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ABSTRACT

Understanding how attentional resources are deployed in visual processing is a fundamental and highly
debated topic. As an alternative to theoretical models of visual search that propose sequences of
separate serial or parallel stages of processing, we suggest a queueing processing structure that entails
a serial transition between parallel processing stages. We develop a continuous-time queueing model
for standard visual search tasks to formalize and implement this notion. Specified as a finite-time,
single-line, multiserver queueing system, the model accounts for both accuracy and response time
(RT) data in visual search on a distributional level. It assumes two stages of processing. Visual stimuli
first go through a massively parallel preattentive stage of feature encoding. They wait if necessary and
then enter a limited-capacity attentive stage serially where multiple processing channels (“servers”)
integrate features of several stimuli in parallel. A core feature of our model is the serial transition from
the unlimited-capacity preattentive processing stage to the limited-capacity attentive processing stage.
It enables asynchronous attentive processing of multiple stimuli in parallel and is more efficient than
a simple chain of two successive, strictly parallel processing stages. The model accounts for response
errors by means of two underlying mechanisms, namely, imperfect processing of the servers and, in
addition, incomplete search adopted by the observer to maximize search efficiency under an accuracy
constraint. For statistical inference, we develop a Monte-Carlo-based parameter estimation procedure,
using maximum likelihood (ML) estimation for accuracy-related parameters and minimum distance
(MD) estimation for RT-related parameters. We fit the model to two large empirical data sets from two
types of visual search tasks. The model captures the accuracy rates almost perfectly and the observed
RT distributions quite well, indicating a high explanatory power. The number of independent parallel
processing channels that explain both data sets best was five. We also perform a Monte-Carlo model
uncertainty analysis and show that the model with the correct number of parallel channels is selected

for more than 90% of the simulated samples.
© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A key question in attention research involves the allocation

search task in the literature (e.g., Fisher, 1982). In a standard
visual search experiment, participants are required to look for a
single, predefined target among several isolated visual objects in

of cognitive processing resources to stimuli in the environment.
A widely-used experimental paradigm to study visual attention
is the standard visual search task (e.g., Geng & Behrmann, 2003;
Wolfe, 2018), sometimes also referred to as the single-frame
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the display. They are instructed to indicate as quickly and as accu-
rately as possible whether the target is present or not. The display
remains visible and static until a response is made. To infer how
cognitive processing resources are allocated, the relation between
stimulus inputs (i.e., task demands) and responses (i.e., processing
performance) is investigated. The number of items in the display,
called set size, is typically manipulated. The response time (RT)
is recorded as a core performance measure. In the literature,
the label “RT-method” (e.g., Wolfe, 2018) is also used for this
paradigm. Accuracy rates are also recorded but usually treated
as control variables to check for trade-offs between speed and
accuracy. In past research, trials with incorrect responses were
typically excluded, and the analysis has focused on the slope of
the regression line of the mean RTs of correct responses on the set
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size, denoted as “the mean RT x set size slope” (cf. Wolfe, 2018).
This slope characterizes the input-output relation observed under
the target-present or target-absent condition. Once the process-
ing structure is specified, explicit predictions on the slope can
be derived. For instance, in serial exhaustive searches, the slope
provides a rough estimate of the incremental time required to
process each item added to the search set. Because different
processing structures propose different explanations for the mean
RT X set size slope, this slope has been considered one of the key
explananda in the serial/parallel debate.

On the theoretical level, the serial/parallel debate is an en-
during controversy in the visual search literature, focusing on
the existence of an attentional “bottleneck”, in particular among
theoretical models that conceive visual processing as a sequence
of serial and/or parallel stages. According to Moore and Wolfe
(2001), serial and parallel accounts of visual search diverge on the
question of whether accomplishing a visual search task involves
any mandatory serial processing stage. Serial accounts assume
at least one mandatory stage in visual search that requires an
object-by-object processing by a single processing unit, whereas
parallel accounts maintain that more than one item can be pro-
cessed at any time and any level of processing, using parallel
lines and parallel processing units. Accordingly, many prominent
visual attention theories and models (e.g., Bundesen, 1990; Dun-
can & Humphreys, 1989; Treisman & Gelade, 1980; Wolfe, 1994),
among others, those that are composed of a series of processing
stages, are linked to either the serial or the parallel account.
Although there are several sets of empirical findings in line with
either account, the body of existing empirical research did not
yield a conclusive result on this debate. Neither account can
fully explain all empirical findings (Moore & Wolfe, 2001; Wolfe,
2021). For example, although the well-replicated finding of posi-
tive and steep mean RT x set size slopes (in the range of 20-60
ms/item, e.g., Treisman & Gelade, 1980; Wolfe, 1998) is consistent
with the serial account, a limited-capacity parallel model with
sequential sampling can also account for the same pattern (e.g.,
Townsend, 1971, 1990; Townsend & Nozawa, 1995). Resembling
typical visual search findings, attentional dwell time, that is, the
minimal time period during which attention is occupied once it
is committed to a certain location or object (Duncan, Ward, &
Shapiro, 1994), also does not discriminate between serial and
parallel processing conclusively and complicates matters even
further. Attentional dwell time estimates typically fall between
200 to 500 ms (e.g., Duncan et al., 1994; Moore, Egeth, Berglan,
& Luck, 1996; Theeuwes, Godijn, & Pratt, 2004). Obviously, this
finding is difficult to reconcile with the rapid rate of processing
suggested by the mean RT x set size slope, assuming exhaustive,
strictly serial processing.

Against this background, Moore and Wolfe (2001) explained
how a hybrid structure that integrates serial and parallel features
could resolve this paradox. As illustrated in the lower part of
Fig. 1, a hybrid structure in the sense of Moore and Wolfe (2001)
receives stimuli in a critical stage in series, yet several stimuli
can be processed in parallel after entry. Clearly, this notion “is
not a proposal for distinct serial and parallel stages of processing”
(Moore & Wolfe, 2001, p. 191). However, such a hybrid structure
resembles serial models because the deployment of attention can
happen to only one stimulus at a time. This notwithstanding,
it also resembles parallel models because the identification of
several stimuli can take place simultaneously. These similarities
might be seen as reasons for classifying models with such a
structure as serial or parallel. However, we agree with Moore
and Wolfe (2001) that they belong neither to the classically serial
nor to the classically parallel camp. Importantly, such hybrid
structures differ from serial structures by allowing subsequent
stimuli to receive attention before the processing of precedent
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stimuli has finished. They also differ fundamentally from standard
parallel structures because stimuli attain attentional resources
one at a time, resulting in asynchronous beginnings of attentive
processing. These properties also discriminate between hybrid
models in the sense of Moore and Wolfe (2001) and alternative
structures that have been called “hybrid” in a broader sense
(cf. Townsend, 1971) to indicate chains of successive processing
stages that include both purely serial and parallel ones (e.g., Bun-
desen, 1990; Hoffman, 1978; Treisman & Gelade, 1980). Moore
and Wolfe (2001) argued that the hybrid structure they advocated
(i.e., serial entry and subsequent parallel processing of stimuli)
is compatible with existing empirical findings. For example, if
stimuli enter an attentive processing stage one-by-one every
50 ms and stay there for about 300 ms, it is possible to observe a
“processing rate” of 50 ms/item along with a dwell time around
300 ms.

This notion seems promising in view of the results reported
by Wolfe (2021) and Fisher (1982); however, it has yet to be for-
malized and elaborated into a model that can make quantitative
and testable predictions and is equipped with suitable parameter
estimation procedures for rigorous empirical tests. In the latest
version (6.0) of the Guided Search model, Wolfe (2021) incorpo-
rated an asynchronous diffusion component to represent a hybrid
selection and recognition process. He demonstrated through sim-
ulation that the model is capable of mimicking basic patterns
found in RT and accuracy data. There are other precedent theories
and models that conceptualize cognitive processing as being both
serial and parallel, for instance, the models proposed by Harris,
Shaw, and Bates (1979); Fisher (1982, 1984); Miller (1993); Liu
(1996, 2013); Liu, Feyen, and Tsimhoni (2006); and Wu and Liu
(2008). Some of them have been stated as quantitative models,
but the time-dependent limited-channel model by Fisher (1982)
is the only one developed specifically for visual search. Fisher
(1982) derived expected values of RTs assuming error-free pro-
cessing. By minimizing the sum of squared differences between
expected values and data, he estimated the model parameters
from empirical mean RTs of correct responses and demonstrated
a good model fit.

In this paper, we propose a mathematical model that im-
plements the notion of a hybrid structure with both serial and
parallel features — a continuous-time queueing model of visual
search that accounts for RTs of both correct and incorrect re-
sponses on a distributional level. So far, the statistical analysis
of RT in visual search has focused on the mean RT of correct
responses. This does not provide a rigorous test of visual selective
attention theories because many models can be shown to produce
patterns of mean RTs as a function of set size that are similar
to the empirically observed ones (see e.g., Palmer, Horowitz,
Torralba, & Wolfe, 2011; Wolfe, Palmer, & Horowitz, 2010). Our
model, in contrast, makes full use of the information contained in
the RT data by modeling entire RT distributions. It thus enables a
more comprehensive comparison of the theoretical RTs obtained
from the model with empirical data, and provides a more rigorous
test of the model’s validity.

In addition to RT distributions, our model also accounts for
accuracy data. Previous studies in visual search usually excluded
incorrect trials from the analysis of RTs. The analysis of accuracy
data in visual search has rarely been addressed, leaving sources
of response errors and the consequences of excluding incorrect
trials undiscovered. However, response errors in standard visual
search appear systematic because particular patterns depending
on set sizes have consistently been found (Wolfe et al., 2010),
see Section 2.2 for details. To our knowledge, only a few papers
addressed error rates of responses in standard visual search tasks
specifically (e.g., Moran, Zehetleitner, Liesefeld, Miiller, & Usher,
2016; Moran, Zehetleitner, Miiller, & Usher, 2013; Zenger & Fahle,
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Fig. 1. Illustration of a strictly serial system (top), a limited-capacity parallel system with sequential sampling (middle), and a hybrid structure with both serial and
parallel properties (bottom). Dotted tubes within cuboids illustrate parallel processing channels.

1997). Further authors modeled the RTs of incorrect responses in
visual search but not the error rates themselves (e.g., Cousineau
& Shiffrin, 2004; Donkin & Shiffrin, 2011). Still others adapted
quantitative models of speed-accuracy trade-off from other fields,
for instance, Ratcliff's (1978) diffusion model, to visual search
data with a single, fixed set size (e.g., Corbett & Smith, 2020;
Thornton & Gilden, 2007). Despite these achievements, fully ex-
plaining observed error patterns in a psychologically meaningful
way remains challenging. We tackle this problem by model-
ing error probabilities using two underlying principles, namely,
premature search termination and misidentification. Embedded
in the framework of a queueing process, these two principles
also constitute the final pieces of the puzzle required for the
derivation of the joint distribution of responses and RTs.

On a more general level, our goal is to develop an alternative
formal model framework for standard visual search tasks that
goes beyond the idea of a simple chain of serial or parallel
processing stages. This new model framework is intended to
account for the joint distributions of responses and RTs for dif-
ferent set sizes, thereby extending the empirical scope of existing
models. In substantive terms, the proposed framework formal-
izes a generalized version of the feature integration theory of
visual attention (Treisman & Gelade, 1980) by connecting par-
allel processing within the feature-encoding and the subsequent
feature-integration stage via a single-line queueing mechanism,
thereby enriching the explanatory power of a classical theory in
the field.

This paper is structured as follows. In the subsequent section,
we formalize the proposed theory of visual search as a stochastic
process model using standard terms of queueing theory. From
the mathematical model, we derive formulas for the joint dis-
tributions of responses and RTs. To enable data fitting, we then
develop appropriate parameter estimation procedures in Sec-
tion 3. In Section 4, we evaluate the model empirically by fitting
it to two large prototypical data sets collected and published
by Wolfe et al. (2010). Finally, we perform a model uncertainty
analysis using bootstrap methods in Section 5 to test whether
model-based analyses can identify the number of servers in a
single-line queueing model reliably. Appendix A delivers detailed
derivations and comments on the subsequent equations.

2. Mathematical framework

In a queueing system, customers arrive as discrete units for
service, wait in line if necessary and leave after being served.
Queueing systems are widely used and are fully described by six
characteristics (see e.g., Bhat, 2015; Gross, Shortle, Thompson, &
Harris, 2008; Stewart, 2009): the interarrival times A between
successive arrivals, the service times S of servers, the number of
parallel servers c, the waiting room capacity, the total number of
customers k, k € NU {oo}, and the queue discipline, for example,
the first-come-first-served (FCFS) discipline.

In our model, a continuous-time queueing process represents
the course of visual search on a single trial. The k visual stimuli
in the display correspond to the customers who compete for
limited attentional resources. The queueing system determines
when and which stimulus gets the service of being identified
as target or non-target. Every stimulus is allowed to enter the
queueing system once. This assumption of a non-recurrent cus-
tomer source corresponds to perfect inhibition of return in visual
search (e.g., Klein, 1988, but see also Horowitz & Wolfe, 1998;
Wolfe, 2012 for different viewpoints). Furthermore, our model
deliberately ignores processes that might be involved in visual
search experiments, but lack a visual processing component, such
as pure guessing or motor execution errors. The reasons for this
choice will be elaborated in Section 2.2.

2.1. Model specification

The processing of a single stimulus is described assuming two
stages, namely, preattentive processing and attentive processing
(Treisman, 1986; Treisman & Gelade, 1980). In the preatten-
tive stage, features of visual objects are extracted and encoded.
Feature encoding is hypothesized to occur prior to attentive pro-
cessing, automatically without attentional control, and simul-
taneously across the entire visual field, that is, in a massively
parallel manner. In our model, the arrival process in the queue
corresponds to feature encoding. The beginning of the arrival
process, to, is defined as the time of stimulus onset. At this point,
there is no customer in the queueing system, as illustrated in
Fig. 2.

An item “arrives” in the queue at the precise instant that
all features necessary to construct a representation of it have
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Fig. 2. Visual information in a paradigmatic queueing system at stimulus onset ty. A total of k = 4 visual stimuli are denoted unambiguously by the coordinates
(xi, yi) of their locations in the display, respectively, for i = 1, ..., k. The stimuli are characterized by two features each, orientation (horizontal vs. vertical) and color
(red vs. green), but have not been processed so far. The dashed ellipse illustrates the waiting room for the queue, the rectangle the server system, and the dashed

circles the ¢ = 2 parallel processing channels (i.e., servers) in the server system.
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Fig. 3. Visual information in the queueing system when the first item arrives in the queue. The first stimulus with the coordinate (x1,y;) is ready for being served
since both features (i.e., vertical, red) have been encoded. In contrast, none of the other stimuli has arrived because only one feature (i.e., red) has been encoded for
stimulus (x3, y3), which stays in front of the waiting room, and no feature at all for the remaining two stimuli.

been encoded (cf. Treisman, 1986, 1988). This is illustrated in
Fig. 3. Let nu(t) denote the cumulative number of arrivals up to
time t. Then, the stochastic process n4 takes values in {0, ..., k},
has a jump at each arrival epoch, and remains constant until
the next arrival occurs. It can be assumed to be cadlag (right-
continuous with left limits; see e.g., Protter, 2005). Regarding t,
as the moment of “arrival” for i = 0, the interarrival time A;
between the (i — 1)th and ith arrival fori = 1, ..., k is assumed
to be exponentially distributed with mean 1/ (A (k — (i — 1))),
where A is a positive constant. Furthermore, A; is assumed to be
conditionally independent of A;_; given ny(t) = i— 1. This implies
an effective arrival rate A(k — ny(t)) at time t. Note that such
a state-dependent arrival pattern mirrors the massively parallel
processing in the preattentive stage because, at any instant, the
number of arrivals per unit time is proportional to the number of
stimuli that are still undergoing feature encoding, that is, stimuli
that have not yet arrived in the queue. We further assume that
any arrival order is equiprobable.

If there are no attentional resources (i.e., no free servers)
available upon arrival, an item has to wait in the waiting room,

as illustrated in Fig. 4. The waiting room is assumed to have
unlimited capacity and consists of a single queueing line, which
corresponds to an attentional bottleneck. Once processing capac-
ity becomes available again (i.e., a server is free for service), the
first item in the line is assigned to this server (i.e., FCFS). At this
moment, the item advances to the attentive stage of processing.

According to Treisman (1986) and Treisman and Gelade (1980),
the attentive stage selects features present at particular locations
and integrates them to form coherent object representations. It is
hypothesized to be more sophisticated, to require focal attention
and to have limited processing capacity. In our model, the service
process corresponds to the identification of an item by a server
based on the integration of its features. Our model assumes c
parallel, independent servers, with ¢ € N fixed but unknown. In
visual search, the number of parallel processing units that require
attention is considered limited by the capacity of the visual short
term memory (Bundesen, 1990; Duncan & Humphreys, 1989).
Thus, we restrict the range of ¢ to 1,...,10. At any server,
the service time S; of the ith identification, i = 1,...,k, is
assumed to be ii.d. exponentially distributed with mean p~!.
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Fig. 4. Visual information in the queueing system at the moment when the third item (x3, y3) arrives in the waiting room of the queue with both features encoded.
Because the two available servers are occupied by the first two stimuli (x1,y1) and (x,, ¥»), the third stimulus has to wait. Only the color but not the orientation of
the fourth stimulus (x4, y4) has been encoded at this point, thus it is not ready for entering the queue.
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Fig. 5. Visual information in the queueing system at the first departure epoch, that is, when the first item (x1,y;) has been identified by a server and leaves the
system. Since this server is free now, the same server can now process the next item in the queue, (x3,ys). Stimulus (x4, y4) has to stay in the waiting room with
both features encoded because the second server is still occupied by stimulus (x3, y2).

Once the identification is completed, the item is released from
the queueing system, as illustrated in Fig. 5. This instant is then
a departure epoch. Although services start in the same order as
arrivals because of the FCFS queue discipline, items may depart in
a different order due to service time variations at parallel servers
(cf. Wolfe, 2021). The assumptions on the service pattern imply
that the effective departure rate of the whole system at time ¢t
is given by p min{Q(t), c}, where Q(t) denotes the number of
customers in the system, that is, at a server or in the waiting
room, at time t. The stochastic process Q is also cadlag.

The above assumptions fully describe the probabilities of ar-
rivals and departures at any moment ¢ in continuous time, that
is, the transitions between different system states (n4(t), Q(t)).
Consequently, the time course of any event defined in terms of
the queueing model, in particular the departure epochs, can be
derived based on the parameter vector (A, u, C).

In sum, the queueing model of visual search proposes that
each item that has been identified in visual search experiments
typically passes through two stages, namely, (1) arrival in the
queue, which is achieved by the completion of feature encoding,
and (2) processing by one of the c servers of the system to

form an integral object representation. In between, there might
or might not be an intermediate state, where the processing
is suspended in the waiting room. The first stage corresponds
to the preattentive stage and the second stage to the attentive
stage of processing. Cognitive processing occurs only in these
two stages and is characterized by unlimited-capacity parallel
processing (i.e., automatic feature encoding) in the first stage and
limited-capacity parallel processing (i.e., attention-based stim-
ulus identification) in the second stage. The waiting room, in
contrast, does not involve cognitive processing, although staying
there takes some time in case all servers are occupied. It is
best understood as a serial transition from the preattentive to
the attentive stage of stimulus identification. Due to the FCFS
discipline, the time any item has spent in the waiting room will be
reflected in the departure times of those items that arrive after it.
Thus, the waiting time is considered part of the visual processing
time.

The theoretical construct of the waiting room is a core feature
of our model. The serial transition from the preattentive to the
attentive stage is not a designed property of this waiting room,
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but rather a natural consequence of arrival and subsequent ser-
vice processes in continuous time. To see this, suppose there are
two or more stimuli in the waiting room. This implies that all
servers must be currently occupied. The next transition of an item
from the waiting room to the attentive stage of processing will
happen at the same moment an item departs from the attentive
stage so that the respective server becomes available again. Since
the probability of two or more departures occurring at exactly
the same instant is zero, no more than one server will become
available at a time.

Note that this one-by-one transition is more efficient than a
chain of two successive strictly parallel processing stages. This
is because standard synchronous parallel processing stages (cf.
Townsend, 1971) must necessarily postpone the start of attentive
processing for those stimuli that arrived earlier in the queue
until the required number of servers becomes available. This
refers, for example, to visual search models that postulate atten-
tional selection as the result of parallel competition among stimu-
lus representations (e.g., Bundesen, 1990; Duncan & Humphreys,
1989). Such models necessitate a simultaneous start of parallel
processing for the stimulus representations that take part in the
competition.

2.2. System responses and theoretical RT

The courses of visual search on the trials of a standard visual
search experiment are modeled as independent realizations of
the same queueing process with the transition structure char-
acterized by (X, u, ¢), as described above. For each experimental
trial, we denote the set size by k and the objective status of the
target by g, with ¢ = 1 for presence and q = 0 for absence of
the target in the stimulus display. The RTs, X 4, and responses,
Yi g, observed on different trials under the same experimental
condition (k, q) are considered i.i.d. The experimental manipula-
tion of the factors k and q is assumed to impact the outcomes of
identification at individual servers, which then jointly determine
the stopping time of the queueing process and the final system
response. Thus, to model RT and response jointly as a random
vector (Xigq, Ykq), we need to specify how a queue terminates
under each level combination (k, q).

Assumption A1 (Termination Rules). The entire queueing pro-
cess is assumed to terminate in finite time under two mutually
exclusive conditions:

C1. The system finishes serving an item classified as a target.
Since target detection is conceived as a self-terminating pro-
cess, this instantly triggers a target-present (TP) response.

C2. The system finishes serving [ items (0 < [ < k) and classifies
them all as distractors. This triggers a target-absent (TA)
response.

The termination criterion | = I(k) is a function of set size k
and is determined based on the maximization of search efficiency
under an accuracy constraint (see Section 2.3 for details). We
denote the occurrence of a TP and a TA response under condition
(k,q) by Yiq = 1 and Y, 4 = 0, respectively. Note that Assump-
tion A1 implies an asymmetry between a TA and a TP response.
Given insufficient evidence for the presence of the target, TA
is always the “default” response. This differs conceptually from
models that attribute bias between positive and negative re-
sponses completely to asymmetric boundaries for gradual, noisy
evidence-accumulation processes (e.g., Ratcliff, 1985).

Assumption A1 implies that an incorrect response can result
from (a) omission due to early search termination (i.e., | < k) or
(b) an erroneous service outcome, that is, the misidentification
of an item. An omission occurs on a target-present trial when
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the target is not included in the first [ items searched. If, in
addition, these | non-target items are processed in an error-free
manner, an incorrect TA response will be triggered automatically,
without any intrinsic errors in the attentive stage. The subsequent
assumption (Assumption A2) specifies how a misidentification at
a server (i.e., a false positive or a false negative classification) is
invoked. For the service outcome of any item i on a trial, we use
the term “7; = 1” | 7; = 0 to indicate a false positive classification
of item i, i.e., mistaking a distractor for the target, and “7; = 0” |
7 = 1 to indicate a false negative classification, i.e., mistaking
the target for a distractor. Note that “7; = 1" | 7; = 0 for
any item i in a target-absent display necessarily results in a false
alarm Yy o = 1 because the search process is assumed to be self-
terminating. Conversely, “7; = 0” | 7; = 1 does not imply a miss
Y1 = 0 in target-present displays because another item in the
queueing system might still be classified as a target by any of the
C servers.

Assumption A2 (Misidentification Probabilities). For any fixed set
size k, “7; = 1" | T; = 0and “7; = 0” | 7 = 1 emerge at each
server independently with probabilities p; and p,, respectively,
for each item i in the system.

The probabilities p; and p, are functions of set size k and
are determined by a threshold adaptation. Adjourning further
specifications of the dependencies of I, p;, and p, on set size k
to Sections 2.3 and 2.4, we can now derive the error probabilities
of the responses from Assumptions A1 and A2 (cf. Appendix A.1
for comments on the derivation):

ik L p1,p2) =P(Yko = 1)=1—(1—p1); (1)
k—1 I

(ks 1, p1, p2) = P(Yk1 = 0) = (1 — py)' ——Ta —m)’*mk.
)

We consider omission and misidentification as sources of in-
correct responses because such unobservable errors are not only
plausible from a psychological perspective, but are also nec-
essary to fully reproduce the patterns of response errors con-
sistently found in empirical data (Wolfe et al., 2010; see also
Fig. 9 in Section 4). Specifically, the following patterns have been
observed:

(a) the miss rate P (Yk,l = O) increases with increasing set size

(b) the false alarm rate IP’(Y,QO = 1) remains approximately
constant with a slight downward trend when k increases;

(c) for a given set size, the miss rate tends to be higher than
the false alarm rate;

(d) there is evidence for an acceleration in the growth of the
miss rate with increasing set size (e.g., also in data of
Zenger & Fahle, 1997), resulting in a convex shape of the
graph of the miss rate on set size.

As we will show in the following two subsections, with our
specifications of [, p;, and p,, Assumptions A1 and A2 capture
these patterns. In contrast, the premise of an exhaustive search
on trials with two or more adjacent set size levels is clearly inap-
propriate regardless of the processing structure, as the following
considerations show. If we assume exhaustive search along with
p1 and p, being constant, then the expected frequencies given
by the model are contrary to patterns (a), (b), and (c). Other-
wise, if we assume straightforward dependencies of p; and p,
on k, then the model either conflicts with pattern (c) or the
expected frequencies deviate systematically from patterns (b) and
(d) (see Li, 2019, pp. 71-74 for details; cf. Zenger and Fahle, 1997).

Importantly, our model regards omission and misidentifica-
tion as the only error sources for two reasons. First, excluding
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other types of unobservable error keeps the model simpler while
maintaining its ability to account for the essential patterns of
observed response errors. Second, Assumption Al specifies a one-
to-one correspondence between the termination conditions C1
and C2 and the response types TP and TA. Hence, the condition
under which the queue has terminated is implied by the observed
response. This allows us to determine the time course underlying
either type of response. According to this property, the latent
system response time underlying a TP or TA judgment in a k-
customer queueing system, denoted by T,} and T,?, respectively,
is given by the time that elapses between stimulus onset t, and
termination of the queueing process under C1 or C2. Note that
the time each identified item spent in the two processing stages
and the waiting room is encompassed in T, and T}.

We model the RT observed on a trial as the sum of the system
response time T;, ¢ € {0, 1}, and a residual time. The residual
time is defined as the time not spent on collecting and analyzing
visual information, such as motor reaction time. It is modeled by
an additive constant that depends only on the response types TP
and TA, denoted by 7; and 7y, respectively. We assume different
residual time parameters for different response types because the
execution may be affected by additional factors associated with
the decision, such as readiness to either response type (cf. Fisher,
1982). Accordingly, our model entails the RTs observed under
different conditions in a visual search experiment as follows:

TI<1 + 71
T,? + 10

if the system terminates under C1,

Xk,q = (3)

if the system terminates under C2,

where 11, 79 > 0.

Under Assumption A1, Eq. (3) implies that, for a given level
combination (k, q), the RT distribution is determined once the
value of the associated response is known. More specifically, if
Yi,q = 0, the queue must have stopped at the Ith departure epoch,
be the response a correct rejection or a miss. If Yy, = 1, the
queue may have stopped at any of the first | departure epochs,
depending on the position of the item classified as a target in the
departure order. Hence, T/ follows a finite mixture distribution
consisting of the distributions of the first [ departure epochs,
denoted by Tj, j = 1,...,], respectively. The associated prob-
abilities (i.e., the mixture weights of the | components) depend
on the condition (k, q) and the auxiliary parameters I, p;, and p,,
according to Assumptions A1 and A2.

As the distribution of any departure epoch T; is fully specified
by the parameters (A, i, c), the model implies the conditional
cumulative distribution function (CDF) of the RT, X; 4, given the
response, Yj 4, to be

FxgViq(t 1 Y3 1, 1, P2)
1

) D vikall s pa)Fr (€ = T 2 o) ify =1,
= 1<

Fr, (t — 705 A, i1, C)

(4)
ify=0,

where y € {0, 1} denotes the values of the random variable Y 4
and Fr, is the CDF of the jth departure epoch Tj,j € {1, ..., I}. The
weights vj x4 of the mixture components are given by

vikoll, 1, pa) = (1= p1Y~"pa/mi(k; 1, b, pa),

vjk1(l, p1, P2)

(G — Dp2(1—p1Y2p1 + (1 — prY 1 (1 — pa + (k — j)p1)
k(1 — ma(k; 1, p1, p2)) ’

where 7y and 7, are given by Eqgs. (1) and (2). The weights vj 1 of

the target-present case are derived by calculating the conditional

probability that the jth departing item is classified as a target

given that the actual target appears in the ith position in the
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departure order, i € {1,..., k}. For details of the derivation of
Vj k,q» S€€e Appendix A.2.

From Egs. (1), (2), and (4), it is apparent that once I, p;, and
p, are determined, we obtain the marginal distribution of Y; 4 as
well as the conditional distribution of X 4 given Y 4. These three
quantities are auxiliary parameters because their dependencies
on set size k need to be further specified to account for patterns
in the data in a psychologically meaningful manner. As detailed
in the following two subsections, these specifications follow from
the assumptions of incomplete search and imperfect processing.
The charm of these assumptions is the simplicity of both the
approach and the resulting specification of I. At the same time the
latter accounts for many empirical findings, such as the patterns
in accuracy data.

2.3. Incomplete search

We consider efficiency optimization as the principle underly-
ing premature search termination and model it by means of the
foraging theory (e.g., Stephens & Krebs, 1986). A human observer
performing a visual search task is assumed to decide when to
quit search analogous to a forager searching for food in patches of
various sizes. In accordance with Assumption A1, we define the
set of possible stopping policies by counting, that is, “stop and
respond TP once the target is found, otherwise stop and respond
TA after examining [ items”. Since this set is bijectively mapped
to the set of all possible | € {0, ..., k}, we simply use [ to indicate
the corresponding stopping policy. According to foraging theory,
for all possible stopping policies, the long term mean reward
rate is calculated considering the environment structure; then the
best policy is chosen (see e.g., McNamara, 1982). In addition, we
assume that participants impose a high subjective standard z of
acceptable performance and try to maximize the mean reward
rate of the entire experiment while achieving an average accuracy
rate not below this standard. This is reasonable for two reasons.
First, laboratory visual search tasks are usually designed to be
easy for most people, such that obtaining a low accuracy rate
would make participants feel uncomfortable. Second, participants
usually understand that their search behavior is of interest and
aim at showing high compliance.

Given set size k, we define the long term mean reward rate
1«(I) under a stopping policy I as the ratio of the expected number
of correct responses to the expected number of items examined
until search termination (cf. McNamara, 1982). For the sake of
simplicity, our calculations in Appendix A.3 assume a balanced
design and ignore the very rare misidentifications. Assume now
that the experiment has m set size levels k = (kq, ..., ky), each
appearing with equal probability. We assume without loss of gen-
erality that k; < ky < --- < k. Assume further that the observer
adopts stopping policies I = (I3, ..., ) for the respective levels.
On any random trial, let R,(I) denote the random variable that
indicates a correct response, and N (I) the random variable of the
number of items examined until termination. Then the long term
mean reward rate is given by

=R 2y (5)
v TEMND) g

The optimization problem can now be formulated as

() = jmax ! (6)
1seenlm

under the natural constraints 0 < [; < kjfori = 1,...,m

and the accuracy constraint E(Rk(l)) > z. Here, max! indicates

maximization of the function on the left side with respect to I,

subject to the specified constraints. Without loss of generality, we
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may assume that z € [1/2, 1]; in practical applications, we have
z € (1/2, 1) with z typically close to 1.

In case z > 1—(2m)~!, the optimal solution to Eq. (6) is given
by

(l’;,l;‘,..., m)—(k],kz,...,

implying the search proportions

(rfo.ooomm) = (I /e, o I k) = (1,

The above two equations formalize the following rule: Unless
the target is found, perform an exhaustive search on the smaller
set sizes to achieve maximum accuracy; only on the trials with
the largest set size, terminate the search so early that the mini-
mum required accuracy to reach an average accuracy of z can be
obtained. For the derivation of the optimal stopping policy given
by Eq. (7) under rather general assumptions, see Appendix A.3.
The inequality z > 1—(2m)~! is, for instance, satisfied for m = 4
and z > .875, or for m = 5 and z > .9. Since most visual search
tasks use less than five set size levels and are designed in a way
that high accuracy is facilitated, the case z > 1 — (2m)~! is most
relevant for empirical applications.

In reality, of course, participants hardly perform such a formal
analysis deliberately and implement the optimal stopping policy
exactly as given by Eq. (7). Moreover, an exhaustive search under
two or more adjacent set sizes conflicts with patterns in empirical
accuracy data, as discussed in Section 2.2. Nevertheless, it seems
plausible that the actual search termination behavior is largely
shaped by the optimal stopping policy, but with some added
flexibility (i.e., performing nearly exhaustive searches on trials
with smaller set sizes and reducing search proportions to some
degree when set size is large). Accordingly, we model the actual
termination by an approximation of the optimal stopping policy
using a smoothing approach, see Section 2.5.

km—1, km (1 —2m(1 — 2))), (7)

1,1-2m(1—2)).

2.4. Imperfect processing

Incomplete search alone does not suffice to account for all the
patterns (a) to (d) in accuracy data (see pattern (b) in Section 2.2).
An adaptation of the identification threshold to the set size is
necessary to fully capture these patterns. For this purpose, the
dependencies of p; and p, on k need to be specified.

Thanks to Eq. (1), pattern (b) reveals unique information with
regard to p;. Recall that the empirically observed false alarm
rates, that is, the realizations of 1, remain approximately con-
stant with a slight decreasing trend as k increases. If 7; were
constant, we could solve Eq. (1) for p;. Taking the slight decline
into account, we conclude in Appendix A.4 that it is reasonable
to specify the dependency of p; on k by

pi(k) = ajk™® (8)

for some a; € [0, 1] and b > 0 with ai/b < ki = min{kq, ..., kn}.
The derivation in Appendix A.4 also implies that, more specifi-
cally, a; should be close to 0 and b slightly larger than 1.

This power law relationship is convincingly supported by an
observation based on the two sets of accuracy data from Wolfe
et al. (2010). A naive estimate of p; appears to follow indeed a
power law of set size k for each data set, as Fig. 6 shows. See
Appendix A.4 for details.

Although a similar approach does not work for p, (see again
Appendix A.4 for details), it is reasonable to also allow p, to
depend on k for two reasons. First, for a binary classifier in
general, suppressing the Type I error rate P(“7; = 1" | 7; = 0) is
associated with an increase of the Type II error rate P(“7; = 0” |
7i = 1) and vice versa. Second, assuming a constant p, predicts a
slightly slower growth of the miss rate than observed in empirical
data. This discrepancy diminishes when we assume that p, varies

I(k) := k(1 — exp(Bk + a))
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Fig. 6. Log-log plot of the naive estimates of p; on set size k for conjunction
search data (top) and spatial configuration data (bottom) collected by Wolfe
et al. (2010).

as a power function of k, resulting in a better approximation of
pattern (d). More precisely, we assume that py(k) = ayk” for
some b, > 0 and a, > 0. We further infer from an analysis of
the Receiver Operating Characteristic curve that p, most likely
increases with k at a similar speed as p; falls (i.e.,, b, = b), and
accordingly,

pa(k) = azk?,  where a;, b > 0 and az_l/b > k. 9)

2.5. Full model accounting for accuracy and latency jointly

As mentioned in Section 2.3, we model the termination by a
smooth approximation of the optimal stopping policy. We suggest
to approximate [; by

for —a/B>k and S >0. (10)

The goodness of the proposed approximation is best illustrated
by the corresponding search proportions (r}‘, A ,;‘1) and the
graph of 7(k) == T(k)/k = 1—exp(Bk+a), see Fig. 7. The parameter
B represents the steepness of the curve and can be interpreted
as the extent to which the search proportions 7(k;) for different
set size levels k; are polarized. Here, “polarization” indicates that
parameters 7(kq), ..., F(km—1) are close to 1 while 7(ky,) is close
to 0. Specifically, the larger B, the steeper the curve of 7(k;), thus
the larger the jump at the largest set size level.

We choose this specific form for two reasons. First, it results
in decreasing search proportions (k) for increasing k, which is
necessary to capture pattern (a). Second, it leads to a convex form
of the miss probability P(Yy 1 = 0), in line with pattern (d) found
in empirical data.

Combining Eq. (10) with Egs. (8) and (9), we obtain the fol-
lowing explicit equations for the error probabilities of responses:

(k) = 1— (1 — agk?) e, (11)

ma(k) = [(1— ark™®) exp(a + Bk) + azk” (1 — exp(e + Bk))]
) (1 . alk b)k(l—exp(ot+/3k))—1 ) (12)
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Fig. 7. The search proportions (r, ry,r3, ;) = (1, 1,1, 0.8) that correspond to the theoretically optimal stopping policy under the accuracy constraint z = 0.95 in
an experiment with set size levels (3, 6, 12, 18). The search proportions are approximated by the function 7(k) = 1 — exp(0.6k — 12.38).

Given our specification of the emergence of response errors,
the model hypothesizes the marginal distribution of the response,
Yy g, as

Py, W =0—qr] A—m)'"V +q(1 -m) m, 7, (13)

where ¢,y € {0, 1}. The model parameters («, 8, a1, az, b) in 7,
and 7, which we refer to as accuracy-related parameters, as well
as set size k, are omitted for clarity.

As discussed in Section 2.2, by determining [, p; and p,, we
also obtain the distributions of T} and T in Eq. (3), and thus
the conditional distribution of X; 4 given Y} ,. However, there is
a technical issue that needs to be resolved: While Eq. (10) intro-
duces non-integer values of I, Assumption A1 implicitly requires
| to be a natural number in order to model X; 4. Simply rounding
the value of ] obtained from Eq. (10) to a natural number leads to
a considerable bias. Therefore, we adopt a probabilistic approach:
the termination criterion in Assumption A1 functions as a random
variable that takes the value [I] with probability [ — [I| and
the value |I| with probability 1 — (I — [I]). In other words, the
termination criterion is modeled by a two-point random variable
with the floor 1] and the ceiling [] of [ as possible outcomes and
| as the expected value. The distributions of T} and T can thus
be determined as finite mixture distributions. In particular,

B gtvieg (€ 19) = (14 (1) = DFx, v (¢ 1 5 L1, 1. p2)
+ (= )Py vyt 1y T 1. p2),

where Fx g1iq is given by Eq. (4) with 1 D1, D2 as specified in
Eqgs. (10), (8), and (9). Again, the parameters («, 8, a;, a, b) are
omitted for clarity. In addition to these accuracy-related parame-
ters, the model RTs also depend on (A, u, ¢, 71, 7o), which can be
inferred solely from the RT data, cf. Section 2.2. We therefore call
them RT-related parameters.

Hence, our model explicitly and completely specifies the re-
spective dependencies of Py, . and ka_q‘ykq on set size k. As a
result, regardless of the specific set size k; on a visual search
trial or the total number m of set size levels studied in the
experiment, the number of free parameters — both RT-related and
accuracy-related — remains constant.

(14)

3. Parameter estimation

The proposed queueing model has 10 free parameters in
total: «, B8, ay, az, b, A, u, c, 71, 1p. Since our model specifies an
analytical closed form for 7; and 7, in Eq. (13), we estimate
the accuracy-related parameters «, 8, a;, d;, b using a maximum

likelihood (ML) estimation approach. An estimator with explicit
analytical form is not available for Fr;, hence also not for Fy, Viq?
due to the non-standard assumptions in our model, e.g., the non-
constant arrival intensity. Therefore, with respect to modeling
the RTs on a distributional level, we approximate Fxqiq by
Monte-Carlo simulation. Accordingly, we estimate the RT-related
parameters A, u, €, 71, Tg using a minimum distance (MD) esti-
mation approach. In accordance with the respective dependencies
of mq, m and ka’qwkﬁq on the parameters, the accuracy-related
parameters are estimated ahead of the RT-related parameters
and their ML estimates are used as input for the MD estima-
tion procedure. For technical details of the complete parameter
estimation procedure, we refer to Chapter 6 in Li (2019). The
parameter estimation has been implemented in R (R Core Team,
2021) by Schlather and Li (2022). The full reproducible R scripts
for data fitting are available at the Open Science Framework
(https://osf.io/k9573/).

3.1. ML estimation for accuracy-related parameters

Assume a balanced two-factorial within-subject design of m
set size levels (kq, ..., kny) crossed with target presence versus
absence in a display (g = 1 versus q¢ = 0, respectively). Let
Nk qy denote the number of observations of Yyq = y, ¥y €
{0, 1}, on trials with set size k and objective target status gq.
Based on Eq. (13), the log-likelihood ¢ of the response pattern
(Mki. 1.1 Mk, 1,05 Mig,0,1 Mig0,0) 1S given by

m

U Brar @ b) =Y [ M1 In (1= 7a(k)) + i 1.0In (ea(k)

i=1
+ 0,110 (i (ki) + M0 (1= 71(k) |
+ C,

where C is a constant, and 7r; and 7, are given by Egs. (11) and
(12).

To ensure that estimated probabilities are in [0, 1], we repa-
rameterize the model by 8 = —Bk;,/a and b = —bIn(ky,)/ In(ay).
Note that, by assumption, kj, is the greatest element of {kq, ..., kis}.
To refine the estimation, we apply a technique of profiling (see
e.g., Severini & Wong, 1992) to 8.

3.2. MD estimation for RT-related parameters

The MD estimation approach searches for the parameter val-
ues that minimize the distance between the CDFs of the model
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Fig. 8. Two examples of search displays used in Wolfe et al. (2010), a con-
junction search task (left, target = vertical red bar) and a spatial configuration
search task (right, target = 2). From “Serial_Conj”, by Visual Attention Lab, 2010,
Retrieved from http://search.bwh.harvard.edu/new/data_set_files.html. Copyright
2010 by Visual Attention Lab.

RT and the empirical data (see e.g., Basu, Shioya, & Park, 2011).
The distance is measured by the Wasserstein metric of order 1
(Vallender, 1974):

W(Gn, Fy) = / 1Gal) — Fal()] dx,

where Fy is a parametric model CDF with parameter 6 and G, the
empirical CDF of the observed data with sample size n.

As stated above, the conditional CDFs of RTs given by Eq. (14)
are approximated numerically using Monte-Carlo simulation. We
developed an algorithm (see Appendix B) for the simulation of
a queueing process as specified in Section 2. Each simulation run
returns a TP or TA response and the associated RT based on Eq. (3)
for a given level combination and a given parameter vector. We
call the data simulated or collected under a level combination
(k, q) a sub-data set. Each simulated sub-data set consists of 10°
simulation runs, which are batched into a block. To ensure that
the distance calculation returns the same value for the same set
of parameter inputs, the random seed is reset to 0 once at the
beginning of the block of simulation runs for a sub-data set.

Taking RTs of both correct and incorrect responses on both
target-present and target-absent trials into account means that
a data set with m set size levels results in 4m comparisons
between the model and empirical CDFs and thus 4m distances
for the entire experiment. From a psychological viewpoint, it is
reasonable to assume that the same parameter values underlie
the data observed under different conditions in the same vi-
sual search experiment. This constraint requires to search for
common parameter values for all sub-data sets that minimize a
global distance, which is best defined as the weighted sum of in-
volved distances, using the relative informativeness of the data as
weights, as detailed below. However, simply fitting the model to
all sub-data sets at once leads to overparameterization and causes
identifiability issues, making parameter estimates unstable.

In order to combine the information across sub-data sets in
an efficient way and to cope with the identifiability issues, we
develop a hierarchical, iterative parameter estimation procedure
(see Appendix C). This procedure integrates information from in-
dividual sub-data sets to find better estimates step by step along a
hierarchical structure. First, each sub-data set is fitted separately
with the profiling technique (see e.g., Severini & Wong, 1992)
applied to A~1, the parameter for interarrival times. The estimates
of individual sub-data sets are then averaged to obtain the initial
values for the joint fitting of sub-data sets. The distances involved
in the calculation of each step are weighted by the relative in-
formativeness of the data they are based on. When the model is
fitted to correct and incorrect RTs of a sub-data set jointly, either
distance is weighted by the relative frequency of the respective

10
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Table 1
ML estimates of accuracy-related parameters and corresponding log-likelihoods
for the conjunction search and spatial configuration search data of Wolfe et al.
(2010).

& B d; dy b log-likelihood
cs —4.01 .0531 .0262 1.00 x 107> 1.28 —27.69
SC —4.41 114 .0182 1.21 x 107 1.11 —31.76
Note. CS = conjunction search; SC = spatial configuration search. The ML

estimates are rounded to three significant digits.

responses within this sub-data set. For the sub-data set obtained
in condition (k, q), we denote the frequency-weighted sum of
the resulting distances by W . When different sub-data sets are
fitted jointly, each W 4 is additionally divided by the lowest value
(i.e., the best individual fit) obtained in the first step for the
corresponding sub-data set. The global distance in the second
step is then the sum of the relativized Wj 4. This relativization
prevents sub-data sets with large individual distances, which in-
dicate comparatively bad fits, from dominating the optimization.
To deal with over-parameterization, a subset of parameters is
held fixed when the complementary set is estimated. The process
is iterated alternatingly with exchanged roles of the two subsets.
Because c, the number of servers, has discrete values, it is held
fixed when using this procedure to estimate other parameters.
The entire procedure is applied for eachc =1, ..., 10 to find the
best fitting c.

4. Data fitting
4.1. Brief description of the experiments by Wolfe et al. (2010)

Our model was fitted to data aggregated across individual
participants collected in two standard visual search experiments
by Wolfe et al. (2010). Ten and nine participants performed a
conjunction search task and a spatial configuration search task,
respectively. Each participant completed a total of 4000 experi-
mental trials. The experiments followed a factorial within-subject
design of set size (3, 6, 12, or 18) and the objective status of
the target (absence or presence). On each trial, the levels of both
factors were selected randomly and independently with equal
probabilities of 1/4 and 1/2, respectively. Fig. 8 illustrates two
examples of the search displays. With a delay of 500 ms, the
search display appeared and remained visible and unchanged
until the participant responded. Whenever a key was pressed,
indicating either a target-present or a target-absent response, a
feedback was shown for 500 ms. Participants were instructed to
respond as quickly and accurately as possible. Following Palmer
et al. (2011) and Wolfe et al. (2010), we excluded trials with RT
< 200 ms.

4.2. Results

For both task types, the ML estimates of the accuracy-related
parameters (Table 1) resulted in predicted relative frequencies
very similar to the empirically observed error rates, see Fig. 9.

Based on the accuracy-related parameters in Table 1, we ob-
tained MD estimates for the RT-related parameters using the
Monte-Carlo-based procedure described in Section 3.2. For the
conjunction search response latencies, a generally good fit was
already obtained when all parameters were kept invariant across
experimental conditions. For the spatial configuration search la-
tencies, this restriction led to a sufficiently good fit only for some
of the sub-data sets. However, allowing 1~ ! to depend on set size
improved the fit markedly. For both task types, the best overall
fit was observed for ¢ = 5 with the corresponding MD estimates


http://search.bwh.harvard.edu/new/data_set_files.html

Y. Li, M. Schlather and E. Erdfelder

False Alarm Miss Detection

0.075 - =
&
=]
=

0.050 - S
(@)
=
L

0.025 - S

2 1l -
'-E 0.000 - --

@]

[ wn
i g

0.075 - =
Q
(©)
=8

0.050 - e
2

0.025 - =

11 .
©

. T

3 6 12 18 3 6 12 18

Set Size

. Data. Model

Fig. 9. Comparison of observed false alarm (left column) and miss (right column) rates and the corresponding frequencies expected from the model, separately for

conjunction search data (upper row) and spatial configuration search data (lower row) of Wolfe et al. (2010).

Table 2
MD estimates of RT-related parameters in milliseconds and corresponding sums of distances for
the conjunction search and spatial configuration search data sets from Wolfe et al. (2010).

—

N N A L o LiWho o YW
(&) 5 23 151 151 151 151 245 353 407 144
SC 5 81 235 361 493 501 285 388 453 158

Note. CS = conjunction search; SC = spatial configuration search. The subscript next to u indicates
the set size level it applies to. The constraint u3 = pg = w12 = (g Was applied to the data fitting
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for conjunction search. The numbers are rounded to the nearest integer.

displayed in Table 2. As illustrated in Figs. 10, 11, 12, and 13, the
conditional RT distribution expected under the model deviated
less from the empirical one for small set sizes than for large ones.
The same was true for target-present versus target-absent trials,
correct versus incorrect responses, and conjunction search versus
spatial configuration search tasks, respectively.

4.3. Discussion

Fig. 9 demonstrates that the model is able to reproduce
marginal error rates of responses in both task types almost
perfectly. The minor deviations do not exhibit any systematic
pattern. Figs. 10 to 13 show that the model is able to capture the
conditional RT distributions quite well, even for the rare incorrect
responses. However, the deviations show certain patterns. The
most noticeable one is that for large set sizes, the empirical RTs

11

of correct rejections and misses have bigger tails than the model
RTs. If this was the result of a larger variability in processing times
of single stimuli, the same pattern should be observed for hits and
false alarms. Yet this is not the case. Thus, the underestimation
of extreme latencies may arise from larger variability in empirical
search terminations for target-absent responses than implied by
the model.

Both task types share the same estimate for the number of
servers in the queueing system, that is, the maximum number of
items allowed in the identification stage at the same time (¢ = 5).
Notably, this estimate of the number of parallel processing chan-
nels available for controlled processing is roughly in line with
previous studies and alternative models of visual information
processing. For example, in the time-dependent limited-channel
model (Fisher, 1982), the number of channels that best fitted the
empirical mean visual search RTs ranged between three and five.
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Fig. 10. Comparison of the empirical and the model-based conditional distributions of the RT given the response is correct in the conjunction search data from Wolfe
et al. (2010) for ¢ = 5, separately for target presence vs. absence and different set sizes.

Fisher (1984) obtained the same range based on the results of
fitting the steady-state limited-channel model to data collected
with the multiple-frame paradigm. The Theory of Visual Attention
(Bundesen, 1990) assumes a capacity limit of four items. In the
same vein, based on different empirical procedures, visual work-
ing memory has been argued to have a capacity limit of three to
five items in young adults (Cowan, 2001; Isbell, Fukuda, Neville,
& Vogel, 2015; Luck & Vogel, 1997; Pashler, 1988). Thus, the pro-
posed queueing model provides converging evidence concerning
the number of available attentive processing channels for visual
information.

Moreover, the estimates for the residual times t; and 7o are
remarkably similar across both task types as well. The finding
71 &~ Tp + 100 may reflect a stronger readiness for the target-
absent response regardless of task type. This finding is also in line
with the viewpoint that deciding to respond TP might induce ad-
ditional processes, such as saccade planning, compared to simply
deciding to respond TA (Wolfe et al., 2010).
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The estimates of the remaining parameters are consistent
with the subjectively experienced higher difficulty of the spatial
configuration task compared to the conjunction task. The clearly
larger values of A-! and p~! for the former indicate longer
processing times in both the preattentive stage and the atten-
tive stage. An intriguing finding is that relaxing the constraint
on p~! improves model fit noticeably for spatial configuration
search data, and that ! increases with set size (see Table 2).
One possible explanation is that adaptation of the identification
threshold to set size demands more attentional resources for
spatial configuration stimuli than for conjunction stimuli. If this
is the case, the adaptation should be more restricted due to the
higher costs. This reasoning is in line with the finding that the
value of b is smaller for the spatial configuration task, indicating
that p; and p, are less sensitive to set size. In sum, compared
to conjunction stimuli, identification of individual spatial config-
uration stimuli appears to require more cognitive resources. In
addition, its adaptation to set size is possibly more costly. As a
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Fig. 11. Comparison of the empirical and the model-based conditional distributions of RT given the response is incorrect in the conjunction search data from Wolfe
et al. (2010) for ¢ =5, separately for target presence vs. absence and different set sizes.

counterbalance, the termination criterion more strongly depends
on set size, as indicated by the larger value of §. That is, during
spatial configuration search, participants search more thoroughly
on small trials but more hastily on large trials.

5. Model uncertainty analysis

Since c represents the number of parallel, independent pro-
cessing channels in the attentive stage, it is the most significant
structural parameter of the proposed queueing model. Thus, we
used a bootstrap approach to assess the extent to which the
model fit, as measured by the Wasserstein metric, can reflect a
misspecification regarding c. We compared the proposed hybrid
model with a standard serial model, focusing on the most relevant
aspect: the ability to distinguish between a single-server system,
¢ = 1, which represents strictly serial attentive processing, and
a multiserver system, ¢ = 5, which fits Wolfe et al.’s (2010) data
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best. The R-scripts and data for the uncertainty analysis are also
available at the Open Science Framework (https://osf.io/k9573/).

We used the best-fitting parameter values to the conjunction
search data given c = 1 and ¢ = 5 to simulate 600 samples
in each case. Each sample contained 40,000 trials, assuming the
same experimental design as Wolfe et al. (2010). We then fitted
the simulated data sets to the queueing model with the constraint
U3 = g = 12 = M1g. Similarly, for the model variant without
the constraint of a common u, we simulated 618 samples for
¢ = 1and ¢ = 5 each, using the corresponding best-fitting
parameter values to the spatial configuration search data.

As displayed in Table 3, the model with the correct number
of servers was selected in more than 90% of the cases. As shown
in Figs. D.14 and D.15 in Appendix D, fitting the data originating
from a single-server system to any multiserver system results in
a clearly larger misfit that increases with increasing ¢, with or
without the constraint of a common . Similarly, fitting the data
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Fig. 12. Comparison of the empirical and the model-based conditional distributions of RT given the response is correct in the spatial configuration search data from
Wolfe et al. (2010) for ¢ = 5, separately for target presence vs. absence and different set sizes.

originating from a five-server system to a single-server system
produces a notably larger misfit. Again, fitting multiserver models
with 1 < ¢ < 5 results in somewhat smaller but still obvious
misfit. These results indicate that a model misspecification re-
garding c can be well reflected in the total distance and identified
correctly in almost all cases. Notably, we did not observe a single
sample generated from a single-server system that was classified
as best-fitting a five-server system.

6. Conclusion

The existing empirical findings on visual search do not allow
for a coherent theoretical conclusion on the serial/parallel debate.
Serial models are in line with some findings and in conflict
with others; the same applies to parallel models. Moore and
Wolfe (2001) explained how a hybrid structure that combines
serial and parallel features could accommodate the apparently

14

Table 3
Frequencies of bootstrap samples generated from a c¢ server system and
best-fitting a ¢ server system.

With constraint on p

Without constraint on p

= 1 2 5 6 1 4 5 6
c=1 598 2 0 0 618 0 0 0
c=5 0 0 595 5 0 58 559

conflicting findings. We formalize and implement this notion as
a single-line, multiserver queueing model in continuous time.
This model is well embedded in the theoretical framework of
two processing stages in visual search (Treisman, 1986; Treisman
& Gelade, 1980) and accounts for responses and RTs jointly on
a distributional level. We incorporate two psychological mech-
anisms to explain the emergence of incorrect responses in the
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Fig. 13. Comparison of the empirical and the model-based conditional distributions of RT given the response is incorrect in the spatial configuration search data from
Wolfe et al. (2010) for ¢ = 5, separately for target presence vs. absence and different set sizes.

queueing system, namely, a threshold adaptation that accounts
for genuine processing errors and a quasi-optimal stopping rule
that accounts for omission errors. In addition to proposing a
maximume-likelihood method for fitting accuracy data, we solve
the problem of the lack of an explicit analytical form for the
conditional CDF of the model RT by developing a numerically
stable, well-performing minimum-distance parameter estimation
procedure based on Monte-Carlo simulation.

We fitted the model to two prototypical empirical data sets of
Wolfe et al. (2010), obtained with conjunction search and spatial
configuration search tasks, respectively. The proposed queueing
model captures the accuracy rates almost perfectly for both data
sets. Regarding the RT distributions, a generally good fit is found
for the model with five servers. The model uncertainty analysis
clearly shows that such a good model fit cannot be achieved
when the data originate from a strictly serial processing system.
Thus, the results provide convincing empirical support for the
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proposed hybrid structure beyond the dichotomy of serial and
parallel processing.

Our results show that a mechanism that exhibits both se-
rial and parallel aspects underlies selective attention in standard
visual search tasks with different stimulus types. The serial char-
acter of our model rests on the single waiting line that represents
an attentional bottleneck, while subsequent attentive processing
of items can be seen as asynchronous-parallel with limited ca-
pacity. Furthermore, the results also demonstrate that accuracy
data and the RTs of both correct and incorrect responses are
very important for a comprehensive account of visual search
performance.

On the theoretical level, our model provides a novel approach
to account for the “bottleneck” phenomenon in visual attention
data. Since most theories and models of visual attention ac-
knowledge the existence of at least one parallel stage in visual
processing, the core of the serial/parallel debate essentially is



Y. Li, M. Schlather and E. Erdfelder

how to explain the positive mean RT x set size slopes found in
empirical data. A serial model explains them as a direct conse-
quence of a mandatory serial processing stage, whereas a limited-
capacity parallel model proposes sequential sampling of visual
stimuli. In contrast, our model explains the positive slope by a
serial transition between two parallel processing stages with dif-
ferent capacities. Accordingly, the attentional “bottleneck” arises
as an emergent property of a single-line queueing system that
enables efficient information flow between a massively parallel
preattentive stage and a limited-capacity parallel attentive stage
of processing.

Several aspects need to be considered for further develop-
ments and extensions of the model. First, possible extensions
of the model should take guidance in visual search (e.g., Wolfe,
1994, 2021) into account. For instance, the assumption of
equiprobable arrival orders can be replaced by a prioritized ar-
rival order, so that an item with a salient feature has a higher
probability of being among the first to get through the preat-
tentive stage (bottom-up guidance). Likewise, the FCFS discipline
can be replaced with a priority queueing discipline, allowing
an item with a goal feature to be served ahead of other items
in the waiting room (top-down guidance). Second, inhibition of
return should be modeled in a more realistic manner. Wolfe
(2012) pointed out that there is sufficient inhibition of return to
locations searched previously but no perfect memory for rejected
items. Taking non-perfect inhibition of return into account may
improve the fit at the right tail of RT distributions for large set
sizes. Third, the calculation of the reward rate should probably
incorporate expenditure resulting from key pressing and waiting
for the next display as factors that affect effort. Fourth and most
importantly, the generalizability of the model needs to be investi-
gated. Fisher (1982, 1984) specified different queueing models to
account for RT data obtained by different RT methods (see Wolfe,
2018) and accuracy data obtained by several accuracy methods,
respectively. Ultimately, the question arises whether data from
different visual attention paradigms can be explained within a
unified model framework, especially the attentional dwell time
findings combined with visual search findings.

In addition, we regard the development of appropriate, well-
understood goodness-of-fit tests and model-selection measures
for combined accuracy and latency data as the most important
statistical advancement for future applications of the queueing
model and its variants. Based on such statistical methods, selec-
tive manipulations of specific cognitive processes underlying the
model parameters could then be conducted to evaluate whether
an experimental manipulation maps on the corresponding model
parameter correctly. If successful, such analyses would lend fur-
ther support to the psychological validity of the proposed queue-
ing model of visual search in general and of its parameters in
particular.

Data availability

Data and R code related to this article can be found at the Open
Science Framework at https://osf.io/k9573/.
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Appendix A. Comments on and derivations of selected equa-
tions

A.1. Comments on the error probabilities of responses, Egs. (1) and

(2)

In our model, a false alarm error can arise only from misiden-
tification. To see

ik L, p1,p2) =P(Yko = 1)=1—(1-py),

note that we have P(Y, o = 0) = (1 — p;), where 1 — p; is the
probability of a correct classification of a distractor. The search is
stopped immediately after correctly identifying I distractors.

A miss error can arise from omission or misidentification. If
the target is not within the first [ departing items (which happens
with probability (k — I)/k), an omission occurs. In this case, the
event Yy; = 0 occurs if and only if all the [ distractors are
correctly detected. That is, the miss error arises from omission
with probability (1 — p;)' (k— I)/k. In the complemental case, the
target can be in any of the [ positions of the departing sequence.
For each of these I subcases, the event Yy = 0 occurs if and
only if the target is misidentified (with probability p,) and [ — 1
distractors are correctly identified. That is, the miss error arises
from misidentification with probability (1 — p1)'~" pl/k.

A.2. Derivation of the conditional CDF within Eq. (4)

In principle, we should distinguish four cases, Yo =1, Yk1 =
1, Yeo = 0, Yy 1 = 0. By Assumption Al, in case of Yyo = 0 or
Yi1 = 0, the RT is the processing time of [ items plus a residual
time 7o, which does not involve collecting and analyzing visual
information.

In case of Yyo = 1 or Y1 = 1, the conditional RT given
Yiq = 1is — in contrast to the event Yy = O or Y1 = 0 —
a finite mixture distribution consisting of the CDFs of the jth
departure epoch, j < [ The weights vj. 4 are the conditional
probabilities that the queue terminates at the jth departure epoch
given Yy 4 = 1.

Consider first the case Yy o = 1. Since there are only distrac-
tors in the display, the response is a false alarm, i.e, P(Yyo =
1) 1 by definition of ;. The search terminates at the jth
departure epoch if and only if the first j — 1 departing items are
correctly classified as distractors and the jth departing distractor
is misidentified as the target. Therefore, the probability that the
queue terminates at the jth departure epoch given Y, o = 1 is

Viko = (1= p1Y 'p1/mi(k; L, p1, pa).

Now, consider the case Yy; = 1. Here, P(Yy1 = 1) =1 —m,
by definition of 7. We have to distinguish three cases:

1. The target is correctly identified at position j < [ in the
departure order.
Since equiprobable arrival orders imply equiprobable de-
parture orders, the target appears at position j of the de-
parting sequence with probability 1/k. As the target as well
as the j — 1 distractors must be classified correctly, the
probability that the queue terminates at the jth departure
epoch with the event Yy ; = 11is

k' (1=pY 7' (1 = pa).
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2. The target is misidentified at a position i < j in the depar-
ture sequence and a distractor is misidentified at position
J
Then there are j — 1 possible positions for the target and
j — 2 distractors must have been identified correctly. This
gives

k™G — Dp2(1 — 1Y ?ps.

3. The target is in a position i > j and a distractor is misiden-
tified at position j.
Then the target may take k — j possible positions and j — 1
distractors have to be identified correctly. This gives

k™ (k= j)(1 = 1Y~ "pa.

A.3. Derivation of the mean reward rate, Eq. (5), and the solution to
the optimal stopping problem, Eq. (7)

In accordance with the notation usage in the main text, Y, ¢ =
1 and Yy, = O denote the TP and TA responses, respectively,
observed on trials with set size k and objective target status q.
Throughout the derivation, we assume that the misidentification
probabilities p; and p, are zero. This is in accordance with the
presumption that observers decide about their optimal stopping
policy in ignorance of their own genuine processing errors.

First, consider set size k as given and fixed. Equiprobable
arrival orders imply equiprobable departure orders due to the
properties of permutations. Hence, on target-present trials, any
departure position i of the target is equiprobable. Under the
assumption p; = p, = 0 and in case of a target-present trial, the
probability of observing a TP response under the stopping policy
[ =I(k)is

P(Yyq1 = 1)

! 1

1 l

= P (the ith departure is target | g =1) = —
; ( P get| g =1) ;k .

=1—-P(Yx1 =0).

Let Ni(l) denote the random variable of the number of items
examined until termination, regardless of the outcome response
under the stopping policy [ on a trial with set size k. For | < k,
the expected value of Ni(I) on target-present trials is then

EN)1g=1)
I
= ZIP (quitting after examining i items | q=1) - i
i=1
2kl — P 41

1
1
?:11 P (Yi1 ) T

On target-absent trials, due to the assumed absence of genuine
processing errors, processing will always terminate with a correct
target-absent response after searching [ items: P(Yyo = 0) = 1
and P(Yy o = 1) = 0. Accordingly, the expected value of Ni(I) on
target-absent trials is E(Ni(l) | ¢ = 0) = L Then the expected
value of Ni(I) on any trial can be calculated:

E (N«(1))
=ENDIg=1-P(@g=1+EN()|g=0)-P(qg=0)
2k =P+l 1 1 a4kl — 1 + 1
B 2k 2 2 a

Let the random variable Ri(I) equal 1 if the response is correct
under the stopping policy [ on a trial with k items. Otherwise,
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R(I) shall be 0. Then the expected value of Ri(l) under a target
prevalence of 50% is given by

E (Re(1))
=P (Y1 =1)-P(@@=1+P(Yro=0)-P(q=0)
_Lr 1 vk
Tk 2 2 2k

Assume that the experiment has m set size levels k
(ki, ..., km) with ky < k; < --- < ky. Consider the set size
k as a random variable that takes the m values kq, ..., k;, with
equiprobability 1/m. Assume further that the observer adopts
stopping policies I := (I, ..., ly) for the respective levels. For
a single random trial, we denote by Rj (I) the indicator func-
tion of a correct response and by Nj (I) the number of items
searched until search termination. Then, the expected numbers
equal

1 m
ERe() = — 3 B (R(h):
i=1

] m
ENeD) = — > E(Ni ().
i=1

Let yi(l) be the mean reward rate in a long series of repeated,
independent trials. More precisely, with respect to the weak law
of large numbers, define

ety — EED)
E (Ni(1))’
Hence,
Zm li+k;
i=1 "2k
nell) = m Akl
i=1 4k;

and our optimization problem reads

m Akili—2+;
P

Zm li+ki -
i=1 K

where min! indicates minimization of the function on the left side
with respect to (I, ..., Iy), subject to the constraints specified
underneath, cf. Eq. (6). With r; := I;/k; € [0, 1], this is equivalent
to

min R

li+k;
0<li<kj,mz<)i" | ';,;f'
- 1

Z:.i](4kir,< - ](,‘Tiz + ;)
m+ 30
where r = (11, ..., 'm).
To solve the optimization problem, we first show that f(wr) <
f(r)forw € [0, 1)and r; € [0, 1] withr # 0.Letu:=m~'Y 1" u
for any m-dimensional vector u. Then,

= min R
0=ri<1,2z—1)m=Y L 1y

flr):=

_Akr —kr? +T
N 147
where kr = (kirq, ..

f(r)

o k), kr? = (kqr7, ... knr2), and

(4okr — 0*kr? + o)1+ ) < (4kr — kr? + 7)(1 + oF)
= 4wﬁ—wzﬁ+af—wzﬁ-?<4E—W+F—wﬁ-?
S 0<4(1—wkr+(1—o)Ff — (0 — k2 - F — (1 — 0®)kr?
& 0 < 4(1—wkr+ (1 —o)Ff — (1 — w)okr? - F
—(1 - )1+ w)kr?
<0 <4E+F—(1+w+wF)W.
As kr? < kr, we have

akr +7—(1+w + wF)kr2 > 4kr +7 —3kr =kr +7 > 0
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and the inequality f(wr) < f(r) is shown. Furthermore, f(r) > 0
and f(r) = 0 if and only if r 0. Now, it follows readily by
contradiction, that the equality r = O or 2z — )m = Y "1y
holds in the optimum. Hence, it suffices to consider

m
frr) =) k(4 —n)

i=1
instead of f(r). Let r* = (rj,...,ry) # 0, 17 € [0,1], be
a solution of the minimization problem, and ¢; = /(4 — r*).
Assume that some j > i exist with r* > r. Then ¢; > ¢;, hence
kig; + kip; < kipi + kjp;, which is a contradiction to r* being
optimal. Assume now, that 0 < rj* <r} < 1for some j > i. Then,
for any 0 < ¢ < min{r, 1 — r{}, we have

ki(rf +e)4 =1 — &)+ k(1| — e)(4 — 1] + &) < kigi + Kig;,
which is again a contradiction to r* being optimal. Consequently,
1, i<(2z—1)m,
r*=402z—-1)m- [(2z — 1)m], i=[(2z—1)m] +1,
0, i>[(2z—1m| +1,

where |x] is the largest integer not greater than x for any x € R.
Note that if z > 1 — (2m)~!, then all ri* are positive.

A.4. Derivation of p1 and p,, Egs. (8) and (9)

We assume here that the optimal strategy [* is applied and
that z is very close to one. Hence, I*(k) can be considered to be
equal to k for all k.

Now, Eq. (1) states that

m=1-1-p),

~
=~

replacing | by I*. According to pattern (b), mr; hy(k) for some
function hy(k), which is constant in k or slightly decreasing.

Solving for p; results in
pi(k) =1 — (1 — hy(k)"¥.

Since 71, hence hy(k), is close to zero in empirical data of visual
search, the Taylor expansion about the point hi(k) = 0, see Eq.
1.110 in Gradshteyn and Ryzhik (2000), yields
h1(k)
k
(with only a very small error). Hence,
h1(k)
k)~ = =

Now, h; can be slightly decreasing with increasing k. A simple,
natural approach to model this fact is to assume that h(k)
a1k=* for some ¢ > 0 and a; > 0. Accordingly, we model p,
by

pi(k) ~ ark™"

(1= hy(k)"*~1-

for some b > 1 and a; > 0.

Fig. 6 confirms greatly our approach and has been obtained
as follows. For each k, we first obtain a rough estimate of I(k)
as specified in Eq. (10) in Section 2.5 based on the visual fit
to the empirical miss rate. Then we substitute this estimate in
P(Yio = 1) = 1—(1—p;)K1=e@+5k) and solve it for p;. The naive
estimates of p; obtained in this way appear to follow a power
law of set size k for both data sets, as Fig. 6 shows. Moreover,
since the rough estimates of I(k) turn out to satisfy I(k) < k, this
observation indicates that the explanatory power of the power
law relationship is not restricted by the replacement of [ with k
in the derivation.
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Note that a mathematical derivation of the behavior of p, is
not possible without further assumptions, since, for | = [* = k
in Eq. (2),

) = (1 — alk_b)k_lpz.

Numerical evaluations of (1— a]k*b)kf1 show that this term
(which is less than, but close to 1) is approximately constant in
k if all parameters are in the range of interest (i.e., if a; is close
to 0, k between 3 and 18 and b not much greater than 1), that is,
when p; = a;k~? is close to 0. Note that the ranges considered
here are in line with typical data in visual search experiments.
It follows that 7, = hy(k)p, for some hy(k) which is roughly
constant in k, and hy(k)p, is roughly independent of p;. Hence,
based on this alone, it is not possible to infer the form of p,
uniquely because several functions can produce pattern (a), (c),
and (d), which involve characteristics of 5.

Appendix B. Algorithm for the simulation of a queueing pro-
cess

Algorithm 1 (part 1): Simulation of a system response
Input: (¢, 8, ay, az, b, k, q)
Output: (response, termination)
1 set [ = k(1 — exp(a + Bk)) ;
2 generate AL ~ Bernoulli (I — [1]) ;
3setL=|I]+ AL;
4 set p; = a1k®,

P2 = k" ;
5 generate Gy, e Bernoulli(p;), H ~ Bernoulli (pz) ;

6 if g = FALSE then

7 ifG=0Vi=1,...,L then
8 set termination =L ;
9 set response = FALSE ;
10 else
1 set termination = min{j | G; =1};
12 set response = TRUE ;
13 end if
14 else
15 | generate Pyrge ~ unif {1, ... k} ;
16 set Gpmget =0;
17 ifG=0Vi=1,...,L then
18 if H =0 and P < L then
19 set termination = Pyarget ;
20 ‘ set response = TRUE ;
21 else
22 set termination =L ;
23 set response = FALSE ;
24 end if
25 else
26 set response = TRUE ;
27 if H = 0 then
28 ‘ set termination = min{ Perge, Min{j | G; = 1}}
29 else
30 | set termination = min{j | G; =1} ;
31 end if
32 end if
33 end if
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Algorithm 1 (part 2): Simulation of a system response
time (main body)

Data structures:
input = (A, u, ¢, to, 71, k, response, termination)
state = (t, ny, np, ns)

A1 ... Ay A - Ag
out = b D A

Dy ... Ay +oo ... +00
event list = (t,, EDg1s tDgys -+ v s tDSC)
service id = (xq, ..., X¢)

Output: (system_rt, response)
1 initialization

2 set state = (0,0, 0,0) ;

3 | setout=|{ |);

4 set service_id = (0,...,0);

5 set dep_id = 0, dep _server=0 ;

6 | generate I; ~ Exp (k) ;

7 setty =1; ;

s set event_list = (t4, +00, ..., +00);

9 set STOP = FALSE ;

10 simulation loop

11 while not STOP do

12 if t, = min{t,, tpsy» tDgy s « + - » tDge } then

13 \ execute subroutine UPDATE_ARRIVAL ;

14 else

15 \ execute subroutine UPDATE _DEPARTURE ;

16 end if

17 iftA:tD51:"':tDSC:+OO

18 or (response = FALSE and np > termination)

19 or (response = TRUE and dep_id = termination)
then

20 | STOP = TRUE ;

21 end if

22 end while

23 set system_rt=t + 7o + response - (71 — Tg) ;
24 set output = (system_rt, response) ;

Procedure: UPDATE_ARRIVAL

1 sett =ty, updateny byns+1,

2 setA,, =t, out= <out, (_ﬁ&)) ;

3 if ny < k then

a | generate I, 1 ~ Exp ((k — my)A) ;
5 | setty=t+1Iy4;

6 else

7 | setty =400;

s end if

9

set free_servers = {j | x; =0} ;

10 if ns < c and free_servers # (J then
1 generate S ~ Exp (u) ;

12 set i = min(free_servers) ;

13 | settp, =t+S, Xp=ny;

14 end if

=

update ns by ng + 1 ;

19

Procedure: UPDATE_DEPARTURE
stog b Mp++, ns——

=

set t = min{ty, tp,, tpg,, - - -
2 set Dy =t ;
set dep_server = j such that
tDSj = mm{ ta, tDSl s tDSZ’ ey tDSc } )
set dep_id = Xdep_servers OULD dep_id = Dy 5
set Xdep_server = 0, free_servers= {j|x; =0} ;
if ng > c then
set i = min(free_servers) ;
set x; = np + (c — |free_servers|)+ 1 ;
generate S ~ Exp (u) ;
10 settpg;, =t +S;
11 else
12 ‘ set tp; = +00 Vj € free_servers;
13 end if

w

© NS U s

Appendix C. Flow chart of the parameter estimation proce-
dure

fit model to correct responses only; | | fit model to correct responses only;
initial value IV = (iv;, 500, 500) initial value IV = (iv;, 500, 500)

V

|

|

|

|

|

|

|

|
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|

1

fit model to complete sub-data set
with 7; held fixed to 7y, 1 ;

fit model to complete sub-data set
with 7o held fixed to 7oy, 1
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| fit model to complete data of all sub-data sets jointly with
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|
|
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|
|
|
!
!
!
|
!
|
|

v
'
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(7o, 71) held fixed to0 (Top13, Tints); IV = (A T2, w7 10y0)

|
|
|
|
|
[ fit model to complete data of all sub-data sets jointly with } :
|
|
|
|
|

()\_1 n+3 U«_1n+3)

iterate forn = 0, - - - , 30 or until stabilized

Appendix D. Densities of the total distances resulting from
model uncertainty analysis

See Figs. D.14 and D.15.
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Fig. D.14. Densities of the total distances resulting from fitting the queueing models with ¢ = 1, ..., 10 to 600 data sets simulated by a single-server system (top)

and a five-server system (bottom). The constraint us3 = pug = 12 = p1s was applied to both the models that generated the data and the models that were fitted
to the simulated data.
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Fig. D.15. Densities of the total distances resulting from fitting the queueing models with c =1, ..., 10 to 618 data sets simulated by a single-server system (top)

and a five-server system (bottom). The service rate u was allowed to vary across set sizes for both the models that generated the data and the models that were
fitted to the simulated data.
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