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ABSTRACT The additive genomic variance in linear models with random marker effects can be defined as a random variable that is in
accordance with classical quantitative genetics theory. Common approaches to estimate the genomic variance in random-effects linear
models based on genomic marker data can be regarded as estimating the unconditional (or prior) expectation of this random additive
genomic variance, and result in a negligence of the contribution of linkage disequilibrium (LD). We introduce a novel best prediction
(BP) approach for the additive genomic variance in both the current and the base population in the framework of genomic prediction
using the genomic best linear unbiased prediction (gBLUP) method. The resulting best predictor is the conditional (or posterior)
expectation of the additive genomic variance when using the additional information given by the phenotypic data, and is structurally in
accordance with the genomic equivalent of the classical additive genetic variance in random-effects models. In particular, the best
predictor includes the contribution of (marker) LD to the additive genomic variance and possibly fully eliminates the missing
contribution of LD that is caused by the assumptions of statistical frameworks such as the random-effects model. We derive an
empirical best predictor (eBP) and compare its performance with common approaches to estimate the additive genomic variance in
random-effects models on commonly used genomic datasets.
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THE additive genetic variance is defined as the variance of
the breeding value (BV) and is the most important de-

terminant of the response of a population to selection
(Falconer and Mackay 1996). The additive variance can be
estimated from observations made on the population and
is a principal component of the (narrow-sense) heritability,
which is one of themain quantities of interest inmany genetic
studies (Falconer and Mackay 1996). The heritability is em-

inent, among other things, for the prediction of the response
to selection in the breeder’s equation (Piepho and Moehring
2007; Hill 2010). Although nonadditive genetic variation ex-
ists, most of the genetic variation is additive, such that it is
usually sufficient to investigate the additive genetic variance
(Hill et al. 2008). More specifically, epistasis is only important
on the gene level but not for the genetic variance (Hill et al.
2008), and Zhu et al. (2015) show that, for human complex
traits, dominance variation contributes little. Nevertheless,
linkage disequilibrium (LD) is an important factor, especially
when departing from random mating and Hardy-Weinberg
equilibrium, which is often the case in animal breeding (Hill
et al. 2008; L. Dempfle, personal communication).

The additive genomic variance is defined as the variance of
a trait that can be explained by a linear regression on a set of
markers (de los Campos et al. 2015).

Many authors have been chasing what is sometimes coined
“missing heritability” (Maher 2008), which means that only a
fraction of the “true” genetic variance can be captured by re-
gression on influential markers. Initially, researchers have used
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genome-wide association studies (GWAS) in order to find
quantitative trait loci (QTL) by single-marker fixed-effect
regression combined with variable selection. After having
added the estimated corresponding genomic variances of
the single statistically significant loci, they asserted that
they could only account for a fraction of the “true” genetic
variance. For instance, Maher (2008) found that only 5%
instead of the widely accepted heritability estimate of 80%
of human height could be explained.

Golan et al. (2014) state that the “true” genetic variance is
generally underestimated when applying variable selection,
e.g., GWAS, to genomic datasets which are typically charac-
terized by their high dimensionality, where the number of
variables (markers) p is much larger than the number of
observations n. It is well known that a lot of traits are influ-
enced by many genes, and that at least some loci with tiny
effects are missed when using variable selection or even sin-
gle-marker regression models.

Consequently, Bernardo (1994) decided to fit all [restric-
tion fragment length polymorphism (RFLP-)] markers in
maize jointly using genomic best linear unbiased prediction
(gBLUP), where he assumes the marker effect vector to be
random. In animal breeding, Meuwissen et al. (2001) used
Bayesian approaches (BayesA and BayesB) to fit all markers
jointly in order to predict BVs.

Then, Yang et al. (2010) estimated the genomic variance
in an approach that they termed genome-wide complex trait
analysis genomic restricted maximum likelihood (GCTA-
GREML) (Yang et al. 2011). They showed that quantifying
the combined effect of all single-nucleotide polymorphisms
(SNPs) explains a larger part of the heritability than only
using certain variants quantified by GWAS methods. They
illustrate their results on a dataset on human height by point-
ing out that they could explain a heritability, also termed
“chip heritability” (Zhou et al. 2013), of �45%. They con-
cluded that the main reason for the remaining missing heri-
tability was incomplete LD of causal variants with the
genotyped SNPs, which refers to the general difference be-
tween the genetic variance and the genomic variance (Powell
et al. 2010; de los Campos et al. 2015). However, the GCTA-
GREML approach can be biased upwards as well as down-
ward (Wolc et al. 2013; de los Campos et al. 2015; Fernando
et al. 2017a; Lehermeier et al. 2017).

Recently, there has been a general discussion whether
estimators for the genomic variance account for LD between
markers, which is defined as the covariance between the
marker genotypes (Bulmer 1971). Some authors argue that
estimators similar to GCTA-GREML lack the contribution of
LD (Krishna Kumar et al. 2016a,b; Lehermeier et al. 2017),
whereas others (Yang et al. 2016) resolutely disagree. More
specifically, Krishna Kumar et al. (2016a,b) state that, in
GCTA-GREML, the contributions of the pmarkers to the phe-
notypic values are assumed to be independent normally dis-
tributed random variables with equal variances. Thus, they
claim that the random contribution made by each marker is
not correlated with the random contributions made by any

other marker, which leads to a negligence of the contribution
of LD to the additive genomic variance.

In a study on the model plant Arabidopsis thaliana (1001
Genomes Consortium 2016), Lehermeier et al. (2017) use
Bayesian ridge regression (BRR) to relate the phenotype
flowering time to the genomic data. They use an estimator
(termed M2) based on the posterior distribution of the
marker effects obtained by Markov Chain Monte Carlo
(MCMC) methods and show that this estimator explains a
larger proportion of the phenotypic variance than the estima-
tor, termedM1, based on gBLUP (VanRaden 2008; Yang et al.
2010, 2011). Lehermeier et al. (2017) argue that the reason
for the better performance of the Bayesian estimator for the
additive genomic variance [already mentioned in Sorensen
et al. (2001), Fernando and Garrick (2013), Zhou et al.
(2013), Fernando et al. (2017b)] is the explicit inclusion of LD.

We show that the additive genomic variance in linear
models with random marker effects (RME) can be defined
as a random variable. Based on this premise, we propose a
novel predictor of the additive genomic variance and place
existing estimators in a joint framework permitting compar-
ison with the new predictor. We contribute to the solution of
many of the above mentioned controversies by reviewing
common approaches to estimate the additive genomic vari-
ance, e.g., GCTA-GREML, and show that they estimate the
unconditional (or prior) expectation of the random additive
genomic variance. Combined with the assumptions on the
unconditional distribution of the marker effects in the
gBLUP-method, this leads to an insufficient adaptation to
the data and a negligence of the contribution of LD.

We introduce a novel best prediction approach for the
additive genomic variance in both the current and the base
population, i.e., we use the conditional (or posterior) expecta-
tion of the random additive genomic variance given the addi-
tional information by the phenotypic values for an improved
adaptation to the data. We decompose the best predictor into
the GCTA-GREML estimator and a function for the contribu-
tion of marker LD, which determineswhether GCTA-GREML is
biased up- or downward. The best predictor is structurally in
accordancewith the genomic equivalent of the additive genetic
variance from classical quantitative genetics, i.e., it explicitly
includes the contribution of LD. We propose an empirical best
predictor (eBP), and illustrate our theoretical results on several
commonly used genomic datasets.

Materials and Methods

Linear models

The connection of the n-vector y of phenotypic values and the
n-vector g of genomic values is given by

y ¼ m1n þ gþ e; (1)

wherem denotes a fixed intercept, 1n :¼ ð1; . . . ; 1Þ⊤ is a n-row-
vector containing 1s, e � Nð0;s2

e InÞ denotes environmental
deviations, and In is the identity matrix of dimension n.

380 N. Schreck, H.-P. Piepho, and M. Schlather

D
ow

nloaded from
 https://academ

ic.oup.com
/genetics/article/213/2/379/5930631 by U

niversitätsbibliothek M
annheim

 Split user on 04 April 2023



The statistical model that is probably most popular in
genomic applications is the random-effects model (REM),
in which the genomic values are assumed to be normally
distributed

g � Nð0;s2
gGÞ; (2)

where G is a variance-covariance matrix and s2
g . 0 is the

variance component of the vector of genomic values g.
In the following, we assume that the genome is mapped

with p 2 ℕ markers and we denote by X the n3 p design
matrix coding the genotypes of the markers.

In this framework, the n3 n-matrix G introduced in Equa-
tion 2 is called the genomic relationshipmatrix (GRM), and is
most commonly defined as

G :¼ PXX⊤P=c; (3)

where P :¼ In 21n1⊤
n=n is the idempotent n3 n-matrix used

for column-wise mean-centering, and c :¼ 2
P

pjð12 pjÞ,
where pj denotes the frequency of the minor allele at marker
j (VanRaden 2008).

Then, the genomic values g can be separated into the
coded genotypes of the single markers X and their corre-
sponding p-vector b of marker effects such that

g¼d PXb ¼
"Xp

j¼1

�
xij2�x�j

�
bj

#
i¼1;...;n

; (4)

holds in distribution, where �x:j :¼
Pn

i¼1xij=n ¼ 2pj for
j ¼ 1; . . . ; p. The p individual components of the marker ef-
fect vector b are drawn at random from a common fixed
normal distribution for each marker genotype:

bj � N
�
0;s2

b

�
; j ¼ 1; . . . ; p (5)

with positive variance component s2
b :¼ s2

g=c.
Model (1) is called linear equivalent model (Henderson

1984) to the “standard” additive linear regression model

y ¼ m1n þ PXbþ e: (6)

The centering matrix P in Equations 4 and 6 is mandatory for
the equivalence of models (1) and (6), and to be able to
consistently apply model (6).

The restriction of the column-means of the marker geno-
types inmodel (6) to be 0 guarantees that the samplemean of
the genomic values in Equation 4 equals 0 ð�g :¼ 1

n1
⊤
ng ¼ 0Þ.

This ensures the uniqueness of the definition of the vector g of
genomic values in Equation 4. Otherwise, a different coding
of the marker genotypes leads to different genomic values g.

Inferences on quantities based on genomic data in model
(1) and (6) are often performed with the gBLUP method
(Bernardo 1994). Model (6) allows for marker-specific in-
vestigations and inferences on the genomic contribution to
the phenotypic values, whereas estimation of parameters
in model (1) has computational advantages. For additional

information on the gBLUP-method, we refer to Appendix
Genomic Best Linear Unbiased Prediction.

Model (6) is a realization of n draws from the underlying
data-generating process of the (mean-centered) marker ge-
notypes ðX1; . . . ;XpÞ (Bühlmann and van de Geer 2011). This
distribution, as well as the corresponding genomic values in
Equation 4, relate to the current population of individuals.

When we are interested in the genomic values in the
corresponding consistent base population, we should take
the relationship (correlation) between the individuals into
account (Powell et al. 2010; Legarra 2016). In what follows,
we assume a given n3n relationship matrix R. Instead of the
genomic values g or PXb; we investigate the uncorrelated
genomic values defined by

g* :¼ R20:5g ¼ R20:5PXb ¼: X*b: (7)

These are realizations of n draws from the underlying data-
generating process ðX*

1 ; . . . ;X
*
p Þ of marker genotypes in the

base population. The sample mean of the genomic values in
the base population, 1n1

⊤
ng*, is usually different from 0.

Definitions of the genomic variance

The additive genetic variance (in the base population also
called genic variance) with respect to a trait is defined as the
theoretical variance of the genetic value based on the re-
spective QTLs (Falconer and Mackay 1996). The genomic
variance has been described as the variance of the genomic
values that can be explained by a linear regression on a set of
markers (de los Campos et al. 2015). This does not, however,
imply a unique formal definition of the genomic variance.

Here,wegive anoverviewofdifferent approaches todefine
a genomic variance in the framework of the linear models (1)
and (6).

Without further assumptions on the nature of the genome,
we can define the sample variance

s2g :¼ 1
n2 1

g⊤g ¼ 1
n2 1

b⊤X⊤PXb ¼ b⊤ŜXb (8)

of the mean-centered n-vector of genomic values g ¼ PXb
(see Equation 4) in the current population (Ould Estaghvirou
et al. 2013). Here, ŜX :¼ X⊤PX=ðn2 1Þ defines the sample
variance-covariance matrix of the marker genotypes in the
current population.

In the base population, we define the sample variance

s2g* :¼
1

n2 1
ðg*Þ⊤Pg* ¼ 1

n2 1
b⊤ðX*Þ⊤PX*b ¼ b⊤ŜX*b (9)

of the uncorrelated genomic values g* ¼ X*b (see Equation
7). Here, ŜX* :¼ ðX*Þ⊤PX*=ðn2 1Þ defines the sample vari-
ance-covariance matrix of the marker genotypes in the base
population.

Alternatively, we can define the theoretical variance of the
genomic values directly in the REM. The linear model is
generated by drawing from the data-generating process of
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the marker genotypes (representative individual), and the
model assumptions in the REM dictate that marker effects
are random variables. This gives rise to three different
scenarios for the variance of the genomic values in the
REM (marker genotypes random, marker effects random,
or both random).

The additive genomic variance of a randomly sampled
(representative) individual (Gianola et al. 2009; de los
Campos et al. 2015; Fernando et al. 2017b) equals

VarðXb jbÞ ¼ b⊤SXb; (10)

where SX denotes the variance-covariance matrix of the
marker genotypes.

The variance of a randomly sampled (representative) in-
dividual with RME is given by

VarðXbÞ ¼ s2
btrðSXÞ: (11)

This is not the additive genomic variance (Gianola et al. 2009;
de los Campos et al. 2015).

The variance of a randomly sampled trait averaged over
individuals with fixed genotypes X equals

1
n
tr
�
Cov

�
Xb j X�� ¼ s2

b

n21
n

tr
�
ŜX

�
� s2

btr
�
ŜX

�
; (12)

and does not equal the additive genomic variance.
We derive the equalities in Equations 10–12 in more detail

in the Appendix Theoretical Variances of the Genomic Values
in the REM. These quantities refer to the genotypes in the
current population. We can apply the same definitions in
the base population by considering the data-generating
process of the genotypes in the base population (exchange
X by X*).

In Table 1, we give an overview of the different possibil-
ities to define the variance of the genomic values in the REM.

In actual applications, we have to replace SX in Equation
10 by its estimator ŜX. Consequently, the sample variance
(Equation 8) as well as the theoretical variance (Equation
10) effectively represent the additive genomic variance, i.e.,
the genomic equivalent of the additive genetic variance
(Bulmer 1971; Falconer and Mackay 1996), in the current
population. In the following, we do not explicitly distinguish
between the sample or the theoretical version of the variance,
and will speak only of the additive genomic variance.

From now on, we focus on the estimation of the additive
genomic variance in the general form

s2g;B :¼ 1
n2 1

g⊤Bg ¼ 1
n2 1

b⊤X⊤PBPXb; (13)

which isanon-negativequadratic formof thegenomicvalues.By
specifying the positive semidefinite and symmetric n3 n-matrix
B, we determine whether the genomic variance refers to the
current population ðB ¼ InÞ (see Equation 8), or the base pop-
ulation ðB ¼ R20:5PR20:5Þ (see Equation 9). Because the ran-
domness of the marker genotypes is not explicitly necessary to

derive Equation 13, we can easily express all results in terms of
the genomic values g defined in the equivalent model.

In the framework of the REM, the marker effects b in
model (6) and the genomic values g in model (1) are random
variables. Consequently, the additive genomic variance in
Equation 13 is also a random variable, and, as such, has to
be predicted in an optimal way before finally being estimated
[in the same way that the RME b are predicted by the BLUP
and then estimated by the eBLUP (Kackar and Harville 1984;
Jiang 1999)].

First, we will show that estimators for the unconditional
expectation of Equation 13, like GCTA-GREML, are of the
form of Equations 11 and 12, and, therefore, do not estimate
the additive genomic variance.

Then, we introduce the (frequentist) best predictor for the
additive genomic variance s2g;B; and show that this approach
maintains the structure of the additive genomic variance
(Equation 13)—the genomic equivalent of the additive ge-
netic variance.

The expectation of the additive genomic variance

The expectation of the random variable s2g;B in Equation
13 minimizes the quadratic form

E

��
s2g;B2a

�2�
;

with respect to all real numbers a, i.e., ~a :¼ E½s2g;B� is the best
approximation of s2g;B in the absence of additional information
(van der Vaart 2007). The unconditional (or prior) expecta-
tion of s2g;B equals

E

h
s2g;B
i
¼ E

"
1

n2 1
b⊤X⊤PBPXb

#

¼ 1
n2 1

tr
�
X⊤PBPXE

h
bb⊤

i�
¼ð5Þ 1
n21

s2
btrðX⊤PBPXÞ

¼ð3Þ 1
n21

s2
g trðBGÞ

(14)

because of the properties of the trace.
For the additive genomic variance in the current popula-

tion, s2g , we choose B ¼ In in Equation 14 and obtain

Table 1 Overview of different definitions of the variance of the
genomic values in the current population and their expression in
the random-effects model

Variance of genomic values

Sample variance Theoretical variance

s2g VarðXbÞ trðCovðXbjXÞÞ VarðXbjbÞ
b⊤ŜXb s2

btrðSX Þ ns2
btrðŜX Þ b⊤SXb

Analogous quantities for the base population can be obtained by exchanging X by
X*. The sample variance s2g and the theoretical variance VarðXbjbÞ define the
sample and theoretical version of the additive genomic variance.
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V :¼ E

h
s2g
i
¼ s2

btr
�
ŜX

�
(15)

in model (6) or

V ¼ 1
n2 1

s2
g trðGÞ (16)

in theequivalentmodel (1).Unconditional expectationsof the
form V for the additive genomic variance are considered in,
for example, Ould Estaghvirou et al. (2013).

For the additive genomic variance in the base population,
s2g* , we choose B ¼ R20:5PR20:5 in Equation 14 and obtain

V* :¼ E

h
s2g*

i
¼ s2

btr
�
ŜX*

�
(17)

in model (6) or

V* ¼ 1
n2 1

s2
g tr
�
PR20:5GR20:5

�
(18)

in the equivalent model.
Often (VanRaden 2008; Yang et al. 2010, 2011; Speed

et al. 2012; Vinkhuyzen et al. 2013; Legarra 2016), thematrix
R used for the transformation to the base population is as-
sumed to be the GRM G defined in Equation 3. Then, the
unconditional expectation V* of the additive genomic vari-
ance simplifies to

V*
s :¼ 1

n2 1
s2
g trðPÞ ¼ s2

g ; (19)

and the variance component s2
g from the gBLUP-method is

considered as the additive genomic variance in the base pop-
ulation. We have shown, however, that s2

g is only the uncon-
ditional expectation of the additive genomic variance.

We recommend cautionwhen using the simplification in
Equation 19 because the GRM G is in general singular
(because P is singular), and therefore G21 is not well
defined.

We emphasize that only the diagonal elements of the
sample variance-covariance matrix (ŜX or ŜX* ) of the
marker genotypes influence the unconditional expecta-
tions V, V*; and V*

s of the additive genomic variance.
The model assumptions in the REM dictate the matrix
E½bb⊤� to be diagonal, which leads to a negligence of the
off-diagonal elements of ŜX or ŜX* in Equation 14. The
covariances (LD) between the marker genotypes are not
included, and V, V*; and V*

s are of the same form as VarðXbÞ
in Equation 11 and 1

n trðCovðXb jXÞÞ in Equation 12. This
implies that the unconditional expectation of the random
additive genomic variance s2g;B is structurally not fully in
accordance with the (random) additive genomic variance
in Equation 13.

Explicit formulae for the estimation of the uncondi-
tional expectations V, V*; and V*

s will be given in the Ap-
pendix Estimation of the Additive Genomic Variance in the
REM.

Best prediction of the additive genomic variance

The unconditional (prior) expectation of s2g;B in Equation 14 is
strongly influenced by themodel assumption on themarginal
distribution of the marker effects, and does not use addi-
tional information given by the phenotypic values y in model
Equations 1 and 6. Estimation procedures for the uncondi-
tional expectation [which include e.g., restricted maximum
likelihood (REML)], however, make use of the data y to a
certain extent.

By contrast, the conditional (posterior) expectation,
given the phenotypic values y, makes best use of the infor-
mation provided by y even before the final estimation is
performed.

Generally, the conditional (or posterior) expectation of a
random variable Z (in our case Z ¼ s2g;B) given the knowledge
of the random vector Y is defined as the “best prediction”
(Searle et al. 1992; van der Vaart 2007) of the random vari-
able Z. The best predictor

BPðZÞ :¼ E½Z j Y � (20)

is the unique function g0ðYÞ that minimizes the mean square
error of prediction

E

h
ðZ2gðYÞÞ2

i
over all functions in Y, i.e., the conditional expectation is the
projection (closest element in a given set of functions) of Z
onto the linear space of all functions in Y (Searle et al. 1992;
van der Vaart 2007).

The best predictor in Equation 20 is, by definition, an un-
biased predictor for the random variable Z and g0ðYÞ maxi-
mizes the correlation CorðZ; gðYÞÞ, i.e., we can replace the
target random variable Z by the best predictor defined in
Equation 20 in an optimal way (Searle et al. 1992). Instead
of inferring the unobservable target random variable, we
conduct inferences on the best predictor. Because the best
predictor has realized in a given dataset ðY ¼ yÞ, it is estima-
ble (Searle et al. 1992).

In the following, we introduce a novel approach of con-
sidering the frequentist best predictor instead of the uncon-
ditional expectation for the random additive genomic
variance s2g;B in Equation 13. We proceed according to Equa-
tion 20, and define

BP
�
s2g;B
�
:¼ E

h
s2g;B

��� yi ¼ E

"
1

n21
b⊤X⊤PBPXb j y

#

¼ 1
n2 1

tr
	
X⊤PBPXE

h
bb⊤ j y

i

for the given phenotypic values y, because X is constant, and,
therefore, independent of y. The matrix of conditional second
moments of the marker effects b is usually nondiagonal (con-
trary to E½bb⊤�), and can be expressed as
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E
�
bb⊤ j y� ¼ mbj ym

⊤
bj y þ Sbj y

using the BLUP mbjy :¼ E½bj y� of the random vector b, and
the variance-covariance matrix

P
bjy :¼ Covðb j yÞ of b given

the data y. Then, the best predictor equals

BP
�
s2g;B
�
¼ 1

n2 1
tr
	
X⊤PBPX

h
mbj ym

⊤
bjy þ Sbj y

i

¼ 1

n2 1
tr
	
B
h
mgj ym

⊤
gj y þ Sgj y

i
 (21)

where the last equality holds because of the connection

mbj y :¼ E½g j y� ¼ E½PXb j y� ¼ PXmbjy

of theBLUPsandtheconditional variance-covariancematrices

Sgjy :¼ Covðg j yÞ ¼ CovðPXb j yÞ ¼ PXSbj yX⊤P:

in models (1) and (6), see also Appendix Genomic Best Linear
Unbiased Prediction.

For the best predictor of the additive genomic variance in
the current population we set B ¼ In in Equation 21, and
obtain

W :¼ BP
�
s2g
�
¼ tr

	
ŜX

h
mbj ym

⊤
bj y þ Sbjy

i

(22)

in model (6) or

W ¼ 1
n2 1

tr
�
mgj ym

⊤
gj y þ Sgj y

�
(23)

in the terminology of the equivalent model (1).
For the best predictor of the additive genomic variance in

the base population we set B ¼ R20:5PR20:5 in Equation 21,
and obtain

W* :¼ BP
�
s2g*

�
¼ tr

	
ŜX*

h
mbj ym

⊤
bj y þ Sbj y

i

(24)

in model (6) or

W* ¼ 1
n2 1

tr
	
PR20:5

h
mgj ym

⊤
gj y þ Sgj y

i
R20:5



(25)

in the terminology of the equivalent model (1).
We note that Equations 24 and 25 have structural similar-

ities with the iterative maximum-likelihood equation for
the variance component s2

b when using the expectation-
maximization algorithm (Sorensen and Gianola 2002).

We emphasize that the best predictor of the additive
genomic variance in the current population (W), as well as
in the base population ðW*Þ; includes the contribution of all
elements of the sample variance-covariance matrix of marker
genotypes (ŜX or ŜX* ), and, hence, comprises LD informa-
tion, contrary to the unconditional expectations V, V*; and V*

s

of the additive genomic variance from the previous section.

Explicit formulae for the eBPs of the additive genomic
variance, as well as a formula forW*

s (approximate approach
using the GRM G for transformation to the base population),
will be given in the Appendix Estimation of the Additive Ge-
nomic Variance in the REM. We compare the use of the un-
conditional expectation and the best predictor for the
prediction of the random additive genomic variance in the
REM in Table A.1 and Table A.2 in the Appendix.

Statistical analysis (genomic data)

For an illustration of the theoretical results of the previous
sections, we used the mice dataset that comes with the R-
package BGLR (Pérez and de los Campos 2014). The data
originally stem from an experiment by Valdar et al.
(2006a,b) in a mouse population. The dataset contains the
matrix X with values in f0; 1; 2g of p ¼ 10; 346 polymorphic
marker genotypes that weremeasured in n ¼ 1814mice. The
trait (n-vector y) under consideration was body length (BL).
The relationship of the mice is recorded in the n3 n pedigree
matrix R, and is used for the transformation to the base
population.

Additionally, we used the publicly available historical
wheat dataset that also comes with the R-package “BGLR”
(Pérez and de los Campos 2014). The data originally stems
from CIMMYT’s Global Wheat Program and consists of
n ¼ 599 lines of wheat, where the trait under consideration
was average grain yield. The phenotypes are divided up into
four basic target sets of environments designated as Wheat I,
Wheat II, Wheat III, and Wheat IV, of which we considered
the only first. The dataset contains the matrix of marker ge-
notypes for p ¼ 1279 markers as well as a relationship
matrix.

Moreover, we analyzed a population of n ¼ 1057 fully
sequenced Arabidopsis lines for which phenotypes and geno-
types are publicly available by the effort of the Arabidopsis
1001 Genomes project (1001 Genomes Consortium 2016).
The lines represent natural inbred lines and we examined
the same trait, namely flowering time at 10� (FT10), and
the same p ¼ 193; 697 SNP-markers that were used in
Lehermeier et al. (2017). For these data, no relationship ma-
trix was available.

We conducted all calculations with the free software R (R
Development Core Team 2017). For each dataset, we used
the gBLUP-method in the equivalent version (computa-
tional advantages) implemented in the R-package “sommer”
(Covarrubias-Pazaran 2017) to fit a REM. We used REML
to obtain estimates (ŝ2

g and ŝ2
e ) for the variance components.

We also obtained estimates of the best predictor of the geno-
mic effectsmgjy and the their variance-covariance matrixSm̂gjy.

We used this outcome for the estimation of the uncondi-
tional expectation V and the BP W of the additive genomic
variance in the current population, as well as the uncondi-
tional expectation V* and the BPW* for the additive genomic
variance in the base population (except for the Arabidopsis
dataset, where no relationship matrix was available). Al-
though the GRM is not invertible, we will show in the
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Appendix Estimation of the Additive Genomic Variance in the
REM how to use the GRM for a transformation to the base
population, and to calculate the corresponding unconditional
expectation V*

s and the BP W*
s for the additive genomic var-

iance in the base population.
Detailed information about the calculations and the pro-

gramming code is provided in the Supplemental Material,
File S1.

Data availability

The authors affirm that all data necessary for confirming the
conclusions of this article are represented fully within the
manuscript and the supplemental material that has been
uploaded to figshare. File S1 contains a detailed description
of the estimation of the genomic variances for the gBLUP-
method as well as the corresponding R-code and its output.
Supplemental material available at Figshare: https://doi.org/
10.25386/genetics.8114117.

Results

In the first section of Table 2, we present the estimation
results for the unconditional expectation V and the best pre-
dictor W for the additive genomic variance in the current
population. In the mice and wheat datasets, V̂ exceeds Ŵ,
whereas for the Arabidopsis data, the eBP is about double the
size of the unconditional expectation.

The sample variance of the phenotypic values has been
scaled to 1. The sum of V̂ and the residual variance is larger
than the phenotypic variance for themice andwheat data but
smaller for the Arabidopsis data. Technically, it is possible to
define the heritability in twoways, namely with respect to the
phenotypic variance, and with respect to the sum of the ad-
ditive genomic variance and the residual variance. The sum
of the eBP Ŵ and the residual variance, however, equals the
scaled phenotypic variance of 1 remarkably exactly for all
datasets considered.

In the second section of Table 2, we first present the esti-
mation results for the unconditional expectation V* and the
best predictor W* for the additive genomic variance in the
base population using the given relationship matrices for the
transformation. For the mice data, V̂* and Ŵ* are similar to
their analogs V̂ and Ŵ in the current population. For the
wheat data, however, the estimated unconditional expecta-
tion and eBP in the base population are around five times
larger than those in the current population, and exceed the
sample phenotypic variance in the current population. By this
approach, it is not possible to define a heritability in the base
population because both the estimate of the residual variance
and the phenotypic sample variance refer to the current
population.

Theestimation results for theunconditional expectationV*
s

and the best predictor W*
s for the additive genomic variance

in the base population using the GRM for the transformation
differ from those using the given relationship matrices by a
considerable amount. In themice andwheat data, V*

s is larger

than W*
s , whereas, for the Arabidopsis data the eBP exceeds

the estimated unconditional expectation. This conforms to
the behavior of V and W in the current population.

Discussion

We have shown that commonly used estimators for the
additive genomic variance in the REMwith genomic marker
data are based on the unconditional expectation of the
random additive genomic variance. We have introduced a
novel best prediction approach for the random additive
genomic variance in both the current and the base popu-
lation. In the following, we discuss several important
implications.

Current and base population

Common ways of estimating the additive genomic variance
focus on the base population. These approaches are indepen-
dent of the actual current population, and, consequently, valid
even if the generations change.

If one aims at the response of a population to selection,
however, it might be more meaningful to estimate the addi-
tive genomic variance in the actual given population. This
implies that the estimation of the genomic variance has to be
conducted again when the individuals change. A formal
definition of the heritability is best possible in the current
population, where the phenotypic and residual variance are
estimable.

We have preferred to use given relationship matrices for
the transformation of the genomic values to the base popu-
lation. In the case that such a matrix is not available, we have
shown how to use genomic relationship matrices for the

Table 2 Estimation results for the unconditional expectation V and
the best predictor W for the additive genomic variance in the
current population for the mice, wheat, and Arabidopsis datasets

Genomic variance/
heritability Population Mice Wheat Arabidopsis

V̂ð¼ ĥ
2

V Þa Current 0.3737749 0.6039708 0.47333803
V̂ þ ŝ2

e
b 1.0754963 1.1449704 0.54832029

~h
2

V :¼ V̂=ðV̂ þ ŝ2
e Þc 0.3475371 0.5274990 0.86325098

Ŵð¼ ĥ
2

W Þa 0.2982787 0.4590001 0.92501779
Ŵ þ ŝ2

e
b 1.0000002 0.9999998 1.00000005

~h
2

W :¼ Ŵ=ðŴ þ ŝ2
e Þc 0.2982787 0.4590002 0.92501774

V̂* Base 0.3704021 3.0621134 2
Ŵ* 0.3089758 2.0095836 2
V̂*

s 0.3639248 1.3158006 0.80762011
Ŵ*

s 0.3577692 1.2300300 1.30240520

We also present the corresponding heritabilities with respect to the sample variance
of the phenotypic values and with respect to the sum of the additive genomic and
residual variance s2

e : In addition, we depict the estimation results for the uncondi-
tional expectation V* (V*

s when using the GRM for the transformation) and the best
predictor W* (W*

s when using the GRM for the transformation) for the additive
genomic variance in the base population.
a Heritability with respect to phenotypic sample variance ŝ2

y ; which has been scaled
to 1.

b Alternative definition of the phenotypic variance that depends on the estimate of
the genomic variance.

c Alternative definition of the heritability that depends on the alternative definition
of the phenotypic variance.
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transformation, although a formal inversion of GRMs is, in
general, not possible.

In Table 2, we illustrate that we can decompose the
sample phenotypic variance into the sum of the eBP of
the additive genomic variance in the current population
and into the estimated residual variance. This is due to
the orthogonal projection property of the conditional ex-
pectation, which gives the best approximation of the ran-
dom additive genomic variance. This enables a unique
definition of the heritability in the current population.
It is never possible, however, to transfer the residual var-
iance to the base population. Consequently, a defini-
tion of the heritability in the base population is not
straightforward.

The gBLUP-method and the Bayesian approach

The frequentist gBLUP-method can also be set up in the
context of Bayesian regressionmodels (with prior distribution
for the effect vector as defined in Equation 5, and uninforma-
tive priors for the variance components). Lehermeier et al.
(2017) considered the additive genomic variance s2g in the
current population (see Equation 8), and used BRR to
estimate

M2 :¼ 1
M

XM
m¼1

	
b̂
ðmÞ

⊤

ŜX b̂
ðmÞ

;

where
�
b̂
ðmÞ�

m¼1;...;M
denotes MCMC samples from the pos-

terior distribution of b. In that approach, Lehermeier et al.
(2017) estimated the posterior mean of the additive genomic
variance s2g in the current population. This approach is the
Bayesian equivalent of the (frequentist) empirical version of
the best predictor of s2g in Equation 13 in the current pop-
ulation. M2 does not describe the genomic variance in the
base population, and should not directly be compared with
approaches introduced e.g., in Yang et al. (2010, 2011).
Analogously to the best predictor W* (see Equation 24),
for the genomic variance in the base population, one can
consider

M*
2 :¼ 1

M

XM
m¼1

	
b̂
ðmÞ

⊤

ŜX* b̂
ðmÞ

as the posterior mean of the genomic variance in the base
population in Bayesian regression models.

The frequentist gBLUP-method provides a more formal
approach to the prediction of the random additive genomic
variance in linearmodels with random effects than the Bayes-
ian approach. It enables the derivation of explicit formulas for
the predictors (unconditional expectation and best predictor)
of the random additive genomic variance using the standard
output of the gBLUP-method,which goes hand-in-handwith a
fast implementation of the empirical version of the predictors.
The connection between the BLUP mbjy and its covariance for
the RMEwith the additive genomic variance are clearly visible.
This enables us, for instance, to derive the decomposition of

the best predictor of the random additive genomic variance
into the unconditional expectation and a function for the
marker LD in the following section.

Influence of LD

In the section Definitions of the genomic variance, we saw that
the (random) additive genomic variance equals

s2g ¼ b⊤ŜXb

¼
Xp
j¼1

b2
j ðŜXÞjj þ

Xp
i¼1

Xp
j¼1
j 6¼i

bibjðŜXÞij

in the current population, and

s2g* ¼ b⊤ŜX*b

¼
Xp
j¼1

b2
j ðŜX*Þjj þ

Xp
i¼1

Xp
j¼1
j 6¼i

bibjðŜX*Þij

in the base population. We emphasize that the variance-co-
variance matrix of the marker genotypes (marker LD) plays a
decisive part in the determination of the additive genomic
variances in both the current and the base population. The
variances s2g and s2g* are structurally in accordance with the
classical additive genetic variance (Bulmer 1971; Falconer
and Mackay 1996), which is caused by the genotypes,
whereas the genotypic effects are fixed.

In the REM, however, the marker effects are random, with
unconditional expectation 0 and unconditional diagonal var-
iance-covariance matrix with equal variances s2

b. As a con-
sequence, the unconditional expectation of the additive
genomic variance

E

h
s2g
i
¼ s2

btr
�
ŜX

�
in the current population and

E

h
s2g*

i
¼ s2

btr
�
ŜX*

�
in thebasepopulationcontainonly thevariancesof themarker
genotypes in the corresponding population. In addition, the
unconditional expectation resembles both the variance of a
randomly sampled trait for a randomly sampled individual
and the variance of a randomly sampled trait for individual
with fixed genotypes, see Table 1 for an overview.

We show in the Appendix Estimation of the Additive Geno-
mic Variance in the REM that we can partition the best pre-
dictor of the random additive genomic variance s2g;B in the
following way:

BP
�
s2g;B
�
¼ E

h
s2g;B
i
þ Lð yÞ;
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where

Lð yÞ ¼
Xp
j¼1

h
mbj ym

⊤
bj y2Smbjy

i
jj
ðŜXÞjj

þ
Xp
i¼1

Xp
j¼1
j6¼i

h
mbj ym

⊤
bj y2Smbjy

i
ij
ðŜXÞij

in the current population, and

Lð yÞ ¼
Xp
j¼1

h
mbj ym

⊤
bj y2Smbj y

i
jj
ðŜX*Þjj

þ
Xp
i¼1

Xp
j¼1
j6¼i

h
mbj ym

⊤
bj y2Smbj y

i
ij
ðŜX*Þij

in the base population ðSmbj y ¼ CovðmbjyÞÞ.
The best predictor, therefore, consists of the unconditional

expectation of the additive genomic variance (no contribution
of LD) and a function that explicitly contains the weighted
contribution of marker LD. This function determines whether
estimators like GCTA-GREML (unconditional expectation of
the random genomic variance in the base population) are
biased upwards or downward, i.e., it determines the direction
and the magnitude of the bias of GCTA-GREML (this method
is based on the assumption that the function L constantly
equals 0). In addition, we notice that this bias depends
not only on the sign of the covariance between the marker
genotypes, but both on the sign and the magnitude of the
weighted covariances.

When best (conditional) estimators are considered, the
inclusion of LD is intrinsic; in that case, discussions about
whether or not LD should be included or even optimally
included become immaterial.

We emphasize that, contrary to the unconditional expecta-
tion, the best predictor maintains the structure of the additive
genomic variance s2g and s2g*, because the function L can be
decomposed into the weighted sample variances and covari-
ances of the marker genotypes. Instead of the marker effects,
the components of the matrix mbjym

⊤
bj y 2Smbj y, which is typi-

cally nonzero and nondiagonal, take the part of the weighting
factors of the elements of ŜX and ŜX* : The best predictor main-
tains the structure of the additive genomic variance in both the
current ðs2gÞ and the base population ðs2g*Þ; and, thus, conforms
to the classical genetic variance (Bulmer 1971; Falconer and
Mackay 1996).

The difference between the estimators V and W (V* and
W*;V*

s and W*
s ) is given by the estimated Lð yÞ; and can be

obtained from Table 2. We notice that the weighted contri-
bution of marker LD is large and positive in the case of the
Arabidopsis data, whereas in the mice and wheat data, the
weighted contribution of marker LD is slightly negative.

To sum up, the application of the unconditional expecta-
tion of the additive genomic variance combined with the
model assumptions on the marker effects in random effect
models cause, at least partially, the missing contribution of
LD to the estimated additive genomic variance. This goes
hand-in-hand with the critique expressed in Krishna Kumar
et al. (2016a,b). It is, however, less important when esti-
mating the additive genomic variance in the base popula-
tion, where the individuals are uncorrelated and less
LD persists (although the marker genotypes need not be
uncorrelated).

The best prediction approach eliminates the problemof the
missing contribution of LD to the additive genomic variance
that is caused by mathematical modeling (e.g., the assump-
tions in the random-effects model).

Concluding remarks

The variability in the marker genotypes causes the variability
in the genomic values in a population of individuals. Hence,
theadditivegenomic variance is inducedby thevarianceof the
marker genotypes. In the application of the random-effects
model, the marker effects are assumed to be random, which
introduces another source of variability, namely a statistical
one, in the genomic values.

We have shown that commonly used estimators use the
unconditional expectation to handle this statistical random-
ness. However, we recommend the use of the best prediction
approach (conditional expectation) that uses the additional
information given by the phenotypic data in an optimal
way, minimizes the mean square error of prediction, includes
the contribution of LD, and maintains the structure of the
genomic equivalent of the classical additive genetic variance.
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Appendix

Genomic Best Linear Unbiased Prediction

In the REM ðbj � Nð0;s2
bÞÞ for the model

y ¼ m1n þ PXbþ e (6)

we have that

y � N �m1n;PXX⊤Ps2
b þ s2

e In|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼~S

21

�
: (26)

Themarker effect vector b cannot be estimated because it is a
random variable. Henderson (1984) introduced the concept
of the prediction of b, which refers to the estimation of the
realized values of the random effects. The best linear unbi-
ased predictor (BLUP) mbj y for b is given by mbjy ¼ E½b j y�
(Henderson 1984; Searle et al. 1992). The conditional expec-
tation is the unique best predictor, i.e. it is unbiased and
has minimal mean square error of prediction

E

h
ðb2gð yÞÞ⊤ðb2 gð yÞÞ

i
within the whole set of functions g that depend on the data y
(van der Vaart 2007).

The joint distribution of y and b equals	
y
b



� N

"�
m1n
0

�
;

 
~S
21

s2
bPX

s2
bX

⊤P s2
bIp

!#

and we obtain

b j y � N
	
s2
bX

⊤P~Sð y2m1nÞ;s2
bIp 2s2

bX
⊤P~SPXs2

b



;

(27)

see e.g. Kotz et al. (2000). Consequently, the BLUP equals

mbj y ¼ s2
bX

⊤P~Sð y2m1nÞ (28)

and is linear in y. The conditional variance-covariance matrix
of b equals

Sbj y :¼ Covðb j yÞ ¼ð27Þs2
bIp 2s2

bX
⊤P~SPXs2

b; (29)

and the variance-covariance matrix of the BLUP mbjy equals

Smbjy :¼ Covðmbj yÞ
¼ CovðE½b j y�Þ
¼ CovðbÞ2E½Covðb j yÞ�
¼ð29Þs2

bX
⊤P~SPXs2

b:

(30)

The actual estimation of the parameters inmodel (6) with the
BLUP-method is a two-stage procedure (Das et al. 2004). In
the first stage, a BLUE for the fixed quantities and a BLUP for
the random variables are derived. However, they involve the
variance components s2

b and s2
e as unknown parameters. In a

second stage, these parameters are replaced by estimates,
and the estimators for the BLUE and the BLUP are referred
to as empirical BLUE (eBLUE) and empirical BLUP (eBLUP)
(see Kackar and Harville 1984; Jiang 1999). Investigations
on the properties of the eBLUE and the eBLUP are very com-
plex (Searle et al. 1992), and often only approximate results
are obtained (Kackar and Harville 1984; Jiang 1999; Das
et al. 2004).

Assume that we are provided with estimators for the
variance components using, e.g., REML (Patterson and
Thompson 1971; Corbeil and Searle 1976; Searle et al.
1992). These estimated variance components are non-
linear functions of the data y, and, consequently, the
eBLUE

m̂ ¼
1⊤n
�
PXX⊤Pŝ

b
2 þ ŝe

2In
�21y

1⊤n
�
PXX⊤Pŝ

b
2 þ ŝe

2In
�211n

for the intercept and the eBLUP

m̂bj y ¼ ŝ2
bX

⊤PðPXX⊤Pŝ2
b þ ŝ2

e InÞ
21ð y2 m̂Þ; (31)

for the marker effects b are not even linear in the data y
anymore (despite their naming). The unbiasedness of the
eBLUE and the eBLUP can be asserted if the estimated
variance components ŝ2

b and ŝ2
e are non-negative, even

functions in y, translation-invariant, and if the expecta-
tions of the eBLUE and eBLUP are finite (Kackar and
Harville 1984). When using REML estimates for the vari-
ance components, these requirements are satisfied and the
eBLUE m̂ and the eBLUP m̂bj y are bias-free estimators for m
and b (Jiang 1999).

Conditional on the estimation of the variance components
(ignoring the randomness in the second stage of the estima-
tion of the eBLUP), the variance-covariance matrix of the
eBLUP m̂bjy equals

Sm̂bj y :¼ Cov
	
m̂bj y

���s2
b ¼ ŝ2

b;s
2
e ¼ ŝ2

e




¼ s2
bX

⊤P~SCov
	
y2 m̂1n js2

b ¼ ŝ2
b;s

2
e ¼ ŝ2

e



~SPXs2

b

¼ s2
bX

⊤P~SPXs2
b2

s2
bX

⊤P~S1n1⊤n
~SPXs2

b

1⊤n
~S1n

;

(32)

because
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Cov
	
y2 m̂1n js2

b ¼ ŝ2
b;s

2
e ¼ ŝ2

e



¼

¼ Covð yÞ2 2Cov
	
y; m̂ js2

b ¼ ŝ2
b;s

2
e ¼ ŝ2

e



1⊤n

þ1nCov
	
m̂ js2

b ¼ ŝ2
b;s

2
e ¼ ŝ2

e



1⊤n

¼ ~S
21

2 2Covð yÞ
~S1n

1⊤n
~S1n

1⊤n þ 1n
1⊤n

~S~S
21~S1n

ð1⊤n~S1nÞ
2 1⊤n

¼ ~S
21

2
1n1⊤n
1⊤n

~S1n

holds.
We can transfer the results derived in model (6) to model

y ¼ m1n þ gþ e (1)

by using their equivalence in distribution. The gBLUP for g equals

mgj y :¼ E½g j y� ¼ E½PXb j y�
¼ PXmbj y
¼ð28ÞPXs2

bX
⊤P~Sðy2m1nÞ

¼ð3Þs2
gG
�
Gs2

g þ s2
e In
�21ðy2m1nÞ:

(33)

The conditional variance-covariancematrix of g is obtained as

Sgj y :¼ Covðg j yÞ
                     ¼ PXCovðb j yÞX⊤P

                   ¼ð29ÞPXðs2
bIp 2s2

bX
⊤P~SPXs2

bÞX⊤P

                     ¼ð3Þs2
gG2s2

gG
�
Gs2

g þ s2
e In
�21

Gs2
g ;

(34)

as well as the variance-covariance matrix of the BLUP mgjy

Smgjy :¼ Covðmgj yÞ
                     ¼ PXCovðmbjyÞX⊤P

                     ¼ð30ÞPXs2
bX

⊤P~SPXs2
bX

⊤P

                      ¼ð3Þs2
gGðGs2

g þ s2
e InÞ

21
Gs2

g :

(35)

The variance-covariance matrix of the eBLUP equals

Sm̂gjy :¼ Cov
�
m̂gjy

���s2
g ¼ ŝ2

g ;s
2
e ¼ ŝ2

e

�
¼ Cov

�
PXm̂bjy

���s2
b ¼ ŝ2

b;s
2
e ¼ ŝ2

e

�
¼ PXSm̂bj yX

⊤P

¼ð32ÞPX
"
s2
bX

⊤P~SPXs2
b 2

s2
bX

⊤P~S1n1⊤n
~SPXs2

b

1⊤n
~S1n

#
X⊤P

¼ð3Þs2
gG

~SGs2
g 2

s2
gG

~S1n1⊤n
~SGs2

g

1⊤n
~S1n

:

(36)

Theoretical Variances of the Genomic Values in the REM

We review three different definitions of the theoretical var-
iance of the genomic values in the REM (marker genotypes
random,marker effects random, or both random).We focus
the following analysis on the linear model (6) because of
the explicit separation of marker genotypes and marker
effects. For simplicity, we focus on the genomic variance in
the current population. The results for the base population
are obtained by replacing the data-generating process X
with X*.

Random genotypes and random effects
If the marker genotypes as well as the marker effects are
the source of genomic variation, we calculate the variance
of the genomic value according to the law of total variance
as:

VarðXbÞ ¼ E½VarðXb jbÞ� þ VarðE½Xb jb�Þ

¼ E½b⊤SXb� þ VarðE½X�bÞ

¼ trðSXE½bb⊤�Þ þ E½X�SbE½X�⊤

¼ E½b�⊤SXE½b� þ trðSbSXÞ þ E½X�SbE½X�⊤:

The unconditional expectation and the variance operator in
the second line apply to the random marker effect vector b.
Because of the model assumptions on the marker effects in
Equation 5, and the mean-centered marker genotypes
ðE½X� ¼ 0Þ, we obtain

VarðXbÞ ¼ s2
btrðSXÞ (37)

with the interpretation as the variance of a randomly sampled
(representative) individual for a trait with random effects.

Fixed genotypes and random effects
If the genomic variation is caused by the marker effects only,
and the marker genotypes are fixed, then the n-vector of
genomic values is normally distributed:

g ¼ PXb � Nð0;PXX⊤Ps2
bÞ: (38)

In order to obtain an average theoretical variance of the
individuals in the sample, we calculate the mean trace of
the variance-covariance matrix of the genomic values:

1
n
tr
�
CovðPXbÞ

�
¼ 1

n
s2
btrðPXX⊤PÞ

¼ n21
n

s2
btr
�
ŜX

�
:

(39)
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This approximatelyequals thevarianceofa randomlysampled
individual for a randomly sampled trait (see Equation 37).
Even when the marker genotypes are fixed, their sample
variance-covariance matrix contributes to the theoretical var-
iance of the genomic values when averaging over the indi-
viduals in the sample.

Random genotypes and fixed effects
Probably the most common assumption on the nature of the
genome is that the marker genotypes are random, whereas the
marker effects are fixed (Falconer andMackay 1996). In order
to translate these assumption to the variance of the genomic
values in the REM, we have to condition on the marker effects
(i.e. we fix them). Then, the theoretical variance of the geno-
mic values of a individual with randommarker genotypes (rep-
resentative individual), and with fixed marker effects, equals

VarðXb jbÞ ¼ b⊤SXb

¼
Xp
j¼1

bjVarðXjÞ þ
Xp
i¼1

Xp
j¼1
j 6¼i

bibjCovðXi;XjÞ;

(40)

and describes the genomic equivalent of the definition of
the additive genetic variance (Bulmer 1971; Falconer and
Mackay 1996).

Estimation of the Additive Genomic Variance in the
REM

In the sections The expectation of the additive genomic variance
and Best prediction of the additive genomic variance, we have
introduced ways to predict the random additive genomic
variance

s2g;B :¼ 1
n2 1

g⊤Bg ¼ 1
n2 1

b⊤X⊤PBPXb (13)

in the REM, namely by using the unconditional expectation

E½s2g;B� ¼
1

n2 1
s2
btrðX⊤PBPXÞ

¼ 1
n2 1

s2
g trðBGÞ

(14)

and the best predictor

BP
�
s2g;B
�
¼ 1

n2 1
tr
	
X⊤PBPX

h
mbj ym

⊤
bjy þ Sbj y

i

¼ 1

n2 1
tr
	
B
h
mbj ym

⊤
bj y þ Sbj y

i

:

(21)

In the following, we introduce estimators for these quantities
and investigate their properties.

Estimation of the unconditional expectation
For any given positive semidefinite matrix B, the unconditional
expectation

1
n2 1

s2
btrðX⊤PBPXÞ

in model (6) can be estimated by

1
n2 1

ŝ2
btrðX⊤PBPXÞ

after having obtained an estimate ŝ2
b of the variance compo-

nent s2
b. In the equivalent model (1), we can estimate

1
n2 1

s2
g trðBGÞ

by using

1
n2 1

ŝ2
g trðBGÞ

for any positive semidefinite matrix B.
The specification of B as in the section The expectation of

the additive genomic variance leads to the explicit form of the
estimators

V̂ ¼ ŝ2
btrðŜXÞ ¼ 1

n2 1
ŝ2
g trðGÞ;

V̂* ¼ ŝ2
btrðŜX*Þ ¼ 1

n2 1
ŝ2
g trðPR20:5GR20:5Þ

and

V̂*
s ¼ cŝ2

b ¼ ŝ2
g : (41)

Empirical best prediction
Because of equalities (Equations 29 and 30) and the variance-
covariance matrix

P
b¼ s2

bIp of b, we have that

Sbj y ¼ Sb 2Smbjy ¼ s2
bIp2Smbjy:

Consequently, the best predictor of s2g;B defined in Equation 21
equals

BP
�
s2g;B
�
¼ 1

n2 1
tr
�
X⊤PBPX

�
mbj ym

⊤
bj y þ Sbj y

��
¼ 1

n2 1
tr
�
X⊤PBPX

�
mbj ym

⊤
bj y þ Sb2Smbjy

��
¼ 1

n2 1
s2
btrðX⊤PBPXÞ

þ 1
n2 1

trðX⊤PBPX½mbj ym
⊤
bj y 2Smbj y�Þ

¼ E½s2g;B� þ Lð yÞ;
(42)

where

Lð yÞ :¼ 1
n2 1

trðX⊤PBPX½mbj ym
⊤
bj y 2Smbjy�Þ

¼ 1
n2 1

trðB½mgj ym
⊤
gj y 2Smgjy�Þ:

(43)
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We have partitioned the best predictor of s2g;B into the un-
conditional expectation of s2g;B and the random variable L,
which is realized in the phenotypic data y. The random vari-
able L specifies the adaption of the best predictor to the data
and incorporates the contribution of (marker) LD. The expec-
tation of L over all possible data y is 0 because

E

h
mbj ym

⊤
bj y2Smbjy

i
¼Covðmbj yÞþE½mbj y�E½mbj y�⊤2Smbjy¼0:

The sign of the realization of L determines whether the
best predictor is larger (positive weighted LD) or smaller
(negative weighted LD) than the unconditional
expectation.

The task of finding an eBP for s2g;B is reduced to estimating
the realized values of L because of the connection derived in
Equation 42. We replace the BLUP and their variance-covariance
matrix in Equation 43 by the eBLUPand their estimated variance-
covariance matrix:

L̂ð yÞ :¼ 1
n2 1

tr
	
X⊤PBPX

h
m̂bj ym̂

⊤
bj y 2 Ŝm̂bjy

i

:

We assume that we are provided with REML-estimators ŝ2
b

and ŝ2
e for the variance components. Then, we find

E

h
m̂bj ym̂

⊤
bj y
i
¼ Covðm̂bj yÞ þ E½m̂bj y�E½m̂bj y�⊤

¼ð32ÞSm̂bj y;

because the eBLUP is unbiased for b, i.e. E½m̂bjy� ¼ E½b� ¼ 0
(Jiang 1999). Unfortunately, the unbiasedness of the esti-
mated variance-covariance matrix of the eBLUP can be
asserted only in a trivial way by conditioning on the esti-
mated variance components:

E

h
Ŝm̂bj y

���s2
b ¼ ŝ2

b;s
2
e ¼ ŝ2

e

i
¼ð32ÞSm̂bj y:

Therefore, the expectation of L̂ðyÞ (conditionally on the var-
iance components) equals 0.

The same holds true for

L̂ðyÞ ¼ 1
n21

tr
	
B
h
m̂gj ym̂

⊤
gj y 2 Ŝm̂gjy

i

in the equivalent model, because the quantities m̂gjy and Ŝm̂gj y

are linear combinations of m̂bjy and Ŝm̂gjy (see Equations 33
and 36).

Altogether, we can define the unbiased (conditionally on
the estimated variance components) eBP

eBPðs2g;BÞ :¼ Ê½s2g;B� þ L̂ð yÞ
¼ 1

n2 1
ŝ2
btrðX⊤PBPXÞ

þ 1
n2 1

trðX⊤PBPX½m̂bj ym̂
⊤
bj y 2 Ŝm̂bjy�Þ

¼ 1
n2 1

ŝ2
g trðBGÞ þ

1
n2 1

trðB½m̂gj ym̂
⊤
gj y 2 Ŝm̂gj y�Þ

for the additive genomic variance s2g;B.
The specification of B as in the section Best prediction of the

additive genomic variance leads to the explicit form

Ŵ :¼ eBPðs2gÞ ¼ V̂ þ trðŜX ½m̂bj ym̂
⊤
bj y 2 Ŝm̂bj y�Þ

¼ V̂ þ 1
n2 1

trð½m̂gj ym̂
⊤
gj y 2 Ŝm̂gj y�Þ

of the eBP for the additive genomic variance in the current
population, and to the eBP

Ŵ* :¼ eBPðs2g*Þ

¼ V̂* þ trðŜX* ½m̂bj ym̂
⊤
bj y 2 Ŝm̂bjy�Þ

¼ V̂* þ 1
n2 1

trðPR20:5½m̂gj ym̂
⊤
gj y 2 Ŝm̂gj y�R20:5Þ

for the additive genomic variance in the base population.
Using the GRM G for a transformation to the base popu-

lation is not well-defined because G is singular. However,
because V̂*

s (see Equation 41), is commonly used, we want
to find an analogous formula for the eBP in this set-up.

Instead of calculating

G20:5m̂gj y ¼ G20:5ŝ2
gGðGŝ2

g þ ŝ2
e InÞ

21ð y2 m̂1nÞ

and

G20:5Ŝm̂gj y ¼ G20:5 ŝ2
gG
b~SGŝ2

g 2
ŝ2
gG
b~S1n1⊤nb~SGŝ2

g

1⊤n
b~S1n

24 35G20:5;

we use

m̂*
gj y :¼ ŝ2

gG
0:5ðGŝ2

g þ ŝ2
e InÞ

21ð y2 m̂1nÞ

and

Ŝ*
m̂gjy

:¼ ŝ2
gG

0:5b~SG0:5ŝ2
g 2

ŝ2
gG

0:5b~S1n1⊤nb~SG0:5ŝ2
g

1⊤n
b~S1n

as substitutes. Then, we define

Ŵ*
s ¼ V̂*

s þ
1

n2 1
tr

 
P
�
m̂*
gj y
�
m̂*
gj y
�⊤

2 Ŝ*
m̂gj y

�!

asanapproximationoftheeBPoftheadditivegenomicvariancein
the base populationwhen using theGRM for the transformation.
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Table A.1 Overview of prediction approaches for the random additive genomic variance in the random-effects model with the
gBLUP-method

�
s2g;B ¼ 1

n21b
⊤X⊤PBPXb

�
Unconditional expectation Best prediction

General Formula E½s2g;B� ¼ 1
n21s

2
btrðX⊤PBPXÞ BPðs2g;BÞ ¼ 1

n21 trðX⊤PBPX½mbj ym
⊤
bj y þ Sbj y �Þ

Current population V ¼ s2
btrðŜX Þ W ¼ trðŜX ½mbj ym

⊤
bj y þ Sbj y �Þ

Base population V * ¼ s2
btrðŜX* Þ W* ¼ trðŜX* ½mbjym

⊤
bj y þ Sbj y �Þ

Features • Best approximation of the additive genomic
variance in the absence of information

• Best approximation of the additive genomic variance using additional
information given by phenotypic values (optimal adaptation to the
data by application of the conditional or posterior expectation)

• No inclusion of LD • Explicit inclusion of LD
• Orthogonal decomposition of the phenotypic variance in the current
population (unique definition of the heritability)

• Genomic equivalent of the additive genetic variance

X, matrix of marker genotypes; P, matrix for column-wise mean-centering; B, positive semidefinite matrix; s2
b; variance component of the marker effects b; mbjy ; BLUP of b;

Sbjy ; conditional covariance matrix of b given the phenotypic data y; ŜX ; sample variance-covariance matrix of the marker genotypes in the current population; ŜX* ; sample
variance-covariance matrix of the marker genotypes in the base population.

Table A.2 Overview of prediction approaches for the random additive genomic variance in the random-effects model with the
gBLUP-method in the equivalent version of the linear model

�
s2g;B ¼ 1

n21g
⊤Bg

�
Unconditional expectation Best prediction

General formula E½s2g;B� ¼ 1
n21s

2
gtrðBGÞ BPðs2g;BÞ ¼ 1

n21 trðB½mgjym⊤
gj y þ Sgj y �Þ

Current population V ¼ 1
n21s

2
gtrðGÞ W ¼ 1

n2 1 trð½mgj ym
⊤
gj y þ Sgjy �Þ

Base population V * ¼ 1
n21s

2
gtrðPR20:5GR20:5Þ W* ¼ 1

n2 1 trðPR20:5½mgj ym
⊤
gj y þ Sgj y �R20:5Þ

Features • Best approximation of the additive genomic
variance in the absence of information

• Best approximation of the additive genomic variance using additional
information given by phenotypic values (optimal adaptation to the
data by application of the conditional or posterior expectation)

• No inclusion of LD • Explicit inclusion of marker LD
• Transformation with GRM: s2

g replaces V * • Orthogonal decomposition of the phenotypic
variance in the current population (unique
definition of the heritability)

• Genomic equivalent of the additive genetic variance

G, genomic relationship matrix; P, matrix for column-wise mean-centering; B, positive semidefinite matrix; s2
g; variance component of the genomic values g; mgjy ; the BLUP of

g; Sgjy ; conditional covariance matrix of g given the phenotypic data y; R, relationship matrix.
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