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Abstract

This thesis deals with the weak and strong numerical approximation of so-called stochas-
tic volatility models. In particular, the focus is on the log-Heston model and its asso-
ciated Euler methods, for which there have been only a few convergence results with a
polynomial rate in the literature so far. The biggest challenge here is the approximation
of the CIR process, which models the stochastic variance and whose diffusion coefficient
is not Lipschitz continuous.
We first study the weak order of convergence of two Euler methods that keep the ap-
proximation of the CIR process positive. When the Feller index ν of the CIR process is
greater than one, weak convergence of order one is obtained as under standard assump-
tions. For ν ≤ 1 we obtain a weak order of convergence of ν − ε for ε > 0 arbitrarily
small. For the L1-error for a large class of Euler methods, we can recover the order 1/2
obtained under standard assumptions under the condition ν > 1. Moreover, we prove
that this is already the optimal L1-convergence order for the log-Heston model. Finally,
in the last part of this dissertation we deal with the optimal L2 approximation of more
general stochastic volatility models.

Zusammenfassung

Diese Dissertation befasst sich mit der schwachen und starken numerischen Approxi-
mation von sogenannten Stochastischen Volatilitätsmodellen. Im Fokus stehen hierbei
konkret das log-Heston-Modell und die zugehörigen Euler-Verfahren, für die es in der
Literatur bisher nur weniger Konvergenzresultate mit polynomieller Rate gab. Die größ-
te Herausforderung stellt hierbei die Approximation des CIR-Prozesses dar, welcher die
stochastische Varianz modelliert und dessen Diffusionskoeffizient nicht Lipschitz-stetig
ist.
Wir untersuchen zunächst die schwache Konvergenzordnung von zwei Euler-Verfahren,
die die Approximation des CIR-Prozesses positiv halten. Wenn der Feller-Index ν des
CIR-Prozesses größer als eins ist, so ergibt sich eine schwache Konvergenz der Ordnung
eins wie unter Standardannahmen. Für ν ≤ 1 erhalten wir eine schwache Ordnung von
ν − ε für ε > 0 beliebig klein. Für den L1-Fehler können wir für eine große Klasse von
Euler-Verfahren die Ordnung 1/2, die unter Standardannahmen erreicht wird, unter der
Bedingung ν > 1 wiederherstellen. Zudem beweisen wir, dass dies bereits die optimale
L1-Konvergenzrate für das log-Heston Modell ist. Im letzten Teil dieser Dissertation
beschäftigen wir uns schließlich mit der optimalen L2-Approximation von allgemeineren
Stochastischen Volatilitätsmodellen.
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Chapter 1

Introduction

This thesis deals with the numerical approximation of the Heston model from [36]. Its
dynamics are described by the following two stochastic differential equations (SDEs)
which typically model an asset price S and its variance V :

dSt = rStdt+
√
VtSt

(
ρdWt +

√
1− ρ2dBt

)
,

dVt = κ(θ − Vt)dt+ σ
√
VtdWt.

The Heston model is an extension of the famous Black-Scholes model. The latter as-
sumed the variance (or respectively the volatility which is its square root) to be deter-
ministic. In contrast to this, the Heston model falls into the class of stochastic volatility
models because the variance is modeled here as a stochastic process.
Although a very classical model in mathematical finance, even very simple time-discrete
simulation methods for the Heston model are not well understood. The main reason for
this is the second SDE. Its diffusion coefficient is not globally Lipschitz continuous and
therefore standard textbook results cannot be applied. Our main focus is on the analysis
of explicit Euler methods which are arguably the simplest time-discrete simulations
schemes for SDEs. Despite this fact, weak and strong convergence results for Euler
methods in the context of the Heston model are rare and often do not match observations
from numerical experiments. As a consequence, Euler schemes are used in practice
without theoretical guarantees. In this thesis, we try to close some of these gaps. Apart
from the analysis of explicit Euler methods, we also provide new results for the implicit
Milstein method and we present new results concerning the optimal approximation of
more general stochastic volatility models.

1.1 Outline

This thesis is structured as follows: In Chapter 2, we introduce the Heston model and its
properties. Thereafter, we present some popular simulation algorithms for it in Chapter
3. Chapter 4 lays the groundwork for our analysis of explicit Euler schemes. Here,
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their properties in the context of the Heston model are analyzed. Chapter 5 establishes
the connection between the solution of the log-Heston SDE and its associated partial
differential equation (PDE). Our first main result is then carried out in Chapter 6 where
we analyze the weak convergence behavior of Euler and Milstein-type discretizations of
the log-Heston model. Chapters 7 and 8 examine upper and lower bounds for its L1-
approximation. We support our theoretical results by numerical simulations carried out
in Chapter 9. Finally, we turn to the analysis of more general stochastic volatility models
in Chapter 10. Here, we deal with the question of their optimal L2-approximation. We
summarize our findings in the last chapter.

1.2 Notation

For a multi-index l = (l1, ..., ld) ∈ Nd, we define |l| =
∑d

j=1 lj and for y ∈ Rd, we define
∂l
y = ∂l1

y1 · · · ∂
ld
yd

. Moreover, we denote by |y| the standard Euclidean norm in Rd. Let
D ⊂ Rd be a domain and q ∈ N. Cq (D;R) is the set of all functions on D which are
q-times continuously differentiable. Cq

pol (D;R) is the set of functions g ∈ Cq (D;R) such
that there exist C, a > 0 for which

|∂l
yg(y)| ≤ C(1 + |y|a) y ∈ D, |l| ≤ q.

We set Cq
pol,T (D;R) the set of functions v ∈ C

⌊q/2⌋,q
pol ([0, T )×D;R) such that there exist

C, a > 0 for which

sup
t<T

|∂k
t ∂

l
yv(t, y)| ≤ C(1 + |y|a) y ∈ D, 2k + |l| ≤ q.

For ε ∈ (0, 1), we denote by Cq+ε (D;R) the set of all functions from Cq (D;R) in which
partial derivatives of order q are Hölder-continuous of order ε, and Cq+ε

c (D;R) is the
set of all functions from Cq+ε (D;R) which have compact support.

We use the notation x+ to denote the positive part of x: x+ = max{x, 0}.

Constants, which depend only on the parameters of the respective SDE such as T , x0,
v0, κ, θ, σ and ρ in the case of the Heston model, will be denoted in the following by
C, regardless of their value. Other dependencies will be denoted by subscripts, i.e. Ch,β

means that this constant depends additionally on the function h and the parameter β.
Moreover, the value of all constants can change from line to line.

Throughout almost all of the chapters we require the following well-known Burkholder-
Davis-Gundy (BDG) inequalities, see e.g. Theorem 3.28 in Chapter III of [49].

Proposition 1.1. Let M = (Mt)t∈[0,T ] be a continuous martingale and α > 0. Then,
there exist constants cα, Cα > 0 such that

cα E [⟨M⟩αt ] ≤ E

[
sup

u∈[0,t]
|Mu|2α

]
≤ Cα E [⟨M⟩αt ] , t ∈ [0, T ].
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Chapter 2

The Heston Model

The Heston model was proposed by Steven L. Heston in 1993 [36]. It is given by the
SDEs

dSt = rStdt+
√

VtSt

(
ρdWt +

√
1− ρ2dBt

)
, S0 = s,

dVt = κ(θ − Vt)dt+ σ
√
VtdWt, V0 = v,

with κ, θ, σ > 0, r ∈ R, ρ ∈ [−1, 1], T > 0 and independent one-dimensional Brownian
motions W = (Wt)t∈[0,T ], B = (Bt)t∈[0,T ] which are defined on a filtered probability

space
(
Ω,F , (Ft)t∈[0,T ] ,P

)
and the filtration satisfies the usual conditions. Furthermore,

the initial values s, v > 0 are assumed to be deterministic. Here (St)t∈[0,T ] models
the price of an asset and (Vt)t∈[0,T ] its variance, which is given by the so called Cox–
Ingersoll–Ross (CIR) process. Usually, the log-Heston model instead of the Heston
model is considered in numerical practice. We therefore set Xt := log(St). This yields
the SDEs

dXt =

(
r − 1

2
Vt

)
dt+

√
Vt

(
ρdWt +

√
1− ρ2dBt

)
, X0 = x,

dVt = κ(θ − Vt)dt+ σ
√
VtdWt, V0 = v,

(2.1)

by a simple application of the Itō formula. Note that the square root coefficient is not
globally Lipschitz continuous. Thus, the (log-)Heston SDE does not satisfy the standard
assumptions for the numerical analysis of SDEs.
The Heston model is a natural extension of the celebrated Black-Scholes model because
it considers a stochastic volatility rather than a constant one. As a consequence, the
Heston model takes the asymmetry and excess kurtosis of financial asset returns into
account which are typically observed in real market data. The analysis of the Heston
model is not only of theoretical relevance. With the rise of volatility trading in financial
markets, stochastic volatility models are becoming more important.
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2.1 The CIR Process

The CIR process is the solution to the following SDE:

dVt = κ(θ − Vt)dt+ σ
√

VtdWt, V0 = v > 0. (2.2)

It was first used by Cox, Ingersoll and Ross [20] to model short term interest rates. In
this thesis, we assume the parameters to be strictly positive. They can be interpreted
as follows: θ is the long run mean of the process, κ is its speed of mean reversion and σ
is its volatility. Since the coefficients of SDE (2.2) are continuous and of linear growth,
a weak solution exists (e.g. Theorem 2.4 in [44]). By the Yamada-Watanabe condition
(e.g. Theorem IV 3.2 in [44]), pathwise uniqueness holds. Since the existence of a weak
solution and pathwise uniqueness imply the existence of a strong solution (e.g. Chapter
IX, Theorem 1.7 in [68]), we know that SDE (2.2) has a unique strong solution. The
CIR process has an important relation with the squared Bessel process which is the
unique strong solution of

dZt = δdt+ 2
√
ZtdWt, Z0 = z > 0

where we assume δ > 0. From e.g. Proposition 6.3.1.1 in [45], we know that the CIR
process can be expressed as a squared Bessel process with δ = 4κθ

σ2 degrees of freedom
and the following space-time changes:

Vt = e−κtZσ2

4k
(eκt−1)

.

Groundbreaking work to understand the dynamics of squared Bessel processes was al-
ready done in the 1950s when Feller (e.g. in [27]) studied the parabolic PDE

ut = (axu)xx − ((bx+ c)u)x , 0 < x < ∞. (2.3)

Here, a, b, c are constants and Feller only assumed a > 0. Equation (2.3) can be seen
as a Kolmogorov forward (or Fokker-Planck) equation for an SDE with drift coefficient
bx + c and diffusion coefficient

√
2ax. For given initial conditions, Feller showed that

the only norm preserving solution of (2.3) (that leads to a transition density of the
associated stochastic process) has to have c ≥ 0 and a flux zero at the origin, i.e.

lim
x→0

− ((axu(t, x))x − (bx+ c)u(t, x)) = 0.

This means that a reflecting barrier condition has to be imposed. For c > a, this solution
vanishes at x = 0. Furthermore, Feller derived the Laplace transform of the transition
density. For the squared Bessel process we obtain a = 2, b = 0 and c = δ and for the
CIR process, we have a = 1

2σ
2, b = −κ and c = κθ. Because of Feller’s work, the ratio

c
a = 2κθ

σ2 is often called Feller index in the context of the CIR process.
To exactly determine the behavior of the squared Bessel process at 0 and ∞, we need
to distinguish the cases 0 < δ < 2, δ = 2 and δ > 2 and we set

T̃ = inf{t ≥ 0 : Zt /∈ (0,∞)}

4



2. The Heston Model

to be the exit time from (0,∞). For all choices of δ the infinite point ∞ is a natural
boundary, it cannot be reached in finite time (see e.g. [50] Chapter 15.6). For 0 < δ < 2

we have P
(
T̃ < ∞

)
= 1 and

P

(
lim
t↑T̃

Zt = 0

)
= P

(
sup

0≤t<T̃

Zt < ∞

)
= 1

by applying Theorem 5.29 and Proposition 5.22 from [49]. The point 0 is instantaneously
reflecting (see Chapter XI, Proposition (1.5) in [68]). This means that the time spent
by Z in the point 0 has Lebesgue measure 0. For δ = 2, we obtain

P
(
T̃ = ∞

)
= P

(
sup

0≤t<∞
Zt = ∞

)
= P

(
inf

0≤t<∞
Zt = 0

)
= 1

by Proposition 5.22 from [49]. Finally for δ > 2, we have P
(
T̃ = ∞

)
= 1 by Theorem

5.29 from [49] and

P
(
lim
t→∞

Zt = ∞
)
= P

(
sup

0≤t<∞
Zt > 0

)
= 1

by Proposition 5.22 from [49]. From this, we can deduce the following well-known
proposition for the CIR process:

Proposition 2.1. We denote the Feller index by

ν :=
2κθ

σ2
.

For ν ≥ 1, the solution of the CIR process is strictly positive, i.e.

P (Vt ∈ (0,∞),∀t ≥ 0) = 1.

For 0 < ν < 1, we have

P (Vt ∈ [0,∞),∀t ≥ 0) = 1,

the origin is attainable but instantaneously reflecting.

The Feller index also plays an important role when we look at the moments of the CIR
process.

Proposition 2.2. The CIR process has bounded moments, it holds that

E

[
sup

t∈[0,T ]
V p
t

]
< ∞

for all p ≥ 1 and
sup

t∈[0,T ]
E [V p

t ] < ∞

for all p > −ν.
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Proof. The proof of the second statement can be found in Section 3 of [24] where the
results of [42] are used. To show the first assertion, we use Jensen’s inequality and the
BDG inequality. Let p ≥ 2, then

E

[
sup

t∈[0,T ]
V p
t

]
= E

[
sup

t∈[0,T ]

∣∣∣∣v + ∫ t

0
κ(θ − Vs)ds+ σ

∫ t

0

√
VsdWs

∣∣∣∣p
]

≤ Cp

(
vp + E

[∣∣∣∣∣ supt∈[0,T ]

∫ t

0
κ(θ − Vs)ds

∣∣∣∣∣
p]

+ E

[
sup

t∈[0,T ]

∣∣∣∣σ ∫ t

0

√
VsdWs

∣∣∣∣p
])

≤ Cp

(
vp + T p + E

[(∫ T

0
Vsds

)p
]
+ E

[(∫ T

0
Vsds

)p/2
])

≤ Cp

(
1 + sup

s∈[0,T ]
E [V p

s ] + sup
s∈[0,T ]

E
[
V p/2
s

])
≤ Cp

by the second statement. The case p ∈ [1, 2) follows by the Lyapunov inequality.

Furthermore, we have the following Lp-result for the increments of the CIR process.

Lemma 2.3. For all p ≥ 1 there exist a constant Cp > 0, such that

sup
0≤s<t≤T

E
[
|Vt − Vs|p

|t− s|p/2

]
≤ Cp

Proof. First, let p ≥ 2. Then we have with the BDG and the Hōlder inequality

E
[
|Vt − Vs|p

|t− s|p/2

]
=

1

|t− s|p/2
E
[∣∣∣∣∫ t

s
κ (θ − Vu) du+ σ

∫ t

s

√
VudWu

∣∣∣∣p]
≤ 2p−1

|t− s|p/2

(
E
[∣∣∣∣∫ t

s
κ (θ − Vu) du

∣∣∣∣p]+ E
[∣∣∣∣σ ∫ t

s

√
VudWu

∣∣∣∣p])
≤ Cp

|t− s|p/2

(
|t− s|p + |t− s|p−1

∫ t

s
E [V p

u ] du+ E

[∣∣∣∣∫ t

s
Vudu

∣∣∣∣
p
2

])

≤ Cp

|t− s|p/2

(
|t− s|p + |t− s|

p
2
−1

∫ t

s
E
[
V

p
2
u

]
du

)
≤ Cp

|t− s|p/2
(
|t− s|p + |t− s|p/2

)
≤ Cp

(
T p/2 + 1

)
≤ Cp,

where we used Proposition 2.2. The case p ∈ [1, 2) then follows by the Lyapunov
inequality.
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2. The Heston Model

As already mentioned, Feller derived the Laplace transform of the transition density
which is the solution of (2.3). By inverting this Laplace transform it is possible to find
the conditional distribution of the CIR process (e.g. [6], [20]).

Proposition 2.4. Let Fχ2 be the cumulative distribution function of the non-central
chi-squared distribution with non-centrality parameter λ and d degrees of freedom, i.e.

Fχ2(x; d, λ) =

∞∑
i=0

e−
λ
2

(
λ
2

)i
i!

∫ x
0 t

d
2
+i−1e−

t
2dt

2
d
2
+iΓ

(
i+ d

2

)
where Γ is the gamma function. Let 0 ≤ s < t ≤ T . Conditional on Vs, Vt is distributed

as σ2(1−e−κ(t−s))
4κ times a non-central chi-squared distributed random variable with 4κθ

σ2

degrees of freedom and non-centrality parameter 4κe−κ(t−s)

σ2(1−e−κ(t−s))
Vs, i.e.

P (Vt ≤ x|Vs) = Fχ2

(
4κ

σ2e−κ(t−s)
x;

4κθ

σ2
,

4κe−κ(t−s)

σ2(1− e−κ(t−s))
Vs

)
.

Since we know the conditional distribution from Proposition 2.4, we can calculate the
expectation and variance of Vt given Vs.

Corollary 2.5. Let 0 ≤ s < t ≤ T . Conditional on Vs, the expectation and variance of
Vt are

E [Vt|Vs] = θ + (Vs − θ)e−κ(t−s),

V ar (Vt|Vs) =
Vsσ

2e−κ(t−s)

κ

(
1− e−κ(t−s)

)
+

θσ2

2κ

(
1− e−κ(t−s)

)2
.

Proof. Let Y be a non-central chi-squared distributed random variable with d degrees
of freedom and non-centrality parameter λ. Then,

E [Y ] = d+ λ, V ar (Y ) = 2(d+ 2λ).

Now, easy calculations give us

E [Vt|Vs] =
σ2
(
1− e−κ(t−s)

)
4κ

(
4κθ

σ2
+

4κe−κ(t−s)

σ2(1− e−κ(t−s))
Vs

)
= θ

(
1− e−κ(t−s)

)
+ Vse

−κ(t−s)

and

V ar (Vt|Vs) =
σ4
(
1− e−κ(t−s)

)2
8κ2

(
4κθ

σ2
+

8κe−κ(t−s)

σ2(1− e−κ(t−s))
Vs

)

=
θσ2

(
1− e−κ(t−s)

)2
2κ

+
Vsσ

2e−κ(t−s)

κ

(
1− e−κ(t−s)

)
.
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2.2 The CEV Process

The constant elasticity of volatility (CEV) process is given by the solution of

dVt = κ (θ − Vt) dt+ σV γ
t dWt, V0 = v0

where γ ∈
[
1
2 , 1
)
. It is a generalization of the CIR process and can be used together with

the Heston price process for a generalized version of the Heston model. Similar to the
CIR process, the CEV process has a unique, strong solution by the Yamada-Watanade
condition. For γ ∈

(
1
2 , 1
)

the CEV process has some desirable properties. In contrast to
the case γ = 1

2 , it is then always strictly positive with no restrictions on the parameters,
i.e.

P (Vt > 0, ∀t > 0) = 1

for ν > 0 (see e.g. [7]). Furthermore, it has bounded moments for the whole parameter
range (see [9]).

Proposition 2.6. For the CEV process with γ ∈
(
1
2 , 1
)
, it holds that

E

[
sup

t∈[0,T ]
V p
t

]
< ∞, sup

t∈[0,T ]
E
[
V −p
t

]
< ∞

for all p ≥ 0.

By similar calculations as in Lemma 2.3, we get the following result using Proposition
2.6.

Lemma 2.7. For all p ≥ 1 there exist a constant Cp > 0, such that

sup
0≤s<t≤T

E
[
|Vt − Vs|p

|t− s|p/2

]
≤ Cp.

2.3 The Price Process

The price process of the Heston model is given by the solution of the SDE

dSt = rStdt+
√
VtSt

(
ρdWt +

√
1− ρ2dBt

)
where (Vt)t∈[0,T ] is the solution of the CIR process. In the generalized Heston model,
the latter would be the CEV process. Here, r ∈ R models the risk-free interest rate and
ρ ∈ [−1, 1] the correlation of the price and the variance process. The Brownian motions
W and B are independent. The parameter r is often omitted since the transformation
Ŝt = e−rtSt by the Itō formula leads to a Heston model where r = 0. From [7], we have
the following result:

8



2. The Heston Model

Proposition 2.8. The process (St)t∈[0,T ] can neither reach 0 nor ∞ in finite time. In
the case of the CIR process

(
γ = 1

2

)
, (St)t∈[0,T ] is a martingale. For γ ∈

(
1
2 , 1
)
, the price

process is a martingale for ρ ≤ 0 and a strict supermartingale for ρ > 0.

In [7] it is shown that the moments of the price process can become infinite in finite
time. Rewriting the results in terms of the correlation parameter ρ leads to the following
proposition.

Proposition 2.9. Define

T ⋆(p) := inf {t ≥ 0,E [Sp
t ] = ∞}

for p ∈ (1,∞). For γ = 1
2 , we have

T ⋆(p) = ∞ ⇐⇒ ρ ≤ −
√

p− 1

p
+

κ

2σp
.

For γ ∈
(
1
2 , 1
)
, it holds that

T ⋆(p) = ∞ if ρ < −
√

p− 1

p
.

For ρ = 0, we have T ⋆(p) < ∞ for all p > 1 and for ρ > 0, we have T ⋆(p) < ∞ if

p >
(
1− ρ2

2

)−1
.

Recall that an application of Itō’s formula with Xt = log(St) gives

dXt =

(
r − 1

2
Vt

)
dt+

√
Vt

(
ρdWt +

√
1− ρ2dBt

)
. (2.4)

The solution of this SDE with X0 = x is the log-Heston price (or the generalized
log-Heston price). Looking at the integral representation of (2.4) and applying the
Burkholder-Davis-Gundy inequality and Proposition 2.2 (or Proposition 2.6), we get
that the moments of the log-price process are bounded.

Proposition 2.10. It holds that

E

[
sup

t∈[0,T ]
|Xt|p

]
< ∞ ∀p ≥ 1.

Analogously to Lemma 2.3, we can prove the following Lp result for the log-price process.

Lemma 2.11. For all p ≥ 1 there exist a constant Cp > 0, such that

sup
0≤s<t≤T

E
[
|Xt −Xs|p

|t− s|p/2

]
≤ Cp.

Furthermore, (2.4) is a representation of the log-price process which only depends on the
volatility

√
V since S cancels out. These two properties are favorable for the numerical

analysis.
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Chapter 3

Simulation Algorithms for the
log-Heston Model

Consider the SDE in Rd

dYt = b(Yt)dt+ σ(Yt)dWt, Y0 = y ∈ Rd (3.1)

with drift and diffusion coefficients b : Rd → Rd, σ : Rd → Rd×m where (Wt)t∈[0,T ] is an
m-dimensional Brownian motion. Furthermore, assume that (3.1) has a unique strong
solution. The calculation of

p := E [ϕ(YT )] (3.2)

for functions ϕ : Rd → R is of great interest in many applications especially in mathe-
matical finance where (3.2) represents the fair price of an option and ϕ plays the role
of a (discounted) payoff function. In general, it is not possible to calculate (3.2) exactly
and the value has to be estimated. A standard method is to simulate sample paths of
the corresponding SDE and to use a (Multilevel) Monte Carlo estimator.
In the case of the Heston model, we are interested in the approximation of

E [g(ST , VT )]

with g : [0,∞) × [0,∞) → R. Since most of the time we will use the log-Heston price,
we replace g by a function f : R× [0,∞) → R with f(x, v) = g(exp(x), v). The value of
interest is then

E [f(XT , VT )] . (3.3)

Note that in many financial applications the value of f only depends on XT .

A large number of research articles has been published on the efficient simulation of
the log-Heston price. The main difficulty of the log-Heston Model is to efficiently sim-
ulate the CIR process. In several articles (e.g. [14], [69], [74]) direct simulation via
the non-central chi-square distribution is used. Some researchers proposed algorithms
to approximate this distribution for a faster simulation (e.g. [6], [72]). Time-discrete
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methods such as the Euler scheme are nevertheless popular for the CIR process because
of their simplicity and fast computation times. Due to the square root in its diffusion
term, a well-defined approximation scheme of this kind must preserve the positivity of
the CIR process. Since the standard Euler scheme does not have this property, several
Euler-type schemes were proposed that avoid negative values (see [67] for a summary
and a numerical comparison). For the log-price process, most of the simulation methods
then use a simple Euler or trapezoidal scheme.
In the next three sections, we present a number of simulation schemes for the log-
Heston model that were proposed in the scientific literature. Let us remark that this
presentation is by no means complete. Rather, it should give an impression of the
challenges that arise from simulating the log-Heston price and its variance. At the end
of this chapter, we give a brief summary of the standard and the multilevel Monte Carlo
estimator for the value (3.2). We also explain why this motivates the weak and strong
error estimation in Chapters 6 and 7.

3.1 (Almost) Exact Simulation Methods

Broadia and Kaya [14] were the first ones to develop an exact simulation method for the
log-Heston Model. Although their approach is very valuable from a theoretical point
of view, it comes with the disadvantage of high computational costs and is therefore
considerably slower than other algorithms. First, they simulate the CIR process from
the non-central chi-squared distribution. Looking at the SDEs (2.1), one crucial idea
of their simulation is then to substitute the integral equation for (Vt)t∈[0,T ] into the
equation for (Xt)t∈[0,T ]. For any s, t ∈ [0, T ] with s < t, we have∫ t

s
VudWu =

1

σ

(
Vt − Vs − κθ(t− s) + κ

∫ t

s
Vudu

)
.

Since the term on the left side also appears in the integral equation of X, we can
substitute it as follows:

Xt = Xs + r(t− s) +
ρ

σ
(Vt − Vs − κθ(t− s))

+

(
ρκ

σ
− 1

2

)∫ t

s
Vudu+

√
1− ρ2

∫ t

s

√
VudBu.

(3.4)

Now, the Brownian motion W disappears from this equation which is very convenient
for the simulation and also for the theoretical analysis. Later, we refer to this as the
Broadie-Kaya trick.

For the next step, Broadie and Kaya derived the Laplace transform of
∫ t
s Vudu and

calculated the characteristic function and the cumulative distribution function from
there. Then, the latter is evaluated by a trapezoidal rule with a finite step size (which
leads to discretization and truncation errors). To sample now from the distribution of

12



3. Simulation Algorithms for the log-Heston Model

∫ t
s Vudu, they use the inverse transformation method. This again causes an error since

either Newton’s method, a bisection search or a similar method has to be applied.

Having generated samples of
∫ t
s Vudu, the simulation of (3.4) is now straightforward.

Since (Vt)t∈[0,T ] and (Bt)t∈[0,T ] are independent, we can generate a normal random
variable with mean 0 and variance

∫ t
s Vudu for the last integral from (3.4).

Nevertheless, the algorithm has only a theoretical relevance since the simulation of∫ t
s Vudu is very costly which is due to the evaluation of its characteristic function. In

[69], the computational time of the Broadie/Kaya algorithm is reduced by precaching
values for the characteristic function. Still, this simulation method is not widely used
in practice.

3.2 Semi-Exact Simulation Methods

The class of semi-exact simulation methods for the log-Heston model mostly contains
algorithms that simulate the CIR process exactly or approximately from the non-central
chi-square distribution and use a simple Euler or trapezoidal discretization for the log-
price process.
We denote the discretization grid as

0 = t0 < t1 < ... < tN = T

and the increment of the Brownian motions as

∆kW = Wtk+1
−Wtk , ∆kB = Btk+1

−Btk

for k ∈ {0, ..., N − 1}. Here, N ∈ N is the number of time-steps. By using the Broadie-
Kaya trick and discretizing (3.4) with the Euler scheme, we get the following iteration
for k ∈ {0, ..., N − 1}:

xk+1 = xk + r(tk+1 − tk) +
ρ

σ
(vk+1 − vk − κθ(tk+1 − tk)) +

(
ρκ

σ
− 1

2

)
vk(tk+1 − tk)

+
√

1− ρ2
√
vk∆kB

(3.5)
where we set x0 = log(S0). The values vk are here simulated from the conditional
distribution of the CIR process. In [54], we presented and analyzed a so-called semi-
trapezoidal scheme for the log-price process:

xk+1 = xk + r(tk+1 − tk) +
ρ

σ
(vk+1 − vk − κθ(tk+1 − tk))

+

(
ρκ

σ
− 1

2

)
1

2
(vk+1 + vk) (tk+1 − tk) +

√
1− ρ2

√
vk∆kB.

(3.6)
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Many algorithms (e.g. [6], [72], [74]) use a full trapezoidal discretization of X as follows:

xk+1 = xk + r(tk+1 − tk) +
ρ

σ
(vk+1 − vk − κθ(tk+1 − tk))

+

(
ρκ

σ
− 1

2

)
1

2
(vk+1 + vk) (tk+1 − tk) +

√
1− ρ2

1

2

(√
vk+1 +

√
vk
)
∆kB.

(3.7)
One disadvantage of the exact simulation from the non-central chi-squared distribution
is that it heavily depends on the Feller index ν. Recall that ν determines the degrees
of freedom of the non-central chi squared distribution (see Proposition 2.4) and as a
result, low Feller indices cause long computational times. Therefore, many schemes were
proposed that simulate the CIR process by approximating the non-central chi-squared
distribution. The QE-scheme from [6] starts with v0 = V0 and simulates vk+1 depending
on the value of vk either as a moment-matched squared Gaussian random variable or
as an ordinary chi-squared random variable. The latter is used for low values of vk.
The log-price process is then simulated according to (3.7). The NCI-scheme from [72]
simulates from the non-central chi-squared distribution via direct inversion and uses
precaching. Again, the full trapezoidal discretization is used for the log-price process.

3.3 Time-Discrete Simulation Methods

Even though a lot of research concerning the development of exact simulation methods
has been carried out, simple time-discrete simulation methods for the log-Heston model
are a highly relevant topic for researchers since they are not only interesting from a
scientific point of view but also very relevant for practical use. Since this chapter is
restricted to the presentation of the different schemes, a survey of the respective weak
and strong convergence results from the literature will be given in Chapter 6 and Chapter
7.

3.3.1 Explicit Euler schemes

Euler schemes are very popular in practice since they are very easy to implement. The
challenge of simulating the log-Heston model with Euler schemes is once again the
simulation of the CIR process. A naive Euler scheme would look like this:

vk+1 = vk + κ (θ − vk) (tk+1 − tk) + σ
√
vk∆kW, v0 = V0

This leads to

P (vk+1 < 0) = Φ

(
vk − κ(θ − vk)(tk+1 − tk)

σ
√
vk(tk+1 − tk)

)
where Φ(·) is the cumulative distribution function of the standard normal distribution.
Therefore, the probability of simulating a negative value during the iteration is strictly
positive and the scheme is not well defined due to the square root coefficient. To prevent
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3. Simulation Algorithms for the log-Heston Model

this, the Euler scheme must be "fixed". A summary of the existing Euler schemes for
the CIR process and a numerical comparison can be found in [67], where a general
framework for Euler schemes for the CIR process is proposed as

v̄k+1 = f1(v̄k) + κ (θ − f2(v̄k)) (tk+1 − tk) + σ
√

f3(v̄k)∆kW

vk+1 = f3(v̄k+1)
(3.8)

where v̄0 = v0 = V0 and suitable functions fi that are chosen from

id : R → R, id(x) = x,

abs : R → [0,∞), abs(x) = x+,

sym : R → [0,∞), sym(x) = |x|.

Table 3.1 shows all Euler schemes that are presented in [67] in detail.

Scheme f1(x) f2(x) f3(x)

Absorption (AE) (x)+ (x)+ (x)+

Symmetrization (SE) |x| |x| |x|
Higham and Mao (HM) x x |x|

Partial Truncation Euler (PTE) x x (x)+

Full Truncation Euler (FTE) x (x)+ (x)+

Table 3.1: Euler schemes from [67].

The full truncation Euler was introduced in the same paper. The origin of the Euler with
absorption fix is unknown, the symmetrized Euler was analyzed in [10]. The scheme
from Higham and Mao was first analyzed in [37] and the partial truncation Euler was
first introduced in [23]. The log-price process can then be discretized with the standard
Euler scheme:

xk+1 = xk +

(
r − 1

2
vk

)
(tk+1 − tk) +

√
vk

(
ρ∆kW +

√
1− ρ2∆kB

)
(3.9)

with x0 = log(S0).

3.3.2 Milstein schemes

The CIR process can also be discretized with an implicit Milstein scheme.

vk+1 = vk + κ (θ − vk+1) (tk+1 − tk) + σ
√
vk∆kW

+
σ2

4

(
(∆kW )2 − (tk+1 − tk)

)
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with v0 = V0. This can be rewritten to

vk+1 =
1

1 + κ(tk+1 − tk)

((√
vk +

σ

2
∆kW

)2
+

(
κθ − σ2

4

)
(tk+1 − tk)

)
(3.10)

where we can immediately see that this scheme is positivity preserving and therefore
well-defined for ν ≥ 1

2 . In [5], this scheme was combined with the standard Euler scheme
(3.9) for the log-price process. In [48] the authors propose the discretization

xk+1 = xk + r (tk+1 − tk)−
1

4
(vk+1 + vk) (tk+1 − tk) + ρ

√
vk∆kW

+
√

1− ρ2
1

2

(√
vk +

√
vk+1

)
∆kB +

1

4
ρσ
(
(∆kW )2 − (tk+1 − tk)

)
for the log-price process. Together, this is called the IJK-IMM scheme. In [32], the
following truncated Milstein scheme for the CIR process was analyzed:

vk+1 =

(max

{√
σ2

4
(tk+1 − tk),

√
max

{
σ2

4
(tk+1 − tk), vk

}
+

σ

2
∆kW

})2

+

(
κ(θ − vk)−

σ2

4

)
(tk+1 − tk)

)+

.

(3.11)

This scheme is well-defined for the whole parameter range.

3.3.3 Drift-implicit Euler schemes

Another way to discretize the CIR process is to look first at its Lamperti transformation.
This was first proposed in [1]. Therefore, we consider the process Zt =

√
Vt. With the

Itō formula, we obtain

dZt =

(
4κθ − σ2

8

1

Zt
− κ

2
Zt

)
dt+

σ

2
dWt, Z0 =

√
V0.

The drift-implicit Euler scheme for this process is given by

zk+1 = zk +

(
4κθ − σ2

8

1

zk+1
− κ

2
zk+1

)
(tk+1 − tk) +

σ

2
∆kW.

vk+1 = z2k+1

(3.12)

with z0 =
√
v0 =

√
V0. The first line of (3.12) can be rewritten as

zk+1 =
zk +

σ
2∆kW

2 + κ (tk+1 − tk)
+

√√√√ (
zk +

σ
2∆kW

)2
(2 + κ (tk+1 − tk))

2 +

(
κθ − σ2

4

)
(tk+1 − tk)

2 + κ (tk+1 − tk)
. (3.13)
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3. Simulation Algorithms for the log-Heston Model

Again, this is well-defined and positivity preserving if ν ≥ 1
2 . In [4], the authors propose

a method to approximate p = E [h(ST )] especially for discontinuous functions h. They
prove that

p = E
[
H(ST )

ST
Π

]
where H : R+ → R is the antiderivative of h and

Π = 1 +
1

T
√
1− ρ2

∫ T

0

1√
Vt

dBt

is a Malliavin weight. They use the drift-implicit Euler for the Lamperti transformation
of the CIR process and the standard Euler for the price process and the Malliavin weight.

3.4 Monte Carlo Methods

The standard Monte Carlo algorithm is a straightforward way to approximate the ex-
pectation of a random variable which can be simulated exactly or approximately. In the
first case, the standard estimator for (3.2) is given by

p̂M =
1

M

M∑
i=1

ϕ
(
Y

(i)
T

)
where Y

(i)
T for i = 1, ...,M are M iid copies of YT . We can also define the Monte Carlo

estimator if we do not simulate YT exactly. Let yN be an approximation of YT which
was simulated via some time-discrete scheme with N time steps. Then, the standard
Monte Carlo estimator for (3.2) is given by

p̂N,M =
1

M

M∑
i=1

ϕ
(
y
(i)
N

)
where y

(i)
N , i = 1, ...,M are iid copies of yN . The root mean square or L2-error of the

estimator depends on the variance of the estimator and its bias:

rmsq (p̂N,M ) = ||p− p̂N,M ||L2 = E[|p− p̂N,M |2]1/2

=
(
V ar(p̂N,M ) + |E[p− p̂N,M ]|2

)1/2
=

(
1

M
V ar (ϕ (yN )) + |E[p− p̂N,M ]|2

)1/2

In the case of an exact simulation, the bias is zero and the error only depends on the
first term, i.e.

rmsq (p̂M ) =
1√
M

√
V ar (ϕ(YT )).
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The computational costs of the exact estimator are O(M). If we want to achieve an
accuracy of

rmsq (p̂M ) ≤ ε,

we have cost(p̂M ) = O(ε−2). This leads to the following error-cost relation:

||p− p̂M ||L2 ≤ Cvar · cost(p̂M )−
1
2 .

assuming that V ar (ϕ(YT )) is bounded. For non-exact schemes, the weak convergence
order α plays an important role for the relation of the root mean square error and the
computational costs. The weak error is defined by

eweak(N) := |E [ϕ (yN )]− E [ϕ (YT )] |.

We say that a scheme has a weak convergence order α if

eweak(N) ≤ Cα ·N−α (3.14)

for an α ∈ [0,∞) and a constant Cα > 0 which does not depend on N . More precisely,
the weak convergence order is the largest α for which (3.14) holds. The computational
costs of the standard Monte Carlo method for time-discrete schemes are O (N ·M). To
illustrate the impact of α in our Monte Carlo simulation let us now assume that we have
an equidistant discretization, i.e

tk =
kT

N
, k = 0, ..., N

and that V ar(ϕ(yN )) is bounded. Balancing of N and M leads to an optimal choice of
M = ⌈N2α⌉ (see e.g. [25]). Again, if we want to achieve an accuracy of ε, i.e.

rmsq (p̂N,M ) ≤ ε,

the computational costs of the estimator behave in the following way:

cost(p̂N,M ) = O
(
ε−2− 1

α

)
.

The relation between L2-error and computational costs can then be described as

||p− p̂N,M ||L2 ≤ Cα,var · cost(p̂N,M )−
α

1+2α .

This emphasizes how important it is to know the weak convergence order for non-exact
schemes. Low weak error orders will slow down the convergence speed of the Monte
Carlo estimator drastically.

The efficiency of the standard Monte Carlo method can be significantly improved by
combining standard Monte Carlo estimators of different step sizes. This idea was first
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3. Simulation Algorithms for the log-Heston Model

used in the context of parametrical integration problems in [35]. Let L > 2 be the
number of levels, 0 ≤ N0 < N1 < ... < NL the number of steps and M0,M1, ...,ML the
number of Monte Carlo samples for every level. The Multilevel Monte Carlo (MLMC)
estimator p̂ML is defined as

p̂M0
ML =

1

M0

M0∑
i=1

ϕ
(
y
(i)
N0

)
p̂Ml
ML =

1

Ml

Ml∑
i=1

(
ϕ
(
y
(i)
Nl

)
− ϕ

(
y
(i)
Nl−1

))
, l = 1, ..., L

p̂ML =

L∑
l=0

p̂Ml
ML.

In [28] this was first used for SDEs. Simulating ϕ
(
y
(i)
Nl

)
and ϕ

(
y
(i)
Nl−1

)
from the same

Brownian path guarantees a low variance of the estimator. The computational costs of
the MLMC method are proportional to the total number of discretization steps:

cost(p̂ML) = C

(
M0N0 +

L∑
l=1

Ml(Nl +Nl−1)

)
.

For MLMC, the knowledge of the strong error is crucial. There does not exist a uniform
definition of the strong error in the literature. We can analyze the global error which is

e
(1a)
strong := E

[
sup

t∈[0,T ]
|Yt − ŷt|p

] 1
p

, p ≥ 1

where (ŷt)t∈[0,T ] is a time-continuous version of the numerical scheme. Sometimes it is
easier to study

e
(1b)
strong := sup

t∈[0,T ]
E [|Yt − ŷt|p]

1
p , p ≥ 1.

Note, that it holds that e
(1b)
strong ≤ e

(1a)
strong. Furthermore, we can look at the maximal

error in the discretization points, that is

e
(2a)
strong := E

[
max

k∈{0,...,N}
|Ytk − ŷtk |

p

] 1
p

, p ≥ 1

or alternatively,
e
(2b)
strong := max

k∈{0,...,N}
E [|Ytk − ŷtk |

p]
1
p , p ≥ 1. (3.15)

Analogously, we have e
(2b)
strong ≤ e

(2a)
strong. For the MLMC estimator, the knowledge of

(3.15) for p = 2 is sufficient. Let α be defined as in (3.14) and let the L2-error at the
terminal time T be of order β, i.e.

E

[
|YT − yN |2

]
≤ CβN

−2β
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with Cβ > 0, α ≥ 1/2 and β ≥ 0. Furthermore, we assume that the function ϕ is
globally Lipschitz continuous. Then, the number of levels L and the number of paths
Nl for each level can be chosen in such a way that

||p− p̂ML||L2 ≤ ε

and there exists a constant C > 0 such that

cost(p̂ML) ≤ C


ε−2 if β > 1/2

(log(ε))2ε−2 if β = 1/2

ε−2− 1−2β
α if β < 1/2

(see Theorem 3.1 in [28]). So for β > 1/2, the Multilevel Monte Carlo recovers the
optimal convergence rate of the standard estimator even for a non-exact simulation of
the SDE. Consequently, the knowledge of α and β is crucial for the efficient computation
of (3.2) and in particular of (3.3) in the case of the log-Heston model.
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Chapter 4

Properties of Explicit Euler
Schemes for the log-Heston Model

In this chapter, we study the properties of the explicit Euler schemes from Equations
(3.8) with fi given by

f1 = id, f2 ∈ {id, abs, sym}, f3 ∈ {abs, sym} (4.1)

or
f1 = f2 = f3 ∈ {abs, sym}. (4.2)

These include all schemes from Table 3.1. The first set of conditions modifies the
coefficients of the CIR process to deal with negative values which may arise in the
computation. For example,

√
vk is replaced by

√
v+k or

√
|vk|. After the approximation

v̄k+1 has been computed, f3 is again applied to obtain vk+1, since v̄k+1 may be still
negative. The second set of conditions is different. Here after each Euler step, sym or
abs is applied to avoid negative values.
In this chapter, we prove important properties of these two cases of explicit Euler
schemes that are crucial for our proofs in Chapters 6 and 7. We need the notation
n(t) := max{k ∈ {0, ..., N} : tk ≤ t} and η(t) := tn(t).

4.1 Euler Schemes - Case I

For the choice (4.1), the time-continuous extensions of (vk)k∈{0,...,N} which are denoted
by v̄ = (v̄t)t∈[0,T ] and v̂ = (v̂t)t∈[0,T ] read as

v̄t = v̄η(t) +

∫ t

η(t)
κ(θ − f2(v̄η(s)))ds+ σ

∫ t

η(t)

√
f3(v̄η(s))dWs,

v̂t = f3 (v̄t) ,

t ∈ [0, T ], (4.3)
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with f2 ∈ {id, abs, sym}, f3 ∈ {abs, sym} and v̄0 = v. Note that f2 and f3 are globally
Lipschitz continuous with Lipschitz constant L = 1 and satisfy

|x− fi(y)| ≤ |x− y|, x ≥ 0, y ∈ R, i = 2, 3.

Moreover note that √
|fi(x)| ≤ 1 + |x|, x ∈ R, i = 1, 2, 3.

The next lemma shows that the moments of (v̄)t∈[0,T ] are bounded. Furthermore, we
have the same smoothness result as for the CIR process in Lemma 2.3.

Lemma 4.1. Let p ≥ 1. There exists a constant Cp > 0 such that

E

[
sup

t∈[0,T ]
|v̄t|p

]
≤ Cp.

Furthermore, we also have

sup
0≤s<t≤T

E
[
|v̄t − v̄s|p

|t− s|p/2

]
< ∞.

Proof. For the first term, we prove that

sup
t∈[0,T ]

E [|v̄t|p] < ∞. (4.4)

Let p ≥ 2 and let τn be the stopping time defined by τn := inf{0 < t < T ; v̄t ≥ n} with
inf{∅} = 0. Then, since fi(v̄η(t)) ≤ |v̄η(t)| for i ∈ {2, 3}

E [|v̄t∧τn |p] ≤ E
[∣∣∣∣v0 + ∫ t∧τn

0
κ(θ − f2(v̄η(s)))ds+ σ

∫ t∧τn

0

√
f3(v̄η(s))dWs

∣∣∣∣p]
≤ Cp

(
vp0 + E

[∣∣∣∣∫ t∧τn

0
κ(θ − f2(v̄η(s)))ds

∣∣∣∣p]
+E

[∣∣∣∣σ ∫ t∧τn

0

√
f3(v̄η(s))dWs

∣∣∣∣p])
≤ Cp

(
1 + E

[∣∣∣∣∫ t∧τn

0
κ(θ − f2(v̄η(s)))ds

∣∣∣∣p]
+E

[∣∣∣∣σ2

∫ t∧τn

0
(1 + |v̄η(s)|)2ds

∣∣∣∣p/2
])

≤ Cp

(
1 + E

[∫ t∧τn

0
|v̄η(s)|pds

]
+ E

[∣∣∣∣∫ t∧τn

0
|v̄η(s)|2ds

∣∣∣∣p/2
])

≤ Cp

(
1 + E

[∫ t∧τn

0
|v̄η(s)|pds

])
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4. Properties of Explicit Euler Schemes for the log-Heston Model

by applications of the Hölder and the BDG inequality. Therefore, we have shown that

E [|v̄t∧τn |p] ≤ Cp

(
1 +

∫ t

0
E
[
|v̄η(s)∧τn |

p
]
ds

)
and we consequently obtain

sup
s∈[0,t]

E [|v̄s∧τn |p] ≤ Cp

(
1 +

∫ t

0
sup

u∈[0,s]
E [|v̄u∧τn |p] ds

)
.

The Gronwall inequality now yields

sup
t∈[0,T ]

E [|v̄t∧τn |p] ≤ Cp

where Cp does not depend on n. Taking the limit n → ∞, we obtain (4.4). For p ∈ [1, 2)
(4.4) follows then by the Lyapunov inequality. Since we have

sup
t∈[0,T ]

|v̄t|p ≤ Cp

(
1 +

∫ T

0

∣∣v̄η(s)∣∣p ds+ sup
t∈[0,T ]

∣∣∣∣∫ t

0
σ
√

f3(v̄η(s))dWs

∣∣∣∣p
)

the assertion now follows from the properties of f3, an application of the BDG inequality
and Equation (4.4). For the second statement, we begin again with p ≥ 2. We have

E [|v̄t − v̄s|p] ≤ E
[∣∣∣∣∫ t

s
κ
(
θ − f2

(
v̄η(u)

))
du+ σ

∫ t

s

√
f3
(
v̄η(u)

)
dWu

∣∣∣∣p]
≤ Cp

(
E
[∣∣∣∣∫ t

s
κ
(
θ − f2

(
v̄η(u)

))
du

∣∣∣∣p]+ E
[∣∣∣∣σ ∫ t

s

√
f3
(
v̄η(u)

)
dWu

∣∣∣∣p])
≤ Cp

(
|t− s|p + |t− s|p−1

∫ t

s
E
[∣∣v̄η(u)∣∣p] du

+|t− s|p/2−1

∫ t

s
E
[∣∣v̄η(u)∣∣p/2] du)

≤ Cp

(
|t− s|p + |t− s|p/2

)
by using Hölder’s inequality, (4.4) and the properties of f2 and f3. It follows that

sup
0≤s<t≤T

E
[
|v̄t − v̄s|p

|t− s|p/2

]
≤ Cp

(
T p/2 + 1

)
.

Again the application of the Lyapunov inequality for p ∈ [1, 2) finishes the proof.
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4.2 Euler Schemes - Case II

For the choice (4.2), we obtain the symmetrized Euler (SE) and the Euler with absorp-
tion fix (AE). We can write the time-continuous extension v̂sym = (v̂symt )t∈[0,T ] of the
SE as

v̂symt =
∣∣∣v̂symη(t) + κ

(
θ − v̂symη(t)

)
(t− η(t)) + σ

√
v̂symη(t)

(
Wt −Wη(t)

)∣∣∣
and the time-continuous extension v̂abs = (v̂abst )t∈[0,T ] of the AE as

v̂abst =
(
v̂absη(t) + κ

(
θ − v̂absη(t)

)
(t− η(t)) + σ

√
v̂absη(t)

(
Wt −Wη(t)

))+
.

Now, let ⋆ ∈ {sym, abs}. We define

z⋆t := v̂⋆η(t) + κ
(
θ − v̂⋆η(t)

)
(t− η(t)) + σ

√
v̂⋆η(t)

(
Wt −Wη(t)

)
(4.5)

and use the Tanaka-Meyer formula (see e.g. equation 7.9 in Chapter III in [49]) for
v̂symt =

∣∣zsymt

∣∣ and for v̂abst =
(
zabst

)+ to obtain

v̂symt = v̂symη(t) +

∫ t

η(t)
sign (zsyms )κ

(
θ − v̂symη(s)

)
ds+ σ

∫ t

η(t)
sign (zsyms )

√
v̂symη(s) dWs

+
(
L0
t (z

sym)− L0
η(t)(z

sym)
)
, t ∈ [0, T ],

and

v̂abst = v̂absη(t) +

∫ t

η(t)
1{zabss >0}κ

(
θ − v̂absη(s)

)
ds+ σ

∫ t

η(t)
1{zabss >0}

√
v̂absη(s)dWs

+
1

2

(
L0
t (z

abs)− L0
η(t)(z

abs)
)
, t ∈ [0, T ].

Here L0(z⋆) = (L0
t (z

⋆))t∈[0,T ] is the local time of z⋆ in z = 0. For almost all ω ∈ Ω the
map [0, T ] ∋ t 7→ [L0

t (z
⋆)](ω) ∈ R is continuous and non-decreasing with L0

0(z) = 0. See
e.g. Theorem 7.1 in chapter III of [49].
We can rewrite both schemes as

v̂⋆t = v̂⋆η(t) +

∫ t

η(t)
κ
(
θ − v̂⋆η(s)

)
ds+ σ

∫ t

η(t)

√
v̂⋆η(s)dWs

− 2c⋆σ

∫ t

η(t)
1{z⋆s≤0}

√
v̂⋆η(s)dWs − 2c⋆

∫ t

η(t)
1{z⋆s≤0}κ

(
θ − v̂⋆η(s)

)
ds

+ c⋆
(
L0
t (z

⋆)− L0
η(t)(z

⋆)
)
, t ∈ [0, T ],

(4.6)

with csym = 1 and cabs = 1
2 .

The Euler schemes in this section also have bounded moments and increments.
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4. Properties of Explicit Euler Schemes for the log-Heston Model

Lemma 4.2. Let ⋆ ∈ {sym, abs} and p ≥ 1. Then, there exists a Cp > 0 such that

E

[
sup

t∈[0,T ]
|v̂⋆t |p

]
≤ Cp. (4.7)

Furthermore, we have

sup
t∈[0,T ]

E

[
|v̂⋆t − v̂⋆η(t)|

p

|t− η(t)|p/2

]
< ∞.

Proof. The proof of (4.7) can be found in Lemma 2.1 in [10] for the symmetrized Euler
scheme and can be obtained analogously for the absorbed Euler scheme. For the second
statement, we give a proof for the absorbed Euler. The proof for the symmetrized Euler
can be done analogously. We drop the abs-label to simplify the notation. Since∣∣(v + z)+ − v

∣∣ ≤ |z|

for v > 0 and z ∈ R, we have that∣∣v̂t − v̂η(t)
∣∣p = ∣∣∣∣(v̂η(t) + κ

(
θ − v̂η(t)

)
(t− η(t)) + σ

√
v̂η(t)

(
Wt −Wη(t)

))+
− v̂η(t)

∣∣∣∣p
≤
∣∣∣κ (θ − v̂η(t)

)
(t− η(t)) + σ

√
v̂η(t)

(
Wt −Wη(t)

)∣∣∣p
≤ 2p−1 (t− η(t))p

∣∣κ (θ − v̂η(t)
)∣∣p + 2p−1σpv̂

p/2
η(t)

∣∣Wt −Wη(t)

∣∣p .
Using (4.7), we obtain

E
[∣∣κ (θ − v̂η(t)

)∣∣p] ≤ Cp

and

E
[
v̂
p/2
η(t)

∣∣Wt −Wη(t)

∣∣p] ≤ (E [v̂pη(t)]) 1
2
(
E
[∣∣Wt −Wη(t)

∣∣2p]) 1
2 ≤ Cp (t− η(t))

p
2 .

Therefore, we have

E
[∣∣v̂t − v̂η(t)

∣∣p] ≤ Cp

(
|t− η(t)|p + |t− η(t)|p/2

)
and the statement follows.

For the remainder of this section, we will assume that the discretization is equidistant.
So, our discretization grid is defined as

tk = k∆t, k = 0, . . . , N

with ∆t := T/N . We are now interested in the probability of z⋆t becoming less or equal
to 0. The next lemma is similar to Lemma 3.7 in [10].
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Lemma 4.3. Let ∆t < 1
κ . We have

P (z⋆t ≤ 0) ≤ E

[
exp

(
−
v̂⋆η(t)(1− κ∆t)2

2σ2∆t

)]
, t ∈ [0, T ],

for ⋆ ∈ {sym, abs}.

Proof. First, note that

P (zsymt = 0|v̂symη(t) = y) = P (zabst = 0|v̂absη(t) = y) = 0, y ≥ 0, t ∈ (0, T ],

and so P (z⋆t = 0) = 0 for all t ∈ [0, T ], and ⋆ ∈ {sym, abs}. Therefore, we only need to
consider P (z⋆t < 0). By the definition of z in (4.5), we have

P (zt < 0|v̂⋆η(t) = y) ≤ P

(
Wt −Wη(t) <

−y(1− κ(t− η(t)))− κθ(t− η(t))

σ
√
y

)
for y > 0 and

P (zt < 0|v̂η(t) = 0) = 0.

For a centered Gaussian random variable G with variance ζ2 > 0, it holds that

P (G < β) ≤ exp

(
− β2

2ζ2

)
for β < 0. Therefore, we have

P (zt ≤ 0) ≤ E

exp
−

(
v̂⋆η(t)(1− κ(t− η(t))) + κθ(t− η(t))

)2
2σ2v̂⋆η(t)(t− η(t))

1{v̂⋆
η(t)

>0}


≤ E

exp
−

(
v̂⋆η(t)(1− κ(t− η(t)))

)2
2σ2v̂⋆η(t)(t− η(t))




= E

[
exp

(
−
v̂⋆η(t)(1− κ(t− η(t)))2

2σ2(t− η(t))

)]
.

Since
(1− κ(t− η(t)))2

t− η(t)
≥ (1− κ∆t)2

∆t
, t ∈ [0, T ] \ {t0, t1, . . . , tN}

the assertion follows.

For the further control of P (z⋆t ≤ 0) we will need the following technical result on
a sequence that was analyzed by Cozma and Reisinger in [21]. We are now giving a
different and simplified bound which is crucial for our error analysis.
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Lemma 4.4. Suppose that ∆t < 1
κ and set

αN =
1− κ∆t

2
.

(i) Consider the sequence (cj)0≤j≤N with

c0 = αN , c1 = αN − α2
N , cj+1 = c2j + αN − α2

N , j = 1, . . . , N − 1.

Then, we have

cj ≤ 1− αN − ε(1− ε)

1 + ε(j − 1)
, j = 1, . . . , N,

for all ε ∈ (0, 1/2].
(ii) Define the sequence (aj)0≤j≤N by

aj =
2(αN − cj)

σ2∆t
, j = 0, . . . , N.

Then, we have aj ≥ 0 for j = 0, . . . , N . Moreover, let ε ∈ (0, 1/2] and

c = exp

(
κ

(
νT +

2v0
σ2

))(
max

{
1,

σ2ν

v0e

})ν

. (4.8)

Then, we have

exp

−κθ
k−1∑
j=0

aj+1∆t

 exp (−v0ak+1) ≤ c

(
∆t

ε

)ν(1−ε)

for all k = 1, . . . , N .

Proof. (i) Since ∆t ∈ (0, 1
κ), we know that

αN =
1− κ∆t

2
<

1

2
, αN >

1− κ 1
κ

2
= 0

and therefore αN ∈ (0, 1/2). Now let ε ∈ (0, 1/2]. We show that

cj ≤ 1− αN − 1− ε

j − 1 + ε−1
, j = 1, . . . , N,

by induction. For j = 1, we have

c1 = αN − α2
N = 1− αN − (1− αN )2 ≤ 1− αN − 1

4
≤ 1− αN − 1− ε

ε−1
,

since 1/4 ≥ (1− ε)ε.
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Suppose that the statement holds for a fixed j ∈ {1, ..., N}. Then, we have

cj+1 = αN − α2
N + c2j ≤αN − α2

N +

(
1− αN − 1− ε

j − 1 + ε−1

)2

=αN − α2
N + 1− 2αN − 2

1− ε

j − 1 + ε−1
+ α2

N + 2αN
1− ε

j − 1 + ε−1

+
(1− ε)2

(j − 1 + ε−1)2

=1− αN − 2(1− αN )
1− ε

j − 1 + ε−1
+

(1− ε)2

(j − 1 + ε−1)2
.

For the statement to be true, it must hold that

1− ε

j − 1 + ε−1
− (1− ε)2

(j − 1 + ε−1)2
≥ 1− ε

j + ε−1

since 2(1− αN ) ∈ (1, 2). This can be verified by a simple computation.

(ii) Since cj+1 = c2j + αN − α2
N and c0 = αN , c1 = αN − α2

N ≤ αN , we can establish by
induction that cj ≤ αN . Since

aj =
2(αN − cj)

σ2∆t
we therefore have aj ≥ 0 for j = 0, . . . , N . It follows that

−κθ
k−1∑
j=0

aj+1∆t =
2κθ

σ2

k−1∑
j=0

(cj+1 − αN ) ≤ 2κθ

σ2

k−1∑
j=0

(
1− 2αN − 1− ε

j + ε−1

)

≤ 2κθ

σ2

∫ k

0

(
1− 2αN − 1− ε

j + ε−1

)
dj

=
2κθ(1− ε)

σ2

(
ln(ε−1)− ln(k + ε−1)

)
+

2κθ

σ2
κ∆tk

≤ ν(1− ε) ln

(
1

1 + εk

)
+ κνT.

Using the definition of ak+1 and αN , as well as the estimate for ck+1 from (i) we obtain

exp (−v0ak+1) = exp

(
2v0
σ2∆t

(ck+1 − αN )

)
≤ exp

(
2v0
σ2∆t

(
1− 2αN − ε(1− ε)

1 + εk

))
≤ exp

(
2v0κ

σ2

)
exp

(
−2v0ε(1− ε)

σ2

1

∆t

1

1 + εk

)
≤ exp

(
2v0κ

σ2

)
exp

(
−v0ε

σ2

1

∆t

1

1 + εk

)
,
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4. Properties of Explicit Euler Schemes for the log-Heston Model

since we have ε ∈ (0, 1/2]. Thus, we obtain

exp

−κθ

k−1∑
j=0

aj+1∆t

 exp (−v0ak+1)

≤ exp

(
κ

(
νT +

2v0
σ2

))
exp

(
−v0ε

σ2

1

∆t

1

1 + εk

)(
1

1 + εk

)ν(1−ε)

= exp

(
κ

(
νT +

2v0
σ2

))
exp

(
−v0ε

σ2

1

∆t

1

1 + εk

)(
v0ε

σ2

1

∆t

1

1 + εk

σ2∆t

v0ε

)ν(1−ε)

.

The inequality
xα exp(−x) ≤ αα exp(−α), α > 0, x > 0,

and using again that ε ∈ (0, 1/2] now yield

exp

−κθ
k−1∑
j=0

aj+1∆t

 exp (−v0ak+1)

≤ exp

(
κ

(
νT +

2v0
σ2

))(
ν(1− ε)

e

)ν(1−ε)(σ2∆t

v0ε

)ν(1−ε)

≤ exp

(
κ

(
νT +

2v0
σ2

))(
σ2ν

v0e

)ν(1−ε)(
∆t

ε

)ν(1−ε)

≤ exp

(
κ

(
νT +

2v0
σ2

))(
max

{
1,

σ2ν

v0e

})ν (
∆t

ε

)ν(1−ε)

,

which finishes the proof.

The next proposition gives an upper bound for the expression from Lemma 4.3. It plays
the same role as Lemma 3.6 in [10] and in comparison to this lemma it removes the
restriction on ν and also obtains a better estimate in terms of ν for P (z⋆t ≤ 0).

Proposition 4.5. For ∆t < 1
κ and ε ∈ (0, 1/2] we have that

E

[
exp

(
−
v̂⋆tk(1− κ∆t)2

2σ2∆t

)]
≤ c

(
∆t

ε

)ν(1−ε)

, k = 0, . . . , N, (4.9)

and

P (z⋆t ≤ 0) ≤ c

(
∆t

ε

)ν(1−ε)

, t ∈ [0, T ] \ {t0, t1, . . . , tN}, (4.10)

for ⋆ ∈ {sym, abs}, where c is given by (4.8).
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Proof. Lemma 4.3 and (4.9) directly give (4.10). So it remains to show (4.9).
The first step of this proof is to describe a sequence (aj)0≤j≤N whose first element is
equal to (1−κ∆t)2

2σ2∆t
and which has some suitable properties to bound the term on the left

side of (4.9). Suppose that ∆t < 1
κ . Define the sequence (aj)0≤j≤N as in the previous

Lemma, i.e.

aj =
2(αN − cj)

σ2∆t

with

c0 = αN , c1 = αN − α2
N , cj+1 = c2j + αN − α2

N , j = 1, . . . , N − 1,

and αN = 1−κ∆t
2 . In particular, we have a0 = 0,

a1 =
2α2

N

σ2∆t
=

(1− κ∆t)2

2σ2∆t

and

aj+1 =
2(αN − cj+1)

σ2∆t
=

2(α2
N − c2j )

σ2∆t
=

4αN (αN − cj)− 2(αN − cj)
2

σ2∆t

= 2αNaj −
1

2
a2jσ

2∆t.

Next, we take a look at

E
[
exp

(
−v̂⋆tkai

)]
= E

[
E
[
exp

(
−v̂⋆tkai

) ∣∣Ftk−1

]]
and bound the inner expectation, using that |v| ≥ v and v+ ≥ v, respectively. We have

E
[
exp

(
−v̂⋆tkai

) ∣∣Ftk−1

]
≤ E

[
exp

(
−ai

(
κθ∆t+ v̂⋆tk−1

(1− κ∆t) + σ
√
v̂⋆tk−1

(
Wtk −Wtk−1

))) ∣∣Ftk−1

]
= exp

(
−ai

(
κθ∆t+ v̂⋆tk−1

(1− κ∆t)
))

E
[
exp

(
−aiσ

√
v̂⋆tk−1

(
Wtk −Wtk−1

)) ∣∣Ftk−1

]
= exp

(
−ai

(
κθ∆t+ v̂⋆tk−1

(1− κ∆t)
))

exp

(
1

2
a2iσ

2v̂⋆tk−1
∆t

)
.

Since

ai+1 = ai(1− κ∆t)− 1

2
a2iσ

2∆t,

it follows

E
[
exp

(
−v̂⋆tkai

)]
≤ exp (−aiκθ∆t)E

[
exp

(
−v̂⋆tk−1

ai+1

)]
.
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Plugging in a1 and applying this upper bound k times, we arrive at

E

[
exp

(
−
v̂⋆tk(1− κ∆t)2

2σ2∆t

)]
= E

[
exp

(
−v̂⋆tka1

)]
≤ exp

−κθ

k−1∑
j=0

aj+1∆t

 exp (−v0ak+1) .

The assertion now follows from the second part of Lemma 4.4.

We now need an upper bound for the expected local time that z⋆ spends in 0. Our proof
follows similar ideas as the proof of Proposition 3.5 in [10] but adds the results from
Proposition 4.5 to obtain a better convergence estimate.

Proposition 4.6. Let β > 0, δ > 0, ε ∈ (0, 1/2], ∆t ≤ 1
2κ and ⋆ ∈ {sym, abs}. Then,

there exist constants Cδ > 0 and Cβ,δ > 0 such that

E
[
L0
t (z

⋆)− L0
η(t) (z

⋆)
]
≤ Cδ∆t

(
∆t

ε

)ν 1−ε
1+δ

, t ∈ [0, T ],

and

E
[∣∣∣L0

t (z
⋆)− L0

η(t) (z
⋆)
∣∣∣1+β

] 1
1+β

≤ Cβ,δ (∆t)
1

(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

.

Proof. (i) To simplify the notation, we drop the ⋆-label. By the occupation time formula,
see e.g. Theorem 7.1 in chapter III of [49], we have for any t ∈ [tk, tk+1] and for any
non-negative Borel-measurable function ϕ : R → R that P -a.s∫

R
ϕ(x)

(
Lx
t (z)− Lx

tk
(z)
)
dx =

∫ t

tk

ϕ(zs)d⟨z⟩s = σ2

∫ t

tk

ϕ(zs)v̂tkds.

Here Lx(z) is the local time of z in x ∈ R. Since

Pzs|v̂η(s)=y = N
(
y + κ(θ − y)(s− η(s)), σ2y(s− η(s))

)
we have for any y > 0 that∫

R
ϕ(x)E

[
Lx
t (z)− Lx

tk
(z) |v̂tk = y

]
dx = σ2

∫ t

tk

yE [ϕ(zs)|v̂tk = y] ds

= σ

∫
R
ϕ(x)

∫ t

tk

√
y√

2π(s− tk)
exp

(
−(x− y − κ(θ − y)(s− tk))

2

2σ2y(s− tk)

)
dsdx.
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Since the above equation holds for any non-negative Borel-measurable function ϕ, we
must have that

E
[
Lx
t (z)− Lx

tk
(z) |v̂tk = y

]
= σ

∫ t

tk

√
y√

2π(s− tk)
exp

(
−(x− y − κ(θ − y)(s− tk))

2

2σ2y(s− tk)

)
ds

for any x ∈ R. Setting x = 0 yields

E
[
L0
t (z)− L0

tk
(z) |v̂tk = y

]
= σ

∫ t

tk

√
y√

2π(s− tk)
exp

(
−(y + κ(θ − y) (s− tk))

2

2σ2y (s− tk)

)
ds

≤ σ

∫ t

tk

√
y√

2π (s− tk)
exp

(
−y (1− κ (s− tk))

2

2σ2 (s− tk)

)
ds.

Since for δ > 0 there exist a cδ > 0 such that
√
b exp(−b) ≤ cδ exp

(
− b

1+δ

)
for all b ≥ 0,

we have

√
y(1− κ (s− tk))√

2σ2 (s− tk)
exp

(
−y (1− κ (s− tk))

2

2σ2 (s− tk)

)
≤ cδ exp

(
− y (1− κ (s− tk))

2

2σ2 (s− tk) (1 + δ)

)
.

Moreover, since 1− κ (s− tk) ∈ [1/2, 1] we obtain

√
y

√
s− tk

exp

(
−y (1− κ (s− tk))

2

2σ2 (s− tk)

)
≤

√
8σcδ exp

(
− y (1− κ (s− tk))

2

2σ2 (s− tk) (1 + δ)

)
.

It follows

E
[
L0
t (z)− L0

tk
(z) |Ftk

]
≤ σ

∫ t

tk

√
v̂tk√

2π (s− tk)
exp

(
− v̂tk (1− κ(s− tk))

2

2σ2 (s− tk)

)
ds

≤ cδ
2σ√
π

∫ t

tk

exp

(
− v̂tk (1− κ(s− tk))

2

2σ2(s− tk)(1 + δ)

)
ds

≤ cδ
2σ√
π

∫ t

tk

exp

(
− v̂tk (1− κ∆t)2

2σ2∆t(1 + δ)

)
ds.
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4. Properties of Explicit Euler Schemes for the log-Heston Model

Now, the Lyapunov inequality and Proposition 4.5 yield

E
[
L0
t (z)− L0

tk
(z)
]
≤ Cδ

∫ t

tk

E

[
exp

(
− v̂tk (1− κ∆t)2

2σ2∆t(1 + δ)

)]
ds

= Cδ

∫ t

tk

E

exp(− v̂tk (1− κ∆t)2

2σ2∆t

) 1
1+δ

 ds

≤ Cδ

∫ t

tk

(
E

[
exp

(
− v̂tk (1− κ∆t)2

2σ2∆t

)]) 1
1+δ

ds

≤ Cδ∆t

(
∆t

ε

)ν 1−ε
1+δ

.

(ii) For the second statement note first that

E
[∣∣∣L0

t (z)− L0
η(t)(z)

∣∣∣1+β
] 1

1+β

= E
[(

L0
t (z)− L0

η(t)(z)
) 1

1+β
(
L0
t (z)− L0

η(t)(z)
)β+1− 1

1+β

] 1
1+β

≤
(
E
[
L0
t (z)− L0

η(t)(z)
]) 1

(1+β)2

(
E

[(
L0
t (z)− L0

η(t)(z)
) (β+1)2−1

β

]) β

(1+β)2

by Hölder’s inequality. Now, consider first z = zsym and note that

E
[∣∣∣L0

t (z)− L0
η(t) (z)

∣∣∣p]
= E

[∣∣∣∣∣v̂t − v̂η(t) −
∫ t

η(t)
sign (zs)κ

(
θ − v̂η(s)

)
ds− σ

∫ t

η(t)
sign (zs)

√
v̂η(s)dWs

∣∣∣∣∣
p]

≤ 3p−1

(
E
∣∣v̂t − v̂η(t)

∣∣p + E

[∣∣∣∣∣
∫ t

η(t)
sign (zs)κ

(
θ − v̂η(s)

)
ds

∣∣∣∣∣
p]

+E

[∣∣∣∣∣σ
∫ t

η(t)
sign (zs)

√
v̂η(s)dWs

∣∣∣∣∣
p])

for since |x+y+z|p ≤ 3p−1(|x|p+|y|p+|z|p) for x, y, z ∈ R, p ≥ 1. We can conclude from
Lemma 4.2, the Hölder inequality and the Burkholder-Davis-Gundy inequality that

sup
t∈[0,T ]

E
[∣∣∣L0

t (z)− L0
η(t) (z)

∣∣∣p] < ∞.

The case z = zabs can be done analogously. Applying the estimate from the first part,
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we obtain

E
[∣∣∣L0

t (z)− L0
η(t)(z)

∣∣∣1+β
] 1

1+β

≤ Cβ

(
E
[
L0
t (z)− L0

η(t)(z)
]) 1

(1+β)2

≤ Cβ,δ (∆t)
1

(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

.

The following lemma gives a control of the non-martingale terms, which arise addition-
ally in the expansion of SE and AE.

Lemma 4.7. Let ∆t ≤ 1
2κ , ε ∈ (0, 1/2], β > 0 and ⋆ ∈ {sym, abs}. Moreover, let

g : R2 → R be bounded and h : R → R be of linear growth. Then we have

sup
t∈[0,T ]

E
[∣∣∣∣∫ t

0
g(Vu, v̂

⋆
u)h(v̂

⋆
η(u))1{z⋆u≤0}du

∣∣∣∣] ≤ Cg,h,β

(
∆t

ε

)ν 1−ε
1+β

and

sup
t∈[0,T ]

E
[∣∣∣∣∫ t

0
g(Vu, v̂

⋆
u)dL

0
u(z

⋆)

∣∣∣∣] ≤ Cg,β

(
∆t

ε

)ν 1−ε
1+β

.

Proof. For the first assertion note that

sup
t∈[0,T ]

E
[∣∣∣∣∫ t

0
g(Vu, v̂

⋆
u)h(v̂

⋆
η(u))1{z⋆u≤0}du

∣∣∣∣]

≤ Ch∥g∥∞
∫ T

0
E

[(
1 + sup

t∈[0,T ]
|v̂⋆t |

)
1{z⋆u≤0}

]
du

with ∥g∥∞ = supx,y∈R |g(x, y)|. An application of Hölder’s inequality together with
Lemma 4.2 yields

sup
t∈[0,T ]

E
[∣∣∣∣∫ t

0
g(Vu, v̂

⋆
u)h(v̂

⋆
η(u))1{z⋆u≤0}du

∣∣∣∣] ≤ Ch,g,β

∫ T

0
(P (z⋆u ≤ 0))

1
1+β du

for all β > 0. Proposition 4.5 implies now that

sup
t∈[0,T ]

E
[∣∣∣∣∫ t

0
g(Vu, v̂

⋆
u)h(v̂

⋆
η(u))1{z⋆u≤0}du

∣∣∣∣] ≤ Ch,g,β

(
∆t

ε

)ν 1−ε
1+β

.

For the second assertion, we note that the integral under consideration is a pathwise
Riemann-Stieltjes integral, since L0(z⋆) is positive and non-decreasing with L0

0(z
⋆) = 0.

We then have

−∥g∥∞L0
T (z

⋆) ≤
∫ t

0
g(Vu, v̂

⋆
u)dL

0
u(z

⋆) ≤ ∥g∥∞L0
T (z

⋆), t ∈ [0, T ].
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4. Properties of Explicit Euler Schemes for the log-Heston Model

It follows

sup
t∈[0,T ]

E
[∣∣∣∣∫ t

0
g(Vu, v̂

⋆
u)dL

0
u(z

⋆)

∣∣∣∣] ≤ ∥g∥∞
N−1∑
k=0

E
[
L0
tk+1

(z⋆)− L0
tk
(z⋆)

]

and Proposition 4.6 gives

sup
t∈[0,T ]

E
[∣∣∣∣∫ t

0
g(Vu, v̂

⋆
u)dL

0
u(z

⋆)

∣∣∣∣] ≤ Cg,β

(
∆t

ε

)ν 1−ε
1+β

which finishes the proof.

4.3 The Euler Scheme for the Log-Price Process

The time-continuous extension x̂ = (x̂t)t∈[0,T ] of the Euler scheme for the log-price
process in the Heston model is given by

x̂t = x̂η(t) +

(
r − 1

2
v̂η(t)

)
(t− η(t)) + ρ

√
v̂η(t)

(
Wt −Wη(t)

)
+
√
1− ρ2

√
v̂η(t)

(
Bt −Bη(t)

)
.

(4.11)

For (v̂t)t∈[0,T ], we can choose one of the previously introduced schemes for the CIR pro-
cess. We have the same results concerning the moment stability and the local smoothness
as before.

Lemma 4.8. Let p ≥ 1. For the Euler scheme (4.11) together with the scheme (4.3) or
(4.6), there exists Cp > 0 such that

E

[
sup

t∈[0,T ]
|x̂t|p

]
≤ Cp.

and

sup
0≤s<t≤T

E

[
|x̂t − x̂s|p

|t− s|p/2

]
< ∞.

Proof. Using the bounded moment results from Lemma 4.1 and Lemma 4.2, both state-
ments follow again by standard computations. For the first term, we use the Hölder and
the BDG inequality. Let p ≥ 2. Again, the case p ∈ [1, 2) for both terms follows by the
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Lyapunov inequality. Then,

E

[
sup

t∈[0,T ]
|x̂t|p

]

= E

[
sup

t∈[0,T ]

∣∣∣∣x0 + rt− 1

2

∫ t

0
v̂η(s)ds+ ρ

∫ t

0

√
v̂η(s)dWs +

√
1− ρ2

∫ t

0

√
v̂η(s)dBs

∣∣∣∣p
]

≤ Cp

(
1 + xp0 + E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0
v̂η(s)ds

∣∣∣∣p
]

+E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

√
v̂η(s)dWs

∣∣∣∣p
]
+ E

[
sup

t∈[0,T ]

∣∣∣∣∫ t

0

√
v̂η(s)dBs

∣∣∣∣p
])

≤ Cp

(
1 + xp0 + T p−1

∫ T

0
E
[∣∣v̂η(s)∣∣p] ds+ T p/2−1

∫ T

0
E
[∣∣v̂η(s)∣∣p/2] ds)

≤ Cp.

Furthermore, we have that

E [|x̂t − x̂s|p]

≤ E
[∣∣∣∣r(t− s)− 1

2

∫ t

s
v̂η(u)du+ ρ

∫ t

s

√
v̂η(u)dWu +

√
1− ρ2

∫ t

s

√
v̂η(u)dBu

∣∣∣∣p]
≤ Cp

(
|t− s|p + E

[∣∣∣∣∫ t

s
v̂η(u)du

∣∣∣∣p]+ E
[∣∣∣∣∫ t

s

√
v̂η(u)dWu

∣∣∣∣p]+ E
[∣∣∣∣∫ t

s

√
v̂η(u)dBu

∣∣∣∣p])
≤ Cp

(
|t− s|p + |t− s|p−1

∫ t

s
E
[∣∣v̂η(u)∣∣p] du+ |t− s|p/2−1

∫ t

s
E
[∣∣v̂η(u)∣∣p/2] du)

≤ Cp

(
|t− s|p + |t− s|p/2

)
,

from which the second statement follows.
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Chapter 5

Regularity Results for the
Kolmogorov backward PDE

There is a rich connection between partial differential equations (PDEs) and SDEs
which was, amongst others, studied by Kolmogorov and Feller. It is a now classical
technique to use this connection to study the weak error of numerical approximations
which was introduced in Section 3.4. Solutions of elliptic and parabolic PDEs can be
represented as expectations of stochastic functionals. One of the most famous results
for this connection is the Feynman-Kac theorem (see e.g. Theorem 5.7.6 in [49]). In
the case of the Heston model, classical results do not apply. Therefore, we will present
a result by Briani et al. [13] which links the solution of the log-Heston SDE with the
solution of a degenerate parabolic PDE.

First, we present a theorem from [66] which establishes the connection between PDEs
and SDEs under standard textbook assumptions. We assume that we have a stochastic
process Y = (Yt)t≥0 with state space [0, T ] × Rd and Lipschitz continuous drift and
diffusion coefficients b : Rd → Rd, σ : Rd → Rd×m which is the unique strong solution of

dYt = b(Yt)dt+ σ(Yt)dWt, Y0 = y ∈ Rd.

Again, (Wt)t∈[0,T ] is an m-dimensional Brownian motion in this scenario. Moreover,
we denote by Y s,x

t the solution at time t > 0 which starts in x at time s ≤ t. The
infinitesimal generator L of Y is defined by

(Lf)(y) = lim
t↓0

E
[
f
(
Y 0,y
t

)]
− f(y)

t
.

Here, we denote by DL the set of functions f : Rd → R for which the above limit exists
for all y ∈ Rd. If we have f ∈ C2

c

(
Rd
)

then f ∈ DL and the generator has the form

(Lf)(y) =
d∑

i=1

bi(y)
∂f

∂yi
+

1

2

d∑
i,j=1

(
σσT

)
i,j

(y)
∂2f

∂yi∂yj
, (5.1)
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see e.g. Theorem 7.3.3 in [66]. The right side of (5.1) is called the second order differ-
ential operator associated with the drift vector b and the diffusion matrix σ. The next
result is Theorem 8.1.1 from [66] which establishes the connection between SDE and
PDE solutions.

Theorem 5.1. Let Y be as defined above with infinitesimal generator L and let f ∈
C2
c (Rd).

(i) Define

u(t, y) = E
[
f
(
Y 0,y
t

)]
. (5.2)

Then, u(t, ·) ∈ DL for each t ∈ [0, T ] and

ut − Lu = 0, t ∈ (0, T ], y ∈ Rd

u(0, y) = f(y), y ∈ Rd.
(5.3)

where L is applied to the function y → u(t, y). Equation (5.3) is called Kolmogorov
backward equation.

(ii) Moreover, if w(t, x) ∈ C1,2([0, T ]×Rd) is a bounded function satisfying (5.3) then
w(t, y) = u(t, y) given in (5.2).

Remark 5.2. In financial applications f is often considered as a (discounted) payoff
function which is applied at the final time point T . It is therefore useful to perform a
time-shift from t to T − t. Because of the Markov property of our solution Y , Equation
(5.2) then changes to

v(t, y) := u(T − t, y) = E
[
f
(
Y t,y
T

)]
and v satisfies

vt + Lv = 0, t > 0, y ∈ Rd

v(T, y) = f(y), y ∈ Rd.

For our main proof in Chapter 6 we need a similar result as Theorem 5.1 (i) for the
Heston model. This was given by Briani et al. in [13].

Proposition 5.3 (Briani, Caramellino, Terenzi (2021)). Let q ∈ N and suppose that
∂2j
x f ∈ Cq−j

pol (R× R+;R) for every j = 0, 1, ..., q. Set

u(t, x, v) = E
[
f
(
Xt,x,v

T , V t,v
T

)]
.
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5. Regularity Results for the Kolmogorov backward PDE

Then, u ∈ Cq
pol,T (R× R+;R). Moreover, the following stochastic representation holds:

For m+ 2n ≤ 2q

∂m
x ∂n

v u(t, x, v)

= E
[
e−nκ(T−t)∂m

x ∂n
v f
(
Xn,t,x,v

T , V n,t,v
T

)]
+ nE

[∫ T

t
e−nκ(T−s)

[
1

2
∂m+2
x ∂n−1

v u+
1

2
∂m+1
x ∂n−1

v u

] (
s,Xn,t,x,v

s , V n,t,v
s

)
ds

]
where ∂m

x ∂n−1
v u = 0 when n = 0 and

(
Xn,t,x,v, V n,t,v

)
, n ≥ 0, denotes the solution to

the log-Heston SDE starting in (x, v) at time t with parameters:

ρn = ρ rn = r + nρσ κn = κ θn = θ +
nσ2

2κ
σn = σ.

In particular, if q ≥ 2 then u ∈ C1,2
pol ([0, T ]× R× R+;R) solves the PDE{

∂tu(t, x, v) + (Au)(t, x, v) = 0 (t, x, v) ∈ [0, T )× R× R+

u(T, x, v) = f(x, v) (x, v) ∈ R× R+

(5.4)

where A is the second order differential operator associated with the log-Heston SDE,
i.e.

(Au)(t, x, v) = − v

2
ux(t, x, v) + κ(θ − v)uv(t, x, v)

+
v

2

(
uxx(t, x, v) + 2ρσuxv(t, x, v) + σ2uvv(t, x, v)

)
.

Remark 5.4. Briani et al. prove this proposition for functions f that fulfill ∂2j
x f ∈

Cp,q−j
pol (R × R+;R) which means that they are additionally in Lp. They show that then

u ∈ Cp,q
pol,T (R× R+,R) holds. As they stated in Remark 5.4 of [13], the Proposition also

holds if one drops the Lp-property.

Remark 5.5. Proposition 5.3 tells us that for the weak error analysis, we need test func-
tions (e.g. payoff functions) f ∈ C2q

pol with q ≥ 2 to get a solution u of the Kolmogorov
backward equation that is q-times differentiable and polynomially bounded.

For our weak error analysis in Chapter 6, we need an additional result for

uγ(t, x, v) := u(t, x, v + γ)

where γ ∈ [0, 1]. A direct application of Proposition 5.3 gives:

Lemma 5.6. Let f ∈ C6
pol(R× R+;R). Then, there exist Cf > 0 and a > 0 such that

sup
γ∈[0,1]

sup
t∈[0,T )

|∂l
x∂

m
v uγ(t, x, v)| ≤ Cf (1 + |x|a + |1 + v|a), x ∈ R, v ≥ 0,

if l + 2m ≤ 6.
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Moreover, note that the function uγ satisfies by construction the PDE

uγt (t, x, v) + (Auγ)(t, x, v) =
γ

2
(Ruγ)(t, x, v),

uγ(T, x, v) = f(x, v + γ),

where

(Ruγ)(t, x, v) = uγx(t, x, v) + 2κuγv(t, x, v)− uγxx(t, x, v)

− 2ρσuγxv(t, x, v)− σ2uγvv(t, x, v).

Lemma 5.6 then yields

sup
γ∈[0,1]

sup
t∈[0,T )

|(Ruγ)(t, x, v)| ≤ Cf (1 + |x|a + |1 + v|a), x ∈ R, v ≥ 0, (5.5)

sup
γ∈[0,1]

sup
t∈[0,T )

∣∣∣∣ ∂∂x(Ruγ)(t, x, v)

∣∣∣∣ ≤ Cf (1 + |x|a + |1 + v|a), x ∈ R, v ≥ 0, (5.6)

sup
γ∈[0,1]

sup
t∈[0,T )

∣∣∣∣ ∂∂v (Ruγ)(t, x, v)

∣∣∣∣ ≤ Cf (1 + |x|a + |1 + v|a), x ∈ R, v ≥ 0. (5.7)

for f ∈ C6
pol(R× R+;R).
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Chapter 6

Weak Convergence

As we have seen before, the knowledge of the weak error

eweak(N) = |E [f(xN , vN )− f(XT , VT )]|

plays an important role for Monte Carlo simulations. Despite the apparent simplicity
of the Heston model, only a few results concerning the weak convergence order of its
discretizations have been proven. Since the square root function which appears in both
of the SDEs is non-Lipschitz, standard results cannot be applied. Additionally, all
of the proposed time-discrete schemes for the CIR process require "fixes" to preserve
the positivity of the scheme either for the full parameter regime (e.g. explicit Euler
schemes) or when the Feller index is low (e.g. drift-implicit Milstein and drift-implicit
Euler). This makes their analysis even more challenging.

The first proof for a full discretization of the Heston model can be found in [5] where
the implicit Milstein scheme (3.10) for the CIR process and the Euler scheme (3.9) for
the log-price process were analyzed. Under the assumption that ν > 2, Altmayer and
Neuenkirch prove weak convergence order 1 for functions f which are twice continuously
differentiable with compact support and which have a Hölder-continuous second deriva-
tive of order ε > 0. The assumptions on the function f arise from using the results
from [26] where the regularity of the solution of certain degenerate parabolic PDEs was
studied. The article [74] analyzes a semi-exact scheme where the CIR process is simu-
lated exactly from the non-central chi-squared distribution and the log price process is
discretized with the trapezoidal scheme from Equation (3.7). Here, a weak convergence
order of 2 is proven for polynomials for the whole parameter range, i.e. ν > 0.
The (positivity preserving) weak approximation of the CIR process has been studied by
Alfonsi in [1, 2]. In particular, weak first and second order schemes have been derived
in these references. The article [10] studies the weak error of the symmetrized Euler
scheme for the CIR process.

First, we present some of our own results concerning the weak convergence of semi-
exact discretization schemes. In the main part of this chapter, we analyze the weak
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convergence rate of two Euler type discretization schemes, the symmetrized Euler (SE)
and the Euler with absorption fix (AE) which were presented in Chapter 3 and analyzed
in Chapter 4. For these two schemes, we prove a weak convergence order of 1 for ν > 1
and a weak convergence of order ν−ε for arbitrarily small ε > 0 for the case ν ≤ 1. These
results have been published in [56]. Then, we extend the findings from [5] for the implicit
Milstein scheme using the results from Chapter 5. Finally, we give an overview of all
schemes and their convergence rates that can be proven with the presented techniques
and results from this chapter. In our analysis, we observe the usual trade-off between
the smoothness assumption on f and the restrictions on the Feller index ν.
Recall for the following results that our discretization grid is

0 = t0 < t1 < . . . < tN = T

and that we denote n(t) := max{k ∈ {0, ..., N} : tk ≤ t} and η(t) := tn(t).

6.1 Semi-Exact Discretization Schemes

Inspired by the two results which we presented in the introduction of this chapter, we
analyzed a semi-exact discretization scheme in [54]. We assumed that the CIR process
can be simulated exactly and studied the Euler and semi-trapezoidal discretization for
the log-price process from Equations (3.5) and (3.6). Using the results from [26], we
could prove a weak convergence order of 1 for both schemes.

Theorem 6.1. Let ε > 0 and

∆t = max
k∈{0,...,N−1}

|tk+1 − tk| .

Let the variance process be simulated exactly, i.e. vk = Vtk for k ∈ {0, . . . , N}, and the
log-price process be discretized as in (3.5) or (3.6).
(i) If f ∈ C2+ε

c (R× [0,∞);R) and ν > 3
2 , then both schemes satisfy

lim sup
N→∞

N |E [f(xN , vN )]− E [f(XT , VT )]| < ∞.

(ii) If f ∈ C4+ε
c (R× [0,∞);R), then both schemes satisfy

lim sup
N→∞

N |E [f(xN , vN )]− E [f(XT , VT )]| < ∞.

Note that it was possible to drop the restrictions on the Feller index in the second case.
Using the results from [13] which we stated in Proposition 5.3, we could give an error
expansion for both schemes.
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6. Weak Convergence

Theorem 6.2. Suppose that f ∈ C8
pol(R× [0,∞);R). (i) Then, the Euler scheme (3.5)

satisfies

E [f(xN , vN )]− E [f(XT , VT )] =
N−1∑
n=0

∫ tn+1

tn

∫ t

tn

E [H(s, t, x̂s, x̂t, Vs, Vt)] dsdt+O((∆t)2),

where

H(s, t, x̂s, x̂t, Vs, Vt) =

(
1

2
− ρκ

σ

)(
κ(θ − Vs)ux(t, x̂t, Vt) + σ2Vsuxv(s, x̂s, Vs)

)
− (1− ρ2)

2

(
κ(θ − Vs)uxx(t, x̂t, Vt) + σ2Vsuxxv(s, x̂s, Vs)

)
and

x̂t = x̂η(t) +

(
ρκ

σ
− 1

2

)
Vη(t)(t− η(t)) +

√
1− ρ2

√
Vη(t)(Bt −Bη(t)).

In particular, for an equidistant discretization with tk = kT/N , k = 0, . . . , N , we have

lim
N→∞

N (E [f(xN , vN )]− E [f(XT , VT )]) =
T

2

∫ T

0
E [H(t, t,Xt, Xt, Vt, Vt)] dt.

Here, u denotes the solution of the associated Kolmogorov PDE, see Equation (5.4).
(ii) For the semi-trapezoidal scheme (3.6), we have

E [f(xN , vN )]− E [f(XT , VT )] =

N−1∑
n=0

∫ tn+1

tn

∫ t

tn

E [H(s, t, x̂s, x̂t, Vs, Vt)] dsdt+O((∆t)2),

where

H(s, t, x̂s, x̂t, Vs, Vt) = −(1− ρ2)

2

(
κ(θ − Vs)uxx(t, x̂t, Vt) + σ2Vsuxxv(s, x̂s, Vs)

)
and

x̂t = x̂η(t) +

(
ρκ

σ
− 1

2

)
Vt + Vη(t)

2
(t− η(t)) +

√
1− ρ2

√
Vη(t)

(
Bt −Bη(t)

)
.

In particular, for an equidistant discretization tk = kT/N , k = 0, . . . , N , it holds

lim
N→∞

N (E [f(xN , vN )]− E [f(XT , VT )]) =
T

2

∫ T

0
E [H(t, t,Xt, Xt, Vt, Vt)] dt.

Here, u denotes again the solution of the associated Kolmogorov PDE as in Equation
(5.4).
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6.2 Weak Convergence Order of two Euler-Type Discretiza-
tion Schemes

Now, we turn to a full Euler discretization of the log-Heston model. In particular, we
will analyze the scheme (3.8)

v̄k+1 = f1(v̄k) + κ (θ − f2(v̄k)) (tk+1 − tk) + σ
√

f3(v̄k)
(
Wtk+1

−Wtk

)
vk+1 = f3(v̄k+1)

(6.1)

for the choice
f1 = f2 = f3 ∈ {abs, sym}. (6.2)

which are the symmetrized Euler (SE) and the Euler with absorption fix (AE) (see Table
3.1). The price process is discretized as in (3.9), i.e. the standard Euler scheme

xk+1 = xk −
1

2
vk(tk+1 − tk) +

√
vk

(
ρ
(
Wtk+1

−Wtk

)
+
√
1− ρ2

(
Btk+1

−Btk

))
. (6.3)

Our analysis leads us to the following main result of this chapter:

Theorem 6.3. Let f ∈ C6
pol(R× [0,∞);R) and (vk, xk)k∈{0...N} be given by (6.1), (6.2)

and (6.3). Furthermore, let the discretization grid be tk = k∆t, k ∈ {0, ..., N} where
∆t = T

N . Then, we have

lim sup
N→∞

N |E [f(xN , vN )]− E [f(XT , VT )]| < ∞

if ν > 1 and

lim sup
N→∞

Nα |E [f(xN , vN )]− E [f(XT , VT )]| = 0

for all α ∈ (0, ν) if ν ≤ 1.

Thus, for ν > 1 we have weak convergence order one and for ν ≤ 1 we have weak
convergence order ν − ε for arbitrarily small ε > 0.

Remark 6.4. The decay in the weak convergence rate for ν ≤ 1 is due to the appli-
cation of Propositions 4.5 and 4.6. However, this decay is also observed in numerical
simulations of the respective Euler schemes (see Chapter 9). Interestingly, the conver-
gence order ν also appears for the CIR process in a different context, namely for the
L1-approximation at the terminal time point (see Chapter 8).

Remark 6.5. Our analysis unfortunately does not carry over to Euler schemes for the
choice

f1 = id, f2 ∈ {id, abs, sym}, f3 ∈ {abs, sym},

i.e. schemes that take negative values. As a consequence, the approximation of the CIR
component is not bounded from below which prohibits our application of the Kolmogorov
PDE and Itō’s lemma.

44



6. Weak Convergence

Remark 6.6. Bally and Talay analyze in [8] the weak error of the Euler scheme for
SDEs with C∞

b -coefficients, i.e. coefficients which are infinitely differentiable and whose
derivatives of any order are bounded, that satisfy an additional non-degeneracy condition
of Hörmander type (UH). They establish weak order one for the Euler scheme for test
functions f that are only measurable and bounded. However, the log-Heston model does
not satisfy the above assumptions and an adaptation of the approach of [8] to the log-
Heston model leads to the restrictive assumption ν > 9

2 in [3].

6.3 Proof of Theorem 6.3

All preliminary results for the proof were presented in Section 4.2 and Chapter 5. We
recall the time-continuous extensions of the SE and AE, i.e.

v̂⋆t =v̂⋆η(t) +

∫ t

η(t)
κ
(
θ − v̂⋆η(s)

)
ds+ σ

∫ t

η(t)

√
v̂⋆η(s)dWs

− 2c⋆σ

∫ t

η(t)
1{z⋆s≤0}

√
v̂⋆η(s)dWs − 2c⋆

∫ t

η(t)
1{z⋆s≤0}κ

(
θ − v̂⋆η(s)

)
ds

+ c⋆
(
L0
t (z

⋆)− L0
η(t)(z

⋆)
)
, t ∈ [0, T ],

with csym = 1 and cabs = 1
2 . We start with the now classical approach of Talay

and Tubaro [70]: Since E [u(T, xN , vN )] = E [f(xN , vN )] and u(0, x0, v0) = u(0, x, v) =
E [f(XT , VT )] the weak error is a telescoping sum of local errors:

|E [f(xN , vN )]− E [f(XT , VT )]| =

∣∣∣∣∣
N∑

n=1

E [u(tn, xn, vn)− u(tn−1, xn−1, vn−1)]

∣∣∣∣∣ .
Since v̂abst can be zero with positive probability, technical difficulties with the Itō-formula
for u at v = 0, i.e. at the boundary of the state space, arise. Therefore, we will analyze
first ∣∣∣∣∣

N∑
n=1

E [u(tn, xn, vn + γ)− u(tn−1, xn−1, vn−1 + γ)]

∣∣∣∣∣
with γ > 0 and in a second step exploit that

|E [f(xN , vN )− f(XT , VT )] |

= lim sup
γ↘0

∣∣∣∣∣
N∑

n=1

E [u(tn, xn, vn + γ)− u(tn−1, xn−1, vn−1 + γ)]

∣∣∣∣∣ .
This regularization is not required for the symmetrized Euler scheme, but to present
both proofs in a concise way, we use it for both schemes.
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After the previous preparations, we now apply the Itō formula with γ ∈ (0, 1] to the
summands of the telescoping sum. Using (4.6) and (4.11) we have

eγn := E [uγ(tn+1, xn+1, vn+1)− uγ(tn, xn, vn)]

=

∫ tn+1

tn

E
[
uγt (t, x̂

⋆
t , v̂

⋆
t )−

1

2
v̂⋆η(t)u

γ
x(t, x̂

⋆
t , v̂

⋆
t ) + κ(θ − v̂⋆η(t))u

γ
v(t, x̂

⋆
t , v̂

⋆
t )

+
1

2
v̂⋆η(t)u

γ
xx(t, x̂

⋆
t , v̂

⋆
t ) + ρσv̂⋆η(t)u

γ
xv(t, x̂

⋆
t , v̂

⋆
t ) +

1

2
σ2v̂⋆η(t)u

γ
vv(t, x̂

⋆
t , v̂

⋆
t )

]
dt

− 2c⋆
∫ tn+1

tn

E
[
1{zt≤0}

(
κ(θ − v̂⋆η(t))u

γ
v(t, x̂

⋆
t , v̂

⋆
t ) + ρσv̂⋆η(t)u

γ
xv(t, x̂

⋆
t , v̂

⋆
t )
)]

dt

+ E
[∫ tn+1

tn

uγv(t, x̂
⋆
t , v̂

⋆
t )dL

0
t (z)

]
.

Note t 7→ Lt(z) is pathwise increasing and that
∫ tn+1

tn
uγv(t, x̂⋆t , v̂

⋆
t )dL

0
t (z) is a pathwise

Riemann-Stieltjes integral. We again drop now the ⋆-label to simplify the notation.
Since

uγt (t, x, v) + (Auγ)(t, x, v) =
γ

2
(Ruγ)(t, x, v)

with
(Auγ)(t, x, v) = − v

2
uγx(t, x, v) + κ(θ − v)uγv(t, x, v)

+
v

2

(
uγxx(t, x, v) + 2ρσuγxv(t, x, v) + σ2uγvv(t, x, v)

)
and

(Ruγ)(t, x, v) = uγx(t, x, v) + 2κuγv(t, x, v)− uγxx(t, x, v)

− 2ρσuγxv(t, x, v)− σ2uγvv(t, x, v)

we can write

eγn =

∫ tn+1

tn

E
[
v̂t − v̂η(t)

2
(uγx(t, x̂t, v̂t) + 2κuγv(t, x̂t, v̂t)− uγxx(t, x̂t, v̂t)

−2ρσuγxv(t, x̂t, v̂t)− σ2uγvv(t, x̂t, v̂t)
)]

dt

+
γ

2

∫ tn+1

tn

E [(Ruγ)(t, x̂t, v̂t)] dt

− 2c⋆
∫ tn+1

tn

E
[
1{zt≤0}

(
κ(θ − v̂η(t))u

γ
v(t, x̂t, v̂t) + ρσv̂η(t)u

γ
xv(t, x̂t, v̂t)

)]
dt

+ E
[∫ tn+1

tn

uγv(t, x̂t, v̂t)dL
0
t (z)

]
= e(1,γ)n + e(2,γ)n + e(3,γ)n + e(4,γ)n
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6. Weak Convergence

with

e(1,γ)n := E
[∫ tn+1

tn

uγv(t, x̂t, v̂t)dL
0
t (z)

]
,

e(2,γ)n := −2c⋆
∫ tn+1

tn

E
[
1{zt≤0}

(
κ(θ − v̂η(t))u

γ
v(t, x̂t, v̂t) + ρσv̂η(t)u

γ
xv(t, x̂t, v̂t)

)]
dt,

e(3,γ)n :=
1

2

∫ tn+1

tn

E
[
(v̂t − v̂η(t))(Ruγ)(t, x̂t, v̂t)

]
dt,

e(4,γ)n :=
γ

2

∫ tn+1

tn

E [(Ruγ)(t, x̂t, v̂t)] dt.

6.3.1 The first term

Recall that
∫ tn+1

tn
uγv(t, x̂t, v̂t)dL

0
t (z) is a pathwise Riemann-Stieltjes integral and L(z) is

pathwise increasing. Therefore we have∣∣∣∣∫ tn+1

tn

uγv(t, x̂t, v̂t)dL
0
t (z)

∣∣∣∣ ≤ sup
t∈[tn,tn+1]

|uγv(t, x̂t, v̂t)|
(
Ltn+1(z)− Ltn(z)

)
.

With Lemma 5.6 it follows∣∣∣∣∫ tn+1

tn

uγv(t, x̂t, v̂t)dL
0
t (z)

∣∣∣∣ ≤ Cf sup
t∈[0,T ]

(1 + |x̂t|a + |1 + v̂t|a)
(
Ltn+1(z)− Ltn(z)

)
.

The Lemmas 4.2 and 4.8 yield the existence of a constant Cp > 0 such that(
E

[∣∣∣∣∣ supt∈[0,T ]
(1 + |x̂t|a + |1 + v̂t|a)

∣∣∣∣∣
p])1/p

≤ Cp,

and Hölder’s inequality then gives

e(1,γ)n ≤ Cf,β

(
E
[∣∣Ltn+1(z)− Ltn(z)

∣∣1+β
]) 1

1+β

for β > 0. With Proposition 4.6, we can therefore conclude that

|e(1,γ)n | ≤ Cf,β,δ (∆t)
1

(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

, (6.4)

uniformly in γ ∈ (0, 1].

6.3.2 The second term

Recall that

e(2,γ)n = −2c⋆
∫ tn+1

tn

E
[
1{zt≤0}

(
κ(θ − v̂η(t))u

γ
v(t, x̂t, v̂t) + ρσv̂η(t)u

γ
xv(t, x̂t, v̂t)

)]
dt.
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An application of Hölder’s inequality yields

e(2,γ)n ≤ 2c⋆
∫ tn+1

tn

(P (zt ≤ 0))
1

1+β

·
(
E
[(
κ(θ − v̂η(t))u

γ
v(t, x̂t, v̂t) + ρσv̂η(t)u

γ
xv(t, x̂t, v̂t)

) 1+β
β

]) β
1+β

dt.

Lemma 5.6 and the Lemmas 4.2 and 4.8 give that

2

(
E
[(
κ(θ − v̂η(t))uv(t, x̂t, v̂t) + ρσv̂η(t)uxv(t, x̂t, v̂t)

) 1+β
β

]) β
1+β

≤ Cf,β

for β > 0. Since

P (zt ≤ 0) ≤ c

(
∆t

ε

)ν(1−ε)

, t ∈ [0, T ],

by Proposition 4.5, we end up with

|e(2,γ)n | ≤ Cf,β∆t

(
∆t

ε

)ν 1−ε
1+β

, (6.5)

uniformly in γ ∈ (0, 1].

6.3.3 The third term

Now, we consider

e(3,γ)n =
1

2

∫ tn+1

tn

E
[
(v̂t − v̂η(t))(Ruγ)(t, x̂t, v̂t)

]
dt.

Due to our assumptions the function kγ := Ruγ belongs to C1
pol,T . Using the expression

for v̂t from Equation (4.6) we have∫ tn+1

tn

E
[
(v̂t − v̂η(t))k

γ(t, x̂t, v̂t)
]
dt

=

∫ tn+1

tn

E

[(∫ t

η(t)
κ(θ − v̂η(s))ds+ σ

∫ t

η(t)

√
v̂η(s)dWs

)
kγ(t, x̂t, v̂t)

]
dt

+

∫ tn+1

tn

E

[(
−2c⋆σ

∫ t

η(t)
1{zs≤0}

√
v̂η(s)dWs

)
kγ(t, x̂t, v̂t)

]
dt

+

∫ tn+1

tn

E

[(
−2c⋆

∫ t

η(t)
1{zs≤0}κ

(
θ − v̂η(s)

)
ds

)
kγ(t, x̂t, v̂t)

]
dt

+

∫ tn+1

tn

E
[(

L0
t (z)− L0

η(t) (z)
)
kγ(t, x̂t, v̂t)

]
dt.
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6. Weak Convergence

Looking at the first term, we have using Hölder’s inequality, Equation (5.5) and the
Lemmas 4.2, 4.8 that∣∣∣∣∣E

[(∫ t

η(t)
κ(θ − v̂η(s))ds

)
kγ(t, x̂t, v̂t)

]∣∣∣∣∣ ≤ Cf∆t. (6.6)

By an application of the law of total expectation, the Hölder and the Minkowski in-
equalities we have∣∣∣∣∣E

[∫ t

η(t)

√
v̂η(s)dWsk

γ(t, x̂t, v̂t)

]∣∣∣∣∣
=

∣∣∣∣∣E
[∫ t

η(t)

√
v̂η(s)dWs

(
kγ(t, x̂t, v̂t)− kγ(t, x̂η(t), v̂η(t))

)]∣∣∣∣∣
≤ E

∣∣∣∣∣
∫ t

η(t)

√
v̂η(s)dWs

∣∣∣∣∣
2
 1

2

·
(
E
[∣∣kγ(t, x̂t, v̂t)− kγ(t, x̂η(t), v̂t)

∣∣2]1/2
+E

[∣∣kγ(t, x̂η(t), v̂t)− kγ(t, x̂η(t), v̂η(t))
∣∣2]1/2) .

The mean value theorem now gives

kγ(t, x̂t, v̂t)− k(t, x̂η(t), v̂t) =

∫ 1

0
kγx(t, λx̂t + (1− λ)x̂η(t), v̂t)dλ (x̂t − x̂η(t))

and so

E
[∣∣kγ(t, x̂t, v̂t)− k(t, x̂η(t), v̂t)

∣∣2]1/2 ≤ ∫ 1

0
E
[∣∣kγx(t, λx̂t + (1− λ)x̂η(t), v̂t)

∣∣4]1/4 dλ
· E
[∣∣x̂t − x̂η(t)

∣∣4]1/4 .
Equation (5.6) and the Lemmas 4.2, 4.8 imply that

sup
t∈[0,T ]

∫ 1

0
E
[∣∣kγx(t, λx̂t + (1− λ)x̂η(t), v̂t)

∣∣4]1/4 dλ ≤ Cf .

Thus, we have again by Lemma 4.8 that

E
[∣∣kγ(t, x̂t, v̂t)− kγ(t, x̂η(t), v̂t)

∣∣2]1/2 ≤ Cf∆t1/2.

Similarly, we obtain

E
[∣∣kγ(t, x̂η(t), v̂t)− kγ(t, x̂η(t), v̂η(t))

∣∣2]1/2 ≤ Cf∆t1/2
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by Equation (5.7) and the Lemmas 4.2, 4.8. SinceE ∣∣∣∣∣
∫ t

η(t)

√
v̂η(s)dWs

∣∣∣∣∣
2
 1

2

≤ C(∆t)1/2

by Lemma 4.2 and the Itō-isometry, we end up with∣∣∣∣∣E
[∫ t

η(t)

√
v̂η(s)dWsk

γ(t, x̂t, v̂t)

]∣∣∣∣∣ ≤ Cf∆t. (6.7)

Similarly, we obtain∣∣∣∣∣E
[(

−2c⋆σ

∫ t

η(t)
1{zs≤0}

√
v̂η(s)dWs − 2c⋆

∫ t

η(t)
1{zs≤0}κ

(
θ − v̂η(s)

)
ds

)
kγ(t, x̂t, v̂t)

]∣∣∣∣∣
≤ Cf∆t

(6.8)
With the Hölder inequality for some β > 0, we have∣∣∣∣∫ tn+1

tn

E
[(

L0
t (z)− L0

η(t)(z)
)
kγ(t, x̂t, v̂t)

]
dt

∣∣∣∣
≤
∫ tn+1

tn

E
[∣∣∣L0

t (z)− L0
η(t)(z)

∣∣∣1+β
] 1

1+β

E
[
|kγ(t, x̂t, v̂t)|

1+β
β

] β
1+β

dt.

As before, we can show that there exists a constant Cf,β > 0, such that

sup
t∈[0,T ]

E
[
|kγ(t, x̂t, v̂t)|

1+β
β

] β
1+β ≤ Cf,β .

Since

E
[∣∣∣L0

t (Z)− L0
η(t)(Z)

∣∣∣1+β
] 1

1+β

≤ Cβ,δ (∆t)
1

(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

,

again by Proposition 4.6, we obtain that∣∣∣∣∫ tn+1

tn

E
[(

L0
t (Z)− L0

η(t)(Z)
)
kγ(t, x̂t, v̂t)

]
dt

∣∣∣∣
≤ Cf,β,δ∆t (∆t)

1
(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

. (6.9)

Summarizing (6.6), (6.7), (6.8) and (6.9) we have shown that

|e(3,γ)n | ≤ Cf,β,δ∆t

(
∆t+ (∆t)

1
(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

)
, (6.10)

uniformly in γ ∈ (0, 1].
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6. Weak Convergence

6.3.4 The fourth term

Finally, consider

e(4,γ)n =
γ

2

∫ tn+1

tn

E [(Ruγ)(t, x̂t, v̂t)] dt.

Since
sup

t∈[0,T ]
E [(Ruγ)(t, x̂t, v̂t)] ≤ Cf

due to Equation (5.5) and the Lemmas 4.2, 4.8, we have that

1

γ
e(4,γ)n ≤ Cf∆t, (6.11)

uniformly in γ ∈ (0, 1].

6.3.5 The conclusion

Recall that ∆t = T/N . Adding the Estimates (6.4), (6.5),(6.10) and (6.11), we have
derived that

|eγn| ≤ Cf,β,δ (∆t)
1

(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

+ Cf,β∆t

(
∆t

ε

)ν 1−ε
1+β

+ Cf,β,δ∆t

(
∆t+ (∆t)

1
(1+β)2

(
∆t

ε

)ν 1−ε

(1+δ)(1+β)2

)
+ Cfγ∆t.

For any given ϵ ∈ (0, 1/2) we now can find ε ∈ (0, 1/2], β > 0 and δ > 0 such that

1

(1 + β)2
+ ν

1− ε

(1 + δ)(1 + β)2
≥ 1 + ν(1− ϵ)

and
1 + ν

1− ε

1 + β
≥ 1 + ν(1− ϵ).

Consequently, we obtain

|eγn| ≤ Cf,ϵ∆t
(
∆t+ (∆t)ν(1−ϵ)

)
+ Cfγ∆t.

and

N−1∑
n=0

|eγn| ≤ Cfγ + Cf,ϵ

(
∆t+ (∆t)ν(1−ϵ)

)
.
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Since

|E [f(xN , vN )− f(XT , VT )] | ≤ lim sup
γ↘0

N−1∑
n=0

|eγn|

we have that

|E [f(xN , vN )− f(XT , VT )] | ≤ Cf,ϵ

(
∆t+ (∆t)ν(1−ϵ)

)
,

which concludes the proof.

6.4 Weak Convergence Order of a Milstein-Type
Discretization

We can use the techniques of the proof of Theorem 6.3 and the results of Briani et al. [13]
to give new results for the scheme from [5] which was mentioned in the introduction of
this chapter. We assume that the CIR process is discretized by the implicit Milstein
scheme (3.10), i.e.

vk+1 = vk + κ (θ − vk+1) (tk+1 − tk) + σ
√
vk∆kW +

σ2

4

(
(∆kW )2 − (tk+1 − tk)

)
=

1

1 + κ(tk+1 − tk)

((√
vk +

σ

2
∆kW

)2
+

(
κθ − σ2

4

)
(tk+1 − tk)

)
(6.12)

and the price process is discretized by the standard Euler scheme (6.3). As in [5], we
define the time-continuous extension of the implicit Milstein scheme as

v̄t = v̂η(t) +

∫ t

η(t)
κθds+

∫ t

η(t)

(
σ
√

v̂η(t) +
σ2

2

(
Ws −Wη(s)

))
dWs

v̂t =
1

1 + κ(t− η(t))
v̄t.

(6.13)

Before we start, we need some preliminary results for the implicit Milstein scheme.
From [5], we have the following Lemma:

Lemma 6.7. Let ν > 1
2 . The implicit Milstein scheme has bounded moments, it holds

that

E

[
sup

t∈[0,T ]
v̂pt

]
≤ C

for p ≥ 1 and

sup
t∈[0,T ]

E
[
v̂−p
t

]
≤ C

for 0 ≤ p ≤ ν − 1.
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6. Weak Convergence

We also need the following results.

Lemma 6.8. Let p ≥ 1. We have

sup
s,t∈[0,T ]

E

[
|v̂t − v̂s|p

|t− s|p/2

]
< ∞

and

sup
s,t∈[0,T ]

E

[
|x̂t − x̂s|p

|t− s|p/2

]
< ∞.

Proof. The proof of the second statement is analogous to the proof of Lemma 4.8 except
that we now use the results bounded moment result from Lemma 6.7. For the proof of
the first assertion, we rewrite (6.13). For this, we denote additionally n+(t) := min{k ∈
{0, ..., N} : tk ≥ t} and η+(t) := tn+(t). First, we have

v̂t = v̂η(t) +

∫ t

η(t)
κ (θ − v̂t) ds+

∫ t

η(t)

(
σ
√
v̂η(t) +

σ2

2

(
Ws −Wη(s)

))
dWs

and

v̂tk = v̂0 +

∫ tk

0
κ
(
θ − v̂η+(s)

)
ds+

∫ tk

0

(
σ
√
v̂η(s) +

σ2

2

(
Ws −Wη(s)

))
dWs

for all k ∈ {0, ..., N}. Combining both terms, we obtain

v̂t = v̂0 +

∫ η(t)

0
κ
(
θ − v̂η+(s)

)
ds+

∫ t

η(t)
κ (θ − v̂t) ds

+

∫ t

0

(
σ
√

v̂η(s) +
σ2

2

(
Ws −Wη(s)

))
dWs

= v̂0 +

∫ t

0
κθds− κ

∫ t

0

(
v̂η+(s)1{s≤η(t)} + v̂t1{s>η(t)}

)
ds

+

∫ t

0

(
σ
√

v̂η(s) +
σ2

2

(
Ws −Wη(s)

))
dWs

Now, let p ≥ 2. We have

E [|v̂t − v̂s|p] = E
[∣∣∣∣κθ(t− s)− κ

∫ t

s

(
v̂η+(u)1{u≤η(t)} + v̂t1{u>η(t)}

)
du

+ σ

∫ t

s

√
v̂η(u)dWu +

∫ t

s

σ2

2

(
Wu −Wη(u)

)
dWu

∣∣∣∣p]
≤ Cp

(
|t− s|p + |t− s|p−1

∫ t

s
E
[∣∣v̂η+(u)1{u≤η(t)} + v̂t1{u>η(t)}

∣∣p] du
+E

[∣∣∣∣∫ t

s
v̂η(u)du

∣∣∣∣p/2
]
+ E

[∣∣∣∣∫ t

s

(
Wu −Wη(u)

)2
du

∣∣∣∣p/2
])

≤ Cp

(
|t− s|p + |t− s|p/2

)
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where we used Lemma 6.7 and Hölder’s inequality again. The case p ∈ [1, 2) can be
treated by using the Lyapunov inequality.

By assuming the same regularity for f as in Theorem 6.3, we can prove a weak con-
vergence order of one for the whole parameter range where the Milstein scheme is well-
defined.

Proposition 6.9. Let f ∈ C6
pol(R× [0,∞);R), ν > 1

2 and let (vk, xk)k∈{0,...,N} be given
by Equations (6.12) and (6.3). Furthermore, we set ∆t = T

N . Then, we have

lim sup
N→∞

N |E [f(xN , vN )]− E [f(XT , VT )]| < ∞.

Proof. We only need to make some slight changes to the proof from [5] but we present
them for completeness. As before, the weak error is a telescoping sum of local errors:

|E [f(xN , vN )]− E [f(XT , VT )]| =

∣∣∣∣∣
N−1∑
n=0

E [u(tn+1, xn+1, vn+1)− u(tn, xn, vn)]

∣∣∣∣∣ .
Note that vk for all k ∈ {0, ..., N}, is strictly positive since ν > 1

2 . From [5], we have

en := E [u(tn+1, xn+1, vn+1)− u(t, xn, vn)]

= e(1)n + e(2)n + e(3)n

with

e(1)n :=

∫ tn+1

tn

(t− η(t))E
[

κ2

1 + κ(t− η(t))
(v̂t − θ)uv(t, x̂t, v̂t)

+
κ

2
(θ − v̂t) (ux(t, x̂t, v̂t)− uxx(t, x̂t, v̂t))−

ρσκθ

1 + κ(t− η(t))
uxv(t, x̂t, v̂t)

− σ2

2(1 + κ(t− η(t)))

(
κv̂t +

4κθ − σ2

4(1 + κ(t− η(t)))

)
uvv(t, x̂t, v̂t)

]
dt

e(2)n :=

∫ tn+1

tn

E
[√

v̂η(t)
(
Wt −Wη(t)

) (σ
2
ux(t, x̂t, v̂t)−

σ

2
uxx(t, x̂t, v̂t)

)]
+ E

[√
v̂η(t)

(
Wt −Wη(t)

)(
− ρσ2

2(1 + κ(t− η(t)))
uxv(t, x̂t, v̂t)

)]
dt

e(3)n :=

∫ tn+1

tn

E
[((

Wt −Wη(t)

)2 − (t− η(t))
)(σ2

8
(ux(t, x̂t, v̂t)− uxx(t, x̂t, v̂t))

)]
+ E

[((
Wt −Wη(t)

)2 − (t− η(t))
)

·
(
− σ3ρ

4(1 + κ(t− η(t)))
uxv(t, x̂t, v̂t)

)]
dt.
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6. Weak Convergence

From Proposition 5.3, we know that for f ∈ C6
pol there exist Cf > 0 and a > 0 such that

sup
t∈[0,T )

|∂l
x∂

m
v u(t, x, v)| ≤ Cf (1 + |x|a + |v|a), x ∈ R, v > 0,

if l + 2m ≤ 6. Now with Lemma 6.7, Lemma 6.8 and the Hölder inequality, we obtain∣∣∣e(1)n

∣∣∣ ≤ Cf

∫ tn+1

tn

(t− η(t))E [(1 + v̂t) (1 + |x̂t|a + |v̂t|a)] dt

≤ Cf (∆t)2 .

By the same arguments, we have that∣∣∣e(3)n

∣∣∣ ≤ Cf (∆t)2 .

For the second term, we first set

k(t, x̂t, v̂t) :=
σ

2
ux(t, x̂t, v̂t)−

σ

2
uxx(t, x̂t, v̂t)−

ρσ2

2(1 + κ(t− η(t)))
uxv(t, x̂t, v̂t).

By an application of the law of total expectation, we get

e(2)n =

∫ tn+1

tn

E
[√

v̂η(t)
(
Wt −Wη(t)

)
k(t, x̂t, v̂t)

]
dt

=

∫ tn+1

tn

E
[√

v̂η(t)
(
Wt −Wη(t)

) (
k(t, x̂t, v̂t)− k(t, x̂η(t), v̂η(t))

)]
dt.

And again, by Hölder’s and Minkowski’s inequality

E
[√

v̂η(t)
(
Wt −Wη(t)

) (
k(t, x̂t, v̂t)− k(t, x̂η(t), v̂η(t))

)]
≤ E

[∣∣∣√v̂η(t)
(
Wt −Wη(t)

)∣∣∣2]1/2
·
(
E
[∣∣k(t, x̂t, v̂t)− k(t, x̂η(t), v̂t)

∣∣2]1/2 + E
[∣∣k(t, x̂η(t), v̂t)− k(t, x̂η(t), v̂η(t))

∣∣2]1/2) .

As in the proof of Theorem 6.3 the mean value theorem together with Lemma 6.7 and
Lemma 6.8 gives

E
[∣∣k(t, x̂t, v̂t)− k(t, x̂η(t), v̂t)

∣∣2]1/2 + E
[∣∣k(t, x̂η(t), v̂t)− k(t, x̂η(t), v̂η(t))

∣∣2]1/2
≤ Cf (∆t)1/2

and therefore,

E
[√

v̂η(t)
(
Wt −Wη(t)

) (
k(t, x̂t, v̂t)− k(t, x̂η(t), v̂η(t))

)]
≤ Cf∆t
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by Lemma 6.7 as well as ∣∣∣e(2)n

∣∣∣ ≤ Cf (∆t)2 .

Summarizing, we have

|en| ≤ Cf (∆t)2

and

|E [f(xN , vN )]− E [f(XT , VT )]| =

∣∣∣∣∣
N−1∑
n=0

en

∣∣∣∣∣ ≤ Cf∆t

and the proof is done.

6.5 An Overview of Weak Convergence Results

Since we presented many different time-discrete schemes for the log-Heston model, Table
6.1 gives an overview of weak convergence rates that were proven so far. We do not claim
this table to be complete. However, we can observe a well-known characteristic of weak
convergence proofs that involve the CIR process: The trade-off between the regularity
of the function f and the restrictions that we impose on the Feller index. Parameter
restrictions for the CIR process are usually necessary due to the need of finite negative
moments (recall Proposition 2.2). In Chapter 9, we will perform numerical simulations
with the schemes that were analyzed in this thesis.

Scheme Regularity Parameter range Order From
Exact + Euler f ∈ C2+ε

c ν > 3
2

1 [54]
Exact + Euler f ∈ C4+ε

c ν > 0 1 [54]
Exact + Semi-Trap. f ∈ C2+ε

c ν > 3
2

1 [54]
Exact + Semi-Trap. f ∈ C4+ε

c ν > 0 1 [54]
Exact + Trap. f polynomial ν > 0 2 [74]
SE + Euler f ∈ C6

pol ν > 0 min{1, ν − ε} This thesis
AE + Euler f ∈ C6

pol ν > 0 min{1, ν − ε} This thesis
Impl. Milst. + Euler f measurable, bounded ν > 9

2
1 [3]

Impl. Milst. + Euler f ∈ C2+ε
c ν > 2 1 [5]

Impl. Milst. + Euler f ∈ C6
pol ν > 1

2
1 This thesis

Table 6.1: Overview of weak convergence rates
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Chapter 7

L1-Approximation of the
Log-Heston SDE: Upper Bounds

We are now turning to the analysis of the strong convergence of numerical schemes for
the Heston model. In particular, we study the L1-convergence of the explicit Euler
schemes from Table 3.1. Explicit Euler schemes for the CIR process and for the full
Heston model are popular among practitioners because they are easy to implement and
computationally cheap. However, results involving a (polynomial) strong convergence
rate for these Euler schemes are rare and usually come along with a strong restriction
on the Feller index.
Recall the general framework for explicit Euler schemes for the CIR process

v̄k+1 = f1(v̄k) + κ (θ − f2(v̄k)) (tk+1 − tk) + σ
√

f3(v̄k)
(
Wtk+1

−Wtk

)
vk+1 = f3(v̄k+1)

(7.1)

where we can choose the fi as

f1 = id, f2 ∈ {id, abs, sym}, f3 ∈ {abs, sym} (7.2)

or

f1 = f2 = f3 ∈ {abs, sym}. (7.3)

For the first case, we have the following time-continuous extension from Section 4.1

v̄t = v̄η(t) +

∫ t

η(t)
κ(θ − f2(v̄η(s)))ds+ σ

∫ t

η(t)

√
f3(v̄η(s))dWs,

v̂t = f3 (v̄t) ,

t ∈ [0, T ]. (7.4)
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For the second case, the time continuous extensions for the SE and the AE are

v̂⋆t = v̂⋆η(t) +

∫ t

η(t)
κ
(
θ − v̂⋆η(s)

)
ds+ σ

∫ t

η(t)

√
v̂⋆η(s)dWs

− 2c⋆σ

∫ t

η(t)
1{z⋆s≤0}

√
v̂⋆η(s)dWs − 2c⋆

∫ t

η(t)
1{z⋆s≤0}κ

(
θ − v̂⋆η(s)

)
ds

+ c⋆
(
L0
t (z

⋆)− L0
η(t)(z

⋆)
)
, t ∈ [0, T ],

(7.5)

with csym = 1 and cabs = 1
2 . This was shown in Section 4.2. The time-continuous

extension of the Euler scheme (3.9) of the log-price process is given by

x̂t = x̂η(t) +

(
r − 1

2
v̂η(t)

)
(t− η(t)) + ρ

√
v̂η(t)

(
Wt −Wη(t)

)
+
√
1− ρ2

√
v̂η(t)

(
Bt −Bη(t)

)
.

(7.6)

Furthermore, we also analyze the strong convergence of the implicit Milstein scheme
for the CIR process. We recall the time-continuous extension of the implicit Milstein
scheme which is

v̂t = v̂η(t) +

∫ t

η(t)
κ (θ − v̂t) ds+

∫ t

η(t)

(
σ
√

v̂η(t) +
σ2

2

(
Ws −Wη(s)

))
dWs

=
1

1 + κ(t− η(t))

(
v̂η(t) +

∫ t

η(t)
κθds+

∫ t

η(t)

(
σ
√

v̂η(t) +
σ2

2

(
Ws −Wη(s)

))
dWs

)
.

(7.7)
This chapter is now organized as follows: First, we summarize existing strong approx-
imation results for the CIR process and the log-Heston model. Then, we present some
preliminary results which are needed for our proofs. In the third part, we then prove
upper bounds for the L1-approximation of the CIR process by explicit Euler methods
and by the implicit Milstein method. Afterwards, we combine these schemes with the
explicit Euler scheme for the price process and prove upper bounds for the L1-error of
the full Heston model. Finally, we summarize our results.
In our proofs, we assume an equidistant discretization grid with ∆t = T

N .

7.1 Previous Results

The strong approximation of the CIR process has been intensively studied in the last
years. The first works on this topic are [1, 23, 37], which prove strong convergence
(without a polynomial rate) of various explicit and implicit schemes using the Yamada-
Watanabe approach.
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

7.1.1 Drift-implicit Euler

One of the schemes of [1] is the drift-implicit Euler scheme which we presented in Section
3.3.3 in Equation (3.13). It is positivity preserving for ν ≥ 1

2 . This scheme turned out
to be accessible to a more detailed error analysis, see [2,24,43,62]. In [2], the following
time-continuous extension of (3.13) for t ∈ [tk, tk+1] was analyzed:

ẑt =
zk +

σ
2 (Wt −Wtk)

2 + κ (t− tk)
+

√√√√(zk + σ
2 (Wt −Wtk)

)2
(2 + κ (t− tk))

2 +

(
κθ − σ2

4

)
(t− tk)

2 + κ (t− tk)

v̂t = ẑ2t .

(7.8)

For ν > 2 and 1 ≤ p < 2
3ν, it was then proven that

E

[
sup

t∈[0,T ]
|Vt − v̂t|p

]1/p
≤ C∆t.

Another possibility is to look at the linear interpolation between yk and yk+1 which is

ẑt =
tk+1 − t

∆t
zk +

t− tk
∆t

zk+1

v̂t = ẑ2t .
(7.9)

In [24], the authors show

E

[
sup

t∈[0,T ]
|Vt − v̂t|p

]1/p
≤ Cp

√
|log (∆t)|

√
∆t

for ν > 1 and 1 ≤ p < ν. For the same scheme, we also have

E

[
sup

t∈[0,T ]
|Vt − v̂t|p

]1/p
≤ Cp (∆t)

min{ν,1}− 1
2

p
−ϵ

from [43] for ν > 1
2 and p ≥ 1.

7.1.2 (Truncated) Milstein

A breakthrough for the (very challenging) case ν ≤ 1 was provided by [32] and [31]. For
the truncated Milstein scheme (3.11) from Section 3.3.2 we have

sup
t∈[0,T ]

E [|Vt − v̂t|p]1/p ≤ Cp (∆t)
min{ 1

2 ,ν}
p

−ϵ
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for p ≥ 1 from [32]. Here, the continuous-time extension v̂ is a constant interpolation,
i.e.

v̂t = v̂tk t ∈ [tk, tk+1).

In particular, the truncated Milstein scheme attains L1-convergence order min{1
2 , ν}− ϵ

for the whole parameter range. For the implicit Milstein scheme (3.10) from Section
3.3.2, we can find strong convergence results in [62]. For the linear interpolated scheme
similar as in (7.9), we have

E

[
sup

t∈[0,T ]
|Vt − v̂t|2

]1/2
≤ C

√
|log(∆t)|

√
∆t

for ν > 3. Furthermore,

sup
k∈{0,...,N}

E [|Vtk − v̂tk |] ≤ C∆t,

again for ν > 3.

7.1.3 Explicit Euler schemes

In contrast to this, convergence rate results for explicit Euler schemes have been rare.
In [9], the authors proved

E

[
sup

t∈[0,T ]
|Vt − v̂t|2p

] 1
2p

≤ Cp

√
∆t

for the Symmetrized Euler (SE) (7.5) under the (strong) restriction

σ2

8
(ν − 1)2 > κ(4p− 1) ∨ (2σ(2p− 1))2 .

For FTE, which is (7.4) with f2 = f3 = abs, the Lp-convergence order 1
2 for 2 ≤ p < ν−1

and ν > 3 is shown in [21], i.e.

sup
t∈[0,T ]

E [|Vt − v̂t|p]1/p ≤ Cp

√
∆t.

Further contributions on the strong approximation of the CIR process can be found
in [11,17,30].

7.1.4 Full Heston model

We are not aware of any results concerning the strong approximation of the log-Heston
model except [4,51]. In [4] the drift-implicit Euler (3.13) for the CIR process is combined
with the Euler discretization (3.9) of the log-Heston process and it is proven that

E [|XT − xN |p]1/p ≤ Cp

√
∆t

for p < 4
3ν and ν > 2. The article [51] uses a drift implicit Milstein discretization of the

CIR process instead and obtains L2-convergence for ν > 1 without a rate.
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

7.2 Preliminaries

In this section, we present some preliminary results that are needed for our main theo-
rems in this chapter. The following lemma gives us a bound for the expected local time
in zero of a semimartingale. This is Lemma 5.1 from [22].

Lemma 7.1. For any δ ∈ (0, 1) and any real-valued, continuous semimartingale Y =
(Yt)t∈[0,T ], we have

E
[
L0
t (Y )

]
≤ 4δ − 2E

[∫ t

0

(
1{Ys∈(0,δ)} + 1{Ys>δ}e

1−Ys
δ

)
dYs

]
+

1

δ
E
[∫ t

0
1{Ys>δ}e

1−Ys
δ d⟨Y ⟩s

]
, t ∈ [0, T ].

The following inequality will be helpful for all proofs in this chapter.

Lemma 7.2. For λ ∈ [0, 1] and x, y ≥ 0, we have

∣∣√x−√
y
∣∣ ≤ x−

1
2
(1−λ) |x− y|1−

λ
2 .

Proof. For the case x = 0 and/or y = 0, the inequality holds trivially. By using the
binomial expansion, the assertion follows from standard calculations.

∣∣√x−√
y
∣∣ = ∣∣√x−√

y
∣∣λ ∣∣√x−√

y
∣∣1−λ

=
∣∣√x−√

y
∣∣λ |x− y|1−λ

(
√
x+

√
y)1−λ

≤
(√

|x− y|
)λ |x− y|1−λ

(
√
x+

√
y)1−λ

=
|x− y|1−

λ
2

(
√
x+

√
y)1−λ

≤ |x− y|1−λ

x
1
2
(1−λ)

.

We also need Doob’s maximal inequality, see e.g. Theorem 3.8 in Chapter I of [49].

Proposition 7.3. Let M = (Mt)t∈[0,T ] be a continuous martingale and p > 1. Then, it
holds that

E

[
sup

u∈[0,t]
|Mu|p

]
≤
(

p

p− 1

)p

E [|Mt|p] , t ∈ [0, T ].
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7.3 L1-approximation of the CIR process

7.3.1 Euler schemes - Case I

We first look at the discretization from (7.4) under the condition ν > 1.

Theorem 7.4. Let (v̂t)t∈[0,T ] be given by (7.4) and ν > 1. Then, for all ε > 0 there
exists a constant Cε > 0 such that

sup
t∈[0,T ]

E [|Vt − v̂t|] ≤ Cε (∆t)
1
2
−ε .

Proof. Define e = (et)t∈[0,T ] by et = Vt − v̄t.
(i) The Tanaka-Meyer formula, see e.g. equation 7.9 in Chapter III in [49], yields

E [|et|] = E
[∫ t

0
sign(eu)deu

]
+ E

[
L0
t (e)

]
= E

[∫ t

0
sign(eu)

(
−κ
(
Vu − f2(v̄η(u))

))
du

]
+ E

[∫ t

0
sign(eu)σ

(√
Vu −

√
f3(v̄η(u))

)
dWu

]
+ E

[
L0
t (e)

]
.

We have

E
[∫ t

0
sign(eu)σ

(√
Vu −

√
f3(v̄η(u))

)
dWu

]
= 0

due to Proposition 2.2, Lemma 4.1 and the martingale property of the Itō integral.
Looking at the first term, we have

E
[∫ t

0
sign(eu)

(
−κ
(
Vu − f2(v̄η(u))

))
du

]
= −κE

[∫ t

0
sign(eu) (Vu − f2(v̄u)) du

]
− κE

[∫ t

0
sign(eu)

(
f2(v̄u)− f2(v̄η(u))

)
du

]
≤ κ

∫ t

0
E [|eu|] du+ κ

∫ t

0
E
[
|v̄u − v̄η(u)|

]
du

≤ C(∆t)
1
2 + κ

∫ t

0
E [|eu|] du

due to Lemma 4.1 and |x− f2(y)| ≤ |x− y| for x ≥ 0, y ∈ R as well as |f2(x)− f2(y)| ≤
|x− y| for x, y ∈ R. Therefore, we obtain

sup
u∈[0,t]

E [|eu|] ≤ C(∆t)
1
2 + κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du+ E

[
L0
t (e)

]
. (7.10)
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

(ii) With Lemma 7.1 we can derive a bound for the expected local time in 0 of e. Let
δ ∈ (0, 1), then

E
[
L0
t (e)

]
≤ 4δ − 2E

[∫ t

0

(
1{es∈(0,δ)} + 1{es>δ}e

1− es
δ

)
des

]
+

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
.

(7.11)

We define Ys := 1{es∈(0,δ)} + 1{es>δ}e
1− es

δ and look at the second term of (7.11), i.e. at

E
[∫ t

0
Ysdes

]
= −κE

[∫ t

0
Ys
(
Vs − f2(v̄η(s))

)
ds

]

where we already used the martingale property of the Itō integral. Since 0 ≤ Ys ≤ 1,
we obtain proceeding as above that

∣∣∣∣E [∫ t

0
Ysdes

]∣∣∣∣ ≤ κ

∫ t

0
E
[
|Vs − v̄η(s)|

]
ds

≤ C(∆t)
1
2 + κ

∫ t

0
E [|eu|] du.

(7.12)

The third term of (7.11) can be bounded as follows with Lemma 7.2 (using λ = 0) and
the properties of f3:

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
=

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ σ2

(√
Vs −

√
f3(v̄η(s))

)2
ds

]
≤ 1

δ
E

[∫ t

0
1{es>δ}e

1− es
δ σ2

∣∣Vs − f3(v̄η(s))
∣∣2

Vs
ds

]

≤ 1

δ
E

[∫ t

0
1{es>δ}e

1− es
δ σ2

∣∣Vs − v̄η(s)
∣∣2

Vs
ds

]
.

With Lemma 4.1, Proposition 2.2, the Minkowski inequality and Hölder’s inequality it
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follows

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
≤C

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

|Vs − v̄s|2

Vs
ds

]

+
C

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

∣∣v̄s − v̄η(s)
∣∣2

Vs
ds

]

≤C

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

|es|2

Vs
ds

]

+ C
∆t

δ

∫ t

0

(
E

[
1

V
(1+ν)/2
s

]) 2
1+ν

ds

≤C

δ
E

[∫ t

0
1{es>δ}e

1− es
δ
|es|2

Vs
ds

]

+ C

(
∆t

δ

)
.

(7.13)

Now let α ∈ (0, 1). Since
sup

s∈[0,T ]
E [|es|p] ≤ Cp

for all p ≥ 1 due to Proposition 2.2 and Lemma 4.1, we have that

1

δ
E

[∫ t

0
1{es>δ}e

1− es
δ
|es|2

Vs
ds

]

=
1

δ
E

[∫ t

0
1{es∈(δ,δα)}e

1− es
δ
|es|2

Vs
ds

]
+

1

δ
E

[∫ t

0
1{es≥δα}e

1− es
δ
|es|2

Vs
ds

]

≤ δ2α−1

∫ t

0
E
[
1

Vs

]
ds+ C

e−δα−1

δ

∫ t

0

(
E

[
1

V
(1+ν)/2
s

]) 2
1+ν

ds

≤ Cαδ
2α−1

(7.14)

by another application of Hölder’s inequality and lim supδ→0
e−δα−1

δ2α
= 0.

Summarizing (7.11) – (7.14) we have shown that

E
[
L0
t (e)

]
≤ 4δ + C(∆t)

1
2 + κ

∫ t

0
E [|eu|] du+ Cαδ

2α−1 + C
∆t

δ
.

(iii) Setting δ = (∆t)1/2 gives

E
[
L0
t (e)

]
≤ κ

∫ t

0
E [|eu|] du+ Cα(∆t)α−1/2

≤ κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du+ Cα(∆t)α−1/2.
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

Combining this with (7.10) yields

sup
u∈[0,t]

E [|eu|] ≤ Cα(∆t)α−1/2 + 2κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du

and choosing α = 1− ε and an application of Gronwall’s lemma gives

sup
t∈[0,T ]

E [|Vt − v̄t|] ≤ Cε (∆t)
1
2
−ε . (7.15)

The assertion now follows since |x− f3(y)| ≤ |x− y| for x ≥ 0, y ∈ R.

Now we study again the discretization from (7.4) but under the condition ν ≤ 1.

Proposition 7.5. Let (v̂t)t∈[0,T ] be given by (7.4) and ν ≤ 1. Then, for all ε > 0 there
exists a constant Cε > 0 such that

sup
t∈[0,T ]

E [|Vt − v̂t|] ≤ Cε (∆t)
ν
2
−ε .

Proof. Define again e = (et)t∈[0,T ] by et = Vt − v̄t.
(i) Proceeding as in the proof of Theorem 7.4 we obtain

sup
u∈[0,t]

E [|eu|] ≤ C(∆t)
1
2 + κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du+ E

[
L0
t (e)

]
(7.16)

and

E
[
L0
t (e)

]
≤ 4δ + C(∆t)

1
2 + κ

∫ t

0
E [|eu|] du+

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
(7.17)

with

⟨e⟩t = σ2

∫ t

0

(√
Vs −

√
f3(v̄η(s))

)2
ds.

(ii) For the remaining term in (7.17) we apply Lemma 7.2 with λ = 1 − ν(1 − ζ) for
ζ ∈ (0, 1) and Proposition 2.2, Lemma 4.1, Hölder’s and Minkowski’s inequality to
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obtain
1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
≤

Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

|Vs − v̄s|1+ν(1−ζ)

Vs
ν(1−ζ)

ds

]

+
Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

∣∣v̄s − v̄η(s)
∣∣1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

≤
Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

+ Cζ
(∆t)(1+ν(1−ζ))/2

δ

∫ t

0

(
E

[
1

V
ν(1−ζ2)
s

]) 1
1+ζ

ds

≤
Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ
|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

+ Cζ

(
(∆t)(1+ν(1−ζ))/2

δ

)
.

Now let again α ∈ (0, 1). Since

sup
s∈[0,T ]

E [|es|p] ≤ Cp

for all p ≥ 1 due to Proposition 2.2 and Lemma 4.1, we have that

1

δ
E

[∫ t

0
1{es>δ}e

1− es
δ
|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

=
1

δ
E

[∫ t

0
1{es∈(δ,δα)}e

1− es
δ
|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

+
1

δ
E

[∫ t

0
1{es≥δα}e

1− es
δ
|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

≤ δ(1+ν(1−ζ))α−1

∫ t

0
E

[
1

V
ν(1−ζ)
s

]
ds

+ C
e−δα−1

δ

∫ t

0

(
E

[
1

V
ν(1−ζ2)
s

]) 1
1+ζ

ds

≤ Cζ,αδ
(1+ν(1−ζ))α−1

by another application of Hölder’s inequality and Proposition 2.2 as well as
lim supδ→0

e−δα−1

δ2α
= 0.
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

Summarizing the previous steps we have shown that

E
[
L0
t (e)

]
≤ 4δ + Cζ

(∆t)(1+ν(1−ζ))/2

δ
+ Cζ,αδ

(1+ν(1−ζ))α−1

+ κ

∫ t

0
E [|eu|] du+ C(∆t)1/2.

Setting δ = (∆t)1/2 and α = 1− ζ gives

E
[
L0
t (e)

]
≤ κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du+ Cζ (∆t)ν(1−ζ)/2 + Cζ(∆t)(ν(1−ζ)2−ζ)/2.

Combining this with (7.16) yields

sup
u∈[0,t]

E [|eu|] ≤ Cζ(∆t)(ν(1−ζ)2−ζ)/2 + 2κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du.

Now, choosing ζ sufficiently small and an application of Gronwall’s lemma gives

sup
t∈[0,T ]

E [|Vt − v̄t|] ≤ Cε (∆t)
ν
2
−ε (7.18)

and the assertion follows since |x− f3(y)| ≤ |x− y| for x ≥ 0, y ∈ R.

7.3.2 Euler schemes - Case II

In this section, we analyze both schemes from (7.5) under the condition ν > 1.

Theorem 7.6. Let (v̂t)t∈[0,T ] be given by (7.5) and ν > 1. Then, for all ε > 0 there
exists a constant Cε > 0 such that

sup
t∈[0,T ]

E [|Vt − v̂t|] ≤ Cε (∆t)
1
2
−ε .

Proof. The proof is very similar to the proof of Theorem 7.4. Differences are only due
to the additional terms in the expansion of the schemes and we will give the required
additional steps in the following. For et = Vt − v̂t we have

et =−
∫ t

0
κ
(
Vs − v̂⋆η(s)

)
ds+ σ

∫ t

0

(√
Vs −

√
v̂⋆η(s)

)
dWs

+ 2c⋆σ

∫ t

0
1{z⋆s≤0}

√
v̂⋆η(s)dWs + 2c⋆

∫ t

0
1{z⋆s≤0}κ

(
θ − v̂⋆η(s)

)
ds

− c⋆L0
t (z

⋆).
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(i) The Tanaka-Meyer formula yields

E [|et|] = E
[∫ t

0
sign(eu)deu

]
+ E

[
L0
t (e)

]
= −κE

[∫ t

0
sign(eu)(Vu − v̂⋆η(u))du

]
+ E

[
σ

∫ t

0
sign(eu)

(√
Vu −

√
v̂⋆η(u))

)
dWu

]
+ E

[
L0
t (e)

]
+ E

[
2c⋆σ

∫ t

0
sign(eu)1{z⋆u≤0}

√
v̂⋆η(u)dWu

]
+ E

[
2c⋆
∫ t

0
sign(eu)1{z⋆u≤0}κ

(
θ − v̂⋆η(u)

)
du− c⋆

∫ t

0
sign(eu)dL

0
u(z

⋆)

]
.

However, Lemma 4.2 and the martingale property of stochastic integrals imply

E
[
2c⋆σ

∫ t

0
sign(eu)1{z⋆u≤0}

√
v̂⋆η(u)dWu

]
= 0

and Lemma 4.7 gives∣∣∣∣E [∫ t

0
sign(eu)

(
1{z⋆u≤0}2κ(θ − v̂⋆η(u))du− dL0

u(z
⋆)
)]∣∣∣∣ ≤ Cε (∆t)ν

1−ε
1+ε

by choosing β = ε. Thus, we have

sup
u∈[0,t]

E [|eu|] ≤ C(∆t)
1
2 + κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du+ E

[
L0
t (e)

]
(7.19)

as in the first step of the previous proof by choosing ε appropriately (and since ν > 1).
(ii) In the same way Lemma 4.7 and Lemma 4.2 also yield∣∣∣∣E [∫ t

0
Ysdes

]∣∣∣∣ ≤ C(∆t)
1
2 + κ

∫ t

0
E [|eu|] du.

Finally, we have

⟨e⟩t = σ2

∫ t

0

(√
Vs −

√
v̂⋆η(s) + 2c⋆1{z⋆s≤0}

√
v̂⋆η(s)

)2
ds.

But again Lemma 4.7 with β = ε gives that

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
≤2

δ
E
[∫ t

0
1{es>δ}e

1− es
δ

(√
V s −

√
v̂η(s)

)2]
ds

+ Cε
(∆t)ν

1−ε
1+ε

δ
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

and proceeding as in the previous proof we obtain that

E
[
L0
t (e)

]
≤ 4δ + C(∆t)

1
2 + κ

∫ t

0
E [|eu|] du+ Cαδ

2α−1

+ Cε
(∆t)ν

1−ε
1+ε

δ
.

(iii) Setting δ = (∆t)1/2 and using ν > 1 now yields

E
[
L0
t (e)

]
≤ κ

∫ t

0
E [|eu|] du+ Cα(∆t)α−1/2 + Cε(∆t)

1−ε
1+ε

−1/2.

Combining this with (7.19) yields

sup
u∈[0,t]

E [|eu|] ≤ Cα(∆t)α−1/2 + Cε(∆t)
1−ε
1+ε

−1/2 + 2κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du.

Choosing α = 1− ε and observing that 1
2 − ε ≥ 1−ε

1+ε −
1
2 for all ε ∈ (0, 1) an application

of Gronwall’s lemma give then

sup
u∈[0,T ]

E [|eu|] ≤ Cε(∆t)
1−ε
1+ε

−1/2

and the assertion follows by choosing ε appropriately.

Remark 7.7. We are not able to establish the analogous result to Proposition 7.5 for
Case II of the Euler schemes (7.5), since we have in that case

1

δ
⟨e⟩t =

σ2

δ

∫ t

0

(√
Vs −

√
v̂⋆η(s) + 2c⋆1{z⋆s≤0}

√
v̂⋆η(s)

)2
ds

instead of
1

δ
⟨e⟩t =

σ2

δ

∫ t

0

(√
Vs −

√
f3(v̄η(s))

)2
ds.

The additional term gives a contribution of order 1
δ∆tν

1−ε
1+ε , which will lead to a worse

error bound than the one given in Proposition 7.5.

7.3.3 The Implicit Milstein scheme

Proposition 7.8. Let (v̂t)t∈[0,T ] be given by (7.7) and ν > 1. Then, for all ε > 0 there
exists a constant Cε > 0 such that

sup
t∈[0,T ]

E [|Vt − v̂t|] ≤ Cε (∆t)
1
2
−ε .
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Proof. (i) Again, we denote n+(t) := min{k ∈ {0, ..., N} : tk > t} and η+(t) := tn+(t).
We define (et)t∈[0,T ] by et = Vt − v̂t. Then,

etk+1
= etk +

∫ tk+1

tk

−κ
(
Vs − v̂tk+1

)
ds+

∫ tk+1

tk

σ

(√
Vs −

√
v̂tk −

σ2

2
(Ws −Wtk)

)
dWs

= etk +

∫ tk+1

tk

−κ
(
Vs − v̂s + v̂s − v̂tk+1

)
ds+

∫ tk+1

tk

σ
(√

Vs −
√
v̂tk

)
dWs

−
∫ tk+1

tk

σ2

2
(Ws −Wtk)dWs

= etk −
∫ tk+1

tk

κesds+

∫ tk+1

tk

κ
(
v̂tk+1

− v̂s
)
ds+

∫ tk+1

tk

σ
(√

Vs −
√

v̂tk

)
dWs

−
∫ tk+1

tk

σ2

2
(Ws −Wtk)dWs

for every k ∈ {0, ..., N − 1}. Summing over k, we get

etk =−
∫ tk

0
κesds+

∫ tk

0
κ
(
v̂η+(s) − v̂s

)
ds+

∫ tk

0
σ
(√

Vs −
√
v̂η(s)

)
dWs

−
∫ tk

0

σ2

2

(
Ws −Wη(s)

)
dWs.

Analogously, we have

et = etk −
∫ t

tk

κesds+

∫ t

tk

κ (v̂t − v̂s) ds+

∫ t

tk

σ
(√

Vs −
√
v̂tk

)
dWs

−
∫ t

tk

σ2

2
(Ws −Wtk)dWs

for all t ∈ [tk, tk+1]. Combining the two terms yields

et =−
∫ t

0
κesds+

∫ η(t)

0
κ
(
v̂η+(s) − v̂s

)
ds+

∫ t

η(t)
κ (v̂t − v̂s) ds

+

∫ t

0
σ
(√

Vs −
√
v̂η(s)

)
dWs −

∫ t

0

σ2

2

(
Ws −Wη(s)

)
dWs.

(7.20)

Again, the Tanaka-Mayer formula, the Martingale property, Proposition 2.2 and Lemma
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6.7 yield

E [|et|] = E
[∫ t

0
sign(eu)deu

]
+ E

[
L0
t (e)

]
= E

[
−
∫ t

0
sign(es)κesds+

∫ η(t)

0
sign(es)κ

(
v̂η+(s) − v̂s

)
ds

]

+ E

[∫ t

η(t)
sign(es)κ (v̂t − v̂s) ds

]
− E

[∫ t

0

σ2

2

(
Ws −Wη(s)

)
dWs

]
+ E

[
L0
t (e)

]
≤ κ

∫ t

0
E [|es|] ds+ κ

∫ η(t)

0
E
[∣∣v̂η+(s) − v̂s

∣∣] ds+ κ

∫ t

η(t)
E [|v̂t − v̂s|] ds

+ E
[
L0
t (e)

]
.

By Lemma 6.8, we then have

sup
u∈[0,t]

E [|eu|] ≤ C (∆t)1/2 + κ

∫ t

0
sup

v∈[0,s]
E [|ev|] ds+ E

[
L0
t (e)

]
. (7.21)

(ii) Proceeding as in the proof of Theorem 7.4 we obtain

E
[
L0
t (e)

]
≤ 4δ + C(∆t)

1
2 + κ

∫ t

0
E [|eu|] du+

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
(7.22)

with

⟨e⟩t =
∫ t

0

(
σ
(√

Vs −
√
v̂η(s)

)
− σ2

2

(
Ws −Wη(s)

))2

ds.

For the remaining term in (7.22), we obtain

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
≤ C

δ
E
[∫ t

0
1{es>δ}e

1− es
δ σ2

(√
Vs −

√
v̂η(s)

)2
ds

]
+

C

δ
E
[∫ t

0
1{es>δ}e

1− es
δ
σ4

4

(
Ws −Wη(s)

)2
ds

]
.

(7.23)
For the first term in Equation (7.23), we can proceed as before and get with Lemma 6.8
and Proposition 2.2

C

δ
E
[∫ t

0
1{es>δ}e

1− es
δ σ2

(√
Vs −

√
v̂η(s)

)2
ds

]
≤ Cαδ

2α−1 + C

(
∆t

δ

)
for an α ∈ (0, 1) and for ν > 1. For the second term, we obtain

C

δ
E
[∫ t

0
1{es>δ}e

1− es
δ
σ4

4

(
Ws −Wη(s)

)2
ds

]
≤ C

δ
E
[∫ t

0

(
Ws −Wη(s)

)2
ds

]
≤ C

(
∆t

δ

)
.
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Therefore, combining all results as before, we have

E
[
L0
t (e)

]
≤ 4δ + C(∆t)

1
2 + κ

∫ t

0
E [|eu|] du+ Cαδ

2α−1 + C

(
∆t

δ

)
.

(iii) Setting δ = (∆t)1/2 and combining with (7.21), we finally get

sup
u∈[0,t]

E [|eu|] ≤ Cα(∆t)α−1/2 + 2κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du

and the assertion follows by choosing α = 1−ε and an application of Gronwall’s lemma.

Now we study again the discretization from (7.7) but under the condition 1
2 < ν ≤ 1

where still no truncation is needed.

Proposition 7.9. Let (v̂t)t∈[0,T ] be given by (7.7) and 1
2 < ν ≤ 1. Then, for all ε > 0

there exists a constant Cε > 0 such that

sup
t∈[0,T ]

E [|Vt − v̂t|] ≤ Cε (∆t)
ν
2
−ε .

(i) Proceeding as in the proof of Theorem 7.8 we obtain

sup
u∈[0,t]

E [|eu|] ≤ C(∆t)
1
2 + κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du+ E

[
L0
t (e)

]
(7.24)

and

E
[
L0
t (e)

]
≤ 4δ + C(∆t)

1
2 + κ

∫ t

0
E [|eu|] du+

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
(7.25)

with

⟨e⟩t =
∫ t

0

(
σ
(√

Vs −
√
v̂η(s)

)
+

σ2

2

(
Ws −Wη(s)

))2

ds.

(ii) Then, as in the proof of Proposition 7.5 we apply Lemma 7.2 with λ = 1− ν(1− ζ)
for ζ ∈ (0, 1) in the remaining term of (7.25). With Proposition 2.2, Lemma 6.7, Lemma
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

6.8, Hölder’s and Minkowski’s inequality we obtain

1

δ
E
[∫ t

0
1{es>δ}e

1− es
δ d⟨e⟩s

]
≤

Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

|Vs − v̂s|1+ν(1−ζ)

Vs
ν(1−ζ)

ds

]

+
Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

∣∣v̂s − v̂η(s)
∣∣1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]
+ C

(
∆t

δ

)

≤
Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ

|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

+ Cζ
(∆t)(1+ν(1−ζ))/2

δ

∫ t

0

(
E

[
1

V
ν(1−ζ2)
s

]) 1
1+ζ

ds+ C

(
∆t

δ

)

≤
Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ
|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]

+ Cζ

(
(∆t)(1+ν(1−ζ))/2

δ

)
+ C

(
∆t

δ

)
.

Now let α ∈ (0, 1). For the first term, we again have

Cζ

δ
E

[∫ t

0
1{es>δ}e

1− es
δ
|es|1+ν(1−ζ)

V
ν(1−ζ)
s

ds

]
≤ Cζ,αδ

(1+ν(1−ζ))α−1

due to Proposition 2.2, Lemma 6.7 and Lemma 6.8 as in the proof of Proposition 7.5.
Summarizing the previous steps we have shown that

E
[
L0
t (e)

]
≤ 4δ + Cζ

(∆t)(1+ν(1−ζ))/2

δ
+ Cζ,αδ

(1+ν(1−ζ))α−1

+ κ

∫ t

0
E [|eu|] du+ C(∆t)1/2 + C

(
∆t

δ

)
.

Setting δ = (∆t)1/2 and α = 1− ζ gives

E
[
L0
t (e)

]
≤ κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du+ Cζ (∆t)ν(1−ζ)/2 + Cζ(∆t)(ν(1−ζ)2−ζ)/2.

Combining this with (7.24) yields

sup
u∈[0,t]

E [|eu|] ≤ Cζ(∆t)(ν(1−ζ)2−ζ)/2 + 2κ

∫ t

0
sup

v∈[0,u]
E [|ev|] du

and the assertion follows by choosing ζ sufficiently small and an application of Gronwall’s
lemma.
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7.4 L1-Approximation of the Heston Model

In this section, we show in particular that the results from Theorem 7.4, Theorem 7.6,
Theorem 7.8, Proposition 7.5 and Proposition 7.9 carry over to a discretization of the
log-Heston model where the log-price process is additionally discretized with the Euler
scheme.

7.4.1 Euler schemes - Case I

The key ingredient here and also for the second case is the observation that two con-
tinuous martingales M = (Mt)t∈[0,T ] and M̃ = (M̃t)t∈[0,T ], whose quadratic variation
coincides, have equivalent moments. This directly follows from Proposition 1.1.

Theorem 7.10. Let (x̂, v̂) be given by (7.6) and (7.4). Then, for all ϵ > 0 there exists
a constant Cϵ > 0 such that

E

[
sup

t∈[0,T ]
|Xt − x̂t|

]
≤ Cϵ (∆t)

min{1,ν}
2

−ϵ .

Proof. (i) Without loss of generality, we can assume r = 0. We have to analyze

E

[
sup

t∈[0,T ]
|Xt − x̂t|

]
= E

[
sup

t∈[0,T ]

∣∣∣∣12
∫ t

0

(
Vs − v̂η(s)

)
ds+

∫ t

0

(√
Vs −

√
v̂η(s)

)
dUs

∣∣∣∣
]

with

Ut = ρWt +
√
1− ρ2Bt.

Using Estimate (7.15) from Theorem 7.4, Estimate (7.18) from Proposition 7.5 and
Lemma 4.1, we obtain

E

[
sup

t∈[0,T ]
|Xt − x̂t|

]
≤ 1

2

∫ T

0
E [|Vs − v̂s|] ds+

1

2

∫ T

0
E
[∣∣v̂s − v̂η(s)

∣∣] ds+ E

[
sup

t∈[0,T ]
|Mt|

]

≤ Cε (∆t)
min{1,ν}

2
−ε + E

[
sup

t∈[0,T ]
|Mt|

]
(7.26)

where

Mt =

∫ t

0

(√
Vs −

√
v̂η(s)

)
dUs.

(ii) Let

M̃t =

∫ t

0

(√
Vs −

√
v̂η(s)

)
dWs, t ∈ [0, T ].

Clearly, we have
⟨M⟩t = ⟨M̃⟩t, t ∈ [0, T ],
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7. L1-Approximation of the Log-Heston SDE: Upper Bounds

and so Proposition 1.1 yields

E

[
sup

t∈[0,T ]
|Mt|

]
≤ C1/2 E

[
⟨M⟩

1
2
T

]
= C1/2 E

[
⟨M̃⟩

1
2
T

]
≤

C1/2

c1/2
E

[
sup

t∈[0,T ]
|M̃t|

]
.

Now, the Lyapunov inequality and an application of Doob’s maximal inequality, i.e.
Proposition 7.3, give

E

[
sup

t∈[0,T ]
|Mt|

]
≤ C1/2,β

(
E
[
|M̃T |1+β

])1/(1+β)
. (7.27)

for β > 0. Using (7.4) and the SDE for the CIR process, we have

M̃T =
1

σ

(
VT − vT + κ

∫ T

0

(
Vs − f2(vη(s))

)
ds

)
and we obtain

E
[
|M̃T |

]
≤ 1

σ

(
E [|VT − vT |] + κ

∫ T

0
E [|Vs − vs|] ds+ κ

∫ T

0
E
[∣∣vs − vη(s)

∣∣] ds)
≤ Cε (∆t)

min{1,ν}
2

−ε ,
(7.28)

where we used Theorem 7.4, Proposition 7.5, Lemma 4.1 and the properties of f2.
Moreover, for all p ≥ 1 there exists a constant Cp > 0 such that

E
[
|M̃T |p

]
≤ Cp

due to Lemma 4.1 and Proposition 2.2. Thus, a standard application of Hölder’s in-
equality as in the proof of Proposition 4.6, part (ii), yields

E
[
|M̃T |1+β

]
≤ Cβ

(
E
[
|M̃T |

]) 1
1+β

,

which in turn together with (7.27) and (7.28) gives

E

[
sup

t∈[0,T ]
|Mt|

]
≤ Cβ,ε (∆t)

(
min{1,ν}

2
−ε

)
1

(1+β)2 . (7.29)

(iii) The assertion follows now from (7.26) and (7.29) by choosing ε and β sufficiently
small.
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7.4.2 Euler schemes - Case II

The second case can be treated analogously for ν > 1, except at one point. Here the
martingale M̃ is given by

M̃t :=

∫ t

0

(√
Vs −

√
v̂⋆η(s)

)
dWs

=
1

σ

(
Vt − v̂⋆t + κ

∫ t

0

(
Vs − v̂⋆η(s)

)
ds

)
+ 2c⋆

∫ t

0
1{z⋆s≤0}

√
v̂⋆η(s)dWs

+
2c⋆

σ

∫ t

0
1{z⋆s≤0}κ

(
θ − v̂⋆η(s)

)
ds− c⋆

σ
L0
t (z

⋆), t ∈ [0, T ].

However, the additional terms can be treated with the Lyapunov inequality and Lemma
4.7 and are (at least) of order (∆t)

1
2
−ε. Using Theorem 7.6 and Lemma 4.2 instead of

Theorem 7.4 and Lemma 4.1 and proceeding as in Case I we obtain

E
[
|M̃T |

]
≤ Cε(∆)

1
2
−ε.

Therefore, we also have the following result:

Theorem 7.11. Let ν > 1 and (x̂, v̂) be given by (7.6) and (7.5). Then, for all ϵ > 0
there exists a constant Cϵ > 0 such that

E

[
sup

t∈[0,T ]
|Xt − x̂t|

]
≤ Cϵ (∆t)

1
2
−ϵ .

7.4.3 Implicit Milstein and Euler

The Milstein case can be again treated analogously for ν > 1
2 , except at one point. By

rearranging Equation (7.20), the martingale M̃ is given by

M̃t :=

∫ t

0

(√
Vs −

√
v̂η(s)

)
dWs

=
1

σ

(
Vt − v̂t + κ

∫ t

0
(Vs − v̂s)ds− κ

∫ η(t)

0

(
v̂η+(s) − v̂s

)
ds− κ

∫ t

η(t)
(v̂t − v̂s) ds

)

−
∫ t

0

σ

2

(
Ws −Wη(s)

)
dWs.

Therefore, M̃T is given by

M̃T =
1

σ

(
VT − v̂T + κ

∫ T

0
(Vs − v̂s) ds− κ

∫ T

0

(
v̂η+(s) − v̂s

)
ds

)
−
∫ T

0

σ

2

(
Ws −Wη(s)

)
dWs.

76



7. L1-Approximation of the Log-Heston SDE: Upper Bounds

These terms can be treated with Proposition 7.8, Proposition 7.9, Lemma 6.8 and
standard estimations. We can proceed as in Case I and obtain

E
[
|M̃T |

]
≤ Cε(∆)

min{1,ν}
2

−ε.

Therefore, we also have the following result:

Proposition 7.12. Let (x̂, v̂) be given by (7.6) and (7.7). Then, for all ϵ > 0 there
exists a constant Cϵ > 0 such that

E

[
sup

t∈[0,T ]
|Xt − x̂t|

]
≤ Cϵ (∆t)

min{1,ν}
2

−ϵ .

7.5 Summary

Let us briefly summarize our results. We proved an upper bound of the L1-convergence
order of a large class of explicit Euler schemes for the CIR process and for the log-Heston
model under the assumption that the Feller index is larger than 1.

Theorem 7.13. Let ν > 1, ϵ > 0 and (v̂tk , x̂tk)k∈{0,...,N} given by Equations (7.1),
(7.2), (3.9) or by Equations (7.1), (7.3), (3.9). Then we have

lim
N→∞

N1/2−ϵ

(
max

k∈{0,...,N}
E [|Xtk − x̂tk |] + max

k∈{0,...,N}
E [|Vtk − v̂tk |]

)
= 0.

This follows directly from Theorem 7.4, Theorem 7.6, Theorem 7.10 and Theorem 7.11.
Thus, we recover (up to an arbitrarily small ϵ > 0) the standard convergence order of
the Euler scheme for SDEs with globally Lipschitz continuous coefficients. For the Case
ν ≤ 1, we proved an L1-convergence order of ν

2 for the first case of Euler methods.

Proposition 7.14. Let ν ≤ 1, ϵ > 0 and (v̂tk , x̂tk)k∈{0,...,N} given by Equations (7.1),
(7.2), (3.9). Then we have

lim
N→∞

Nν/2−ϵ

(
max

k∈{0,...,N}
E [|Xtk − x̂tk |] + max

k∈{0,...,N}
E [|Vtk − v̂tk |]

)
= 0.

This is due to Proposition 7.5 and Theorem 7.10. However, our numerical simulations
in Chapter 9 indicate that the sharp rate should be min{1

2 , ν}.
For the implicit Milstein scheme in combination with the standard Euler approximation
of the log-price process we could prove an L1-convergence order of min{ν,1}

2 − ϵ which
holds for the whole parameter range where this scheme is positivity preserving.

Proposition 7.15. Let ν > 1
2 , ϵ > 0 and (v̂tk , x̂tk)k∈{0,...,N} given by Equations (3.10)

and (3.9). Then we have

lim
N→∞

N
min{ν,1}

2
−ϵ

(
max

k∈{0,...,N}
E [|Xtk − x̂tk |] + max

k∈{0,...,N}
E [|Vtk − v̂tk |]

)
= 0.
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This follows from Proposition 7.8, Proposition 7.9 and Proposition 7.12.

Remark 7.16. By a standard application of Hölder’s inequality, we could deduce Lp-
convergence orders for p > 1 for all presented schemes. These would be 1

2p − ϵ for the

setting of Theorem 7.13, ν
2p − ϵ for Proposition 7.14 and min{ν,1}

2p − ϵ for Proposition
7.15. However, these bounds are unlikely to be sharp, see e.g. [9], [21], so we do not
spell out these results in detail.

Remark 7.17. The results of Theorem 7.13 and Proposition 7.14 appear in [55]. This
manuscript has been accepted for publication in the Journal of Computational Finance.
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Chapter 8

L1-Approximation of the
Log-Heston SDE: Lower Bounds

In the last chapter, we derived upper bounds for the L1-approximation of the log-Heston
SDE by Euler-type and Implicit Milstein methods. Now we would like to know: Which
order is the best possible when we use an equidistant discretization? This question has
been answered for the CIR process by the works [33] and [34], which yield

lim inf
N→∞

Nmin{ν,1} inf
u∈U(N)

E
[∣∣u(Wt1 ,Wt2 , . . . ,WtN )− VT

∣∣] > 0,

where U(N) is the set of measurable functions u : RN → R and we have tk = k T
N for

k ∈ {0, ..., N}. Recalling the presented results from Section 7.1, the convergence order
of the truncated Milstein scheme for ν ≤ 1

2 and the order of the drift-implicit Euler for
ν > 2 are optimal. However, the optimal approximation of the log-Heston SDE has not
been studied yet up to the best of our knowledge.
In this chapter, we show that for ν > 1 and |ρ| ≠ 1 the convergence orders of the studied
schemes from Chapter 7 are optimal, since arbitrary methods that use an equidistant
discretization of the driving two-dimensional Brownian motion (W,B) can achieve at
most order 1

2 for the L1-approximation at the final time point.

Theorem 8.1. Let ν > 1, |ρ| ̸= 1, tk = k∆t for k ∈ {0, ..., N} with ∆t = T
N , let U(N)

be the set of measurable functions u : R2N → R and

e(N) = inf
u∈U(N)

E
[∣∣u(Wt1 ,Wt2 , . . . ,WtN , Bt1 , Bt2 , . . . , BtN )−XT

∣∣] .
Then we have that

lim inf
N→∞

√
N e(N) ≥ σT

8

√
1− ρ2.

Remark 8.2. A modified version of this result has been accepted for publication in the
proceedings of the 15th International Conference on Monte Carlo and Quasi-Monte Carlo
Methods in Scientific Computing, a standard outlet for complexity results. A preprint
can be found in [53].
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The pioneering work on optimal approximation of stochastic differential equations is [18].
Clark and Cameron studied in particular the optimal L2-approximation of

dXt = VtdBt,

dVt = dWt,
t ∈ [0, 1],

at the final time point by an equidistant discretization of the driving Brownian motion.
Here, the optimal method is given by

E
[
X1

∣∣W 1
N
, ...,W1, B 1

N
, ..., B1

]
and one has (

E
[∣∣∣X1 − E

[
X1

∣∣W 1
N
, ...,W1, B 1

N
, ..., B1

]∣∣∣2])1/2

=
1

2
N−1/2.

Since then, a detailed and exhaustive study for the optimal approximation of general
SDEs under standard assumptions has been carried out for various error criteria. See
e.g. [15, 16,38,39,40,41,57,58,59,63,64,65] and [60] for a survey.
Recently, the analysis of the optimal approximation of SDEs has been extended to the
case of non-standard coefficients. We already mentioned the works [31, 33, 34] which
analyze the optimal approximation of the squared Bessel process respectively of the
CIR process. In [46,61,73] SDEs with arbitrary slow best possible convergence rates are
constructed.

8.1 Proof of Theorem 8.1

We will simplify the analysis of

e(N) = inf
u∈U

E
[∣∣u(Wt1 ,Wt2 , . . . ,WtN , Bt1 , Bt2 , . . . , BtN )−XT

∣∣]
in several steps until we end up with the optimal L1-approximation of

∫ T
0 BtdWt by

arbitrary methods, which use an equidistant discretization of B and have complete
information of W , i.e. with the analysis of the quantity

inf
v∈V

E
[∣∣∣∣v(W,Bt1 , Bt2 , . . . , BtN )−

∫ T

0
BtdWt

∣∣∣∣] ,
where V is the set of measurable functions v : C([0, T ];R)×RN → R. This quantity can
be then analyzed in a final step by a symmetrization argument. The latter is a simplified
version of Lemma 1 in [46] and is a particular case of the radius of information concept
in information based complexity, see [71].
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8.1.1 Allowing complete information on W

Let

GN = σ (Wt1 ,Wt2 , . . . ,WtN , Bt1 , Bt2 , . . . , BtN ) , HN = σ (W,Bt1 , Bt2 , . . . , BtN )

and

ZU = {Z : Ω → R : Z is GN measurable}, ZV = {Z : Ω → R : Z is HN measurable}.

Since
ZU ⊂ ZV

it follows that

inf
Z∈ZU

E
[∣∣Z −XT

∣∣] = inf
u∈U

E
[∣∣u(Wt1 ,Wt2 , . . . ,WtN , Bt1 , Bt2 , . . . , BtN )−XT

∣∣]
≥ inf

Z∈ZV
E
[∣∣Z −XT

∣∣] = inf
v∈V

E
[∣∣v(W,Bt1 , Bt2 , . . . , BtN )−XT

∣∣] ,
where V is as above. Thus, it is sufficient to analyze the quantity

inf
Z∈ZV

E
[∣∣Z −XT

∣∣] = inf
v∈V

E
[∣∣v(W,Bt1 , Bt2 , . . . , BtN )−XT

∣∣] (8.1)

to obtain a lower bound for e(N).

8.1.2 Rewriting XT and removing the measurable part

Now, we rewrite XT . Note that the CIR process V = (Vt)t∈[0,T ] is σ(W )-measurable
and therefore HN -measurable as the unique strong solution of SDE (2.2).

Lemma 8.3. For ν > 1 we have that

XT = YT +
√

1− ρ2
∫ T

0
AtdBt −

σ

2

√
1− ρ2

∫ T

0
BtdWt

where

YT = x+
ρ

σ
(VT − v − κθT ) + µT +

(
ρκ

σ
− 1

2

)∫ T

0
Vudu

+
√

1− ρ2(
√

VTBT −ATBT )

and

At =
4κθ − σ2

8

∫ t

0

1√
Vu

du− κ

2

∫ t

0

√
Vu du, t ∈ [0, T ].

In particular, A = (At)t∈[0,T ] and YT are HN -measurable.
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Proof. Since

VT = v +

∫ T

0
κ(θ − Vu)du+ σ

∫ T

0

√
VudWu

we have that

XT = Y
(1)
T +

√
1− ρ2

∫ T

0

√
VudBu (8.2)

with

Y
(1)
T = x+

ρ

σ
(VT − v − κθT ) + µT +

(
ρκ

σ
− 1

2

)∫ T

0
Vudu.

Since almost all sample paths of V are strictly positive due to ν > 1 we can use Itō’s
lemma to write √

Vt =
√
v +At +

σ

2
Wt, t ∈ [0, T ], (8.3)

where

At =
4κθ − σ2

8

∫ t

0

1√
Vu

du− κ

2

∫ t

0

√
Vu du, t ∈ [0, T ].

So
√
V is a continuous semi-martingale with representation (8.3). Integration by parts

now gives ∫ T

0

√
VudBu =

√
VTBT −

∫ T

0
BtdAt −

σ

2

∫ T

0
BtdWt

and ∫ T

0
BtdAt = ATBT −

∫ T

0
AtdBt,

respectively. This gives∫ T

0

√
VudBu =

√
VTBT −BTAT +

∫ T

0
AtdBt −

σ

2

∫ T

0
BtdWt

and (8.2) yields

XT = Y
(1)
T + Y

(2)
T +

√
1− ρ2

(∫ T

0
AtdBt −

σ

2

∫ T

0
BtdWt

)
with

Y
(2)
T =

√
1− ρ2(

√
VTBT −BTAT ),

which finishes the proof.

As a consequence, we have

inf
Z∈ZV

E
[∣∣Z −XT

∣∣] = inf
Z∈ZV

E
[∣∣∣∣Z − YT −

√
1− ρ2

(∫ T

0
AtdBt −

σ

2

∫ T

0
BtdWt

)∣∣∣∣]
= inf

Z̃∈ZV

E
[∣∣∣∣Z̃ −

√
1− ρ2

(∫ T

0
AtdBt −

σ

2

∫ T

0
BtdWt

)∣∣∣∣]
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and it remains to analyze

inf
v∈V

E
[∣∣∣∣v(W,Bt1 , Bt2 , . . . , BtN )−

∫ T

0
AtdBt +

σ

2

∫ T

0
BtdWt

∣∣∣∣] . (8.4)

8.1.3 Removing the smooth part

Since A = (At)t∈[0,T ] is smooth enough,
∫ T
0 AtdBt does not matter asymptotically for

our approximation problem.

Lemma 8.4. Let ν > 1. Then, there exists a constant C > 0 such that

E

[∣∣∣∣∣
∫ T

0
AtdBt −

N−1∑
i=0

Ati(Bti+1 −Bti)

∣∣∣∣∣
]
≤ C ·N−1.

Proof. We have

At =

∫ t

0
audu

with

au =
4κθ − σ2

8

1√
Vu

− κ

2

√
Vu, u ∈ [0, T ].

Since ν > 1 we have by Lemma 2.2 and Jensen’s inequality that

sup
t∈[0,T ]

E
[
|at|2

]
< ∞, sup

t∈[0,T ]
E
[
|At|2

]
< ∞.

The Itō isometry now gives

E

∣∣∣∣∣
∫ T

0
AtdBt −

N−1∑
i=0

Ati(Bti+1 −Bti)

∣∣∣∣∣
2
 = E

[∣∣∣∣∫ T

0
(At −Aη(t))dBu

∣∣∣∣2
]

=

∫ T

0
E

∣∣∣∣∣
∫ t

η(t)
audu

∣∣∣∣∣
2
 dt.

Moreover, the Cauchy-Schwartz inequality yields

E

∣∣∣∣∣
∫ t

η(t)
audu

∣∣∣∣∣
2
 ≤ T 2 sup

t∈[0,T ]
E
[
|at|2

]
(t− η(t))2 ≤ C · (∆t)2

and so we have

E

∣∣∣∣∣
∫ T

0
AtdBt −

N−1∑
i=0

Ati(Bti+1 −Bti)

∣∣∣∣∣
2
 ≤ C ·N−2.

The assertion follows now from the Lyapunov inequality.
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Since
∑N−1

i=0 Ati(Bti+1 −Bti) is HN -measurable, we obtain that

inf
v∈V

E
[∣∣∣∣v(W,Bt1 , Bt2 , . . . , BtN )−

∫ T

0
AtdBt +

σ

2

∫ T

0
BtdWt

∣∣∣∣]
= inf

ṽ∈V
E
[∣∣∣∣ṽ(W,Bt1 , Bt2 , . . . , BtN ) +

σ

2

∫ T

0
BtdWt −

∫ T

0
(At −Aη(t))dBt

∣∣∣∣]
≥ inf

ṽ∈V
E
[∣∣∣∣ṽ(W,Bt1 , Bt2 , . . . , BtN ) +

σ

2

∫ T

0
BtdWt

∣∣∣∣]− C ·N−1

using that |x| − |y| ≤ |x− y| for all x, y ∈ R. Consequently, we have reduced our initial
problem to the study of

inf
v∈V

E
[∣∣∣∣v(W,Bt1 , Bt2 , . . . , BtN )−

∫ T

0
BtdWt

∣∣∣∣] . (8.5)

8.1.4 Inserting Brownian bridges and symmetrization

For the final step let us denote the piecewise linear interpolation of B on the grid
t0, ..., tN by B, i.e. B is defined as

Bt = Btk +
t− tk

tk+1 − tk
(Btk+1

−Btk), t ∈ [tk, tk+1], k = 0, . . . , N − 1.

Then the process B◦ given by

B◦
t = Bt −Bt, t ∈ [0, T ],

is a Brownian bridge on [tk, tk+1] for k = 0, . . . , N − 1, and moreover the processes

(B◦
t )t∈[t0,t1], (B

◦
t )t∈[t1,t2] , . . . , (B

◦
t )t∈[tN−1,tN ], B, W

are independent. Since∫ T

0
BtdWt =

N−1∑
k=0

Btk

(
Wtk+1

−Wtk

)
+

N−1∑
k=0

Btk+1
−Btk

tk+1 − tk

∫ tk+1

tk

(t− tk)dWt

is HN -measurable, we have that

inf
v∈V

E
[∣∣∣∣v(W,Bt1 , Bt2 , . . . , BtN )−

∫ T

0
BtdWt

∣∣∣∣]
= inf

ṽ∈V
E [|ṽ(W,Bt1 , Bt2 , . . . , BtN )− I(B◦,W )|]

with

I(B◦,W ) =

∫ T

0
BtdWt −

∫ T

0
BtdWt.
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Furthermore B◦ and −B◦ have the same law, so the independence of B◦ from (W,B)
implies that (

W,B,B◦) d
=
(
W,B,−B◦) . (8.6)

Now we will analyze I(B◦,W ) in more detail.

Lemma 8.5.

(i) Let

τℓ,n =
ℓ

2n
T

N
, ℓ = 0, . . . , 2n,

and

In(B◦,W ) =

N−1∑
k=0

2n−1∑
ℓ=0

B◦
tk+τℓ,n

(
Wtk+τℓ+1,n

−Wtk+τℓ,n

)
.

We have that
I(B◦,W ) = lim

n→∞
In(B◦,W )

almost surely and in L2.

(ii) It holds

I(B◦,W )
d
= W1

(∫ T

0
|B◦

t |2dt
)1/2

.

Proof. (i) We have ∫ tk+1

tk

BtdWt −
∫ tk+1

tk

BtdWt = Ik1 − Ik2

with

Ik1 =

∫ tk+1

tk

(Bt −Btk)dWt, Ik2 =
Btk+1

−Btk

tk+1 − tk

∫ tk+1

tk

(t− tk)dWt

and
2n−1∑
ℓ=0

B◦
tk+τℓ,n

(
Wtk+τℓ+1,n

−Wtk+τℓ,n

)
= Ik,n1 − Ik,n2

with

Ik,n1 =

2n−1∑
ℓ=0

(Btk+τℓ,n −Btk)
(
Wtk+τℓ+1,n

−Wtk+τℓ,n

)
,

Ik,n2 =
Btk+1

−Btk

tk+1 − tk

2n−1∑
ℓ=0

τℓ,n
(
Wtk+τℓ+1,n

−Wtk+τℓ,n

)
.

By straightforward calculations using the independence of B and W and the Itō isometry
we have

E
[
|Ik1 − Ik,n1 |2

]
=

1

2

(
T

N

)2

2−n
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and

E
[
|Ik2 − Ik,n2 |2

]
=

1

3

(
T

N

)2

2−2n.

Thus
E
[
|I(B◦,W )− In(B◦,W )|2

]
≤ C2−n,

which yields the L2-convergence, and also implies
∞∑
n=1

E [|I(B◦,W )− In(B◦,W )|] < ∞,

from which the almost sure convergence follows by an application of the Borel-Cantelli
lemma.
(ii) Recall that W is independent of B◦. The conditional law of In(B◦,W ) given

B◦
tk+τℓ,n

= xk,ℓ, ℓ = 0, . . . 2n − 1, k = 0, . . . , N − 1,

is therefore Gaussian with zero mean and variance
∑N−1

k=0

∑2n−1
ℓ=0 |xk,ℓ|2(τℓ+1,n − τℓ,n).

We thus have

In(B◦,W )
d
= W1

(
N−1∑
k=0

2n−1∑
ℓ=0

|B◦
tk+τℓ,n

|2 (τℓ+1,n − τℓ,n)

)1/2

.

Since also ∫ T

0
|B◦

t |2dt = lim
n→∞

N−1∑
k=0

2n−1∑
ℓ=0

|B◦
tk+τℓ,n

|2 (τℓ+1,n − τℓ,n)

almost surely (by continuity of almost all sample paths of B◦), the assertion follows now
from part (i).

The equality of the laws in (8.6) yields that(
W,B, In(B◦,W )

) d
=
(
W,B,−In(B◦,W )

)
and (i) from previous lemma now gives(

W,B, I(B◦,W )
) d
=
(
W,B,−I(B◦,W )

)
.

Consequently, we have

E [|v(W,Bt1 , Bt2 , . . . , BtN )− I(B◦,W )|] = E [|v(W,Bt1 , Bt2 , . . . , BtN ) + I(B◦,W )|]

and so

2E [|I(B◦,W )|]
= E [|(I(B◦,W )− v(W,Bt1 , . . . , BtN )) + (v(W,Bt1 , . . . , BtN ) + I(B◦,W ))|]
≤ 2E [|v(W,Bt1 , Bt2 , . . . , BtN )− I(B◦,W )|] .
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It follows that

inf
v∈V

E [|v(W,Bt1 , Bt2 , . . . , BtN )− I(B◦,W )|] ≥ E [|I(B◦,W )|]

and therefore we have

inf
v∈V

E [|v(W,Bt1 , Bt2 , . . . , BtN )− I(B◦,W )|] ≥ E [|W1|]E

[(∫ T

0
|B◦

t |2dt
)1/2

]

≥ 1√
T
E [|W1|]

∫ T

0
E [|B◦

t |] dt

by Lemma 8.5(ii) and by Jensen’s inequality. Using E [|X|] =
√

2
πσ for X ∼ N (0, σ2)

we obtain ∫ T

0
E [|B◦

t |] dt =
√
2√
π

∫ T

0
E
[
|B◦

t |2
]1/2

dt.

Straightforward calculations give

E
[
|B◦

t |2
]
=

(t− tk)(tk+1 − t)

tk+1 − tk
, t ∈ [tk, tk+1],

which in turn yields∫ T

0
E
[
|B◦

t |2
]1/2

dt = N

∫ T/N

0

√
t(T/N − t)

T/N
dt =

√
T 3

N

∫ 1

0

√
x(1− x)dx.

Since
∫ 1
0

√
x(1− x)dx = π

8 , we have shown that

√
N inf

v∈V
E
[∣∣∣∣v(W,Bt1 , Bt2 , . . . , BtN )−

∫ T

0
BtdWt

∣∣∣∣] ≥ T

4
. (8.7)

Combining subsections 8.1.1–8.1.4 with Equations (8.1), (8.4), (8.5) and (8.7) concludes
the proof of Theorem 8.1.
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Chapter 9

Numerical Results

In this chapter, we test our results from Chapters 6, 7 and 8 by performing numerical
simulations on an exemplary parameter set. We start with weak convergence simulations
for the Heston model and then continue with L1-error simulations for both the CIR
process and the full Heston model.

9.1 Weak Convergence

In this section, we test numerically whether the weak convergence orders of Theorem
6.3 and Proposition 6.9 are attained even under milder assumptions on the test function
f . We consider a call, a put and a digital option. These payoffs are at most Lipschitz
continuous which is typical in financial applications. This lack of smoothness is in
contrast to the usual assumptions on f for a weak error analysis. See also Remark 6.6.
Besides the SE, AE and implicit Milstein, we also numerically test the drift-implicit
Euler for the CIR process in combination with the standard Euler for the log-price
process. For simplicity, we call the scheme Drift-Implicit. We have seen in Chapter
7 that the strong error behavior of the drift-implicit Euler for the CIR process is well
analyzed and seems to be superior to the one of the Euler schemes. Weak convergence
results are not available to the best of our knowledge. We would like to compare their
weak convergence behaviors in the context of the full Heston model.
Our model parameters are displayed in Table 9.1.

Model S0 K V0 κ θ σ ρ T r ν (approx.)
1 100 100 0.04 5 0.04 0.61 -0.7 1 0.0319 1.075
2 100 100 0.04 5.5 0.04 0.55 -0.7 1 0.0319 1.45
3 100 100 0.010201 6.21 0.019 0.61 -0.7 1 0.0319 0.63
4 100 100 0.09 2 0.09 1 -0.3 5 0.05 0.36

Table 9.1: Parameters for the weak convergence test.

We have ν ≈ 1.075 in Model 1, ν ≈ 1.45 in Model 2, ν ≈ 0.63 in Model 3 and ν ≈ 0.36
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in Model 4. The parameter sets for Model 3 and 4 are taken from [14]. For Model 1
and Model 2 we adjusted the parameters of Model 3 such that they have Feller indices
around 1 and 1.5. With these examples we set our focus on low values of the Feller
index ν since this is the most interesting parameter range. For each model, we use the
following payoff functions:

1. European Call: g1(ST ) = e−rT max{ST −K, 0}

2. European Put: g2(ST ) = e−rT max{K − ST , 0}

3. Digital Option: g3(ST ) = e−rT
1[0,K](ST )

Note that none of these payoffs satisfies the assumption of Theorem 6.3. Thus, numerical
convergence orders which coincide with the orders of our Theorem indicate that the latter
might be valid under milder assumptions.
In order to measure the weak error order, we simulated M = 2 · 107 independent copies
gi(s

(j)
N ), j = 1, . . . ,M , of gi (sN ) with sN = exp(xN ) to estimate

E [gi(sN )]

by

p̂M,N =
1

M

M∑
j=1

gi(s
(j)
N )

for each combination of model parameters, payoff and number of steps N ∈ {23, ..., 28}
where ∆t = T

N . To obtain a stable estimate of the convergence orders, we started with
a ∆t which is smaller 1

κ (which is required also for some auxiliary results of the proof
of our main result). The Monte Carlo mean of these samples was then compared to a
reference solution pref , i.e.,

e(N) = |pref − p̂M,N |,

and the error e(N) is plotted in Figures 9.1–9.12. We measure the weak error order by
the slope of a least-squares fit. The reference solutions can be computed with sufficiently
high accuracy from semi-explicit formulae via Fourier methods. In particular, the put
price can be calculated from the call price formula given in [36] via the put-call-parity.
The price of the digital option can be computed from the probability P2 given in [36];
it equals e−rT (1− P2).
In Table 9.2 and Figures 9.1-9.3, we can see the measured convergence orders and the
error plots for Model 1. Because of our results in Theorem 6.3 and Proposition 6.9, we
would expect SE, AE and implicit Milstein to have a weak convergence order of 1 and
this is indeed the case in this example. The implicit Milstein seems to have a lower
convergence order for put and call but the plots 9.1–9.3 show that this might be due
to the low error that this scheme produces right from the start. Also, its convergence
behavior is not very regular in these cases. The Drift-Implicit scheme seems to have an
overall lower convergence order than the other schemes. Only for the digital option it
has a lower absolute error.
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Method Call Put Digital
SE 1.00 0.96 0.93
AE 1.03 1.01 0.91

Drift-Implicit 0.55 0.73 0.33
Implicit Milstein 0.73 0.72 1.04

Table 9.2: Estimated weak convergence orders Model 1

Figure 9.1: Call Model 1

Figure 9.2: Put Model 1 Figure 9.3: Digital Model 1

For the next model, we would again expect a convergence rate around 1. The results
from Table 9.3 and plots in Figures 9.4-9.6 indicate that for particular payoffs even a
higher numerical order is obtained if the Feller index is larger than 1. The orders of SE

Method Call Put Digital
SE 1.34 1.27 1.18
AE 1.36 1.36 1.31

Drift-Implicit 0.74 0.79 0.65
Implicit Milstein 0.35 0.47 0.88

Table 9.3: Estimated weak convergence orders Model 2
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and AE are around 1-1.3 and the convergence behavior is regular. The implicit Milstein
shows a similar behavior as in the first model. Again, its error for call and put is very
low but it does not seem to have a fast convergence. For the digital option, it also has
a higher absolute error than the AE. The Drift-Implicit scheme performs again worse
than the other schemes for call and put. It has a smaller absolute error in the digital
case for our step size range but its estimated convergence order is lower.

Figure 9.4: Call Model 2

Figure 9.5: Put Model 2 Figure 9.6: Digital Model 2

Table 9.4 shows the estimated convergence orders for Model 3. This model has a Feller
index around 0.63. The simulation results indicate that this is also the convergence
order for SE, AE and the Drift-Implicit scheme. The implicit Milstein has an estimated
convergence order around 1. This is in line with our theoretical findings for smoother
payoff functions. All plots are very regular (see Figures 9.7–9.9).

Method Call Put Digital
SE 0.60 0.60 0.55
AE 0.57 0.57 0.55

Drift-Implicit 0.63 0.64 0.53
Implicit Milstein 1.05 0.94 1.30

Table 9.4: Estimated weak convergence orders Model 3

92



9. Numerical Results

Figure 9.7: Call Model 3

Figure 9.8: Put Model 3 Figure 9.9: Digital Model 3

Model 4 has the lowest Feller index which is around 0.36. Again, Table 9.5 confirms this
number as the numerical convergence order for SE and AE. Since ν < 1

2 , we replaced
the implicit Milstein by the truncated Milstein from Equation (3.11). Note that there
are no weak convergence results available for this scheme to the best of our knowledge.
We are not aware of a truncation of the drift-implicit Euler which was analyzed in the
literature. The convergence order of truncated Milstein seems to be slightly higher and
around 0.5. Our simulations confirm simulation studies in the literature that show a
slow convergence for low Feller indices. Looking at Figures 9.10-9.12, the absolute values

Method Call Put Digital
SE 0.47 0.47 0.40
AE 0.38 0.39 0.35

Truncated Milstein 0.53 0.52 0.45

Table 9.5: Estimated weak convergence orders Model 4

of all errors are quite high. The AE performs best up to N = 28. We again have a very
regular convergence behavior.
Summarizing, we can confirm a (minimum) numerical convergence order of min{ν, 1}
for the symmetrized and absorbed Euler and of 1 for the implicit Milstein scheme under
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Figure 9.10: Call Model 4

Figure 9.11: Put Model 4 Figure 9.12: Digital Model 4

even milder assumptions on the regularity of the payoff function. We saw slightly better
numerical convergence results of the Euler schemes for a higher Feller index. In most
cases, the Drift-Implicit scheme performed worse than the other schemes. Furthermore,
we cannot use it for low Feller indices which often occur in calibrations to real-world
data. The implicit Milstein seems to have superior weak convergence properties in most
of the cases than the two Euler schemes considered here. However, this effect seems to
vanish for low values of ν when a truncation is needed.

9.2 Strong Convergence

In this section, we test numerically our results from Theorem 7.13, Proposition 7.14,
Proposition 7.15 and Theorem 8.1. We perform the tests for all Euler schemes from
Table 3.1 and, as before, for the implicit Milstein and the drift-implicit Euler.
First, we describe the design of the numerical experiments. We would like to estimate
the order of the decay of the errors

ev(N) = E
[∣∣∣VT − v̂

(N)
tN

∣∣∣] , ex(N) = E
[∣∣∣XT − x̂

(N)
tN

∣∣∣] ,
for the numerical scheme v̂(N), x̂(N) with step size ∆t = T

N . Since we cannot compute
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these quantities exactly, we approximate their decay, see e.g. [1], by calculating

errv(N) =
1

M

M∑
i=1

∣∣∣∣(v̂(N)
tN

− v̂
(2N)
t2N

)(i)∣∣∣∣ , errx(N) =
1

M

M∑
i=1

∣∣∣∣(x̂(N)
tN

− x̂
(2N)
t2N

)(i)∣∣∣∣ ,
where M is the number of Monte Carlo repetitions and (v̂

(N)
tN

− v̂
(2N)
t2N

)(i), i = 1, ...,M ,
are iid copies of v̂(N)

tN
− v̂

(2N)
t2N

. The same holds for (x̂
(N)
tN

− x̂
(2N)
t2N

)(i), i = 1, ...,M . In our
simulations, we chose M = 105 and N ∈ {21, ..., 215}. To cover a wide range of different
Feller indices, we will perform numerical simulations with four different parameter sets.
We always choose T = 1 and S0 = 100. The other parameters can be found in Table 9.6.
Model 1,3 and 4 are the same parameters as before (except for the time horizon) and
we added Model 2 with a high Feller index. The estimates errv(N) and errx(N) for

Model V0 κ θ σ ρ µ ν

1 0.04 5 0.04 0.61 -0.7 0.0319 1.075
2 0.0457 5.07 0.0457 0.48 -0.767 0 2.0113
3 0.010201 6.21 0.019 0.61 -0.7 0.0319 0.63
4 0.09 2 0.09 1 -0.3 0.05 0.36

Table 9.6: Parameters for the strong convergence test.

the seven schemes are plotted in Figures 9.13–9.16 against the corresponding number of
steps 2N . For each model, we show first the convergence behavior of the error for the
CIR process and then for the Heston model. Additionally, we plotted solid reference lines
with suitable slopes together with the error estimates. Blue reference lines always have
a slope of 0.5. We also estimated the order of convergence by the slope of a least squares
fit, see Tables 9.7 – 9.10. Here, we only take errors with step sizes N ∈ {26, ..., 215}
into account to get a stable result. For all models, our simulation study shows that
the numerical convergence orders of the Euler schemes do not change significantly if we
extend the simulation from the CIR process to the Heston model. This indicates that
the parameters of the CIR process (and especially the Feller index) solely determine the
convergence behavior.

Scheme Rate CIR Rate Heston
SE 0.51 0.52
AE 0.51 0.52
FTE 0.52 0.53
PTE 0.52 0.52
HM 0.51 0.53
IMP 0.92 0.51
MIL 0.96 0.51

Table 9.7: Estimated strong convergence orders Model 1
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(a) CIR, ν = 1.075 (b) Heston, ν = 1.075

Figure 9.13: Error estimates for Model 1

For the first model which has a Feller index around 1, our main result from Theorem
7.13 provides a strong convergence order of 0.5 for the Euler schemes. This can be
numerically confirmed in Figure 9.13. The implicit Milstein (MIL) and the drift-implicit
Euler (IMP) seem to converge with strong order 1 (which is the slope of the red solid
line) which is optimal for the CIR process by the results from [34]. This indicates that
our rate from Proposition 7.15 is not sharp and that the results from [2] for the latter
might hold for values ν < 2. However, this advantage vanishes for the full Heston model
where all schemes seem to have the same strong convergence order of 0.5. This is in line
with our result from Theorem 8.1.

(a) CIR, ν = 2.0113 (b) Heston, ν = 2.0113

Figure 9.14: Error estimates for Model 2

For Model 2, which has a higher Feller index, Figure 9.14 and Table 9.8 confirm again
the expected strong convergence order of 0.5 for the Euler case. Note that the differences
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9. Numerical Results

Scheme Rate CIR Rate Heston
SE 0.52 0.52
AE 0.52 0.52
FTE 0.52 0.52
PTE 0.52 0.52
HM 0.52 0.52
IMP 0.98 0.51
MIL 0.99 0.51

Table 9.8: Estimated strong convergence orders Model 2

between the different Euler schemes vanish for small step sizes and for high Feller indices.
The Euler schemes only differ if the approximation of the CIR process becomes negative.
For small step sizes and for high Feller indices this is unlikely to happen in a Monte
Carlo simulation. Again, the implicit Milstein and the drift-implicit Euler seem to have
a strong convergence order of 1 for the CIR case which decreases to 0.5 when applied
to the full Heston model.

(a) CIR, ν = 0.63 (b) Heston, ν = 0.63

Figure 9.15: Error estimates for Model 3

Model 3 has a Feller index of 0.63 and we have shown that we can expect a strong
convergence order of at least 0.315 for FTE, PTE and HM. However, looking at Table
9.9 and Figure 9.15 we can see that the rate for the Euler schemes is still around 0.5,
even for SE and AE, for which we did not derive a convergence order in this case. For
the IMP and MIL the convergence order dropped to a value around the Feller index
itself. The red solid line in 9.15 on the left has now a slope of 0.63. This is in line with
the lower bound result from [34] and indicates again that these schemes are optimal for
the CIR process. For the full Heston model, all schemes seem to have a convergence
order of 0.5.
The last model has the lowest Feller index. As in Section 9.1 we simulated the truncated
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Scheme Rate CIR Rate Heston
SE 0.49 0.50
AE 0.47 0.48
FTE 0.49 0.50
PTE 0.48 0.49
HM 0.47 0.50
IMP 0.67 0.50
MIL 0.66 0.52

Table 9.9: Estimated strong convergence orders Model 3

(a) CIR, ν = 0.36 (b) Heston, ν = 0.36

Figure 9.16: Error estimates for Model 4

Scheme Rate CIR Rate Heston
SE 0.41 0.41
AE 0.38 0.40
FTE 0.37 0.39
PTE 0.37 0.38
HM 0.38 0.37

Tr. MIL 0.44 0.46

Table 9.10: Estimated strong convergence orders Model 4
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9. Numerical Results

Milstein alongside the Euler schemes since the Feller index is now below 1
2 . Again, we

can see an estimated convergence order of the error for the Euler schemes that is better
than expected. Here, we chose ν as the slope of the reference line in both plots from
Figures 9.16. We already know that the truncated Milstein scheme is optimal in this
parameter range (see Section 7.1).
The last two examples indicate that it might be possible to obtain a convergence order
of min{ν, 12} for all Euler schemes for the CIR process and for the Heston model.
Our numerical simulations underline our result that, at least for ν > 1, the L1-convergence
order of simple Euler schemes for the Heston model is already optimal. More advanced
schemes can reach better error orders for the CIR process but their additional benefit
in terms of the strong convergence order is not clear when applied to the full Heston
model.
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Chapter 10

Optimal L2-Approximation of
Stochastic Volatility Models

Now, we would like to move on to the analysis of more general models. In this chapter
we study the strong approximation of the stochastic volatility model

dXt =

(
r − 1

2
f2 (Vt)

)
dt+ f (Vt)

(
ρdWt +

√
1− ρ2dBt

)
, X0 = x,

dVt = b (Vt) dt+ σ (Vt) dWt, V0 = v,

(10.1)

where V = (Vt)t∈[0,T ] takes values in an open set D ⊆ R, f, b, σ : D → R are appropriate
functions, ρ ∈ [−1, 1], r ∈ R and W = (Wt)t∈[0,T ], B = (Bt)t∈[0,T ] are independent
Brownian motions. The initial values of the SDE are assumed to be deterministic and
we have x ∈ R, v ∈ D. The prototype example for SDE (10.1) is the generalized
log-Heston model.
We analyze the minimal L2-error for the approximation of XT that can be obtained by
arbitrary methods that use N ∈ N evaluations of each Brownian motion, that is

e(N) = inf
(si,ti)i=1,...,N∈Π(N)

inf
u∈U(N)

(
E
[∣∣u(Ws1 , . . . ,WsN , Bt1 , . . . , BtN )−XT

∣∣2])1/2
where U(N) is the set of measurable functions u : R2N → R and

Π(N) =
{
(si, ti)i=1,...,N : (si, ti) ∈ [0, T ]2, i = 1, . . . , N, sN = tN = T

}
.

Our standing assumption is

Assumption 10.1. The SDE (10.1) admits a unique strong solution and there exists a
set D = (l, r) with −∞ ≤ l < r ≤ ∞ and

P (Vt ∈ D, t ≥ 0) = 1.
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In the introduction of Chapter 8 we gave a brief overview of the extensive study on
the optimal approximation of SDEs that has been carried out so far. In particular, if
the coefficients of SDE (10.1) are Lipschitz continuous with Lipschitz continuous first
derivative, then we have

lim
N→∞

√
N e(N) =

√
1− ρ2

4

∫ T

0

(
E
[
(f ′σ)2(Vt)

])1/2
dt,

from [58], where a result for more general multi-dimensional SDEs has been established.
However, the coefficients of stochastic volatility models, as e.g. the log-Heston model,
typically do not satisfy a global Lipschitz condition.

10.1 Lower Bound

For our first theorem, we need the following additional assumptions:

Assumption 10.2.

(a) We have f ∈ C2(D;R) and σ ∈ C1(D; (0,∞)).

(b) We have

sup
t∈[0,T ]

E

[∣∣∣∣(f ′b+
1

2
f ′′σ2

)
(Vt)

∣∣∣∣2
]
< ∞

and

sup
s,t∈[0,T ]

E

[
|(f ′σ) (Vt)− (f ′σ) (Vs)|2

|t− s|

]
< ∞.

These assumptions are mainly needed to establish the Itō-Taylor expansion of the process
(f(Vt))t∈[0,T ] and to control the smoothness of the martingale part.

Theorem 10.3. Let Assumptions 10.1 and 10.2 hold, let U(N) be the set of measurable
functions u : R2N → R and let

e(N) = inf
(si,ti)i=1,...,N∈Π(N)

inf
u∈U(N)

(
E
[∣∣u(Ws1 , . . . ,WsN , Bt1 , . . . , BtN )−XT

∣∣2])1/2 .
Then, we have that

lim inf
N→∞

√
N e(N) ≥

√
1− ρ2

6

∫ T

0

(
E
[
(f ′σ)2(Vt)

])1/2
dt.
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10. Optimal L2-Approximation of Stochastic Volatility Models

10.2 Proof of Theorem 10.3

Before we start with the proof of Theorem 10.3, we need to introduce some notation.
Recall that

Π(N) =
{
(si, ti)i=1,...,N : (si, ti) ∈ [0, T ]2, i = 1, . . . , N, sN = tN = T

}
.

We also introduce

ΠB(N) = {(ti)i=1,...,N : ti ∈ [0, T ], i = 1, . . . , N, tN = T} .

Let

GΠ(N) = σ (Ws1 ,Ws2 , . . . ,WsN , Bt1 , Bt2 , . . . , BtN ) ,

HΠB(N) = σ (Ws, s ∈ [0, T ], Bt1 , Bt2 , . . . , BtN ) .

We also use the notation
HΠB(N) = σ

(
W,BΠB(N)

)
.

We set

ZΠ(N)
U = {Z : Ω → R : Z is GΠ(N) measurable},

ZΠB(N)
V = {Z : Ω → R : Z is HΠB(N) measurable}

and denote by V the set of all measurable functions v : C([0, T ];R) × RN → R. Since
we have

ZΠ(N)
U ⊂ ZΠB(N)

V ,

it follows that

inf
Z∈ZΠ(N)

U

(
E
[∣∣Z −XT

∣∣2])1/2
= inf

u∈U

(
E
[∣∣u(Ws1 ,Ws2 , . . . ,WsN , Bt1 , Bt2 , . . . , BtN )−XT

∣∣2])1/2
≥ inf

Z∈ZΠB(N)

V

(
E
[∣∣Z −XT

∣∣2])1/2
= inf

v∈V

(
E
[∣∣v(W,Bt1 , Bt2 , . . . , BtN )−XT

∣∣2])1/2 .
Thus, it is sufficient to analyze the quantity

inf
(ti)∈ΠB(N)

inf
Z∈ZΠB(N)

V

(
E
[∣∣Z −XT

∣∣2])1/2
= inf

(ti)∈ΠB(N)
inf
v∈V

(
E
[∣∣v(W,Bt1 , Bt2 , . . . , BtN )−XT

∣∣2])1/2 ,
to obtain a lower bound for e(N). Here and in the following we write (ti) instead of
(ti)i=1,...,N .
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10.2.1 Rewriting XT and removing the measurable part

Recall that the SDE under consideration is given by

dXt =

(
r − 1

2
f2 (Vt)

)
dt+ f (Vt)

(
ρdWt +

√
1− ρ2dBt

)
,

dVt = b (Vt) dt+ σ (Vt) dWt,

t ∈ [0, T ].

Now we are going to rewrite XT following [47].

Lemma 10.4. Let Assumptions 10.1 and 10.2 hold. We have that

XT = UT +
√
1− ρ2

∫ T

0
f(Vt)dBt

where
UT = x+ ρ (F (VT )− F (v)) + rT

−
∫ T

0

(
1

2
f2(Vt) + ρ

(
bf

σ
+

1

2

(
σf ′ − σ′f

))
(Vt)

)
dt.

with

F (y) =

∫ y

v

f

σ
(z)dz

for y ∈ D.

Proof. We apply Itō’s formula to obtain

dF (Vt) =
f

σ
(Vt)dVt +

1

2

(
σf ′ − σ′f

σ2

)
(Vt) d⟨V ⟩t

=
fb

σ
(Vt)dt+ f(Vt)dWt +

1

2

(
σf ′ − σ′f

)
(Vt) dt.

Then, (X,V ) solves

dXt = ρdF (Vt) + h (Vt) dt+
√
1− ρ2f (Vt) dBt,

dVt = b (Vt) dt+ σ (Vt) dWt,
t ∈ [0, T ],

where

h(y) :=

(
r − 1

2
f2(y)

)
− ρ

(
bf

σ
+

1

2

(
σf ′ − σ′f

))
(y).

Therefore, we can rewrite XT as

XT = UT +
√
1− ρ2

∫ T

0
f(Vt)dBt

where

UT = x+ ρ (F (VT )− F (v)) + rT −
∫ T

0

(
1

2
f2(Vt) + ρ

(
bf

σ
+

1

2

(
σf ′ − σ′f

))
(Vt)

)
dt.
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10. Optimal L2-Approximation of Stochastic Volatility Models

Expanding f(Vt) using Itō’s formula yields

f(Vt) = f(v) +

∫ t

0

(
f ′b+

1

2
f ′′σ2

)
(Vs)ds+

∫ t

0

(
f ′σ
)
(Vs)dWs, t ∈ [0, T ].

Thus, we have

XT = UT +
√
1− ρ2

(
f(v0)BT +

∫ T

0
AtdBt +

∫ T

0
YtdBt

)
with

At :=

∫ t

0

(
f ′b+

1

2
f ′′σ2

)
(Vs)ds, Yt :=

∫ t

0

(
f ′σ
)
(Vs)dWs, t ∈ [0, T ].

It follows that

inf
Z∈ZΠB(N)

V

(
E
[∣∣Z −XT

∣∣2])1/2
= inf

Z∈ZΠB(N)

V

(
E

[∣∣∣∣Z − UT −
√
1− ρ2

(
f(v)BT +

∫ T

0
AtdBt +

∫ T

0
YtdBt

)∣∣∣∣2
])1/2

= inf
Z̃∈ZΠB(N)

V

(
E

[∣∣∣∣Z̃ −
√

1− ρ2
(∫ T

0
AtdBt +

∫ T

0
YtdBt

)∣∣∣∣2
])1/2

and it remains to analyze

inf
(ti)∈ΠB(N)

inf
Z∈ZΠB(N)

V

(
E

[∣∣∣∣Z −
∫ T

0
AtdBt −

∫ T

0
YtdBt

∣∣∣∣2
])1/2

.

10.2.2 Removing the smooth part

Since A = (At)t∈[0,T ] is smooth enough,
∫ T
0 AtdBt does not matter asymptotically for

our approximation problem.

Lemma 10.5. Let Assumptions 10.1 and 10.2 hold and let

Πα
B(N) = {τα0 , τα1 , ..., τα⌈Nα⌉} =

{
0,

T

⌈Nα⌉
,

2T

⌈Nα⌉
, ..., T

}
, α ∈

(
1

2
, 1

)
.

There exists a constant C > 0 such thatE

∣∣∣∣∣∣
∫ T

0
AtdBt −

⌈Nα⌉−1∑
k=0

Aταk
(Bταk+1

−Bταk
)

∣∣∣∣∣∣
21/2

≤ C ·N−α.
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Proof. First, we define ηα(t) := max{ταk ∈ Πα
B(N) : ταk ≤ t}. Using the Itō-isometry we

have

E

∣∣∣∣∣∣
∫ T

0
AtdBt −

⌈Nα⌉−1∑
k=0

Aταk
(Bταk+1

−Bταk
)

∣∣∣∣∣∣
2

= E

[∣∣∣∣∫ T

0
(At −Aηα(t))dBu

∣∣∣∣2
]

=

∫ T

0
E

∣∣∣∣∣
∫ t

ηα(t)

(
f ′b+

1

2
f ′′σ2

)
(Vs)ds

∣∣∣∣∣
2
 dt.

Moreover, the Cauchy-Schwartz inequality and Assumption 10.2 (b) yield

E

∣∣∣∣∣
∫ t

ηα(t)

(
f ′b+

1

2
f ′′σ2

)
(Vu)du

∣∣∣∣∣
2


≤

(
sup

s∈[0,T ]
E

[∣∣∣∣(f ′b+
1

2
f ′′σ2

)
(Vs)

∣∣∣∣2
])

(t− ηα(t))2

≤ C ·N−2α

and so we have

E

∣∣∣∣∣∣
∫ T

0
AtdBt −

⌈Nα⌉−1∑
k=0

Aταk
(Bταk+1

−Bταk
)

∣∣∣∣∣∣
2 ≤ C ·N−2α.

Next, we introduce

HΠB(N),Πα
B(N) = σ

(
W,BΠB(N), BΠα

B(N)

)
,

the set Vα of all measurable functions v : C([0, T ];R)× RN+⌈Nα⌉ → R and

ZΠB(N)∪Πα
B(N)

Vα
= {Z : Ω → R : Z is HΠB(N),Πα

B(N) measurable}.

Note that

ZΠB(N)
V ⊂ ZΠB(N)∪Πα

B(N)
Vα

.

Lemma 10.6. Let Assumptions 10.1 and 10.2 hold. We have

lim inf
N→∞

√
Ne(N)

≥ lim inf
N→∞

√
N
√

1− ρ2 inf
(ti)∈ΠB(N)

inf
Z∈Z

ΠB(N)∪Πα
B

(N)

Vα

(
E

[∣∣∣∣Z −
∫ T

0
YtdBt

∣∣∣∣2
])1/2

.
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Proof. Since
∑⌈Nα⌉−1

k=0 Aταk
(Bταk+1

−Bταk
) is HΠB(N),Πα

B(N)-measurable, we have

inf
Z∈ZΠB(N)

V

E

[∣∣∣∣Z −
∫ T

0
AtdBt −

∫ T

0
YtdBt

∣∣∣∣2
]1/2

≥ inf
Z∈Z

ΠB(N)∪Πα
B

(N)

Vα

E

[∣∣∣∣Z −
∫ T

0
AtdBt −

∫ T

0
YtdBt

∣∣∣∣2
]1/2

= inf
Z̃∈Z

ΠB(N)∪Πα
B

(N)

Vα

E

[∣∣∣∣Z̃ −
∫ T

0
(At −Aηα(t))dBt −

∫ T

0
YtdBt

∣∣∣∣2
]1/2

≥ inf
Z∈Z

ΠB(N)∪Πα
B

(N)

Vα

E

[∣∣∣∣Z −
∫ T

0
YtdBt

∣∣∣∣2
]1/2

− E

[∣∣∣∣∫ T

0
(At −Aηα(t))dBt

∣∣∣∣2
]1/2

,

where we applied the Minkowski inequality in the last step. Therefore, using Lemma
10.5 we have

inf
(ti)∈ΠB(N)

inf
Z∈ZΠB(N)

Vα

E

[∣∣∣∣Z −
∫ T

0
AtdBt −

∫ T

0
YtdBt

∣∣∣∣2
]1/2

≥ inf
(ti)∈ΠB(N)

inf
Z∈Z

ΠB(N)∪Πα
B

(N)

Vα

E

[∣∣∣∣Z −
∫ T

0
YtdBt

∣∣∣∣2
]1/2

−O
(
N−α

)
.

So, we have reduced our initial problem to the study of

inf
(ti)∈ΠB(N)

inf
Z∈Z

ΠB(N)∪Πα
B

(N)

Vα

E

[∣∣∣∣Z −
∫ T

0
YtdBt

∣∣∣∣2
]1/2

. (10.2)

In the following, we denote points from ΠB(N) ∪Πα
B(N) by tαk and we assume without

loss of generality that these points are ordered, i.e.

ΠB(N) ∪Πα
B(N) =

{
0 = tα0 ≤ tα1 ≤ . . . ≤ tαm(N) = T

}
with m(N) = N + ⌈Nα⌉.

10.2.3 Inserting Brownian bridges and symmetrization

Now we apply a symmetrization argument similar to [46, 61, 73]. To analyze (10.2) let
us first denote the piecewise linear interpolation of B on the grid tα0 , ..., t

α
m(N) by B, i.e.

B is defined as

Bt = Btαk
+

t− tαk
tαk+1 − tαk

(Btαk+1
−Btαk

), t ∈ [tαk , t
α
k+1], k = 0, . . . ,m(N)− 1.
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Then, the process B◦ given by

B◦
t = Bt −Bt, t ∈ [0, T ],

is a Brownian bridge on [tαk , t
α
k+1] for k = 0, . . . ,m(N)− 1. Moreover, the processes

(B◦
t )t∈[tα0 ,tα1 ], (B

◦
t )t∈[tα1 ,tα2 ] , . . . , (B

◦
t )t∈[tαm(N)−1

,tα
m(N)

], B, W

are independent. Since∫ T

0
YtdBt =

m(N)−1∑
k=0

1

tαk+1 − tαk

∫ tαk+1

tαk

Ytdt (Btαk+1
−Btαk

)

is HΠB(N),Πα
B(N)-measurable, we have that

inf
Z∈Z

ΠB(N)∪Πα
B

(N)

Vα

(
E

[∣∣∣∣Z −
∫ T

0
YtdBt

∣∣∣∣2
])1/2

= inf
Z̃∈Z

ΠB(N)∪Πα
B

(N)

Vα

(
E
[∣∣∣Z̃ − IN (Y,B◦)

∣∣∣2])1/2
(10.3)

with

IN (Y,B◦) :=

∫ T

0
YsdBs −

∫ T

0
YsdBs.

Furthermore B◦ and −B◦ have the same law, so the independence of B◦ from (W,B)
implies that (

W,B,B◦) d
=
(
W,B,−B◦) . (10.4)

We would now like to analyze IN (Y,B◦). Recall that (Ys)s∈[0,T ] is independent of
(Bs)s∈[0,T ]. We define

∆α
k = tαk+1 − tαk , ∆α

kB = Btαk+1
−Btαk

,

for k = 0, . . . ,m(N)− 1 and

ταl,n,k =
l

2n
∆α

k , ∆α
k,l = ταl+1,n,k − ταl,n,k, ∆α

k,lB = Btαk+ταl+1,n,k
−Btαk+ταl,n,k

,

for l = 0, . . . , 2n, k = 0, . . . ,m(N)− 1.

Lemma 10.7. Let Assumptions 10.1 and 10.2 hold.

(i) Let

In
N (Y,B◦) =

m(N)−1∑
k=0

2n−1∑
l=0

Ytαk+ταl,n,k

(
∆α

k,lB −
∆α

k,l

∆α
k

∆α
kB

)
.

We have that
IN (Y,B◦) = lim

n→∞
In
N (Y,B◦)

almost surely and in L2.
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(ii) It holds that

IN (Y,B◦)
d
= Z

(∫ T

0
|ϕ(ti),α

s |2ds
)1/2

with

ϕ(ti),α
s := Ys −

m(N)−1∑
k=0

(
1

∆α
k

∫ tαk+1

tαk

Yudu

)
1[tαk ,t

α
k+1)

(s)

and

Z ∼ N (0, 1).

Proof. To simplify the notation we drop all α-superscripts in this proof. Note that
Assumption 10.2 (b) implies that

sup
s,t∈[0,T ]

E

[
|Yt − Ys|2

|t− s|

]
< ∞

and

sup
t∈[0,T ]

E
[
|Yt|2

]
< ∞.

(i) We have ∫ tk+1

tk

YsdBs −
∫ tk+1

tk

YsdBs = Ik1 − Ik2

with

Ik1 =

∫ tk+1

tk

YsdBs, Ik2 =

∫ tk+1

tk

YsdBs

and
2n−1∑
l=0

Ytk+τl,n,k

(
∆k,lB −

∆k,l

∆k
∆kB

)
= Ik,n1 − Ik,n2

where

Ik,n1 =
2n−1∑
l=0

Ytk+τl,n,k
∆k,lB, Ik,n2 =

2n−1∑
l=0

∆k,l

∆k
Ytk+τl,n,k

∆kB.

For brevity, we write Ytk+τl,n,k
= Yk,l. Using the Itō-isometry, polarization and the
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smoothness of Y , it follows

E
[∣∣∣Ik1 − Ik,n1

∣∣∣2] = E

∣∣∣∣∣
∫ tk+1

tk

YsdBs −
2n−1∑
l=0

Yk,l∆k,lB

∣∣∣∣∣
2


= E

∣∣∣∣∣
2n−1∑
l=0

∫ tk+τl+1,n,k

tk+τl,n,k

(Ys − Yk,l)dBs

∣∣∣∣∣
2


= E

2n−1∑
l=0

∣∣∣∣∣
∫ tk+τl+1,n,k

tk+τl,n,k

(Ys − Yk,l)dBs

∣∣∣∣∣
2


=
2n−1∑
l=0

∫ tk+τl+1,n,k

tk+τl,n,k

E
[
|Ys − Yk,l|2

]
ds

≤ C

2n−1∑
l=0

∆2
k,l ≤ C∆2

k2
−n.

Furthermore, we have

E
[∣∣∣Ik2 − Ik,n2

∣∣∣2] = E

∣∣∣∣∣
∫ tk+1

tk

YsdBs −
2n−1∑
l=0

∆k,l

∆k
Yk,l∆kB

∣∣∣∣∣
2


= E

∣∣∣∣∣
2n−1∑
l=0

(
1

∆k

∫ tk+τl+1,n,k

tk+τl,n,k

Ysds∆kB −
∆k,l

∆k
Yk,l∆kB

)∣∣∣∣∣
2


= E

∣∣∣∣∣
2n−1∑
l=0

1

∆k

∫ tk+τl+1,n,k

tk+τl,n,k

(Ys − Yk,l) ds∆kB

∣∣∣∣∣
2
 .

With similar computations as before, we also obtain

E
[∣∣∣Ik2 − Ik,n2

∣∣∣2] ≤ C∆2
k2

−n.

Now,

E
[
|IN (Y,B◦)− In

N (Y,B◦)|2
]
= E

∣∣∣∣∣∣
m(N)−1∑

k=0

(
Ik1 − Ik,n1 + Ik,n2 − Ik2

)∣∣∣∣∣∣
2

≤ 2

m(N)−1∑
k=0

E
[∣∣∣Ik1 − Ik,n1

∣∣∣2]+ 2

m(N)−1∑
k=0

E
[∣∣∣Ik2 − Ik,n2

∣∣∣2]

≤ C

m(N)−1∑
k=0

∆2
k2

−n ≤ C2−n,
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10. Optimal L2-Approximation of Stochastic Volatility Models

which yields the L2-convergence, and also implies
∞∑
n=1

E [|IN (Y,B◦)− In
N (Y,B◦)|] < ∞,

from which the almost sure convergence follows by an application of the Borel-Cantelli
lemma.
(ii) Recall that Y is independent of B◦. The conditional law of In

N (Y,B◦) given

Ytk+τl,n,k
= yk,l, l = 0, . . . , 2n − 1, k = 0, . . . ,m(N)− 1,

is therefore Gaussian with zero mean and variance

E

m(N)−1∑
k=0

2n−1∑
l=0

yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

)2
= E

m(N)−1∑
k=0

(
2n−1∑
l=0

yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

))2


+ 2E

m(N)−1∑
j<k=0

(
2n−1∑
l=0

yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

))(2n−1∑
l=0

yj,l

(
∆j,lB −

∆j,l

∆j
∆jB

)) .

The Brownian increments in the second term are from disjoint intervals. Therefore, its
expectation is zero. Moreover, we have

E

m(N)−1∑
k=0

(
2n−1∑
l=0

yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

))2


=

m(N)−1∑
k=0

E

[
2n−1∑
l=0

(
yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

))2
]

+ 2

m(N)−1∑
k=0

E

 2n−1∑
j<l=0

(
yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

))(
yk,j

(
∆k,jB −

∆k,j

∆k
∆kB

)) .

Looking at the first term, we obtain

m(N)−1∑
k=0

E

[
2n−1∑
l=0

(
yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

))2
]

=

m(N)−1∑
k=0

2n−1∑
l=0

y2k,lE

[(
∆k,lB −

∆k,l

∆k
∆kB

)2
]

=

m(N)−1∑
k=0

2n−1∑
l=0

y2k,l

(
∆k,l −

∆2
k,l

∆k

)
.
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The second term yields

2

m(N)−1∑
k=0

E

 2n−1∑
j<l=0

(
yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

))(
yk,j

(
∆k,jB −

∆k,j

∆k
∆kB

))
= 2

m(N)−1∑
k=0

2n−1∑
j<l=0

−
yk,lyk,j∆k,l∆k,j

∆k
.

Summarizing, we have

E

m(N)−1∑
k=0

2n−1∑
l=0

yk,l

(
∆k,lB −

∆k,l

∆k
∆kB

)2
=

m(N)−1∑
k=0

2n−1∑
l=0

y2k,l

(
∆k,l −

∆2
k,l

∆k

)
− 2

2n−1∑
j<l=0

yk,lyk,j∆k,l∆k,j

∆k


=

m(N)−1∑
k=0

(
2n−1∑
l=0

y2k,l∆k,l

)
− 1

∆k

(
2n−1∑
l=0

yk,l∆k,l

)2

.

This in turns implies that

In
N (Y,B◦)

d
= Z

m(N)−1∑
k=0

(
2n−1∑
l=0

Y 2
k,l∆k,l

)
− 1

∆k

(
2n−1∑
l=0

Yk,l∆k,l

)2
1/2

with

Z ∼ N (0, 1).

Now, note that

lim
n→∞

m(N)−1∑
k=0

2n−1∑
l=0

Y 2
k,l

(
∆k,l −

∆2
k,l

∆k

)
− 2

2n−1∑
j<l=0

Yk,lYk,j∆k,l∆k,j

∆k


=

m(N)−1∑
k=0

((∫ tk+1

tk

Y 2
s ds

)
− 1

∆k

(∫ tk+1

tk

Ysds

)2
)

almost surely by continuity of almost all sample paths of Y . Defining

ϕ(ti)
s := Ys −

m(N)−1∑
k=0

(
1

∆k

∫ tk+1

tk

Yudu

)
1[tk,tk+1)(s), s ∈ [0, T ],
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we can see that ∫ tk+1

tk

|ϕ(ti)
s |2ds =

∫ tk+1

tk

Y 2
s ds−

1

∆k

(∫ tk+1

tk

Ysds

)2

.

Therefore, the assertion follows now from part (i).

Using (10.3), a symmetrization argument based on (10.4) and the Lemma 10.7, we
obtain the following results.

Lemma 10.8. Let Assumptions 10.1 and 10.2 hold. Then, we have

inf
Z∈ZΠB(N)∪ΠαB(N)

Vα

(
E
[
|Z − IN (Y,B◦)|2

])1/2
≥
(
E
[∫ T

0
|ϕ(ti),α

s |2ds
])1/2

with

ϕ(ti),α
s := Ys −

m(N)−1∑
k=0

(
1

∆α
k

∫ tαk+1

tαk

Yudu

)
1[tαk ,t

α
k+1)

(s), s ∈ [0, T ].

Proof. Again we drop all α-superscripts in this proof. The equality of the laws in (10.4)
yields that (

W,B, In
N (Y,B◦)

) d
=
(
W,B,−In

N (Y,B◦)
)
.

and (i) from the Lemma 10.7 now gives(
W,B, IN (Y,B◦)

) d
=
(
W,B,−IN (Y,B◦)

)
.

Consequently, it follows that(
E
[∣∣∣v(W,Bt0 , Bt1 , Bt2 , . . . , Btm(N)

)− IN (Y,B◦)
∣∣∣2])1/2

=

(
E
[∣∣∣v(W,Bt0 , Bt1 , Bt2 , . . . , Btm(N)

) + IN (Y,B◦)
∣∣∣2])1/2

and so

2
(
E
[
|IN (Y,B◦)|2

])1/2
=
(
E
[
|IN (Y,B◦) + IN (Y,B◦)|2

])1/2
=
(
E
[∣∣∣(IN (Y,B◦)− v(W,Bt0 , Bt1 , . . . , Btm(N)

)
)

+
(
v(W,Bt0 , Bt1 , . . . , Btm(N)

) + IN (Y,B◦)
)∣∣∣2])1/2

≤ 2

(
E
[∣∣∣v(W,Bt0 , Bt1 , Bt2 , . . . , Btm(N)

)− IN (Y,B◦)
∣∣∣2])1/2
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by the Minkowski inequality for any v ∈ Vα. It follows that

inf
v∈Vα

(
E
[∣∣∣v(W,Bt0 , Bt1 , Bt2 , . . . , Btm(N)

)− IN (Y,B◦)
∣∣∣2])1/2

≥
(
E
[
|IN (Y,B◦)|2

])1/2
.

Using the Lemma 10.7 we then have

inf
v∈Vα

(
E
[∣∣∣v(W,Bt0 , Bt1 , Bt2 , . . . , Btm(N)

)− IN (Y,B◦)
∣∣∣2])1/2

≥
(
E
[∫ T

0
|ϕ(ti)

s |2ds
])1/2

since E
[
|Z|2

]
= σ2 for Z ∼ N (0, σ2). The assertion now follows from minimizing over

all possible discretizations.

10.2.4 Conclusion

Combining Lemma 10.6, Equation (10.3) and Lemma 10.8 we have shown that

lim inf
N→∞

√
Ne(N) ≥ lim inf

N→∞

√
N
√
1− ρ2 inf

(ti)∈ΠB(N)

(
E
[∫ T

0
|ϕ(ti),α

s |2ds
])1/2

. (10.5)

The last part of the proof requires the following two auxiliary results:

Lemma 10.9. Let Assumptions 10.1 and 10.2 hold. Then, the function

φ : [0, T ] → R, φ(t) =
(
E
[
(f ′σ)2(Vt)

])1/2
satisfies

sup
s,t∈[0,T ]

|φ2(t)− φ2(s)|
|t− s|1/2

< ∞ (10.6)

and

sup
s,t∈[0,T ]

|φ(t)− φ(s)|
|t− s|1/4

< ∞. (10.7)

Proof. We have∣∣E [(f ′σ)2(Vt)
]
− E

[
(f ′σ)2(Vs)

]∣∣
=
∣∣E [((f ′σ)(Vt) + (f ′σ)(Vs)

) (
(f ′σ)(Vt)− (f ′σ)(Vs)

)]∣∣
and so equation (10.6) follows from Assumption 10.2 (b) and the Hölder inequality.
Equation (10.7) is a consequence of

|φ(t)− φ(s)| =
∣∣∣√φ2(t)−

√
φ2(s)

∣∣∣ ≤√|φ2(t)− φ2(s)|.
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Lemma 10.10. Let Assumptions 10.1 and 10.2 hold and let α ∈ (2/3, 1). There exists
a constant Cα > 0, such that

sup
(ti)∈ΠB(N)

∣∣∣∣∣∣E
∫ T

0
|ϕ(ti),α

s |2ds− 1

6

m(N)−1∑
k=0

φ2(tαk )(t
α
k+1 − tαk )

2

∣∣∣∣∣∣ ≤ Cα ·N−3α/2,

where
φ2(t) = E

[
(f ′σ)2(Vt)

]
, t ∈ [0, T ].

Proof. As before, we drop the superscript α. By the definition of ϕ(ti), we have

E
[∫ T

0
|ϕ(ti)

s |2dt
]

= E

∫ T

0

Ys −
m(N)−1∑

k=0

1

∆k

∫ tk+1

tk

Yudu1[tk,tk+1)(s)

2

ds


= E

∫ T

0

m(N)−1∑
k=0

1

∆k

∫ tk+1

tk

(Ys − Yu)du1[tk,tk+1)(s)

2

ds


= E

∫ T

0

m(N)−1∑
k=0

1

∆k

∫ tk+1

tk

(Ys − Yu1) du11[tk,tk+1)(s)


·

m(N)−1∑
l=0

1

∆l

∫ tl+1

tl

(Ys − Yu2) du21[tl,tl+1)(s)

 ds


=

m(N)−1∑
k=0

1

∆2
k

∫ tk+1

tk

∫ tk+1

tk

∫ tk+1

tk

E [(Ys − Yu1) (Ys − Yu2)] du1du2ds.

Recalling the definition of Y , we have for s, u ∈ [tk, tk+1] that

Ys − Yu =

∫ s

0

(
f ′σ
)
(Vr)dWr −

∫ u

0

(
f ′σ
)
(Vr)dWr.

To calculate the value of E [(Ys − Yu1) (Ys − Yu2)], we first observe that∫ tk+1

tk

∫ tk+1

tk

∫ tk+1

tk

E [(Ys − Yu1) (Ys − Yu2)] du1du2ds

= 2

∫ tk+1

tk

∫ tk+1

tk

∫ u2

tk

E [(Ys − Yu1) (Ys − Yu2)] du1du2ds.

Now, we consider three cases.
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Case 1: s ≤ u1 ≤ u2. Using the Itō-isometry and polarization we have

E [(Ys − Yu1) (Ys − Yu2)] = E
[(

−
∫ u1

s

(
f ′σ
)
(Vr)dWr

)(
−
∫ u2

s

(
f ′σ
)
(Vr)dWr

)]
= E

[∫ u1

s

(
f ′σ
)2

(Vr)dr

]
= E

[(
f ′σ
)2

(Vtk)
]
(u1 − s) + r

(1)
k (s, u1)

with

r
(1)
k (s, u1) = E

[∫ u1

s

((
f ′σ
)2

(Vr)−
(
f ′σ
)2

(Vtk)
)
dr

]
and ∣∣∣r(1)k (s, u1)

∣∣∣ ≤ C ·∆3/2
k

since s, u1 ∈ [tk, tk+1].
Case 2: u1 ≤ s ≤ u2. Here it follows

E [(Ys − Yu1) (Ys − Yu2)] = E
[(∫ s

u1

(
f ′σ
)
(Vr)dWr

)(
−
∫ u2

s

(
f ′σ
)
(Vr)dWr

)]
= 0.

Case 3: u1 ≤ u2 ≤ s. Similar to Case 1 it follows that

E [(Ys − Yu1) (Ys − Yu2)] = E
[(∫ s

u1

(
f ′σ
)
(Vr)dWr

)(∫ s

u2

(
f ′σ
)
(Vr)dWr

)]
= E

[∫ s

u2

(
f ′σ
)2

(Vr)dr

]
= E

[(
f ′σ
)2

(Vtk)
]
(s− u2) + r

(2)
k (s, u2)

with

r
(2)
k (s, u2) = E

[∫ s

u2

((
f ′σ
)2

(Vr)−
(
f ′σ
)2

(Vtk)
)
dr

]
and ∣∣∣r(2)k (s, u2)

∣∣∣ ≤ C ·∆3/2
k .

Summarizing the different cases we have

2

∫ tk+1

tk

∫ tk+1

tk

∫ u2

tk

E [(Ys − Yu1) (Ys − Yu2)] du1du2ds

= 2φ2(tk)

∫ tk+1

tk

∫ tk+1

tk

∫ u2

tk

(
(u1 − s)1{s≤u1≤u2} + (s− u2)1{u1≤u2≤s}

)
du1du2ds

+O(∆
9/2
k ).
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Now straightforward calculations yields that∫ u2

tk

(u1 − s)1{s≤u1≤u2}du1 =

∫ u2

s
(u1 − s)1{s≤u2}du1 =

1

2
(u2 − s)21{s≤u2}

and ∫ tk+1

tk

∫ tk+1

tk

∫ u2

tk

(u1 − s)1{s≤u1≤u2}du1du2ds =
1

24
∆4

k

as well as∫ u2

tk

(s− u2)1{u1≤u2≤s}du1 =

∫ u2

tk

(s− u2)1{u2≤s}du1 = (s− u2)(u2 − tk)1{u2≤s}

and ∫ tk+1

tk

∫ tk+1

tk

∫ u2

tk

(s− u2)1{u1≤u2≤s}du1du2ds =
1

24
∆4

k.

Consequently, we have shown that∫ tk+1

tk

∫ tk+1

tk

∫ tk+1

tk

E [(Ys − Yu1) (Ys − Yu2)] du1du2ds =
1

6
φ2(tk)∆

4
k +O(∆

9/2
k )

and that

E
[∫ T

0
|ϕ(ti)

s |2dt
]

=

m(N)−1∑
k=0

1

∆2
k

∫ tk+1

tk

∫ tk+1

tk

∫ tk+1

tk

E [(Ys − Yu1) (Ys − Yu2)] du1du2ds

=
1

6

m(N)−1∑
k=0

φ2(tk)∆
2
k +O(∆3/2

max)

with ∆max = maxk=0,...,m(N)−1 |tk+1 − tk|. Since by construction

∆max ≤ Cα ·N−α

uniformly over all discretizations, the assertion follows.

Thus, we have shown

E
[∫ T

0
|ϕ(ti),α

s |2ds
]
=

1

6

m(N)−1∑
k=0

φ2(tαk )(∆
α
k )

2 +O(N−3α/2),
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uniformly in (ti) ∈ ΠB(N). Now we can apply Jensen’s inequality, to obtain

√
N ·

(
E
[∫ T

0
|ϕ(ti),α

s |2dt
])1/2

=
√
N

1

6

m(N)−1∑
k=0

φ2(tαk )(∆
α
k )

2 +O(N−3α/2)

1/2

≥
√
N

1

6

m(N)−1∑
k=0

φ2(tαk )(∆
α
k )

2

1/2

−O(N1/2−3α/4)

=
√
N
√
m(N)

1

6

1

m(N)

m(N)−1∑
k=0

φ2(tαk )(∆
α
k )

2

1/2

−O(N1/2−3α/4)

≥
√
N√

m(N)

1√
6

m(N)−1∑
k=0

φ(tαk )∆
α
k −O(N1/2−3α/4).

Since φ is a Hölder-1/4-function due to (10.7), we have that

m(N)−1∑
k=0

φ(tαk )∆
α
k =

∫ T

0
φ(t)dt+O(N−α/4)

and

√
N ·

(
E
[∫ T

0
|ϕ(ti),α

s |2dt
])1/2

≥
√
N√

m(N)

1√
6

∫ T

0
φ(t)dt−O(N−α/4)−O(N1/2−3α/4),

uniformly in (ti) ∈ ΠB(N). Choosing α ∈ (2/3, 1) we finally obtain

lim inf
N→∞

inf
(ti)∈ΠB(N)

√
N
√
1− ρ2

(
E
[∫ T

0
|ϕ(ti),α

s |2dt
])1/2

≥
√

1− ρ2
1√
6

∫ T

0
φ(t)dt,

since lim infN→∞
√
N√

m(N)
= 1. Together with (10.5), this finishes the proof of Theorem

10.3.

10.3 Upper Bound

As shown in Lemma 10.4, a key step in our analysis is an idea of [47] to rewrite SDE
(10.1) as

dXt = ρdF (Vt) + h(Vt)dt+
√
1− ρ2f(Vt)dBt, X0 = x,

dVt = b (Vt) dt+ σ (Vt) dWt, V0 = v,
(10.8)
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where

F (y) =

∫ y

v

f

σ
(z)dz, h(y) = r − 1

2
f2(y)− ρ

(
bf

σ
+

1

2

(
σf ′ − σ′f

))
(y).

We now provide a matching upper bound to the lower bound from Theorem 10.3 by
constructing a suitable discretization scheme for XT . Using SDE (10.8), an approxima-
tion scheme of XT on the discretization grid {0 = t0 < t1 < ... < tN = T} is then given
by

x̂tN = x+ ρ (F (v̂tN )− F (v)) +
N−1∑
k=0

h(v̂tk)(tk+1 − tk)

+
√

1− ρ2

(
N−1∑
k=0

1

2

(
f(v̂tk) + f(v̂tk+1

)
) (

Btk+1
−Btk

))
,

(10.9)

where v̂ is an approximation of the volatility process V . We need the following assump-
tions:

Assumption 10.11. (a) We have f, h ∈ C2(D;R) and

sup
t∈[0,T ]

E

[(
h′b+ h′′

σ2

2

)2

(Vt)

]
< ∞, sup

t∈[0,T ]
E
[(
h′σ
)2

(Vt)
]
< ∞,

sup
t∈[0,T ]

E

[(
f ′b+ f ′′σ

2

2

)2

(Vt)

]
< ∞, sup

t∈[0,T ]
E
[(
f ′σ
)2

(Vt)
]
< ∞.

(b) The mapping
φ : [0, T ] → R, φ(t) =

(
E
[
(f ′σ)2(Vt)

])1/2
satisfies φ ∈ C([0, T ]; (0,∞)) and the discretization points are given by

tk = Φ−1(k/N), k = 0, . . . , N,

where

Φ : [0, T ] → [0, 1], Φ(y) =

∫ y
0 φ(t)dt∫ T
0 φ(t)dt

.

(c) Consider the scheme (10.9) and let ε > 0. We assume that there exists a constant
Cε > 0 such that

sup
k=0,...,N

E
[
|h(Vtk)− h(v̂tk)|

2
]
≤ Cε∆

1+ε
max,

sup
k=0,...,N

E
[
|f(Vtk)− f(v̂tk)|

2
]
≤ Cε∆

1+ε
max
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and

E
[
|F (VT )− F (v̂tN )|

2
]
≤ Cε∆

1+ε
max,

where

∆max = max
k=1,...,N

|tk − tk−1|.

This second set of assumptions is to (a) control the Itō-Taylor expansion of (h(Vt))t∈[0,T ]

and (f(Vt))t∈[0,T ], (b) to define the discretization points and (c) to bound the error of
the approximation of the volatility.

Proposition 10.12. Let Assumptions 10.1 and 10.11 hold. Then, the scheme (10.9)
satisfies

lim sup
N→∞

√
N
(
E
[
|XT − x̂tN |

2
])1/2

≤
√

1− ρ2

4

∫ T

0

(
E
[
(f ′σ)2(Vt)

])1/2
dt.

10.4 Proof of Proposition 10.12

We split the proof of Proposition 10.12 into several parts and use the notation

∆k = tk+1 − tk, ∆kB = Btk+1
−Btk , k = 0, 1, . . . , N − 1.

First, we show the following lemma.

Lemma 10.13. Let Assumptions 10.1 and 10.11 hold. For the approximation scheme
(10.9) there exists ε > 0 such that

(
E
[
|XT − x̂tN |

2
])1/2

≤
√
1− ρ2

E

∣∣∣∣∣
∫ T

0
f(Vt)dBt −

N−1∑
k=0

f(Vtk) + f(Vtk+1)

2
∆kB

∣∣∣∣∣
2
1/2

+O

(
∆

1
2
+ε

max

)
.

120



10. Optimal L2-Approximation of Stochastic Volatility Models

Proof. First, we have by the Minkowski inequality

(
E
[
|XT − x̂tN |

2
])1/2

= E

[∣∣∣∣∣ρ (F (VT )− F (v̂tN )) +
N−1∑
k=0

(∫ tk+1

tk

h(Vt)dt− h(v̂tk)∆k

)

+
√
1− ρ2

N−1∑
k=0

(∫ tk+1

tk

f(Vt)dBt −
1

2

(
f(v̂tk) + f(v̂tk+1

)
)
∆kB

)∣∣∣∣∣
2
1/2

≤ E
[
|ρ (F (VT )− F (v̂tN ))|

2
]1/2

+ E

∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk

(h(Vt)− h(v̂tk)) dt

∣∣∣∣∣
2
1/2

+ E

∣∣∣∣∣√1− ρ2
N−1∑
k=0

(∫ tk+1

tk

f(Vt)dBt −
1

2

(
f(v̂tk) + f(v̂tk+1

)
)
∆kB

)∣∣∣∣∣
2
1/2

=: A+B + C.

Then, we have by Assumption 10.11 (c) that

A = |ρ|E
[
|F (VT )− F (v̂tN )|

2
]1/2

≤ C(∆max)
1
2
+ ε

2 .

For the second term, we have

B = E

∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk

(h(Vt)− h(Vtk)) dt+

N−1∑
k=0

∫ tk+1

tk

(h(Vtk)− h(v̂tk)) dt

∣∣∣∣∣
2
1/2

≤ E

∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk

(h(Vt)− h(Vtk)) dt

∣∣∣∣∣
2
1/2

+ E

∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk

(h(Vtk)− h(v̂tk)) dt

∣∣∣∣∣
2
1/2

=: B1 +B2

by the Minkowski inequality. By Itō’s formula, integration by parts, the Itō-isometry,
the Cauchy-Schwarz inequality, the Minkowski inequality and Assumption 10.11 (a), we
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have

B1 = E

∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk

∫ t

tk

(
h′b+

σ2

2
h′′
)
(Vs)dsdt+

N−1∑
k=0

∫ tk+1

tk

∫ t

tk

(
h′σ
)
(Vs)dWsdt

∣∣∣∣∣
2
1/2

= E

[∣∣∣∣∣
N−1∑
k=0

∫ tk+1

tk

(tk+1 − s)

(
h′b+

σ2

2
h′′
)
(Vs)ds

+

N−1∑
k=0

∫ tk+1

tk

(tk+1 − s)
(
h′σ
)
(Vs)dWs

∣∣∣∣∣
2
1/2

≤ E

[∣∣∣∣∫ T

0
(η+(t)− t)

(
h′b+

σ2

2
h′′
)
(Vt)dt

∣∣∣∣2
]1/2

+ E

[∣∣∣∣∫ T

0
(η+(t)− t)

(
h′σ
)
(Vt)dWt

∣∣∣∣2
]1/2

≤

(
T (∆max)

2

∫ T

0
E

[(
h′b+

σ2

2
h′′
)2

(Vt)

]
dt

)1/2

+

(
T (∆max)

2

∫ T

0
E
[(
h′σ
)2

(Vt)
]
dt

)1/2

≤ C∆max,

where η+(t) := min{tk ∈ {t0, t1, ..., tN} : tk ≥ t}. By the Hölder inequality and As-
sumption 10.11 (c), we obtain

B2 = E

[(∫ T

0

(
h(Vη(t))− h

(
v̂η(t)

))
dt

)2
]1/2

≤ T 1/2

(∫ T

0
E
[∣∣h(Vη(t))− h

(
v̂η(t)

)∣∣2] dt)1/2

≤ C(∆max)
1
2
+ ε

2 ,

where η(t) := max{tk ∈ {t0, t1, ..., tN} : tk ≤ t}. The third term can be written as

C =
√

1− ρ2E

[∣∣∣∣∣
∫ T

0
f(Vt)dBt −

N−1∑
k=0

f(Vtk) + f(Vtk+1
)

2
∆kB

+
N−1∑
k=0

f(Vtk)− f(v̂tk) + f(Vtk+1
)− f(v̂tk+1

)

2
∆kB

∣∣∣∣∣
2
1/2
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≤
√
1− ρ2E

∣∣∣∣∣
∫ T

0
f(Vt)dBt −

N−1∑
k=0

f(Vtk) + f(Vtk+1
)

2
∆kB

∣∣∣∣∣
2
1/2

+
√
1− ρ2E

(1

2

N−1∑
k=0

(f(Vtk)− f(v̂tk))∆kB

)2
1/2

+
√
1− ρ2E

(1

2

N−1∑
k=0

(
f(Vtk+1

)− f(v̂tk+1
)
)
∆kB

)2
1/2

=: C1 + C2 + C3.

The terms C2 and C3 can be bounded analogously using Assumption 10.11 (c) and the
independence of W and B. That is, we have

C2 =

√
1− ρ2

2

(
N−1∑
k=0

E
[
|(f(Vtk)− f(v̂tk))∆kB|2

])1/2

=

√
1− ρ2

2

(
N−1∑
k=0

E
[
|f(Vtk)− f(v̂tk)|

2
]
E
[
|∆kB|2

])1/2

≤
√
1− ρ2

2

(
N−1∑
k=0

∆2+ε
k

)1/2

≤ C(∆max)
1
2
+ ε

2

and

C3 ≤ C(∆max)
1
2
+ ε

2 .

This concludes the proof of this lemma.

The discretization points given by

tk = Φ−1(k/N), k = 0, 1, . . . , N, where Φ(y) =

∫ y
0 φ(t)dt∫ T
0 φ(y)dy

, x ∈ [0, T ],

are regular, since

cφ := sup
x∈[0,T ]

1

φ(x)
< ∞

due to Assumption 10.11 (b). More precisely, we have

∆max = max
k=1,...,N

|tk − tk−1| ≤ cφ · 1

N
. (10.10)
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Since Φ′(x) = φ(x), this follows from an application of the mean value theorem. We
have

Φ−1

(
k + 1

N

)
− Φ−1

(
k

N

)
=
(
Φ−1

)′
(ξk)

1

N
=

1

Φ′ (Φ−1 (ξk))

1

N
=

1

φ(τk)

1

N

with ξk ∈
[
k
N , k+1

N

]
and τk = Φ−1(ξk) ∈ [tk, tk+1]. This gives

∆max = max
k=0,...,N−1

∣∣∣∣Φ−1

(
k + 1

N

)
− Φ−1

(
k

N

)∣∣∣∣ ≤ cφ · 1

N
,

which is equation (10.10).
Assumption 10.11 (a) and an Itō-Taylor expansion also imply that there exists a constant
C > 0 such that

sup
s,t∈[0,T ]

E
[
|f(Vt)− f(Vs)|2

]
≤ C · |t− s|. (10.11)

Using (10.10) and (10.11) we can proceed analogously to the proof of Lemma 10.7 and
obtain the following result.

Lemma 10.14. Under Assumptions 10.1 and 10.11 we have

∫ T

0
f(Vt)dBt −

N−1∑
k=0

f(Vtk) + f(Vtk+1)

2
∆kB

d
= Z

(
N−1∑
k=0

∫ tk+1

tk

(
f(Vt)−

1

2

(
f(Vtk) + f(Vtk+1

)
))2

dt

)1/2

with

Z ∼ N (0, 1).

Thus Lemma 10.13 gives that

E
[
|XT − x̂tN |

2
]1/2

≤
√

1− ρ2RN +O
(
N− 1

2
−ε
)

with

RN :=

(
N−1∑
k=0

∫ tk+1

tk

E

[(
f(Vt)−

1

2

(
f(Vtk) + f(Vtk+1

)
))2

]
dt

)1/2

.

The following result finishes the proof of Proposition 10.12.
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Lemma 10.15. (i) Under Assumptions 10.1 and 10.11 we have

RN =
1

2

(
N−1∑
k=0

∫ tk+1

tk

(tk+1 − tk)φ
2(t)dt

)1/2

+O(N−3/4).

(ii) Under Assumptions 10.1 and 10.11 we have

lim sup
N→∞

√
N E

[
|XT − x̂tN |

2
]1/2

≤
√

1− ρ2

4

∫ T

0
φ(t)dt.

Proof. (i) An Itō-Taylor expansion yields

2f(Vt)− (f(Vtk) + f(Vtk+1
)

= (f(Vt)− f(Vtk)) +
(
f(Vt)− f(Vtk+1

)
)

=

∫ t

tk

(
f ′b+ f ′′σ

2

2

)
(Vs)ds+

∫ t

tk

(f ′σ)(Vs)dWs

−
∫ tk+1

t

(
f ′b+ f ′′σ

2

2

)
(Vs)ds−

∫ tk+1

t
(f ′σ)(Vs)dWs

=

∫ tk+1

tk

sign(t− s)

(
f ′b+ f ′′σ

2

2

)
(Vs)ds+

∫ tk+1

tk

sign(t− s)(f ′σ)(Vs)dWs.

Under Assumption 10.11 (a) and using the Cauchy-Schwarz inequality, the Hölder in-
equality and the Itō-isometry there exists C > 0 such that

E

[∣∣∣∣∫ tk+1

tk

sign(t− s)(f ′b+ f ′′σ
2

2
)(Vs)ds

∣∣∣∣2
]
≤ C ·N−2

and

E
[∣∣∣∣∫ tk+1

tk

sign(t− s)(f ′b+ f ′′σ
2

2
)(Vs)ds

∫ tk+1

tk

sign(t− s)(f ′σ)(Vs)dWs

∣∣∣∣] ≤ C ·N−3/2.

Another application of the Itō-isometry gives

Rn =
1

2

(
N−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

E
[
(f ′σ)2(Vs)

]
dsdt

)1/2

+O(N−3/4),

which concludes the proof of part (i).
(ii) With part (i), we have shown that

E
[
|XT − x̂tN |

2
]1/2

≤
√

1− ρ2

4

(
N−1∑
k=0

∫ tk+1

tk

(tk+1 − tk)φ
2(t)dt

)1/2

+O(N−3/4) +O(N−1/2−ε)

(10.12)
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Recall that

tk+1 − tk = Φ−1

(
k + 1

N

)
− Φ−1

(
k

N

)
=

1

φ(τk)

1

N

with τk ∈ [tk, tk+1]. Therefore, we have

N
N−1∑
k=0

∫ tk+1

tk

(tk+1 − tk)φ
2(t)dt =

N−1∑
k=0

∫ tk+1

tk

φ2(t)

φ(τk)
dt

=

N−1∑
k=0

φ(τk)(tk+1 − tk) +

N−1∑
k=0

∫ tk+1

tk

φ2(t)− φ2(τk)

φ(τk)
dt.

Since continuous functions with a compact domain of definition are uniformly continu-
ous, we have that

lim
N→∞

sup
k=0,...,N−1

sup
t∈[tk,tk+1]

|φ(t)− φ(τk)| = 0.

The strict positivity and Riemann-integrability of φ imply now that

lim
N→∞

N

N−1∑
k=0

∫ tk+1

tk

(tk+1 − tk)φ
2(t)dt =

∫ T

0
φ(t)dt

and this gives the desired result together with Equation (10.12).

10.5 Application to the Generalized Log-Heston Model

As already mentioned, the prototype example for SDE (10.1) is the generalized log-
Heston model

dXt =

(
r − 1

2
Vt

)
dt+

√
Vt

(
ρdWt +

√
1− ρ2dBt

)
, X0 = x,

dVt = κ(θ − Vt)dt+ σV γ
t dWt, V0 = v,

(10.13)

where κ, θ, σ > 0, γ ∈
[
1
2 , 1
]

with ν > 1 if γ = 1/2. For γ = 1
2 , V is the CIR process,

for γ ∈
(
1
2 , 1
)

the volatility process is the CEV process (see [19] and Section 2.2) and
for γ = 1 we are in the case of the Brennan-Schwartz model [12].
In this setup, it is well known that SDE (10.13) has a unique strong solution and that
we have

P (Vt ∈ (0,∞), t ≥ 0) = 1, (10.14)

which is Assumption 10.1. See Sections 2.1 and 2.2 for γ < 1. For γ = 1, equation
(10.14) follows from the explicit representation

Vt = v exp

(
−
(
κ+

σ2

2

)
t+ σWt

)
+

∫ t

0
κθ exp

(
−
(
κ+

σ2

2

)
(t− s) + σ (Wt −Ws)

)
ds

(10.15)
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(see Satz 42 in [52]).

10.5.1 Verifying Assumption 10.2

We have
f(y) =

√
y, σ(y) = σyγ ,

so Assumption 10.2 (a) is also satisfied, since these maps are infinitely differentiable on
D = (0,∞).
Now, it remains to verify condition 10.2 (b). Here we have(

f ′b+
1

2
f ′′σ2

)
(y) =

κθ

2
√
y
− κ

2

√
y − σ2

8
y2γ−

3
2

and
(f ′σ)(y) =

σ

2
yγ−1/2.

We will need the following Lemma:

Lemma 10.16. We have
sup

t∈[0,T ]
E [V p

t ] < ∞

for all p ∈ R if γ = 1.

Proof. For γ = 1, equation (10.15) yields

1

Vt
≤ 1

v
exp

((
κ+

σ2

2

)
t− σWt

)
and the statement follows in this case from

E [exp (αWt)] = exp

(
α2

2
t

)
, α ∈ R, t ≥ 0. (10.16)

the exponential integrability of the Brownian motion.

Now Proposition 2.2, Proposition 2.6, Lemma 10.16 and the Minkowski inequality yield
that

sup
t∈[0,T ]

E

[∣∣∣∣(f ′b+
1

2
f ′′σ2

)
(Vt)

∣∣∣∣2
]
= sup

t∈[0,T ]
E

[∣∣∣∣ κθ

2
√
Vt

− κ

2

√
Vt −

σ2

8
V

2γ− 3
2

t

∣∣∣∣2
]
< ∞

for γ ∈
[
1
2 , 1
]

with ν > 1 if γ = 1/2. Note that

|zα − yα| = |α|
∣∣∣∣∫ z

y
uα−1du

∣∣∣∣ ≤ |α| |z − y|
(
zα−1 + yα−1

)
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for α ∈ R, y, z > 0. For γ > 1/2, we thus have

E
[∣∣(f ′σ)(Vt)− (f ′σ)(Vs)

∣∣2] ≤ C E

[∣∣∣∣∫ t

s
κ(θ − Vu)du+ σ

∫ t

s
V γ
u dWu

∣∣∣∣4
]1/2

≤ C|t− s|

by Proposition 2.6, Lemma 10.16, the Minkowski, Hölder and the Burkholder-Davis-
Gundy inequality. For γ = 1/2, the function f ′σ is constant. Hence, Assumption 10.2
is fulfilled and we have established the following proposition:

Proposition 10.17. Assume that γ ∈ [12 , 1] and that ν > 1 if γ = 1
2 . For SDE (10.13)

we then have

lim inf
N→∞

√
N e(N) ≥ σ

√
1− ρ2√
24

∫ T

0

(
E
[
V 2γ−1
t

])1/2
dt. (10.17)

For the cases γ ∈
{
1
2 , 1
}
, we can write the right side of (10.17) in a more explicit way.

For γ = 1
2 , we have

E
[
V 2γ−1
t

]
= E

[
V 0
t

]
= 1, t ∈ [0, T ],

and for γ = 1 we have

E
[
V 2γ−1
t

]
= E [Vt] = ve−κt + θ

(
1− e−κt

)
, t ∈ [0, T ].

10.5.2 Verifying Assumption 10.11

For the upper bound the functions of interest in the generalized Heston model are

f(y) =
√
y, b(y) = κ (θ − y) , σ(y) = σyγ

and

F (y) =
1

σ
(
3
2 − γ

) (y 3
2
−γ − v

3
2
−γ
)
,

h(y) = r − 1

2
y − ρ

(
κ(θ − y)

σ
y

1
2
−γ +

σ

2
yγ−

1
2

(
1

2
− γ

))
.

In the following we focus on γ = 1
2 and γ = 1. The case γ ∈ (12 , 1) can be analyzed

similarly by extending the results from [2] and [62] to suitable non-equidistant (but non-
adaptive) discretizations, but is not treated in this thesis for the sake of conciseness.

The case γ = 1
2

Here we have

f(y) = y1/2, b(y) = κ (θ − y) , σ(y) = σy1/2
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and

F (y) =
1

σ
(y − v), h(y) = r − 1

2
y − ρ

κ(θ − y)

σ

and the functions

(0,∞) ∋ y 7→
(
h′b+ h′′

σ2

2

)
(y) ∈ R, (0,∞) ∋ y 7→ (h′σ)(y) ∈ R,

(0,∞) ∋ y 7→
(
f ′b+ f ′′σ

2

2

)
(y) ∈ R, (0,∞) ∋ y 7→ (f ′σ)(y) ∈ R,

appearing in Assumption 10.11 (a) are bounded (in absolute value) by the function

(0,∞) ∋ y 7→ C
(
1 + y + y−1/2

)
∈ (0,∞),

for a suitable constant C > 0. Thus, this assumption is verified due to Proposition
2.2. In particular (f ′σ)(y) = σ

2 and so Assumption 10.11 (b) is trivially satisfied. Note
that the corresponding discretization points are equidistant, since Φ(y) = y/T . For
condition (c) we need to choose a particular approximation scheme. Here, we take the
drift-implicit Euler scheme from Section 3.3.3 which approximates the process Z =

√
V

and is given by

zk+1 = zk +

(
4κθ − σ2

8

1

zk+1
− κ

2
zk+1

)
∆t+

σ

2
∆kW,

vk+1 = z2k+1

(10.18)

where ∆t = T/N , tk = k∆t and z0 =
√
v. In [2] it is shown that

sup
k=0,...,N

E
[∣∣∣ẑtk −√Vtk

∣∣∣p] ≤ Cp(∆t)p, sup
k=0,...,N

E
[∣∣ẑ2tk − Vtk

∣∣p] ≤ Cp(∆t)p

for its time-continuous extension from Equation (7.8) if ν > 2 and 1 ≤ p < 2
3ν and

sup
k=0,...,N

E [|ẑtk |
p] < ∞

for all p ≥ 1. For ε ∈ (0, 13) and ν > 2 a standard argument using Hölder’s inequality
yields

sup
k=0,...,N

E
[∣∣∣ẑtk −√Vtk

∣∣∣2] ≤ Cε(∆t)
4
3
−ε, sup

k=0,...,N
E
[∣∣ẑ2tk − Vtk

∣∣2] ≤ Cε(∆t)
4
3
−ε.

Since f(y) =
√
y, and F, h are linear, Assumption 10.11 (c) is satisfied for

v̂tk = ẑ2tk , k = 0, . . . , N.

Combining the upper and the lower bound and taking into account that (f ′σ)(y) = σ
2

we obtain the following result:
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Proposition 10.18. Assume that γ = 1
2 and ν > 2. For SDE (10.13) and scheme

(10.9) where (v̂tk)k∈{0,...,N} is given by the drift-implicit Euler scheme (10.18) with dis-
cretization points tk = kT/N , k = 0, . . . , N , we have

σ
√

1− ρ2T√
24

≤ lim inf
N→∞

√
N e(N)

≤ lim sup
N→∞

√
NE

([
|XT − x̂tN |

2
])1/2

≤ σ
√

1− ρ2T

4
.

The case γ = 1

In this case the coefficients of the SDE read as

f(y) = y1/2 b(y) = κ (θ − y) σ(y) = σy

and

F (y) =
2

σ

(
y1/2 − v1/2

)
h(y) = r − 1

2
y − ρ

(
κ(θ − y)

σy1/2
− σ

4
y1/2

)
.

The functions

(0,∞) ∋ y 7→
(
h′b+ h′′

σ2

2

)
(y) ∈ R, (0,∞) ∋ y 7→ (h′σ)(y) ∈ R,

(0,∞) ∋ y 7→
(
f ′b+ f ′′σ

2

2

)
(y) ∈ R, (0,∞) ∋ y 7→ (f ′σ)(y) ∈ R,

appearing in Assumption 10.11 (a) are of the form

(0,∞) ∋ y 7→
k∑

ℓ=−k

cℓy
ℓ/2 ∈ R

for a suitable k ∈ N and cℓ ∈ R for ℓ = −k,−k + 1, . . . , k. Lemma 10.16 implies then
that Assumption 10.11 (a) is satisfied. Moreover, the function φ is given by

φ(t) =
(
E
[
(f ′σ)2(Vt)

])1/2
=

σ

2
(E [Vt])

1/2 =
σ

2

(
v0e

−κt + θ
(
1− e−κt

))1/2
for t ∈ [0, T ] which is continuous and strictly positive. Therefore, also Assumption 10.11
(b) is satisfied. For condition (c) we need to choose again a particular approximation
scheme. Here, we take the Euler-type discretization

v̂tk = v exp

(
−
(
κ+

σ2

2

)
tk + σWtk

)
+

k−1∑
l=0

κθ exp

(
−
(
κ+

σ2

2

)
(tk − tl) + σ (Wtk −Wtl)

)
(tl+1 − tl)

(10.19)
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for k = 0, . . . , N . We set
∆max := max

k=1,...,N
|tk+1 − tk|.

For scheme (10.19), we have the following estimates:

Lemma 10.19. Let p ≥ 1 and q ∈ R. There exist constants Cp > 0 such that

sup
k=0,...,N

E [|Vtk − v̂tk |
p] ≤ Cp(∆max)

p. (10.20)

Moreover, we have

sup
k=0,...,N

E [|v̂tk |
q] < ∞. (10.21)

Proof. Let

g(t, w) := κθ exp

(
−
(
κ+

σ2

2

)
t+ σw

)
, h(t, w) := exp

((
κ+

σ2

2

)
t− σw

)
.

Then we can write

Vt = g(t,Wt)

(
v + κθ

∫ t

0
h(s,Ws)ds

)
and

v̂tk = g(tk,Wtk)

(
v + κθ

∫ tk

0
h(η(s),Wη(s))ds

)
.

It is well known that

max
k=0,...,N

E
[∣∣∣∣∫ tk

0
h(s,Ws)ds−

∫ tk

0
h(η(s),Wη(s))ds

∣∣∣∣p] ≤ Cp(∆max)
p, (10.22)

however we could not find a reference for this. The closest reference is [29], which con-
siders SDEs with bounded coefficients instead of geometric Brownian motion. However,
the above estimate can be shown using standard arguments based on an Itō-Taylor ex-
pansion, the Minkowski, Hölder and Burkholder-Davis-Gundy inequalities, see also the
proof of Lemma 10.13. Thus, another application of the Hölder inequality, of equation
(10.16) and of equation (10.22) yield

sup
k=0,...,N

E [|Vtk − v̂tk |
p]

≤ (κθ)p sup
k=0,...,N

(
E
[
g(tk,Wtk)

2p
])1/2

· sup
k=0,...,N

(
E

[∣∣∣∣∫ tk

0
h(s,Ws)ds−

∫ tk

0
h(η(s),Wη(s))ds

∣∣∣∣2p
])1/2

≤ Cp(∆max)
p,
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which is (10.20), i.e. the first statement.
For the second statement (10.21) note that

1

v̂tk
≥ 1

v
exp

((
κ+

σ2

2

)
tk − σWtk

)
,

and for q < 0 the assertion follows again from equation (10.16). For q ≥ 1 we can use
that

v̂tk = Vtk + (v̂tk − Vtk)

Lemma 10.16, the estimate (10.20) and the Minkowski inequality. Finally, for q ∈ [0, 1)
we can apply |y|q ≤ 1 + |y|.

Now recall that

f(y) =
√
y, F (y) =

2

σ

(√
y −

√
v
)
,

h(y) = r − 1

2
y − ρ

(
κθ

σ

1
√
y
−
(κ
σ
+

σ

4

)√
y

)
.

Since
|
√
z −√

y| ≤
(√

z +
√
y
)
|z − y|, y, z > 0,

and ∣∣∣∣ 1√
z
− 1

√
y

∣∣∣∣ ≤ 1

2

(
z−3/2 + y−3/2

)
|z − y|, y, z > 0,

Lemma 10.16 and 10.19 now imply that also Assumption 10.11 (c) is satisfied. Thus we
obtain the following result:

Proposition 10.20. Assume that γ = 1 and let φ(t) = σ
2

(
ve−κt + θ

(
1− e−κt

))1/2
, t ∈

[0, T ]. For SDE (10.13) and the schemes (10.9) and (10.19) with discretization points
given by tk = Φ−1(k/N), k = 0, 1, . . . , N , where Φ(y) =

∫ y
0 φ(t)dt/

∫ T
0 φ(t)dt, we have√

1− ρ2

6

∫ T

0
φ(t) dt ≤ lim inf

N→∞

√
N e(N)

≤ lim sup
N→∞

√
N
(
E
[
|XT − x̂tN |

2
])1/2

≤
√

1− ρ2

4

∫ T

0
φ(t) dt.
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Chapter 11

Conclusion

In this thesis, we analyzed several numerical schemes for the log-Heston model and the
CIR process. Our main motivation was to provide weak and strong convergence results
for explicit Euler-type discretization schemes which are very easy to implement. For
these schemes, results from the literature were rare and came with strong restrictions
on the parameter range.

Our first main result was Theorem 6.3 where we provided the first weak convergence re-
sult for an Euler discretization of the log-Heston model. We could also observe in Section
9.1 that our theoretical convergence rates are attained under even milder assumptions.

In Chapter 7 we could prove strong convergence rates for all known Euler-type schemes
of the CIR process and the log-Heston model (Theorem 7.13 and Proposition 7.14). For
the first group of Euler schemes, which allow negative values of the CIR approximation
throughout the simulation, our results hold without any additional assumptions. For
the second group, our proof is valid for ν > 1. Together with Theorem 8.1 we could
show that the achieved convergence order of the Euler schemes is already optimal for the
log-Heston model in this parameter range. In terms of the convergence order, there is no
advantage in using a more sophisticated scheme. Our simulations in Section 9.2 confirm
these theoretical results. For the parameter range ν ≤ 1, the numerical simulations
indicate that an even better convergence order than the one from Proposition 7.14
might be possible.

In Proposition 6.9, we extended existing weak convergence results for a Milstein-type
scheme. In Proposition 7.15 we could also show new strong convergence results for this
method. Both proofs hold for the whole parameter range where the implicit Milstein
scheme is positivity preserving.

Finally, we analyzed the minimal L2-error for general stochastic volatility models in
Chapter 10. We could prove a lower bound in Theorem 10.3 and a matching upper
bound (up to a factor

√
3/2) in Proposition 10.12.

133





List of Figures

9.1 Call Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.2 Put Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.3 Digital Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.4 Call Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.5 Put Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.6 Digital Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
9.7 Call Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.8 Put Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.9 Digital Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
9.10 Call Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.11 Put Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.12 Digital Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.13 Error estimates for Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.14 Error estimates for Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . 96
9.15 Error estimates for Model 3 . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.16 Error estimates for Model 4 . . . . . . . . . . . . . . . . . . . . . . . . . 98

135





List of Tables

3.1 Euler schemes from [67]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.1 Overview of weak convergence rates . . . . . . . . . . . . . . . . . . . . . 56

9.1 Parameters for the weak convergence test. . . . . . . . . . . . . . . . . . 89
9.2 Estimated weak convergence orders Model 1 . . . . . . . . . . . . . . . . 91
9.3 Estimated weak convergence orders Model 2 . . . . . . . . . . . . . . . . 91
9.4 Estimated weak convergence orders Model 3 . . . . . . . . . . . . . . . . 92
9.5 Estimated weak convergence orders Model 4 . . . . . . . . . . . . . . . . 93
9.6 Parameters for the strong convergence test. . . . . . . . . . . . . . . . . 95
9.7 Estimated strong convergence orders Model 1 . . . . . . . . . . . . . . . 95
9.8 Estimated strong convergence orders Model 2 . . . . . . . . . . . . . . . 97
9.9 Estimated strong convergence orders Model 3 . . . . . . . . . . . . . . . 98
9.10 Estimated strong convergence orders Model 4 . . . . . . . . . . . . . . . 98

137





Bibliography

[1] A. Alfonsi. On the discretization schemes for the CIR (and Bessel squared) pro-
cesses. Monte Carlo Methods Appl., 11(4):355–384, 2005.

[2] A. Alfonsi. High order discretization schemes for the CIR process: application to
affine term structure and Heston models. Math. Comput., 79(269):209–237, 2010.

[3] M. Altmayer. Quadrature of discontinuous SDE functionals using Malliavin inte-
gration by parts. PhD thesis, Mannheim, 2015.

[4] M. Altmayer and A. Neuenkirch. Multilevel Monte Carlo quadrature of discontin-
uous payoffs in the generalized Heston model using Malliavin integration by parts.
SIAM J. Finan. Math., 6(1):22–52, 2015.

[5] M. Altmayer and A. Neuenkirch. Discretising the Heston model: an analysis of the
weak convergence rate. IMA J. Numer. Anal., 37(4):1930–1960, 2017.

[6] L.B.G. Andersen. Simple and efficient simulation of the Heston stochastic volatility
model. J. Comput. Finance, 11(3):29–50, 2008.

[7] L.B.G. Andersen and V.V. Piterbarg. Moment explosions in stochastic volatility
models. Finance Stoch., 11(1):29–50, 2007.

[8] V. Bally and D. Talay. The law of the Euler scheme for stochastic differential
equations. I: Convergence rate of the distribution function. Probab. Theory Relat.
Fields, 104(1):43–60, 1996.

[9] A. Berkaoui, M. Bossy, and A. Diop. Euler scheme for SDEs with non-Lipschitz
diffusion coefficient: strong convergence. ESAIM: PS, 12:1–11, 2008.

[10] M. Bossy and A. Diop. An efficient discretisation scheme for one dimensional SDEs
with a diffusion coefficient function of the form |x|a, a ∈ [1/2, 1). Research Report
RR-5396, INRIA, 2007. Version 2.

[11] M. Bossy and H. Olivero Quinteros. Strong convergence of the symmetrized Milstein
scheme for some CEV-like SDEs. Bernoulli, 24(3):1995–2042, 2018.

139



[12] M.J. Brennan and E.S. Schwartz. Analyzing convertible bonds. The Journal of
Financial and Quantitative Analysis, 15(4):907–929, 1980.

[13] M. Briani, L. Caramellino, and G. Terenzi. Convergence rate of Markov chains and
hybrid numerical schemes to jump-diffusions with application to the Bates model.
SIAM Journal on Numerical Analysis, 59(1):477–502, 2021.

[14] M. Broadie and Ö. Kaya. Exact simulation of stochastic volatility and other affine
jump diffusion processes. Oper. Res., 54(2):217–231, 2006.

[15] S. Cambanis and Y. Hu. Exact convergence rate of the Euler-Maruyama scheme,
with application to sampling design. Stochastics Stochastics Rep., 59(3-4):211–240,
1996.

[16] F. Castell and J. Gaines. The ordinary differential equation approach to asymptot-
ically efficient schemes for solution of stochastic differential equations. Ann. Inst.
Henri Poincaré, Probab. Stat., 32(2):231–250, 1996.

[17] J.-F. Chassagneux, A. Jacquier, and I. Mihaylov. An explicit Euler scheme with
strong rate of convergence for financial SDEs with non-Lipschitz coefficients. SIAM
J. Financial Math., 7:993–1021, 2016.

[18] J.M.C. Clark and R.J. Cameron. The maximum rate of convergence of discrete
approximations for stochastic differential equations. In Stochastic differential sys-
tems (Proc. IFIP-WG 7/1 Working Conf., Vilnius, 1978), pages 162–171. Springer,
Berlin-New York, 1980.

[19] J.C. Cox. The constant elasticity of variance option pricing model. Journal of
Portfolio Management, 23(5):15–17, 1996.

[20] J.C. Cox, J.E. Ingersoll, and S.A. Ross. A Theory of the Term Structure of Interest
Rates. Econometrica, 55(2):385–407, 1985.

[21] A. Cozma and C. Reisinger. Strong order 1/2 convergence of full truncation Eu-
ler approximations to the Cox-Ingersoll-Ross process. IMA Journal of Numerical
Analysis, 00:1–19, 2018.

[22] T. De Angelis, M. Germain, and E. Issoglio. A numerical scheme for stochastic
differential equations with distributional drift. arXiv:1906.11026v4, 2022.

[23] G. Deelstra and F. Delbaen. Convergence of discretized stochastic (interest rate)
processes with stochastic drift term. Appl. Stochastic Models Data Anal., 14(1):77–
84, 1998.

[24] S. Dereich, A. Neuenkirch, and L. Szpruch. An Euler-type method for the strong
approximation of the Cox–Ingersoll–Ross process. Proc. R. Soc. A, 468(2140):1105–
1115, 2012.

140



Conclusion

[25] D. Duffie and P. Glynn. Efficient Monte Carlo Simulation of Security Prices. Ann.
Appl. Probab., 5(4):897 – 905, 1995.

[26] P.M.N. Feehan and C.A. Pop. A Schauder approach to degenerate-parabolic
partial differential equations with unbounded coefficients. J. Differ. Equations,
254(12):4401–4445, 2013.

[27] W. Feller. Two singular diffusion problems. Annals of Mathematics, 54(1):173–182,
1951.

[28] M. Giles. Multilevel monte carlo path simulation. Operations Research, 56(3):607–
6017, 2008.

[29] E. Gobet and S. Menozzi. Discrete sampling of functionals of Itô processes. In
Séminaire de Probabilités XL, pages 355–374. Berlin: Springer, 2007.

[30] I. Gyöngy and M. Rásonyi. A note on Euler approximations for SDEs with Hölder
continuous diffusion coefficients. Stochastic Process. Appl., 121(10):2189–2200,
2011.

[31] M. Hefter and A. Herzwurm. Optimal strong approximation of the one-dimensional
squared Bessel process. Commun. Math. Sci., 15(8):2121–2141, 2017.

[32] M. Hefter and A. Herzwurm. Strong convergence rates for Cox–Ingersoll–Ross pro-
cesses — Full parameter range. Journal of Mathematical Analysis and Applications,
459(2):1079–1101, 2018.

[33] M. Hefter, A. Herzwurm, and T. Müller-Gronbach. Lower error bounds for
strong approximation of scalar SDEs with non-Lipschitzian coefficients. Ann. Appl.
Probab., 29(1):178–216, 2019.

[34] M. Hefter and A. Jentzen. On arbitrarily slow convergence rates for strong numer-
ical approximations of Cox-Ingersoll-Ross processes and squared Bessel processes.
Finance Stoch., 23(1):139–172, 2019.

[35] S. Heinrich. Multilevel Monte Carlo Methods. In Large-Scale Scientific Computing,
pages 58–67. Springer Berlin Heidelberg, 2001.

[36] S.L. Heston. A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Rev. Financial Studies, 6(2):327–343,
1993.

[37] D. J. Higham and X. Mao. Convergence of the Monte Carlo simulations involving
the mean-reverting square root process. J. Comput. Finance, 8:35–62, 2005.

[38] N. Hofmann, T. Müller-Gronbach, and K Ritter. Optimal approximation of
stochastic differential equations by adaptive step-size control. Math. Comput.,
69(231):1017–1034, 2000.

141



[39] N. Hofmann, T. Müller-Gronbach, and K. Ritter. Step size control for the uniform
approximation of systems of stochastic differential equations with additive noise.
Ann. Appl. Probab., 10(2):616–633, 2000.

[40] N. Hofmann, T. Müller-Gronbach, and K. Ritter. The optimal discretization of
stochastic differential equations. J. Complexity, 17(1):117–153, 2001.

[41] N. Hofmann, T. Müller-Gronbach, and K. Ritter. Linear vs standard information
for scalar stochastic differential equations. J. Complexity, 18(2):394–414, 2002.

[42] T.R. Hurd and A. Kuznetsov. Explicit formulas for Laplace transforms of stochastic
integrals. Markov Process. Relat. Fields, 14(2):277–290, 2008.

[43] M. Hutzenthaler, A. Jentzen, and M. Noll. Strong convergence rates and tempo-
ral regularity for Cox-Ingersoll-Ross processes and Bessel processes with accessible
boundaries. arXiv:1403.6385, 2014.

[44] N. Ikeda and S. Watanabe. Stochastic differential equations and diffusion processes.
North-Holland, 1989.

[45] M. Jeanblanc, M. Yor, and M. Chesney. Mathematical methods for financial mar-
kets. Springer Dordrecht Heidelberg London New York, 2009.

[46] A. Jentzen, T. Müller-Gronbach, and L. Yaroslavtseva. On stochastic differential
equations with arbitrary slow convergence rates for strong approximation. Com-
mun. Math. Sci., 14(6):1477–1500, 2016.

[47] B. Jourdain and M. Sbai. High-order discretization schemes for stochastic volatility
models. J. Comput. Finance, 17(2), 2013.

[48] C. Kahl and P. Jäckel. Fast strong approximation Monte-Carlo schemes for stochas-
tic volatility models. Quant. Finance, 6(6):513–536, 2006.

[49] I. Karatzas and S.E. Shreve. Brownian motion and stochastic calculus. New York,
Springer-Verlag, 2nd edition, 1991.

[50] S. Karlin and H.M. Taylor. A second course in stochastic processes. Academic Press
New York, 1981.

[51] P. Kloeden and A. Neuenkirch. Convergence of numerical methods for stochastic
differential equations in mathematical finance. In Recent Developments in Compu-
tational Finance, chapter 2, pages 49–80. World Sci. Publ., Hackensack, NJ, 2013.

[52] E. Korn and R. Korn. Optionsbewertung und Portfoliooptimierung. Vieweg, 1999.

[53] A. Mickel and A. Neuenkirch. The order barrier for the L1-approximation of the
log-Heston SDE at a single point. arXiv:2212.07252v2; to appear in: A. Hinrichs,
P. Kritzer, F. Pillichshammer (eds.). Monte Carlo and Quasi-Monte Carlo Methods
2022. Springer Verlag.

142



Conclusion

[54] A. Mickel and A. Neuenkirch. The weak convergence rate of two semi-exact dis-
cretization schemes for the Heston model. Risks, 9(1), 2021.

[55] A. Mickel and A. Neuenkirch. Sharp L1-Approximation of the log-Heston SDE by
Euler-type methods. arXiv:2206.03229, 2022.

[56] A. Mickel and A. Neuenkirch. The weak convergence order of two Euler-type
discretization schemes for the log-Heston model. arXiv:2106.10926v2; to appear in:
IMA J. Numer. Anal., 2022.

[57] T. Müller-Gronbach. The optimal uniform approximation of systems of stochastic
differential equations. Ann. Appl. Probab., 12(2):664–690, 2002.

[58] T. Müller-Gronbach. Strong approximation of systems of stochastic differential
equations, Habilitation thesis, Januar 2002.

[59] T. Müller-Gronbach. Optimal pointwise approximation of SDEs based on Brownian
motion at discrete points. Ann. Appl. Probab., 14(4):1605–1642, 2004.

[60] T. Müller-Gronbach and K. Ritter. Minimal errors for strong and weak approxi-
mation of stochastic differential equations. In Monte Carlo and quasi-Monte Carlo
methods 2006. Selected papers based on the presentations at the 7th international
conference ‘Monte Carlo and quasi-Monte Carlo methods in scientific computing’,
Ulm, Germany, August 14–18, 2006., pages 53–82. Berlin: Springer, 2008.

[61] T. Müller-Gronbach and L. Yaroslavtseva. A note on strong approximation of SDEs
with smooth coefficients that have at most linearly growing derivatives. J. Math.
Anal. Appl., 467(2):1013–1031, 2018.

[62] A. Neuenkirch and L. Szpruch. First order strong approximations of scalar SDEs
defined in a domain. Numer. Math., 128(1):103–136, 2014.

[63] N.J. Newton. An asymptotically efficient difference formula for solving stochastic
differential equations. Stochastics, 19:175–206, 1986.

[64] N.J. Newton. An efficient approximation for stochastic differential equations on
the partition of symmetrical first passage times. Stochastics Stochastics Rep.,
29(2):227–258, 1990.

[65] N.J. Newton. Asymptotically efficient Runge-Kutta methods for a class of Itô and
Stratonovich equations. SIAM J. Appl. Math., 51(2):542–567, 1991.

[66] B. Oksendahl. Stochastic Differential Equations : An Introduction with Applica-
tions. Berlin,Heidelberg, Springer-Verlag, 6th edition, 2003.

[67] R. Lord, R. Koekkoek, and D.J.C. van Dijk. A comparison of biased simulation
schemes for stochastic volatility models. Quant. Finance, 10(2):177–194, 2009.

143



[68] D. Revus and M.Yor. Continuous Martingales and Brownian Motion. Springer
Berlin Heidelberg New York, 3rd edition, 1999.

[69] R.D. Smith. An almost exact simulation method for the Heston model. J. Comput.
Finance, 11(1):115–125, 2007.

[70] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes solving
stochastic differential equations. Stochastic Anal. Appl., 8(4):483–509, 1990.

[71] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-based com-
plexity. Computer Science and Scientific Computing. Academic Press, Inc., Boston,
MA, 1988. With contributions by A. G. Werschulz and T. Boult.

[72] A. van Haastrecht and A Pelsser. Efficient, almost exact simulation of the hes-
ton stochastic volatility model. International Journal of Theoretical and Applied
Finance, 13(1):1–43, 2010.

[73] L. Yaroslavtseva. On non-polynomial lower error bounds for adaptive strong ap-
proximation of SDEs. J. Complexity, 42:1–18, 2017.

[74] C. Zheng. Weak Convergence Rate of a Time-Discrete Scheme for the Heston
Stochastic Volatility. SIAM J. Numer. Anal., 55(3):1243–1263, 2017.

144


	Introduction
	Outline
	Notation

	The Heston Model
	The CIR Process
	The CEV Process
	The Price Process

	Simulation Algorithms for the log-Heston Model
	(Almost) Exact Simulation Methods
	Semi-Exact Simulation Methods
	Time-Discrete Simulation Methods
	Monte Carlo Methods

	Properties of Explicit Euler Schemes for the log-Heston Model
	Euler Schemes - Case I
	Euler Schemes - Case II
	The Euler Scheme for the Log-Price Process

	Regularity Results for the Kolmogorov backward PDE
	Weak Convergence
	Semi-Exact Discretization Schemes
	Weak Convergence Order of two Euler-Type Discretization Schemes
	Proof of Theorem 6.3
	Weak Convergence Order of a Milstein-Type  Discretization
	An Overview of Weak Convergence Results

	L1-Approximation of the Log-Heston SDE: Upper Bounds
	Previous Results
	Preliminaries
	L1-approximation of the CIR process
	L1-Approximation of the Heston Model
	Summary

	L1-Approximation of the Log-Heston SDE: Lower Bounds
	Proof of Theorem 8.1

	Numerical Results
	Weak Convergence
	Strong Convergence

	Optimal L2-Approximation of Stochastic Volatility Models
	Lower Bound
	Proof of Theorem 10.3
	Upper Bound
	Proof of Proposition 10.12
	Application to the Generalized Log-Heston Model

	Conclusion
	List of figures
	List of tables

