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ABSTRACT The R-package MoBPS provides a computationally efficient and flexible framework to simulate
complex breeding programs and compare their economic and genetic impact. Simulations are performed on
the base of individuals. MoBPS utilizes a highly efficient implementation with bit-wise data storage andmatrix
multiplications from the associated R-package miraculix allowing to handle large scale populations. Indi-
vidual haplotypes are not stored but instead automatically derived based on points of recombination and
mutations. The modular structure of MoBPS allows to combine rather coarse simulations, as needed to
generate founder populations, with a very detailedmodeling of todays’ complex breeding programs, making
use of all available biotechnologies. MoBPS provides pre-implemented functions for common breeding
practices such as optimum genetic contributions and single-step GBLUP but also allows the user to replace
certain steps with personalized and/or self-written solutions.
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Breeding programs aim at improving the genetic properties of
livestock and crop populations with respect to productivity, fitness
and adaptation. Progress toward the target is limited by the available
resources, but also negative effects, such as inbreeding depression or
health issues, have to be avoided or at least controlled. Hence, the
allocation of resources in a breeding program is a complex optimi-
zation problem. Additionally, population history, such as fluctuating
population sizes and selection pressures, has an impact on the current
genomic architecture and thus the potential for future improvement.

Over the years a variety of simulation tools have been developed to
assist breeders to evaluate and optimize their breeding programs. A
general problem of simulation studies is that the underlying genomic
processes are highly complex and have to be simplified for modeling.
In addition, users often have rather different objectives in mind when
setting up their simulation studies. Since tools often do not provide
the necessary flexibility to execute the specific breeding actions and/or

it is not possible to export all necessary outputs, this commonly leads
to the use of self-developed solutions that tend to be more error-
prone, less sophisticated and computationally inefficient. The func-
tionality of existing software for the simulation of breeding programs
ranges from cohort based deterministic simulation that relies on
expected gains like ZPLAN+ (Täubert et al. 2010) to applications on
the base of the stochastic simulation of single individuals such as
QMSim (Sargolzaei and Schenkel 2009) and AlphaSim (Faux et al.
2016). The functionality of each of these tools highly depends on the
intended use. ZPLAN+ (Täubert et al. 2010) focuses on the economic
impact from a macro-perspective. Since analytic formulas for cohorts
are required, it has limitations when simulating complex mating
schemes or when focusing on other quantities than genetic or
economic gain. QMSim (Sargolzaei and Schenkel 2009) is able to
simulate each individual meiosis but is lacking the flexibility in terms
of design options in the breeding program, as it is mainly intended for
use in population genetics. On the contrary, AlphaSim (Faux et al.
2016) provides a lot of flexibility in term of the design of the breeding
program, especially for plant breeding and when the number of
cohorts in the breeding program is small. However, AlphaSim lacks
the efficiency to simulate complex and large scale populations (e.g., as
genotypes of all individuals are stored) and does not allow for the
export of all potentially relevant results. The interested reader is
referred to Sun et al. (2011) for an extended review on different
simulators used in plant breeding.

Our goal was to develop a tool that combines the simulation of
a historical population and the evaluation of a subsequent complex

Copyright © 2020 Pook et al.
doi: https://doi.org/10.1534/g3.120.401193
Manuscript received February 28, 2020; accepted for publication March 27, 2020;
published Early Online March 30, 2020.
This is an open-access article distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
1Corresponding author: University of Goettingen, Department of Animal
Sciences, Center for Integrated Breeding Research, Animal Breeding and
Genetics Group, Albrecht-Thaer-Weg 3, 37075 Goettingen, Germany. E-mail:
torsten.pook@uni-goettingen.de

Volume 10 | June 2020 | 1915

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/10/6/1915/6026363 by U

niversitätsbibliothek M
annheim

 user on 04 April 2023

http://orcid.org/0000-0001-7874-8500
https://doi.org/10.1534/g3.120.401193
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:torsten.pook@uni-goettingen.de


breeding program in a computationally efficient way. The Modular
Breeding Program Simulator (MoBPS) is not only flexible in terms of
parameters and design of breeding programs, but also allows the user
to replace standard procedures of the package with own ones.

METHODS
Simulations in MoBPS are ultimately based on the simulation of
single individuals. In principle, this allows the user to control each
singular mating and modify recombination or mutation rates for the
respective meiosis. However, breeding programs in MoBPS can still
be constructed in a modular form as a combination of cohorts and
breeding actions. As breeding actions like phenotyping, selection,
aging, or reproduction are typically applied on groups of individuals,
the relevant individuals for each breeding action can be selected via
three different keywords:

1. gen: all individuals of a certain generation
2. cohort: group of individuals generated via the same breeding

action
3. database: all (or in principle specific) individuals of a certain

generation and sex

Similar to the gene-flow concept (Hill 1974), a cohort describes a
group of individuals with usually identical characteristics like age, sex
and genetic origin. As the three types of groups can also be combined,
handling of overlapping generations in a breeding program is pos-
sible. Cohorts and breeding actions are defined in a generic way and
are parametrized, so that any breeding program of arbitrary com-
plexity can be modeled as a suitable sequence of cohorts and breeding
actions.

All data for a population is stored in a list that contains general
and individual information. The general part provides information
on the underlying genetics like the physical position of each marker,
allelic variants or structure of the underlying genetic traits. The
individual part contains information that is specific to the individual.
Similarly to simulators like SBVB (Pérez-Enciso et al. 2017), haplo-
types are stored for founder individuals only. For all other individuals
only points of recombination and mutation, and their genetic origins
are stored. In particular, haplotypes are not permanently stored
but only derived when needed. Therefore, the required memory
isminimized and only increases slightly with increasingmarker density.
When thousands of generations are simulated it is advisable to classify
additional generations as new founders to reduce the number of
recombinations and mutations to be stored in subsequent generations.
The usefulness of this is highly dependent on the ratio between genome
length and number of markers and on how many new founder
genotypes have to be stored. As the population itself in a breeding
program usually occupies only a small share of the required memory
and less than one hundred generations are considered, benefits here are
usually small, making this only relevant/required in large scale pop-
ulation genetic studies.

Simulation of multiple correlated traits with and without un-
derlying QTL is supported. Classical additive, dominant and epistatic
or pleiotropic QTL can be defined and any effect structure of multiple
interacting loci is supported. Each locus has to be assigned with a
position in Morgan and different recombination rates for subgroups
(e.g., males/females) are supported. Information on the number of
markers can be manually entered or imported via a database
(Ensembl, (Zerbino et al. 2017)), a map-file (Purcell et al. 2007)
or a vcf-file (Danecek et al. 2011). For common species, exemplary
map files are provided in the associated package MoBPSmaps (Pook
2019). Genotype data for a base population can be imported via

PLINK (Purcell et al. 2007) and/or vcf-format (Danecek et al. 2011),
sampled internally or generated by executing prior simulation in
MoBPS and/or other tools (Chen et al. 2009; Sargolzaei and Schenkel
2009) to generate the required population structure. All breeding
actions performed in the simulation can be tracked and assigned with
costs to derive the expenses of the program. Different breeding
programs can be compared in terms of their economic revenue or
other target functions (e.g., development of the inbreeding rate) one is
interested in.

Common methods for selection such as optimal genetic contri-
butions (Meuwissen 1997) are implemented and a variety of different
packages for breeding value estimation can be switched on. This includes
BGLR (Pérez and de los Campos 2014), sommer (Covarrubias-Pazaran
2016) and rrBLUP (Endelman 2011), as well as an efficient implemen-
tation for solving the mixed model (Henderson 1975) in the traditional
GBLUP model (Meuwissen et al. 2001; VanRaden 2008) that is assum-
ing known heritability and is using the R-package RandomFieldsUtils
(Schlather et al. 2019) for thematrix inversion. Inputs for these packages
such as the different pedigree and genomic relationship matrices
(VanRaden 2008; Legarra et al. 2014; Martini et al. 2017) can be derived
via highly efficient and fully-parallelized bit-wise matrix multiplications
(R-package miraculix (Schlather 2020)). Non of the mentioned pack-
ages, however, is required to execute simulations in MoBPS. In partic-
ular, all functionality of the MoBPS R-package is still available when
miraculix is not installed, with the downside of higher computing times
and memory demands.

The simulations in MoBPS are based on two main functions:
creating.diploid() and breeding.diploid(). Here, creating.diploid() ini-
tializes the base-line population and breeding.diploid() performs
breeding actions on an existing population list. As a simple example
consider the following script:

library (MoBPS)
pop ,- creating. diploid(nsnp =10000, nindi =100, chr.nr =5,
chromosome.length = 2, n.additive =50, n.dominant = 10,
var.target = 1, name.cohort=”Founder”)
pop ,- breeding.diploid(pop, heritability = 0.5, new.bv.
observation=”all”)
pop ,- breeding.diploid(pop, bve = TRUE)
pop1,- breeding.diploid(pop, breeding.size = 100, selection.size =
c(20,20), selection.criteria =”bve”, selection.m.cohorts =”Founder_
M”, selection.f.cohorts =”Founder_F”, name.cohort =”Offspring”)
pop2,- breeding.diploid(pop, breeding.size = 100, selection.size =
c(5,20), selection.criteria=”bve”, selection.m.cohorts =”Founder_M”,
selection.f.cohorts =”Founder_F”, name.cohort =”Offspring”)
Via this code, we first generate a base population containing

100 individuals with 10,000markers. The underlying genome consists
of 5 chromosomes with a length of 2 Morgan each and equidistant
markers. Furthermore, we generated a single trait that is impacted by
50 purely additive QTL and 10 dominant QTL and scale QTL effect to
result in a trait with genomic variance of 1.

In the next step, we initialize a breeding action to generate
phenotypes for all individuals in the population with an assumed
heritability of 0.5. Next, a breeding value estimation is performed.
Since no cohorts are selected, the last (and only) generation of the
population list will be considered for the breeding value estimation.
Lastly, we generate 100 offspring by random mating. Here, two
scenarios are considered with different selection intensity with the
top 5/20 male and top 20 female individuals being used for re-
production, leading to gains of 0.663/0.922 genomic standard devi-
ations and an increase in inbreeding in terms of average kinship of
0.0062/0.0156 (Figure 1). In principle, all three breeding actions
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performed via breeding.diploid() could have also been executed in a joint
step. For a full list of all possible breeding actions and available parameters
we refer to our user manual (available at https://github.com/tpook92/
MoBPS).

For a quick overview of the simulated population, the function
summary() can be used:

summary(pop1)
Population size:
Total: 200 Individuals
Of which 100 are male and 100 are female.
There are 2 generations and 4 unique cohorts.

Genome Info:
There are 5 unique chromosomes.
In total there are 10000 SNPs.
The genome has a total length of 10 Morgan.
The genome has a physical size of about: 1 GB

Trait Info:
There is 1 modeled trait.
The trait has underlying QTL
The trait is named: Trait 1
A variety of functions is provided to export required information

such as the phenotypes (get.pheno()), the genotypes (get.geno()) and
the pedigree (get.pedigree()) for selected individuals from the pop-
ulation list. These functions are thoroughly described in chapter 7 of
the user manual (available at https://github.com/tpook92/MoBPS). In
addition, functions to derive rates of inbreeding (kinship.emp()),
development of breeding values (bv.development()) or changes in
allele frequency over time (analyze.population()) are provided to
further analyze the resulting population list.

Data availability
An executable version of MoBPS and the associated R-packages
miraculix (Schlather 2020), RandomFieldsUtils (Schlather et al.
2019) and MoBPSmaps (Pook 2019) for Windows and Linux are
freely available at https://github.com/tpook92/MoBPS. This directory
also contains an comprehensive user manual explaining the func-
tionality of all input parameters and utility functions in MoBPS. A
frozen version of the R-packages MoBPS (v1.4.87), MoBPSmaps

(v0.1.7), miraculix (v0.9.10), RandomFieldsUtils (v0.5.9), and our user
manual at submission are also provided there. The MoBPS R-package
can be directly installed within your R session via following commands:

install.packages(”devtools”)
devtools::install_github(”tpook92/MoBPS”, subdir=”pkg”)

RESULTS AND DISCUSSION
The package MoBPS is completely written in R (R Core Team
2017) so that all functionalities for genetic applications are plat-
form independent. The R-packages miraculix (Schlather 2020) can
be activated in MoBPS and leads to more efficient data storage and
shorter simulation times. In particular vector multiplications with
genetics data (0,1,2) are performed via bitwise operations on a whole
register (128/256 bit) using SSE2/AVX2. Computing times are similar
to the ones in PLINK (Purcell et al. 2007) with one fourth of the
memory usage. The interested reader is referred to Schlather (2020)
for extended benchmark-testing on miraculix. The storage of founder
genotypes is 4 times as efficient as in AlphaSim (Faux et al. 2016) and
32/64 times as efficiency as the use of integer/double variables to store
haplotypes.

Even though basically all information regarding each individual is
stored, the required memory in MoBPS is still relatively low as a
highly efficient storage structure is used. Haplotypes of founders and
details on the origin of the segment between points of recombination
are stored bitwise. E.g. the simulation of 20 generations with 50,000
cows with 50,000 markers and breeding value estimation via GBLUP
takes 26.2 hr using 24 cores on a server cluster with Intel E5-2650
(2X12 core 2.2GHz) processors. At peak, 65 GB of memory was used.
The main share of this was required for the storage of the genomic
relationship matrix whereas the resulting population list, containing
more than a million individuals, only had a size of about 0.44 GB. The
biggest proportion of the computing time is used for breeding value
estimation (25.3 hr, 96.4%). The generation of new animals took 55 min
(3.5%, 304 animals per second using a single core). All other parts
needed negligible computing time (132 sec, 0.1%). Computing times for
most parts (except breeding value estimation) increase linearly with the
number of individuals. This highly efficient storage structure therefore
also allows for the simulation of historical populations with thousands of

Figure 1 Resulting genetic gain and increase in inbreedingwith low (Scenario 1) and high (Scenario 2) selection pressure for 5,000 simulation runs each.
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generations and undergone population dynamics such as genetic
bottlenecks, migration or mutational drift.

The flexible and efficient environment of MoBPS allows for the
simulation of a variety of different and potential large-scale breeding
programs. For exemplary scripts of more complex breeding programs
we refer to the user manual. Exemplary simulations are given for the
effect of gene editing in a cattle breeding program (Simianer et al.
2018), the simulation of a multi-parent advanced generation in-
tercross in maize (Pook et al. 2019), an introgression scheme in
chicken (Ha et al. 2017) and the generation of a base population with
a hard sweep. A further advantage of MoBPS compared to other
simulation tools is its flexible structure that allows the user to
substitute single steps of the breeding program with a customized
approach. For this consider the following example to execute one
owns breeding value estimation:

genos ,- get.geno(pop, gen = 1)
y ,- get.pheno(pop, gen = 1)
indi_names ,- colnames(genos)
# Execute one owns function to perform
# the breeding value estimation
y_hat ,- own.method.for.bve (genos, y)
# Enter BVEs in the population-list
pop ,- insert.bve(pop, bves = cbind (indi_names, y_hat))
Even though a simulation study can never fully reflect reality and

is relying on model assumptions, the use of a simulation study comes
with major benefits and still allows the user to draw important
conclusions. In contrast to reality the underlying truth in a simulation
study is known, and therefore new methods can be thoroughly
evaluated and compared to existing ones. Furthermore, the effects
of particular breeding actions on a variety of output dimension can be
assessed and compared. This in turn can be used to derive an ideal
resource allocation and optimize potentially highly complex breeding
scenarios in a setting that can be evaluatedmultiple times and without
constrains both in terms of money and time.
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