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ABSTRACT

Advertising is omnipresent in all countries around the world and
has a strong influence on consumer behavior. Given that adver-
tisements aim to be memorable, attract attention and convey the
intended information in a limited space, it seems striking that pre-
vious research in economics and management has mostly neglected
the content and style of actual advertisements and their evolution
over time. With this in mind, we collected more than one million
print advertisements from the English-language weekly news mag-
azine “The Economist” from 1843 to 2014. However, there is a lack
of interactive intelligent systems capable of processing such a vast
amount of image data and allowing users to automatically and
manually add metadata, explore images, find and test assertions,
and use machine learning techniques they did not have access to
before. Inspired by the research field of interactive machine learn-
ing, we propose such a system that enables domain experts like
marketing scholars to process and analyze this huge collection of
image advertisements.
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1 INTRODUCTION

In the last century, advertising has been pervasive in fulfilling its
role to inform, remind and persuade [19]. Past research in econom-
ics and management has shown that advertising positively affects
sales in the short-term [4] and increases both brand loyalty [3] and
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market-share stability [6] in the long-term. Given that advertise-
ments (ads) aim to be memorable, attract attention and offer the
intended information in a limited space, we find it striking that past
research in economics and management has mostly neglected the
actual content and style of ads that have evolved over time.

To analyze this, it seems necessary to work with large amounts
of image ads, e.g., from digitized magazine archives. Previous work,
however, is limited in terms of time span [2], data density [5], sam-
ple size [11], and tool support [8]. To begin with, the time spans
of analyzed ads were not especially long. At the same time, the
data density was quite low. Some work collected ads only every ten
years omitting all possible finer-grained changes within the decade.
Furthermore, the average sample size in existing research consists
of not more than 700 ads. In line with this, McQuarrie and Phillips
[12] argue that future scholars should use bigger datasets “to test
more definitely for the existence of trends” in advertising practices.
Lastly, previous work shows that “new methods are needed to inter-
actively integrate human [...] activity with machine learning” [8]
for such purposes. However, there is a lack of interactive intelligent
systems supporting advertisement research capable of processing
and analyzing such huge data amounts by domain experts.

Against this backdrop, we first collected a big dataset of ads that
forms the basis for our proposed system. Our dataset collected falls
into a completely different size and volume category than previous
work. At this point, we already possess a set of more than one
million print ads from the English-language weekly news magazine
“The Economist” ranging from 1843 to 2014. This corresponds to
603 Gigabytes of ads. To analyze such a large amount of image
data, machine learning (ML) methods are needed to cleanup, filter
and identify the most relevant data subsets, which is a challenging
task [17]. However, ML methods in particular run the risk of being
deficient in domain-specific user input [17]. Most commonly, ML
practitioners translate and encode what they have learned from
users [13, 17]. But such course of action is often accompanied by
limited user engagement, resulting in lengthy and complex de-
sign iterations with a heavy reliance on the availability of skilled
ML practitioners [1, 13]. Moreover, the resulting ML systems are
commonly viewed as a “black box” that may not work well for
its targeted purposes [10], leading to low user trust into the ML
systems [17]. In contrast, interactive ML (IML) provides a promis-
ing vehicle to deal with this issue by putting the user at the very
heart of the interaction with the ML system [13, 17]. The goal is to
directly engage users and meet their needs by iteratively building
and improving ML models via user input [1]. This approach allows
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users to make incremental and frequent corrections through feed-
back, and observe and verify model changes on a rapid basis [1, 13].
Given the realm of IML, our aim is to create such a system that will
empower domain experts like marketing scholars in advertising
research to process and analyze this huge collection of image ads.
Thus, we formulate the following research question: How to design
an interactive machine learning system that helps domain experts
process and analyze image ads?

2 THE INTERACTIVE MACHINE LEARNING
PROTOTYPE FOR IMAGE
ADVERTISEMENTS

A relevant area of IML systems relates to interactive clustering [13],
which is the focus of our system. Interactive clustering has been
successfully applied to support data exploration, with three dom-
inant streams [13]. First, cluster-based exploratory data analysis
helps users comprehend the relationship of elements [13], e.g., by
interactively grouping search outcomes [7], or forming topic groups
[14]. Second, constraint clustering identifies structures by apply-
ing constraints to element similarity [13], e.g., by using pairwise
constraints [15]. Lastly, comparative cluster analysis uses different
clustering approaches to support visualizing various structural op-
tions [13]. Our system contributes to the first and third stream, and
in particular shows the utility of supporting users in manipulating
the axes of the implemented star coordinate system! of the under-
lying results, while seeing the changes on the placement of tens of
thousands of objects simultaneously in real time. Next, we present
our prototype along two components. An extraction process is ini-
tially performed on the dataset by taking scanned images as input
and assigning the appropriate labels to each image. The resulting
label files are used as input to the analytics process to offer output
sets of data objects for further analysis.

2.1 Extraction Process

Initially, object detection is performed on the image using a deep
learning model on Tensorflow?. The model was pre-trained on
the COCO dataset®. Object detection algorithms combine multi-
class image classification and multi-occurrence object localization,
and generate one or more bounding boxes with associated class
labels [16]. We relied on established methods for detecting objects
in images using single shot detectors (SSD)*. Next, face detection
is performed for the image areas where people were detected by
using the established Haar cascade® technique or deep learning-
based face detectors, like the SSD mentioned above, but trained
on a face database instead of a diverse object set. Compared to
Haar cascade, the deep learning-based face detectors perform better
with faces being not perfectly oriented towards the camera [18],
which is the case in most images of our dataset. Once a face is
detected, the age, gender and emotion of the person are classified

I The star coordinate system refers to a technique for representing high-dimensional
data in a two-dimensional space.

Zhttps://www.tensorflow.org/; 26.05.2021; Tensorflow is an open source platform for
ML with an ecosystem of tools, libraries and community resources.
3https://cocodataset.org/; 06.06.2021; COCO is an image collection with over 200,000
labeled images from 170 object categories.

“https://arxiv.org/abs/1512.02325; 06.06.2021
Shttps://docs.opencv.org/3.4/db/d28/tutorial_cascade_classifierhtml; 19.05.2021
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for the detected face region. For each face the web service from
Amazon Rekognition® is executed to identify celebrities. Additional
biographical information about an identified celebrity is collected
using the Harvard Pantheon database’. In general, our extraction
process allows for integration of any locally executed classifiers or
external services. In the next section, the analytics process with its
four® views? is described.

2.2 Analytics Process

2.2.1 Cluster View. This view assists the user in performing and
understanding clustering analyses. Figure 1a-1 shows a color-coded
cluster distribution with the selected feature subset and clustering
parameters using the star coordinate system. This technique is
based on placing the axes of the coordinate system circularly around
the origin. Each axis is described by an angle and a length, allowing
the user to adjust both angle and length by moving and scaling,
while seeing the effects of these changes on the placement of tens
of thousands of data objects simultaneously in real time. Such an
approach appears helpful in understanding the underlying data
structure and the impact of certain features on the data distribution.
Shading is used to help distinguish individual data objects. The
area surrounding the cursor is additionally highlighted to sharpen
the focus on parts of interest. In turn, the bar charts (1a-2) present
the results of evaluating different numbers of clusters to support
the best fitting solution, e.g., the optimal number of clusters for a
given feature subset. The third chart (1a-3) allows users to identify
anomalous clusters by plotting cluster magnitude (i.e., the sum of
distances from all examples to the cluster centroid) against cluster
cardinality (i.e., the number of examples per cluster). Clusters are
anomalous if cardinality is not positively correlated with magnitude
relative to the other clusters [9]. Lastly, the distribution of the entire
dataset is shown via bar charts (1a-4), as a list sorted by the distance
between each pair of data objects for each available feature in a
descending order.

2.2.2  Time Series View. Once a user has found an interesting clus-
tering result, he or she can assess the development of certain fea-
tures over time via line charts (1b-1). Different data sets can be
selected for display (e.g., data sets from specific clusters or the com-
plete data set). Specific statistics like extrema, variance or standard
deviation are shown (1b-2). Also, correlations (1b-3) are calculated
for each pair of features (e.g., “no. of persons” / “female-to-male
ratio”).

2.2.3  Rule View. This view can be used for each previously calcu-
lated cluster. The temporal distribution of the objects within can
be illustrated (1c-1), e.g., whether a particular cluster occurs only
in a small period of time. Moreover, the features are visualized via

®https://aws.amazon.com/rekognition/; 19.05.2021
"https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi:10.7910/DVN/28201;
26.05.2021; It stores information on more than 11,000 biographies.

8Since the rule and time series views are based on clustering results, the user usually
analyzes the clusters in the cluster view first. The label view may be opened from any
other view by selecting a data point.

These views were derived from five semi-structured interviews with scholars in the
field of marketing research.

10The list contains the calculated distances within the selected dataset, with the dis-
tances being computed between every unique data entity pair and averaged by the
number of data entities in the dataset. Hereby, features with higher distances could be
of interest.
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(a) Cluster View

(b) Time Series View

(c) Rule View

(d) Label View

Figure 1: Screenshots of the four views in the system
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bar charts (1c-2), sorted by their average intra-cluster distance.!!

In addition, correlations known from the time series view for the
selected cluster are illustrated (1c-3). Based on the selected correla-
tions, the direction, strength and interpretation of the relationship
are generated as an exportable statement (1c-4).

2.24 Label View. The user has the option to modify the extraction
results for each individual ad. When a user double-clicks on a data
item, a dialog opens that displays all available underlying informa-
tion. If persons or objects have been detected, the corresponding
bounding boxes are displayed on the ad image. The bounding boxes
can be moved, adjusted or deleted by the user. The user can also
add new bounding boxes. Fields marked in green can be adjusted
if an incorrect label was detected. The dialog (cf. Figure 1d) shows
the current ad image and the extracted features in text fields.

3 CONCLUSION

Our prototype is a first step towards an IML system tailored to the
needs of domain experts in advertising research working with large
image datasets. In doing so, we contribute to the design and devel-
opment of interactive intelligent systems that not only exploit the
potential of IML by iteratively building and improving ML models,
but also put the outcomes of this process in the hands of users,
i.e,, enabling them to make incremental and frequent corrections
through feedback, and quickly observe and verify model changes.
In addition, such a system enables companies to automatically mon-
itor and evaluate large volumes of competitors’ ads in order to react
strategically to them in their own advertising.
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