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Abstract

Automatic facial coding (AFC) is a promising new research tool to efficiently analyze emo-

tional facial expressions. AFC is based on machine learning procedures to infer emotion cat-

egorization from facial movements (i.e., Action Units). State-of-the-art AFC accurately

classifies intense and prototypical facial expressions, whereas it is less accurate for non-

prototypical and less intense facial expressions. A potential reason might be that AFC is typ-

ically trained with standardized and prototypical facial expression inventories. Because AFC

would be useful to analyze less prototypical research material as well, we set out to deter-

mine the role of prototypicality in the training material. We trained established machine

learning algorithms either with standardized expressions from widely used research invento-

ries or with unstandardized emotional facial expressions obtained in a typical laboratory set-

ting and tested them on identical or cross-over material. All machine learning models’

accuracies were comparable when trained and tested with held-out dataset from the same

dataset (acc. = [83.4% to 92.5%]). Strikingly, we found a substantial drop in accuracies for

models trained with the highly prototypical standardized dataset when tested in the unstan-

dardized dataset (acc. = [52.8%; 69.8%]). However, when they were trained with unstan-

dardized expressions and tested with standardized datasets, accuracies held up (acc. =

[82.7%; 92.5%]). These findings demonstrate a strong impact of the training material’s pro-

totypicality on AFC’s ability to classify emotional faces. Because AFC would be useful for

analyzing emotional facial expressions in research or even naturalistic scenarios, future

developments should include more naturalistic facial expressions for training. This approach

will improve the generalizability of AFC to encode more naturalistic facial expressions and

increase robustness for future applications of this promising technology.

Introduction

Automatic Facial Coding (AFC) is now ubiquitous and has made great strides in emotion rec-

ognition of facial expressions. Such technology is promising because facial expressions are

highly relevant for social interactions and carry information about the emotional state of an

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0281309 February 10, 2023 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS
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Copyright: © 2023 Büdenbender et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data for the study are

available at https://madata.bib.uni-mannheim.de/id/

eprint/327 [1]. 1. Höfling TTA, Alpers GW,
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individual [1, 2]. Thus, assessing and quantifying emotional facial expressions is a primary

objective in emotion research [3]. AFC follows the logic of the best established observational

system, the Facial Action Coding System (FACS; [4]), which requires manual assignment of

facial movements (i.e., Action Unit; AU) by human expert observers. AFC is now promising

to accelerate the process of coding facial activities, especially for large samples or large amounts

of data making the method more feasible for naturalistic assessments in and outside the labo-

ratory. Because it is mainly unclear how classifiers are trained in AFC systems which are typi-

cally proprietary, we investigate the impact of training materials’ prototypicality and the

consequent influence on classification performance.

AFC of standardized facial expressions

AFC software, as of today, typically entails two steps of analyzing faces [2, 5]: In the first step,

physical properties of the pictures (here, AU features) are extracted, and in the second step,

this information is integrated in terms of emotion categories. Regarding the first step, there is

evidence of a high agreement between AFC and experienced human FACS coders [6–8] com-

parable to the inter-rater reliabilities between human FACS coders [9]. In the second step of

AFC, developers face the challenge of deciding which and how many emotion categories

should be predicted. Also, they need to choose the specific machine learning algorithm for the

AFC software (for overviews, see [10, 11]). The so-called basic emotions (i.e., joy, sadness,

anger, disgust, fear, and surprise) are the most extensively researched facial expression catego-

ries (e.g., [12]). They typically serve as predefined emotion categories for AFC’s supervised

learning. Another challenge for new AFC tools is the fact that machine learning algorithms

require a large amount of stimulus material (i.e., emotional faces) for their training, which is

critical for the stability and generalizability of such systems. To access such datasets, AFC

developers typically rely on standardized inventories of highly prototypical emotional facial

expressions.

There is abundant evidence that AFC performs impressively in categorizing pictures from

standardized inventories, typically comprising intense and prototypical emotional facial

expressions (see Table 1). AFC classifies facial expressions of basic emotions with a high accu-

racy in standardized research inventories, which is a robust pattern for static picture invento-

ries and dynamic video inventories [13–18]. However, decoding the facial expressions of

skilled actors exaggerating certain emotions might not always correspond to actual emotional

facial reactions that occur spontaneously. Hence, the exclusive use of such material for the

development and validation of machine learning procedures can be deceiving in terms of the

upper limit performance, in particular for these six basic emotions. Thus, it is essential to vali-

date the sensitivity and specificity of AFC approaches for less intense and less prototypical

facial expressions.

AFC of unstandardized facial expressions

Regarding AFC performance in less standardized pictures, we recently demonstrated substan-

tial differences in facial movement (AU activity) between highly standardized and prototypical

facial expressions compared to unstandardized and less prototypical emotional faces [19, 21].

Consequently, AFC accuracy rates substantially decrease evaluated in less prototypical stimuli

(see Table 1) when untrained participants are instructed to mimic or pose facial expressions,

particularly for emotion categories like sadness or fear [15, 20, 22]. Consistent with these

results, we found that AFC parameters of standardized inventories and unstandardized facial

expressions from untrained participants in a typical laboratory setting substantially differ in

the relative intensity of AU activity, the resulting AU profiles, and overall classification
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accuracies. Furthermore, the classification performance of AFC decreases if spontaneous facial

responses toward emotional stimuli like scenes or faces are investigated [23, 24]. Hence, the

validity of AFC to detect emotional facial expressions is further decreased compared to proto-

typical facial expressions from standardized inventories.

One potential mechanism that causes this gap in AFC performance between prototypical

and non-prototypical facial expressions may be the common usage of prototypical emotional

facial expressions for the training of new AFC systems. In the past, AFC systems heavily relied

on highly standardized static and dynamic facial expression inventories to both train and test

their developed machine learning models [25–37]. Hence, the decrease in the accuracy of AFC

to detect less intense and non-prototypical emotional facial expressions in more naturalistic

research settings may indicate an overfit of trained AFC machine learning models to detect

prototypical facial expressions.

Aims and overview

We set out to examine how the choice of specific material for training affects the accuracy of

AFC machine learning algorithms to classify prototypical and non-prototypical emotional

facial expressions. To this end, we used two datasets with pictures of emotional facial expres-

sions (basic emotions: joy, sadness, anger, disgust, fear, and surprise) and extracted their AU

intensity. One dataset comprises prototypical, standardized, and well-established research

inventories (standardized dataset). The other comprises untrained study participants from a

typical laboratory setting (unstandardized dataset), who were instructed to display emotional

facial expressions. The aim was to investigate the influence of the prototypicality of training

material on machine learning classification performance. To this end, we trained three

machine learning algorithms based on the same set of AU parameters separately for both data-

sets (standardized vs. unstandardized) and tested their classification performance on both

Table 1. Benchmark of automatic facial coding in A) prototypical and B) non-prototypical stimuli.

Authors Classifier Accuracy

A) Prototypical Azure .81

Küntzler et al. (2021) [19]

Küntzler et al. (2021) [19] Face++ .79

Küntzler et al. (2021) [19] FR .97

Lewinski et al. (2014) [18] FR .88

Skiendziel et al. (2019) [7] FR .80

Stöckli et al. (2018) [20] AFFDEX .73

Stöckli et al. (2018) [20] FACET .99

Yitzhak et al. (2017) [15] CERT .88

Mean .86

B) Non-Prototypical Azure .57

Küntzler et al. (2021) [19]

Küntzler et al. (2021) [19] Face++ .32

Küntzler et al. (2021) [19] FR .31

Stöckli et al. (2018) [20] AFFDEX .55

Stöckli et al. (2018) [20] FACET .63

Stöckli et al. (2018) [20] AFFDEX .57

Stöckli et al. (2018) [20] FACET .67

Yitzhak et al. (2017) [15] CERT .21

Mean .48

https://doi.org/10.1371/journal.pone.0281309.t001
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types of facial expressions. We expected a more accurate classification for the machine learning

models trained and tested with matching datasets. Furthermore, we expect that the models

which were trained with the standardized dataset would classify facial expressions from the

unstandardized dataset less accurately. This study contributes to a better understanding of the

inconsistent accuracies of AFC (see Table 1). Furthermore, it provides implications for the

development and training procedure to approximate future AFC algorithms’ robustness and

ecological validity.

Materials and methods

Datasets and facial expression analysis

The standardized dataset includes expressions from 69 women selected from widely used and

standardized picture inventories (Karolinska Directed Emotional Faces, Warsaw Set of Emo-

tional Facial Expression Pictures, Radboud Faces Database, [38–40]). The unstandardized
dataset consists of expressions from 69 untrained female students who participated in an

experiment in our laboratory (for details on the experimental procedure, see [21]). Participants

were instructed to display emotional facial expressions cued by pictures of emotional facial

expressions presented on a screen. Each dataset comprised pictures of 69 individuals who

depicted posed facial expressions for the basic emotion categories joy, anger, surprise, sadness,

disgust, fear, and neutral [41, 42].

Both datasets were processed with FaceReader (FR, Version 7.1, Noldus Information Tech-

nology) [43]. For each stimulus, the intensities of twenty Action Units were extracted (AU;

AU01—Inner Brow Raiser, AU02—Outer Brow Raiser, AU04—Brow Lowerer, AU05—Upper

Lid Raiser, AU06—Cheek Raiser, AU07—Lid Tightener, AU09—Nose Wrinkler, AU10—

Upper Lid Raiser, AU15—Lip Corner Depressor, AU17—Chin Raiser, AU18—Lip Tightener,

AU24—Lip Pressor, AU25—Lips Part, AU26—Jaw Drop, AU27—Mouth Stretch, AU43—

Eyes Closed).

The FR classifies AU intensities with the following algorithmic pipeline [44, 45]: The face is

located with a cascade classifier algorithm [46]. Textures of the face are normalized, and an

active appearance model synthesizes a digital face model with over 500 location points [47].

Finally, compressed distance information is transmitted to an artificial neural network (ANN;

[48]) that classifies the intensities of twenty AUs.

Two happy and one neutral picture from two actors in the standardized dataset were

excluded because the FR did not reach convergence in the model fit, resulting in N = 480

observations. None were excluded from the unstandardized dataset (N = 483 observations).

The resulting AU activity scores for each emotional facial expression are predictors of our

machine learning procedure, with the respective intended emotion as the prediction criterion.

Both datasets are publicly available and completely anonymized and can be obtained from the

https://madata.bib.uni-mannheim.de/327/ [49]. All lab participants contained in the unstan-
dardized dataset provided written informed consent, and the experiment was approved by the

University Mannheim Research Ethics Committee (EK Mannheim 09-3/2018) [21].

Selected algorithms and hyperparameters

We investigated the effect of the prototypicality (manifested as differences in the AU activity

[21]) of the standardized and the unstandardized dataset on the accuracy of the emotion classi-

fication with the following three machine learning algorithms: decision tree [50], random for-

est [51] and multi-layer perceptron [52]. We optimized hyperparameters with a resampling

method (10-fold, grouped cross-validation, see “Machine learning procedure”), maximizing

kappa.
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The following hyperparameters were optimized: complexity (cp) for the decision trees, the

number of trees (ntree) and variables considered at each decision node (mtry) in the random

forest, and the number of neurons in the hidden-layer (size) for the multi-layer perceptron.

Hyperparameter tuning and the training of the models were conducted with the caret R-pack-

age [53, 54]. All further hyperparameters of the algorithms were set to their default values [54].

A complete list of the R-packages used in the analyses is provided in the S1 Table.

Decision trees. We employed the rpart R-package [50] to train the decision tree. A deci-

sion tree is built by identifying the variable that bests splits the data into two groups (i.e., mini-

mized impurity). This procedure is applied recursively to all generated subgroups and

continued until the subgroup reaches a minimum size or no further improvement is possible.

Such so-called greedy approaches will likely result in complex trees that will not generalize

well on new data. To prevent overfitting, the resulting tree is thus, pruned by penalizing the

number of terminal nodes. We tuned the complexity (cp) hyperparameter, which determines

the minimum improvement necessary in a node split during the pruning process.

Random forest. For the random forest (RF), we used the randomForest R-package [51].

The RF is a bagging (i.e., bootstrapping and aggregating) ensemble learning method in which

multiple independent unpruned decision trees are trained from bootstrapped samples, and

their results are aggregated, in case of a classification problem, with a majority vote [55, 56].

Further, to build rather uncorrelated trees, only a random subset of all predictors in the dataset

is considered at each decision node in the process of creating the trees. This procedure is sup-

posed to make the RF robust against overfitting [55]. We optimized two hyperparameters: the

number of variables considered for each decision node (mtry) and the number of trees in the

forest (ntree). In order to perform an extensive grid search for both hyperparameters, we used

a slight modification of the RF implementation in caret [51] to simultaneously optimize both

hyperparameters (mtry and ntree).
Multilayer perceptron. We tested different numbers of hidden layers with no improve-

ment in the model’s performance. Therefore, in the hyperparameter tuning phase, we only

optimized the number of neurons in a single hidden layer (size) in order not to increase the

risk of overfitting. The caret R-package [54] uses the RSNNS R-package [52] to train the multi-

layer perceptron.

Machine learning procedure and performance evaluation

The machine learning pipeline is depicted in Fig 1 and was identical for both datasets (stan-
dardized dataset and the unstandardized dataset). We first extracted the activity of 20 AUs (see

section Datasets) with Noldus FaceReader [43]. During the subsequent preprocessing step,

two Action Units with zero variance (AU18 and AU27) were excluded. Both datasets were ran-

domly split into a training (70%) and a test set (30%). As the data is inherently dependent

(seven different emotional facial expressions per individual), the random split considered the

unique identifier of the individual to prevent biased performance estimates introduced by data

leakage (i.e., emotional facial expressions from a person being allocated to the train as well as

the test dataset).

During the training phase, the hyperparameters of the algorithms were optimized (maxi-

mizing kappa, κ) within the 70% training split with a grouped ten-fold cross-validation. Trans-

formation of the data, i.e., scaling and centering, was managed inside the train function of the

caret R-package [54] and independently applied to all cross-validation splits to avoid data leak-

age [57]. Grouping for the cross-validation was again based on the unique identifier of the

individual. We decided to assess performance in an independent test set to prevent inflated

performance metrics [57] due to optimization errors in cross-validations [58]. Consequently,
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the final models were trained with the optimal hyperparameters as previously determined by

the cross-validation in the 70% training set.

In the evaluation phase, we first determined a baseline performance in previously unseen

data from the same dataset that was used to train the models, i.e., with the hold-out 30% test

set. Models trained with the standardized dataset were evaluated in the hold-out 30% test set of

this dataset and vice versa; the models trained with the unstandardized dataset predicted the

unseen hold-out 30% test set of the unstandardized dataset. Performance metrics obtained in

the hold-out test sets from the same dataset provide an indicator of the model’s ability to pre-

dict facial expressions of similar prototypicality. Finally, to determine the influence of the spe-

cific training material on the performance, we used the models trained in one dataset to

predict the respective other datasets. The models based on the standardized dataset were tested

with the unstandardized dataset and vice versa. We evaluate the classification performance for

all models in terms of overall accuracy, kappa (κ), and logLoss, as well as additional binary

classification metrics separately for each emotion category: sensitivity (Sn), specificity (Sp),

and the F1-score (F1). These binary classification metrics are calculated with a one-versus-all

approach [54].

Results

Hyperparameter tuning and cross-validation

Optimal hyperparameters for each algorithm were determined with grouped 10-fold cross-val-

idations (maximizing kappa). We tuned the complexity parameter (cp) for the decision tree

and tested 100 values between 0 and 0.1614 with an interval step of 0.00163. The number of

trees (ntree) and the variables considered at each split (mtry) were optimized for the random

forest. We spun a grid with the following values: mtry = [1; 18] with steps of 1 and ntree =

[100; 1000] with intervals of 100. We further optimized the numbers of neurons (size) in the

single hidden layer of the multi-layer perceptron. In the tuning process, we considered values

Fig 1. Machine learning pipeline. Note. Action Unit (AU) activity in both datasets was extracted with Noldus

FaceReader (FR, Version 7.1). The training process for both datasets was identical: preprocessing, split into 70%

training dataset and 30% test dataset, hyperparameter optimization with grouped 10-fold cross-validation in the

training dataset. Models trained on each dataset were evaluated twice: once with the 30% hold-out test dataset from the

corresponding training dataset and once with 100% of the respective other dataset. The picture for the standardized

dataset is model AF33HAS from the KDEF database [38]. The exemplary picture for the unstandardized dataset

symbolizes but is not taken from one of our anonymous participants; the model provided written informed consent.

https://doi.org/10.1371/journal.pone.0281309.g001
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for size between 1 and 18, with intervals of 1. Additional hyperparameters of the algorithms

(e.g., minbucket the minimum number of observations in a terminal node for the decision

tree) are set to their default values; for more details, see rpart, randomForest, RSNNS documen-

tation [50–52].

The optimal hyperparameters for models based on the standardized dataset were:

cp = 0.1207546 (decision tree), mtry = 3 and ntree = 700 (random forest) and size = 11 (multi-

layer perceptron). The optimal hyperparameters for models based on the unstandardized data-

set were: cp = 0.006593715 (Decision Tree), mtry = 1 and ntree = 800 (random forest) and

size = 17 (multi-layer perceptron). Table 2 presents the performance metrics obtained during

the hyperparameter tuning for both datasets.

Classification performance of standardized dataset models

Train standardized–test standardized. All models based on the standardized dataset pre-

dicted the hold-out data from the standardized dataset with high accuracy and few misclassifi-

cations (Fig 2, Panel A left; decision tree: Acc = 83.4%, κ = 0.81, logLoss = 2.71; random forest:

Acc = 86.9%, κ = 0.85, logLoss = 0.39; multi-layer perceptron: Acc = 84.1%, κ = 0.81,

logLoss = 0.84). With respect to the binary classification metrics, all emotions were classified

with high F1-scores (decision tree: F1 = [76.6%; 97.7%]; random forest: F1 = [78.9%; 100%];

multi-layer perceptron F1 = [78.9%; 97.7%]).

Train standardized–test unstandardized. The same models (i.e., trained with the stan-
dardized dataset) classified the unstandardized dataset with substantially impaired accuracy

(Fig 2, Panel A, right; decision tree: Acc = 69.8%, κ = 0.65, logLoss = 6.71; random forest:

Acc = 65%, κ = 0.59, logLoss = 1.09; multi-layer perceptron: Acc = 52.8%, κ = 0.45,

logLoss = 2.71). Substantially impaired classification performance for the models trained with

the standardized dataset and evaluated in the unstandardized dataset is also evident in the low

sensitivities for several emotion categories; see the diagonals in the confusion matrices (Fig 3,

Panels D-F). All three models trained with the standardized dataset show overall reduced

Table 2. Performance metrics in grouped 10-fold cross-validation.

Material Algorithm Tune Accuracy Kappa logLoss Mean Bal. Acc. Mean Sens. Mean Spec.

70% Training Data Standardized Dataset Decision Tree min 0.771 0.733 0.164 0.869 0.776 0.962

mean 0.899 0.882 1.124 0.941 0.899 0.983

max 0.964 0.958 3.369 0.979 0.964 0.994

Random Forest min 0.833 0.806 0.104 0.903 0.833 0.972

mean 0.921 0.908 0.304 0.954 0.922 0.987

max 1.000 1.000 0.618 1.000 1.000 1.000

Multi-Layer Perceptron min 0.750 0.708 0.201 0.857 0.755 0.958

mean 0.905 0.889 0.501 0.945 0.905 0.984

max 0.964 0.958 1.493 0.979 0.964 0.994

70% Training Data Unstandardized Dataset Decision Tree min 0.643 0.583 0.308 0.792 0.643 0.940

mean 0.792 0.757 1.505 0.879 0.792 0.965

max 0.914 0.900 4.171 0.950 0.914 0.986

Random Forest min 0.786 0.750 0.343 0.875 0.786 0.964

mean 0.894 0.877 0.540 0.938 0.894 0.982

max 1.000 1.000 0.734 1.000 1.000 1.000

Multi-Layer Perceptron min 0.750 0.708 0.113 0.854 0.750 0.958

mean 0.836 0.809 0.848 0.904 0.836 0.973

max 0.964 0.958 1.487 0.979 0.964 0.994

https://doi.org/10.1371/journal.pone.0281309.t002
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accuracies when tested with the less prototypical unstandardized dataset (decision tree:

-13.6%, random forest: -21.9%, multi-layer perceptron: -31.3%). However, there are some spe-

cific differences in the classification performance of the models. For example, the random for-

est and the multi-layer perceptron models fail to correctly classify surprise in the

unstandardized dataset (random forest: Sn = 14.5%, Sp = 100%, F1 = 25.3%; multi-layer percep-

tron: Sn = 17.4%, Sp = 99.5%, F1 = 28.9%). In contrast, the more basic decision tree classified

surprise well (Sn = 85.5%, Sp = 84.1%, F1 = 60.8%), but it was less sensitive for joy

(Sn = 34.8%). The multi-layer perceptron also classified joy with a reduced sensitivity

(Sn = 52.2%). Common to all three models which were trained with standardized data is an

increased misclassification of facial expression as neutral. Also, their sensitivities are reduced

for fear (all Sn� 49.3%) and disgust (all Sn� 60.9%).

Classification performance of unstandardized dataset models

Train unstandardized–test unstandardized. All models based on the unstandardized
dataset predicted the hold-out data from the unstandardized dataset with high accuracy and

few misclassifications (see Fig 2, Panel B left; decision tree: Acc = 86.4%, κ = 0.84,

logLoss = 2.84; random forest: Acc = 92.5%, κ = 0.91, logLoss = 0.43; multi-layer perceptron:

Acc = 89.1%, κ = 0.87, logLoss = 0.54). Correspondingly, the F1-Scores for all emotion catego-

ries were high (Fig 4, Panel A-C; decision tree: F1 = [76.6%; 97.7%]; random forest: F1 =

[78.9%; 100%]; multi-layer perceptron: F1 = [78.9%; 97.7%]).

Train unstandardized–test standardized. The same models classified the standardized
data with only a slight decrease in the overall classification performance (Fig 2, Panel B right;

decision tree: Acc = 82.7%, κ = 0.8, logLoss = 1.94; random forest: Acc = 86.9%, κ = 0.85,

logLoss = 0.5; multi-layer perceptron: Acc = 84.6%, κ = 0.82, logLoss = 1.24). The F1-Scores for

all three models trained with the unstandardized dataset remained high when evaluated with

the standardized dataset (Fig 4, Panel D-F; decision tree: F1 = [71.6%; 95.7%]; random forest:

Fig 2. Effect of training material on overall classification performance. Note. Overall classification accuracy for the models trained with the standardized
dataset (Panel A) and the models trained with the unstandardized dataset (Panel B); for different test sets on the x-axis. Models were evaluated with either a

hold-out test set from the same material or with the respective other dataset. Ntest = 147 in both test sets, Nstandardized = 480 in the standardized dataset, and

Nunstandardized = 483 in the unstandardized dataset. Error bars represent the 95% confidence interval [59]. The no-information rate is depicted as a dotted line

(14.3%). All accuracies were significantly higher than the no information rate (exact binomial test, all ps< .0001, 1-sided).

https://doi.org/10.1371/journal.pone.0281309.g002
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F1 = [73.5%; 98.5%]; multi-layer perceptron: F1 = [73.5%; 98.5%]). For these models, anger is

classified by all unstandardized models with slightly reduced sensitivities (all Sn� 69.6%). Fur-

thermore, the random forest model performs weakest in the classification of fear (Sn = 62.3%,

Sp = 98.8%, F1 = 73.5%).

Fig 3. Classification performance of models trained with the standardized dataset. Note. Confusion matrices of the

models trained with the standardized dataset. Left panels A–C performance in the hold-out data from the standardized
dataset. Right panels D–F performance in the unstandardized dataset. The diagonal displays the sensitivity for each basic

emotion. Darker color indicates higher frequencies for the specific predicted emotion.

https://doi.org/10.1371/journal.pone.0281309.g003
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Discussion

Automatic facial coding is a promising new tool to efficiently analyze facial expressions in

many research settings and prospectively also in naturalistic settings. However, recent AFC

and computer vision developments have heavily relied on highly standardized emotion

Fig 4. Classification performance of models trained with the unstandardized dataset. Note. Confusion matrices of the

models trained with the unstandardized dataset. Left panels A–C: performance in the hold-out data from the unstandardized
dataset. Right panels D–F: performance in the standardized dataset. The diagonal displays the sensitivity for each basic

emotion. Darker color indicates higher frequencies for the specific predicted emotion.

https://doi.org/10.1371/journal.pone.0281309.g004
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inventories to train and test the underlying machine learning models. Such prototypical facial

expressions are referred to as the gold standard when new software is evaluated [60]. This is

problematic because this may not say much about the performance on less intense and less

prototypical facial expressions of emotions as they occur in typical laboratory settings or even

in the natural environment [19–21]. Accordingly, the present study aimed to investigate the

influence of the prototypicality of the picture material (standardized vs. unstandardized facial

expressions) used to train machine learning algorithms on the classification of standardized

and non-standardized emotional expressions. This is highly relevant for emotion researchers,

who are primarily interested in the valid measurement of naturalistic facial expressions that

are less intense and less prototypical [21, 24].

In the present study, machine learning models trained with expressions from either stan-

dardized inventories or unstandardized laboratory participants had excellent accuracies when

tested on the same source of facial expressions. The recognition rates of the models are compa-

rable to those of human raters and comparable to those reported for models evaluated in stan-

dardized research inventories (see Table 1) [60–62]. Accordingly, the models trained with

standardized facial expressions predicted expressions from the same dataset with excellent per-

formance metrics. However, these models predicted unstandardized facial expressions of

untrained lab-study participants with substantially impaired classification performances,

which is well in line with the performance reported by others (accuracy = [.21; .61], M = .48,

[15, 19, 20]). Hence, models trained with standardized dataset did not generalize well to the

less prototypical and less intense facial expressions in the unstandardized dataset. In contrast,

models trained with the unstandardized dataset classified the prototypical expressions in the

standardized dataset again with impressive performance metrics.

This implies that machine learning models benefit from training on less prototypical facial

expressions, leading to higher accuracy and increasing the generalizability of the underlying

model to more naturalistic facial expressions. Accordingly, such a training approach could

improve the ecological validity of AFC systems because typical research participants are

untrained and display less intense and less prototypical facial expressions.

While all three models trained with the standardized dataset and evaluated in the unstan-
dardized dataset show reduced overall accuracy and difficulty detecting the emotions fear and

disgust, there are also algorithm-specific deficits for some emotion categories. Compared to

the more basic decision tree, the random forest and the multi-layer perceptron, which are con-

sidered more sophisticated algorithms, have a pronounced deficit in the classification of sur-

prise. Even though the models trained with unstandardized facial expressions generalized well

to the standardized dataset, we found lowered sensitivities, e.g., predicting fearful facial expres-

sions. However, this is in line with previous research showing reduced sensitivities for fear not

only for AFC systems [7, 20] but also for human emotion recognition [63–65].

Limitations and future directions

One limitation of our study may be the number of pictures used our machine learning pipeline,

which is at the lower end of what is typically recommended for machine learning. Nevertheless, our

machine learning models reached very high accuracies in unseen hold-out data, comparable to those

in the field [19]. Furthermore, accuracies in the test sets were approaching the accuracies obtained

during cross-validation in the training set; thus, there is no serious overfitting. Moreover, accuracies

were very well comparable to a now considerable number of studies that relied on models that were

trained on larger datasets by the developers of commercial software packages (see Table 1).

However, future studies should test a higher number of pictures and more datasets with fur-

ther variation of the level of prototypicality in the expressed emotions to establish the
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generalizability of this result and build up a stock of available datasets with varying degrees of

prototypicality in the facial expressions. Correspondingly, our datasets contained expressions

from female, relatively young individuals of primarily European descent. Hence, future studies

need to replicate our findings on more diverse samples to establish the generalizability of such

algorithms regarding gender, age, and ethnicity [66–68].

Three pictures in the standardized dataset had to be excluded as the FaceReader was not

able to localize the face. The FaceReader utilizes the viola-jones algorithm for face detection

[46]. However, future developments could benefit from adapting newer methods of face detec-

tion, e.g., a recent paper described a promising approach of utilizing lightweight convolutional

neural networks with ADAM optimization to locate faces in risk situations [69].

Important for future developments in this field could be a look beyond basic emotion catego-

ries. While these categories are thought to cover the majority of qualitatively different emotional

experiences, there is evidence that facial expressions are much finer-grained and consist of a wider

variety of meaningful facial expression categories (e.g.,[2, 70, 71]). In addition to more emotion

categories, future studies should also consider new developments in emotion research and evaluate

the classification of dimensional representations of emotions, such as valence (e.g., [72, 73]).

Our results demonstrate the relevance of evaluating machine learning algorithms on more

naturalistic facial expressions which are different from standardized research inventories.

More datasets with lay participants in a laboratory setting are needed to improve the training

of underlying machine learning algorithms and optimize the performance of automatic facial

coding. With more naturalistic datasets being available to the research community, the gener-

alizability and accuracy of automatic facial coding approaches are expected to increase.

Accordingly, the ability of AFC to detect subtle facial responses might improve and approach

the sensitivity of other methods, such as facial EMG [74–76]. Higher generalizability and eco-

logical validity of automatic facial coding software will likely lead to broader dissemination of

this technology, which can bear ethical implications (e.g., when participants are unaware of

being observed) that need to be addressed.

Conclusions

AFC is an innovative research tool to classify emotional facial expressions effectively. Com-

pared to more traditional manual coding by humans, it is faster and can potentially be imple-

mented in real-time recognition systems (e.g., smartphones [28]). However, AFC is

substantially less accurate in unstandardized facial expressions. The present data support the

conclusion that this gap in accuracy may be due to the prototypicality of the material used to

train algorithms; AFC classifiers, as of today, are typically trained with highly standardized and

intense facial expressions. Our results imply that models trained on standardized inventories

do not generalize well to unstandardized facial expressions of untrained individuals whom we

recruit as laboratory participants. However, models trained with unstandardized expressions

performed substantially better when evaluated with frequently used standardized facial expres-

sions from research inventories. Future developments in automatic facial coding will benefit

from using less prototypical training materials to increase classification performance in more

natural settings. Such a training approach will improve AFC systems’ robustness and ecologi-

cal validity and contribute to the broader applicability of AFC tools in emotion research.
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Georg W. Alpers.

References
1. Scherer KR, Ellgring H. Are facial expressions of emotion produced by categorical affect programs or

dynamically driven by appraisal? Emotion. 2007; 7: 113–130. https://doi.org/10.1037/1528-3542.7.1.

113 PMID: 17352568

2. Dalvi C, Rathod M, Patil S, Gite S, Kotecha K. A Survey of AI-Based Facial Emotion Recognition: Fea-

tures, ML & DL Techniques, Age-Wise Datasets and Future Directions. IEEE Access. 2021;9: 165806–

165840. https://doi.org/10.1109/ACCESS.2021.3131733

3. Plusquellec P, Denault V. The 1000 most cited papers on visible nonverbal behavior: A bibliometric

analysis. J Nonverbal Behav. 2018; 42: 347–377. https://doi.org/10.1007/s10919-018-0280-9

4. Ekman P, Friesen W V., Hager JC. Facial action coding system. Manual and investigator’s guide. Salt

Lake City, UT: Research Nexus; 2002.

5. Mortillaro M, Meuleman B, Scherer KR. Automated recognition of emotion appraisals. Handbook of

Research on Synthesizing Human Emotion in Intelligent Systems and Robotics. IGI Global; 2015. pp.

338–551.

6. Bartlett MS, Hager JC, Ekman P, Sejnowski TJ. Measuring facial expressions by computer image anal-

ysis. Psychophysiology. 1999; 36: 253–263. https://doi.org/10.1017/s0048577299971664 PMID:

10194972
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23. Höfling TTA, Gerdes ABM, Föhl U, Alpers GW. Read my face: Automatic facial coding versus psycho-

physiological indicators of emotional valence and arousal. Front Psychol. 2020; 11: 1–15. https://doi.

org/10.3389/fpsyg.2020.01388 PMID: 32636788
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38. Lundqvist D, Flykt A, Öhman A. The Karolinska directed emotional faces (KDEF). CD ROM from Dep

Clin Neurosci Psychol Sect Karolinska Inst. 1998;91.

39. Olszanowski M, Pochwatko G, Kuklinski K, Scibor-Rylski M, Lewinski P, Ohme RK, et al. Warsaw set of

emotional facial expression pictures: A validation study of facial display photographs. Front Psychol.

2015; 5. https://doi.org/10.3389/fpsyg.2014.01516 PMID: 25601846

40. Langner O, Dotsch R, Bijlstra G, Wigboldus DHJ, Hawk ST, van Knippenberg A. Presentation and vali-

dation of the radboud faces database. Cogn Emot. 2010; 24: 1377–1388. https://doi.org/10.1080/

02699930903485076

41. Ekman P. Facial expression. In: Dols JMF, Russell JA, editors. The Science of Facial Expression. Cam-

bridge: University Press; 2017. pp. 39–56.

42. Ekman P, Levenson RW, Friesen W V. Autonomic nervous system activity distinguishes among emo-

tions. Science (80-). 1983; 221: 1208–1210. https://doi.org/10.1126/science.6612338 PMID: 6612338

43. Noldus Information Technology. FaceReader Version 7.1 Reference Manual. Wageningen: Noldus

Information Technology; 2017.
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