowest and highest price) in Table 1 (DeLosh

et al., 1997; Juslin et al., 2008).

Whereas rule-based processes of quantitative judgments strongly depend on

working memory, exemplar-based processes are assumed to depend more on episodic

memory, since they rely on the storage and retrieval of exemplars. This assumption

is supported by empirical evidence showing that people with better episodic memory

rely more on exemplar-based processes when making their judgments (Hoffmann et

al., 2014). Also, several fMRI studies observed activity in brain regions associated

with episodic memory when people relied on exemplars to make their judgments

(Stillesjö et al., 2019; Wirebring et al., 2018). In addition, Hoffmann et al. (2018)

found that a long retention interval of one week led to a greater decrease in judgment

performance when people relied on an exemplar-based process compare to a rule-

based process. That is presumably because people who rely on an exemplar-based

process have to remember all (or at least some) learned exemplars, whereas peo-

ple who relied on a rule-based process only have to remember the abstracted rule.

Furthermore, the retrieval and similarity-weighted integration of exemplars when

making judgments was demonstrated in an eye-tracking study by Rosner and von

Helversen (2019). Using the looking-at-nothing paradigm (Richardson & Spivey,

2000), Rosner and von Helversen (2019) found that when judging the suitability

of new fictitious job candidates participants looked more in the area of the screen

were similar exemplars were presented during the training phase compared to less

similar exemplars, indicating retrieval of these exemplars from memory.
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2.4 Interaction of Rule- and Exemplar-Based

Processes

Over the last decades, converging evidence from research on categorization, judg-

ment, and decision making has shown that rule- and exemplar-based processes are

indeed two qualitatively distinct processes which use different representations of

knowledge and information, rely predominantly on different cognitive resources,

and involve different brain regions (Allen and Brooks, 1991; Ashby et al., 1998;

Hoffmann et al., 2014; Juslin et al., 2008; Pachur and Olsson, 2012; Sloman, 1996;

von Helversen, Karlsson, Rasch, et al., 2014, but see Love et al., 2004; Schlegelmilch

et al., 2021). Since the first introduction of exemplar-based models to the area of

multiple-cue judgments (Juslin et al., 2003), most of the recent multiple-cue judg-

ment research is now concerned with the questions of which factors influence whether

a rule- or exemplar-based process is used in a given task or how people integrate

the two types of processes. One might summarize the empirical results as following.

When people learn to judge objects where the relationship between the cues

and the criterion is unknown, people try to abstract rules of how cues and the

criterion are related by continuously updating the cue weights based on received

feedback (Hoffmann et al., 2019). Simultaneously, memory traces of the encountered

objects are stored in episodic memory (Hintzman, 1984). It is often assumed that

people have a “rule-bias”, that is, they initially try to rely on rule-based processes

to make their judgments, but switch to exemplar-based processes based on task

demands and their performance in the task (Juslin et al., 2008; Karlsson et al., 2008;

Rieskamp & Otto, 2006). This is in line with an abundance of evidence showing that

people tend to rely more on rule-based processes, when the environment, the cue

format, learning task, or the provided feedback make it easier to abstract a rule

(e.g., Juslin et al., 2003; Trippas & Pachur, 2019; von Helversen et al., 2013). For

instance, several studies have found that when the relationship between cues and

environment is linear (e.g., c = 4cue1+3cue2+2cue3+1cue4, Hoffmann et al., 2016),

most people make their judgments according to a rule-based process. However, when

the relationship between cues and environment is non-linear or multiplicative (e.g.,

c = 1

8.5
× [4cue1 + 3cue2 + 2cue3 + 2cue1cue2cue3 + cue2cue3cue4], Hoffmann et al.,

2016), people rely on exemplar-based processes (Hoffmann et al., 2014, 2016; Juslin

et al., 2008; Karlsson et al., 2007; Olsson et al., 2006). In addition, giving people

information about the direction and importance of cues also fosters the reliance on
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rule-based processes (Bröder et al., 2010; Platzer & Bröder, 2013; von Helversen

et al., 2013; von Helversen & Rieskamp, 2009a).

For exemplar-based processes, it seems important that the task, the environ-

ment, and the stimuli allow participants to form strong representations of spe-

cific exemplars, as well as an efficient retrieval of exemplars. For instance, having

more distinguishable exemplars, a lower number of exemplars during training, a

longer training phase, or more experience have been shown to promote reliance on

exemplar-based processing, presumably because these factors increase the strength

and discriminability of individual exemplars in memory (Johansen & Palmeri, 2002;

Rouder & Ratcliff, 2004; Thibaut et al., 2018). In addition, increased cognitive load

also decreases the accuracy of exemplar-based judgments (Hoffmann et al., 2014;

Juslin et al., 2008), potentially by hindering the retrieval of past exemplars from

memory or their integration (Anderson et al., 1996; Unsworth et al., 2013).

Despite these task or environmental factors influencing the main mode of pro-

cessing, individual differences also seem to play a role. For example, most studies

find large individual variability in what process people rely on in a given condi-

tion of the experiment (e.g., Hoffmann et al., 2016; Izydorczyk & Bröder, in press;

Nosofsky & Hu, 2022; Rouder & Ratcliff, 2004). Also, whereas most adults seem to

adapt their judgment strategy based on the task demands, younger children (9-11

years) rely more on exemplar processing compared to adults (von Helversen et al.,

2010), whereas older adults (> 60 years) stick to rule-based processing (Mata et

al., 2012), which might be related to differences in working memory and episodic

memory capacity (Hoffmann et al., 2016). In addition, McDaniel et al. (2014) found

that people who were identified as rule-learners in a function learning task also

relied more on rule-based processes in a subsequent categorization task, indicating

differences in individual preferences (cf. Hoffmann et al., 2016).

2.4.1 Integration of Rule- and Exemplar-Based Processes

Initially, it was (implicitly) assumed that there is a “division of labor” between rule-

and exemplar-based processes, where individuals would select one process based

on task demands or other factors and then rely only on this process to make their

judgments (Juslin et al., 2008; Juslin et al., 2003; Karlsson et al., 2008). The methods

used to determine whether participants relied on rule- or exemplar-based processing

in a given task reflected this dichotomization of the judgment process. For example,
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researchers would classify participants as users of a rule- or exemplar-based strategy

(reflecting the corresponding cognitive process) based on the best-fitting model (e.g.,

Bröder et al., 2010; Pachur & Olsson, 2012; Persson & Rieskamp, 2009; Wirebring

et al., 2018).

However, already B. Brehmer (1994, p. 152) suggested that “judgments result

from a compromise between rules and specific memories of earlier outcomes”. Ac-

cording to Herzog and von Helversen (2018), the blending of both types of processes

makes sense from a mere normative and ecological perspective. By pooling together

the different forms of information used by both processes, more accurate judgments

can be produced than by any process alone. This idea of a mixture or blending of

processes is also common in many models in the categorization literature (so called

hybrid models), which differ in the way rule and exemplars are combined to make

a categorical judgment (e.g., Anderson & Betz, 2001; Love et al., 2004; Nosofsky

et al., 1994). For example, the ATRIUM model (Attention To Rules and Instances

in a Unified Model, Erickson & Kruschke, 1998) assumes that rule- and exemplar-

processes work parallel and independently. The final categorization response is based

on a linear combination of the predictions of each process, where the relative weight

of each process varies for each stimulus, based on an error-driven learning process.

This assumption resonates well with empirical evidence, showing that the similarity

of specific exemplars influences the categorization accuracy or speed of new stimuli,

even when simple and perfectly predictable rules are available to the participants

(either through extensive training or even through explicit instructions) and even

if the reliance on similarity may be even detrimental to categorization performance

(Allen & Brooks, 1991; Brooks & Hannah, 2006; Hahn et al., 2010; Hannah &

Brooks, 2009; Regehr & Brooks, 1993; Thibaut et al., 2018). These results are of-

ten interpreted as an automatic and unintentional activation of exemplars (Hahn

et al., 2010, see also Macrae et al., 1998). Recently, von Helversen, Herzog, et al.

(2014) found similar results in a multiple-cue judgment task where participants had

to judge the qualification of six fictitious job candidates based on four cues (edu-

cation, motivation, skills, and quality of work experience). Even though the overall

judgments of new candidates were described well by a rule-based model, the judg-

ments were also influenced by the similarity of learned exemplars: New candidates

were judged as more qualified when they resembled highly-qualified exemplars and

as less qualified when they resembled less-qualified exemplars (see also Rosner &

von Helversen, 2019). The results also showed that the effect of similarity was larger
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when participants reported to rely more on visual appearance (i.e., similarity of job

candidates), suggesting that the reliance on exemplars can be deliberate and strate-

gic. These results show that both types of processes are used simultaneously, even

when the environment and the task encourage a purely rule-based processing.

Therefore, a more reasonable assumption about the integration of both pro-

cesses is that people base their judgments simultaneously on rules and exemplars

by blending these two processes together, but depending on the actual stimuli, the

environment, or task structure, the relative contribution of each process might differ

(e.g., Albrecht et al., 2020; Bröder et al., 2017; Wirebring et al., 2018). Based on

these considerations, Bröder et al. (2017) proposed the RulEx-J model to measure

the relative contribution of each process over a series of trials.

The RulEx-J Model

Like ATRIUM (Erickson & Kruschke, 1998), the RulEx-J model assumes that rule-

and exemplar-based processes work in parallel and independently. The final judg-

ment is then a blending of the preliminary judgments of both distinct processes.

Thus, the RulEx-J model is more in line with the empirical evidence presented be-

fore and allows a more fine-grained measurement of the judgment processes involved

(Bröder & Gräf, 2018; Bröder et al., 2017). The conceptual idea of the RulEx-J

model is depicted in Figure 2.

In the RulEx-J model, stimuli are represented as vectors of features (e.g., Hintz-

man, 1984; Love et al., 2004; Nosofsky, 1984). For example, the fictitious flower in

Figure 2 is represented by four binary features. The to-be-judged stimulus (i.e., the

probe p) is processed by two modules, an exemplar module (E) and a rule module

(R). The preliminary judgment of the exemplar module JE is based on the similarity

of the probe to the stored exemplars. In contrast, the preliminary judgment of the

rule module JR is based on the integration of cues according to an abstracted rule.

In the articles using the RulEx-J model, the exemplar- and rule-based processes

in the corresponding modules are modeled according to the formal models in Equa-

tions (1) - (2) (i.e., the context model extend to numerical judgments and the cue

abstraction model, Bröder and Gräf, 2018; Bröder et al., 2017, see also Manuscript

I of this thesis). However, other implementations of the respective judgment pro-

cesses could also be used. For instance, in Manuscript III of this thesis, I used the

GCM (Nosofsky, 1984, 2011) as a formal model of the exemplar module. The fi-
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nal judgment Jp is a combination of the results of both processes, weighted by the

parameter α (see Figure 2):

Jp = α× JR + (1− α)× JE (4)

The α parameter measures the relative contribution of the rule- and exemplar-

based process on the final judgment. It can range from 0 to 1, with larger values

indicating more rule-based processing.

Figure 2

Schematic representation of the RulEx-J model
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Note. A to-be-judged probe p, consisting of four binary features, is processed by the exemplar
module (upper half) and the rule module (lower half) in parallel. In the exemplar module, the
probe is compared to each of four exemplars stored in memory and the criterion values Cj of
each exemplar j is weighted according to the similarity of the exemplar and the probe (Sj) to
produce the judgment JE . Larger arrows indicate a higher similarity and thus larger influence
on the final judgment. In the rule module, the probe is decomposed into separate cues which are
then integrated according to a rule to generate the judgment JR. Larger arrows indicate higher
cue weights. Both interim judgments of the rule- and exemplar-module are then weighted by α

and (1-α) respectively and then integrated into a final judgment J . Figure is based on Figure 1 in
Bröder et al. (2017).

The implementation of the integration of both processes in Equation (4) assumes

a constant continuous blending of both processes, which is only one (rather simple)

possible implementation of the possible blending or mixture processes (Albrecht et

al., 2020; Anderson & Betz, 2001; Erickson & Kruschke, 1998; Schlegelmilch et al.,
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2021).

In three experiments, Bröder et al. (2017) positively tested the validity of the α

parameter by showing that direct strategy instructions and changes to the learning

task had the intended effects on the dominant type of processing and that these

changes were adequately captured by the parameter α. In addition, they found that,

overall, the RulEx-J model was better in predicting new judgments of participants

than each of its sub-modules (i.e., pure exemplar or rule model). However, the

RulEx-J model is (so far) mostly intended as measurement model which provides

“more sophisticated or sensitive measures of processing” (Bröder et al., 2017, p. 504)

and not as an epistemic model (but see Albrecht et al., 2020).

Despite the success and progress of the multiple-cue judgment research pro-

gram in investigating the processes underlying people’s judgments, in the following

chapter I highlight and solve several issues and shortcomings in the way the here

presented models are currently used. By making the RulEx-J model measure the

relative contribution of rule- and exemplar-based processes more accurately and

more robust (Manuscript I), by demonstrating and solving problems brought by

the uncritical adaptation of exemplar models and the experimental paradigm from

categorization research (Manuscript II), and by showing how to use these models

of quantitative judgments not only on simple and artificial but also on realistic and

complex stimuli (Manuscript III), the manuscripts presented in my thesis improve

upon the presented models of quantitative judgments, the way they are currently

used, and extend their possibilities. Therefore, this thesis not only adds to the

methodological development and application of cognitive models in multiple-cue

judgment research but also provides possibilities for future theoretical insights into

the underlying judgment processes and for additional areas of application of the

formal models of these processes. In the following chapter, I summarize the three

manuscripts and present their core results (the full manuscripts can be found in

Appendix D).
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3 Improving and Extending Models

of Quantitative Judgments

In three manuscripts presented in this chapter, I highlight and solve different

problems of how models of quantitative judgments are currently implemented and

used in multiple-cue judgment research. Specifically, in Manuscript I I implement

and test a hierarchical Bayesian version of the RulEx-J model which improves pa-

rameter estimation and comparison of latent parameters between conditions. In

Manuscript II, I highlight a major problem of how exemplar-based models are used

in multiple-cue judgment research and present a new extended exemplar model

which resolves this issue. In Manuscript III, I show how the existing models of nu-

merical judgments can be used to model judgments of non-artificial complex stimuli

where the cues representing these stimuli and needed for the judgment models are

not known beforehand.

3.1 The hierarchical Bayesian RulEx-J Model

Izydorczyk, D., & Bröder, A. (in press). Measuring the mixture of rule-based and

exemplar-based processes in judgment: A hierarchical Bayesian approach.

Decision.

As mentioned in the previous chapter, Bröder et al. (2017) proposed the RulEx-J

model as a more sensitive and theoretically more adequate method to measure the

relative contribution of rule- and exemplar-based processes in people’s judgments

than classifying individuals based on the best-fitting model. So far, articles which

used the RulEx-J model employed maximum-likelihood or least-squares (LS) opti-

mization to estimate model parameters (Albrecht et al., 2020; Albrecht et al., 2021;

Bröder & Gräf, 2018; Bröder et al., 2017). However, Bröder et al. (2017) reported

that using these estimation approaches, the α parameter tends to be biased towards

one (i.e., rule-based processing) when there is a lot of noise in the data, because

the cue-abstraction model (reflecting the rule module) has more free parameters
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than the context model for continuous judgments (reflecting the exemplar module)

and is thus prone to overfitting. This is a major drawback of the RulEx-J model,

since most studies in the multiple-cue judgment literature are interested in the fac-

tors that influence the main mode of processing, but the bias towards rule-based

processing could lead to wrong conclusions. For instance, a manipulation that only

effects the levels of noise in the responses of participants, but has no affect on the

underlying cognitive process, would still show a difference in processing as captured

by the RulEx-J model.

In this first manuscript, we proposed a hierarchical Bayesian implementation as

a potential solution to this problem. The hierarchical Bayesian modeling framework

has become very popular in cognitive psychology, since it offers many advantages

over maximum-likelihood or least-squares approaches (for introductions, see Lee &

Wagenmakers, 2014; McElreath, 2020; Rouder et al., 2018). For instance, the partial

pooling of information enabled by the hierarchical structure of the model often

leads to more accurate parameter estimates (e.g., Farrell & Ludwig, 2008; Katahira,

2016; Rouder et al., 2005). Although, hierarchical models are not constrained to a

Bayesian framework (e.g., Erdfelder, 1993), it is more flexible and allows a more

straightforward implementation of even complex hierarchical models (Lee, 2018).

Further, for our specific case we expected the hierarchical Bayesian approach useful

in two additional ways. First, the Bayesian method should automatically control for

the different complexities of the exemplar- and rule-module, since the blending of

the RulEx-J model is similar to a model selection between the exemplar and rule

modules (Lee, 2008). This should lead to a reduction of the problematic bias towards

rule-based processing as reported by Bröder et al. (2017). Second, the advantages of

a hierarchical Bayesian approach for estimating and testing hypothesis about latent

parameters are especially pronounced when the number of trials per participant is

small (Böhm et al., 2018; Katahira, 2016; McElreath, 2020), which is a common

situation in most multiple-cue judgment studies where there are often only 16 data

points available per participant (e.g., Bröder & Gräf, 2018; Juslin et al., 2003; Pachur

& Olsson, 2012).

In the first part of the manuscript, we thus developed and tested the hierar-

chical Bayesian RulEx-J model. Like the original RulEx-J model, we used the cue-

abstraction model (Juslin et al., 2003) and the context model (Juslin et al., 2003;

Medin & Schaffer, 1978) presented in the previous chapter in Equations (1) - (3)

as respective models of the rule- and exemplar modules of the RulEx-J model. We
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also assumed that the response y of a participant i in trial t is normally distributed

around the weighted average of the rule-based and an exemplar-based process ac-

cording to Equation (4), with some person specific precision σ (i.e., yit ∼ N(Jit, σi)).

In computer simulations, we tested the ability of the hierarchical Bayesian

RulEx-J model to recover parameters and its robustness against different magni-

tudes of noise in the data. For this purpose, we simulated judgment data of multiple

synthetic participants and added normally distributed error with mean µ = 0 and

different standard deviations of σϵ = 0, 2, 4, 8 to the generated judgments, in or-

der to simulate different levels of noise (none, low, medium, high). The simulations

allowed us to check whether the model is correctly implemented, but also how the

model behaves under more realistic conditions, and whether it was indeed more

robust against noise in the data than the LS-approach.

The results showed that the hierarchical Bayesian implementation of the RulEx-

J model is able to accurately recover the underlying parameter values when the

simulated judgment data was noise free (i.e., σϵ = 0), indicating a correct imple-

mentation of the model. Further, as expected the results showed that, compared to

the original LS-approach, the hierarchical Bayesian approach led to more accurate

and less biased estimates when there were high levels of noise in the data (i.e., σϵ =

8, see Figure 3). The results also demonstrated that the misestimation behaviour of

the hierarchical Bayesian implementation under high levels of noise is more reason-

able than the behaviour of the LS-approach. As evident in Figure 3, besides being

less accurate in general, the LS-estimates tended towards the upper or lower param-

eter boundaries independent of the true value. For instance, for the α parameter we

replicated the bias towards rule-based processing mentioned by Bröder et al. (2017),

where the parameter was estimated to be one in some instances. The hierarchical

Bayesian estimates on the other hand show clear signs of shrinkage, were the esti-

mates are pulled towards the sample mean. This shrinkage is especially strong for

the s and the cue weight parameters. Although these estimated individual parame-

ters are still not recovered with high accuracy, the way in which the estimation fails

is thus more reasonable than the erratic behaviour of the LS-estimates and inference

about group-levels parameters are still possible. In addition, the simulation results

also highlighted certain limitations for multiple-cue judgment researchers on what

inferences they might be able to draw from their data. Given the realistic number of

participants, number of trials per participant, stimuli structure, and levels of noise,

the results indicate that the available data are often not informative enough to esti-
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mate individual level parameters accurately given the observed amount of shrinkage.

Therefore, researchers should focus on making inferences on the group-level.

Figure 3

Parameter recovery for high levels of noise (i.e., σϵ = 8, Izydorczyk and Bröder, in
press)
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Note. Each dot represents a single synthetic participant.

In the second part of the manuscript, we applied the hierarchical Bayesian model

to three data sets: Experiment 1B from Bröder et al. (2017, N = 60), Experiment

1 from Trippas and Pachur (2019, N = 60), and one new preregistered experiment

(N = 238). Each experiment used different stimuli, judgment criteria, and different

manipulations to influence the dominant type of processing. The new experiment

differed from the traditional multiple-cue judgment experiments in so far as it did

not include a learning phase, in which participants usually learn the exemplars,

their criterion values, and the relationship between cues and criterion values. In-

stead, participants directly received different information to make their judgments,

depending on the condition. More specifically, participants had to judge the price

of 16 fictitious flowers on a scale from 0 to 100 e. The flowers could differ on four

binary cues: petal color (red/blue), leave form (thin/thick), petal form (round/star-

shaped), and root form (shallow/thick). In the exemplar condition, participants

saw the same selection of eight flowers and their criterion values. Participants were

informed that all 16 flowers could be judged based on their similarity to these ex-

emplars. In the rule condition, participants were informed about the approximate
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price of the cheapest flower. Further, we provided ranges of possible price increases

for each feature. For instance, participants were told that star-shaped flowers cost

10 to 20 e more than round flowers. All participants judged all 16 flowers twice

in randomized order, resulting in 32 trials per participant. We expected that in

each data set, the α parameter should be higher in the respective rule condition

compared to the exemplar condition, indicating more rule-based processing.

Following the recommendation of Böhm et al. (2018), who showed that ignor-

ing the hierarchical structure in the data or using individual-level estimates from

a hierarchical model in a subsequent test leads to wrong conclusions, we directly

implemented the difference in α between conditions in the hierarchical Bayesian

RulEx-J model. The resulting posterior distribution of the δ parameter, which re-

flects the standardized mean difference in α between both groups, showed that as

expected the α parameters were on average larger in the rule conditions than in the

exemplar conditions in all (re)analysed experiments (i.e. δ > 0), indicating more

rule-based processing (see Figure 4).

Figure 4

Prior and posterior distributions of δ for three different experiments (Izydorczyk &
Bröder, in press)
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Note. The effect size parameter δ reflects the mean difference in α between the rule/lbc and
exemplar/dcl condition in each of the three experiments on a standardized scale, where δ > 0
indicates higher α values and thus more rule-based processing in the rule condition.

Overall, in this manuscript we developed, tested, and applied a hierarchical
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Bayesian implementation of the RulEx-J model, which provided more accurate and

robust parameter estimates than the original LS-approach. Furthermore, by directly

implementing differences in α between conditions into the model, we were able to

reproduce results of two previous experiments and provided additional evidence for

the validity of the mixture parameter α with a new experiment. The well document

and openly available scripts and model files thus provide the research community

with a tested tool to measure and compare the blending between rule- and exemplar-

based processes.
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3.2 Problematic Procedure for Estimating

Parameters in Exemplar Models of

Quantitative Judgments

Izydorczyk, D., & Bröder, A. (2021). Exemplar-based judgment or direct recall:

On a problematic procedure for estimating parameters in exemplar models of

quantitative judgment. Psychonomic Bulletin & Review, 28, 1495–1513.

In the second manuscript, we highlighted a major problem in the way exemplar-

based models are used in almost all multiple-cue judgment studies, beginning with

their introduction to this area of research by Juslin and colleagues (2003, 2002).

The typical experiment in the multiple-cue judgment literature involves an ex-

tensive training phase where participants are repeatedly presented with the same

set of few well distinguishable exemplars, so they can learn their cues, criterion

values, or the rule connecting the cues to the criterion values (e.g., Bröder & Gräf,

2018; Hoffmann et al., 2013; von Helversen & Rieskamp, 2009a). For instance, in

Bröder and Gräf (2018) participants learned to judge eight possible exemplars over

a series of eight blocks. After the training phase, participants were able to judge on

average 78% of the exemplars correctly and 46.67% of the participants had learned

all exemplars perfectly. This experiment is by far no exception, since many studies

either implement a learning criterion that participants have to reach to finish the

training phase (e.g., 85% correct in Trippas & Pachur, 2019) or include an even

longer training phase (e.g., up to 40 blocks in Wirebring et al., 2018), to make sure

that participants are able to learn all exemplars. Model parameters are then esti-

mated either on the last blocks of the training phase or on the data of the judgment

phase.

In this second manuscript we proposed that the judgments of participants in

these later stages of the experiment are a mixture of two qualitatively distinct

cognitive processes: Judgment or direct recall. When participants have to judge a

trained exemplar there are two possible ways participants can respond. They either

have learned the exemplar and its criterion value and thus can directly retrieve the

criterion value from memory, or they have not learned the exemplar and thus have

to judge its criterion value, as if it was a new stimulus. Using the context model

in Equations (2) - (3) as an example (with one general s parameter), we predicted
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that neglecting this distinction leads to impaired estimation and validity of model

parameters, resulting in a decreased model fit in general. Specifically, we predicted

that the s parameter will be biased towards 0 if all data points (correctly recalled

exemplars and other trials) are jointly used to estimate the model parameters. The

rationale behind this prediction can be demonstrated with a short example.

Figure 5

Parameter recovery results (Izydorczyk & Bröder, 2021)
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Note. The figure shows the parameter recovery results of the s parameter of the context model,
for different true values of s and different probabilities of recalling exemplars correctly (Pr). Each
black dot represents one synthetic participants. Green dots represent the corresponding mean for a
specific true value of s and Pr. sorig and sint are the estimated s parameters using the traditional
approach (i.e., not differentiating between recalled trained exemplars and other stimuli) or the
latent-mixture exemplar-model, respectively.

Suppose there are only two exemplars which vary on only one binary cue, a = [0]

and b = [1]. Their criterion values are 42 and 7, respectively. Like a, the probe is p

= [0] and according to Equation (2) the similarity of the probe to the two exemplars

is thus Sa = 1 and Sb = s. The judgment of our fictitious participant of the probe

is 42. When s = 1, the exemplar model predicts the mean of the criterion values of

all exemplars, which in this case is 24.5. However, when s = 0 the model predicts

42, which is the criterion value of a. Thus, if there is an identical exemplar to the

probe and the judgment of the probe is equal to the criterion value of this identical

exemplar, the best model fit is achieved when s = 0. Thus, when the responses

of participants include correctly recalled exemplars (i.e., the judgment of a trained
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exemplar is identical to the actual criterion value of this exemplar), the estimated

s parameter will be biased towards 0 and the bias will be larger the more correctly

recalled exemplars there are in the data.

The results of our simulated judgment data based on the exemplar model with

different values of s (.001,.1,.3,.8) and different probabilities of recalling an exem-

plar correctly (Pr), confirmed our prediction (see top row of Figure 5). When the s

parameter was estimated based on all data points (i.e., the original approach, sorig),

the s parameter was increasingly biased towards 0, the more correctly recalled ex-

emplars there were in the data.

Figure 6

Graphical model representation of the latent-mixture exemplar model with
integrated direct recall (Izydorczyk & Bröder, 2021)
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Note. Observed variables are depicted as shaded nodes, unobserved variables as unshaded nodes,
discrete variables as square nodes, continuous variables as circular nodes, deterministic variables
as double-bordered nodes, and stochastic variables as single-bordered nodes. ct is the criterion
value of the exemplar in trial t.

As one potential solution to this problem, we proposed an extended version

of the exemplar model, which incorporates the possibility of recalling exemplars

directly. The model depicted in Figure 6 assumes that when the probe in trial t is

a trained exemplar, participants can either directly recall the criterion value c of

this exemplar with a probability φ, or they do not recall the exemplar and judge

it based on the original exemplar model. As intended, the estimated s parameter

of this latent mixture extended exemplar model with integrated direct recall (sint)

was unbiased and independent of the proportion of directly recalled exemplars (see

bottom row of Figure 5).
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Following up on the simulations, we reanalysed data from five different exper-

iments in order to test whether the effects found in the simulation also extend to

empirical data. In all data sets, participants had a high proportion of correctly

recalled exemplars at the end of the training phase (average Pr ranging from .43

to .85). Therefore, we predicted that the s parameter estimated with the original

exemplar model (sorig) will be lower than the unbiased s parameter estimated with

the latent-mixture extended exemplar model (sint). The results shown in Figure 7

confirmed this prediction. In each of the five data sets, the sorig parameter was

lower than the sint parameter. Additional analysis showed that the new extended

exemplar model also provided a better fit to the data in all reanalysed experiments.

Figure 7

Results of the reanalysis of five different experiments (Izydorczyk & Bröder, 2021)
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Note. The figure shows the median posterior values of sint and sorig for each participant and for
each data set. sorig and sint are the estimated s parameters using the traditional approach (i.e.,
not differentiating between recalled trained exemplars and other stimuli) or the latent-mixture
exemplar-model, respectively. Green dots represent the means and the corresponding standard
errors.

In summary, the results of Manuscript II highlighted problems with the ap-

plication of exemplar models in multiple-cue judgment research. We showed that

neglecting to differentiate between learned exemplars and judged stimuli led to bi-

ased parameter estimates, impaired validity of model parameters, and a decrease of

model fit. This finding is problematic since in many multiple-cue judgment studies

participants are classified as exemplar or rule users, depending on which model fits

better to the data. Thus, in some instances the artificially decreased fit of the ex-

emplar model could lead to wrong conclusions about the process which participants



3 Improving and Extending Models of Quantitative Judgments 31

used to make their judgments. However, it should be noted that the highlighted is-

sues are not due to a problem with the exemplar model itself, but the combination

of the model and the adaptation of the experimental paradigm from categorization

research which involves having few well-distinguishable stimuli. The main differ-

ence between the categorization and judgment experiments, and the reason why

this problem is not (or less) noticeable in categorization research, is the scale of

the criterion value. Whereas the criterion in categorization studies is categorical

and multiple stimuli share the same criterion value (e.g., in Shepard et al., 1961,

four stimuli belong to Category 1 and four in Category 2), the criterion value in

judgment studies is continuous and most exemplars have a unique criterion value

(e.g., in Trippas and Pachur, 2019, only one training exemplar has the value .80)

and this unique exemplar-criterion mapping leads to the strong bias in s.
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3.3 Modeling Numerical Judgments of Realistic

Stimuli

Izydorczyk, D., & Bröder, A. (2022). What is the airspeed velocity of an unladen

swallow? Modeling numerical judgments of realistic stimuli. [Manuscript sub-

mitted for publication]. Department of Psychology, University of Mannheim.

In their overview of the history of JDM research, Goldstein and Hogarth (1997)

proposed that one of the major questions relevant to the future of JDM research is

to what extent one can generalize from laboratory studies with abstract tasks and

artificial stimuli to behavior in the real world. In contrast to the traditional judgment

research around the SJT, studies investigating the underlying cognitive processes

of multiple-cue judgments so far exclusively relied on rather simple artificial stimuli

such as depicted in Figure 8A-C. One of the main reasons for that is that the cues

and cue values of the respective judgment objects need to be known in order to

use the cognitive models in this line of research (and presented in this thesis). For

instance, whereas the similarity in exemplar models is based on the similarity of the

cue values of the exemplars and the probe, in rule-based models the cues are directly

integrated according to some rule. However, for complex objects encountered in the

real world the cues people use to make their judgments are often unknown and thus

it is not possible to use the models on judgments of these complex objects.

Figure 8

Example stimuli used in different multiple-cue judgment experiments
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Note. The stimuli are: A) Hoffmann et al. (2018), consisting of 4 cues; B) Izydorczyk and Bröder
(in press), consisting of 4 cues; C) Trippas and Pachur (2019), consisting of 4 cues; D) Izydorczyk
and Bröder (2022).
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In this third manuscript we showed how cues and cue values can be generated for

complex natural stimuli, where the cues are not known beforehand, and that these

generated cues can then be used in computational models of numerical judgments.

The general approach is depicted in Figure 9. Based on early categorization research

(e.g., Nosofsky, 1992; Shin & Nosofsky, 1992), we proposed that cues and cue values

can be extracted from pairwise similarity ratings using multidimensional scaling

analysis (MDS, Kruskal, 1964; Shepard, 1962, Steps 1-4 in Figure 9). In MDS,

objects are represented as points in a multidimensional space, where similar objects

are located closer together than dissimilar objects (Hout et al., 2013; Shepard, 1962).

The dimensions of the MDS solution can then be used as cues in cognitive models

to analyse the responses of participants (Steps 5-6 in Figure 9).

Figure 9

General procedure used in Izydorczyk and Bröder (2022)

(1) Pairwise similarity ratings

(2) Pairwise distance matrix

(4) Multidimensional Scaling

(6) Cognitive Model

normalize & aggregate

input

input

(5) Judgment Data

input

(3) Determine # of dimensions 

with Cross-Validation/BIC

Note. The figure shows the general procedure used in both studies presented in Izydorczyk and
Bröder (2022). pairwise similarity ratings (Step 1) are aggregated and transformed into a pairwise
distance matrix (Step 2), which is then used in a subsequent multidimensional scaling analysis
(Step 3 & 4). The resulting MDS dimensions can then be used as cues in cognitive models modeling
data from judgment experiments using the same stimuli (Step 5 & 6).

By using artificial stimuli with a known cue-structure and existing data of a

previous judgment experiment, the first study reported in this manuscript served as

a proof-of-concept for the general approach depicted in Figure 9. For this purpose, we
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used the 16 artificial flower stimuli and the data from the corresponding experiment

presented in the first manuscript (Izydorczyk & Bröder, in press). The flowers were

generated by combining four different binary features: Petal color (red/blue), leave

form (thin/thick), petal form (round/star-shaped), root form (shallow/thick), see

Figure 8B for an example. In the judgment experiment, participants were provided

with different information in the two conditions, which fostered either exemplar-

or rule-based processing. In this first study, we expected to recover the underlying

cue structure of the artificial stimuli (i.e., four cues). Further, we expected that the

analysis of the judgment experiment using the hierarchical Bayesian RulEx-J model

should yield similar results when the MDS-generated cues are used instead of the

experimentally defined cues as in Manuscript I. That is, the α parameter should

be higher in the rule condition than in the exemplar condition, indicating more

rule-based processing.

The results confirmed both predictions. Based on pairwise similarity ratings from

N = 40 participants, the attributes generated by the MDS analysis fully recovered

the underlying cue structure. In addition, using the MDS-cues in the hierarchical

Bayesian RulEx-J model lead to very similar posterior predictions for the individual

trials (r(7614) = .99, p < .001) and the same inference regarding the difference in

the α parameter between conditions, that is, higher average α values in the rule

condition than in the exemplar condition.

In the second study, we replicated an experiment of Pachur and Olsson (2012)

and Trippas and Pachur (2019) showing that the type of learning task and feedback

during the learning phase impacts whether participants relied more on exemplar-

based processing or rule-based processing. However, instead of the usual artificial

stimuli, we used natural complex stimuli (i.e., pictures of birds, see Figure 8D for

an example) with an a priori unknown cue structure. We again first collected pair-

wise similarity ratings for the K = 32 stimuli from N = 97 participants (Step 1

in Figure 9). The subsequent MDS analysis (Steps 2-4 in Figure 9) showed that,

according to a cross-validation procedure, the similarity ratings of the bird images

were best described by three dimensions.

In the judgment experiment, N = 78 participants had to judge the flight speed

of the 32 different birds, of which k = 12 were presented as exemplars during the

training phase. As in the original experiments of Pachur and Olsson (2012) and

Trippas and Pachur (2019), participants either learned by comparison or by direct

criterion learning. In the learning by comparison condition, participants were asked
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to decide which of two birds is the faster bird and received feedback about the

correct answer. In the direct criterion learning condition, participants had to judge

whether a bird can be classified as a slow or fast bird. Beside the correctness of

their answer, they received feedback about the actual flight speed of the presented

bird. As in the first study, we analyzed the data with the hierarchical Bayesian

RulEx-J model using the MDS-generated attributes as cues. Results showed that

we successfully replicated the results of Pachur and Olsson (2012) and Trippas

and Pachur (2019), in that participants showed more rule-based processing in the

learning by comparison condition than in the direct criterion learning condition.

Overall, this manuscript demonstrated how cognitive models of numerical judg-

ments can be used on natural complex stimuli with an unknown cue structure. This

extends the possibilities of these judgments models in two important ways. First,

as stated by Goldstein and Hogarth (1997), we are able to test whether the many

laboratory findings about the cognitive processes of multiple-cue judgments gener-

alize to more complex stimuli as encountered in the real world. Second, this allows

us to use the developed and well tested models of people’s judgment process, and

the knowledge from the corresponding research, to applied problems in people’s ev-

eryday life, which in general involve complex judgment objects (e.g., estimating the

carbon footprint or nutritional values of food items).
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4 General Discussion

In my dissertation, I improved, developed, and extended models of quantitative

judgments. Specifically, I implemented and tested a hierarchical Bayesian version

of the RulEx-J model, developed a latent-mixture extended exemplar model bet-

ter suited to the experimental paradigm, and extended the scope of the judgment

models presented throughout this thesis by demonstrating how they can be used on

complex stimuli with initially unknown cue structure.

In Manuscript I, we developed, tested, and applied a hierarchical Bayesian ver-

sion of the RulEx-J model. The simulation results showed that the hierarchical

Bayesian approach led to more accurate and robust parameter estimates than the

hitherto used method. Further, the results highlighted the (non-) informativeness

of the typical multiple-cue judgment experiment in which the data are often not

informative enough to accurately estimate individual-level parameters. Finally, us-

ing the hierarchical Bayesian RulEx-J model we were able to reproduce results of

previous experiments and provided evidence for the validity of the α parameter in

a new experiment. In summary, this manuscript provided researchers with an im-

proved state-of-the-art method to estimate and test hypotheses about the relative

contribution of rule- and exemplar-based processes in people’s judgments.

In Manuscript II, we demonstrated through simulations and reanalysis of five ex-

periments that the combination of exemplar models and the experimental paradigm

used in almost all multiple-cue judgment studies leads to a biased estimation of

model parameters and reduced model fit when the difference between directly re-

called exemplars and other stimuli is not taken into account. The manuscript also

presents a solution to this problem by introducing an extended exemplar model

which integrates a direct recall process of trained exemplars. This manuscript thus

uncovers and solves a major shortcoming in the way exemplar models are currently

used in multiple-cue judgment research.

In the last manuscript, we demonstrated how to model people’s judgments of

complex and realistic stimuli by extracting the necessary cues from pairwise similar-

ity ratings using multidimensional scaling analysis. Primarily, the results of the four

experiments in two studies showed that using this approach, known cue structures

and results from previous experiments can be replicated and even generalized to
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new complex stimuli. However, the implications of Manuscript III are even broader.

In their description of the science of psychology, the American Psychological Asso-

ciation (APA) states that “psychologists apply the understanding gleaned through

research to create evidence-based strategies that solve problems and improve lives.”

(APA, 2013, para. 2). The results presented in Manuscript III potentially enable us

to do exactly that: Making it possible to use the knowledge about people’s judg-

ment processes, which was gained through experimental research over the last two

decades, to investigate and improve real-life judgment problems in a theory- and

evidence-based manner. For instance, helping people to estimate the calorie content

of food items more accurately might have large potential benefits on people’s health

(e.g., König et al., 2019; Sacks et al., 2011).

Taken together, the results of the three manuscripts described here contribute

to the model-based study of cognitive processes underlying people’s judgments.

By implementing state-of-the-art methods, improving upon current practices, and

broadening the scope of the existing research, the results reported in this thesis add

to developing and testing of theories of quantitative judgments.

4.1 Open Questions and Future Directions

Although, the three manuscripts presented in this thesis solved several specific prob-

lems or shortcomings of the formal models used in multiple-cue judgment research,

they also offer new possibilities or raise new questions for future research. In the

following, I discuss some of the remaining open questions and possible future direc-

tions.

4.1.1 Investigating the Blending Process

The hierarchical Bayesian RulEx-J model presented in Manuscript I allows to mea-

sure the relative contribution of rule- and exemplar-based processes more accurately.

While this is an important improvement of the RulEx-J model as a measurement

model, it does not improve the epistemological value of the RulEx-J model by

further testing or validating the assumed blending process. Many different possi-

ble blending processes have been proposed in the categorization and multiple-cue

judgment literature, as well as related research fields. For instance, whereas the

RulEx-J model assumes a constant continuous blending of both processes over a
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series of trials (Bröder et al., 2017), the ATRIUM model (Erickson & Kruschke,

1998) assumes that the relative contribution of each process changes between trials

as participants learn which process is best suited for each exemplar. Instead of a

continuous blending, the CX-COM2 model assumes a two-step process (Albrecht

et al., 2020). First, only one exemplar is retrieved from memory, where exemplars

which are more similar to the probe have a higher chance of being retrieved. The

criterion value of this one exemplar is then adjusted based on a rule-based pro-

cess to produce the final judgment. In contrast, the Rule-Plus-Exception model for

category learning (RULEX, Nosofsky et al., 1994) assumes that people use sim-

ple rules but revert to specific memorized exceptions to these rules if necessary.

Relatedly, the Category Abstraction Learning (CAL) framework assumes that rule-

like representations, which emerge from complementary similarity and dissimilarity

mechanism, are mainly used for categorization, except for some instances were spe-

cific memorized exemplars are used (Schlegelmilch et al., 2021). Thus, one task for

future research is to thoroughly test and compare theoretically possible blending

processes.

However, although the Bayesian framework used in Manuscript I offers many

possibilities to test and compare even complex models (e.g., Radev et al., 2020),

this task cannot be solved through modeling alone. Rather, it requires carefully de-

signed experiments and stimulus materials to be able to differentiate between differ-

ent blending processes, since in the typical multiple-cue judgment experiment only

few data points are informative enough to even differentiate between predictions

of rule- and exemplar-based models, and probably even less so, between different

mixture processes. A potential way of dealing with this problem could be to look at

differences in predictions between rule- and exemplar-based processes in other de-

pendent variables and data modalities than only participant’s judgments (Glöckner,

2009). One of these possible additional variables are response times, which are often

used together with other behavioral variables as outcomes of cognitive models (e.g.,

Busemeyer & Townsend, 1993; Gaissmaier et al., 2011; Ratcliff & Rouder, 1998).

For example, Klauer and Kellen (2018) extended traditional multinomial processing

tree models to incorporate response times in addition to response frequencies, which

lead to new insights into the ordering of memory-retrieval and guessing processes.

In addition, the exemplar-based random walk model (an extension of the GCM,

Nosofsky & Palmeri, 1997) predicts not only choice-probabilities but also response

2combining Cue abstraction with eXemplar memory assuming COMpetitive memory retrieval
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times and has been shown to account for a variety of classification response time pat-

terns, such as familiarity or practice effects (Nosofsky & Palmeri, 1997). However,

although there are theories which predict response times for rule-based classification

models of simple logical choice rules (e.g., Nosofsky & Little, 2010), so far there are

no good theories about response-time predictions for the rule-based models used

in judgment research. Based on research on decision-making, one prediction would

be that the response time should depend on the number of cues (Glöckner, 2009;

Payne et al., 1988). Further, the complexity of the rule should also influence re-

sponse time (assuming that participants use something other than a compensatory

linear additive rule, e.g., Bröder and Gaissmaier, 2007).

Besides investigating the type of the mixture process, another open question

is how people actually learn the relative importance of rule- and exemplar-based

representations in quantitative judgments or how the relative contribution of these

processes changes over time. Based on the empirical findings in Chapter 2, one po-

tential approach could be to assume that the weighting or selection of processes

depends on the ability to abstract rules (and cue weights) or to form strong repre-

sentations of specific exemplars. Other approaches based on the theories of category

could involve error-driven learning as in the ATRIUM model (Erickson & Kruschke,

1998) or self-confirmatory attention learning (e.g., Schlegelmilch et al., 2021).

4.1.2 Direct Recall and Now What?

Manuscript II highlighted a problem of exemplar models in multiple-cue judgment

research, where the combination of experimental paradigm and model led to a sys-

tematically biased estimation of parameters. However, the manuscript focused ex-

clusively on exemplar models and thus it is unclear how directly recalled exemplars

affect the parameters of other models common in the multiple-cue judgment litera-

ture, such as rule-based models or blending models like the RulEx-J model.

In most studies, the criterion values of the exemplars are deterministically de-

fined by the rule in the environment with no (e.g., Hoffmann et al., 2016; Trippas

& Pachur, 2019) or only few (e.g., Bröder & Gräf, 2018) exceptions to this rule.

Recalling the criterion values of trained exemplars would presumably lead to the

estimated cue weights being closer to the cue weights of the environment, since the

recalled criterion values perfectly reflect the rule. Thus, even if a participant would

guess the criterion values of all new transfer stimuli, but has memorized all training
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exemplars and their corresponding criterion values, the estimated cue weights of a

rule-based model could still accurately reflect the cue weights of the environmental

rule, leading to an overestimated fit of the rule-based model. In addition, given that

the fit of rule-based model is (presumably) increased and the fit of exemplar-based

models is decreased (as shown in Manuscript II), the mixture parameter of the

RulEx-J should be biased towards more rule-based processing when there are many

correctly recalled exemplars. Therefore, one question for future research is to inves-

tigate the effects of directly recalling exemplars on the parameters of other models

common in the multiple-cue judgment literature, as well as an extensive reanalysis

of available data sets of multiple-cue experiments to determine the implications for

previous results in this line of research, since the prominence of rule-based processing

might be an artefact of the experimental paradigm.

On a more theoretical level, Manuscript II raises the question of the role of

memory and recall processes in models of multiple-cue judgment tasks in general.

In the previous paragraph and in Manuscript II in general, the direct recall of

exemplars is treated and viewed as a contamination process akin to random guessing,

that is, a psychological processes different from the one intended as the object

of interest (Zeigenfuse & Lee, 2010). However, it has been shown that exemplar

models (the context model and the GCM) are able to accurately account for data

from identification, old/new recognition, or cued recall tasks (Estes, 1994; Nosofsky,

1986, 1988, 1991, 1992; Nosofsky et al., 1989), which corresponds to what we coined

direct recall in Manuscript II (i.e., recalling a criterion value when cued with an

exemplar). The ability of exemplar models to also account for other types of tasks

and responses besides mere categorization or judgment is generally a strength of

these models (Estes, 1994; Nosofsky, 1992). Thus, the ability of the context model

to account for the direct recall of learned exemplars by setting the s = 0, is not a

bug, but a feature, even though it leads to an overall biased estimate. Further, in

contrast to exemplar models, a pure rule-based processing as outlined in Chapter

2 entails the assumption that individual exemplars are only temporarily stored

in working memory in order to abstract the cue weights, but not in long-term

memory where only the rule and the corresponding cue weights are stored. Thus,

a participant who exclusively relies on a rule-based process should not be able to

recall individual exemplars later in the experiment, since they are not encoded

and thus cannot be retrieved. The finding that participants who perfectly follow a

rule-based strategy still correctly respond to learned exceptions to the rule, might
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already be interpreted as evidence for a proposed mixture or blending between

process as outlined in Chapter 2, where learning and responding to the exception

exemplar is driven by an exemplar-based process. Therefore, a second open question

is whether the cued recall of trained exemplars is indeed a contamination process

or rather part of the (exemplar-based) judgment processes itself and thus, whether

the conceptualization of the “true” s parameter independently of the number of

correctly recalled exemplars is appropriate.

4.1.3 Cognitive Models of Numerical Estimation and

Seeding Effects in Real-World Contexts

Manuscript III demonstrated how computational models of numerical judgments

can be used on complex stimuli with an unknown cue structure. However, although

we claim that the demonstrated approach allows us to use the knowledge from

the experimental multiple-cue judgment literature to investigate and improve real-

life judgment problems, the examples presented in the manuscript itself are either

reanalyses or replications of existing multiple-cue judgment experiments. One actual

potential use-case of the approach presented Manuscript III outside of the typical

multiple-cue judgment research is the investigation of the mechanisms underlying

seeding effects.

Together with their framework of quantitative estimation, Brown and Siegler

(1993) developed the seeding paradigm as an intervention to improve the accuracy

of numerical judgments. Brown and Siegler (1993) proposed that both metric and

mapping knowledge about a domain are necessary for accurate estimates. Metric

knowledge refers to distributional information of a criterion, for instance, the mean,

range, and skewness of the distribution of country populations, whereas mapping

knowledge refers to information about the rank order of objects on the criterion

dimension. Results of their initial demonstration of the seeding paradigm showed

that the judgment accuracy of country population sizes increased by several mag-

nitudes after a short learning phase, where participants learned the criterion value

of some items (i.e., the seeding items). This increase in accuracy was found for the

seeding items as well as for transfer items and was mainly due to increased metric

knowledge. Additional experiments showed that this improvement in judgment ac-

curacy is still measurable after 4 months (Brown & Siegler, 1996) and can not be

explained by mere anchoring (Brown & Siegler, 2001). So far, the seeding proce-
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dure has only been applied in few studies on the estimation of national populations

(Brown & Siegler, 1993, 1996), between-city distances (Brown & Siegler, 1996), col-

lege tuition rates (Lawson & Bhagat, 2002), and nutritional information of food

items (Wohldmann, 2013, 2015; Wohldmann & Healy, 2020).

There are many similarities and connections between the seeding and the

multiple-cue judgment research presented throughout this thesis. First, the exper-

imental paradigms used to study multiple-cue judgments and seeding effects are

very similar. In both, participants are repeatedly presented with a small number of

seeds/exemplars, receive feedback about their true criterion values during a train-

ing phase, and then have to judge new transfer items in a later test phase. Further,

Juslin et al. (2008) stated that the cue abstraction process requires knowledge about

the ordering of exemplars (i.e., mapping knowledge), as well as knowledge about

the range of criterion values (metric knowledge). In addition, explicitly inspired by

the metrics and mapping framework developed by Brown and Siegler (1993), von

Helversen and Rieskamp (2008, 2009a, 2009b) proposed the mapping model as an

alternative rule-based model to the cue abstraction model proposed by Juslin et al.

(2003).

One major difference between the two research branches is their theoretical un-

derpinning. Whereas, the multiple-cue judgment research uses computational mod-

els of theorized cognitive process, the metrics and mapping framework is a rather

vague verbal theory, which does not allow to make precise quantitative predictions.

So far, however, despite the overlap between the two research branches, there were

no attempts to actually model seeding effects and the underlying processes with the

existing computational models, which would provide a stronger theoretical basis and

allow to generate new precise and testable hypothesis. A possible reason for this is

one of the few differences in the experimental paradigm: The judgment objects.

As stated before, multiple-cue judgment research relies on simple artificial stimuli

where the researcher defines the cues, the criterion values, and the rule relating the

cues and criterion values. In contrast, seeding studies use real-world stimuli with

inherent criterion values and unknown cue structure, which makes it difficult to use

the models common in multiple-cue judgment research.

Fortunately, Manuscript III clearly demonstrated how computational models of

numerical judgments can be used on stimuli with an unknown cue structure and

thus how cognitive models can be used to investigate the underlying mechanism

of the seeding effect. Besides building a stronger theoretical foundation, this would
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allow us, for example, to generate precise and testable predictions about which ex-

emplars/seeds lead to the highest increase in judgment accuracy. This knowledge

can then be used in actual real-world judgment tasks, important for people’s life.

For instance, people with Type 1 diabetes have to estimate the amount of car-

bohydrates in their meal to adjust the needed insulin dose. Although an accurate

estimation of carbohydrates and dosing of insulin is essential for the health of people

with Type 1 diabetes (American Diabetes Association, 2015; Laurenzi et al., 2011),

many patients have a hard time doing so (e.g., Bishop et al., 2009; Kawamura et al.,

2015). Thus, an efficient, easy-to-implement, and theory-based training method like

seeding might be helpful for designing intervention or training programs for diabet-

ics and understanding the cognitive processes behind them could inform efficient

procedures.

4.2 Conclusion

In light of the call to build stronger theories by using computational models (e.g.,

Oberauer & Lewandowsky, 2019) the famous quote “all models are wrong, but some

are useful” (G. E. P. Box) may be extended by: “[and] useful models produce better

science” (Smaldino, 2019, p. 9). However, models only become and stay useful by

constantly adapting them to new theoretical insights, methodological and statistical

developments, and empirical findings. The contribution of this thesis was to improve

and extend models of quantitative judgments and the way they are currently used.

By implementing state-of-the-art methods, improving upon current practices, and

broadening the scope of the existing research, the three manuscripts presented in

this thesis not only advance the current state of the literature on quantitative judg-

ments, but also contribute to establishing, testing, and applying theories about the

processes underlying people’s judgments.
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Abstract20

Based on theoretical and empirical considerations, Bröder et al. (2017) proposed the RulEx-J model21

to quantify the relative contribution of rule- and exemplar-based processes in numerical judgments.22

In their original paper, a least-squares optimization procedure was used to estimate the model23

parameters. Despite general evidence for the validity of the model, the authors suggested that a24

strong bias in favoring the rule module could arise when there is noise in the data. In this article,25

we present a hierarchical Bayesian implementation of the RulEx-J model with the goal to rectify26

this problem. In a series of simulation studies, we demonstrate the ability of the hierarchical27

Bayesian RulEx-J model to recover parameters accurately and to be more robust against noise in28

the data, compared to a least-squares estimation routine. One further advantage of the hierarchical29

Bayesian approach is the direct implementation of hypotheses about group differences in the model30

structure. A validation experiment as well as reanalyses of two experiments from different labs31

demonstrate the usefulness of the approach for testing hypotheses about processing differences.32

Further applications for judgment research are discussed.33

Keywords: numerical judgments, rule-based processes, exemplar-based processes,34

hierarchical Bayesian modeling35

Word count: 1080536
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Measuring the mixture of rule-based and exemplar-based processes in judgment:37

A hierarchical Bayesian approach38

Introduction39

Every day, we have to make numerous judgments about continuous variables, such as the40

calorie content of a dessert, the dangerousness of crossing a busy street or the temperature outside.41

If the judgment is expressed on a numerical scale, it is termed a quantitative judgment. At least two42

different types of processes have been proposed to account for quantitative judgments: Rule-based43

and exemplar-based processes (Brehmer, 1994; Einhorn et al., 1979; Juslin et al., 2003; Karlsson44

et al., 2008; von Helversen & Rieskamp, 2009). Based on empirical evidence and methodological45

considerations, Bröder et al. (2017) proposed the RulEx-J model, which assumes assumes that both46

processes work in parallel and that the final judgment is a mixture of both distinct processes. The47

goal of this article is to introduce and test a hierarchical Bayesian implementation of the RulEx-J48

model, which improves upon the original parameter estimation method (Bröder et al., 2017). The49

remainder of this article is structured as follows: We first give a short summary about rule- and50

exemplar-based processes and how they interact, as well as problems with the original RulEx-J51

model. We then formally introduce the RulEx-J model and discuss problems with its current52

implementation in more detail. Next, we present the hierarchical Bayesian implementation of the53

RulEx-J model as a way to improve upon these problems. We then present a series of simulations54

that examine the ability of the model to recover parameters and the robustness against different55

magnitudes of noise in the data. Furthermore, we apply the hierarchical Bayesian model to data of56

a new experiment, aimed at validating the process mixing parameter α of the RulEx-J model (for57

more details, see below). We also reanalyse two existing data sets of experiments, using different58

manipulations and stimuli, to check whether previous results can be reproduced. 1
59

1 All R scripts, the JAGS model codes and result files are available at the Open Science Framework of this

project (https://osf.io/7mabe/). All simulations and analyses were conducted using R (Version 4.2.0; R Core

Team, 2020) and the R-packages doSNOW (Version 1.0.20; Corporation & Weston, 2019), dplyr (Version

1.0.9; Wickham et al., 2020), foreach (Version 1.5.2; Microsoft & Weston, 2020), ggplot2 (Version 3.3.6;

Wickham, 2016), knitr (Version 1.39; Xie, 2015), papaja (Version 0.1.0.9999; Aust & Barth, 2020), polspline
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Processes of quantitative judgments and how they interact60

Based on Brunswik’s lens model (Brunswik, 1955), researchers assume that in rule-based61

processing people combine and integrate cue information according to a learned rule (Hoffmann62

et al., 2019). This could, for instance, be a weighted linear additive rule (e.g., Brehmer, 1994; Juslin63

et al., 2003) or a simpler heuristic, which ignores part of the cue information. For example, the cues64

“sweetness”, “estimated amount of cream”, and “size” of a dessert might form the basis for additively65

combining them into an estimate of its calorie content. By contrast, exemplar-based processes are66

not based on the abstraction and learning of cue-criterion relations. Rather, exemplar-based67

processes assume that people store previously encountered objects and their criterion values in68

long-term memory (Juslin et al., 2003, 2008). New objects are then judged based on the similarity69

to the exemplars stored in memory (Juslin et al., 2003; Medin & Schaffer, 1978; Nosofsky, 1984).70

For instance, judging the calorie content of a dessert might be based on the similarity to past71

desserts, of which the calorie content was known. The models describing exemplar-based processes72

have originated in the domains of memory (e.g., Hintzman, 1984) as well as categorization and73

classification (e.g., Medin & Schaffer, 1978; Nosofsky, 1984). However, sparked by the important74

work of Juslin and colleagues (e.g., Juslin & Persson, 2002; Juslin et al., 2003), the application and75

impact of exemplar models in the areas of judgment and decision making has increased during the76

last two decades (e.g., Bröder & Gräf, 2018; Hoffmann et al., 2013; Juslin et al., 2003; Mata et al.,77

2012; Pachur & Olsson, 2012; Persson & Rieskamp, 2009; von Helversen & Rieskamp, 2009).78

Initially, researchers proposed a division of labor between both, rule-based and79

exemplar-based processes, where individuals would use only one process at a time across all trials80

(or at least within trials), but would shift between these qualitatively different processes, contingent81

on the structure of the task (e.g., Juslin et al., 2003, 2008; Karlsson et al., 2008; Pachur & Olsson,82

2012; von Helversen et al., 2010). In their thorough individual differences analysis, Hoffmann et al.83

(Version 1.1.20; Kooperberg, 2020), Rcpp (Version 1.0.8.3; Eddelbuettel & Balamuta, 2017; Eddelbuettel &

François, 2011), runjags (Version 2.2.1.7; Denwood, 2016), tibble (Version 3.1.7; Müller & Wickham, 2020),

and truncnorm (Version 1.0.8; Mersmann et al., 2018). The Bayesian models were implemented with JAGS

(Plummer, 2003) Version 4.3.0.
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(2014) validated the distinction between both processes by showing that they draw on different84

cognitive resources. According to their analysis, rule-based processing relies on working memory85

whereas exemplar-based processing rather depends on long-term memory. Using functional86

magnetic resonance imaging (fMRI), von Helversen, Karlsson, et al. (2014) found that rule-based87

and exemplar-based processes involve different neural correlates and different patterns of neural88

activation (cf., Wirebring et al., 2018). The methods used to measure the use of rule-based and89

exemplar-based processing in a given task condition reflected this dichotomous characterization of90

the judgment process. For instance, researchers would classify participants as users of a rule- or91

exemplar-based strategy (reflecting the corresponding cognitive process) based on the best-fitting92

model (e.g., Bröder et al., 2010; Pachur & Olsson, 2012; Persson & Rieskamp, 2009; Platzer &93

Bröder, 2012).94

As an alternative to assuming a shift between qualitatively different processes, recent95

research suggests that there might be a “blending” or a mixture of both processes (e.g., Albrecht96

et al., 2019; Bröder et al., 2017; Herzog & von Helversen, 2018; Hoffmann et al., 2014; von97

Helversen, Herzog, & Rieskamp, 2014; Wirebring et al., 2018). For example, von Helversen, Herzog,98

and Rieskamp (2014) had their participants learn to judge the suitability of six training employees99

on a scale from 0 to 100. The job suitability was determined by a simple linear additive rule based100

on four cues (quality of work experience, motivation, skills, and education). Results showed that101

the judgments of new employees where influenced by the facial similarity to previously encountered102

exemplars, even though participants had all information to use the simple learned rule and using103

facial similarity led to worse judgments than ignoring it. These results are in line with other104

empirical evidence which suggests that exemplar retrieval and rule knowledge interact in category105

or continuous judgments. For example, Erickson and Kruschke (1998) showed that although106

participants were able to use a learned rule to categorize new stimuli, the similarity of specific107

training exemplars still affected classification probabilities. In addition, research by Brooks and108

colleagues (Allen & Brooks, 1991; Brooks & Hannah, 2006; Hannah & Brooks, 2009; Regehr &109

Brooks, 1993) showed that the similarity of features or exemplars affected classification speed or110

accuracy, even when a perfectly predictive classification rule was present and sometimes even111

explicitly given to the participants. Building up on these experiments, Hahn et al. (2010) found112
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similarity effects on accuracy or response times even though the manipulated similarity was113

irrelevant to the category membership and there were very simple, explicit, and perfectly predictive114

three- (Exp. 1, 3, & 4) or one-feature (Exp. 2) rules availabe. Their suggestion, that the influence115

of similarity is probably automatic and beyond strategic control is in line with findings from116

Macrae et al. (1998), who showed that automatic and unintentionally activated exemplars can lead117

to a decrease in performance even in simple tasks. Wirebring et al. (2018) found that brain118

activations associated with exemplar-based judgment processes where apparent even in conditions119

where the behavioral response was guided by a rule-based strategy. Finally, Herzog and von120

Helversen (2018) argue that from a mere normative and ecological perspective a mixture of121

processes can lead to more accurate judgments than relying on a single strategy.122

The coarse-grained analysis of classifying participants as users of either a rule- or an123

exemplar-based strategy cannot detect subtle mixes of both processes as suggested by these studies.124

Therefore, based on these empirical findings and methodological considerations, Bröder et al. (2017)125

proposed the RulEx-J model as a measurement model to estimate the relative contribution of126

rule-based and exemplar-based processing in quantitative judgments. This model incorporates the127

idea of a process mix in cue-based judgments in line with former research (e.g., Hahn et al., 2010;128

von Helversen, Herzog, & Rieskamp, 2014; Wirebring et al., 2018).129

The RulEx-J model in Bröder et al (2017)130

Up to now the parameters of the RulEx-J model and similar blending models were131

estimated by using maximum-likelihood (ML) or least-squares (LS) optimization procedures (e.g.,132

Albrecht et al., 2019; Bröder & Gräf, 2018; Bröder et al., 2017). In the article presenting the133

RulEx-J model, using these parameter-estimation approaches, Bröder et al. (2017) suggested a134

strong bias in favoring the rule module when the data became noisier. This is because the rule135

module is more complex than the exemplar module and thus able to fit the noise in the data better.136

This behavior of favouring the rule module is a strong disadvantage, since many researchers are137

interested in what aspects of the environment, learning phase, or judgment task influence the138

predominant type of processing (e.g., Bröder et al., 2010; Juslin et al., 2003, 2008; Karlsson et al.,139

2008; Pachur & Olsson, 2012; Trippas & Pachur, 2019; von Helversen et al., 2010). An artificial bias140
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towards rule-based processing might thus lead to wrong conclusions. For example, an experimental141

manipulation could affect the reliability of a cognitive process (by increasing random noise) without142

affecting its nature. Still, this would show as a processing difference in the original RulEx-J model.143

A more promising way of estimating the model parameters and thus the relative contribution of144

each process is a hierarchical Bayesian approach.145

In the next sections, we introduce the RulEx-J model and discuss problems with its current146

implementation in more detail. We then present a hierarchical Bayesian implementation of the147

RulEx-J model as a way to improve upon these problems.148

RulEx-J149

The RulEx-J model is foremost intended as a measurement model to determine the relative150

contribution of rule- and exemplar-based processes in people’s numerical judgments (Bröder et al.,151

2017). Instead of assuming that participants use either a rule- or an exemplar-based processes to152

make their judgments, the RulEx-J model assumes that both processes work in parallel and that the153

final judgment is a mixture of both distinct processes. Hence, people’s judgments are conceptualized154

as a blending of rule- and exemplar-based processes. Similar to the ATRIUM model (Erickson &155

Kruschke, 1998), when a probe is presented to a person, it will be processed by an exemplar module156

E and a rule module R, each making their distinct tentative judgments. According to the RulEx-J157

model, the actual final judgment J is a weighted combination of both interim judgments:158

J = αJR + (1 − α)JE , (1)

where α is the mixture parameter, and JR and JE are the judgment outputs from the respective159

rule or exemplar module2. The α parameter is the main parameter of interest of the model and this160

article, since it measures the relative impact of rule- and exemplar-based processes on the final161

judgment. The α parameter can range from 0 to 1, with larger values indicating more rule-based162

2 This implementation of a mixture between processes assumes that both processes work independently and

in parallel and is only one possible implementation of a mixture process (for more see Section Limitations

and future directions).
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processing and smaller values indicate more exemplar-based processing. However, the estimate of α163

will depend on the actual set of stimuli used for estimation, since, different sets of exemplars, cue164

patterns, and criterion values will differ in their ability to differentiate between the processes. Thus,165

instead of interpreting the absolute α values, one should compare the α values across experimental166

conditions using stimuli of similar logical structure (Bröder et al., 2017).167

In the next sections, we first introduce the formal models which are used to model the rule-168

and exemplar-based processes in the respective module. Subsequently, we introduce the hierarchical169

Bayesian implementation of the RulEx-J model which we use throughout the rest of this article.170

The rule module171

The rule module is implemented as a linear regression model (Einhorn et al., 1979; Juslin172

et al., 2008). The judgment JR of a probe p⃗ with n binary cues is generated by173

JR = w0 +
n

∑

j=1

cuejwj , (2)

where w0 is an intercept and wj , for j ̸= 0, are the cue weights, which can be interpreted as cue174

utilizations. This linear combination framework is quite flexible and can mimic simpler strategies175

focusing on one or only a few cues by choosing appropriate (zero) cue weights.176

The exemplar module177

The exemplar module is represented by the context model (Medin & Schaffer, 1978)178

extended to numerical judgments (see, Juslin & Persson, 2002). The model is based on the179

similarity S between a probe and the exemplars. It is assumed that the probe serves as a retrieval180

cue, activating previously encountered exemplars in memory. The probe p⃗ and each exemplar e⃗ are181

again represented by vectors of n binary cues. The similarity parameters sj , j = 0, ..., n are the182

only free parameters in this model, defined on the interval (0, 1]. They determine how strongly a183

mismatch on cue j between probe and exemplar influences the perceived similarity between probe184

and exemplar that can vary between (almost) 0 and 1. For simplicity, we assume the sj to be185

constant across cues, that is, sj = s, (e.g., Bröder & Gräf, 2018; Juslin & Persson, 2002; von186
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Helversen & Rieskamp, 2008)3. The similarity S(p⃗, e⃗k) between probe p⃗ and one exemplar e⃗k is187

determined according to the similarity rule of the context model (Medin & Schaffer, 1978):188

S(p⃗, e⃗) =
n

∏

j=1

dj with dj =



















1 if pj = ej

s if pj ̸= ej

(3)

where n is the number of cues of each object. For binary cues and assuming the same s-parameters189

for all features this simplifies to:190

S(p⃗, e⃗) = sn−m, (4)

where m is the number of matching cues between p⃗ and e⃗k. The judged criterion value JE of the191

probe p⃗ is then the average of all nc exemplar criterion values c in memory, weighted by the192

similarity of the respective exemplar to the probe:193

JE =

∑n
k=1 S(p⃗, e⃗k)c(e⃗k)
∑n

k=1 S(p⃗, e⃗k)
, (5)

where c(e⃗k) is the criterion value of exemplar k.194

Problems with the RulEx-J model and advantages of a Bayesian hierarchical195

solution196

In this paper, we introduce a hierarchical Bayesian version of the RulEx-J model since the197

hierarchical Bayesian modeling framework offers many advantages and has therefore become a very198

popular tool for estimating latent parameters of cognitive models (e.g., Bott et al., 2020; Mattes199

et al., 2020; Schlegelmilch & von Helversen, 2020; Schubert et al., 2019; for general introductions200

see Lee, 2018; McElreath, 2020; Rouder et al., 2018). For instance, the hierarchical structure of the201

model naturally reflects the hierarchical data structure of many experiments, where several202

3 There are also empirical data showing that this simplified version outperforms the more complex model

with a separate sj parameter for each cue j in predicting individuals behavior (von Helversen & Rieskamp,

2008, 2009).
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participants perform multiple trials of the same task and it is the aim of the researcher to draw203

conclusions on the group level (e.g., Steingroever et al., 2018). Instead of assuming that all204

individuals are the same (i.e., complete pooling approach) or that there are no informative205

similarities between individuals (i.e., no pooling approach) , hierarchical models assume that there206

is some similarity between individuals and, thus, they use the information from each individual to207

inform the estimates of other individuals, while taking into account that some participants might208

allow for more informative and reliable estimates than others (Gelman et al., 2014; McElreath,209

2020). It has been shown that this partial pooling of information can lead to more accurate210

estimates (Efron & Morris, 1977; Farrell & Ludwig, 2008; Katahira, 2016; Rouder & Lu, 2005;211

Rouder et al., 2007)4. The reason is that individual parameters can be described by a group-level212

distribution which, given by the hierarchical structure, allows individual estimates to be informed213

by other individuals in a sample. Individual parameter estimates that are deemed unlikely given214

the overall group-level distribution of parameter values (because they are located at the extremes of215

the distribution) or are unreliable (because they have a large uncertainty) are pulled closer towards216

the group mean. This property called shrinkage is a result from regularization and leads to less217

overfit and more accurate estimates on average, than when parameters are estimated separately on218

an individual level (Gelman et al., 2014; McElreath, 2020). For these reasons, it has been argued219

that hierarchical methods provide a more thorough and efficient evaluation of models in cognitive220

science (Rouder et al., 2005; Shiffrin et al., 2008; van Ravenzwaaij et al., 2011). The pooling of221

information of hierarchical Bayesian models is especially useful when there is only a limited number222

of data available for each individual (Katahira, 2016; McElreath, 2020), as is common in many223

multiple-cue judgment studies. Since these studies rely on the learning of exemplars and cues, the224

number of trials of each person is often small. For instance, in a non-exhaustive literature search,225

the median number of stimuli in the judgment phase was 16, ranging from 9 to 100 (see the226

supplement file in the online materials). Although hierarchical models are not exclusive to the227

4 However, the hierarchical structure is an assumption of the model about individual differences and how

latent parameters of participants are related to each other. Thus, hierarchical models can also lead to less

accurate estimates in some cases, when the hierarchical assumptions deviate from the underlying properties

of the data (Scheibehenne & Pachur, 2015)
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Bayesian modeling framework, its flexibility makes it easy to implement hierarchical structures for228

more complex cognitive models.229

A hierarchical Bayesian approach not only can increase the accuracy of parameter estimates230

of individuals, but also allows to make better inferences about group differences. Boehm et al.231

(2018) showed that the common two-step approach, where parameters are estimated separately for232

each individual and then subsequent tests (e.g., t-test, ANOVA) are performed on these individual233

parameters, can lead to biased inferences. In comparison, the flexibility of the Bayesian modeling234

framework allows to directly model group differences of latent parameters (Boehm et al., 2018).235

Furthermore, as suggested by Bröder et al. (2017), one problem with their parameter236

estimation method (LS) is that the RulEx-J model strongly favors a rule-based processing when237

there is substantial noise in the data. The parameter estimates of α will tend to be biased towards238

1.0, since the rule module has more free weight parameters (e.g., five when there are four cues) than239

the exemplar module, which has only one parameter per participant5 (the s parameter), and thus is240

more able to (over)fit the noise in the data6. We assume that a Bayesian approach will reduce this241

bias, since the different complexity of the exemplar- and rule-modules are automatically taken into242

account.243

Therefore, by using a hierarchical Bayesian modeling approach, we aim to improve on the244

shortcomings and problems of the original parameter-estimation method used by Bröder et al.245

(2017) and present interested researchers with a tested and state-of-the-art alternative.246

5 This difference in number of parameters is partially due to the choice of making equality constraints for the

parameters in the exemplar module, where the si parameter of each cue i are constrained to be the same

value. Without this constraint, the exemplar model would have only one parameter less than the rule model.

See the section The exemplar module above

6 The number of parameters of a model is only one factor determining the complexity of the model. Other

factors such as the parameter range and the functional form (i.e., how the parameters are combined) also

influence a model’s complexity.
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The hierarchical Bayesian RulEx-J model247

The graphical model of the hierarchical Bayesian RulEx-J model is depicted in Figure 1.248

We use the notation of Lee (2008), in which observed variables (i.e., the data) are shown as shaded249

nodes and unobserved variables (i.e., model parameters to be inferred) are shown as unshaded250

nodes. Discrete variables are indicated by square nodes and continuous variables are indicated by251

circular nodes. Stochastic variables are indicated by single-bordered nodes, and deterministic252

variables are indicated by double-bordered nodes.253

Figure 1

Graphical model representation of the hierarchical Bayesian RulEx-J model.

Jit
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Like the original RulEx-J model, the Bayesian hierarchical version assumes that the254

response yit of the ith participant in a given trial t is based on a weighted average of a rule-based255

and an exemplar-based process.256

For the rule module, the weight parameter wij of the ith person and jth cue is assumed to257

be normally distributed with a corresponding mean µj and a general standard deviation σw
7. Thus,258

7 Note, that in JAGS the normal distribution is parameterized in terms of precision τ and not standard
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we assume that for each specific cue the weight of a person is randomly distributed around a cue259

specific mean (µj). The predicted judgment of the rule module JRit of the ith person in the tth260

trial is then computed based on Equation 2 and the corresponding cues cit of the stimulus in this261

trial and of this person.262

For the exemplar module, the individual s parameters are drawn from a group-level263

Beta(µs,λs) distribution, defined on the interval (0,1] to reflect the boundaries of the s parameter8.264

The group-level hyperparameters µs and λs are not the standard shape parameters of the Beta265

distribution (i.e., as and bs). Rather µs and λs can be conceived as the mean and a measure of266

precision of the group-level distributions and thus, can be more meaningfully interpreted than the as267

and bs parameters (Ferrari & Cribari-Neto, 2004; Lee & Wagenmakers, 2013). The as and bs shape268

parameters from the Beta distribution can then be computed from µs and λs via as = µs × λs and269

bs = (1 − µs) × λs. The predicted judgment of the exemplar module JEit of each person i in each270

trial t is then computed based on Equations 4 and 5 and the corresponding cues cit of the stimulus271

in this trial and of this person, as well as the exemplars ei learned by the respective person i.272

Like the si parameters, we assumed that the αi parameters of each person i follow a273

group-level Beta(µα,λα) distribution. The final predicted judgment Jit of each person i in each trial274

t is then computed according to Equation 1.275

The observed judgment yit of the ith participant in the tth trial is given by a normal276

distribution centered around the final predicted judgment Jit with some precision σi.277

Simulations278

In this section, we present the results of two simulation studies. In the first simulation, we279

assessed whether the hierarchical Bayesian implementation of the RulEx-J model could accurately280

recover parameter values, which is necessary if we want to apply the model to real data, where the281

deviation σ or variance σ2. In the model code, we therefore transform the standard deviations to precision

with τ = 1

σ2 .

8 In the model, we used lower and upper bounds of 0.001 and 0.999 to avoid possible problems on the

parameter boundaries.
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true values of the parameters are not known. In the second simulation, we assessed the robustness282

and behavior of the hierarchical Bayesian RulEx-J model when there is noise in the data. These283

conditions are more similar to empirical data and thus might reveal certain caveats when applying284

the Bayesian hierarchical RulEx-J model. To test the robustness of the hierarchical Bayesian285

RulEx-J model against noise in the data, we generated judgment data with various levels of noise286

and with different underlying similarities between the α parameters of the synthetic participants.287

We then estimated the parameters using the hierarchical Bayesian RulEx-J model and with the288

least-squares optimization routine as in the original paper (Bröder et al., 2017). We suspected that289

the hierarchical Bayesian model would be more robust against error than both non-hierarchical290

versions. We also expected that the hierarchical Bayesian RulEx-J model would more accurately291

recover the α parameters of different synthetic participants, the more similar the individual true292

parameters were. Although we report the results for all individual-level parameters (α, s, wj), the293

α parameter is the parameter of central interest and of major relevance for the questions in this line294

of research. In the following sections, we first present how we generated the simulated data and how295

parameters were estimated, before presenting the results.296

Method297

Data generation298

In the first step of the simulations, we generated a stimulus matrix, consisting of 32 stimuli299

that can be created with five binary cues. The criterion values of the stimuli were computed300

according to a linear additive rule:301

c = w0gen
+ cue1w1gen

+ cue2w2gen
+ cue3w3gen

+ cue4w4gen
+ cue5w5gen

(6)

where cuej represents the binary cues coded with 0 and 1 and wjgen
the corresponding cue weights302

used for generating the criterion values. Of these 32 stimuli, 16 were randomly selected as exemplars.303

To avoid a perfect linear predictability of the criterion and, thus, to make the predictions of the rule304

and exemplar model differentiable (Bröder & Gräf, 2018; Bröder et al., 2017), the eight most305

extreme stimuli (i.e., the four stimuli with the highest and the four stimuli with the lowest criterion306
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value) were never selected as exemplars. We also switched the criterion values between three pairs307

of exemplars, that is, if one exemplar a of this switch pair would have a criterion value of 31 and308

exemplar b of the pair a value of 59, the new values after switching would be 59 for a and 31 for b.309

The cue weights wjgen
for cues j = 0, ..., 5 had to sum to 100. For cues j = 1., ..., 5 the weights were310

randomly drawn from a truncated normal distribution with µ = 15, σ = 10, an upper bound of 100,311

and a lower bound of 1. The value of the intercept w0gen
was drawn from a truncated normal312

distribution with µ = 10, σ = 1, an upper bound of 100, and a lower bound of 1.313

In the second step, we drew the generating parameter values for n = 30 simulated314

participants in the first simulation, which is a typical sample size in such experiments (e.g., Bröder315

et al., 2017; Hoffmann et al., 2013; Trippas & Pachur, 2019)), and n = 50 in the second simulation.316

In the first simulation, the α parameter values were drawn from a uniform Beta(1,1) distribution317

and in the second simulation from a uniform Beta(1,1), a Beta(5,5), or peaked Beta(15,15)318

distribution, simulating different levels of underlying similarities between participants (see Figure 2319

for an illustration of the resulting distributions). The s parameter values were drawn from a slightly320

skewed Beta(3,5) distribution which reflects a sensible range of s parameter values found in321

experimental studies (Izydorczyk & Bröder, 2021). The parameter values for the cue weights wj322

were drawn from a truncated normal distribution with µ = wjgen
, σ = 1, an upper bound of 100,323

and a lower bound of 1. Thus, the parameter values of the cue weights wj of the rule module of324

each participant were distributed around the corresponding cue weight wjgen
which was used to325

generate the criterion values of the stimuli. This reflects the idea of participants learning the cue326

weights in an experiment.327

In the third step, judgment data for each simulated participant were generated with the328

RulEx-J model according to the drawn parameter values of Step 2 and the generated stimulus329

matrix in Step 1. In the second simulation, we added normal distributed error to the generated330

judgments of each person with µ = 0 and σϵ = 0, 2, 4 or 8. We then estimated the parameters with331

the Bayesian RulEx-J model in both simulations, and also using LS-estimation in the second332

simulation. Next, we computed the root-mean-squared-error (RMSE) as a measure of absolute333

deviation of the estimated posterior mean of each parameter from the corresponding true parameter334
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values as a measure of parameter recovery accuracy in both simulations.335

All steps were repeated 100 times in the first simulation. Since there were 12 different336

simulation design combinations in the second simulation, we reduced the number of repetitions337

from 100 to 50 in order to reduce the time needed to run the simulation. Parallelizing the338

repetition over 60 cores still took the simulation 80h to complete. Given the reduced number of339

repetitions, we increased the number of simulated participants from n = 30 to n = 50 in order to340

reach a similar overall sample size as in the first simulation.341

Figure 2

Illustration of the Beta distribution for different values of the shape parameters a and b
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Prior distributions342

Based on the way we generate our simulated data and the underlying true parameters as343

described in the previous section, we used a Normal(µ = 20, σ = 40) prior for the group-mean344

parameters µj . We also set a lower bound of 0 and an upper bound of 100 on µj based on the345

possible range of values in our simulation. This truncated normal prior corresponds to giving the346

most weight to simulation specific sensible values, while still having a large amount of uncertainty.9347

For the group-level cue-weights standard deviation σw we used a weak Exponential(0.5) prior,348

which gives more weight to smaller values, indicating more similarity of the cue weights between349

9 We also tested the model with a µj ∼ Uniform(0,100) prior. Since results of this simulation do not differ

from those reported here, we stayed with the more informative and reasonable µj ∼ Normal(20, 40) prior.
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participants. For the group-level parameters µs and λs, we chose priors of µs ∼ Beta(1,1) and λs ∼350

Uniform(1,100), so that the resulting prior distribution of the subsequent individual si parameters351

was uniform. We used the same priors for µα and λα. Finally, we used again a weak352

Exponential(0.5) prior for σi.353

Parameter estimation354

In both simulations, the posterior distributions of the parameters were estimated by using355

Markov Chain Monte Carlo (MCMC) sampling. All of our simulation results are based on MCMC356

chains with 10,000 samples from each of two independent chains10, collected after 20,000 burn-in357

samples were discarded, 20,000 adaptive iterations, and thinning by recording every 35th sample.358

Convergence of the MCMC chains was assessed for one iteration of the simulation by visual359

inspection and the R̂ statistic (R̂ ≤ 1.02 for all parameters, Gelman and Rubin (1992), see the360

example of the MCMC traces in the online materials, referred to in Footnote 1). We then used the361

means of the posterior distributions as estimates of the respective parameters.362

Simulation Results363

How well does the model recover parameters?364

We found very good parameter recovery for the α (RMSE = 0.01), s (RMSE = 0.02), and365

cue weight parameters (RMSE ≤ 0.27) over all repetitions of the first simulation, as indicated by366

the low RMSE values. The intercept parameter w0 showed the worst parameter recovery results367

(RMSE = 0.54), see also Figures 3, 4, and 5.368

How does the model behave when there is noise in the data369

The results for the second simulations with the largest amount of noise (σϵ = 8) are shown370

in Table 1. The full results can be found in the online materials of this project.371

10 We used only two chains here to reduce the computation time and demand of the simulation. However, we

checked the convergence in one run of the simulation beforehand using three chains and we would

recommend using more than two chains in actual applications.
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α. Regarding the parameter of most interest, α, the results showed that the hierarchical372

Bayesian model was overall better in recovering the data-generating parameter values for high error373

variances than the LS-method, as indicated by the lower RMSE values in Table 1. In addition, as374

evident from Figure 3A the parameters estimated with the hierarchical Bayesian model were less375

systematically biased towards 0 or 1 than the LS-estimates, which on average, tended to376

overestimate the true values. In some instances, the parameters were even estimated to be at the377

upper boundary, independent of the true value. Although, we found very similar patterns when the378

α parameters of the simulated participants were drawn from a peaked Beta(15,15) distribution,379

contrary to what we would have expected, the accuracy of the hierarchical Bayesian model did not380

increase substantially. Yet, the estimates were still less biased and more accurate compared to the381

LS-estimates. When we inspected Figure 3B the estimates of the hierarchical Bayesian model seem382

to be shrunken towards the empirical mean value of .45.383

Figure 3

Scatterplot of the true and estimated α parameter values
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Note. The true α parameter values were drawn from a A Beta(1,1) or B Beta(15,15) distribution and for

either no (σϵ = 0) or large (σϵ = 8) amounts of noise in the generated data. The two rows correspond to the

different parameter estimation methods.

s. Overall, the s parameter is less well recovered than the α parameter when there is a lot384
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of noise in the simulated data as indicated by the higher RMSE values in Table 1. However, the385

hierarchical Bayesian estimates still had the lowest RMSE values. An inspection of Figure 4386

suggests that the two estimation procedures show very different patterns of misestimation. The387

hierarchical Bayesian estimates became more clustered or shrunken (i.e., lower true values were388

overestimated and higher true values underestimated) towards the average of the data-generating389

values Mtrue = 0.37 when the error variance increased. The LS-estimates showed the more erratic390

behavior as 40.01 % of the estimates were either estimated at the lower or upper possible boundary.391

Figure 4

Scatterplot of the true and estimated s parameter values for different levels of noise (σϵ).
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different parameter estimation methods.

wj . Both estimation methods showed a bad parameter recovery for the intercept w0392

parameter when there was a lot of noise in the simulated judgments, as indicated by the high RMSE393

values in Table 1 and Figure 5A. Fortunately, the cue weight parameters w1 to w5 (represented via394

w1 in Table 1 and Figure 5B) were better recovered by both methods, with the lowest RMSE again395

for the hierarchical Bayesian model. Similar to the recovery of the s parameter, the estimation396

procedures showed very different patterns of misestimation, as evident in Figures 5B: The397

LS-estimates showed the tendency to estimate the parameters at the lowest possible value regardless398
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of the true value. In the hierarchical Bayesian model the parameter values of all 50 synthetic399

participants in one iteration of the simulation were estimated to have the same, or a very similar400

value to the other participants in the given iteration, demonstrating a strong case of shrinkage.401

Figure 5

Scatterplot of the true and estimated w0 (A) and w1 (B) parameter values with either no (σϵ

= 0) or large (σϵ = 8) amounts of noise in the generated data.
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different parameter estimation methods.

Summary and Discussion402

Overall, the results of the simulations show that the hierarchical Bayesian RulEx-J model is403

able to recover the underlying parameters and, as expected, doing so more accurately than the404

LS-approach, when there is noise in the data. However, the value of parameter recovery simulations405

in general can be rather limited (Lee, 2018; Lee et al., 2019). Even a model with perfect parameter406

recovery does not tell us that we will draw correct inferences from empirical data or that this model407

reflects the underlying data-generating process. Therefore, the results of this simulation serve408

foremost as a sanity check that the Bayesian model is correctly implemented and that the409

hierarchical Bayesian approach indeed leads to more accurate recovered parameters than the LS410
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Table 1

Root-mean-squared-error between the true and estimated parameters over all repetitions for

high error variances (σϵ = 8)

Beta Type α s w0 w1

hB 0.10 0.15 3.48 1.95
a = 1, b = 1

LS 0.28 0.36 14.53 11.00

hB 0.10 0.15 4.76 2.50
a = 5, b = 5

LS 0.25 0.34 12.09 8.60

hB 0.09 0.16 4.51 2.10
a = 15, b = 15

LS 0.24 0.35 10.98 7.63

Note. hB = hierarchical Bayesian, LS = Least-Squares, a and b are

the shape parameters of the corresponding beta distribution from which

the α parameter values were drawn.

approach that was originally used. The recovered parameter estimates of the hierarchical Bayesian411

approach were also less systematically biased, this is, there was not a strong tendency to over- or412

underestimate the true parameter values.413

However, we still gain important additional insights from the simulations. The results show414

how the model parameters, depending on the parameter-estimation method, behave under more415

realistic conditions (i.e., when there is noise in the data) and what inferences we might be able to416

draw based on the data available. This is how informative our data are in this simulated417

experimental design. The observed pattern of misestimation and behavior of the hierarchical418

Bayesian model was more reasonable when there was a lot of noise in the data. Whereas the419

LS-estimates showed strong systematic biases or unpredictable erratic behavior (e.g., by estimating420

parameters to be on one or both of the parameter boundaries independent of the true value11), the421

11 The extreme cases of misestimations (i.e., parameter being estimated to be 1, regardless of the true value)

for the α parameter disappeared when we relaxed the equality constraint of the s parameters of the exemplar
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patterns of the hierarchical Bayesian model are demonstrations of the before mentioned shrinking422

property of hierarchical models (shown in Figures 3, 4 and 5). This is, the estimates are shrunken423

towards their corresponding group means, which in turn can lead to lower RMSE than424

non-hierarchical estimates (Rouder et al., 2018). This behavior is in line with previous studies that425

found similar results (e.g., Farrell & Ludwig, 2008). There was more shrinkage, when the synthetic426

participants were more similar to each other (see Figures 3A and 3B) or when there was more noise427

in the data (see Figures 3, 4 and 5). If there is a lot of noise in the data, these results indicate that428

for an experimental design with 32 trials as in the simulation, it might not be possible to achieve429

accurate estimates of parameter values of individuals. Given that the experimental design, the430

stimulus structure, and the number of trials is typical for multiple-cue judgment research, the431

results suggest that researchers should focus on making inferences about group-level parameters432

when using the hierarchical Bayesian RulEx-J Model. In order to get more precise estimates on an433

individual level, one has to collect more trials per participant. Figure 6 shows the difference in434

individual parameter-estimation accuracy for the s parameter (for α ∼ Beta(15,15) and σϵ = 8),435

however, this time with 128 instead of 32 trials per participant. Increasing the number of trials436

increased the average correlation in simulated experiments (i.e., repetitions of the simulation) from437

r = .49 to r = .76.438

It should also be noted that, although we report here the results for all individual level439

module, this is, we allowed the si parameter of each cue i to vary freely and not be constrained to have the

same value. Thus, the tendency of the rule-based model to overfit (when using LS) is due to the choice of

constraining the s parameters to have the same value. Although, the recovery of the LS-estimated α

parameters under high levels of noise improves when the exemplar model with free s parameters is used, the

general pattern of results reported here stayed the same (i.e., hierarchical Bayesian model recovers the true

parameter values more accurately under high levels of noise). The results can be found in the supplementary

materials. Instead of loosening up the equality constraints on the s parameters, estimating parameters using

a cross-validation approach could also prove useful, if researchers still want to use LS or ML estimations.

However, as mentioned before, many studies find that exemplar models with free s parameters or attention

weights show to be overly flexible and prone to overfit when using generalization tests (Hoffmann et al., 2013,

2014, 2016; von Helversen & Rieskamp, 2008, 2009)
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parameters (α, s, wj), the α parameter is the parameter of central interest and major relevance for440

the questions in this line of research. The results of our simulations demonstrated clearly that the441

hierarchical Bayesian RulEx-J model gives more precise and less biased individual estimates for the442

α parameter and, thus, should be preferred to alternative estimation methods.443

Figure 6

Scatterplot of the true and estimated s parameter values of 30 participants with 128 trials

each, for σϵ = 8 and α ∼ Beta(15,5).
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Application444

In this section, we applied the hierarchical Bayesian RulEx-J model to data from three445

different experiments to test the validity of the α parameter, as well as to investigate if the446

improved model confirms previous results. First, we ran a preregistered experiment where we447

induced either rule-based or exemplar-based judgments from participants to validate the α448

parameter. Second, we reanalysed data from one of the experiments with which the original449

RulEx-J model was tested (Experiment 1B in Bröder et al., 2017). Third, we also reanalysed data450

from a different lab were the experiment showed clear differences between groups in the dominant451

type of judgment process used to complete the task (Experiment 1 in Trippas & Pachur, 2019).452

This approach allows us to show how the model can be applied to different experiments, using453

different stimuli, manipulations and judgment criteria. Furthermore, we can test if we are able to454

reproduce previous results when using the hierarchical Bayesian approach by reanalyzing data from455

two existing experiments, as well as testing the validity of the α parameter in a new experiment. In456

addition, we are able to get an idea of what effect sizes are to be expected under different457
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interventions manipulating the dominant mode of processing.458

Data Analysis459

Comparing α between conditions460

All three data sets were analysed in the same way. Instead of fitting the model separately to461

each condition in the following experiments and then comparing the posterior means of the462

individual α parameters with a subsequent independent two-sample t-test, the Bayesian hierarchical463

approach also allows us to model these group differences directly with a slight reparameterization of464

the model as shown in Figure 7. This parameterization in terms of difference between group-level465

parameters has several advantages. First, the explicit modeling of the difference between both466

conditions allows us to directly implement potential theoretical assumptions and hypotheses about467

this difference via the prior distribution (Lee & Wagenmakers, 2013) and add potential predictors468

for the group difference (e.g., Bott et al., 2020; Schubert et al., 2019). Second and more469

importantly, Boehm et al. (2018) showed that the two-step approach of running t-tests on470

individual posterior estimates, can lead to incorrect conclusions and is biased towards the471

alternative hypothesis. To implement the parameterization in terms of group differences for the α472

parameter we used the following reparameterization: exp(0.5)473

αi = Φ(αreali) (7)

αreali ∼ Normal(µαj , τα) (8)

µα,k=1 = µ0 +
1

2
(δ × σα) (9)

µα,k=2 = µ0 −
1

2
(δ × σα) (10)

µ0 ∼ Normal(0, 1) (11)

δ ∼ Normal(0, 1) (12)

τα =
1

σ2
α

(13)

σα ∼ Exponential(0.5) (14)
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The parameter µα reflects the overall α mean on the real scale. The parameter δ reflects474

the differences between both conditions on a standardized scale and hence, it reflects the effect size475

of the fixed effect between experimental conditions. The α value of each person i on the real scale476

ranging from −∞ to ∞ (αreali) is then drawn from a normal distribution with a mean depending on477

the condition of the person with µα,j=1 for the rule condition and µα,j=2 for the exemplar condition.478

To get α, the αreali is then probit transformed to make sure the values are on the scale from 0 to 1.479

Figure 7

Graphical model representation of the hierarchical Bayesian RulEx-J model with two-sample

between-subject comparison of α.
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Using this model version, we can then compute Bayes Factors based on the Savage-Dickey480

density ratio (SDDR, Vandekerckhove et al., 2015; Wagenmakers et al., 2010) to test hypotheses481

about the α parameters between conditions by computing the ratio of the prior density p(δ = 0♣H1)482

and posterior density p(δ = 0♣D, H1) at point δ = 012. Since we expected to find on average larger483

α values in the rule condition than in the exemplar condition (i.e., δ > 0), we used only those484

12 The density of the posterior distribution was computed with the dlogspline function in the polspline
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MCMC samples to calculate the densities that obeyed this order-restriction (Wagenmakers et al.,485

2010). The resulting Bayes factor of this ratio BF10 = p(δ=0|H1)
p(δ=0|D,H1) indicates the relative evidence for486

H1 (i.e., δ > 0) compared to H0 (i.e., δ = 0, Kass & Raftery, 1995; Morey et al., 2016;487

Vandekerckhove et al., 2015).488

For all data sets, we collected 3,000 samples from each of 3 independent MCMC chains,489

after 30,000 burn-in samples were discarded, 30,000 adaptive iterations, and thinning by recording490

every 30th sample. The convergence of the chains was checked by visual inspection and the491

standard R̂ statistic (R̂ < 1.02, Gelman & Rubin, 1992). The R scripts, the JAGS models, a492

summary of the posterior estimates of the hyperparameters, MCMC traces, and the results files can493

be found in the online materials of this project.494

In contrast to the parameter-recovery simulations, we used more informative prior495

distributions for the hyperparameters of the cue-weights µwj
to improve the convergence of the496

MCMC-chains. Instead of using uniform distributions, the prior distributions were centered around497

the cue-weight values used to generate the criterion values of the stimuli in the experiments. This498

is, we used prior distributions of Normal(xj ,σ) for the hyperparameters µwj
, where xj is the499

cue-weight value used to generate the criterion values in the corresponding experiments (e.g., x =500

{10,25,20,15,13} in, Bröder et al., 2017; or x = {0.1,0.4,0.3,0.2,0.1} in Trippas & Pachur, 2019). In501

addition, we implemented a so-called parameter expansion for the individual cue weight parameters502

wji to improve the convergence of the chains (Gelman, 2006; Lee & Wagenmakers, 2013, p. 164-167)503

when analyzing the Bröder et al. (2017) data set, since the initial convergence of the chains was not504

satisfactory for these parameters in this data set. Given the different scale of criterion values in505

Trippas and Pachur (2019) (0-1 instead of 1-100), we also adjusted the priors for the different506

variance parameters (i.e., σi, σw, and Normal(µwj
,σ)). The remaining prior distributions remained507

the same as in the parameter-recovery simulation.508

package in R (Kooperberg, 2020)
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Model comparison509

In order to evaluate whether the assumption of two rather than just one of the cognitive510

modules is necessary, we also computed Bayes Factors per person comparing the RulEx-J model to511

each of the two sub-modules, this is, only rule- or exemplar-based processing. Because the two512

sub-modules are nested in the RulEx-J model when α = 1 (only rule-based processing) or α = 0513

(only exemplar-based processing), we calculated the SDDR-Bayes-Factors based on the posterior514

distribution of α of each person.515

Validation Experiment516

We initially planned and ran an experiment based on the method and procedure of Bröder517

et al. (2017) Exp. 1A, where participants were instructed to use either a rule-based or518

exemplar-based strategy to solve the task. However, the manipulation did not work as expected,519

regardless of the analysis method used. We expect this was because we had to conduct the520

experiment online via Prolific due to the COVID-19 pandemic. Given the rather difficult and521

effortful nature of the task, we suspect that our chosen manipulation was too weak for an online522

setting13. The data can be found in the online materials of this project.523

Therefore, we decided to run an additional experiment fitted to the online setting by having524

a simpler procedure without an extensive learning phase and a stronger manipulation. Since the525

main goal of this experiment was to validate and test the ability of the hierarchical Bayesian model526

to detect differences in the α parameter between groups or conditions, we designed an experiment527

where the information participants got to solve the task presumably fostered either rule- or528

exemplar-like processing. In the exemplar condition, we gave participants information about some529

exemplars, their features, and their criterion values, and instructed them that stimuli can be judged530

based on the similarity (i.e., the shared features) with these exemplars. In the rule condition, we531

informed participants that the criterion value was a linear combination of the features of the stimuli532

and also gave them a range of values for the criterion increases associated with each cue value.533

13 We are also not aware of other multiple-cue judgment studies which were conducted online and not in the

lab.
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Thus, instead of instructing participants on what to learn during a learning phase as in Bröder et al.534

(2017) Exp. 1A (i.e., the criterion values, the cues, or a rule connecting both), we directly gave535

participants the information they should have learned to respond with a exemplar-based or536

rule-based strategy.537

Method538

Design and Procedure. The experiment was conducted in accordance with the539

ethical standards of the American Psychological Association (APA). The experiment was run online540

using lab.js (Henninger et al., 2021). Participants first gave their consent and then continued to541

read the instructions of the task. Participants were randomly assigned to one of two conditions:542

The exemplar (n = 126) or the rule condition (n = 112). In both conditions, the participants had543

to judge all 16 flowers twice, for a total of 32 trials. Depending on the condition, participants got544

different aids and instructions to be able to solve the task. In the exemplar condition, a visual scale545

(cf. Figure 8B) was presented together with the to be judged flower in each trial. The visual scale546

aimed to make participants base their judgments of a stimulus on the similarity with the exemplars547

and thus induce exemplar-based processing. For this reason, the visual scale depicted the548

approximate location of eight flowers (the exemplars) on a scale of prices from 0 to 100€, indicating549

the price of the flowers according to their cues. The participants were then told that they could550

judge the price of flowers according to the features and prices of the exemplary flowers depicted on551

the scale. For example, the left flower in Figure 8A is almost identical to the exemplar flower with552

the lowest price on the visual scale in Figure 8B. The only difference is the type of root (shallow or553

thick). In the rule condition, participants were told that the price of the flowers increased554

depending on the features. For instance, red flowers were more expensive than blue flowers, but the555

exact price increases were not known. For each of the four cues and the intercept (i.e., the price for556

the cheapest flower) participant received a range of possibles price increases. For instance,557

participant were told that red flowers cost 20 to 30€ more than blue flowers. The price ranges558

displayed on each trial for each of the four features and the intercept were 30 to 40€ (cue1), 20 to559

30€ (cue2), 10 to 20€ (cue3), 5 to 15€ (cue4), and 7 to 13€ (intercept), respectively.560
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Figure 8

Example of stimuli and visual scale used in the validation experiment

A B

Note. A Example of stimuli used in the validation experiment Flowers could vary on four binary cues: leave

form, blossom color, petal form, and root form. B The visual scale shown to participants in the exemplar

condition. It shows the approximate location of eight flowers (the exemplars) on a visual scale from 0 to

100€, indicating the price of the flowers according to their cues.

Hypothesis. If the manipulation of processing was successful and the α parameter of561

the RulEx-J model adequately reflects the process mixture, we would expect substantially higher α562

parameter estimates in the rule condition than in the exemplar condition. Hence, we expected to563

find a δ > 0 which indicates a higher average α level of the rule condition compared to the564

exemplar condition.565

Materials and Measures. Participants were presented with 16 flowers and asked to566

judge the price of each flower on a scale from 0 to 100. Each flower was characterized by four567

binary cues, which corresponded to four features (cue1 : leaf form, cue2 : blossom color, cue3 : petal568

form, cue4 : root form). Two examples are shown in Figure 8A. The criterion values were computed569

via a linear function of the form Criterion = 10 + 32cue1 + 27cue2 + 18cue3 + 9cue4. The570

assignment of cues and cue values to the features was the same for each participant.571

Participants. In total we collected data from N = 266 participants who completed the572

study via university mailing lists (n = 45) and Prolific Academic (n = 221) 14. As preregistered, we573

14 We initially wanted to collect participants only via university mailing lists, however, due to very slow

recruitment because to the COVID Pandemic we decided to also recruit participants via Prolific Academic

Ltd.
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excluded n = 4 participants who indicated that their data should not be used for data analysis574

(Aust et al., 2013). Furthermore, since it was important that participants understood all575

instructions clearly, we also decided to exclude n = 5 participants who indicated that they did not576

speak German fluently. In a last step, we excluded n = 19 participants who had an RMSE greater577

than 25 between their judgments and the actual criterion values, which indicated that they did not578

follow the instructions15. Our final sample thus consisted of N = 238 participants (117 female, 4579

non-binary, mean age = 29.87, SD = 9.88).580

Results581

Figure 9

The posterior means of α with the corresponding 95% credibility intervals (CI) for each

participant in both conditions.
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Note. A the new validation experiment, B Experiment 1B of Bröder et al. (2017), C Experiment 1B of

Trippas & Pachur (2019).

Difference in α between conditions. The posterior distribution of δ, as shown in582

Figure 10, had a mean of 3.62 (SD = 0.40, 95%-CI = [2.90,4.47]). The Bayes-Factor indicates that583

the hypothesis of having larger α values in the rule condition (or δ > 0, H1) is BF10 > 1000 times584

15 We did not preregister the last two filtering steps (i.e., based on language and RMSE). However, the

results presented in this section do not change substantially, when the excluded participants were included.



BAYESIAN RULEX-J 31

more likely than the hypothesis that there is no difference in α between the conditions (H0)16. The585

posterior means of the individual α’s with the corresponding 95%-credibility-intervals (CI) for each586

participant in both conditions are shown in Figure 9A.587

Model comparison. The results of model comparison analysis on an individual level588

are shown in Table 2. Most participants in the exemplar condition were best described by the589

RulEx-J model (58.73%) and then by the exemplar model (37.30%). In the rule condition, the rule590

model fitted best for most participants (53.57%) compared to the RulEx-J model (45.54%).591

Figure 10

Prior and posterior distribution of the effect size δ for the hierarchical Bayesian analysis.
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Bröder et al. (2017)592

Given the rather technical nature of the validation experiment without the typical learning593

phase and a direct manipulation of the α parameter, we also applied the hierarchical Bayesian594

RulEx-J model to a more realistic data set, which was used in the original RulEx-J paper by595

16 The results of the analysis using least-squares estimation can be found in the online supplementary

material
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Table 2

Proportion of best fitting model for each person as determined by the SDDR-Bayes-Factor

Experiment Condition % RulEx-J % Rule % Exemplar

exemplar 58.73 3.97 37.30
Validation Exp.

rule 45.54 53.57 0.89

exemplar 16.67 10.00 73.33
Bröder et al. (2017)

rule 50.00 23.33 26.67

dcl 70.00 26.67 3.33
Trippas & Pachur (2019)

lbc 40.74 55.56 3.70

Note. dcl = direct criterion learning, lbc = learning by comparison.

Bröder et al. (2017). In this experiment, the 60 participants had to judge the severity of a patient’s596

disease on a scale from 0 to 100, based on a set of four binary symptoms (e.g., fever597

vs. hypothermia). The experiment itself consisted of four phases, a memorization phase, a learning598

phase, a decision phase, and a final testing phase. However, the decision phase and its data are not599

important for this reanalysis, since the focus of our work lies on the judgment data. Since the600

experiment focused on memory-based judgments, in the memorization phase participants had to601

learn the cues from 14 of 16 patients (the two most extreme patterns were left out) until they602

remembered 80% of the cues correctly. In the training phase, participants then had to judge the603

severity of illness of eight patients (the exemplars). They then received feedback about the actual604

criterion value after their judgment. For the experimental manipulation, participants were605

instructed to either use the feedback about the correct criterion values to learn a mathematical rule606

connecting cue and criterion values (rule condition) or to memorize the patients and their607

respective criterion values (exemplar condition). The training phase consisted of eight blocks with608

eight trials each (one for each exemplar). In the final testing phase, the participants had to judge609

the criterion values of all 16 patients. Depending on the condition, they were instructed to either610

apply the mathematical rule they learned earlier (rule condition) or judge untrained objects by611
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their similarity to the memorized objects (exemplar condition). The results in the original study612

were based on least-squares estimation and showed that the average α parameter was larger in the613

rule condition (M = .60, SD = .30) than in the exemplar condition (M = .39, SD = .23). By614

reanalyzing the data with the Bayesian hierarchical RulEx-J model, we expected to replicate this615

result, this is, δ > 0 when directly modeling group differences in α.616

Results617

Difference in α between conditions. The δ parameter of the group-difference618

RulEx-J model had a posterior mean of 1.57 (SD = 0.42, 95%-CI = [0.80,2.44]). The Bayes factor619

of BF10 = 367.15 indicated extreme evidence for the alternative hypothesis which assumed a620

difference in the α parameter between conditions (i.e., δ > 0). Again, Figure 9B shows the posterior621

means of the estimated α parameters with the corresponding 95%-CI for each participant in both622

conditions.623

Model comparison. For most participant in the rule condition the RulEx-J model was624

the best fitting model (50.00%), but in the exemplar condition the exemplar model was better625

describing the behavior of more participants (73.33%) than the RulEx-J model (16.67%, see626

Table 2).627

Trippas & Pachur (2019)628

To supplement our analyses with data from another lab, we reanalysed data from629

Experiment 1B from Trippas and Pachur (2019). In a series of well-designed experiments Trippas630

and Pachur (2019) investigated why people’s reliance on rule-based and exemplar-based processing631

as well as generalization ability differs substantially between two types of learning tasks: direct632

criterion learning (dcl) and learning by comparison (lbc). In their experiments Trippas and Pachur633

(2019) used 15 toxic bugs as stimuli, which could differ in four binary cues and vary in their toxicity634

level between 0 and 1. In Experiment 1 participants were randomly assigned to one of three635

conditions: learning by comparison, direct criterion learning, or direct criterion learning with a636

reference object. However, for our purpose we only focus on the first two conditions (dcl and lbc),637

which led to the greatest differences in what strategy was used. Each condition consisted of n = 30638



BAYESIAN RULEX-J 34

participants. In the training phase of the direct criterion learning condition, in each trial639

participants had to judge if a presented bug was deadly (i.e., had a toxicity level higher than .5) or640

not. After each decision, participants got feedback indicating if their decision was correct or not, as641

well as the exact toxicity level of the bug. In the learning by comparison condition, participants642

were presented with two bugs in each trial and asked to decide which was more toxic. After each643

trial, participants got again feedback about the correctness of their response, but not about the644

exact toxicity level. In both of the conditions, the same 10 out of the 15 possible bugs were used as645

exemplars. After the training phase, participants in both conditions had to estimate the continuous646

toxicity level of each of the 15 bugs in the testing phase. For more detailed information about the647

experiment see Trippas and Pachur (2019). Among other things, strategy classification via model648

comparison showed that 27 out of 30 participants (90 %) in the learning by comparison condition649

but only 10 out of 30 participants (33 %) in the direct criterion learning condition were best650

described by a rule-based strategy. When reanalyzing the data with the Bayesian hierarchical651

RulEx-J model, we therefore expect to find higher α values in the learning by comparison condition652

compared to the direct criterion learning condition, this is, δ > 0 when modeling group differences653

in α directly.654

Results655

Difference in α between conditions. The posterior distribution of the656

standardized effect parameter δ of the group-difference RulEx-J model had a mean of 2.88 (SD =657

0.60, 95%-CI = [1.77,4.10], see Figure 10B). The SDDR-Bayes-factor of BF10 > 1000 indicated658

extreme evidence for the hypothesis that the average α parameter is higher in the learning by659

comparison condition (i.e., δ > 0) compared to the hypothesis of having no difference (i.e., δ = 0).660

Estimates of the individual α parameters 17 are shown in Figure 9C.661

Model comparison. The judgments of most participants in the dcl condition were best662

described by the RulEx-J model (70.00%). However, in the lbc condition the rule-only model663

described the responses of more participants better (55.56%) than the RulEx-J model (40.74%).664

17 When fitting the RulEx-J model, we excluded three participants from the lbc condition, since their perfect

performance in the judgment task made the model not converge for these participants.
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Discussion and Summary665

We presented results of a new experiment, demonstrating the validity of the α parameter of666

the RulEx-J model to measure differences in rule-based and exemplar-based processing between667

conditions. We further showed that with the hierarchical Bayesian RulEx-J model we were able to668

reproduce the results of previous experiments of different research when comparing the α between669

conditions. Hence, the experiments demonstrate that modeling the data with the improved RulEx-J670

implementation yields meaningful results in terms of the parameters estimating the mixture of the671

processes.672

The results of the individual model comparisons showed that overall experiments the673

RulEx-J model best described the judgments of most participants (46.95 %) compared to the two674

simpler sub-process, this is pure exemplar- (24.20 %) or pure rule-based processing (28.85 %).675

However, these results also show that there are some individual differences. The responses of a676

substantial number of participants were better described by the simpler sub-process model of the677

corresponding conditions (i.e., the rule model in the rule/lbc condition, or the exemplar model in678

the exemplar/dcl condition), or sometimes even the other way around. Thus it seems that the679

additional complexity of the RulEx-J model does not always pay-off in terms of model fit and680

probably depends on how easy it is to learn and apply the underlying rule (e.g., in the validation681

experiments) or how well participants are able to learn all exemplars and the corresponding682

criterion values (e.g., in Bröder et al. (2017) there was an additional memorization phase to learn683

all exemplars). Since the RulEx-J model is foremost intended as a measurement model, which684

includes the possibility of pure rule- or exemplar-based processing and the α values between the685

conditions in the analysed experiments reflect the expected differences in processing mode, this is686

not a problem for the RulEx-J model.687

In addition, in the simulations in the previous section, we tested the ability of the688

hierarchical Bayesian RulEx-J model to recover parameter values under different levels of noise.689

The application of the model to these different data sets allows us to get estimates about levels of690

noise that could be expected in real data. According to the model implementation we used here,691

the responses of participants in a given trial are modeled as y ∼ Normal(Jit, σi). Using the692
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posterior mean of σi of each person as a (model-based) estimate of the noise in the data, we found693

a median noise level of σ̂ϵ = 8.64, ranging from 0.9 to 37. From all 355 participants in all694

experiments, 2.82% had σi < 2, 9.86% had σi < 4, and 41.41% had σi < 8. Therefore, our chosen695

levels of noise in the simulation were not unrealistic, although a bit too optimistic. However, these696

results show that the median empirically observed levels of noise over three experiment with typical697

stimuli and typical trial sizes, are actually similar to the highest levels of noise considered in the698

simulation. The simulation results showed that for these apparently realistic levels of noise there699

were clear deficits in the recovery of the underlying parameters of individual participants when700

using the traditional LS approach. Thus, researchers should refrain from making inferences based701

on individual-level parameter estimates under these circumstances. The hierarchical Bayesian702

model fares better than the LS approach, but, based on the simulation, estimated parameters of703

individual participants should still be used with care when noise levels are high.704

General Discussion705

In this article, we introduced a hierarchical Bayesian implementation of the RulEx-J model.706

Simulation studies showed that the hierarchical Bayesian RulEx-J model is able to recover707

parameters more accurately and less biased than a separate analysis of individuals with a708

least-squares estimation. This advantage of the hierarchical Bayesian implementation became709

especially clear when there was noise in the data. The individual α parameters, which measure the710

relative impact of rule- and exemplar-based processes on the final judgment and thus are the711

parameters of most interest, were recovered reasonably well, even when there was substantial noise712

in the data. Due to the hierarchical structure, individual s and cue-weight parameters wj were713

recovered less accurately with increasing noise and, thus, increasing shrinkage. However, group-level714

inferences are still possible. These findings are in line with other simulation studies comparing715

hierarchical and non-hierarchical Bayesian and maximum-likelihood based estimation methods (e.g.,716

Farrell & Ludwig, 2008). Furthermore, a new experiment where the information participants got to717

solve the task lead to a rule- or exemplar-like processing added evidence to the validity of the α718

parameter, as well as to the validity of the Bayesian hierarchical RulEx-J model. In addition, we719

showed that we could reproduce the results of two previous studies with the hierarchical Bayesian720
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implementation of the RulEx-J model by directly incorporating group-differences in our model. As721

already suggested by Boehm et al. (2018), this approach is more viable than a two-step analysis722

approach (i.e., estimating individual parameters and then computing a subsequent t-test), since the723

different variance in the individual α parameter estimates may be due to different levels of724

shrinkage, which in turn would bias inferences.725

Limitations and future directions726

In our second simulation we induced noise to the judgments by adding normally distributed727

error to the generated judgments. While this mimics general noise present in real experimental data728

due to various influences, there are other error or contamination processes present in real729

experiments, which might influence the ability of the model to recovery parameters in unique ways,730

such as guessing, biased responding, or the use of other judgment strategies. Second, from the731

simulation results it seems that the model needs a large number of individual data points to get732

precise individual estimates (especially for the s and wj) the more noise there is in the data.733

However, in practice the number of individual data points research could get might often be limited734

by the typical multiple-cue judgment paradigm itself, where individual participants have to learn735

the cues and criterion values, as well as their relationship, of several stimuli. Dependent on what736

the participants have to learn, it might not be possible to increase the number of cues or stimuli737

without having losses in performance. Third, we did not run extensive prior sensitivity analysis for738

each analysis. However, since the results did not change in the cases where we tried different prior739

specifications, we are confident that our results are robust for different reasonable prior740

distributions.741

While the state-of-the-art Bayesian hierarchical approach improves upon problems of742

parameter estimation of the original RulEx-J model as a measurement model, the Bayesian743

framework used in this article also offers new possibilities to implement and then compare different744

model variants to answer theoretical questions. For instance, by incorporating a learning process745

(e.g., Hoffmann et al., 2019), adding possible contamination processes (e.g., Zeigenfuse & Lee, 2010),746

more complex rule- or exemplar-process models (e.g., Izydorczyk & Bröder, 2021), integrating747

additional sources of information or covariates (e.g., mouse-tracking, eye-tracking, EEG).748
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Currently, the RulEx-J model is foremost intended as a pragmatic measurement tool and749

thus might not describe the actual cognitive processes that lead to a judgment. Although the750

empirical evidence presented above makes it plausible that there is indeed a mixture between rule-751

and exemplar-based process involved when people make their judgments, there are possible other752

conceptualizations how rule-based and exemplar-based processes interact. A remaining challenge to753

establish the RulEx-J model as a more epistemic cognitive model is to test and compare different754

theoretical conceptualizations of the process mixing. Instead of having a constant mixture of both755

processes at all times, it might be possible that participants vary the relative proportion of756

processes between trials, or switch between processes over sequences of trials (Lee & Gluck, 2020;757

Lee et al., 2019), trial-by-trial, or even between stimuli (as assumed by the ATRIUM model,758

Erickson & Kruschke, 1998). Other mixture processes might also be possible, such as the one759

proposed by the CX-COM (combining Cue abstraction with eXemplar memory assuming760

COMpetitive memory retrieval, Albrecht et al., 2019) model. The CX-COm model proposes a761

two-step process were one exemplar is recalled competitively from a set of exemplars and its762

associated criterion value (i.e., the initial judgment) is then adjusted based on abstracted cue763

knowledge. We are convinced that the improved modeling approach presented here offers a start to764

address these hitherto unanswered research questions.765
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Abstract

Exemplar models are often used in research on multiple-cue judgments to describe the underlying process of participants’

responses. In these experiments, participants are repeatedly presented with the same exemplars (e.g., poisonous bugs) and

instructed to memorize these exemplars and their corresponding criterion values (e.g., the toxicity of a bug). We propose

that there are two possible outcomes when participants judge one of the already learned exemplars in some later block of

the experiment. They either have memorized the exemplar and their respective criterion value and are thus able to recall the

exact value, or they have not learned the exemplar and thus have to judge its criterion value, as if it was a new stimulus.

We argue that psychologically, the judgments of participants in a multiple-cue judgment experiment are a mixture of these

two qualitatively distinct cognitive processes: judgment and recall. However, the cognitive modeling procedure usually

applied does not make any distinction between these processes and the data generated by them. We investigated potential

effects of disregarding the distinction between these two processes on the parameter recovery and the model fit of one

exemplar model. We present results of a simulation as well as the reanalysis of five experimental data sets showing that the

current combination of experimental design and modeling procedure can bias parameter estimates, impair their validity, and

negatively affect the fit and predictive performance of the model. We also present a latent-mixture extension of the original

model as a possible solution to these issues.

Keywords Judgment · Exemplar model · Recall

In their everyday lives, people have to make judgments of

different importance in a variety of domains and situations.

For instance, customers in a restaurant have to predict how

tasty a meal will be, doctors have to judge the severity

of a patient’s disease, and employers have to judge how

well a possible employee will perform in the future. Such

judgments require inferring a continuous criterion (e.g.,

tastiness) from a number of cues (e.g., is there cheese on it

or not) of a given judgment object.
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One process people may rely on to make these judgments

is based on previously encountered objects and their

criterion values stored in memory (Juslin, Olsson, & Olsson,

2003; Juslin, Karlsson, & Olsson, 2008). New objects are

then judged based on the similarity to these exemplars

(Juslin et al., 2003). For example, a diabetic person needs

to judge the amount of carbohydrates in a dish to estimate

the amount of insulin she has to apply. To do so when

confronted with a new meal, she might think of previous

meals (i.e., the memorized exemplars) and compare them

to the current meal. The amount of carbohydrates of the

new meal will then be judged according to the similarity of

this new meal to past meals in memory and their respective

amount of carbohydrates (i.e., the criterion value of the

exemplars), whereby more similar past meals will have a

stronger influence on the judgment than dissimilar ones.

Such a judgment strategy is usually described by

exemplar models (e.g., Juslin et al., 2003; von Helversen

& Rieskamp, 2008). Exemplar models have originally been
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used in many different domains such as memory (e.g.,

Hintzman, 1984) and categorization and classification (e.g.,

Medin & Schaffer, 1978; Nosofsky, 1984). One exemplar

model originally used for modeling stimulus categorization,

the Context Model (Medin & Schaffer, 1978), has been

extended to account for data of continuous judgments

from multiple cues (Juslin et al., 2003; Juslin & Persson,

2002). During the last two decades, this or related exemplar

models have been used to describe one possible cognitive

process in studies of multiple-cue judgments as an important

area in judgment and decision-making (JDM) research

(e.g., Bröder & Gräf, 2018; Hoffmann, von Helversen, &

Rieskamp, 2013; Juslin et al., 2003; Mata, von Helversen,

Karlsson, & Cüpper, 2012; Pachur & Olsson, 2012; Persson

& Rieskamp, 2009; von Helversen & Rieskamp, 2009).

In the current paper, we argue that the usual practice

of how these exemplar models are used in multiple-

cue judgment research in combination with the paradigm

commonly used in this field of research leads to biased

estimation and impaired validity of parameters. We claim

that the problems we tackle here are particularly pronounced

in the multiple-cue judgment literature as compared

to categorization research where the model and the

experimental paradigm originated (Juslin et al., 2003). We

highlight a severe problem of the application of these

exemplar models in JDM research in the following respects:

First, we will briefly describe the typical experimental

paradigm and modeling procedure used in multiple-cue

judgment studies and introduce the context model (Medin

& Schaffer, 1978) as an example for an exemplar-based

model how it is used in this line of research (e.g., Bröder &

Gräf, 2018; Juslin et al., 2003; von Helversen & Rieskamp,

2008; Wirebring, Stillesjö, Eriksson, Juslin, & Nyberg,

2018). We will then illustrate how this paradigm with the

currently applied specification of the exemplar model can

potentially distort parameter estimation. Second, we will

present simulation results demonstrating biased estimation

and impaired validity of parameters. In addition, since many

multiple-cue judgment studies use model-fit indices like

the RMSE to compare different judgment process models

(e.g., Hoffmann, von Helversen, & Rieskamp, 2014; Mata

et al., 2012; Wirebring et al., 2018) we will also look at the

model fit and predictive performance of the model. Third,

we will present the results of five reanalyzed experimental

data sets demonstrating that this problem also threatens the

interpretation of real data. As a remedy, we will present a

latent-mixture extension of the original model, as a possible

solution to these problems. Although the focus of this paper

lies on the multiple-cue judgment literature and how the

exemplar models are applied there, we will also discuss

if and how the results of this work might extend to other

research areas where these exemplar models are applied.

Typical design and estimation procedure
inmultiple-cue judgment studies

A typical experiment in the multiple-cue judgment literature

employing exemplar models consists of at least two phases:

a training phase and a testing phase. In the training phase,

participants have to learn the cues and the criterion values of

some stimuli (i.e., the exemplars), as well as the relationship

between the cues and the criterion. This is typically done

by repeatedly judging the criterion values of a sample of

objects and receiving trial-by-trial-feedback. Long training

phases, sometimes in combination with a learning criterion

or performance contingent payment, are used to ensure

intensive learning and memorization of the exemplars by

the participants (e.g., Bröder, Newell, & Platzer, 2010;

Hoffmann et al., 2013; Wirebring et al., 2018). In the

testing phase, participants then have to judge the criteria

of new stimuli and of already-learned exemplars. For

instance, in Study 2 of von Helversen and Rieskamp (2009),

participants had to evaluate the quality of job candidates

(i.e., the criterion) on a scale of 1 to 100. The fictitious

job candidates varied on six different cues (e.g., knowledge

of programming languages, C++ vs. Java, knowledge of

foreign languages, French vs. Turkish, etc.). The training

phase consisted of 20 blocks with eight trials each. In

each trial, participants had to judge one of the eight

job candidates (i.e., the exemplars). After each trial, the

participants received feedback about the number of points

this candidate should receive and how close their estimate

had been. In the testing phase, participants then had to judge

30 job candidates twice. From these 30 candidates, 22 were

new candidates and eight were exemplar candidates from

the training phase.

The parameters of the model of interest are often

estimated based on the data of the last training blocks

(e.g., Hoffmann et al., 2013; Juslin et al., 2008). These

estimated parameters are then used to predict the data of

each participant in the testing phase to avoid overfitting.

The goodness-of-fit is then determined, for instance, via

the root-mean-squared error (RMSE) between the model

prediction and the participants’ actual judgments or the

Bayesian Information Criterion (BIC, Schwartz, 1978). The

goodness-of-fit criteria are then often used together with

qualitative indices of extrapolation and interpolation (e.g.,

Bröder & Gräf, 2018; Juslin et al., 2003) to compare

the exemplar model with other possible judgment-process

models, such as a rule-based model (e.g., Juslin et al., 2003;

Hoffmann et al., 2013). Qualitative indices of extrapolation

and interpolation are a valuable addition to quantitative

goodness-of-fit measure, since exemplar models cannot

predict judgments for new objects that extend beyond

the range of learned criterion values, whereas rule-based
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models can. Hence, testing for extrapolation in human

judgments can help to distinguish the processes.

Exemplar model used inmultiple-cue judgment
research

The exemplar model we use as an example in this paper

is based on the context model of Medin and Schaffer

(1978) extended to account for the continuous criterion

in multiple-cue judgments (Juslin et al., 2003). This

and similar exemplar models have been used in many

studies of multiple-cue judgments, where it is assumed

that judgments are based on the memory of previously

encountered exemplars (e.g., Bröder & Gräf, 2018; Bröder,

Gräf, & Kieslich, 2017; Juslin et al., 2003; Hoffmann et al.,

2013; Hoffmann et al., 2014; Hoffmann, von Helversen,

Weilbächer, & Rieskamp, 2018; Karlsson et al., 2008;

Platzer & Bröder, 2013; von Helversen & Rieskamp, 2008;

von Helversen, Mata, & Olsson, 2010; Wirebring et al.,

2018). According to this model, when a judgment is made

about a probe (i.e., a stimulus that has to be judged), the

judge considers the similarity of the probe to all of the

previously encountered exemplars. Similarity then acts as

a weight on the stored criterion values. When applied to

a continuous criterion in a multiple-cue judgment task, the

stored criterion value of a similar exemplar in memory has

more influence on the judged criterion value of the probe,

whereas the criterion value of a dissimilar exemplar receives

less weight (Juslin et al., 2003). The similarity between a

probe and an exemplar is determined by feature overlap. An

exemplar with large feature overlap is more similar to the

probe and thus has more impact on the judgment.

Regarding the formal definition, the model is based on

the similarity S between a probe and the exemplars. It is

assumed that the probe serves as a retrieval cue, activating

previously encountered exemplars in memory. The probe �p

and each exemplar �ej are represented by vectors of D binary

cues ∈ {0, 1}. The similarity parameters si , i = 1, ..., D,

are the only free parameters in this model, defined on the

interval [0, 1]. They determine how strongly a mismatch of

objects on cue i influences the similarity S that can vary

between 0 and 1. For simplicity, we assume the si to be

constant across cues, that is, si = s, for all si (e.g., Bröder

& Gräf, 2018; Juslin & Persson, 2002; von Helversen &

Rieskamp, 2008).1 The similarity S( �p, �e) between �p and

one exemplar �ej is determined according to the similarity

1There is also empirical data showing that this simplified version also

outperforms the more complex model with a separate si parameter

for each cue i in predicting individuals behavior (von Helversen &

Rieskamp, 2008).

rule of the context model (Medin & Schaffer, 1978):

S( �p, �ej ) =

D
∏

i=1

di with di =

{

1 if pi = ei

s if pi �= ei

(1)

where D is the number of cues of each object. For binary

cues this simplifies to:

S( �p, �ej ) = sD−m (2)

where m is the number of matching cues between �p and

�ej . The judged criterion value c′ of the probe �p is then

the average of all n exemplar criterion values �c in memory,

weighted by the similarity of the respective exemplar to the

probe:

c′ =

∑n
j=1 S( �p, �ej ) ∗ c( �ej )
∑n

j=1 S( �p, �ej )
(3)

where c( �ej ) is the criterion value of exemplar j . Equation 3

is the extension of the context model (Medin & Schaffer,

1978) from binary to a continuous criterion as suggest

by Juslin et al. (2003; see also Elliot & Anderson, 1995;

Juslin & Persson, 2002). It involves many simplifying

assumptions, such as not directly modeling the exemplar

retrieval process (cf., the EBRW model of Nosofsky &

Palmeri, 1997), assuming that all exemplars are used

when making a judgment (cf., Nosofsky & Palmeri, 1997;

Albrecht, Hoffmann, Pleskac, Rieskamp, & von Helversen,

2019), and that all exemplars, their cues, and their criterion

values are remembered and recalled without error. However,

a detailed modeling of the recall and retrieval process is

not intended with this model as it is used in the multiple-

cue judgment literature, since it is mainly used as a tool to

classify rule- and exemplar-based processes of judgments.

The s parameter

The s parameter from the model above is often called

similarity parameter, since from an analytical point of

view, it controls the similarity between two exemplars

(Medin & Schaffer, 1978, see the example below).

Psychologically, the s parameter has been interpreted as

an attention parameter, since the perceived similarity of

two exemplars decreases, when more attention is paid

to potential cue mismatches (Medin & Schaffer, 1978;

see also Juslin et al., 2003; von Helversen & Rieskamp,

2009). However, the s parameter can also be seen as a

continuous measure of memory discriminability, where high

values indicate no discrimination between exemplars and

very small values indicate a perfect discrimination between

exemplars in memory. The memory discriminability of

exemplars increases when exemplars become well-learned

as their memory traces become more distinct, reducing the

perceived similarity (Shiffrin, Clark, & Ratcliff, 1990; Kılıç,

Criss, Malmberg, & Shiffrin, 2017). The results reported
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Fig. 1 The similarity between two stimuli for different numbers of

mismatching cues and different values of s according to the context

model (Medin & Schaffer, 1978)

in this article are relevant regardless of the preferred

interpretation of s as either a memory or as an attention

parameter.

To illustrate, Fig. 1 depicts the similarity between two

hypothetical stimuli �a and �b with four cues each, for

different numbers of mismatching cues (i.e., 0, 1, 2, 3,

or 4), plotted for different values of s. For s = .9 (i.e.,

low discriminability), the similarity decreases rather slowly.

However, for s = .1 (i.e., high discriminability), even a

mismatch of only one cue (e.g., �a = [1,1,1,1] and �b =

[0,1,1,1])) leads to a large decrease in similarity from 1

to 0.1. As more and more cues mismatch, the similarity

asymptotically approaches 0. Due to the multiplicative

combination of the mismatches (see Eq. 1), smaller values

of s lead to a much steeper decrease of similarity with

each mismatch and hence, much less influence of dissimilar

exemplars on the judgment of the probe. This also implies

that if s is equal, or very close to 0, only perfectly matching

or very similar exemplars (if existent) will determine the

judgment, otherwise, judgments are erratic. If s is equal,

or very close to 1, every exemplar has the same influence,

thus resulting in the prediction of the mean of the exemplar

criterion values for each and every probe.

The psychological misspecification of the exemplar
model in multiple-cue judgment research

The exemplar model as described above assumes that

judging the criterion value of a probe always involves

the reconstruction of the criterion value as a similarity-

weighted average of all stored exemplar criterion values.

This, however, seems psychologically implausible in

typical multiple-cue judgment tasks where participants are

repeatedly confronted with the same small set of judgment

objects during the training phase. In this situation, we

think that it is more realistic to assume that more and

more exemplars become well learned, and when a probe

is presented which is identical to one of the overlearned

exemplars in memory, the criterion value of this very

exemplar will be retrieved rather than building a similarity-

weighted average of all exemplars. Hence, we assume

that depending on the strength of an exemplar’s memory

representation, one of two qualitatively distinct processes

will take place: If a strongly represented exemplar is found

in memory which exactly matches the probe, the participant

will simply recall this single exemplar’s criterion value and

report it as their judgment. We will henceforth refer to

this process as “(direct) recall”. In the alternative case if

there is no strong representation of a perfectly matching

exemplar (the exemplar has not been overlearned, yet, or

the probe is new), the similarity-weighted reconstruction

as described in the original exemplar model takes place.

Hence, all exemplars are recalled (cf., Nosofsky & Palmeri,

1997; Albrecht et al., 2019), and the judgment is built

buy the similarity-weighted averaging process, for ease of

differentiation, we will henceforth simply call this second

process “judgment”. Of course, this judgment is also

based on the recall of the exemplars. But it entails the

additional process of a similarity-weighted integration of

their criterion values in contrast to the “direct recall”-

process mentioned above, which only entails the retrieval

of just this one specific well-learned exemplar and then

reproducing its retrieved criterion value. For ease of

presentation, we use the shortcut terms “judgment” for

the former integration process and “direct recall” for the

latter simple recall process involving only the identical

exemplar. Our conjecture is that lumping these qualitatively

different processes together into one may severely distort

the characterization of the process as well as the estimate of

the similarity parameter s.

The reason for this conjecture is that the exemplar model

can account for both types of processes (judgment and

direct recall). In the judgment process, the response is

a similarity-weighted average based on all exemplars. In

the direct-recall process, it is only the identical exemplar

that governs the response. Which of those two modes of

aggregation is used depends on the s parameter and how the

proposed psychological misspecification then might affect

the estimation of the s parameter can be demonstrated

with an example. Assume there are two exemplars and one

to-be-judged stimulus with two binary cues as shown in

Table 1. The to-be-judged stimulus is identical to Exemplar

1. Based on Eqs. 2 and 3, we can generate predictions for

the unknown criterion value of the to-be-judged stimulus for

a very high and a very low value of s. For s = 1 we get

a prediction of c′ = 5, which is the mean of the criterion

values of the two exemplars. For s = 0 we get c′ = 3,

which is the criterion value of Exemplar 1. This implies that
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Table 1 Cue and criterion values for two exemplars and one probe

Cue 1 Cue 2 Criterion

Exemplar 1 0 1 3

Exemplar 2 1 1 7

Probe 0 1 ?

Note. The probe is identical to the first exemplar

a very small s value leads to the prediction of the exact

criterion value of the matching exemplar (if existent). Thus,

when estimating the parameters from data by minimizing

the distance between observed data and model-implied

predictions, which can be seen as the reverse of prediction,

s has to be as small as possible if two conditions are met:

A probe is identical to one of the exemplars and the judged

criterion of the probe is equal to the true criterion value of

the matching exemplar. One instance where these conditions

apply is when a participant has learned an exemplar and its

respective criterion in an earlier stage of the experiment, and

then later, when presented with the same exemplar again,

recalls the learned criterion.

Therefore, we conjecture that the estimation of the s

parameter is biased towards 0 if the responses of participants

include direct recall of exemplars and their criterion values,

and if all data points are jointly used to estimate the

parameter. Furthermore, we predict that this problem is

aggravated with increasing numbers of recalled exemplars,

since there are more cases influencing the estimation of the

s parameter. In addition, the model should show decreased

model fit and make less accurate predictions when based on

these biased parameter estimates.

In the present work, we show that disregarding the

distinction between similarity-based judgment and direct

recall leads to large errors in the estimation and impaired

validity of model parameters. For this, we first present

results from a computer simulation testing these predictions,

showing bias in parameter estimation and how to avoid it.

Next, we reanalyze data from five experiments and show the

differences in parameter estimation and model fit between

the usual procedure and a redefined procedure.2

2All simulations and analyses were conducted using R (Version

4.0.2; R Core Team, 2020b) and the R-packages afex (Version

0.27.2; Singmann, Bolker, Westfall, Aust, & Ben-Shachar, 2020),

doSNOW (Version 1.0.18; Corporation & Weston, 2019), dplyr

(Version 1.0.0; Wickham, François, Henry, & Müller, 2020),

foreach (Version 1.5.0; Microsoft & Weston, 2020), foreign (Version

0.8.80; R Core Team, 2020a), ggplot2 (Version 3.3.2; Wickham,

2016), lsr (Version 0.5; Navarro, 2015), MCMCvis (Version 0.14.0;

Youngflesh, 2018), polspline (Version 1.1.19; Kooperberg, 2020),

psych (Version 1.9.12.31; Revelle, 2019), purrr (Version 0.3.4; Henry

& Wickham, 2020), Rcpp (Version 1.0.5; Eddelbuettel & François,

2011; Eddelbuettel & Balamuta, 2017), reshape2 (Version 1.4.4;

Wickham, 2007), runjags (Version 2.0.4.6; Denwood, 2016), tibble

Simulation

In this section, we show the severity of the problem and

address the adequacy of a solution by running a computer

simulation. The goal was to measure the bias in the

estimation of the s parameter, for different true values of

s and different recall probabilities Pr (i.e., the probability

that the criterion value of an exemplar is recalled correctly).

We compared three different ways for estimating the s

parameter of the exemplar model presented above.

First, we used the typical procedure of multiple-cue

judgment studies described above, which estimates the

model parameters of the original exemplar model based

on all data points regardless if it was a directly recalled

exemplar, a not recalled exemplar, or a new stimulus. Based

on the reasoning presented before, we expected that, when

this ŝorig parameter is estimated in this usual manner,

it is more biased towards 0, the more correctly recalled

exemplars there are in the data.

Second, since we propose that correctly recalled exem-

plars lead to a biased estimation of the s parameter, as

a simple proof-of-concept, we estimated two different s

parameters by splitting the data into two distinct sets of

stimuli: Recalled exemplars (i.e., the well-learned, very

distinct exemplars) versus not recalled exemplars and the

new stimuli (i.e., less well-learned and less discriminable

exemplars, as well as new stimuli). The ŝsplit parameter,

estimated only on the data set with not recalled exemplars

and the new stimuli, should then be an unbiased estimator

of s. However, this simple proof-of-concept is based on post

hoc evaluation of the data (i.e., the classification in correctly

recalled exemplar and other) and also reduces the amount of

data used for estimating the parameter, since only a subset

of the data is used. This method of splitting the data can be

used as a heuristic remedy to arrive at appropriate estimates

of s, however, if the extended model described next cannot

be applied.

As a more elegant solution, we also used an extended

version of the exemplar model which directly integrates

the assumption that there are two distinct processes at

work when people are confronted with already presented

stimuli.3 The graphical model is depicted in Fig. 2. This

latent-mixture model (Zeigenfuse & Lee, 2010) assumes

that the final response yt of a participant in a trial t is

generated by one of two possible processes, if the stimulus

in this trial was part of the training phase: A direct retrieval

of the learned criterion value of this trained exemplar ct

(= direct recall) or the similarity-weighted reconstruction

(Version 3.0.1; Müller & Wickham, 2020), and truncnorm (Version

1.0.8; Mersmann, Trautmann, Steuer, & Bornkamp, 2018). The entire

article was written with the papaja-package (Version 0.1.0.9997; Aust

& Barth, 2020)
3We thank an anonymous Reviewer for this suggestion.
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Fig. 2 Graphical model of the latent-mixture extension of the original exemplar model

as described in the original exemplar model yorigt (=

judgment). Which data generating process is used, given the

stimulus in this trial was a trained exemplar, is determined

by an indicator variable zt . If zt = 0 the data yt follow a

normal distribution with precision τ0 and centered around

the prediction of the original exemplar model yorigt , which

is based on the parameter s. If zt = 1 the data yt follow a

normal distribution with precision τ1 and centered around

the learned criterion value of this exemplar ct . The indicator

zt follows a Bernoulli distribution with parameter φ. This

parameter φ represents the latent memory probability;

this is the probability that a trained exemplar is directly

recalled and the corresponding criterion value reproduced.

To summarize, this extended latent-mixture model of the

original exemplar model integrates the assumption that

if a probe in a trial is a novel stimulus, the similarity-

weighted average response based on the original exemplar

model is used based on the parameter s. When the probe

is a trained exemplar, the response is the directly recalled

learned criterion value of this exemplar with probability

φ and the similarity-weighted average response based on

the original exemplar model with probability 1 − φ. The

estimated ŝint parameter should then also be unbiased, since

the possibility of direct retrieval is already integrated into

the model.

Procedure

In this simulation, we generated behavioral data by

manipulating two independent variables (the true value

of s and the probability that the criterion value of an

exemplar is recalled correctly) and investigated how these

variables influence the parameter estimation. A summary

of the simulation procedure is shown in Algorithm 1 in the

Appendix. In the first step of this simulation, we generated

the stimulus matrix, consisting of 32 stimuli that can be

created with five binary cues. The criterion values were

computed according to a linear additive rule:

c = w0 + cue1 × w1 + cue2 × w2 + cue3 × w3 + cue4

×w4 + cue5 × w5. (4)

where cuei represents the binary cues and wi the

corresponding cue weights. Of the 32 stimuli, 12 are

randomly selected as to-be-learned exemplars. In order to

create realistic stimulus material used in actual experiments

(e.g., Bröder et al., 2017; Bröder & Gräf, 2018), the four

most extreme stimuli (i.e., the two stimuli with the highest

and the two stimuli with the lowest criterion value) were

never selected as exemplars. In addition, there was also a

switch of criterion values between one pair of stimuli (i.e.,

if one stimulus a of this switch pair would have a criterion

value of 31 and stimulus b of the pair a value of 59 , the new

values after switching would be 59 for a and 31 for b). The

cue weights wi for cues i = 0, ..., 5 had to sum to 100 and

were randomly drawn from a truncated normal distribution

with μ = 20, σ = 10, an upper bound of 100, and a lower

bound of 0.

In the second step, we generated judgment data from

this stimulus matrix according to Juslin et al.’s. (2003)

version of the context model (Medin & Schaffer, 1978)

presented above. The true s parameter varied in 4 steps

from a very strict similarity criterion to a more lenient

criterion, s = .001, .01, .3 or .8. The recall probability

(Pr ) could either be .1, .5 or 1. This means that, for

instance for Pr = 0.5, there is a probability of .5 that an

exemplar and its corresponding criterion value is recalled

correctly and, therefore, there could be more or less than

50% of correctly recalled exemplars in a given iteration

of the simulation when Pr = .5. A value of Pr = 1

indicated that every exemplar (and its criterion value) is

recalled correctly and the judged criterion value of this

exemplar is therefore its exact criterion value. A value of
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Pr = .1 indicates that only very few exemplars are recalled

exactly.4 It should be noted that a recall probability of 1

is what most studies aim for when applying an extensive

training phase. Also, as most exemplar models are based on

the assumption that all exemplars and their corresponding

criterion values are remembered correctly and are all used in

the subsequent judgment process (cf., Nosofsky & Palmeri,

1997; Albrecht et al., 2019), participants should learn all

exemplars correctly. Note also that we added no additional

error to the generated judgment data, so in principle one

would expect perfect parameter recovery.

In the third step, we estimated the ŝ parameters with

JAGS (Plummer, 2003) interfaced with R using the runjags

package (Denwood, 2016), using each of the three methods.

The results are based on MCMC chains with 5000

samples from each of two independent chains collected

after 5000 burn-in samples were discarded, 5000 adaptive

iterations, and thinning by recording every 5th sample. The

convergence of the chains was checked by visual inspection

and the standard R̂ statistic (Brooks & Gelman, 1998).

In the final step, we computed the Bayes factors for

model comparison between the original exemplar model

(M0) and the latent-mixture model (M1). Since the original

exemplar model is nested within the latent-mixture model

when φ = 0, we computed the Bayes factor based on the

Savage–Dickey density ratio (Wagenmakers, Lodewyckx,

Kuriyal, & Grasman, 2010; Vandekerckhove et al., 2015):

BF10 =
p(φ = 0|M1)

p(φ = 0|D,M1)
(5)

where p(φ = 0|M1) is the density of the prior distribution

of φ at 0 given M1, p(φ = 0|D,M1) is the density of the

posterior distribution of φ at 0 given M1, and BF10 is the

Bayes factor in favor of M1. The density of the posterior

distribution was computed with the dlogspline function

in the polspline package in R (Kooperberg, 2020). Since

we used a uniform (0,1)-prior for φ, the density p(φ =

x|M1) on any given point x is 1. The resulting Bayes

factor BF10 then indicates the evidence of M1 compared

to M0, or how much more probable the data are under

M1 compared to M0 (Kass & Raftery, 1995; Morey,

Romeijn, & Rouder, 2016; Vandekerckhove et al., 2015).

For instance, a Bayes factor of BF10=10 would indicate

that the data are 10 times more likely to occur under

M1 than under M0. In addition, we computed the root-

mean-squared-error (RMSE) between the actual data and

the median of the posterior predictive distribution in each

4We used a value of .1 instead of 0, as this made it easier to ensure

that there were at least two recalled exemplars, since it would lead to

some problems later in the simulation when there were no or only one

recalled exemplar when we estimated two separate s parameters on the

two distinct subsets of data.

trial of both models as an indicator for the prediction error

margin of each model and since the RMSE is often used

in multiple-cue judgment studies for model comparison

(e.g., Hoffmann et al., 2013; Wirebring et al., 2018; von

Helversen & Rieskamp, 2009).

All steps were repeated 200 times for each combination

of true s parameter and Pr value, which leads to 200 × 4 ×

3 = 2400 simulated data sets in total. For each simulated

data set, a new stimulus matrix, with different exemplars,

cue weights, and criterion values was generated as described

in the first step. The code of the simulation, the JAGS model

codes, example of MCMC chains and R̂ values of all three

estimation methods for a randomly selected iteration of the

simulation, and the results are available at the Open Science

Framework (https://osf.io/b69f3/).

Results

Recovery s

The results of the simulation are displayed in Fig. 3 and

Table 2. The first row in Fig. 3 shows that the recovered

parameter ŝorig of the original exemplar model was very

close to the true s values, when Pr was small. However, with

an increasing percentage of correctly recalled exemplars

(Pr ), ŝorig increasingly deviated from s, with larger

deviations for larger s values. For a high recall probability

of Pr = 1, ŝorig deviated strongly from the true s and

was severely biased downward towards 0. In addition, ŝorig

was never larger than .17 for s = .3 and .27 for s = .8

when Pr = 1, which is less than half as large as the

actual true value. Thus, the first row in Fig. 3 shows that

the estimated ŝorig parameter is a severely biased estimator

of s if judgment and direct recall (or the data generated

by these processes) are mixed. The bias of ŝorig increases,

when more exemplars are recalled directly. Yet, a good

memory performance is exactly the goal researchers try

to achieve, when they design their experiments with an

extensive learning phase.

The second row of Fig. 3 shows the estimated ŝsplit

parameter, the parameter that was estimated only on the

subset of the data without any directly recalled exemplars.

When the parameter is estimated based only on new stimuli

and criterion values that are not perfectly recalled, the

recovered ŝsplit values were identical to the true values, see

again Table 2 for the descriptive values. Although not shown

in Fig. 3, the estimated ŝsplit parameter values based on

the subset of only correctly recalled exemplars were mostly

estimated close to 0, as to be expected.

The third row of Fig. 3 shows the recovered ŝint

parameter values from the latent-mixture extension of the

original exemplar model. The results in Fig. 3 and displayed

in Table 2 show that the true s parameter values are
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Fig. 3 Estimated s values for different true s values and different Pr

for three different types of s parameter. The black solid lines represent

what would be expected for perfect parameter recovery. Red points

and dashed lines show and connect the means of 200 repetitions. ŝorig

is the estimated s parameter based on the original exemplar model.

ŝsplit is the estimated s parameter based on the original exemplar

model, when only the subset of the data without any recalled exem-

plars was used. ŝint is the estimated s parameter of the latent-mixture

extension of the original exemplar model

recovered very well by ŝint when the possibility of direct

recall of trained exemplar was integrated into the model.

In addition, we found that the φ parameter was very close

to Pr on average over all iterations, except for s = .001,

where the average φ was below .1, regardless of Pr (see

Table S1 in the online supplementary material). We assume

this is since the difference in criterion values between a

directly recalled exemplar and the predicted value based on

the exemplar model with s = .001 can be rather small (e.g.,

47 and 47.002, see Table S2 in the online supplement) and

the model then tends to classify directly recalled exemplars

as “not-recalled” (i.e., zt = 0).

Table 2 Means (and standard deviations) of the estimated s values for different true s values and different memory probabilities

true s

Pr type .001 .1 .3 .8

ŝorig .001 (.002) .092 (.008) .272 (.026) .696 (.096)

0.1 ŝsplit .001 (.002) .100 (.001) .300 (.002) .800 (.000)

ŝint .001 (.004) .100 (.002) .300 (.002) .800 (.000)

ŝorig .001 (.001) .069 (.012) .186 (.045) .439 (.121)

0.5 ŝsplit .001 (.002) .100 (.001) .300 (.002) .800 (.000)

ŝint .001 (.004) .100 (.001) .300 (.002) .800 (.000)

ŝorig .001 (.002) .042 (.013) .093 (.027) .169 (.044)

1.0 ŝsplit .002 (.005) .100 (.004) .300 (.003) .800 (.001)

ŝint .001 (.005) .100 (.004) .300 (.003) .800 (.001)

Note. Pr indicates the recall probability. Type indicates the type of s parameter: ŝorig is the estimated s parameter based on the original exemplar

model. ŝsplit is the estimated s parameter based on the original exemplar model, when only the subset of the data without any recalled exemplars

was used. ŝint is the estimated s parameter of the latent-mixture extension of the original exemplar model
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Table 3 Means (and standard deviations) of the log(BF10)

true s

Pr .001 .1 .3 .8

0.1 − 2.32 (3.11) 2.92 (2.13) 3.06 (1.86) 3.13 (1.82)

0.5 − 1.83 (4.29) 8.74 (1.94) 8.76 (1.91) 8.71 (1.79)

1.0 − 2.30 (3.03) 18.45 (1.6) 18.55 (1.55) 18.49 (0.68)

Note. Pr indicates the recall probability

Model comparison

The Bayes factors as a mean of model comparison

between the original exemplar model and the latent-mixture

extension are shown in Table 3. When the data-generating

s parameter was very small, the Bayes factor favors on

average the original exemplar model, indicated by the

negative log(BF10), regardless of Pr . This is because the

s parameter is with .001 already very close to 0, thus

there is not much room for the downward biasing effect of

correctly remembered exemplars and the Bayes factors then

favors the less complex original exemplar model with fewer

parameters. However, the average log(BF10) increasingly

favors the latent-mixture model with an increasing number

of correctly recalled criterion values, with values more or

less being constant for the different possible true s values.

We can find a similar pattern for the RMSE shown in

Table 4. When the data were generated with a very small s

value, we get a similar average low RMSE for the original

exemplar model and its latent-mixture extension. However,

the RMSE of the original exemplar model increases the

larger the s parameter and the number of correctly recalled

exemplars become.

Discussion

We ran a simulation to investigate the potential bias in

the estimation of the s parameter, when one does not

differentiate between recalled exemplars and not recalled

exemplars as well as new stimuli.

The results suggest that the estimation of the s parameter

as well as predictions based on this estimation can be

inaccurate, when the distinction between directly recalled

exemplars and judgment is not taken into account. The

deviation of ŝorig from s was small when either the true

s parameter was small, or when Pr was small, that is,

when there were only very few directly recalled exemplars.

However, we found large biases in estimation as well as

in predictions when there was a medium to large recall

probability and true s value. The results show that the

estimated ŝorig is biased downwards, when the true s

parameter and the recall probability was large. However,

this large recall probability, as stated before, is exactly the

outcome many experimenters aim for when designing their

experiments with extensive learning phases: Many studies

implement a learning criterion that participants have to

reach to advance to the next phase of the experiment or

terminate the learning phase before the maximal number of

learning blocks (e.g., Bröder et al., 2010; Hoffmann et al.,

2013; Wirebring et al., 2018). In addition, the number of

learning blocks (i.e., the number of times an exemplar is

presented) can range from 4 (Pachur & Olsson, 2012) up to

40 blocks (Wirebring, Stillesjö, Eriksson, Juslin, & Nyberg,

2018), with most studies using 8–10 blocks. Participants

are instructed, and with these extensive learning phases also

able, to memorize these stimuli and their respective criterion

Table 4 Means (and standard deviations) of the RMSE of the original exemplar model (orig) and the latent-mixture extension with integrated

direct recall process (int)

true s

Pr Type .001 .1 .3 .8

0.1
RMSEM0

0.03 (0.17) 0.70 (0.44) 1.67 (0.92) 3.36 (1.7)

RMSEM1
0.03 (0.16) 0.04 (0.25) 0.02 (0.14) 0 (0.01)

0.5
RMSEM0

0.08 (0.35) 1.25 (0.33) 3.17 (0.75) 6.06 (1.29)

RMSEM1
0.08 (0.35) 0.02 (0.14) 0.01 (0.06) 0 (0.01)

1.0
RMSEM0

0.04 (0.22) 1.40 (0.36) 3.23 (0.68) 6.13 (1.17)

RMSEM1
0.04 (0.21) 0.04 (0.23) 0.02 (0.11) 0 (0.01)

Note. Pr indicates the recall probability. M0 is the original exemplar model and M1 the latent-mixture extension
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values. For instance, in Experiment 1B in Bröder, Gräf,

and Kieslich (2017) participants showed an average correct

recall rate (what we called here the recall probability Pr )

of .79 (SD = .23) and 46.67% had a correct recall rate

of .90 or more. Furthermore, it is not the recall probability

per se, but the relative number of correct exemplars to

all trials, that is, how many data points from all possible

trials are correctly recalled exemplars, which drives this

effect. The more recalled exemplars there are in the data,

the stronger ŝorig is biased towards 0. For instance, in our

simulation, with 32 stimuli, 12 exemplars, and Pr = 1,

there were 12
32

= 37.50% correctly remembered exemplars.

The fact that parameters are often estimated on the data of

the training blocks (e.g., Bröder & Gräf, 2018; Juslin et al.,

2003; von Helversen & Rieskamp, 2008), where all stimuli

are exemplars, makes this finding even more alarming.

These findings could in principle explain why many studies

find small ŝorig values, since based on the results of the

simulation, small ŝorig values can arise both, from small true

s values, but also from larger true s values, when combined

with the often-achieved high number of correctly recalled

exemplars in the data.

The results show that this bias in ŝorig is caused by

correctly remembered exemplars, this is instances where

the judgment of the criterion value of a trained exemplar is

identical to its true criterion value, since the bias disappears

when the ŝsplit was estimated only on the subset of the

data without any recalled exemplars. As a more elegant

solution, using the here presented latent-mixture extension

of the original exemplar model where the possibility of

correctly recalling a trained exemplar is integrated into

the model also lead to an unbiased estimation of the s

parameter. In fact, the few deviations of the estimated ŝint

from the underlying s parameter are probably due to the

random simulation procedure and instances of unfortunate

selections of exemplars and combinations of generated

criterion values, which would not be used in a real

experimental setting.

In the next section, we investigate if these effects reported

here are likely to be found in real experimental data as well,

by reanalyzing existing data from five different multiple-cue

judgment experiments.

Re-analysis

We reanalyzed data from five different experiments from

Bröder et al. (2017), Bröder and Gräf (2018), and one

unpublished data set from the same lab group. The aim was

to investigate if the effects found in the simulation extend

to empirical data as well. Before we describe our general

approach, we first outline the experimental procedure used

in one of the experiments. The material and procedure in

the other experiments were very similar to the one described

below and can be found in the corresponding papers, or, for

the unpublished data set, in the supplemental material. The

code and results are again available at the Open Science

Framework (https://osf.io/b69f3/).

Materials and procedure of the reanalyzed data sets

In Experiment 1A of Bröder et al. (2017), participants had to

judge stimuli on a scale from 0 to 100 based on a set of four

binary symptoms (e.g., fever vs. hypothermia), resulting in

16 different stimuli. They either had to judge the severity of

a patient’s disease or the toxicity of a bug. Since cue patterns

and criterion values of both stimulus sets were identical and

for reasons of simplicity, we will not make a distinction

between the content domain in the subsequent analysis.

The experiment itself consisted of three phases: a training

phase, a decision phase, and a final testing phase. In the

training phase, participants had to judge severity of illness

of eight patients or the toxicity of eight bugs (the exemplars)

and feedback about the actual criterion value was provided.

Participants were instructed to either use the feedback about

the correct criterion values to learn a mathematical rule

connecting cue and criterion values (rule condition) or to

memorize the objects and their values (exemplar condition).

The training phase consisted of eight blocks with eight

trials each (one for each exemplar). In the decision phase,

participants had to choose the stimulus with the higher

criterion value of 45 pairs of objects. These data, however,

are not important for the current project. In the testing

phase, participants had to judge the criterion values of all

16 stimuli (i.e., exemplars as well as new stimuli). They

were instructed to either apply the mathematical rule they

learned earlier (rule condition) or judge untrained objects

by their similarity to the memorized objects (exemplar

condition).

Method

Because of the often-documented “rule-bias” and since

we were interested in the exemplar model, we chose the

conditions of the five experiments in which exemplar-based

processing was expected (or shown) to be most prevalent.

We selected the data from the corresponding exemplar

condition from each experiment, where participants were

either directly instructed to use an exemplar-based approach

(e.g., Experiment 1A in Bröder et al., 2017), or where

an exemplar-based strategy was induced by experimental

design (e.g., Bröder and Gräf, 2018). For instance, in

Bröder and Gräf (2018), we only used the data from the

condition where a dimensional cue format was combined

with memory-based judgments, as more exemplar-based

reasoning has been observed under these conditions
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(Bröder, Newell, & Platzer, 2010; Platzer & Bröder, 2013).

See Table 5 for a short overview of all experiments and the

selected conditions.

We then again used JAGS (Plummer, 2003) to fit the

original exemplar model and the latent-mixture model

depicted in Fig. 2 to the data of the judgment phase of each

experiment. We ran two MCMC chains with 5000 samples

each with thinning by recording every 5th sample, after

15,000 burn-in samples and 15,000 adaptive iterations. The

convergence of the chains was checked by visual inspection

and the standard R̂ statistic (Brooks & Gelman, 1998).

We also computed Bayes factors for model comparison

between the original exemplar model (M0) and the latent-

mixture model (M1), using the Savage–Dickey density

ratio (Wagenmakers et al., 2010). In addition, we computed

the RMSE between the actual data and the median of the

posterior predictive distribution of each model.

Hypotheses

We had three predictions based on the simulation results

reported before. First, regarding the s parameter, we

expected to find higher values for ŝint than for ŝorig , since

ŝorig should be biased towards 0 when there are correctly

recalled exemplars in the data (H1). Second, since ŝorig

becomes smaller on average when there are more correctly

recalled exemplars, but ŝint does not depend on the number

of correctly recalled exemplars (see Fig. 3), we expected to

find a negative correlation between ŝorig and the number

of correctly recalled exemplars. We also expected to find

no such correlation with ŝint and the number of correctly

recalled exemplars (H2). Third, we expected to find that the

data are better predicted by the latent-mixture model than

by the original exemplar model, as indicated by a positive

log(BF10) (H3).

Results

H1. Differences in s Parameter

We conducted one-sided paired-samples t-tests for the

differences between ŝint and ŝorig for each experiment. The

results, together with the descriptive values, are shown in

Table 6. Overall, we found significant differences between

ŝint and ŝorig , with all ps < .001 and ds ≥ 1.02. The median

posterior estimates of ŝint and ŝorig for each person and each

experiment depicted in Fig. 4 show that as hypothesized ŝint

is larger than ŝorig for almost all participants. Indeed, there

is only one instance were ŝint (0.881) was smaller than ŝorig

(0.884) and this is for a participant who did not recall any

exemplar correctly (i.e., Pr = 0). In addition, there was a

very high correlation between the estimated latent memory

probability parameter φ of the latent-mixture model and the

empirical proportion of correctly recalled exemplars of each

participant (Table 6), which supports the validity of the φ

parameter.

H2. Correlations

To test our additional predictions we calculated the

correlation between ŝint as well as ŝorig and the number

of correctly recalled exemplars across participants and then

Table 5 Sample size, mean (and standard deviation) of proportion of correctly recalled exemplars, names and short description of the selected

condition of each experiment

Exp. Label n Pr Selected condition Short description of condition

Bröder et al. (2017) - 1A 171A 62 .43 (.32) Exemplar instruction Participants were instructed to

use an exemplar-based strategy.

Bröder et al. (2017) - 1B 171B 30 .85 (.15) Exemplar instruction Participants were instructed to

use an exemplar-based strategy.

Bröder et al. (2017) - 2 172 30 .69 (.31) With picture Each exemplar was always

accompanied by a picture of

a male person to facilitate

exemplar-based processing.

Bröder and Gräf (2018) 18 30 .78 (.28) Memory-based dimensions A dimensional cue format was

combined with memory-based

judgments, to facilitate more

exemplar-based reasoning.

Bröder and Gräf (unpublished) XX 35 .54 (.30) Long learning phase Participants had a longer train-

ing phase to facilitate exemplar

storage and thus exemplar-based

processing.

Note. Label indicates the respective abbreviations used in subsequent tables and figures

n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars
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Table 6 Means (and standard deviations) for different s parameters, test statistics and effect sizes of the difference between ŝint and ŝorig for five

data sets. Means (and standard deviations) of the latent memory parameter φ and its correlation with the empirical proportion of correctly recalled

exemplars

s parameters

Exp. n Pr φ rPr×φ ŝorig ŝint t df p d

171A 62 .43 (.32) .45 (.28) .93 [.88,.96] .34 (.23) .48 (.21) 8.00 61 < .001 1.02

171B 30 .85 (.15) .79 (.13) 1.00 [1.00,1.00] .23 (.13) .53 (.20) 12.88 29 < .001 2.35

172 30 .69 (.31) .66 (.26) 1.00 [1.00,1.00] .23 (.17) .41 (.18) 10.79 29 < .001 1.97

18 30 .78 (.28) .74 (.24) 1.00 [1.00,1.00] .24 (.16) .53 (.22) 9.36 29 < .001 1.71

XX 35 .54 (.30) .53 (.25) 1.00 [1.00,1.00] .36 (.24) .53 (.23) 8.33 34 < .001 1.41

Note. n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars

compared these two correlations with the test proposed by

Dunn and Clark for the difference between two overlapping

correlations based on dependent groups (Dunn & Clark,

1969; Hittner, May, & Silver, 2003). The results are shown

in Table 7. In every data set, we found a stronger negative

correlation of ŝorig (range: -.55 to -.75) with the number of

correctly recalled exemplars than for ŝint (range: -.12 to -

.47), with differences ranging from .20 to .48, ps ≤ .001.

Furthermore, as evident from Fig. 5, we found a similar

pattern as in the simulation where there seems to be an

upper bound for ŝorig for high numbers of correctly recalled

exemplars (see Fig. 3). Also evident from Fig. 5 is that, other

than expected, there were two instances where ŝint was still

significantly related to the number of recalled exemplars.

However, as these are only correlational findings, the

data from the unpublished experiment allowed us to address

this prediction (i.e., that the number of correctly recalled

exemplars affects ŝorig but not ŝint ) experimentally. This

experiment consisted of two conditions which only differed

in the length of the training phase (4 vs. 8 blocks, see

the supplemental material for a more detailed description).

This difference in length of the training phase should

lead to a lower number of correctly learned exemplars for

participants with a shorter training phase. This difference

in the number of correctly learned exemplars should then

lead to lower ŝorig values when participants had a longer

training phase and thus recalled more exemplars correctly,

but it should not affect ŝint . As expected, participants with

a shorter training phase recalled fewer exemplars in the

final testing phase correctly (M = 2.29, SD = 1.82) than

participants with a longer training phase (M = 4.29, SD =

2.38), t (63.66) = −3.94, p < .001, d = 0.94.

In addition, consistent with the previous results, the

difference between ŝorig and ŝint was larger for participants

with eight training blocks than for participants with only

four training blocks (F(1, 68) = 7.72, MSE = 0.01,

p = .007, η̂2
G = .006), as ŝorig was lower in the long

training condition (M = 0.36, SD = 0.24) than in the

Experiment: 171A Experiment: 171B Experiment: 172 Experiment: 18 Experiment: XX
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Fig. 4 Median posterior values of ŝint and ŝorig for each participant and for each data set. Black dots represent the means and the corresponding

standard errors
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Table 7 Correlations [and 95% CI] of ŝint and ŝorig with the number of correctly recalled exemplars and the test statistics regarding their

differences in each data set

r

Exp. n Pr ŝorig ŝint � t p

171A 62 .43 (.32) − .60 [− .74,− .41] − .15 [− .39,.10] .45 6.65 < .001

171B 30 .85 (.15) − .55 [− .76,− .23] − .12 [− .46,.25] .43 3.88 < .001

172 30 .69 (.31) − .75 [− .87,− .53] − .45 [− .70,− .10] .30 4.46 < .001

18 30 .78 (.28) − .68 [− .83,− .42] − .20 [− .52,.17] .48 3.58 < .001

XX 35 .54 (.30) − .68 [− .82,− .44] − .47 [− .70,− .17] .20 2.99 .001

Note. n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars. � represents the difference between

the correlations

short training condition (M = 0.45, SD = 0.24), but there

was no difference for ŝint (Mshort = 0.54, SD = 0.23,

Mlong = 0.53, SD = 0.23).

H3. Model comparison

As expected, the latent-mixture model was on average better

able to account for the data, as indicated by the high positive

log(BF10), ranging from Mlog(BF10) = 3.61 in Experiment

171A to in Experiment 171B Mlog(BF10) = 9.42, see Table 8

for the full results. As evident from Fig. 6, there is some

variation in the extent to which the latent-mixture model is

better able to account for the data of individual participants,

with even some instances where the original exemplar

model was better able to predict their data. However, Fig. 6

does also show that these differences are mostly due to the

difference in the proportion of correctly recalled exemplars

of the participants (rlog(BF10)×Pr
= .97, t (185) = 52.80,

p < .001). Furthermore, we found significant differences

between the RMSE of the both models, with the latent-

mixture model having a lower RMSE on average, ps ≤

.002, ds ≥ .56.. However, as evident from Table 8, although

we found the expected differences in all data sets, some

differences were rather small, for instance in Experiment 2

of Bröder et al. (2017).

Discussion

We reanalyzed data from five different experiments to

investigate if the effects found in the previous simulation

extend to empirical data as well. Results showed large

differences between ŝorig and ŝint in all five data sets:

ŝorig was estimated to be smaller than ŝint in each data

set, as was suggested by the simulation and theoretical

reasoning. It is also notable that the higher the proportion

of correctly recalled exemplars was, the larger was the

Experiment: 171A Experiment: 171B Experiment: 172 Experiment: 18 Experiment: XX
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Fig. 5 Median posterior values of ŝint (grey dots) and ŝorig (black triangles) by proportion of correctly recalled exemplars, for each participant

and for each data set. Lines and shaded areas represent the simple linear regression estimate and the 95% confidence interval
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Table 8 Means (and standard deviations) of the RMSE of the original exemplar model or the latent-mixture model with integrated recall, with the

corresponding test statistics and effect sizes of the difference between them, as well as the log(BF10), for five data sets

log(BF10) RMSE

Exp. n Pr M SD Min Max M0 M1 t df p d

171A 62 .43 (.32) 3.61 4.59 − 2.14 12.01 13.88 (3.61) 13.25 (3.59) 7.07 61 < .001 0.90

171B 30 .85 (.15) 9.42 1.58 6.99 12.91 11.62 (3.45) 10.40 (3.32) 5.51 29 < .001 1.01

172 30 .69 (.31) 7.30 3.84 − 2.12 12.04 12.56 (3.17) 12.19 (3.02) 3.08 29 .002 0.56

18 30 .78 (.28) 8.45 3.65 − 1.27 12.41 12.27 (3.30) 11.20 (3.23) 5.53 29 < .001 1.01

XX 35 .54 (.30) 5.63 4.20 − 2.17 10.92 13.73 (3.86) 12.86 (3.54) 4.99 34 < .001 0.84

Note. n represents the respective sample size. Pr represents the proportion of correctly recalled exemplars. M0 is the original exemplar model

and M1 the latent-mixture extension

difference between ŝorig and ŝint . Furthermore, correlational

results on the participant level also showed that ŝorig highly

depends on the number of correctly recalled exemplars,

with participants who recalled more exemplars correctly

having lower ŝorig values. Although not always independent

from the number of recalled exemplars as originally

expected, ŝint was clearly less strongly correlated with the

number of recalled exemplars. These results were further

corroborated with experimental data of one data set showing

that participants with a longer training phase recalled

more exemplars correctly and had lower ŝorig values than

participants with a shorter training phase. Yet, there was no

difference in ŝint . One might argue that it is plausible that

participants who better learned the exemplars are better able

to differentiate between them, which in turn is captured by

lower s values in the model. Although this might be true,

we still would argue that the simulation results presented

before clearly show that the relationship between a higher

number of correctly recalled exemplars and lower ŝorig

values can be a pure methodological and technical artifact.

Taken together, these results would also suggest that the

difference between ŝorig and ŝint would be even larger when

parameters are estimated on data from the training phase (by

ŝorig becoming even smaller), since there are only trained

exemplars in the learning phase and thus, the bias of ŝorig

can be even greater.

Moreover, we found that overall and for most individual

participants, the latent-mixture model integrating a direct

recall process of trained exemplars is better able to account

for the data, where for participants with a very low number

of correctly recalled exemplars the original exemplar model

was preferred. However, although the Bayes factors give

strong to extreme (overall) evidence for the latent-mixture

model, the differences in RMSE of both models, which is

often used in multiple cue judgment studies as a goodness-

of-fit criterion, were rather small for some experiments,

although we found somewhat larger differences in the

simulation.

To further investigate this, we ran a simulation similar

to the one described before, but with settings based on

the experiments we reanalyzed. That is, we used the same

stimuli, exemplars, and criterion values as in the studies

we reanalyzed. In addition, in each of the 500 repetitions

of the simulation we drew the recall probability Pr and

0
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Fig. 6 The log(BF10) colored by the proportion of correctly recalled exemplars (Pr ) for each participant and for each data set. The red dots

represent the means and the corresponding standard errors
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Table 9 Means (and standard deviations) of parameter estimates, RMSE, and effect sizes, from simulated as well as empirical data

s parameters RMSE

Type ŝorig ŝint M0 M1 d log(BF10)

Empirical .28 (.19) .50 (.21) 12.81 (3.48) 11.98 (3.34) 0.86 (0.86) 6.88 (3.57)

Simulation .32 (.19) .52 (.20) 13.72 (4.62) 12.76 (4.82) 1.13 (0.27) 6.42 (3.45)

Note. d represents Cohen’s d for a paired-sample t test. M0 is the original exemplar model and M1 the latent-mixture extension

the true s value from beta distributions with similar means

and standard deviations as found in the experiments we

reanalyzed5. We then used these parameters and the stimuli

to generate judgment data in each repetition according to

the exemplar model presented in Eqs. 1 to 3 and then added

normal distributed error with μ = 0 and σ ∼ N(17, 6)6

with a lower bound of 0 and upper bound of 100. To be

clear, we only defined the stimuli, the criterion values, s,

and Pr , based on the data of the reanalyzed experiments.

However, we did not define or set any constraints on the

resulting RMSE. We then estimated the parameters and

assessed the RMSE as in the simulation reported above. The

results are shown in Table 9. As intended, the average s

parameters over all simulations were similar to the average

values found in the empirical experiments. Furthermore,

we found that although the overall RMSE was a little bit

higher in the simulation, the average effect sizes of the

RMSE difference between both models and the average

log(BF10) were similar to the ones found in the empirical

data sets. This suggests that the results we found regarding

the differences in RMSE and log(BF10) are somewhat

typical for the specific memory performance observed in the

studies and the specific stimuli and range of criterion values

used in the experiments we reanalyzed.

A limitation of the results presented here is that the

procedure of the experiments we reanalyzed were very

similar to one another. Also, despite having different content

domains, the stimuli used in all experiments (i.e., number

of cues, number of stimuli, exemplars, and criterion values)

were the same in all experiments. Therefore, it is still open

to which extent the results generalize to other experiments,

with different stimuli, cues, and exemplars.

General discussion

We proposed that in the typical experimental procedure

in the multiple-cue judgment literature, the responses of

5We used the means and standard deviations of the unbiased ŝint

estimates to define the distribution of true s values in this simulation.
6These values were chosen randomly and are not based on empirical

data.

participants are a mixture of two qualitatively distinct

cognitive processes (similarity-based judgments and direct

recall) and that disregarding this distinction can lead to

biased estimation and impaired validity of parameters. We

ran a simulation and reanalyzed data from five experiments

to investigate the properties and extents of this issue, as

well as the adequacy of a solution. Results of the simulation

and the reanalysis showed that the estimation of the s

parameter of the context model (Medin & Schaffer, 1978)

extended to account for the continuous criterion in multiple-

cue judgments (Juslin et al., 2003) can be severely biased

towards 0 and that the model fit decreases if one does not

differentiate between recalled exemplars and other stimuli,

especially for larger values of the underlying s parameter

and if more exemplars are recalled correctly. Furthermore,

we found that on an individual level, the usually estimated

ŝorig parameter was very strongly negatively correlated with

the number of correctly recalled exemplars in all five data

sets, whereas the redefined parameter ŝint showed a weaker

to no relationship. The simulation and the reanalyzed data

sets showed that the predictive performance of the exemplar

model is impaired when one does not differentiate between

recalled exemplars and other stimuli.

These findings have several implications. First, we

showed that the standard procedure for estimating the

s parameter can lead to biased parameter estimates and

impaired fit of the model. However, this is not a problem

with the model itself. The problem is rather the adaptation of

the experimental design from categorization research which

involves having few overlearned stimuli (e.g., Medin &

Schaffer, 1978; Nosofsky & Palmeri, 1998), to multiple-cue

judgment research, in order to apply the exemplar models

also to multiple-cue judgments (Juslin et al., 2003). The

important difference between categorization and judgment

is the scale of the criterion. In categorization research the

criterion is categorical, for instance, two categories A or B

(e.g., Medin & Schaffer, 1978; Juslin et al., 2003; Smith

& Minda, 1998). In this case, multiple exemplars share the

same criterion value, since there are several exemplars in

category A and several exemplars in category B. Thus, there

is no unique exemplar-criterion-value combination as in

the multiple-cue judgment literature, were most exemplars

have their unique criterion value. This combination of very
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few well learned exemplars with their unique criterion

values leads to the biased estimation of the s parameter we

presented here. We would thus propose that the bias of the

s parameter is less profound in a categorization experiment,

where multiple exemplars share the same criterion. In

addition, there are also other paradigms were the bias

of the s parameter should be not necessarily a problem.

For instance, if participants get no direct feedback about

the criterion value, they are not able to just learn and

recall the exact criterion value (e.g., Pachur & Olsson,

2012). Also, there are studies in the multiple-cue judgment

and in the categorization literature, were stimuli are often

defined by continuous dimensions such as length, size, and

brightness rather than by binary features (e.g., Brehmer,

1972; Nosofsky & Alfonso-Reese, 1999; Ratcliff & Rouder,

1998), which leads to a large set of unique stimuli and

exemplars, which also makes it harder for participants to

learn specific exemplars and their criterion values. However,

on a psychological level, the mixture between different

process still is a problem in these cases.

Second, the findings presented in this work could explain

why previous studies found rather small values for the

s parameter of the exemplar model. For instance, von

Helversen and Rieskamp (2008) found average estimated

parameter values between .001 and .17 (according to von

Helversen & Rieskamp, 2009), Juslin, Karlsson, and Olsson

(2008) found average values from .14 to .36, and Bröder

and Gräf (2018) found an average s value of .11. As

evident from Fig. 3, when participants recalled most of

the exemplars the estimated parameter becomes rather

small, even when the true underlying s value was large.

In the simulation, there was an upper bound of .27 for the

estimated ŝorig parameter when s = .8 and when the recall

of exemplars was perfect.

Third, because of the biased estimation of the model

parameter, the goodness-of-fit and predictive performance

of the model are impaired. But having non-biased parameter

estimates becomes important since indices of model fit and

model comparison (e.g., RMSE, BIC, BF) are often used to

classify participants as users of a rule-based or an exemplar-

based process (e.g., Hoffmann et al., 2013; von Helversen &

Rieskamp, 2008; Wirebring et al., 2018). For example, von

Helversen and Rieskamp (2008) estimated the parameters

of different candidate models (e.g., the exemplar model

introduced here) by minimizing the RMSE for participants’

judgments in the last three blocks of the training phase. They

then compared the RMSE between the model predictions

and the actual data in the test phase to determine which

process participants relied on. The predictions for the test

phase were based on the estimated parameters of the

training phase. By neglecting the different retrieval-based

processes and estimating only one distorted s parameter,

the exemplar model may suffer an undeserved disadvantage

in the model comparisons which in the end could even

result in an overestimation of rule-based processes in

judgment. However, this problem may be less severe in

studies comparing rule-based and exemplar-based models

by qualitative indices of extrapolation and interpolation

(e.g., Bröder & Gräf, 2018; Juslin et al., 2003), which are

arguably less sensitive to the exact value of the s parameter

and thus less affected by the results reported in this work.

One possible solution, which we presented here in

the paper, is the latent-mixture extension of the original

exemplar model shown in Fig. 2. As demonstrated in

the simulation, the integration of the possibility of direct

recall of learned exemplars ensures a valid estimation

of the parameter of interest. Furthermore, this latent-

mixture model is generally preferred over the original

exemplar model, when participants remembered at least

some exemplars correctly. However, so far, the model

assumes a very simple and error-free direct retrieval process

of the criterion value of a learned exemplar in a trial, where

the corresponding criterion value of the exemplar is always

correctly remembered, for example, there is no confusion

between similar exemplars. In addition, there might be other

possible solutions, such as splitting the data into correctly

remembered exemplars and other stimuli, as demonstrated

in the simulation. Although this was our initial idea of fixing

this issue, this approach has several disadvantages over

the latent-mixture approach. For instance, the split-solution

is based on the post-hoc evaluation of the observed data,

where the data is divided into two different sets (recalled

exemplars vs. not recalled exemplars and new stimuli) and

model parameters are then estimated separately for each

set. In this dichotomization procedure, it would also be

an approximation to categorize all exactly remembered

exemplars in the set representing the pure recall process

and all other trials in the second set, and then estimating

one overall s parameter for each set. Furthermore, the

latent-mixture model models the underlying psychological

processed explicitly. Another possible solution would be

to either do not give participants feedback about the exact

criterion value (e.g., Pachur & Olsson, 2012) or to include

some exemplars in the training phase for which no feedback

about the criterion value is given, similar to Experiment 2 of

Bröder et al. (2017), and then estimate the s parameter only

on these exemplars.

Limitations

There are some limitations to this work. First, throughout

this article, we focused on Medin and Schaffer’s (1978)

context model extended to continuous judgment (Juslin

& Persson, 2002; Juslin et al., 2003) as an exemplar

model. However, several multiple-cue judgment studies
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(e.g., Hoffmann et al., 2014; Scheibehenne & Pachur, 2015;

Pachur & Olsson, 2012) use another exemplar model, the

GCM of Nosofsky (1984). We conjecture that the results

found here for the s parameter of the context model extend

to the sensitivity parameter c (also sometimes denoted as

h) of the GCM as well, since the context model (Medin &

Schaffer, 1978) is a special case of the generalized context

model (Nosofsky, 1984) and the s parameter of the context

model is related to the sensitivity parameter c through a

monotonic function (see the supplemental materials). A

second limitation is that for reasons of simplicity, we did

not manipulate or randomize some factors in the simulation

such as the general form of the criterion value function

(e.g., linear, cubic, exponential), the number of cues, or the

dimensionality of cues (binary vs. non-binary). However,

since the biased estimation of the s parameter is due to hav-

ing judgments of exemplars identical to the criterion value

of the exemplar, irrelevant of how the criterion value is

computed or how many cues there are, we expect the effects

would be the same. Third, the data sets we reanalyzed

originate from one lab-group and used similar materials

(i.e., cue patters, criterion value function, criterion values,

Appendix

and exemplars). Different experimental materials may differ

in the magnitude of effects we reported here. However, we

expect that since the effects stem from the combination of

the paradigm, the unmodified transfer of the model to this

paradigm, and the estimation procedure used in multiple-

cue judgment studies, and that we found the same effects

in the simulation which used somewhat different materials

(randomized criterion value functions, criterion values, and

exemplars), the results should generalize to other studies as

well.

Conclusions

We showed that the paradigm commonly used in multiple-

cue judgment research in combination with the way models

are fitted to the data can lead to biased estimates and

impaired validity of parameters, as well as negatively affect

the fit of the models. Researchers should be aware of the

different possible psychological processes underlying their

data and incorporate it in their analysis or experimental

design if necessary.
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