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abstract

In this thesis, the coupling of gas and power networks is examined.
The isentropic Euler equations are employed as a model for gas flow
in a pipeline network, whereas the power flow equations are used as
a model for an electrical grid.

We find a set of conditions on pressure functions that guarantee well-
posedness of the Riemann problem of the isentropic Euler equations
in the sub-sonic regime. Coupling conditions for modeling gas-fired
power plants and power-to-gas plants, both of which couple gas
networks to power networks, are proposed and their well-posedness
is shown.

Solutions of the power flow equations are derived as certain time-
periodic solutions to the physically more accurate Telegrapher’s equa-
tions and the exponential stability of these solutions is examined. In
addition, a numerical method for solving the Telegrapher’s equations
is introduced, which mimics the exponential stability of the analytical
solution.

For the power network, both deterministic and stochastic power
demand is considered and the influence of the demand on the pres-
sure (and flux) in the gas network is examined. Our findings are
applied to gas and power networks of realistic size and corresponding
simulation and optimization problems are solved. This also showcases
the software grazer, that was written for this thesis and is capable
of efficiently solving time-dependent problems that are defined on
networks. It is released under the open source license “MIT License”
to enable future use, for example in further research.





zusammenfassung

Diese Arbeit befasst sich mit der Kopplung von Gas- und Stromnetzen.
Die isentropen Eulergleichungen dienen hierbei als Modell für den
Gasfluss in einem Pipeline-Netz, während die Lastflussgleichungen
(auch Power-Flow-Gleichungen) den Stromfluss in einem Stromnetz
modellieren.

Für das Gasmodell werden Bedingungen gefunden, die von Druck-
funktionen der isentropen Eulergleichungen erfüllt werden müssen,
um die Wohlgestelltheit des Riemann-Problems ebendieser Gleichun-
gen für Unterschall-Anfangsbedingungen zu garantieren. Außerdem
werden Kopplungsbedingungen für die Modellierung von Gaskraft-
werken und Power-to-Gas-Anlagen, die für die Kopplung von Gas-
und Stromnetzen verantwortlich sind, aufgestellt und ihre Wohlge-
stelltheit gezeigt.

Lösungen der Lastflussgleichungen werden als spezielle, zeitperiodi-
sche Lösungen der Telegraphengleichungen hergeleitet. Die exponen-
tielle Stabilität dieser Lösungen wird untersucht und ein numerisches
Verfahren vorgestellt, das ebenfalls exponentielle Stabilität aufweist
und so das Verhalten der analytischen Lösung imitiert.

Im Stromnetz werden sowohl deterministische als auch stochas-
tische Nachfrageprofile berücksichtigt und ihr Einfluss auf Druck
(und Fluss) im Gasnetz untersucht. All diese Resultate werden auf
Gas- und Stromnetze realistischer Größe angewandt und zugehörige
Simulations- und Optimierungsprobleme werden gelöst. Dies führt
gleichzeitig die Fähigkeiten der Software grazer vor, die für diese
Arbeit geschrieben wurde, und in der Lage ist, zeitabhängige Pro-
bleme, die auf Graphen definiert sind, effizient zu lösen. Grazer ist
unter der Open-Source-Lizenz “MIT Lizenz” veröffentlicht, um die
Weiterverwendung, etwa in zukünftiger Forschung, zu ermöglichen.
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1
I N T R O D U C T I O N A N D O U T L I N E

Overview

In recent years, due to the need to restructure energy systems to
incorporate more renewable energy sources, renewed interest into
energy systems has sparked. Power generation is changing drasti-
cally with more and more available energy coming from renewable
sources. The current transformation of the energy system is driven
by at least three trends: decarbonization and defossilization of energy
supply, growing concerns about the climate crisis, and transformative
political decisions, e.g. the phase-out of nuclear energy [AtG] and
scheduled phase-out of coal and lignite in Germany. Phase out of all
fossil energies is, in principle, doable as averaged over long time spans
renewable sources (wind, solar, etc.) provide sufficient amounts of
energy to achieve decarbonization. Yet, renewable generation and de-
mand are not synchronized in time and space and thus energy storage
as well as energy distribution and transport are of crucial importance.
For example, the International Energy Agency (IEA) predicts a global
need for substantial growth of energy storage capacity [IEA19; Zab19].
Currently, neither a readily and widely usable storage technology to
buffer the quantities of electrical energy required for decarbonization
exists, nor is there scientific consensus on which large-scale storage
technologies will be available in near-to-mid future. Hence, it comes at
no surprise that the coupling of energy domains and sectors is gaining
increasing research attention. For example, the economic viability of
future power-to-X pathways (where X can be Hydrogen, Methane, or
synthetic bio-fuels, for instance) has been investigated in several stud-
ies, see for example [Bro+18; HBO16; Sch+15]. These investigations are
driven by the fact that natural gas can be stored in sufficient quantities
in dedicated installations and to a certain extent directly in the gas
grid itself. In other words, coupling of electrical grids and gas net-
works is currently considered a promising road towards a high share
of renewables. Due to their flexibility in comparison to other power
plants, gas turbines and gas engine power plants are often proposed as
a means to balance power demands that cannot be met with renewable
power sources at a given time. The repercussions on the gas pipeline
networks by this balancing have been studied in [CBL15] and also
joint optimal control of gas and power networks are investigated, for
instance in [Zen+16; Zlo+16]. However, only steady-state or restricted
gas dynamics have been investigated on networks so far. For example,
the model introduced in [Zlo+16] ignores complex dynamics such
as shocks or rarefaction waves. Although ruling out full dynamics
is often sufficient, the — in comparison to power networks — slow
signal speed allows for short term effects to linger long enough to be
resolved, which is impossible to achieve with steady state methods.

1



2 introduction and outline

While [HMS19] addresses the nonlinear dynamics, i.e. the full
compressible Euler equations, the analysis in there only considers a
single gas power plant without any network interdependence.

The aim of this work is therefore to investigate the interaction of
gas and power networks on realistic scales and showcase the capabili-
ties of the software suite grazer1, which the author implemented for
this purpose. It is capable of solving time-dependent simulation and
optimization problems that are defined on graphs, like the energy net-
works considered in this work and was used for most of the numerical
computations of coupled gas and power networks in this thesis.

For electrical grids several models can be found in the literature,
see for example [And15; Bie15; FR16; GHM21] for an overview. All
modeling approaches rely on a graph structure where generators of
electrical powers and consumers at nodes are connected by transmis-
sion lines as seems natural for an entity that also in reality consists of
junctions connected by (transmission) lines. Physically, voltage and
current are transported along the lines while power loss may occur
due to resistances. In many applications, the so-called power flow
equations, see [Bie15; HDS13], provide a well-established model to
analyze the behavior of electrical grids over time. Mathematically,
the resulting nonlinear system of equations is typically solved via
Newton’s method. Another approach, suitable for studying not only
the temporal resolution of power flow but also the spatial resolution
in transmission lines, are the spatially one-dimensional Telegrapher’s
equations. These equations are a coupled system of linear hyperbolic
balance laws for voltage and current. Unfortunately the signal velocity
of the Telegrapher’s equations is so big, that capturing any mean-
ingful time-dependent behavior is numerically challenging, or — for
medium and large sized networks — outright impossible to do with
reasonable resources. Therefore the use of the power flow equations
is desirable to ignore these extremely short-lived effects for reducing
numerical load, but should be justified by comparing to the more ac-
curate solution of the Telegrapher’s equations. Even though the power
flow equations represent a great simplification over the Telegrapher’s
equations, solving them for large networks also involves challenges.
Research into these includes distributed optimization [Eng+19; KB00;
Mol+17], convex relaxations [Low14a; Low14b], and the consideration
of stochastic disturbances [BCH14; Müh+19].

Gas networks have been studied for a long time and have sparked
renewed interest in the last two decades, when coupling conditions
have been analyzed from a theoretical point of view, see for example
[BGH11; BHK06a; BHK06b; Bre+14; CG08; HHW20; Rei14; Rei15].
In principle similar to electrical grids, gas pipeline networks can be
described by a coupled system of balance laws, as done in the ref-
erences just given. However, due to the compressibility of gas, the
arising models differ from those of power networks as one has to
consider nonlinear effects in the gas flow through pipelines2. Since

1 https://github.com/eike-fokken/grazer

2 Note that already nowadays so-called linepack flexibility is used for different purposes
by operators of gas grids, see for example [NTS19].

https://github.com/eike-fokken/grazer
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these dynamics allow for discontinuous solutions, a careful theoretical
and numerical treatment is needed to master the challenges of simula-
tion and optimization for complex networks. Finite volume or finite
difference methods are typically applied to solve the network problem
numerically [GZ19; KLB10; Pfe+15], an approach we follow as well.

Historically, however, the critical energy system infrastructure for
gas and power grids has been separated in terms of operation and
control. Hence, there do not exist established standards for joint oper-
ation and control of multi-energy grids. In turn multi-energy systems
arising from sector-coupling pose control and optimization challenges,
many of which are still open or are subject to ongoing research ef-
forts, see [CBL15; Zen+16; Zlo+17], or more recently [FGK19; FGK20;
HMS19; OMa+20].

In view of the changing energy demands and supplies the combined
and intertwined energy networks are expected to play a prominent role
in the future. Here, the unpredictable and volatile energy sources need
to be complemented possibly additional large-scale storage [IEA19;
Zab19]. Following previous approaches [CBL15; Zen+16; Zlo+17]
we consider energy storage through coupling power networks to gas
networks. A major concern when coupling gas and power networks is
guaranteeing a stable operation even at times of stress due to (uncer-
tain) heavy loads. The propagation of possible uncertain loads on the
power network and its effect on the gas network has been subject to
recent investigation and we refer to [CBL15] and the references therein.
Contrary to the cited reference [CBL15] in this work we are interested
in a full simulation of both the gas and power network as well as a sim-
ulation of the stochastic demand, respectively supply. Our approach
allows the prediction of gas pressure and gas flux at each point in a
pipeline as well as nodes of the network. Both quantities are relevant
to assess possible stability issues as well as allow for coupling towards
the electricity network. Other research in this area includes [Aïd+09;
Bar02; KSB09; LS02; SS00; Wag14] and the monograph [BBK08] that
prescribe the electricity demand as Ornstein–Uhlenbeck processes.

Contributions

The key contributions of this thesis are threefold:
The first is Proposition 4.10. It provides a concise list of conditions

on the pressure function — relating gas density and pressure — used
in the isentropic Euler equations (see Chapter 4) for corresponding
Riemann problems (Section 2.1.2) to be well-posed for arbitrary initial
values, whose flow speeds are less than the local speed of sound
within the gas, so-called sub-sonic initial conditions.

A corollary of this proposition is Proposition 4.2, which extends the
usual notion of pressure functions known as γ-laws in Proposition 4.2.
γ-laws are a family of pressure functions indexed by γ ∈ R, which
usually are restricted to 1 ⩽ γ ⩽ 3, as inspired by physics, where
these values are related to the number of degrees of freedom in a gas.
We show that on the one hand, the Riemann problem is well-posed
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in addition for −1 < γ < 1, and that there are ill-posed Riemann
problems with sub-sonic initial conditions for every γ ̸∈ [−1, 3]. We
do note make a claim about γ = −1.

A second contribution is the proposal of a combined gas-power
network model and a comparison of pressure and Bernoulli coupling
conditions as well as an approach to modeling uncertain power de-
mand for realistically sized gas and power networks with hundreds
of nodes and connections.

The last major contribution is the software suite grazer itself with
simulation and optimization capability for time-dependent problems
defined on graphs, extensive automated software tests and of course
its open source license3, which guarantees the right to use grazer free
of charge, analyze the source code and redistribute modified and
unmodified versions. Let us emphasize that our approach and also
grazer is not limited to the particular application of gas and power
networks but could eventually be applied to problems of traffic flow
and supply chain dynamics on networks.

A minor contribution is the analysis with regards to entropy stability
of a well-known second order scheme for the Telegrapher’s equations.

Other software suites

Finally, we point to other existing numerical software with possibly
similar objective. For example, in [Kol11] the solver ANACONDA for
a gas network based on (general) hyperbolic balance laws has been
introduced. This implementation, or rather its description in [Kol11]
serves as a foundation for our own software suite grazer, introduced in
this thesis. Our tool has the advantage of easier extensibility, an open
source license and a modern design approach featuring for example ex-
tensive software testing. In addition we also include stochastic power
demands in the power flow network setting. In [ATK21] uncertainty
in power flow is computed relying on approaches based on neural
networks. A difference to the presented approach is the restriction
to linear power flow problems and the absence of coupling to gas
networks. A further concept called plan4res, see [Beu+19] has been
presented to also address general renewable energy sources as well as
energy distribution based on discrete optimization approaches, which
focuses on energy system modeling in more generality. Another soft-
ware suite in the area of energy system simulation and optimization
is PyPSA [BHS18], which models whole energy systems but doesn’t
model pipelines. Furthermore, there exists a software suite by Fraun-
hofer SCAI called MYNTS, see [Cle+16], that also includes simulation
and optimization of inter-connected grid operations with a focus on
the design of suitable networks.

Outline

The material of this thesis is mostly taken from the author’s publica-
tions, namely

3 MIT License, see https://opensource.org/licenses/MIT

https://opensource.org/licenses/MIT
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• Eike Fokken, Simone Göttlich: On the relation of power flow and
Telegrapher’s equations: continuous and numerical Lyapunov stability,
arxiv preprint, 2021 [FG21],

• Eike Fokken, Simone Göttlich, Oliver Kolb: Modeling and simula-
tion of gas networks coupled to power grids, Journal of Engineering
Mathematics, 2019, Springer Netherlands [FGK19],

• Eike Fokken, Tillmann Mühlpfordt, Timm Faulwasser, Simone
Göttlich: Modeling and Simulation of Sector-Coupled Energy Net-
works: A Gas-Power Benchmark, in: Mathematical Modeling, Sim-
ulation and Optimization for Power Engineering and Manage-
ment, 2021, Springer International Publishing [Fok+21],

• Eike Fokken, Simone Göttlich, Michael Herty: Efficient simula-
tion of coupled gas and power networks under uncertain demands,
European Journal of Applied Mathematics, 2022, Cambridge
University Press, [FGH22],

• Eike Fokken, Simone Göttlich, Oliver Kolb: Optimal Control of
Compressor Stations in a Coupled Gas-to-Power Network, in: Ad-
vances in Energy System Optimization, 2020, Springer Interna-
tional Publishing [FGK20].

In Chapter 2 we will provide the necessary mathematical prelimi-
naries for this thesis.

Afterwards, in Chapter 3, based on [FG21], we analyze both Telegra-
pher’s and power flow equations and the relation between them. We
show the extent to which one can trust the less physically accurate but
numerically more tractable power flow equations to yield a solution
that is close to the one that theoretically could be obtained by solving
the Telegrapher’s equations directly. In this chapter we also analyze
a second order scheme applicable for the Telegrapher’s equations on
networks, and show its entropy-stability, which is similar to that of
the analytical solution. The analytical results in this chapter have
already been proved for the most part, for example in [Nic16], and are
presented to give an understanding of the underlying concepts.

In Chapter 4, which is based on the publication [FGK19], we examine
the isentropic Euler equations and find conditions on its pressure
function, that guarantee well-posedness of the corresponding Riemann
problems. We also prove the well-posedness and show properties of
our proposed gas-power coupling model.

In Chapter 5, which is based on [Fok+21] and [FGH22], we introduce
uncertainty of power demand and present simulation results showing
the applicability of our models to networks, whose sizes are a dozen
of nodes up to hundreds of nodes.

Chapter 6, based in part on [FGK20] and [FGH22], finally presents
the analysis of two common approaches to extracting derivative infor-
mation from systems of equations and the solution of optimal control
problems of a gas-power network.

Lastly we summarize the work in Chapter 7.
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To facilitate future use of grazer, Appendix A gives a brief overview
of the structure and use of the software suite.



2
M AT H E M AT I C A L B A C K G R O U N D

2.1 balance laws

Both the dynamics of gas flow and evolution of voltage and current
can most appropriately be described by certain partial differential
equations, so-called hyperbolic balance laws. To define them, let us
first declare some nomenclature. We use T ⊂ R+

0 as the space of time
points, X ⊂ R as the space of positions and S = Rm as the so-called
state space. Note also that we usually write ut for ∂u∂t and ux for ∂u∂x .

Definition 2.1 (balance law).

• Let d = dim(X) = 1, f ∈ C3(S, S), S ∈ C0(S, S) and u : X×T → S.
Then a balance law in one space dimension is an equation of the
form

∂tu(x, t) + ∂xf(u(x, t)) = S(u(x, t)),

u(x, 0) = u0(x),
(2.1)

for all x ∈ X, t ∈ T. Naturally, u has to satisfy some properties
to make sense of the balance law, there must be at least a notion
of derivatives of u.

• Any u ∈ C1(X× T, S) satisfying the Balance law (2.1) is called a
classical solution of the balance law.

• An initial value problem of the form (2.1) is also called a Cauchy
problem.

In the case dim(S) = 1, Equation (2.1) is often called a scalar balance
law. Other naming conventions include calling what we just termed
“scalar balance law” simply a balance law and what we termed a “bal-
ance law” in Definition 2.1 instead a system of balance laws. We will use
balance law for all of the above and sometimes use “scalar balance
law” or “system of balance laws”, when the distinction is necessary.

The name balance law is better understood in the integral form.
Integrating (2.1) over an interval I = [x0, x1] ⊂ R leads to∫x1

x0

∂tudx+
∫x1
x0

∂x(f(u))dx =
∫x1
x0

S(u)dx.

Using our assumption that u and f are continuously differentiable, we
can apply the fundamental theorem of calculus to get∫x1

x0

∂tudx+ f(u(x1)) − f(u(x0)) =
∫x1
x0

S(u)dx,

Again, because u is continuously differentiable, we can interchange
integration and differentiation to get

∂t

∫x1
x0

udx+ f(u(x1)) − f(u(x0)) =
∫x1
x0

S(u)dx. (2.2)

7



8 mathematical background

By setting U =
∫x1
x0
udx we get

∂tU+ f(u(x1)) − f(u(x0)) =

∫x1
x0

S(u)dx. (2.3)

Here U is some quantity (e.g. mass), u its spatial density, f its flux and
S some balancing function. This formulation can be interpreted as: The
change of U inside the interval I is equal to its flux over the boundary of I
plus some balance encoded in (the integral of) S.

Hence the name balance law. The balancing function models some
way of creating or destroying units of U and is therefore called source
or sink, although in mathematical literature only source is used and
sinks are just negative sources. The concept of a balance law also
makes sense in more than one space dimension (dim(X) > 1), where a
volume takes the place of the interval I and instead of the fundamental
theorem of calculus, the Gauß divergence theorem must be applied.
Yet, in this work, no more than one space dimension is needed.

A balance law with vanishing source is called a conservation law,
because in that case, the quantity U can only decrease (increase) by
leaving (entering) the interval I and no unit of U can be created or
destroyed, therefore U is conserved.

In deriving Equation (2.3), we used a strong assumption on u,
namely that its derivative exists and is continuous. A great drawback
of this assumption is that for most interesting balance laws, no classical
solutions exist. Even if they exist, they can often not be defined for
more than a small time interval. We can drop the assumption of
continuous derivatives to find more general classes of solutions and
will do so from now on. Although much of the following theory can
also be derived for balance laws in more than one space dimension,
we will from now on restrict ourselves to d = 1. First we state our
notion of a test function.

Definition 2.2 (test function). A function ϕ ∈ C∞
0 (R × T, S), that is a

smooth function with compact support, is called a test function.

With the help of test functions we can define a sufficiently general
solution type:

Definition 2.3 (weak solution, [GR14, Definition 2.1]). A function
u ∈ L∞loc(R × R+

0 , S) that satisfies∫
R+
0

∫
R

(
u · ∂tϕ+ f(u) · ∂xϕ+ S(u) ·ϕ

)
dxdt+

∫
R

u0(x) ·ϕdx = 0

for all test functions ϕ is called a weak solution of the Balance law (2.1).

It is easy to verify that classical solutions are also weak solutions,
using integration by parts and the fact that boundary terms vanish
because of the compact support of ϕ. Note that weak solutions need
not be differentiable, continuous or unique.
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2.1.1 Hyperbolic balance laws

In order to find solutions we need a key assumption on our balance
laws, namely hyperbolicity.

Definition 2.4 (hyperbolic balance law).

• A balance law of the form (2.1) is called hyperbolic, if the Jacobian
f′ (sometimes written as Jf) of f is diagonalizable everywhere.

• If in addition f′ has pairwise distinct eigenvalues everywhere,
the balance law is called strictly hyperbolic.

The solution theory of hyperbolic balance laws is often developed
without a source term, that is, for conservation laws, see [CG10] for
example.. Results on actual balance laws can then be obtained from
those of conservation laws by a splitting technique, treating the source
term separately from the flux, which we will also employ in Chapter 3.
The drawback of the splitting is that it needs strong assumptions on
the source term to be applicable, see [HR02, Section 4.5] for details.
The existence of solutions of (systems of) conservation laws can be
established with the front tracking technique, briefly described in
Section 2.1.4, although only under strong assumptions on the initial
conditions. It amounts to constructing certain approximate solutions
to the conservation law in question, where the approximation error is
governed by some parameter δ and making sure that the approximate
solutions converge to a weak solution of the conservation law for
δ → 0. More details than in Section 2.1.4 can be found in [Daf09,
Section 16] and [HR02]. A derivation for coupling conditions in
networks is found in [Gug+12, Section 3].

To study the structure of solutions to hyperbolic conservation laws,
let us first consider a scalar conservation law. For differentiable u we
can transform the conservation law

∂tu+ ∂xf(u) = 0 (2.4)

into
∂tu+ f′(u)∂xu = 0,

which is called the quasi-linear form of the conservation law.
Assume that there is a solution u. We try to decouple this solution

at different points x. We do so by defining so-called characteristic
curves.

Definition 2.5. A straight line x(t) = x0+ f′(u0(x0))t is called a charac-
teristic curve through the point x = x0, t = 0 of the scalar conservation
law (2.4).

Using the definition of characteristic curves, it is easily computed
that du(x(t),t)

dt = 0 for a solution u of (2.4) for all 0 < t < T for
some T ∈ R+. This means that solutions of (2.4) are constant along
characteristics curves:

u(x(t), t) = u0(x0) for 0 < t < T . (2.5)
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Vice versa, as long as no two characteristic curves meet up to time T ,
we can define a solution for every (x, t) ∈ X× [0, T) by (2.5). T can be
chosen as the minimal time for which there is a point in which some
characteristic curve meet, or T = ∞, if no two characteristic curves
ever meet. In a point where characteristic curves meet, the solution
is necessarily non-differentiable. This solution method is called the
method of lines.

A simple example, already exhibiting much of the general behavior
of hyperbolic balance laws is given by the advection equation:

Example 2.6. Let S = R, a ∈ R and u0 : R → R. The hyperbolic
balance law

ut + aux = 0,

u(x, 0) = u0(x)

is known as the advection equation. It is solved by

u(x, t) = u0(x− at),

which can be found by the method of lines. As all characteristic

0 2 4 6 8 10
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Figure 2.1: Characteristic curves of the advection equation for
a = 2.

curves are parallel, see Figure 2.1, we can choose T = ∞ for the
advection equation. Here we can see that a point in the solution
u(x, t) of the advection equation can only be influenced by points in
the initial condition that are connected to x by a line of “velocity” —
that is slope —a. Note also that the information travels to the right,
whenever a > 0 (as in Figure 2.1), and to the left when a < 0.

Let us now come to systems of conservation laws, that is dim S > 1.
In this case, information in solutions travels at most with a velocity
given by an eigenvalue of f′. For the following discussion we restrict
ourselves to strictly hyperbolic systems, which are the only ones rele-
vant for the gas and power networks considered here. Remember also
that we demanded f ∈ C3(S, S) in Definition 2.1, which is important for
the smoothness claims in the following. It is useful to order the eigen-
values of f′(u) from smallest to greatest: λ1(u) < · · · < λm(u). Their
corresponding (right) eigenvectors will be denoted by r1(u), . . . , rm(u).
Note that the i-th eigenvector actually defines a vector field on the
state space S in the differential geometry sense (and the i-th eigen-
value defines a scalar field). For linear systems of conservation laws,
the scalar theory can be carried over, by a change of basis:
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Example 2.7. Let M ∈ Rm×m be diagonalizable. Let S = Rm and
consider the system of conservation laws

ut +Mux = 0. (2.6)

We can switch to another basis of S, given by the eigenvectors R =

(r1, . . . , rm) of M, thereby diagonalizing M. Then we arrive at a new
system

wt + diag(λ1, . . . , λm)wx = 0,

which is decoupled and therefore can be solved by solving the m
different advection equations, each with their own method of lines
from above. This means that the system (2.6) decomposes into different
non-interacting waves along the eigenvectors ri of the system. Each
wave travels with a velocity given by its corresponding eigenvalue λi.

2.1.2 Riemann problems

For non-linear systems, different waves may interact, and therefore the
method of lines can usually not be used. The eigenvalues and eigen-
vectors still play a major role and will help us solve so-called Riemann
problems, which in turn are used in front-tracking for showing well-
posedness of hyperbolic conservation laws for certain well-behaved
initial conditions.

Definition 2.8 (Riemann problem). A Cauchy problem (2.1) is called a
Riemann problem, if the initial condition has at most one discontinuity
and is piecewise constant. Concretely, for some ul,ur ∈ S, a Riemann
problem is given by

∂tu(x, t) + ∂xf(u(x, t)) = 0,

u(x, 0) =

ul for x < 0

ur for x ⩾ 0.

(2.7)

For Riemann problems of strictly hyperbolic conservation laws with
C3 flux function, there are two important solution types, namely
shocks and rarefaction waves, which we will characterize in the fol-
lowing. But first we introduce integral curves.

Definition 2.9 (integral curve). Let I ⊂ R be an open interval and
0 ∈ I. An integral curve of a differentiable vector field r : S → S is a
differentiable path q : I→ S, that fulfills

q′(ξ) = α(ξ)r(q(ξ)), (2.8)

for some differentiable α : I→ R and for all ξ ∈ I.

Of course one can re-parameterize any such q to get α = 1. These
curves play an important role in the following definition distinguishing
two important classes of eigen fields (λi, ri).

Definition 2.10 (genuine non-linearity and linear degeneracy). In the
following, let q be an integral curve of the i-th eigenvector field ri.
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• The i-th field (λi, ri) is called genuinely non-linear if

(∇Sλi)(q(ξ)) · ri(q(ξ)) ̸= 0 (2.9)

holds for all ξ ∈ I.

• The i-th field (λi, ri) is called linearly degenerate if

(∇Sλi)(q(ξ)) · ri(q(ξ)) = 0 (2.10)

holds for all ξ ∈ I.

Equation (2.9) and Equation (2.10) define the evolution of eigenval-
ues along integral curves. Equation (2.10) means that an eigenvalue
remains constant along the curve, while Equation (2.9) means that
an eigenvalue is either strictly increasing or strictly decreasing along
the curve. For example the linear system (2.6) is linearly degenerate,
because the eigenvalues of a constant matrix are constant. Genuine
non-linearity and linear degeneracy are useful properties when search-
ing solutions of a Riemann problem.

There are two important solution types of Riemann problems,
namely shocks and rarefaction waves, which we will now charac-
terize in Definitions 2.13 and 2.15.

Proposition 2.11. [LeV02, Section 13.8.5] Consider a Riemann problem
(2.7), whose initial condition fulfills

λi(ul) < λi(ur) (2.11)

for the i-th eigenvalue field of the underlying conservation law (but possibly
not for λj, j ̸= i). Let further (λi, ri) be genuinely non-linear and assume
there is an integral curve q of ri, such that

q(λi(ul)) = ul,

q(λi(ur)) = ur.

Then this problem has a (weak) solution given by

u(x, t) =


ul for x

t < λi(ul),

q
(
x
t

)
for λi(ul) ⩽ x

t ⩽ λi(ur),

ur for λi(ur) < x
t .

(2.12)

Finding an integral curve q through one point amounts to solving
the ordinary differential equation Equation (2.8). The right-hand side
of it is given by the i-th eigenvector as a function of the i-th eigenvalue.
Dependent on this function being continuous or locally Lipschitz
continuous, existence and local uniqueness may be provable. For
the only conservation law in this work that has genuinely non-linear
eigenvector fields, namely the isentropic Euler equations detailed
in Chapter 4, these fields are locally Lipschitz continuous in their
respective eigenvalues in the considered domains.

For sufficiently smooth, strictly hyperbolic fluxes, there is always —
at least locally — an integral curve through any given point:
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Proposition 2.12 ([Daf09, Theorem 7.6.5]). Consider a strictly hyperbolic
conservation law with flux function f ∈ C3(S, S) and a point û ∈ S. For a
genuinely non-linear field (λ, r) of this conservation law there is a C3-path q
in S, defined in a neighborhood I of λ(û), such that

q′(ξ) = r,

q(λ(û)) = û,
(2.13)

As can be seen from Proposition 2.11, for each point q(ξ), ξ ∈ I, the
Riemann problem with initial data ul = û, ur = q(ξ) has a solution,
whose structure is given in that proposition.

Definition 2.13 (rarefaction wave).

• The solution of a Riemann problem given in Proposition 2.11 is
called an i-th rarefaction wave.

• The integral curve q from Proposition 2.11 through ul is called
an i-th rarefaction curve.

A crucial condition in Proposition 2.11 is λi(ul) < λi(ur). Appar-
ently the left border of the rarefaction wave travels with speed λi(ul),
while the right border travels with speed λi(ur). Yet, initially they
are at the same point, namely at x = 0. Therefore for these borders
to separate at all, the speed of the left border must be less than that
of the right border. Luckily, also in the opposite case there may be
solutions as we will see now.

Proposition 2.14 (Rankine-Hugoniot condition [HR02, Eq. 1.19]).
Consider a Riemann problem and assume that there is some s ∈ R such that

s(ur − ul) = f(ur) − f(ul). (2.14)

Then

u(x, t) =

ul for x < st,

ur for x ⩾ st

is a weak solution. Condition (2.14) is called the Rankine-Hugoniot condi-
tion.

Definition 2.15 (shock). The solution as detailed in Proposition 2.14 is
called a shock and s is called the shock speed.

A shock with s = λi(ul) = λi(ur) is called an i-th contact discontinu-
ity.

Of course, contact discontinuities cannot appear for genuinely non-
linear fields.

Note that for fixed ul, Equation (2.14) is a (non-linear) system
of equations for ur and s. Therefore we have dim(S) equations for
dim(S) + 1 variables and it is plausible that there is a whole path of
solutions for (2.14). Indeed, there holds:
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Proposition 2.16 ([Daf09, Theorem 8.2.1]). For a genuinely non-linear
field (λi, ri) of a conservation law with flux f ∈ C3(S, S) there is a neighbor-
hood I ⊂ R of 0 and both a path q ∈ C3(I, S) and a function σ ∈ C2(I, R),
such that for each τ ∈ I, ũ = q(τ) and s = σ(τ), there is a shock between
û = q(0) and ũ with shock speed s. In addition there holds σ(0) = λi(û)

and q′(0) = ri.

We have now two kinds of weak solutions for a Riemann problem.
Unfortunately usually there are multiple weak solutions, as can al-
ready be seen noting that there may be multiple solutions for the
Rankine-Hugoniot condition in Proposition 2.14. Therefore we have
to single out physically plausible ones. To this end the following
definition is useful.

Definition 2.17 (Lax entropy condition). A shock with left state ul,
right state ur and shock speed s is said to satisfy the Lax entropy
condition if there is i ∈ { 1, . . . , dim(S) } such that

λi(ul) > s > λi(ur),

λj(ul), λj(ur) < s for all j < i,

s < λj(ul), λj(ur) for all j > i.

Such a shock is called an i-th shock.

This means in particular that an admissible shock can only occur
between states ul and ur, where λi(ul) > λi(ur) holds, so in the
opposite situation of possible rarefaction solutions.

Actually there is a relation between i-th shocks and i-th rarefaction
waves as the following propositions show.

Definition 2.18 (Lax curves). Consider a strictly hyperbolic balance
law with flux function f ∈ C3(S, S) and genuinely non-linear i-th field
(λi, ri) and a state û ∈ S. Let

(∇Sλi)(û) · ri(û) > 0.

Then the curve
L+i ( · ; û) : I→ S, ξ 7→ q(ξ),

given by (2.13) for ξ ⩾ λi(û) and by the curve q of Proposition 2.16

for ξ < λi(û) is called the i-th forward Lax curve of û.
The curve

L−i ( · ; û) : I→ S, ξ 7→ q(ξ),

given by (2.13) for ξ ⩽ λi(û) and by the curve q of Proposition 2.16

for ξ > λi(û) is called the i-th backward Lax curve of û.
For the case of

(∇Sλi)(û) · ri(û) < 0,
the notion of forward and backward are reversed.

Proposition 2.19 ([Daf09, Theorem 8.2.2]). Let L : I → S be any of
the (forward or backward) Lax curves of Definition 2.18. Then L is twice
continuously differentiable.
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Proposition 2.20. Consider a conservation law and a state û ∈ S, such that
the i-th field of the conservation law is genuinely non-linear at û. If a state
ũ lies on the i-th forward Lax-curve of û, then the Riemann problem with
initial data

u(x, 0) =

û for x < 0

ũ for x > 0,

can be solved by an i-th shock (if ũ is in the shock part of the Lax curve) or
by an i-th rarefaction wave (otherwise).

If ũ is on the i-th backward Lax curve of û, instead the Riemann problem
with initial data

u(x, 0) =

ũ for x < 0

û for x > 0,

can be solved in the analogous way.

Proof. This follows from the construction of the Lax curves. Note that
a shock of the “wrong” Lax curve (e.g. backward instead of forward
in the first case above) is also a weak solution of the Riemann problem,
but the hypothetical rarefaction wave from the wrong curve is not,
because condition (2.11) is then not fulfilled.

As just stated, also the “wrong shocks” constitute weak solutions to
a Riemann problem. To discard them we use the Lax entropy condition
(Definition 2.17).

Proposition 2.21 ([GR14, Theorem 5.2]). Consider a Riemann problem
with initial data

u(x, 0) =

ul for x < 0

ur for x > 0.

Let the i-th field (λi, ri) be genuinely nonlinear and let ur lie in the shock
part of the forward Lax curve through ul, namely ur = L+i (τ;ul) for some
τ ∈ R. If τ is small enough, then the corresponding shock between ul and
ur satisfies the Lax entropy condition (Definition 2.17). If instead ur lies in
the shock part of the i-th backward Lax curve of ul (and τ is small enough),
the corresponding shock solution violates the Lax entropy condition.

Under some conditions, the collection of i-th Lax curves for all
i ∈ { 1, . . . ,m } can be used to construct solutions of Riemann problems,
even if the initial states of the problem do not lie on the same Lax
curves.

Theorem 2.22 ([HR02, Theorem 5.17, Laze’s theorem], [Daf09, Theorem
9.4.1]). Consider a strictly hyperbolic conservation law

ut + f(u)x = 0,

where each component of the flux function fj, j ∈ { 1, . . . ,m } fulfills fj ∈
C2(S) and all characteristic fields are either genuinely non-linear or linearly
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degenerate in S. Then for ul ∈ S there exists a neighborhood D of ul such
that for all ur ∈ D the corresponding Riemann problem, given by

u(x, 0) =

ul for x < 0

ur for x ⩾ 0,

has a unique solution in D consisting of up to m elementary waves, i.e.,
rarefaction waves, admissible shocks, or contact discontinuities.

The structure of this solution is as follows. There are constant states
ul = u0, . . . ,um = ur and when the i-th characteristic family is linearly
degenerate, ui is joined to ui−1 by an i-th contact discontinuity, while when
the i-th characteristic family is genuinely non-linear, ui is joined to ui−1 by
either an i-th rarefaction wave or an admissible i-th shock.

For certain systems and initial conditions, the neighborhood D can
be quite large. In Chapter 4 we will examine under which conditions
the Riemann problem of the isentropic Euler equations can be solved
in the way of Theorem 2.22 and find that the neighborhood D can be
chosen rather large under mild assumptions.

2.1.3 Entropy solutions

As was already alluded to, weak solutions to a Riemann problem (and
hence to a Cauchy problem) are not unique. One way to single out
physically relevant solutions is to discard weak solutions that exhibit
unphysical behavior. For example, one such unphysical behavior may
be the production of energy out of thin air. Yet, mathematically this
is a more general concept that can be encoded with the help of a
so-called entropy-entropy-flux pair.

Definition 2.23 (entropy-entropy-flux pair). Let η,ψ : S → R be
smooth and let η be convex. Consider a conservation law

ut + f(u)x = 0,

and let there hold
η′(u)f′(u) = ψ′(u).

Then (η,ψ) is called an entropy-entropy-flux pair of the conservation
law.

With the help of entropy-entropy-flux pairs we can now single out
certain weak solutions, that behave more physical than others.

Definition 2.24 (entropy solution). A (weak) solution u of the Cauchy
problem is called an entropy solution, if it satisfies (in the weak sense)

η(u)t +ψ(u)x ⩽ 0, (2.15)

for all entropy-entropy-flux pairs (η,ψ) of the conservation law.

A classical (and hence differentiable) solution actually fulfills (2.15)
with equality. This means that entropy is constant along a classical
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solution. This cannot hold for all weak solutions anymore, so it is
relaxed to demand only that entropy doesn’t increase1. Unfortunately
even entropy solutions are not unique when dealing with systems of
conservation laws.

It is noteworthy (and not surprising, considering the name) that
shocks fulfilling the Lax entropy condition (Definition 2.17) are entropy
solutions of their Riemann problems.

2.1.4 Front-tracking

In this section we will cite an existence theorem for a Cauchy problem.
Before we do so we must introduce a bit more nomenclature.

Definition 2.25. [total variation, bounded variation]

• Let g : I → Rn be a function. The total variation TV(g, I) ∈
R+
0 ∪ {∞ } of g on an interval I ⊂ R, is given by

TV(g, I) = sup
(xi)∈P(I)

∑∥∥g(xi) − g(xi−1)∥∥L1 , (2.16)

where P(I) is the set of all finite, strictly increasing tuples in I.

• g is said to be of bounded variation on I, if TV(g, I) <∞.

We will not go into detail of the front-tracking technique and refer
the reader to [Daf09, Chapter 14] and of course to the book [HR02].
Disregarding any details, we just name an existence and a uniqueness
result for Cauchy problems with small total variation in the initial
condition.

Theorem 2.26 ([HR02, Part of Theorem 6.6]). Consider the strictly hyper-
bolic system of equations

ut + f(u)x = 0,

u(x, 0) = u0(x),

and assume that f ∈ C2(S, S) is such that each characteristic wave family is
either linearly degenerate or genuinely nonlinear. If TV(u0,X) is sufficiently
small, there exists a global weak solution u to this initial value problem. This
solution may be constructed by the front-tracking algorithm described in
[HR02, Section 6.1.]

The front-tracking technique consists of

• replacing the initial condition by a piecewise constant approxi-
mation whose deviation from u0 is governed by some parameter
δ > 0,

• solving the Riemann problems arising between the constant
pieces,

1 Note that the physicist’s notion of entropy corresponds to a negative entropy in the
sense of Definition 2.23, see [Eva10, Remark on page 121], so that the physicist would
instead say that entropy never decreases.
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• replacing any rarefaction wave again by piecewise constant solu-
tions (again, of deviation at most δ), which now are inadmissible
shocks,

• and dealing with colliding discontinuities of all shocks generated
either by the original Riemann problems or by the rarefaction
approximation.

The weak solution whose existence is attested in Theorem 2.26 is then
found as the limit of the approximate solution as δ→ 0.

As we are dealing with balance laws, the preceding theorem is not
sufficient for our goals. Yet, instead of presenting general results on
balance laws, we will provide an existence result for the isentropic Eu-
ler equations at the end of the following section, where both boundary
conditions and a source term are incorporated.

2.1.5 Boundary conditions

Up to now we always considered balance laws on X = R, that is, the
full real line. In applications one has boundaries of the domain of the
balance law and junctions between multiple domains of hyperbolic
balance laws. A general introduction is beyond the scope of this
work and therefore we only supply some guidelines and refer to the
literature on this topic, for example [LeV02, Sections 3.11, 7, 21.8],
[Daf09, Sections 4.7, 5.6, 6.9] or [GR14, Chapter 5].

We will discuss boundary conditions for hyperbolic balance laws
that have only non-zero eigenvalues and have constant characteristic
structure, because the balance laws we investigate have this structure.
This means that the number of negative and positive eigenvalues is
constant. Let in the following R ∈ N be the number of positive eigen-
values (these correspond to right-moving waves, hence the name).
This implies that L = dim(S) − R is the number of negative eigenval-
ues because of hyperbolicity and our assumption that no eigenvalue
vanishes. The balance laws we examine in this work do of course
fulfill this requirement. With this we come to Cauchy problems on
bounded domains.

Definition 2.27 (initial-boundary problem, [LeV02, Section 3.11]). Let
Ψ : S → RR, Π : S → RL, X = [l, r] ⊂ R, l < r and consider the
following system of equations:

∂tu+ ∂xf(u) = S(u),

u(x, 0) = u0(x),

Ψ(u(l, t)) = 0,

Π(u(r, t)) = 0.

Such a problem is called an initial-boundary problem.

A slightly different but important version of the initial-boundary
problem includes interaction between the boundaries.
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Definition 2.28 (initial-boundary problem with feedback).
Let Θ : S× S → Rdim(S), X = [l, r] ⊂ R, l < r and

∂tu+ ∂xf(u) = S(u),

u(x, 0) = u0(x),

Θ(u(l, t),u(r, t)) = 0.

Such a problem is called an initial-boundary problem with feedback bound-
ary conditions.

The key difference to the initial-boundary problem without feedback
is the possibility of different boundaries to interact. For example
periodic boundary conditions are an instance of feedback boundary
conditions. We will need feedback boundary conditions, when we
introduce hyperbolic balance laws on networks in Section 2.1.6.

For weak solutions the boundary values u(l, t) and u(r, t) are not
well-defined. Yet, restricting to suitable function spaces (e.g. H1((l, r))
or subspaces thereof) makes it possible to define the boundary values
almost everywhere via the trace operator. We will not delve into
this here, refer to [Daf09, Section 4.7] instead and assume enough
regularity to have well-defined boundary conditions from here on out.

To get a feel for boundary conditions we revisit the advection equa-
tion.

Example 2.29 (advection equation with boundary conditions). Let
X = [l, r], T = R+

0 , a > 0, S = R, u0 : [l, r] → S, w : T → S,
w(0) = u0(l) and

ut + aux = 0,

u(x, 0) = u0(x),

Ψ(u(l, t)) = u(l, t) −w(t) = 0.

Also revisiting Figure 2.1, it seems natural to extend the method of
lines to the boundary and define additional characteristic curves that
don’t start at t = 0 but at some later time t0. These do not start at the
initial condition but at the boundary. Setting

x(t) = l+ a(t− t0)

leads to the solution

u(x, t) =

u0(x− at) for x− at ∈ (l, r),

w(t0) for x− a(t− t0) = l

which is showcased in Figure 2.2.
This figure also suggests that for suitable solutions the boundary

and initial conditions should agree where they meet, which is called a
consistency condition. In addition, the figure makes clear why no initial
condition at the right boundary was given. Characteristic curves start-
ing at the right boundary immediately leave the domain and are hence
irrelevant. The situation is reversed for a < 0. Here the characteristic
curves are left-moving and only the right boundary condition have to
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Figure 2.2: Different characteristic curves for a = 2. Blue
curves start at the (black) boundary condition,
yellow curves start at the (red) initial condition
and the green one starts at their intersection.

be specified. For systems the situation is more complicated because
both positive and negative eigenvalues can appear at the boundary.

To ease notation we consider a balance law on a half-space, so that
we can forego a right boundary condition. We also only present a
result for a non-scalar but linear conservation law. Nevertheless we
will use notation that can be applied for non-linear balance laws.

Proposition 2.30 ([GR14, Chapter V, Lemma 1.1]). Let dim(S) = m,
X = R+, 0 < k ⩽ m, let Ψ : S → Rm−k and g : T → Rm−k. Consider the
initial-boundary problem

ut + f(u)x = 0,

u(x, 0) = u0(x),

Ψ(u(0, t)) = g(t),

(2.17)

where the functions f and Ψ are linear. Let the eigenvalues λi of f′ fulfill the
inequalities

λ1(u) ⩽ · · · ⩽ λk(u) < 0 < λk+1(u) ⩽ · · · ⩽ λm(u)

for all u ∈ S. Let r1, . . . , rm be the corresponding eigenvector fields. Consider
the decomposition of u at the boundary

u(0, t) = a1(u)r1(u) + · · ·+ am(u)rm(u),

and partition the coefficient functions like

Aout = (a1, . . . ,ak),

Ain = (ak+1, . . . ,am).

Then (2.17) is well-posed if ∂Ψ(Aout,Ain)
∂Ain

is invertible. This can equivalently
be expressed as

det(Ψ′(u) · rk+1, . . . ,Ψ′(u) · rm) ̸= 0. (2.18)

It is plausible to assume a similar condition also for non-linear sys-
tems, as this proposition can be interpreted to mean that the boundary
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condition must fix the coefficients of the m− k waves that enter the
domain uniquely. This seems plausible also in the nonlinear case and
indeed there are related results, see for example [Ama97, Theorems
1.1 and 1.2] or [CG10, Theorem 2.2]. But note that — just as without
boundaries — an initial condition of small total variation must be as-
sumed. A corresponding result from [Gug+12] for a junction in a
network is presented in the next section as Proposition 2.34.

2.1.6 Junctions and networks

Instead of just boundary conditions, we also want to couple different
balance laws together at junctions between them. This is needed in
order to define balance laws whose spatial domains form a graph
with coupling conditions at the nodes of the graph. The coupling
conditions generalize the boundary conditions of plain balance laws.
All coupling conditions we consider model some kind of flow balance,
which means that the flow of some quantity over the junction must be
conserved, while some other quantity is continuous over the junction.

The general setting is as follows. We consider a finite, directed and
connected graph G = (V , E ) with vertex set V and edge set E . An
edge e ∈ E consists of an interval [0, ℓe] together with a hyperbolic
balance law. To a vertex v ∈ V we assign a virtual point xv and for
an edge s starting at v we identify the point 0 ∈ [0, ℓs] with xv. For
an edge f ending in v we identify ℓf ∈ [0, ℓf] with xv (here f means
“final point”). The reasoning behind this identification is to interpret
the graph as a subset of some Rn, where the start and endpoint of an
edge are actually the points where the vertices are located. This image
is most natural for planar graphs, where R2 can be used without
intersection of edges outside of vertices.

For each vertex v let Ev be the set of all edges connected to v and let
E sv , E fv ⊂ Ev be the edges starting and ending in v. The purpose of the
vertices is to supply coupling conditions for the edges e ∈ Ev. The full
problem on the graph G can be defined as follows:

Definition 2.31 (graph problem). The initial-boundary problem on a
graph is given by a collection of balance laws, defined on the interval
(0, ℓe), for each edge e ∈ E ,

uet + f
e(ue)x = Se(ue), ue(x, 0) = ue0(x),

together with a coupling condition for each vertex v ∈ V,

Θ
(
(us(0, t))s∈E sv ,uf(ℓe, t)

)
f∈E fv

) = 0.

The coupling conditions must of course fulfill conditions for well-
posedness that are related to those of boundary conditions. Luckily,
instead of working them out explicitly for coupling conditions, we can
transform the coupling conditions into boundary conditions. To see
that, we use two lemmas.

Lemma 2.32. Let [l0, r0], [l1, r1] ⊂ R be intervals, let µ = r1−l1
r0−l0

be the
quotient of their lengths and consider the linear diffeomorphisms
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a) ϕa : [l0, r0] → [l1, r1], x 7→ µ(x− l0) + l1,

b) ϕb : [l0, r0] → [l1, r1], x 7→ µ(r0 − x) + l1.

Then there is an equivalence (to be explained in the proof) of (feedback)
initial-boundary problems (Definition 2.28) on [l0, r0] and [l1, r1] and this
equivalence is induced by ϕa/b.

Proof. Consider a feedback initial-boundary problem on [l1, r1], given
by

ut + f(u)x = 0,

u(x, 0) = u0(x),

Θ(u(l0, t),u(r0, t)) = 0.

(2.19)

For ϕa define the corresponding problem on [l0, r0] by

yt +
1

µ
f(y)x = 0,

y(x, 0) = u0(ϕa(x)),

Θ(y(l0, t),y(r0, t)) = .

(2.20)

For ϕb define instead

yt −
1

µ
f(y)x = 0,

y(x, 0) = u0(ϕb(x)),

Θ(y(r0, t),y(l0, t)) = 0.

(2.21)

Note the interchange of the boundary conditions in (2.21). Note also
that the eigenvalues of the Jacobian change sign under the transforma-
tion ϕb. A solution u of (2.19) induces solutions ya,yb of (2.20) and
(2.21) by ya/b(y, t) = u(ϕa/b(x), t).

This lemma allows us to scale the spatial domain of a balance law
as well as revert its direction. The next lemma instead allows us to
stack balance laws that share the same domain.

Lemma 2.33. Let

uat + f
a(ua)x = 0,

ua(x, 0) = ua0 (x),

Θa(ua(l, t),ua(r, t)) = 0,

(2.22)

and

ubt + f
b(ub)x = 0,

ub(x, 0) = ub0 (x),

Θb(ub(l, t),ub(r, t)) = 0,

(2.23)
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be two initial-boundary problems with dim(Sa) = m and dim(Sb) = n.
Then the combined system for w = (w1,w2),

wt +

(
fa(w1)

fb(w2)

)
x

= 0,

w1(x, 0) = ua0 (x),

w2(x, 0) = ub0 (x),

Θa(w1(l, t),w1(r, t)) = 0,

Θb(w2(l, t),w2(r, t)) = 0,

(2.24)

is an initial-boundary problem of dimension m+n. Genuine non-linearity
or linear degeneracy of a characteristic pair of (2.22) or (2.23) carry over to
(2.24) and pairs of solutions (ua,ub) to (2.22) and (2.23) form a solution
w = (ua,ub)T of (2.24) and vice versa.

Proof. Immediate from the definition.

With these lemmas we can rewrite a coupling condition at a vertex
v in a graph problem (Definition 2.31) as a boundary condition, by
first folding over all edges ending in v and then stacking all edge
balance laws into a combined balance law. Then the coupling condition
becomes a boundary condition.

In addition, the lemmas even allow us to treat the whole of a
graph problem as a hyperbolic balance law with feedback boundary
conditions. To this end, we first transform all balance laws on the
edges to have the domain Xe = [0, 1]. Then we stack all of them
together. As the coupling conditions are allowed to couple the start
and end of the domains, it is no problem if a vertex in the graph
problem lies at the start of one edge and the end of another. This
interpretation of the graph problem is attractable from a theoretical
point of view, because it makes the theory of ordinary initial-boundary
problems applicable. Yet, in practice it is usually better to consider
vertices and their corresponding coupling conditions individually, as
for example properties like that of Proposition 2.30 are more tractable
in this setting.

To close this section, we mention a well-posedness result for the
isentropic Euler equations defined on a graph of a single node, to
which a number of edges is connected. This is of course relevant to
this work because we are interested in simulating gas dynamics in a
network. The cited theorem is much more extensive than stated here
and not only shows existence of a solution.

Proposition 2.34 (part of [Gug+12, Theorem 3.8]). Let m = dim(S) = 2

and consider n ⩾ 2 hyperbolic balance laws, each defined on T = [0, T ]
and X = R+

0 that are coupled at a junction via a coupling function Ψ ∈
C1(R2n, Rn):

ult + f
l(ul)x = gl(ul),

ul(x, 0) = ul0(x),

Ψ(u(0, t)) = Ξ,

(2.25)
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with l ∈ { 1, . . . ,n } and Ξ ∈ R. Let there be a constant solution ū =

(ūl)l=1,...,n of (2.25) that fulfills Ψ(ū) = Ξ.
Let for each l hold fl ∈ C4(S, S) and let (fl)′(ū) have one negative and

one positive eigenvalue and let each characteristic field be either genuinely
nonlinear or linearly degenerate.

Let also G = (gl)l be Lipschitz continuous in u and let TV(G ◦ y,X) ⩽ L
for all y ∈ Yδ with

Yδ =
{
y
∣∣∣ y− ū ∈ L1(X, Sn), TV(y,X) ⩽ δ

}
,

and some L > 0.
Lastly let Ψ fulfill Condition (2.18).
Then there is a solution of (2.25) of small total variation.

2.2 numerical methods for hyperbolic balance laws

As it is impossible to find closed expressions for solutions of (systems
of) hyperbolic balance laws in all but the easiest cases, we need al-
gorithms to compute numerical approximations of solutions. While
there is much to be said about this topic, we will again only introduce
what is needed later on and refer to text books [GR14], [LeV92] and
most notably [LeV92]. Again we are only interested in the case of one
space dimension.

Here we briefly introduce finite volume methods to show the rel-
evant challenges arising in the numerical treatment of hyperbolic
balance laws. As we did in the last section, we only consider conser-
vation laws at first.

To compute an approximate solution of a system of an initial-
boundary problem with a finite volume method over a time span
[0, T ] on a bounded interval [l, r] we introduce a time step size ∆t = T

N

for some N ∈ N and a spatial step size ∆x = r−l
J for some J ∈ N.

As discretization points we then choose (tn = n∆t)n=0,...,N and
(xj = l+ j∆x)j=0,...,J. This divides the interval [l, r] into J different
cells Ij, given by

Ij = [xj−1, xj], for j = 1, . . . , J. (2.26)

To leverage the conservation property of the conservation law (2.2)
(with S = 0), we choose as discretization of the function u values unj
that shall represent cell averages,

unj ≈ 1

∆x

∫
Ij

u(x, tn)dx.

An approximate solution in the interior of the domain of an initial-
boundary problem

∂tu+ ∂xf(u) = 0,

u(x, 0) = u0(x),

Ψ(u(l, t)) = 0,

Π(u(r, t)) = 0

(2.27)
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can be found by first discretizing the initial condition,

u0j =
1

∆x

∫
Ij

u(x, t0)dx,

and then computing un+1j from unj via: Equation (2.2),

0 = ∂t

∫xj
xj−1

u(x, t)dx+ f(u(xj, tn)) − f(u(xj−1, t))

⇒ 0 = ∂tu
n
j +

f(u(xj, tn)) − f(u(xj−1, tn))
∆x

⇒ un+1j = unj −
1

∆x

∫tn+1
tn

f(u(xj, t)) − f(u(xj−1, t))dt

= unj

−
∆t

∆x

(
1

∆t

∫tn+1
tn

f(u(xj, t))dt

−
1

∆t

∫tn+1
tn

f(u(xj−1, t))dt

)
.

(2.28)

To use this equation we need to approximate both the time integrals
and thereby the evaluations of f, as we can only access the cell averages
of u and not the values at the cell boundaries.

Of course it is desirable that an approximate solution converges
against a solution of (2.27), usually in the∥·∥L1-norm, which lends itself
naturally to the definition of weak solutions. A finite volume scheme
now consists of choices for the numerical approximations of the time
derivative and the flux evaluations. Let us call un = (unj )j=1,...,J. An
explicit scheme to solve (2.27) is given by a function

H : RJ+1 → RJ+1,

un 7→ un+1 = H(un),

which computes approximation values at the next time point from the
approximation at the current time point in an explicit way. Usually
the scheme function H is extremely sparse in the sense that any un+1j

depends only on a few coefficients unj−k, . . . ,unj+k.
A scheme function of the form derived in Equation (2.28) is said to

have conservation form.

Definition 2.35 (conservation form, numerical flux, [LeV02, Section
4.1]). Consider an explicit scheme for the hyperbolic conservation law
ut + (f(u))x = 0. The scheme is said to be in conservation form, if it can
be written as

un+1j = H(un)j = u
n
j −

∆t

∆x

(
Fn
j+ 1

2

− Fn
j− 1

2

)
,

where
Fn
j+ 1

2

= F(unj−k+1, . . . ,unj+k)

for some function F. F is then called the numerical flux of the scheme
and the scheme is called a k-point scheme.
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The next definition will be useful in Section 3.3.

Definition 2.36 (viscous form, numerical viscosity, [LeV02, Section
4.1]). The explicit scheme H is said to have viscous form, if it can be
written as

H(un)j = u
n
j −

∆t

∆x

(
f(unj+1) − f(u

n
j−1)

2

)

+
1

2

(
Qn
j+ 1

2

(unj+1 − u
n
j ) −Q

n
j− 1

2

(unj − unj−1)

)
,

where
Qn
j+ 1

2

= Q(unj−k+1, . . . ,unj+k)

for some function Q. Q is then called the numerical viscosity of the
scheme.

The numerical treatment of boundary conditions can often be done
via a so-called ghost cell approach [LeV02, Chapter 7], where one uses
the definition of the boundary conditions (Ψ and Π in Equation (2.27))
to extrapolate values of “ghost cells” outside the domain of the con-
servation law, so that the scheme can be used near the interior and
the boundary conditions are satisfied. We will use this method in
Section 3.3.2.

2.2.1 Schemes for linear hyperbolic balance laws

The simplest example of a scheme, suitable for the advection equation
is the Upwind scheme:

Example 2.37 (Upwind scheme). Consider the scalar initial-boundary
problem on X = [l, r],

ut + aux = 0,

u(x, 0) = u0(x),

u(l, t) = wl(t) if a > 0,

u(r, t) = wr(t) if a < 0

and the discretization ∆t,∆x. An explicit scheme is given by the
Upwind scheme,

un+1j = H(un)j =

unj − a∆t∆x(u
n
j − unj−1) for a > 0,

unj − a∆t∆x(u
n
j+1 − u

n
j ) for a < 0

for 1 ⩽ j ⩽ J− 1. As numeric boundary values one can simply set
un0 = wl(t

n) or (depending on the sign of a) unJ = wr(t
n).

Unfortunately it turns out that explicit schemes for hyperbolic
balance laws must obey the so-called CFL condition2, relating the
discretization and analytical properties of the balance law. It was
originally stated as

2 The CFL condition is named after the mathematicians Richard Courant (08.01.1888

- 27.01.1972), Kurt Friedrichs (28.09.1901 - 31.12.1982) and Hans Lewy (20.10.1904 -
23.08.1988).
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Proposition 2.38 (CFL condition, [LeV02, Section 4.4]). “A numerical
method can be convergent only if its numerical domain of dependence contains
the true domain of dependence of the PDE, at least in the limit as ∆t and ∆x
go to zero.”

Here the domain of dependence of a value u(y, t1) of a solution of
the (possibly non-scalar) hyperbolic conservation law

ut + f(u)x = 0

is the set of all values u(x, t0) with t0 < t1, that can influence the
value u(y, t1). As we know that information travels at most with
velocity

v = max
{
λ
∣∣ |λ| is an eigenvalue of the Jacobian Jf of f

}
,

the domain of dependence of a linear hyperbolic balance law can be
estimated.

This estimate can be used to phrase necessary conditions for the
CFL condition and informs the following definition.

Definition 2.39 (Courant number). For a system of hyperbolic balance
laws with eigenvalue fields λ1, . . . , λm and a discretization with step
sizes ∆t and ∆x the Courant number, often denoted by C, is given by

C =
maxu∈S

(∣∣λ1(u)∣∣ , . . . ,∣∣λm(u)
∣∣)

∆x
∆t

.

Note that the definition is only meaningful for hyperbolic balance
laws, whose eigenvalue fields are bounded, as is the case for the
advection equation.

For balance laws with unbounded eigenvalue fields one can still
define a Courant number by taking the maximum only over some
subset B ⊂ S. This Courant number is then only meaningful, if B
contains all values that are attained by solutions of the balance law.
For gas equations studied in later chapters, we will impose a so-called
sub-sonic condition, that will effectively constrain solutions to have
useful Courant numbers.

Yet, for the Upwind scheme for the advection equation, the CFL
condition can be reformulated as

Proposition 2.40. The Courant number C of the Upwind scheme must
necessarily fulfill

C ⩽ 1

for the scheme to be stable. This condition is equivalent to

a <
∆x

∆t
and ∆t <

∆x

a
.

This means the “numerical velocity” ∆x∆t must be not smaller than the “ana-
lytical velocity”, constraining the time step size in relation to the spatial step
size.
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Different explicit schemes have slightly different CFL conditions,
yet all of them have this general form, that restricts the time step size
by some multiple of the spatial step size.

The Upwind scheme is a first order scheme, meaning that it con-
verges to a weak solution of a linear conservation law for vanishing
discretization step size and fulfills

u(x, tn +∆t) −Hupwind(u
n) = O((∆t)g). (2.29)

with g = 1. Another scheme for the advection equation is given by the
Lax-Wendroff scheme. It fulfills Equation (2.29) with g = 2.

Example 2.41 (Lax-Wendroff scheme). Consider the same situation
as for the upwind scheme, namely a scalar linear initial-boundary
problem with velocity a. A second order scheme, named the Lax-
Wendroff scheme is given by

un+1j = unj − sign(a)C
(
unj − unj−1

)
−
1

2
C(1− C)

(
unj+1 − 2u

n
j + unj−1

)
,

where C is the Courant number. Unfortunately it suffers from the same
CFL condition as the upwind scheme, namely C ⩽ 1. In addition, it
doesn’t converge to a weak solution of a conservation law for vanishing
step sizes.

This last drawback of the Lax-Wendroff scheme is related to the fact
that the scheme fails to stabilize the total variation (see Definition 2.25).
In order to correctly mimic extrema and non-smooth points of weak
solutions, it is desirable for a scheme to be total variation diminishing.

Definition 2.42 (total variation diminishing, TVD [LeV02, Definition
6.1]). A scheme, given by its scheme function H, is called total variation
diminishing, usually abbreviated TVD, if it fulfills

TV(H(un)) ⩽ TV(un)

for every time step n.

The upwind scheme above is TVD. Yet, the Lax-Wendroff scheme is
not. Due to this reason, the Lax-Wendroff scheme is not convergent.
We will run into and address this problem in Section 3.3.

The upwind and Lax-Wendroff schemes in the presented form can
only be used for linear hyperbolic conservation laws. There are of
course also schemes for non-linear systems, for example the so-called
CWENO-schemes, one of which is used as a reference in Section 4.3.1.
A full description of the methods used for non-linear systems is
beyond the scope of this thesis and we refer to [LeV02] for more
details and especially [Kol14] and [NKS18] for the CWENO3 scheme,
briefly used in Section 4.3.1 and described in Section 2.2.4.

The last property of numerical schemes mentioned in this section
shall be a discrete analog to entropy-entropy-flux pairs.
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Definition 2.43 (entropy-stable scheme,[LeV02, Section 12.11]). Let
η,ψ be an entropy-entropy-flux pair of a hyperbolic conservation
law. A scheme H is said to be entropy-stable, if there is a function
ϕ : S2k → R that fulfills

ϕ(u, . . . ,u) = ψ(u) for all u ∈ S

and there holds

η(H(u)j) ⩽ η(uj)

−
∆t

∆x

(
ϕ(uj−k+1, . . . ,uj+k) −ϕ(uj−k, . . . ,uj+k−1)

)
.

If equality holds, the scheme is called entropy-conserving.

2.2.2 Treatment of source terms and splitting

Before we end our discussion of explicit schemes we will briefly intro-
duce a method to treat actual balance laws, instead of just conservation
laws. We do so by retracing the steps of [LeV02, Chapter 17]. Therefore
we must somehow incorporate the source term in Definition 2.1 into
a scheme. One way of doing this, is to split the numerical method
for the balance law into two parts, one part that advances the un-
derlying conservation law (setting the source term to zero) and one
part that exclusively deals with the source term. We will restrict to a
linear balance law, as this is the setting we are interested in, later in
Chapter 3.

Let therefore dim(S) = m, A, F ∈ Rm×m and consider the linear
balance law

ut +Aux = −Fu,

u(x, 0) = u0(x).

We rewrite this as
ut = Au,

where A = −A∂x − F is a linear operator. This looks like a ordinary
linear differential equation, defined in some function space (and ac-
tually it is, see Section 2.4 for an introduction to semigroups, which
make this line of thought rigorous) and we can formally write its
solution as

u(t) = exp(At)u0 = exp((−A∂x − F)t)u0.

If the operators −A∂x and F commuted, we could further rewrite this
as

u(t) = exp(At)u0 = exp(−tF) exp(−tA∂x)u0.

This form suggests solving first the problem involving A∂x and then
solving the problem involving F.

Without F, the first problem is just the linear conservation law

ut +Aux = 0,
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which we can solve with a scheme of our choice. Let us call its scheme
function PDE, such that we can write a single step as un+1 = PDE(un).
The second problem, without A∂x has the form

ut = −Fu,

which is an actual ordinary differential equation and can be solved
with an appropriate method or even by evaluating the matrix expo-
nential exp(−tF). Let us call its scheme function ODE.

A scheme for the whole balance law is then given by

un+1 = H(un) = ODE ◦PDE(un).

Of course the operators in A∂x and F usually do not commute and
hence this scheme introduces errors. It turns out, that it is still of first
order, if both schemes are of first order.

A better way of splitting is Strang splitting, where one first makes a
half-step of the ODE scheme, then a full step of the PDE scheme and
a half-step of the ODE scheme again. If both individual schemes are
at least of second order, then the Strang-splitting scheme is as well.
This can be derived by analyzing the power series of the exponential.
The derivation can be found in [LeV02, Chapter 17].

In Section 3.3 We will use Strang-splitting to define certain numerical
methods to solve a system of advection equations with linear source
term.

2.2.3 IBOX scheme

The CFL condition is very restrictive in both power and gas networks.
While we circumvent the problem in power networks in Chapter 3

by replacing the relevant hyperbolic balance law with something else,
the problem remains in gas networks. To overcome it, we make
use of an implicit scheme, the implicit box scheme introduced in
[KLB10]. Its scheme function H is now implicit, meaning, it is a
function H : RJ+1 × RJ+1 → RJ+1, (un,un+1) 7→ H(un,un+1) and
the next time step un+1 is determined by finding a zero of H. This
can be done by a suitable Newton-type method. The precise definition
of the box scheme is given as follows.

Definition 2.44 (IBOX). Consider a hyperbolic balance law

ut + f(u)x = S(u).

The implicit box scheme on a lattice (tn, xj) is given by

H(un,un+1)j =
un+1j−1 + un+1j

2
−
unj−1 + u

n
j

2

+
∆t

∆x

(
f(un+1j ) − f(un+1j−1 )

)
−
∆t

2
S(un+1j ) + S(un+1j−1 ).
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For an implicit scheme existence and uniqueness must be shown.
These properties along with results on stability and the TVD property
can be found in [KLB10] as well as in [Kol11]. The key property of the
implicit box scheme for our purposes is its “inverted” CFL condition.
It has the following form

Proposition 2.45 ([Kol11, Proposition 4.2]). For the implicit box scheme
to be stable there must necessarily hold

∆t ⩾
∆x

2λmin
.

Here λmin denotes the minimum of the set
{
|λ|
∣∣ λ is an eigenvalue of Jf

}
.

Handling of boundary conditions in the implicit setting is straight-
forward. Boundary conditions can simply be added as a function of
which a zero must be found and hence for each boundary condition the
dimension of the space in which a zero must be found is incremented
by one.

2.2.4 CWENO3 scheme

In Section 4.3.1, the CWENO3 scheme is used, which is of a different
kind to the ones presented so far. Namely, it is not total variation
diminishing, although it is convergent and still captures extrema and
discontinuities well. We follow along [Kol14] to introduce the method.

The scheme follows the REA-algorithm, short for “reconstruct-
evolve-average”, see [LeV02, Section 4.10]. Here, the cell averages
(unj )j=1,...,J of the current time step are used to reconstruct a piece-
wise polynomial representation û(x, tn) of the solution u(x, tn) to
a conservation law at the current time step tn. This representation
is then evolved with some time integration technique to an approx-
imation ǔ(x, tn+1) of the solution u(x, tn+1) at the next time step,
where it is then again averaged in to the cell averages (un+1)j=1,...,J

at the next time step. The CWENO3 scheme provides a method for
the reconstruction phase of the algorithm. Therefore we consider a
function u : X → S, because the time-dependency is irrelevant for
the reconstruction phase. In the cell Ij the CWENO3 scheme chooses
a polynomial P = P(x), which is constructed from the cell averages
uj−1,uj,uj+1. P is in turn a convex combination of three other poly-
nomials PL,PC,PR,

P(x) = ωLPL(x) +ωCPC(x) +ωRPR(x),

with ωL,ωC,ωR ⩾ 0 and ωL +ωC +ωR = 1, to be determined later.
PL is the unique linear polynomial that fulfills∫

Ij−1

PL(x)dx = uj−1 and
∫
Ij

PL(x)dx = uj

and PR is the unique linear polynomial that fulfills∫
Ij

PR(x)dx = uj and
∫
Ij+1

PR(x)dx = uj+1.
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So PL and PR preserve the cell averages over two cells.
PC is determined by yet another polynomial Popt, which is the

unique quadratic polynomial, that preserves all three cell averages in
Ij−1, Ij and Ij+1, ∫

Ij−1

Popt(x)dx = uj−1,∫
Ij

Popt(x)dx = uj,∫
Ij+1

Popt(x)dx = uj+1.

Finally, PC is determined by

Popt = cLPL + cCPC + cRPR,

where cL, cC, cR ⩾ 0, cL + cC + cR = 1 must be chosen for the method.
We use cL = cR = 0.25 and hence cR = 0.5 as in [Kol14].

For the weights ωi, i ∈ { L,C,R }, we cannot simply choose ci,
because this would introduce oscillations whenever there are extrema
or discontinuities in the function u to be reconstructed. Instead, for
i ∈ { L,C,R }, they must be chosen as

ωi =
αi∑

m∈{L,C,R } αm
and αi =

ci(
K∆xq + ISi(uj−1,uj,uj+1)

)p ,

for some positive constants K,p,q and so-called smoothness indicators
ISi. These are given by

ISi(uj−1,uj,uj+1) =
2∑
k=1

∫
Ij

∆x2k−1
(

dkPi
dxk (x)

)2
dx.

For these choices we have the following theorem:

Theorem 2.46 ([Kol14, Theorems 2.1 2.2, 3.3 and 3.4]). For K > 0, p ⩾ 1,
q ⩽ 3, pq ⩽ 2 and u ∈ C3(X) the reconstruction P fulfills

P(x) − u(x) ∈ O(∆x3).

If u has a discontinuity in Ij−1 but fulfills u ∈ C3(Ij ∪ Ij+1), then

P(x) − u(x) ∈ O(∆x2),

for x ∈ Ij.
To have a complete scheme for solving a conservation law, we

must use the reconstruction to obtain values u+
j+ 1

2

(t) = Pj(xj−1) and

u−
j+ 1

2

(t) = Pj−1(xj−1) at the cell boundaries and solve the Riemann

problem between them to obtain a flux between cells, which can then
be used in Equation (2.28) to evolve u. Finding the analytical solution
to the Riemann problem can be difficult and is usually computa-
tionally expensive. Therefore one can also choose an approximate
solution to the Riemann problem, [Kol14] for example uses the local
Lax-Friedrichs flux [LeV02, Section 12.5]. To keep the third-order accu-
racy of the reconstruction, a suitable third-order method for the time
evolution must be chosen. In [Kol14] the total-variation-diminishing
Runge-Kutta-scheme of third order from [GS96] is employed.
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Boundary treatment

In order to keep the third order of the CWENO3 scheme also at bound-
aries, a different reconstruction is chosen in cells, whose boundary
coincides with a boundary of the domain, that is, in cells I1 and IJ
from (2.26). The boundary condition itself, for example Ψ(u(l, t)) in
Equation (2.27), is incorporated into the scheme by using it to compute
a boundary state u−1

2

, which is then used as the (in this case) left initial

condition for a Riemann problem at the boundary. The reconstruction
in I1 is then done by considering new polynomials P1,P2,P3, that are
chosen similarly to PL,PC,PR above. For details see [NKS18]. An ad-
vantage of this boundary treatment is the absence of additional ghost
cells to be prescribed, while high order convergence is still present.

2.3 optimization

Apart from simulating the evolution of gas and power networks we
would also like to optimize them. To this end we employ the principle
“first-discretize-then-optimize”, in which optimization is only applied
after the dynamics of the networks have been discretized and thereby
rendered finite-dimensional. Hence it is enough for our purpose to
use finite-dimensional optimization, for which we will now provide
some background.

Yet firstly, note that many letters traditionally used for certain quan-
tities in optimization and control theory are also traditionally used
in the field of hyperbolic balance laws. To simultaneously keep to
the customs of each field but also provide some visual distinction, all
optimization quantities are denoted in bold letters, namely we use

• u for a vector of controls as opposed to the state u of balance
laws and

• f for an objective function as opposed to the flow f of balance
laws.

A common finite-dimensional optimization problem is, to find a
solution u for

u = argmin f(u)

s.t. g(u) = 0

h(u) ⩾ 0,

(2.30)

where u ∈ Rnu , f : Rnu → R, g : Rnu → Rng and h : Rnu → Rnh .
In the case where f,g and h are smooth enough, it is possible to

use their derivatives to search for a solution u. To this end we first
introduce some notation.

Definition 2.47 ([NW06, Definitions 12.1, 12.4]). Consider an optimiza-
tion problem (2.30).

• A point u in the domain of f is called feasible, if g(u) = 0 and
h(u) ⩾ 0.
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• A feasible point û is called a local minimum of (2.30) if there is a
neighborhood U of û, such that

f(û) ⩽ f(u)

holds for all feasible u ∈ U.

Additionally, for constrained optimization problems it is useful to
define a Lagrange function, which will be used to state optimality
conditions in Proposition 2.50.

Definition 2.48 (Lagrange function, [NW06, Section 12.3]). Consider
an optimization problem (2.30). The function L : Rnu × Rng × Rnh ,
defined by

L(u, λ,µ) = f(u) − λTg(u) − µTh(u),

is called the Lagrange function of the problem.

We must also introduce some technical properties of the constraints
which are needed for the optimality conditions.

Definition 2.49 (active set, LICQ, [NW06, Definitions 12.1 and 12.4]).

• The active set A(u) of constraints at a feasible point u is the
collection of all indices of equations in g and indices of all those
inequalities hi in h for which equality holds, hi(u) = 0. If we
gather all constraints in a single vector c = (g h)T , we have

A(u) ⊂
{
1 . . . ,ng +nh

}
,

A(u) =
{
j ∈

{
1 . . . ,ng +nh

} ∣∣∣ cj(u) = 0}
=

{
1, . . . ,ng

}
∪
{
j+ng

∣∣ hj(u) = 0 } .

• A feasible point u is said to fulfill linear independence constraint
qualifications, in short LICQ, if the tuple of vectors(

∂ci
∂u

)
i∈A(u)

is linearly independent.

With this in mind we can write down conditions that enable us to
distinguish minima of (2.30).

Proposition 2.50 (first-order necessary optimality conditions, [NW06,
Theorem 12.1]). Consider an optimization problem (2.30) where f,g and h

are continuously differentiable. Let û be a local minimum of the problem that
fulfills LICQ. Then there are vectors λ̂ ∈ Rng , µ̂ ∈ Rnh , such that

∂uL(û, λ̂, µ̂) = 0,

g(û) = 0,

h(û) ⩾ 0,

µ̂ ⩾ 0,

µ̂Th(û) = 0.

(2.31)
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The conditions (2.31) are also known as the Karush–Kuhn–Tucker
conditions or KKT conditions.

We will not try to find optima of optimization problems ourselves
but instead employ the optimization suite IPOPT [WB06], which will
search for points satisfying the KKT conditions for us.

To this end IPOPT (and other such software) needs to evaluate
f,g,h as well as their derivatives f′,g′ and h′. We will go into more
detail on finding these derivatives in Chapter 6.

2.4 semigroup theory

In Chapter 3 we will deal with the Telegrapher’s equations, a set of
linear hyperbolic balance laws. The linearity can be used to prove
strong results on these systems. The main tool for this is the theory
of linear operator semigroups, which is explained in detail in [EN01].
The idea of this theory is to view the linear hyperbolic balance law
(where A, F ∈ Rn×n)

ut +Aux = −Fu,

u(x, 0) = u0(x)
(2.32)

as a ordinary linear differential equation on a Banach space X,

ut = Au,

u(x, 0) = u0(x)

for some linear linear operator A : D(A) → X, whose domain D(A)

is a dense subspace of X. If X is finite-dimensional, this equation is
readily solved by

u(t) = exp(At)u0. (2.33)

Yet, in the system (2.32) the operator A is given by Au = −A∂xu− Fu

and X cannot be finite-dimensional. Still, for well-behaved operators A
the solution has many properties of the expression (2.33). An operator
in this context is well-behaved, if it is the generator of a strongly
continuous semigroup.

Still, let us start with the definition relevant for finite-dimensional
X. In that case all linear operators on X are bounded.

Definition 2.51 (uniformly continuous semigroup, [EN01, Definition
I.3.2]). A family (T(t))t∈R+

0
of bounded linear operators on a Banach

space X is called a uniformly continuous semigroup on X, if the map
t 7→ T(t) is continuous in the operator norm and satisfies

T(s)T(t) = T(s+ t) for all s, t ⩾ 0,

T(0) = IdX .

Expressed differently, a uniformly continuous semigroup on X

is a continuous (in the operator topology) monoid homomorphism
T : R+

0 → B(X,X), where B(X,X) is the set of all bounded linear oper-
ators from X to itself. These semigroups can be uniquely characterized
by the following proposition.
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Proposition 2.52 ([EN01, Theorem I.3.7]). Every uniformly continuous
semigroup of bounded linear operators is of the form

T(t) = exp(At)

for some bounded linear operator A. Therefore uniformly continuous semi-
groups are actually Fréchet-differentiable and there holds Ṫ(0) = A.

Here exp(At) is defined by its power series (which is well-defined,
because the bounded linear operators on X form a Banach algebra).
Such an operator A is called the generator of the semigroup.

Unfortunately the operator A = −A∂x − F is not bounded and it is
therefore not clear how to define exp(At). Therefore we must work
with more general semigroups.

Definition 2.53 (strongly continuous semigroup, [EN01, Definition
I.5.1]). A family (T(t))t∈R+

0
of bounded linear operators on a Banach

space X is called a strongly continuous semigroup on X, if it satisfies

T(s)T(t) = T(s+ t) for all s, t ⩾ 0,

T(0) = IdX,

and if, in addition, for all x ∈ X the map

ξx :R+
0 → X,

t 7→ T(t)x

is continuous (note that here the x in ξx is an index, not a derivative).

This can also be formulated differently: A strongly continuous
semigroup on X is a continuous (in the strong topology) monoid
homomorphism T : R+

0 → B(X,X). Strongly continuous semigroups
cannot be written in the form t 7→ exp(At) for some bounded A. Yet,
there is still the notion of a generator.

Definition 2.54 (generator of a strongly continuous semigroup, [EN01,
Definition II.1.2]). The operator A : D(A) ⊂ X → X, given by

Ax =
d
dt
ξx(0) = lim

h↘0
T(h)x− x

h
,

where the domain of A is given by

D(A) =
{
x ∈ X

∣∣ ξx : R+
0 → X is differentiable

}
,

is called the generator of the semigroup.

A property of strongly continuous semigroups that is crucial for
their application in solving systems of the form (2.32), is given in

Proposition 2.55 ([EN01, Lemma II.1.1]). A function ξx given like above
by ξx(t) = T(t)x is (right) differentiable in t = 0, if and only if it is
differentiable on R+

0 and its derivative is given by

d
dt
ξx(t) = T(t)

d
dt
ξx(0).
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With this in mind we can now solve the system (2.32) if A is the
generator of a strongly continuous semigroup T(t) and the initial
condition u0 is in the domain of A, as then the solution is simply
given as

u(x, t) = T(t)u0(x).

Yet, as was the case for more general hyperbolic balance laws, when
passing to an integral form of the equation, more general solutions
are possible.

Definition 2.56 (mild solution, [EN01, Definition II.6.3]). Let A gen-
erate a strongly continuous subgroup. A function u : R+

0 → X which
fulfills

∫t
0 u(s)ds ∈ D(A) for all t ⩾ 0, as well as

u(t) − u0 = A

∫t
0

u(s)ds,

is called a mild solution of (2.32).

It is actually the case that mild solutions of (2.32) are weak solutions
in the sense of Definition 2.3, see [Bal77]. It can be shown that if
A generates a strongly continuous semigroup every initial condition
admits a mild solution:

Proposition 2.57 ([EN01, Proposition II.6.4]). Let A generate a strongly
continuous semigroup T(t) on X and let u0 ∈ X. Then u : R+

0 → X,
t 7→ T(t)u0 is a mild solution of

∂tu = Au,

u(0) = u0

and this solution is a classical solution whenever u0 ∈ D(A).

As was the case for non-linear balance laws, we will need to intro-
duce boundary conditions for our linear balance laws. Luckily these
can be reinterpreted as initial conditions following [KMN03]. We will
use the theory of semigroups in Chapter 3.





3
T H E R E L AT I O N O F T E L E G R A P H E R ’ S E Q UAT I O N S
A N D T H E P O W E R F L O W M O D E L

In this chapter we will determine a valid model for the power network
part of the combined gas-power network. We shall show that in
so-called alternating current (AC) networks — which are almost all
power networks in use in energy systems — the solution often used
in engineering, namely the solution to the power flow equations, can
be thought of as an exponentially stable solution of the Telegrapher’s
equations defined on the power network.

The analytical properties of the system of Telegrapher’s equations
are not new and have also been shown in e.g. [Nic16]. The benefit of
our presentation is a more concrete formulation in terms of physical
properties like voltage and current of the power system and a more
elementary approach, proving certain properties directly, instead of
referring to theory.

Additional research in this direction include exponential stability
considerations [EK17] as well as open- and closed loop control prob-
lems. Open loop problems tackle questions of optimal inflow [GKL19;
GPT19; GT18], while closed loop control is concerned with feedback
control [Gug14] or boundary stabilization [GPR18]. Similar to the
ideas presented in [GHS16], we study the stability of the Telegrapher’s
equations using the concept of Lyapunov functions [BC16]. As was
done in [Nic16] we prove a stability result for the Telegrapher’s equa-
tions on networks with linear coupling conditions. We then show
how such a solution can be thought of as a solution to the power flow
equations. Later on we examine certain numerical approximations and
prove, that they mimic the Lyapunov stability as for example intro-
duced in [BC16]. In contrast to the already existing literature [GH19;
GHS16; GS17], where only first order schemes have been applied,
we analyze a well-known numerical scheme of second order with
regards to its stability. A numerical analysis shows that the scheme is
Lyapunov stable and can be used to numerically study networks of
linear hyperbolic balance laws as the simulation results indicate.

This chapter is organized as follows: In Section 3.1 we present the
physical meaning of the Telegrapher’s equation, define the network
setting and prove theoretical properties concerning the Lyapunov
stability. Section 3.2 is concerned with the derivation of the well-
known power flow equations from the Telegrapher’s equation. In
Section 3.3, two closely related numerical schemes of second order
are introduced to solve the Telegrapher’s equation. The Lyapunov
stability for the numerical approximation is also discussed in detail.
The last Section 3.4 deals with numerical experiments to investigate
the performance of the scheme.

39
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3.1 solution structure of the telegrapher’s equations

The Telegrapher’s equations are a system of linear hyperbolic balance
laws in one space dimension as in Section 2.1 and especially Section 2.4.
They model the time-dependent evolution of voltage and current on
a transmission line and can be written as an initial-boundary value
problem on a single line with x ∈ [0, ℓ] and t ∈ [0, T ] as:

ut +Aux + Fu = 0,

u(0, x) = u0(x),

u1(t, 0) = v0(t),

u1(t, ℓ) = vℓ(t),

(3.1)

where u : [0, T ]× [0, ℓ] → R2 and

A =

(
0 1

C
1
L 0

)
, F =

(
G
C 0

0 R
L

)
. (3.2)

Here, R,L,G,C > 0 are constants depending on the line, T > 0 is some
time horizon and ℓ is the length of the line. Therefore in the notation
of Section 2.1, we have T = [0, T ], X = [0, ℓ] and S = R2. The vector
u is composed of the voltage u1 = v and the current u2 = i. In the
engineering literature (e.g. [MM01, §1.2.2 Lossy Transmission Lines])
the Telegrapher’s equations are usually written as

∂v
∂x = −(Ri+ L∂i∂t ),
∂i
∂x = −(Gv+C∂v∂t ).

Yet another form of the Telegrapher’s equations is obtained by trans-
formation into characteristic variables ξ+, ξ−:√

C
L v = ξ

+ − ξ−,

i = ξ+ + ξ−,
(3.3)

so that Equation (3.1) turns into

ξt +Λξx +Bξ = 0, (3.4)

with

Λ =
1√
LC

(
1

−1

)
, B =

(
a b

b a

)
(3.5)

and a = 1
2

(
R
L + G

C

)
, b = 1

2

(
R
L − G

C

)
. Note that the eigenvalues of B

are a+ b = R
L > 0 and a− b = G

C > 0 and that in addition a > 0

holds.
In a power network setting, these equations are defined on the lines

and are coupled at the nodes by some conditions. In an AC power
network all voltages and currents that serve as boundary conditions
are sinusoidal with the same angular frequency ω, that is, they are of
the form p1 sin(ωt) + p2 cos(ωt) for real p1,p2 and ω > 0.

We start off by examining a time-periodic solution of the Telegra-
pher’s equations on a line with the same angular frequency ω as that
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of the boundary conditions. Therefore we write v and i as a Fourier
series in time,

v(x, t) =
∑
m∈Z

Vm(x)eimωt,

i(x, t) =
∑
m∈Z

Im(x)eimωt,
(3.6)

with complex-valued functions Vm, Im, which we call complex voltage
and complex current. For the voltage and current to be real-valued,
we impose

Vm = V∗
−m and Im = I∗−m for all m ∈ Z,

and from now on consider only m ⩾ 0. Due to the linear indepen-
dence of the function family (z 7→ ecz)c∈C the Telegrapher’s equations
decompose into a decoupled family of complex linear ordinary dif-
ferential equations (ODEs), each of which governs only Vm and Im
via

∂Vm
∂x = −(R+ imωL)Im,
∂Im
∂x = −(G+ imωC)Vm.

. (3.7)

We now define

Y0m =

√
G+ imωC√
R+ imωL

,

γm =
√
(R+ imωL) ·

√
(G+ imωC),

where we choose that branch of the square root that is positive on R+

and continuous on C\{r ∈ R | r < 0}.
It is easily verified, that

Vm(x) =
1

sinh(γmℓ)

[
Vℓm sinh(γmx) + V0m sinh(γm(ℓ− x))

]
,

Im(x) = −
Y0m

sinh(γmℓ)

[
Vℓm cosh(γmx) − V0m cosh(γm(ℓ− x))

] (3.8)

solve equations (3.7). Here V0m,Vℓm are the complex voltages at either
side of the line, which we choose as boundary conditions for now. It is
also possible to prescribe the current at the end of a line as done in the
network setting in the following Section 3.1. Note also that Y0m and
sinh(γmℓ) are never zero because R,L,G,C, ℓ > 0. Plugging these into
Equation (3.6) yields a solution to the Telegrapher’s equations. This
solution will be the basis for deriving the power flow equations in
Section 3.2. Next, we will investigate the stability of the Telegrapher’s
equations on networks.

Stability of the Telegrapher’s equations on networks

We want to model power networks, that is, generators and consumers
(loads), that are connected by transmission lines. Hence we use a
directed graph as a power network model. The setting is the same as
in Section 2.1.6. Let therefore G = (V , E ) be a finite directed graph
with vertex set V and edge set E . An edge e consists of an interval
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[0, ℓe] together with edge parameters Re,Le,Ge,Ce. As in Section 2.1.6
we assign a virtual point xv to a vertex and for an edge s starting
at v we identify 0 ∈ [0, ℓs] with xv. For an edge e ending in v we
identify ℓs ∈ [0, ℓs] with xv. As a reminder, the reasoning behind this
identification is to interpret the graph as a subset of some Rn, where
the start and endpoints of an edge are actually the points where the
vertices are located.

Let further V = G ∪̇ L where G denotes those nodes with a gener-
ator and L denotes nodes with a load so that every node is either a
generator or a load. Also for v ∈ V let Ev ⊂ E be the set of edges
connected to v. In addition we define the function

s(e, v) =

1 if v is the end of e,

−1 if v is the start of e,
(3.9)

which distinguishes start and end nodes of an edge.
Then we formulate the linear inhomogeneous initial-boundary-value

problem (3.10) on the graph G ,

∂tue = −Ae∂xue − Feue ∀e ∈ E , (3.10)

with matrices Ae and Fe of the structure of (3.2) and under the condi-
tions

ue(0, x) = (u0)e(x) ∀e ∈ E , (3.11)

u1e(t, xv) = u
1
f(t, xv) ∀g ∈ L, ∀ e, f ∈ Eg, (3.12)

u1e(t, xg) = vg(t) ∀ g ∈ G, ∀ e ∈ Eg, (3.13)∑
e∈El

s(e, l)u2e(t, xl) = il ∀ l ∈ L, (3.14)

where (3.11) is the initial condition, (3.12) is a continuity condition
for the voltage in the loads (which is automatically fulfilled in the
generators due to the next condition (3.13)), (3.13) is a coupling condi-
tion fixing the voltage at generators, and (3.14) is a coupling condition
fixing the current at loads. In order to show well-posedness, we use
the theory of operator semigroups, shortly introduced in Section 2.4,
yet for a thorough introduction see [EN01] and especially [KMN03]. A
different way to prove the following (or rather a more general case) is
found in [Nic16]. The main difference is our condition of Re,Ge > 0 in
every transmission line, which allows us to consider also graphs that
are not trees, because positive R,G result in stability of the problem
itself, while in [Nic16] stability is the result of a control action, which
is not present here. Nevertheless, the results on well-posedness can be
found already in [Nic16], where the proof invokes the Lumer-Phillips
theorem [EN01, Theorem 3.15] directly, while we instead show that
conditions needed for the application of [KMN03, Proposition 3.9] are
fulfilled.

We introduce the following setting: As underlying Banach (and
actually Hilbert) space we take

X =
∏
e∈E

L2
(
[0, ℓe]

)2 ,
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with the scalar product

< u, v >=
1

2

∑
e∈E

∫ ℓe
0

(Ceu
1
ev
1
e + Leu

2
ev
2
e)dx. (3.15)

As linear operator we take

A : D(A) → X

u 7→
(
e ∋ x 7→ −Ae∂xue(x) − Feue

)
and as its domain the space

D(A) =
∏
e∈E

H1
(
[0, ℓe]

)2 . (3.16)

In addition we choose the boundary operator

L : D(A) → R2|E |

u 7→ (BV ,BC,BI),

with
BV = (u1e(t, xg))g∈G,e∈Eg ,

BC =
(
(u1e(xl) − u

1
e+1(xl))

|El|−1
e=1

)
l∈L

,

BI =

∑
e∈El

s(e, l)u2e(t, xl)


l∈L

,

which is well-defined, because any u ∈ D(A) projected to a single
edge [0, le] of the graph fulfills u ∈ H1([0, le], R)2, which has a well-
defined trace operator for evaluation at the boundaries of [0, le]. Note
that L is continuous on D(A) as a concatenation of the (continuous)
trace operator and a finite-dimensional linear mapping.

To prove well-posedness, we first verify the prerequisites of [KMN03,
Assumption 3.1] in

Lemma 3.1. The operator A satisfies

(G1) The restriction of A to ker L , namely

A0 = A|ker L : D(A0) = ker L → X

is densely defined, closed and has non-empty resolvent set.

(G2) L is surjective.

(G3) The combined operator(
A

L

)
: D(A) → X× R2|E |

is closed.
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Proof. For this proof we consider the basis introduced in (3.3), where
A is of the form

A = −λ

(
1 0

0 −1

)
∂x −

(
a b

b a

)
.

For (G1) we first note that the space with zero boundary conditions,
i.e., ∏

e∈E

H10
(
[0, ℓe]

)2 ,

is a subset of D(A)∩ ker L , which is well-known to be a dense sub-
space of

∏
e∈ E L

2([0, ℓe])2. Then we note that A is just the sum of the
spatial derivative and a bounded linear operator. As L is continuous
on H1, its kernel is a closed subspace therein. Together we find that
A0 is closed, if the derivative operator ∂x : H1 → L2 is closed, which
is well-known, see e.g. [Kre07, Example 4.13-4]. For the non-empty
resolvent set we show that 0 is in the resolvent set of A0, that is A0
is injective and its left inverse R is densely-defined and bounded.
The domain of R is just the range of A0, so we show this range to
be dense in X. Therefore we show that the space of test functions
T = { f ∈ ∏

e∈E C
∞([0, ℓe])2 | supp(f) ⊂ [0, ℓe] } fulfills T ⊂ range(A0)

as it is well-known that T is dense in L2.
Let g ∈ T. There holds T ⊂ H10 and as the zero boundary conditions

essentially decouple different edges, we only consider one edge, given
by [0, ℓ]. The Fourier transform of g (which is well-defined as g ∈ L2)
is given by

g(x) =

∫∞
−∞

(
ĝ1(k)

ĝ2(k)

)
eikx dk.

The operator A0 evaluated on g is given by

g(x) = −

∫∞
−∞

(
a+ λki b

b a− λki

)(
ĝ1(k)

ĝ2(k)

)
eikx dk.

Let us call the matrixD(k) and immediately note that it is invertible, as
a2 > b2. In addition this matrix is diagonalizable whenever b2 ̸= λ2k2.
We find for its eigenvalues

µ1 = a−
√
b2 − λ2k2

µ2 = a+
√
b2 − λ2k2.

Note, that these are proper complex numbers for k large enough.
Nevertheless we can estimate their absolute values as:

|µ1| ,|µ2| ⩾ |a|−|b| > 0.

As the eigenvalues of the inverse matrix D(k)−1 are the inverses of
µ1,µ2, the norm of the inverse satisfies∥∥∥D(k)−1

∥∥∥ ⩽
1

|a|−|b|
.
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Hence the function k 7→ D(k)−1 is uniformly bounded. This also
holds true for the remaining case b2 = λ2k2, because the operator
norm is continuous. With this in mind we see that choosing

h(x) =

∫∞
−∞D(k)−1

(
ĝ1(k)

ĝ2(k)

)
eikx dk,

is well-defined and yields A0h = g. There holds h ∈ L2([0, ℓ], R2) and
h ∈ C∞([0, ℓ], R2). It remains to show that h is again supported in
[0, ℓ]. This is the case because of the Paley–Wiener theorem, see [Rud87,
Theorem 19.3], which relates L2-functions supported on an interval
and their Fourier transforms. Together we have h ∈ H10([0, ℓ])

2 ⊂
D(A0). Finally using ∥g∥2 = ∥ĝ∥2 and the norm estimate of D−1, it
is easily computed that R is bounded. The injectivity of A0 will be
shown in Lemma 3.2.

For (G2) we note that functions, that on every edge have the form

u(x) =

(
a+ bx

c+ dx

)
,

are in D(A) and can be used to construct any value for L .
For (G3) we note again that L is continuous on D(A) and that A is

closed, hence their combination is as well.

Lemma 3.2. A0 is injective.

Proof. Here we consider again the basis, where the components of u
are the voltage u1 = v and the current u2 = i. Therefore consider an
element u0 = (v, i)T ∈ kerA0. Such u0 is a valid initial condition for
the initial-boundary-value problem (3.10) with homogeneous coupling
conditions and a corresponding solution given by u(t, x) = u0(x) for
all t ⩾ 0. This solution is at least once differentiable with respect to
time and space. Therefore we can apply the reasoning of the following
Proposition 3.4 to this special solution and find

0 =
∑
e∈E

∫ ℓe
0

Cevev̇e + Leiei̇e = V̇(ζ(t))

⩽ −2min
e∈E

(
min

(
Re

Le
,
Ge

Ce

))
V(u0).

As V(u0) = 0 if and only if u0 = 0, we find that A0 is injective.

Lemma 3.3. Problem (3.10) is well-posed and therefore admits a solution
u : T → D(A) for u0 ∈ D(A)) and suitably smooth vg, il.

Proof. Following [KMN03, Proposition 3.9], it remains to show that
A0 generates a strongly continuous semigroup. For this we first
omit the matrices Fe in A0 and note that the resulting operator
is skew-symmetric with respect to the scalar product (3.15) of X.
(The boundary terms arising in integration by parts vanish, because
D(A0) ⊂ ker L ). Then we cite [EN01, 3.24 Theorem. (Stone, 1932)] to
see that A0 generates a unitary group. We now add Fe again, which is
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a bounded linear operator and use [EN01, Proposition 1.12], showing
that the full operator A0 also generates a strongly continuous semi-
group. The last step of non-vanishing vg, il follows from application
of the variation of constants formula [EN01, VI, Corollary 7.8], which
introduces some smoothness conditions on vg, il. The exact nature
of these condition is of no consequence to us but could be found by
working through [KMN03] to incorporate the boundary conditions as
initial conditions together with a source term.

With Lemma 3.3 we have a H1-solution to the initial-boundary-
value problem (3.10). We now show its exponential stability using the
Lyapunov function

V(u(t)) =
1

2

∑
e∈E

∫ ℓe
0

Ce(u
1
e)
2 + Le(u

2
e)
2.

Proposition 3.4. Two solutions u,w of Problem (3.10) with identical cou-
pling conditions vg and il but possibly different initial conditions u0,w0 ∈∏
e∈E H1

(
[0, le]

)2 grow closer exponentially in the L2-norm.

Proof. We take the difference of the two solutions ζ = u−w = (v, i)T

with initial condition ζ0 = u0 −w0 and examine the derivative of the
Lyapunov function. As before the coupling condition for ζ is then
homogeneous.

V̇(ζ(t)) =
∑
e∈E

∫ ℓe
0

Cevev̇e + Leiei̇e

=
∑
v∈V

∑
e∈Ev

ve(t, xv)s(e, v)ie(t, xv) −
∑
e∈E

∫ ℓe
0

Gev
2
e + Rei

2
e

=
∑
v∈V

vv(t, xv)
∑
e∈Ev

s(e, v)ie(t, xv) −
∑
e∈E

∫ ℓe
0

Gev
2
e + Rei

2
e

= −
∑
e∈E

∫ ℓe
0

Gev
2
e + Rei

2
e

⩽ −2min
e∈E

(
min

(
Re

Le
,
Ge

Ce

))
V(ζ(t)),

where the third equality stems from (3.12) and the fourth from (3.13)
or (3.14) depending on the node being either a load or a genera-
tor. Note that because of the homogeneous boundary conditions,
for generators v there holds vv(t, xv) = 0 and for loads there holds∑
s(e, v)ie(t, xv) = 0. Gronwall’s inequality is then employed to get

V̇(ζ(t)) ⩽ V(ζ(0)) exp

−2min
e∈E

(
min

{
Re

Le
,
Ge

Ce

})
t

 . (3.17)

Lastly noting that V is equivalent to the standard L2-scalar product,
yields exponential L2-stability.
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In practical terms Proposition 3.4 means that for every set of bound-
ary conditions one can choose an arbitrary initial condition u0, com-
pute its corresponding solution u and all solutions for different initial
conditions but the same boundary conditions converge exponentially
to u. In the following section we will examine suitable boundary
conditions and choose corresponding initial conditions to construct
solutions to the power flow equations as solutions of the Telegrapher’s
equations.

3.2 from telegrapher’s equation to power flow equa-
tions

3.2.1 Periodic solutions to the Telegrapher’s equations

Now that we have established that only the coupling conditions matter
for the long-term behavior of a solution, we examine periodic coupling
conditions and their relation to the power flow equations. This means
the functions vg and il in (3.13) and (3.14) shall be of the form

vg(t) =
∑
m∈Z

V̂gme
imωt,

il(t) =
∑
m∈Z

Îlme
imωt,

where quantities with a hat ·̂ are defined at a node. Again, to have
real voltage and current, there must hold V̂gm = (V̂g−m)∗ and likewise
for the current. Therefore we once again only consider m ⩾ 0.

A solution to Problem (3.10) with these coupling conditions, that is
smooth on every edge, is given by a Fourier series with coefficients
of the form (3.8), where the coupling conditions translate to linear
conditions on the complex voltage and current Vm and Im for each
transmission line. The correct coefficients in this expression can be
calculated by solving the linear system stemming from the coupling
conditions. As the system is linear, this can be done for each Fourier
mode mω separately.

The Fourier mode of the current at the ends of a line can be ex-
pressed as(

Im(0)

Im(ℓ)

)
= −

Y0m
sinh(γmℓ)

(
− cosh(γmℓ) 1

−1 cosh(γmℓ)

)(
V0m
Vℓm

)
.

We see that the incoming end behaves differently from the outgoing
end, because of an overall minus sign in the second component. This
is natural in the PDE setting as the sign of the current marks the
direction of flow. By using I0m = Im(0) and Iℓm = −Im(ℓ), we can
transform the system into(

I0m
Iℓm

)
= −

Y0m
sinh(γmℓ)

(
− cosh(γmℓ) 1

1 − cosh(γmℓ)

)(
V0m
Vℓm

)
.

This makes the transmission line invariant under switching orienta-
tion and positive currents mean currents leaving the node into the
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transmission line. A further benefit is that we can omit the function s
from Equation (3.9). With this we come back to the whole network.

By the coupling conditions on the voltage, i.e. (3.12) and (3.13),
voltage Fourier modes of all lines that meet at a node are equal.
Therefore it is natural to define Vrm as the m-th voltage Fourier mode
at vertex r that then serves as the voltage Fourier mode of all lines at
this vertex.

This is different for the current. For a transmission line between
node r and node s we define the current leaving node r in direction s
as

Irsm = −
Y0,rs
m

sinh(γrsmℓrs)
(
−Vrm cosh(γrsmℓ

rs) + Vsm
)

,

where Y, γ and ℓ now depend on the transmission line.
The net current Irm at node r is then just the sum of all currents

leaving that node,

Irm =
∑
s∈E

−
Y0,rs
m

sinh(γrsmℓrs)
(
−Vrm cosh(γrsmℓ

rs) + Vsm
)
∀r ∈ V , (3.18)

where we set Y0,rs = 0 if node r and s are not connected and also
Y0,rr = 0 for all r. These equations are then combined for the whole
network, i.e.,

Im = YmVm, (3.19)

where Im,Vm ∈ R|V | are the vectors of net current and voltage at
each node and Ym is the so-called admittance matrix. One can set up
admittance matrices for different power networks, where not every
edge is a transmission line. Yet in our case, Ym is given as

(Ym)ii =

|V |∑
j=1,j̸=i

Y
0,ij
m

tanh(γijmℓij)
,

(Ym)ij = (Ym)ji = −
Y
0,ij
m

sinh(γijmℓij)
.

(3.20)

It is an interesting and open question, whether admittance matrices
are always invertible, for invertibility criteria see e.g. [TM22]. We
now prove a criterion that asserts invertibility, whenever

∣∣∣γijmlij∣∣∣ is
great enough for all index pairs (i, j). In order to do this we need two
lemmas.

Lemma 3.5. The argument arg(Y) = θ of Y =
√
a+bi√
c+di

= Reiθ with
a,b, c,d > 0, fulfills

∣∣arg(Y)
∣∣ < π

4 .

Proof. We find

0 < arg(a+ bi), arg(c+ di) <
π

2

⇒ 0 < arg(
√
a+ bi), arg(

√
c+ di) <

π

4

⇒ −
π

4
< arg(Y) <

π

4
,

because arg(Y) = arg(
√
a+ bi) − arg(

√
c+ di).
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Lemma 3.6.

1. If ℜ(z) > 1
2 sinh−1(2+

√
3), there holds∣∣arg(tanh(z))

∣∣ < π

12
.

2. If ℜ(z) > 1
2 cosh−1(9), there holds

1

2

∣∣(cosh(z))∣∣ > 1,
Proof. Let z = x+ iy. For the first assertion we compute

x >
1

2
sinh−1(2+

√
3)

⇒ sinh(2x) > 2+
√
3

⇒ 2−
√
3 >

1

sinh(2x)
,

(3.21)

where we first used that sinh is monotone increasing on the positive
reals and then that (2+

√
3)(2−

√
3) = 1. Now we use

tanh(x+ iy) =
sinh(2x) + i sin(2y)
cosh(2x) + cos(2y)

,

to conclude

tan
(
π

12

)
= 2−

√
3 >

1

sinh(2x)
>

sin(2y)
sinh(2x)

= tan
(
ℑ(tanh(x+ iy))
ℜ(tanh(x+ iy))

)
= tan

(
arg

(
tanh(x+ iy)

))
.

(3.22)

As tan is both monotone increasing and symmetrical with respect to
the origin, the claim follows.

The second assertion follows similarly from∣∣cosh(x+ iy)
∣∣2 = 1

2

(
cosh(2x) + cos(2y)

)
,

for x,y ∈ R and cos(2y) > −1.

With these lemmas we can prove the following proposition.

Proposition 3.7. Consider an admittance matrix Y, whose coefficients are
given by Equation (3.20). Let ℜ(γijmℓ

ij) > 1
2 cosh−1(9) for all index pairs.

Then Y is strictly diagonally dominant and hence invertible.

Proof. First note that 12 cosh−1(9) > 1
2 sinh−1(2 +

√
3), therefore all

conditions in Lemma 3.6 are fulfilled.
Let αijm = γ

ij
mℓ
ij. For an index pair (i, j) we find, according to

Lemma 3.6,

1

2

∣∣∣(cosh(αijm))
∣∣∣− 1 > 0

⇒
∣∣∣∣∣ Y

0,ij
m

sinh(αijm)

∣∣∣∣∣
(
1

2

∣∣∣(cosh(αijm))
∣∣∣− 1) > 0

⇒ 1

2

∣∣∣∣∣ Y
0,ij
m

tanh(αijm)

∣∣∣∣∣−
∣∣∣∣∣ Y

0,ij
m

sinh(αijm)

∣∣∣∣∣ > 0.
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Now we sum over j for an arbitrary i and use

• ψ = arg

(∣∣∣∣ Y
0,ij
m

tanh(αijm)

∣∣∣∣
)
< π
4 + π

12 = π
6 ,

• cos(ψ) ⩾ cos
(
π
6

)
= 1
2 for 0 ⩽ ψ ⩽ π

6 and

• ℜ(z) = cos(arg(z)) ∗ |z| for z ∈ C,

to conclude that

0 <

|V|∑
j=1

1

2

∣∣∣∣∣ Y
0,ij
m

tanh(αijm)

∣∣∣∣∣−
∣∣∣∣∣ Y

0,ij
m

sinh(αijm)

∣∣∣∣∣
⩽

|V|∑
j=1

ℜ

(
Y
0,ij
m

tanh(αijm)

)
−

∣∣∣∣∣ Y
0,ij
m

sinh(αijm)

∣∣∣∣∣
= ℜ

 |V|∑
j=1

Y
0,ij
m

tanh(αijm)

−

|V|∑
j=1

∣∣∣∣∣ Y
0,ij
m

sinh(αijm)

∣∣∣∣∣
⩽

∣∣∣∣∣∣
|V|∑
j=1

Y
0,ij
m

tanh(αijm)

∣∣∣∣∣∣−
|V|∑
j=1

∣∣∣∣∣ Y
0,ij
m

sinh(αijm)

∣∣∣∣∣ ,
which shows the strict diagonal dominance of Y.

With Proposition 3.7 we can guarantee invertibility of an admittance
matrix. Unfortunately there is one admittance matrix Ym for each
m ∈ N, defined by Equation (3.20). Luckily, for slightly stronger
conditions we can prove the invertibility of Ym for every m ∈ N. To
this end we again state a lemma.

Lemma 3.8. For two complex numbers z1, z2, each with positive real part,
there holds ℜ(

√
z1z2) ⩾

√
ℜ(z1)ℜ(z2), that is, the real part of the geo-

metric mean of two numbers with positive real part is at least as big as the
geometric mean of the real parts.

Proof. Consider z = x+ y i with x > 0. The real part of
√
z fulfills

ℜ(
√
z) =

√
x+

√
x2 + y2

2
, (3.23)

as a short calculation shows. Now consider two numbers z1 = (a+

b i), z2 = (c+ d i), with a, c > 0.

ℜ(
√
z1z2) =

√
(ac− bd) +

√
(ac− bd)2 + (ad+ bc)2

2

=

√
(ac− bd) +

√
(ac+ bd)2 + (ad− bc)2

2

⩾

√
(ac− bd) +

√
(ac+ bd)2

2

=

√
(ac− bd) + (ac+ bd)

2

=
√
ac

=
√

ℜ(z1)ℜ(z2),

(3.24)
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where the sign switch under the square root is done by expanding the
squares and using 2(ac)(bd) = 2(ad)(bc).

Proposition 3.9. Let for every transmission line in the network hold that

lij
√
RijGij >

1

2
cosh−1(9). (3.25)

Then each admittance matrix Ym arising from this network, given by Equa-
tion (3.20), is strictly diagonally dominant.

Proof. The conditions in Proposition 3.7 are lower bounds on the
real part of γijmlij, which can be written as the geometric mean of
lij
(
Rij + imωLij

)
and lij

(
Gij + imωCij

)
. The claim then immedi-

ately follows from the preceding lemma.

Prescribing the left-hand sides Im in Equation (3.19) for all m ∈ Z

amounts to prescribing a problem of type (3.10) with only load nodes.
For such a network a series (Vm)m∈Z that fulfills Equation (3.19) for
all Fourier modes m yields a solution to (3.10) given on every line by
(3.8). This means, that there is a time periodic solution to (3.10), if all
Ym are invertible and all nodes are loads.

Of course, usually there are generator nodes. In that case, (3.19)
can be reduced by inserting the values of V̂gm and shifting them to the
other side by altering Im. Concretely, we define the vector V̄m by

V̄im =

Vim if the i-th node is a generator,

0 else,

and
Īm = Im − YmV̄m.

Then, we strike all rows (and in addition columns for Ym) from Īm and
Ym that correspond to generator nodes and arrive at a new equation

Ĩm = ỸmṼm.

For this equation to be solvable for all possible choices of generator
nodes, we must demand that all principal minors1 of Ym are invertible.
This is the case, when Y is strictly diagonally dominant, so for example
under the conditions of Proposition 3.7. Therefore, if for every m ∈ Z,
Ym, along with all its principal minors, is invertible, the coupling
conditions,

V̂gm = Vgm ∀ g ∈ G,

Îlm =
∑
s∈E

−
Y0,ls
m

sinh(γlsmℓ)

(
−Vlm cosh(γlsmℓ) + V

s
m

)
∀l ∈ L,

(3.26)

yield a time-periodic solution to Problem (3.10), defined on every edge
by Equations (3.6) through (3.8). Note that these conditions are again
linear in the complex voltages.

1 A principal minor of a square matrix M is every matrix that results from M by
removing a number of rows and all columns with matching indices to the removed
rows.



52 the relation of telegrapher’s equations and the power flow model

3.2.2 Power coupling conditions

In power networks we usually want to satisfy a power demand instead
of a current demand.

Electric power at a node v is given by the product of voltage and
the net current,

pv(t) = vv(t) · iv(t)
=

∑
m,k∈Z

VmIke
j(m+k)ωt

=
∑
m,k∈Z

Vm−kIke
jmωt

=:
∑
m∈Z

Pme
jmωt.

One way to replace the linear coupling conditions (3.26) would be
to prescribe P̂lm at every load node. In the case where vg and pl are
Fourier polynomials, that is, there is M ∈ N0, such that P̂lm,Vgm =

0 for |m| > M, this yields |V | (2M + 1) equations for just as many
unknown voltage Fourier modes2. So, depending on the concrete
values of P̂, V̂ , the system might be solvable. Unfortunately, except for
small examples, it is hard to decide a priori whether a given set of
power coupling conditions is feasible, see for example [Jer+20].

The mixing of different Fourier modes can make the resulting cou-
pling conditions quite cumbersome. Luckily in applications a strong
simplification is done: It is assumed that all inputs are sinusoidal,
meaning that the only non-vanishing Fourier modes are those for
m ∈ {±1 }.

Then, following any standard reference on power systems, for exam-
ple [And15; GSC16], we use v, i ∈ R to express V−1 = V

∗
1 and define

V := |V | eiϕ, similarly I := |I| eiψ, and find for the power

p(t) =
(
Veiωt + V∗e− iωt

)(
Ieiωt + I∗e− iωt

)
= VI∗ + V∗I+ VIe2 iωt + V∗I∗e−2 iωt

= ℜ(VI∗) +ℜ(VIe2 iωt)

= ℜ(VI∗)
(
1+ cos(2(ωt+ϕ))

)
+ ℑ(VI∗) sin(2(ωt+ϕ)).

This suggests to define the so-called complex apparent power S = VI∗, its
real part, the real power P = ℜ(S) and its imaginary part, the reactive
power Q = ℑ(S), so that at the node v it holds:

pv(t) = Pv
(
1+ cos(2(ωt+ϕ))

)
+Qv sin(2(ωt+ϕ)).

To define the power flow equations we use the admittance matrix Y
from (3.18):

I∗ = (YV)∗,

of which we write the real and imaginary part as

Y = G+ iB.

2 Up to now these are complex equations for complex Fourier modes but assuming
Vm = V∗

−m yields |V | (2M+ 1) real equations for as many real unknowns.
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For the complex apparent power this means

S = diag(V)Y∗V∗.

For every node k we then find the nonlinear system of equations

Pk =

N∑
i=1

|Vk||Vi| (Gki cos(ϕk −ϕi) +Bki sin(ϕk −ϕi)),

Qk =

N∑
i=1

|Vk||Vi| (Gki sin(ϕk −ϕi) −Bki cos(ϕk −ϕi)).

(3.27)

These are combined to a system of equations for the whole network,
called the power flow equations. Up to now we have 4 unknown quan-
tities at every node. To find a unique solution, at every node two
quantities are prescribed:

• All load nodes prescribe P and Q.

• All generators (with one exception) prescribe |V | and P.

• The last generator, or even a number of generators, known as
slack nodes, prescribe |V | and ϕ.

These conditions lead to a system of nonlinear equations with two
equations for each node to determine the two nodal variables |V | and
ϕ. For more information, we refer to [And15; FR16].

Any solution to the system of power flow equations yields a solution
to the initial-boundary-value problem (3.10) with sinusoidal boundary
conditions (with equal period at all nodes). Concretely a solution
to the power flow system yields the complex voltages V at every
node. With these one can compute I = YV and use both V and I to
prescribe sinusoidal boundary conditions at every node and compute
the corresponding solution to (3.10). We prescribe the net current at
load nodes and the voltage at generators (including the slack node).
The justification for this is, that “voltage is pushed” (set by the voltage
source) and “current is pulled” (drawn by the load). All in all we have
shown how a solution of the power flow equations can be thought of
as a solution to the Telegrapher’s equations with sinusoidal coupling
conditions.

This solution necessarily has initial condition equal to Equation (3.6)
evaluated at t = 0 but the results of Section 3.1 mean that any different
initial condition will converge exponentially to the solution stemming
from the power flow equations.

In the following sections we will examine the behavior of solutions
numerically.

3.3 numerical scheme

We aim to mimic the behavior of the analytical solution of Prob-
lem (3.10) by a numerical approximation. We will first treat a single
line, define the numerical scheme there and then prescribe numerical
boundary conditions.
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3.3.1 The scheme in the interior of a line

We compute a discrete approximation of a solution of (3.1) via a split-
ting scheme. The numerical approximation is based on Equation (3.4),
where

Λ = diag(λ,−λ)

is diagonal. The balance law

ξt +Λξx = −Bξ

is split into an ODE part
ξt = −Bξ (3.28)

and a PDE part
ξt +Λξx = 0. (3.29)

We choose the discretization tn = n∆t, n = 0 . . .N, xj = j∆x, j = 0 . . . J
and

(ξ±)
n
j = ξ±(tn, xj).

Further, we define the lattice constant and the Courant number (see
Definition 2.39) as

Γ =
∆t

∆x
, C = Γ |λ| .

As splitting we use Strang splitting (see Section 2.2.2 and [LeV02,
17.4 Strang splitting]), meaning we make a half-step of the ODE,
Equation (3.28), a full step of the PDE, Equation (3.29) and another
half-step of the ODE.

Equation (3.28) is a linear ODE with constant coefficients, so we can
solve it exactly up to machine precision with only constant computa-
tional costs by setting the ODE scheme to

ξ∗j = (ODE(∆t) · ξ)j =Mξnj ,

M = exp(−B∆t).
(3.30)

Of course, this ODE only contains the source term of the Telegrapher’s
equations, which is why we employ the splitting technique. As Strang
splitting itself introduces an error of second order, we cannot hope to
get higher accuracy and therefore choose a scheme for the conservation
law (3.29) which is at most second order, namely a flux-limited Lax-
Wendroff scheme (see for example [LeV02, 6.12 TVD limiters]), that
for a single component is given for right and left moving waves as:

ξ̂+j = ξ+j − Γ |a| (ξ+j − ξ+j−1)

−
1

2
|a| Γ(1−|a| Γ)

(
ϕ(θ+

j+ 1
2

)(ξ+j+1 − ξ
+
j ) −ϕ(θ

+
j− 1

2

)(ξ+j − ξ+j−1)

)
,

ξ̂−j = ξ−j + Γ |a| (ξ−j+1 − ξ
−
j )

−
1

2
|a| Γ(1−|a| Γ)

(
ϕ(θ−

j+ 1
2

)(ξ−j+1 − ξ
−
j ) −ϕ(θ

−
j− 1

2

)(ξ−j − ξ−j−1)

)
,

(3.31)
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where a is the wave speed and we define as usual

θ+
j+ 1

2

=


ξ+j −ξ+j−1
ξ+j+1−ξ

+
j

for ξj ̸= ξj+1
0 for ξj = ξj+1

and

θ−
j+ 1

2

=


ξ−j+2−ξ

−
j+1

ξ−j+1−ξ
−
j

for ξ−j+1 ̸= ξ−j
0 for ξ−j+1 = ξ

−
j

(3.32)

As limiter we choose the minmod-limiter,

ϕ(x) =


0 for x < 0,

x for 0 < x < 1,

1 for 1 < x,

(3.33)

which will become important for the numerical Lyapunov stability.
Of course the choice of 0 in Equations (3.32) and (3.33) is arbitrary as
the result of ϕ is anyways multiplied by the denominator of θ−

j+ 1
2

or

θ+
j+ 1

2

, making the product expression vanish, whenever the respective

denominator is zero.
The CFL condition for this scheme is the same as that of the pure

Lax-Wendroff scheme (Example 2.41), namely

C ⩽ 1. (3.34)

We write the scheme (although it is not linear) as

ξ̂j = (PDE(∆t)ξ)j,

so that the full split scheme can be written as

ξn+1 = ODE
(
∆t

2

)
◦ PDE(∆t) ◦ ODE

(
∆t

2

)
· ξn.

Having defined the scheme we come to the two main properties of it.
We will now prove that the scheme is

• total-variation-diminishing and

• Lyapunov stable.

As numerical Lyapunov function we choose

V(ξ) =
1

2

∑
j

(
(ξ+j )

2
+ (ξ−j )

2
)
∆x =

1

2

∑
j

(ξj)
Tξj∆x, (3.35)

which is equivalent to the squared discrete L2-norm of the solution
and hence corresponds directly to the analytical Lyapunov function.

As definition of total variation in two dimensions we choose the
sum of the component-wise total variations:

TV(ξ) =
∑
j

(∣∣∣ξ+j+1 − ξ+j ∣∣∣+∣∣∣ξ−j+1 − ξ−j ∣∣∣) =
∑
j

∥∥ξj+1 − ξj∥∥1 . (3.36)

Now we are able to discuss the following results:
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Proposition 3.10. The ODE-scheme (3.30) is total-variation-diminishing
and Lyapunov stable. The total variation after one step of the ODE scheme
fulfills

TV(ξn+1) ⩽ exp(−bmin∆t)TV(ξn) < TV(ξn)

where bmin = min(b1,b2) = min(RL , GC ) is the eigenvalue of smallest
absolute value of the matrix B.

For the proof we need a short lemma.

Lemma 3.11. There holds

1. The matrix M = exp(−B∆t) has the structure

M =

(
r s

s r

)
. (3.37)

2. Its eigenvalues are given by m1 = r + s, m2 = r − s and fulfill
0 < m1,m2 < 1.

3. There holds r > 0.

Proof. Consider the base change matrix

P =

(
0 1

1 0

)
,

Note that a matrix A fulfills

P−1AP = A,

if and only if A has the form (3.37). Therefore there holds P−1BP = B.
But exp commutes with change of basis and therefore

P−1MP = exp(−P−1BP∆t) = exp(−B∆t) =M,

proving 1. The eigenvalues of M can be computed from (3.37) and are
m1,2 = r± s. So they are also given by m1,2 = exp(−b1,2∆t) where
b1,2 are the eigenvalues of B. Assertion 2 follows because b1,2 > 0.
Lastly r = m1+m2

2 > 0.

Next we come to the
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Proof of Proposition 3.10. For the total variation after an ODE step we
find

TV(ODE(∆t)ξ) =
∑
j

∥∥Mξj+1 −Mξj∥∥1
⩽∥M∥1

∑
j

∥∥ξj+1 − ξj∥∥1
=
(
|r|+|s|

)∑
j

∥∥ξj+1 − ξj∥∥1
⩽ max(r+ s, r− s)

∑
j

∥∥ξj+1 − ξj∥∥1
= max(m1,m2)

∑
j

∥∥ξj+1 − ξj∥∥1
= exp(−min(b1,b2)∆t)

∑
j

∥∥ξj+1 − ξj∥∥1
<

∑
j

∥∥ξj+1 − ξj∥∥1 = TV(ξ),

due to Lemma 3.11, specifically, the second inequality is due to
assertion 3 and the last one due to assertion 2.

For the Lyapunov function after an ODE step we get

V(ODE ξ) =
1

2

∑
j

(Mξj)
TMξj∆x

=
1

2

∑
j

(ξj)
TMTMξj∆x

⩽
1

2
max(m21,m22)

∑
j

(ξj)
Tξj∆x

⩽
1

2

∑
j

(ξj)
Tξj∆x = V(ξ),

again according to Lemma 3.11.

On the PDE side we find a similar result.

Proposition 3.12. The PDE-scheme is total-variation-diminishing and Lya-
punov stable.

Proof. For the claim of TVD we note that the total variation (3.36)
is given as the sum of the variations in both components. As the
PDE-scheme does not mix the components, it is overall total variation
diminishing, if it is TVD in each of its components. The TVD property
of the minmod-limiter for the scalar case is a standard result found
e.g. in [LeV02, 6.12 TVD Limiters].

The Lyapunov function (3.35) is also given as a sum of the com-
ponents, namely the sum of the L2-norms squared. Therefore we
examine L2-stability of the PDE-scheme for the linear advection equa-
tion (which is one component of (3.29)), given by

ut + aux = 0. (3.38)



58 the relation of telegrapher’s equations and the power flow model

with the wave speed a. The pair

E(u) =
1

2
u2, Q(u) =

a

2
u2

is an entropy-entropy-flux pair for (3.38). According to [Tad87, Theo-
rem 4.1] there is an entropy-conserving numerical flux for this entropy
(see Definitions 2.35 and 2.43), which is defined by (see [FMT12, 2.1.2
Linear symmetrizable systems])

FE
j+ 1

2

=
a

2
(uj + uj+1)

and numerical viscosity
QE
j+ 1

2

= 0.

Note, that the corresponding scheme is the so-called naive scheme,
which is unstable, although this poses no problem in the proof of
[Tad87, Theorem 4.1].

Now, according to [Tad87, Theorem 5.2] a scheme for the advection
equation with numerical viscosity Qj+ 1

2
is entropy-stable with respect

to E if
Qj+ 1

2
⩾ QE

j+ 1
2

= 0

for all j. The viscosity of the minmod scheme is given by

Qmm
j+ 1

2

= C

(
1−

[
(1− C)ϕ(θ

sign(a)
j+ 1

2

)

])
⩾ 0,

because of the CFL condition (3.34) and ϕ ⩽ 1. As the entropy E
coincides with our Lyapunov function, this shows that the minmod
scheme is Lyapunov stable on the advection equation and therefore
out PDE scheme is Lyapunov stable for the PDE part (Equation (3.29))
of our splitting.

Before we come to boundary conditions we will remark on another
PDE scheme that can be used, namely the pure (unlimited) Lax-
Wendroff scheme introduced in Example 2.41. Unfortunately it is not
TVD, yet it is Lyapunov stable, as its numerical viscosity fulfills

QLW
j+ 1

2

= C2 ⩾ 0,

where again C is the Courant number. Although it is not TVD, the
total variation production is small. There holds

Proposition 3.13 (TV production of the LW scheme). The total variation
production of the Lax-Wendroff scheme fulfills

TV(un+1) ⩽ (1− C2 + C)TV(un).

Proof. This can be easily seen by using the triangle inequality on
TV(un+1), where un+1 is replaced by the scheme H(un), and then
regrouping terms.
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Obviously we cannot depend on the Lax-Wendroff scheme alone to
be TVD. But the expression we just computed allows us to choose a
Courant number that makes the total variation production of the PDE
small enough to be canceled by the total variation reduction of the
ODE scheme. We know that

TV(ξn+1) ⩽ (1− C2 + C) exp(−bmin∆t)TV(ξn).

Therefore the TVD property holds, if the scheme fulfills

(1− C2 + C) exp(−bmin∆t) ⩽ 1,

which is equivalent to

(1− C2 + C) ⩽ exp(bmin∆t). (3.39)

This is true, if exp(bmin∆t) ⩾ max(1− C2 + C) = 5
4 but can also be

satisfied, by choosing C near 1. Because C depends on ∆t, this choice
bounds ∆t from below.

The advantage of using the ODE scheme to counteract the variation
production of the PDE scheme is, that the combined scheme is actually
of second order everywhere. If we demand the PDE scheme to be
TVD on its own, we have to accept an order reduction at extremal
points of the solution. Examples of this can be found in Section 3.4.
Unfortunately the bounds we have just computed are much too con-
servative. This is so, because using the triangle equality in Proposi-
tion 3.13 and the minimum of the eigenvalues in the ODE scheme is
overly pessimistic. And indeed it turns out that one can violate these
bounds rather strongly without actually endangering the stability of
the method. An example of this is given in Section 3.4.

3.3.2 Numerical coupling conditions

Now that we have established the stability of the scheme in the interior
of the transmission line, we need to define the coupling conditions.
Therefore we consider a node nwith a set En of transmission lines, that
all start at it and reformulate the combined Telegrapher’s equations
on all these lines, as introduced in Section 2.1.6. We define the vector
and the matrices

ξ =
(
ξ+1 . . . ξ+N ξ−1 . . . ξ−N

)T
,

Λ = diag(λ1, . . . , λN,−λ1, . . . ,−λN),

B =

(
α β

β α

)
,

α = diag(a1, . . . ,aN),

β = diag(b1, . . . ,bN)

and also

ξ± =
(
ξ±1 . . . ξ±N

)T
, Λ± = ±diag(λ1, . . . , λN),
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which leads to the PDE

ξt+Λξx+Bξ =

(
ξ+

ξ−

)
t

+

(
Λ+

Λ−

)(
ξ+

ξ−

)
x

+

(
α β

β α

)(
ξ+

ξ−

)
= 0.

For line e ∈ En we define ce =
√
Le
Ce

. If the node is a load with
prescribed current in, we have the following conditions:

N∑
i=1

ie = in ⇔
N∑
e=1

ξ+e = −

N∑
e=1

ξ−e + in,

ve = vf ∀ 1 ⩽ e, f ⩽ N⇔ ce(ξ
+
e − ξ−e ) = cf(ξ

+
f − ξ−f ).

To reformulate them we define the matrices

M =


1 . . . 1

c1 −c2
. . . . . .

cN−1 −cN

 , S =


−1

1
. . .

1

 , ĩn =


in
0
...
0

 ,

which yields the conditions3 for the ghost cell values ξ0:

Mξ+0 = SMξ−0 + ĩn

⇔ ξ+0 = M−1SMξ−0 +M−1ĩn

⇔ ξ+0 = Uξ−0 +M−1ĩn.

(3.40)

Note that ∥U∥2 = 1, so for in = 0 no energy is injected at the node.
We still must choose ξ−0 and do so by linear extrapolation, namely we
choose ξ−0 = 2ξ−1 − ξ−2 . In principle one should use stable extrapo-
lation (see [BMZ15]) to guard against non-smooth solutions but this
seems to be unnecessary with high enough R and G.

For the minmod scheme we need a second ghost cell ξ−1. In prin-
ciple it should be possible to use the time derivative of the coupling
condition as in [BHH16] or [BK14], but in our setting it is much easier
to use another linear extrapolation through the neighboring inner cell
values and the newly-computed boundary value from (3.40).

Contrary, the generator coupling conditions are easier to determine
as they essentially decouple different lines. When we prescribe the
voltage at a node, this acts as a regular boundary condition for each
attached line and can be treated as such. Alternatively we can write
the generator coupling conditions similar to Equation (3.40),

ξ+0 = ξ−0 + diag(c1, . . . , cN)
−1(1, . . . , 1)Tvn. (3.41)

Regarding the entropy production of coupling conditions (3.40) and (3.41)
we only make the following proposition.

Proposition 3.14. If R and G are sufficiently large, the whole scheme,
including the boundary conditions, is entropy-stable.

3 Note that M is invertible, as its determinant is given by −(−1)N(
∏N
i=1, ci)(

∑N
i=1

1
ci

)

and ci > 0.
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Proof. The minmod scheme is piecewise linear on the space of all dis-
cretization points of all transmission lines, as can be seen in Equations
(3.31), (3.32) and(3.33). The Lax-Wendroff scheme is linear. Also, there
are only finitely many different pieces for the minmod limiter.

The coupling conditions are also linear on the same space. Together
this means there is a collection of matrices (Wk)k∈K with finite index
set K (enumerating all the different possible choices in Equation (3.33)
for each discretization point ξi on all transmission lines), such that
one step of the PDE scheme on the whole network can be expressed
as PDE(ξ) = Wkξ, where k ∈ K is such that right branch in Equa-
tion (3.33) for the minmod limiter is chosen.

The ODE scheme on the other hand is also linear on the space of all
ξi and can therefore be written as ODE(ξ) = Oξ, with a matrix O.

For the Lyapunov function after one step of both the PDE and the
ODE scheme, we find

V(ODE ◦PDE ξ) = ξTWT
kO

TOWkξ

⩽∥OWk∥2 ξTξ
⩽∥O∥2∥Wk∥2 ξTξ
⩽∥O∥2max

l∈K
∥W∥2l V(ξ),

which does not increase V(ξ), if∥O∥maxl∈K∥W∥l ⩽ 1, which can be
achieved by having sufficiently high R and G on all transmission lines
as evidenced by Lemma 3.11.

We will rely on this property in the numerical examples in the next
section and find the assumption to be justified for our purposes.

3.4 numerical examples

For the computations we wrote a package4 for the Julia programming
language5 (See [Bez+17]).

We will treat two examples, in which we compare exact periodic
solutions, that correspond to power flow solutions and numerical
solutions computed with the splitting scheme from Section 3.3. In
addition we consider the behavior of the numerical Lyapunov function.

As we compare the splitting scheme to the power flow solution, the
coupling conditions in the nodes are given by sinusoidal functions,
namely by

v(t) = ℜ(Veiωt),

i(t) = ℜ(Ieiωt).

Therefore we provide only the quantity I and V for each node and of
course ω for the whole network. The first example under consider-
ation is a single transmission line between two nodes, one of which
supplies voltage, while the other draws current.

4 The package is free software and can be used and modified by anyone. It can be
found under https://bitbucket.org/efokken/telegraph_numerics

5 see https://julialang.org/

https://bitbucket.org/efokken/telegraph_numerics
https://julialang.org/
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The parameters of this network are given in Table 3.1a and the
parameters of the periodic boundary conditions in Table 3.1b. Note
that this network satisfies the conditions of Proposition 3.9. We in-

Table 3.1: Parameters of the line, in addition ω = 4.0.

(a) Line parameters.

R 4.0
L 6.0
G 2.0
C 1.0
ℓ 1.0

(b) Node parameters.

Vstart 5.0+ 3.0 i
Iend 2.0+ 5.0 i

tegrate this problem from t = 0 to t = 1.0 with space discretization
∆x = 2−9. As Courant number we choose C = 0.8. The numerical
solution at t = 1.0 can be found in Figure 3.1a. To compute the error
we first provide the analytical solution expressed in ξ±. The analytical
solution on every line is given by

v(x, t) = ℜ(V(x)eiωt),

i(x, t) = ℜ(I(x)eiωt),

where V , I are taken from Equation (3.8) (with m = ±1). As voltages
at the ends of the line we take the solution to the linear system (3.26).
With these we compute the analytical expressions for ξ± as

ξ±(x, t) =
1

2

(
i(x, t)±

√
C

L
v(x, t)

)

on every line. For an analytical solution ζ and a numerical solution ξ
the maximal error of the numerical solution on a network over a time
T = N∆t is then given by

∆ξ = max
n=1:N

max
e∈E

(
max
j=1:Je

(∣∣∣ξ+jn − ζ+jn

∣∣∣ ,∣∣∣ξ−jn − ζ−jn

∣∣∣)) ,

where E is again the set of edges and Je is the number of spatial
steps on edge e and N is the total number of time steps. Here,
ζjn = ζ(j∆x,n∆t) is just the analytical solution evaluated at cell
centers.

The time-dependent error over the whole line at time t = 1 is shown
in Figure 3.1b for illustrating its usual appearance. The spikes in
the error chart come from the minmod-scheme and lie exactly at the
extrema of the solution. We remark that the boundary conditions do
not seem to introduce any further error.

A second example is given by the network shown in Figure 3.2
on page 64, where the node in the middle draws current and the
outer nodes supply voltage. The three transmission lines start at the
node in the middle. Line parameters and the coupling conditions are
given in Table 3.2 on page 64 and these parameters again fulfill the
conditions of Proposition 3.9. This network is also integrated with a
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(a) Solution at t = 1.0.
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(b) Error of the solution at t = 1.0.

Figure 3.1: The single line example.

spatial step size of ∆x = 2−9 and again a Courant number of C = 0.8.
For this network we also examine the order of convergence. Therefore,
we solve the problem with step sizes ∆xi = 2−i for 1 ⩽ i ⩽ 10 and
compute the corresponding maximal errors ∆ξi as well as the i-th
estimate of the convergence order by

ci =

∆ξi
∆ξi−1
∆xi
∆xi−1

.

In Table 3.3 on page 65 we see that the order of convergence ap-
proaches 2 with the pure Lax-Wendroff scheme and stays below 2 for
the minmod-scheme as can be expected due to the order reduction
at extrema. The fact that the pure Lax-Wendroff method approaches
convergence order 2 may be surprising as it is well-known that it
introduces oscillations at extrema due to its total variation production.
Yet, as noted in and below Proposition 3.13, this effect is counteracted
by the ODE part of the scheme. For the left-hand side of inequality
(3.39) we find

1− C2 + C = 1.16.

For its right-hand side we compute

∆t = C
∆x

λ
= ∆t = C∆x ∗

√
LC = 0.8 ∗ 2−9 ∗ 3 = 0.0046875

and
exp(bmin∆t) = exp(

1

9
· 0.0046875) ≈ 1.0005 > 1.16.

for the finest discretization. So inequality (3.39) is far from fulfilled,
yet the convergence order is 2. This demonstrates what we said earlier,
namely that the inequality is much too conservative.

For this second example, the plots of the line solutions and errors
are similar to those of the single line and can be found in Figure 3.3a
and Figure 3.3b. Different parameters do not change the pictures
much, which is why we do not show further images.

Lastly we compare the numerical (3.35) and analytical Lyapunov
functions. The analytical Lyapunov function is given by

V(t) = V(0) exp

−2min
e∈E

(
min

(
Re

Le
,
Ge

Ce

))
t

 .
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Table 3.2: Parameters of the network, in addition ω = 4.0.

(a) Line parameters.

line 1→ 2 1→ 3 1→ 4

R 2.0 3.0 1.0
L 6.0 6.0 9.0
G 2.0 1.0 2.0
C 1.0 1.0 1.0
ℓ 2.0 2.0 2.0

(b) Node parameters.

node type coupling condition

N1 current 10.0+ 3.0 i
N2 voltage 4.0+ 4.0 i
N3 voltage 2.0+ 5.0 i
N4 voltage 3.0+ 6.0 i

N2

N1

N3

N4

Figure 3.2: A network with three generators and one load.

For the comparison we use the network of the second example and the
same initial data, but choose ĩl = 0 and vg = 0 for load and generator
nodes respectively. With the numerical scheme we compute a solution
and evaluate its Lyapunov function. The analytical Lyapunov function
in this case is given by V(0) exp(−23t). In Figure 3.4 we show both the
estimate and the actually computed Lyapunov function.

Lastly we want to illustrate the severe restriction, the Courant num-
ber places on utilizing an explicit scheme for realistic power networks.
Therefore we take some sample line parameters from [Bra04, Table 3

on page 26], namely parameters for an aerial transmission line for a
voltage of 380 kV:

R = 0.028mΩ km−1,

L = 0.8mH km−1,

G = 15nS km−1,

C = 14nF km−1

(3.42)

and compute the wave speed given in (3.5) from them,

λ =
√
LC

−1 ≈ 298 807km s−1 ≈ 3× 108m s−1,

which is nearly the speed of light. The wave speed λ for a buried cable
still fulfills λ > 1× 108m s−1. Therefore for a rather coarse spatial
step size of ∆x = 1 km we get a restriction on the time step of

∆t ⩽
∆x

λ
⩽ 10−5 s,

so that 105 time steps per second have to be taken. For any realistic
power network, computing so many time steps is at least difficult
to implement and probably either too slow or too expensive to be
practical. On the other hand, the mean lifetime of the exponential
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Table 3.3: Order estimates of split schemes with different PDE
schemes.

i Lax Wendroff Minmod

2 0.574 0.584
3 1.137 0.846
4 1.754 1.304
5 1.986 1.236
6 1.914 1.145
7 1.955 1.212
8 1.976 1.245
9 1.988 1.293

10 1.994 1.369
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(a) Solution on the line from N1

to N2 at t = 3.
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(b) Error on the line from N1

to N2 at t = 3.

Figure 3.3: The network example.

decay of the Lyapunov function computed from (3.42) is about 15 s
and this is a worst-case estimate as illustrated by Figure 3.4. Therefore
for the simulation of normal network states using the power flow
equations, as is done in energy system simulation, seems a valid
choice.

3.5 summary and outlook

In this chapter we have shown how the power flow equations used in
engineering applications can be thought of as special solutions to the
Telegrapher’s equations on the transmission lines between the nodes
of the power network. We also provided a second-order numerical
scheme to compute these PDE solutions. The scheme — with possible
exclusion of the coupling points — is furthermore Lyapunov stable,
which mimics the analytical solution.

The numerical method is extendable to higher order as there are
splitting schemes at least up to order six6 and there are entropy-stable
ENO schemes of arbitrary order [FMT12] so that the Telegrapher’s
equations could be solved with much higher accuracy. Again however,

6 see https://www.asc.tuwien.ac.at/~winfried/splitting/index.php

https://www.asc.tuwien.ac.at/~winfried/splitting/index.php
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Figure 3.4: Comparison of the analytical estimate and the
computed numerical Lyapunov function, both
normed to 1.

comparing the computational costs, actually computing PDE solutions
for realistic physical parameters can be only done for small instances
and with high implementation effort.

Therefore we will use the power flow equations for all further power
network modeling in this work. Although they are non-linear, their
algebraic nature makes them much cheaper to handle than PDEs.



4
T H E I S E N T R O P I C E U L E R E Q UAT I O N S A N D
G A S - P O W E R - C O U P L I N G

Having established the power flow equations as an appropriate model
for power networks we now shift our attention to gas networks. In
this chapter we will investigate the isentropic Euler equations as a gas
model. These form a well-known non-linear hyperbolic balance law
used to describe gas flow in pipelines. The purpose of this chapter is
to find a suitable model for coupling the gas network to the power
network. In order to do this we will first deal with the gas network
itself, proving well-posedness of the Riemann problem as defined in
Definition 2.8 of the isentropic Euler equations for certain pressure
laws. Then we will extend the analysis to coupling conditions at
vertices in the gas network and use this to prove the well-posedness
of the gas-power coupling.

An alternative would be to go the route of the preceding chapter and
replace the physically accurate model of the isentropic Euler equations
with equations describing a steady state. Yet, the gas network is
not quite as fast-paced as the power network, as the signal speed of
roughly c ≈ 3.3× 102m s−1 suggests when compared to the signal
speed of the power system, which fulfills c ⩾ 1× 108m s−1. Therefore
it may be desirable to resolve more than just a steady state. To this
end, the implicit box scheme from Section 2.2.3 will prove valuable,
as it allows for coarse and fine time discretizations, depending on
whether more accuracy or less numerical cost is desired.

Coupling of the networks happens at nodes common to both, where
a gas-fired generator is placed such that it can convert gas to electric-
ity, see [HMS19; Zlo+16]. The coupling is modeled by an equality
constraint relating generated power to consumed gas flow.

In Sections 4.1 and 4.2, we derive conditions on the gas pressure
and power demand, respectively, that guarantee that the coupling
conditions lead to well-posedness of the gas-power coupling. For the
numerical study in Section 4.3, we give some validation results for
the proposed discretizations and the coupling. Also, we present the
influence of different pressure laws, while the actual coupling of gas
and power networks will take place in Chapter 5.

4.1 gas networks

Gas networks have been investigated very intensively during the last
decade, see for example [BGH11; BHK06b; KLB10]. Coupling condi-
tions at nodes have been established to ensure well-posedness of the
network solution [CG08] and a rigorous numerical treatment [Egg18;
GZ19; KLB10; ZA96]. As underlying structure for gas networks we
use — as introduced in Section 2.1.6 — a directed graph with nodes

67
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VGas and edges EGas. On this graph we define a graph problem, as in
Definition 2.31.

The balance law in each pipe e ∈ EGas describes the gas flow. As
balance law we choose the isentropic Euler equations in one space
dimension: (

ρ

q

)
t

+

(
q

p(ρ) + q2

ρ

)
x

=

(
0

S(ρ,q)

)
, (4.1)

where again t ∈ R+
0 is the time, x ∈ [0, le] is the position along the

pipeline of length le, the first state variable ρ is the density of the gas,
the second state variable q is the momentum of the gas, p is a pressure
function and S is a source terms that models friction at the pipeline
walls. The pressure law must be a function of the form

p ∈ C1(R+, R+), p′(ρ) > 0 for all ρ ∈ R+,

to ensure strict hyperbolicity. Note that our convention is R+ =

{ x ∈ R | x > 0 }, meaning that we exclude the vacuum. A discussion
of the vacuum will follow in Section 4.1.2. Usual examples are the
isothermal pressure law

p(ρ) = c2ρ,

where c is the speed of sound in the gas, or, more generally, the γ-law

p(ρ) = κργ, (4.2)

for suitable constants κ and γ, which we examine in Proposition 4.2. In
fact, we show that the class of possible pressure laws can be enlarged,
leading to non-standard pressure functions. For all pressure laws, the
speed of sound c(ρ) inside the gas is given by

c(ρ) =
√
p′(ρ),

while the flow speed of individual gas particles is given by

v(ρ) =
q

ρ
.

It is straightforward to compute the eigenvalues λ and the eigenvectors
r for the system (4.1),

λ1(ρ,q) =
q

ρ
−
√
p′(ρ) = v(ρ,q) − c(ρ),

λ2(ρ,q) =
q

ρ
+
√
p′(ρ) = v(ρ,q) + c(ρ),

r1(ρ,q) =

(
−1

−λ1(ρ,q)

)
,

r2(ρ,q) =

(
1

λ2(ρ,q)

)
.

(4.3)

Using Definition 2.10, it is easy to see that these eigenvalues are
genuinely non-linear if and only if there holds 2p′(ρ) + p′′(ρ) ̸= 0 for
all ρ ∈ R+. As is customary we concentrate on the case

2p′(ρ) + p′′(ρ) > 0. (4.4)
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At the network boundaries, typically the pressure pin or the flow
qout is given. Further, the following coupling conditions, which were
described in [BHK06b; Her07], are used at all inner nodes of VGas in
order to implicitly prescribe boundary conditions for the isentropic
Euler equations.

• equality of pressure: the pressure values at the ends of all arcs
connected to the same node must be equal, that is, there is a
coupling pressure pcoupling such that

pe = pcoupling (4.5)

holds at the end of all arcs e connected to the junction. Although
this condition yields entropy-violating solutions at certain junc-
tions, see [HHW20; Rei15] for details, it is well-suited for realistic
pipeline scenarios, as will be seen in Chapter 5. The great ad-
vantage of it is, that equality of pressure also yields equality of
density, which simplifies the analysis of Riemann problems at
junctions,

ρe = ρcoupling,

because p as a strictly increasing function is one-to-one.

• conservation of mass: the sum of all incoming fluxes must equal
the sum of all outgoing fluxes (including eventual boundary
terms), i.e., ∑

incoming pipes

qpipe =
∑

outgoing pipes

qpipe, (4.6)

which encodes conservation of mass at a junction.

Here, using the eigen fields from Equation (4.3), it is straightforward
to show that the condition (2.18) is fulfilled, as long as all states at the
junction fulfill ∣∣∣∣qρ

∣∣∣∣ < c(ρ) =√p′(ρ). (4.7)

This condition is called the sub-sonic condition and we will assume it
to hold true for the rest of the thesis. Not though, that other coupling
conditions are possible, see for example [GHM17]. As the name
suggests, it means, that the flow speed v(ρ) = q

ρ of the gas is less than
the speed of sound. This condition also fixes the eigenvalue structure
to λ1 < 0 < λ2.

Concretely for n attached pipes, all outgoing, the determinant D of
Equation (2.18) is given by

D =

n∑
i=1

λ2(ρi,qi),

which is positive for sub-sonic states ρi,qi in all attached pipes. For
a single node with a finite number of adjacent edges extending to
infinity and with initial data existence of weak entropic solutions in
the space of functions with bounded variation has been shown e.g.
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in [CG08]. In [HHW20] existence of weak integrable solutions on
a graph has been established. Similar results are also available for
other choices of coupling conditions and can be found for example in
[Bre+14].

Note that these coupling conditions are virtually the same as those
of the power network, if one interprets voltage as the pressure of
electricity and current as the flow.

4.1.1 Well-posedness of the Riemann problem for the isentropic Euler equa-
tion

We now investigate conditions for the pressure function (4.2) that guar-
antee well-posedness of the Riemann problem for the isentropic Euler
equations without a source term, see [Bre+14] for an introduction.
This is an important ingredient in applying the front-tracking tech-
nique of Section 2.1.4, see e.g. [CHS08; Gug+12]. To guarantee strict
hyperbolicity (see Definition 2.4), we start with the assumption p′ > 0.
We also assume that the initial data Ul = (ρl,ql) and Ur = (ρr,qr) of
the Riemann problem is sub-sonic (see Equation (4.7)).

A solution to the Riemann problem with left state Ul and right state
Ur can be constructed with an intersection point of the first forward
Lax curve through Ul and the second backward Lax curve through
Ur as per Theorem 2.22.

The Lax curves as defined in Definition 2.13 are curves in the
state space S. But for the isentropic Euler equations it is possible to
parameterize them by the density. In that case, the first component of
the Lax curves is just the parameter itself and therefore we consider
only the projection to the second component, that is, instead of

L : ρ 7→
(
ρ

q(ρ)

)
,

we consider L : ρ 7→ q(ρ). In this sense, the Lax curve of all states
U = (ρ,q) reachable via 1-rarefaction or 1-shock (that is, waves corre-
sponding to λ1 above, see Definition 2.18) from a left stateUl = (ρl,ql)
is given by (taken from [CG08])

Ll(ρ; ρl,ql) = L+1 (ρ; ρl,ql)

=


ρ
(
ql
ρl

+
∫ρl
ρ
c(s)
s ds

)
for ρ ⩽ ρl (rarefaction),

ρqlρl −
√
f(ρ, ρl) for ρl ⩽ ρ (shock),

where f is defined by

f(ρ, ρl) = a(ρ, ρl)∆p(ρ, ρl),

a(ρ, ρl) =
ρ

ρl
(ρ− ρl),

∆p(ρ, ρl) = p(ρ) − p(ρl),

(4.8)

such that U = (ρ,Ll(ρ)) holds.
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Analogously, the Lax curve of all states U = (ρ,q) reachable via
2-rarefaction or 2-shock from a right state Ur = (ρr,qr) is given by

Lr(ρ; ρr,qr) = L−2 (ρ; ρr,qr)

=


ρ
(
qr
ρr

−
∫ρr
ρ
c(s)
s ds

)
for ρ ⩽ ρr (rarefaction),

ρqrρr +
√
f(ρ, ρr) for ρr ⩽ ρ (shock).

Whenever we write Ll(ρ) and Lr(ρ), it will mean Ll(ρ, ρl,ql) and
Lr(ρ, ρr,qr), respectively. Beware that later, in Section 4.1.3, different
second and third arguments will appear and we will write them out
again.

A solution to the Riemann problem can then be constructed from a
point ρ, where

Ll(ρ) − Lr(ρ) = 0, (4.9)

by setting the solution as a 1-wave (shock or rarefaction, depending on
whether ρ > ρl or ρ < ρl) between the states Ul and U = (ρ,Lr/l(ρ))
and a 2-wave between U and Ur. The ordering of the eigenvalues
and the Lax entropy condition (Definition 2.17) guarantee that these
waves do not meet. An example of Lax curves and their intersection
is shown in Figure 4.1. Note that

−Lr(ρ; ρr,qr) = Ll(ρ; ρr,−qr). (4.10)

So Ll and −Lr share most properties. Therefore Equation (4.9) is best

ρ

q
Ll

−Lr

Ll − Lr

Figure 4.1: Typical Lax curves with pressure law p(ρ) = c2ρ.
The zero of the purple curve is the desired solu-
tion.

understood not as a difference of two functions but as a sum of two
very similar functions. Similar to [HMS19], we show certain properties
of the Lax curves that are used to define the new pressure laws. There
will appear three propositions, which are numbered by A, B and C.
These propositions present lists of conditions that are closely related.
To make things tractable, each list bears the same numbering but has
the letter of the corresponding proposition in front. For example,
the conditions A1, B1 and C1 all govern concavity of the Lax curves.
Before we state the proposition, recall from Proposition 2.19 that Lax
curves are twice continuously differentiable.
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Proposition A (Proposition 4.1). Let L ∈ C2(R+, R+) and let it fulfill
Conditions A1 through A3 (where only one of A3(a) and A3(b) must hold):

(A1) L′′ ⩽ 0,

(A2) ∃ρ > 0 : L(ρ) < 0,

(A3) (a) 0 < limρ→0 L(ρ) <∞ or

(b) limρ→0 L(ρ) = 0 and limρ→0 L′(ρ) > 0.

Then there is a unique ρ > 0 with L(ρ) = 0 such that for all ρ̂ > ρ there
holds L(ρ̂) < 0 and L(ρ) → −∞ for ρ→ ∞.

Proof. Condition A3 ensures positive values near 0, Condition A2

ensures negative values for some ρ > 0, together yielding a zero in
between and condition A1 makes L concave, guaranteeing uniqueness
of the zero and implying then that L(ρ) → −∞ for ρ→ ∞.

Note, that if two functions La, Lb satisfy the prerequisites of Propo-
sition A, so does La + Lb. Therefore we search for conditions on
pressure functions that make Ll and −Lr satisfy the conditions of
Proposition A, as then their sum in Equation (4.9) will, too, and
therefore this sum will have a unique zero.

The main result of this section is the following. It generalizes the
usual notion of γ-laws to allow for γ < 1. Further, as we will show
below (Proposition C), positive linear combinations of such valid
pressure laws again lead to valid pressure laws.

Proposition 4.2 (generalized γ-laws). Let the derivative of the pressure
be given by

p′(ρ) = αρδ.

This translates to pressure functions given by

p(ρ) =
α

γ
ργ + const,

for δ ̸= −1 and
p(ρ) = α log(ρ) + const,

for δ = −1. For these pressure functions there holds:

• The Lax curves through any sub-sonic initial states Ul, Ur have a
unique intersection point at some ρ > 0 if and only if −2 < δ ⩽ 2 and
α > 0.

• For every δ with |δ| > 2 there are sub-sonic states Ul, Ur such that the
Lax curves have no intersection at all.

Note that the case δ = −2 or γ = −1 violates genuine non-linearity
(Inequality (4.4)) and is hence not admissible.

Expressed in the usual form of γ-laws, Proposition 4.2 means p(ρ) =
κργ is a valid pressure function if and only if 0 < γ ⩽ 3 and κ > 0 or
−1 < γ < 0 and κ < 0. The proof of Proposition 4.2 will be given at
the end of this section. For this proof we will reformulate Conditions
A1 through A3 in Proposition A in terms of the pressure function.
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Because of Equation (4.10), both Lax curves behave essentially iden-
tically and therefore we prove our findings for Ll only, as the proofs
for −Lr are the same. Along the way the derivatives of the Lax curves
will be important and so we provide them here,

L′l(ρ) =


ql
ρl

+
∫ρl
ρ
c(s)
s ds− c(ρ) for ρ ⩽ ρl,

ql
ρl

− f′

2
√
f

for ρl ⩽ ρ,

L′′l (ρ) =


−(
c(ρ)
ρ + c′(ρ)) for ρ ⩽ ρl,

−
2f′′f−(f′)2

4
√
f3

for ρl ⩽ ρ,

and

L′r(ρ) =


qr
ρr

−
∫ρr
ρ
c(s)
s ds+ c(ρ) for ρ ⩽ ρr,

qr
ρr

+ f′

2
√
f

for ρr ⩽ ρ,

L′′r (ρ) =


c(ρ)
ρ + c′(ρ) for ρ ⩽ ρr,
2f′′f−(f′)2

4
√
f3

for ρr ⩽ ρ.

Next, we will give conditions under which Proposition A is applica-
ble to Ll. Before we do so, we provide three lemmas. Lemma 4.5
will be used afterwards in the proof of Proposition 4.6, while Lem-
mas ref*wellposedness:lemma:1 and 4.4 are needed for the proof of
Lemma 4.5 itself. Note here again that our convention is R+ =

{ x ∈ R | x > 0 }. If we included 0, the lemmas would hold trivially by
continuity.

Lemma 4.3. Let g ∈ C1(R+, R+) be a non-negative function, g ⩾ 0, and
let G be given by G(ρ) =

∫ρl
ρ g(s)ds. Then there holds

1. If ρ2g(ρ) ρ→0→ 0, then ρG(ρ) ρ→0→ 0.

2. If ρG(ρ) ρ→0→ 0, then lim infρ→0 ρ2g(ρ) = 0.

Proof.

1. By assumption ρ2g(ρ)
ρ→0→ 0. For m ∈ N choose ρm > 0 such

that g(ρ) ⩽ 1
mρ2

for ρ < ρm. Now choose ρm,0 < ρm so small
that

ρm,0

(∫ρl
ρm

g(s)ds−
1

mρm

)
⩽
1

m
.

Then, for ρ < ρm,0, there holds

ρ

∫ρl
ρ

g(s)ds ⩽ ρ
∫ρl
ρm

g(s)ds+
1

m
ρ

∫ρm
ρ

1

s2
ds

= ρ

(∫ρl
ρm

g(s)ds−
1

mρm

)
+
1

m

⩽
2

m
.

Therefore limρ→0 ρ
∫ρl
ρ g(s)ds ⩽ 2

m for all m ∈ N. As g ⩾ 0,
we also have 0 ⩽ limρ→0 ρ

∫ρl
ρ g(s)ds. Summarizing, we get

limρ→0 ρG(ρ) = limρ→0 ρ
∫ρl
ρ g(s)ds = 0.
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2. We prove by contradiction: Assume there are ρ0 > 0 and a > 0
such that ρ2g(ρ) ⩾ a for ρ < ρ0. Then g(ρ) ⩾ a

ρ2
for such ρ.

Therefore

ρ

∫ρl
ρ

g(s)ds ⩾ ρ
∫ρl
ρ0

g(s)ds+ ρa
∫ρ0
ρ

1

s2
ds→ 0+ aρ

[
−
1

s

]ρ0
ρ

→ a,

which contradicts ρG(ρ)
ρ→0−→ 0.

Lemma 4.4. Let g ∈ C1(R+, R+), g ⩾ 0 and lim infρ→0 ρ2g(ρ) = 0. Let

also
(
ρ2g(ρ)

)′
⩾ 0. Then, lim supρ→0 ρ

2g(ρ) = lim infρ→0 ρ2g(ρ) = 0.

Proof. We prove by contradiction. Let lim supρ→0 ρ
2g(ρ) > lim inf ρ2g(ρ).

Then it is easily seen that lim infρ→0
(
ρ2g(ρ)

)′
= −∞ < 0, resulting

in a contradiction.

The following lemma contains the result we need later on.

Lemma 4.5. Let g ∈ C1(R+, R+) be a non-negative function, g ⩾ 0,
such that also (ρ2g(ρ))′ ⩾ 0 for all ρ > 0 and let G be given by G(ρ) =∫ρl
ρ g(s)ds. Then, there holds ρ2g(ρ) ρ→0−→ 0 if and only if ρG(ρ) ρ→0−→ 0.

Proof. Applying Lemmas 4.3 and 4.4 yields the result.

The role of g in Lemma 4.5 will be played by p′(ρ) and c(ρ)
ρ in

the following. Let us now put the focus on the Lax curve Ll again.
The following Proposition B will turn Conditions A1 through A3 in
Proposition A into conditions on the pressure function.

Proposition B (Proposition 4.6). Let p ∈ C2(R+) with p′ > 0. Then
Conditions A1, A2, A3 hold for Ll for all ρl, ql with

∣∣∣qlρl ∣∣∣ <√p′(ρl) if and
only if Conditions B1 through B3 hold (again with only one of B3(a) and
B3(b) fulfilled).

(B1) These inequalities hold:

2p′(ρ) + ρp′′(ρ) ⩾ 0 ∀ρ > 0, (4.11)

∆p2 + a2
(
2∆pp′′ − (p′)2

)
+
1

2
(a2)′(∆p2)′ ⩾ 0 ∀ρl > 0, ρ > ρl,

(4.12)

where the arguments ρ and ρl of a and ∆p have been omitted for
readability, see (4.8).

(B2) Let p∞ = limρ→∞ p(ρ) ∈ R ∪ {∞}. For all ρ > 0 there holds

p∞ − ρp′(ρ) − p(ρ) ⩾ 0.

(B3) (a) There is p0 > 0 such that p(ρ) = −p0ρ + o
ρ→0

(
1
ρ

)
or

(b) p(ρ) ∈ o
ρ→0

(
1
ρ

)
and limρ→0

∫ρl
ρ
c(s)
s ds− c(ρ) − c(ρl) ⩾ 0

for all ρl > 0.
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Proof.

A1⇔B1: The equivalence A1⇔B1 is immediate from the defi-
nitions, Inequality (4.11) is for the rarefaction part, inequality
(4.12) for the shock part. Note that

2ff′′ − (f′)2 = ∆p2 + a2
(
2∆pp′′ − (p′)2

)
+
1

2
(a2)′(∆p2)′.

A1, A3(a)⇒B1,B3(a): Assume Conditions A1 and A3(a). Let
F(ρ) =

∫ρl
ρ
c(s)
s ds. Then

0 < l = lim
ρ→0

Ll(ρ) = lim
ρ→0

ρ

∫ρl
ρ

c(s)

s
ds = lim

ρ→0
ρF(ρ).

Therefore F(ρ) = l
ρ + o

ρ→0

(
1
ρ

)
. Note now that

(
ρ2
c(ρ)

ρ

)′
=

1

2
√
p′(ρ)

(2p′(ρ) + ρp′′(ρ)) ⩾ 0,

due to Condition A1. Lemma 4.5 therefore shows that

c(ρ)

ρ
= −F′(ρ) =

l

ρ2
+ o
ρ→0

(
1

ρ2

)
,

and hence

p′(ρ) = c(ρ)2 =
l2

ρ2
+ o
ρ→0

(
1

ρ2

)
,

which again with Lemma 4.5 yields

p(ρ) = −
l2

ρ
+ o
ρ→0

(
1

ρ

)
.

A1, A3(a)⇐B1,B3(a): Assume now Conditions B1 and B3(a). We
now note that(

ρ2p′(ρ)
)′

= ρ
(
2p′(ρ) + ρp′′(ρ)

)
⩾ 0,

because of B1 and use the Lemma to arrive at A3(a).

A1, A3(b)⇐B1,B3(b): We assume Condition B3(b). The last proof
(here we need again Conditions A1 and B1 respectively) also
shows that

lim
ρ→0

Ll(ρ) = 0⇔ p ∈ o
ρ→0

(
1

ρ

)
.

For the derivative we find

lim
ρ→0

L′l(ρ) = lim
ρ→0

ql
ρl

+

∫ρl
ρ

c(s)

s
ds− c(ρ)

> lim
ρ→0

∫ρl
ρ

c(s)

s
ds− c(ρ) − c(ρl),

due to the sub-sonic condition. This is non-negative due to
Condition B3(b).
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A1, A3(b)⇒B1,B3(b): Assume that B3(b) does not hold, that is

lim
ρ→0

∫ρl
ρ

c(s)

s
ds− c(ρ) − c(ρl) ⩽ −δ < 0.

Choosing ρl,ql such that qlρl = −c(ρl) +
1
2δ yields

lim
ρ→0

L′l(ρ) ⩽ −
1

2
δ < 0.

A2⇐B2: First of all we note that the limit exists, as p′ > 0. For
ρ > ρl we write out

Ll(ρ) = ρ

ql
ρl

−

√
f(ρ, ρl)
ρ2


= ρ

ql
ρl

−

√
1

ρl

(
1−

ρl
ρ

)(
p(ρ) − p(ρl)

) .

(4.13)

This is less than zero if and only if the bracket is less then zero.
If now p∞ = ∞, this is fulfilled for some ρ > ρl. If p∞ <∞, we
have the limit

lim
ρ→∞

√
1

ρl

(
1−

ρl
ρ

)(
p(ρ) − p(ρl)

)
=

√
p∞ − p(ρl)

ρl
.

Let now δ and ϵρ be defined by
ql
ρl

+ δ = c(ρl),√
1

ρl

(
1−

ρl
ρ

)(
p(ρ) − p(ρl)

)
=

√
p∞ − p(ρl)

ρl
− ϵρ.

Then δ > 0 as the state is sub-sonic and ϵρ → 0 for ρ → ∞.
Therefore let ρ be so great that δ− ϵρ > 0. Then, due to B2, we
find

ql
ρl
<
ql
ρl

+ δ− ϵρ = c(ρl) − ϵρ ⩽

√
p∞ − p(ρl)

ρl
− ϵρ

=

√
1

ρl

(
1−

ρl
ρ

)(
p(ρ) − p(ρl)

)
,

which, according to (4.13), implies A2.

A2⇒B2: In case p∞ = ∞, condition B2 is fulfilled. Let now
p∞ <∞ and let there be for all sub-sonic (ρl,ql) a ρ− > 0 such
that

ql
ρl
<

√
1

ρl

(
1−

ρl
ρ−

)(
p(ρ−) − p(ρl)

)
, (4.14)

that is, let A2 be true. Note that the right-hand-side is increasing
in ρ− because its derivative is positive. Therefore taking suprema
of (4.14) yields

c(ρl) ⩽

√
p∞ − p(ρl)

ρl
⇒ p′(ρl) ⩽

p∞ − p(ρl)

ρl
.
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With Proposition B we have a list of Conditions B1, B2, B3 which is
equivalent to Conditions A1, A2, A3 from Proposition A but now only
involves the pressure function. This is fortunate as we want to prove
Proposition 4.2, which only contains pressure functions. In principle,
we could just plug the pressure functions into our Conditions B and
check, what generalized γ-laws are allowed. But there is more insight
to be gained by simplifying the conditions further. We will do so in
Propositions 4.7, 4.8 and 4.9. Yet, this comes at a price, the next list of
conditions in Proposition C below will only be sufficient conditions
for Propositions A and B to hold.

Proposition 4.7. Let p ∈ C3(R+). Condition B1 holds if

2p′(ρ) + ρp′′(ρ) ⩾ 0,

6p′(ρ) + 6ρp′′(ρ) + ρ2p′′′(ρ) ⩾ 0

hold for all ρ > 0.

Proof. Here we use f from Equation (4.8) and denote the derivative
with respect to ρ by a prime. We note that

(
2ff′′ − (f′)2

)
(ρl, ρl) = 0

and that (
2ff′′ − (f′)2

)′
= 2ff′′′.

As f ⩾ 0, we see that 2ff′′ − (f′)2 ⩾ 0 for all ρ ⩾ ρl if f′′′(ρ, ρl) ⩾ 0 for
all ρ ⩾ ρl. This was also proved in [GHM17]. This is the case if and
only if ρlf′′′(ρ, ρl) ⩾ 0. For this we find

ρlf
′′′(ρ, ρl) = 6p′(ρ) + 3(2ρ− ρl)p′′(ρ) + ρ(ρ− ρl)p′′′(ρ)

=
[
6p′(ρ) + 6ρp′′(ρ) + ρ2p′′′(ρ)

]
− ρl

[
3p′′(ρ) + ρp′′′(ρ)

]
,

which is an affine function in ρl. Hence for given ρ > 0 this function
takes its minimum in one of the edges of the simplex {ρl | 0 ⩽ ρl ⩽ ρ}.
The values on these are given by

6p′(ρ) + 6ρp′′(ρ) + ρ2p′′′(ρ) and

3
(
2p′(ρ) + ρp′′(ρ)

)
.

The next condition we will replace is .

Proposition 4.8. Condition B3(b) is fulfilled if either of these conditions is
satisfied:

C3(b) (i) limρ→0 c(ρ) = 0 and 2p′(ρ) − ρp′′(ρ) ⩾ 0 for all ρ > 0.

(ii) 0 < limρ→0 c(ρ) <∞.

(iii) There is a η ∈ (0, 1) such that limρ→0 ρηc(ρ) ∈ R, so that in
particular the limit is finite.
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Proof.

(i) Here we have

lim
ρ→0

∫ρl
ρ

c(s)

s
ds−c(ρ) − c(ρl)

= lim
ρ→0

∫ρl
ρ

(
c(s)

s
− c′(s)

)
ds− 2c(ρ)

= lim
ρ→0

∫ρl
ρ

(
c(s)

s
− c′(s)

)
ds

= lim
ρ→0

∫ρl
ρ

1

2s
√
p′(s)

(2p′(s) − sp′′(s))ds

⩾ 0.

(ii) In this case the integral is unbounded near zero, but c(ρ) + c(ρl)
is finite.

(iii) In this case there is a > 0 such that ρηc(ρ) = a
(
1+ r(ρ)

)
with

r(ρ) → 0. Then, for every m ∈ N there is ρm > 0 such that for
all ρ < ρm there holds c(ρ) ⩾ a

(
1− 1

m

)
ρ−η. Choose now m so

great that (
1−

1

m

)
1

η
> 1,

and then ρm,0 so small that for all ρ < ρm,0 there holds(
1−

1

m

)
1

η
− r(ρ) = 1+ θ,

with θ > 0. Define also

Cm =

∫ρl
ρm

c(s)

s
ds.

Then we find for ρ < ρm,0∫ρl
ρ

c(s)

s
ds− c(ρ) − c(ρl)

=

∫ρm
ρ

c(s)

s
ds+

∫ρl
ρm

c(s)

s
ds− c(ρ) − c(ρl)

⩾ a

(
1−

1

m

) ∫ρm
ρ

s−η−1 ds+Cm − c(ρ) − c(ρl)

= a

((
1−

1

m

)
1

η
− 1− r(ρ)

)
ρ−η

− a

(
1−

1

m

)
1

η
ρ−ηm +Cm − c(ρl)

> aθρ−η − a

(
1−

1

m

)
1

η
ρ−ηm +Cm − c(ρl)

ρ→0→ +∞ > 0.

Proposition 4.9. All conditions only depend on differences in pressures,
that is, if C ∈ R is a constant then if a pressure function p satisfies our
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conditions, so does p+C. This means that if p∞ <∞ in Condition B2, we
can instead choose p∞ = 0, yielding the clearer condition

p′(ρ) ⩽ −
p(ρ)

ρ
.

We now have all tools at hand but now we want to apply them to
the Riemann problem of the isentropic Euler equations. Here we have
to adhere to Inequality (4.4) again to guarantee genuine non-linearity.
Therefore the following Condition C1 contains a strict inequality.

Proposition C (Proposition 4.10). The Riemann problem for arbitrary
sub-sonic left- and right-hand states is well-posed if the pressure function p
satisfies the following conditions (in addition to p′ > 0):

(C1) both inequalities of Proposition 4.7:

2p′(ρ) + ρp′′(ρ) > 0,

6p′(ρ) + 6ρp′′(ρ) + ρ2p′′′(ρ) ⩾ 0,

(C2) one of the conditions according to Condition B2:

(a) p→ ∞ for ρ→ ∞ or

(b) p∞ = limρ→∞ p(ρ) <∞ and
p′(ρ) ⩽ p∞−p(ρ)

ρ for all ρ > 0,

(C3) according to Proposition 4.8:

(a) There is p0 > 0 such that p(ρ) = −p0ρ + o
(
1
ρ

)
for ρ→ 0 or

(b) one of the following conditions is fulfilled:

(i) limρ→0 c(ρ) = 0 and 2p′(ρ) − ρp′′(ρ) ⩾ 0 for all ρ > 0,

(ii) 0 < limρ→0 c(ρ) <∞,

(iii) there is a η ∈ (0, 1) such that limρ→0 ρηc(ρ) exists and
0 < limρ→0 ρηc(ρ) <∞.

These conditions are positively linear in p and hence all pressure functions
satisfying them define a convex cone.

Note that the convex cone property means that also integrals over
valid pressure functions are valid pressure functions, as the integral
as an operator is linear and monotone.

With Proposition C we have a useful list of conditions which can be
checked easily for any given candidate for a pressure function. The
proposition makes it easy to prove our central result Proposition 4.2
and we will do so now.

Proof of Proposition 4.2.

• For the first part of the claim we note that for −2 < δ ⩽ 2 and α >
0 the generalized γ-law fulfills the conditions in Proposition C.
Note that at δ = 0 the conditions in C3 switch and at δ = −1 the
conditions in C2 switch.
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• For the second part of the claim we observe: For δ > 2, choose
−c(ρl) <

ql
ρl
< −2δc(ρl), which is obviously sub-sonic. Then Ll

is strictly negative for ρ > 0, as is easily computed. A similar
range for qr

ρr
shows the same for −Lr. For δ < −2, choose√

−1
δ+1c(ρl) <

ql
ρl
< c(ρl) and Ll is strictly positive for ρ > 0 and

similarly for −Lr.

Example 4.11. As just proved, the functions

p(ρ) = ρ3,

p(ρ) = ρ,

p(ρ) = −
1

1− ϵ
ρ−1+ϵ ( for 0 < ϵ < 1),

p(ρ) = ln(ρ)

and especially

p(ρ) =
aρ

b+ cρ
, with a,b, c > 0 (4.15)

are all valid pressure functions. A rather exotic pressure law

p(ρ) =
ρ3 − ρ

ln(ρ)
=

∫3
1

ργ dγ

is also valid.

The pressure law (4.15) will reappear in Chapter 5, where we will
use it to simulate realistic gas networks.

4.1.2 A note on the vacuum

Up to now we have ignored the possibility of a vacuum state, that
is, of a state with ρ = 0, and just excluded it from consideration by
demanding ρ > 0. Further examination is in order .

With regards to a vacuum state, all examined pressure laws fall in
one of two categories. On the one hand, for pressure laws that fulfill
the bound ∫ρ

0

c(s)

s
ds <∞, (4.16)

a discussion of vacuum states can be found in [LS80]. In the language
of Proposition 4.2, these are exactly the well-known γ-laws with 1 <
γ < 3.

On the other hand, for all new pressure functions of Proposition 4.2,
as well as the isothermal γ-law, i.e. γ = 1, the bound (4.16) is violated
and — as shown in [LS80] — the vacuum cannot be connected to a
non-vacuum state.

Therefore, for all those of the examined pressure laws that diverge
at ρ = 0, no vacuum can appear as a solution of any Riemann problem,
if the initial conditions don’t contain a vacuum.
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4.1.3 Extension to junctions

We have shown well-posedness of Riemann problems with sub-sonic
initial conditions under certain conditions on the pressure function.

The next step is the analysis of the coupling conditions (4.5) and
(4.6). We will carry it out by considering the generalized Riemann
problem at the junction in accordance with [BHK06a; BHK06b; CG08].

Consider a junction v with incoming pipes indexed by s ∈ E sv and
outgoing pipes indexed by f ∈ E fv as in Section 2.1.6. At the junction-
facing end of each pipe there are initial states Ui = (ρi,qi) for each
i ∈ Ev = E sv ∪ E fv . To make things tractable, we restrict the solution
of the junction Riemann problem to be of this form: In each pipe
i ∈ Ev, there appears exactly one new state Vi next to the junction
such that the Vi satisfy the junction conditions and are connected to
their respective Ui by an admissible shock or a rarefaction wave. On
incoming pipes these must be 1-waves, on outgoing pipes these must
be 2-waves. A sketch of this is shown in Figure 4.2.

U1

U2

U3

U4

U5

(a) Junction at t = 0.

U1

V1
U2 V2

U3

V3

U4

V4

U5

V5

(b) Junction after some time.

Figure 4.2: A junction with initial states. i = 1, 2, 3 are incom-
ing pipes, i = 4, 5 are outgoing.

This is not a great restriction as this is the only solution structure
found in pipelines with low Mach number, yet for different solutions,
see [GHM17]. For these new states to appear at all, the wave speed be-
tween Vi and Ui must be negative on incoming pipes and positive on
outgoing ones. To keep things simple, we examine a single incoming
pipe i with initial condition Ui and new state Vi = (ρ,Ll(ρ;Ui)).

Proposition 4.12. Let Inequality (4.4) and Proposition B and hence Proposi-
tion A be fulfilled for the pressure law. Let ρi,min be such that L′l(ρi,min;Ui) =
0, if it exists, otherwise let ρi,min = 0. The wave speed of the wave between
Ui and Vi is negative if and only if ρ > ρi,min.

Proof. By definition there is always a ρi,min. We first show that it is
unique. It is easily seen that for ρ ⩽ ρi there holds λ1(ρ,Ll(ρ;Ui)) =
L′l(ρ;Ui). Therefore there holds L′l(ρi,Ui) = λ1(ρi,qi) < 0. With the
concavity of Ll we see that there is no ρi,min > ρi. Because of Inequality
(4.4), Ll is strictly concave for ρ < ρi and this implies that ρi,min is
unique. Because Ll is concave, L′l is decreasing, so λ1(ρ,Ll(ρ;Ui)) < 0
if and only if ρ > ρi,min.

We now come to the wave speeds.
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⇐: Let ρ > ρi,min. Then λ1(Vi) < 0. If Vi is in the rarefaction part of
Ll(ρ;Ui), the wave speed is negative. If Vi is in the shock part
of Ll(ρ;Ui), we compute:

s′(ρ) =
(
Ll(ρ;Ui) − L(ρi;Ui)

ρ− ρi

)′

=
L′l(ρ;Ui)(ρ− ρi) − (Ll(ρ;Ui) − Ll(ρi;Ui))

(ρ− ρi)2
⩽ 0,

since Ll is concave. So

s(ρ) ⩽ s(ρi) = λ1(ρi) < 0,

because Ui is sub-sonic.

⇒: Let ρ ⩽ ρi,min. Because Ui is sub-sonic, we have ρ ⩽ ρi,min < ρi
and are dealing with a rarefaction wave. But then the wave
speed is just given by λ1(ρ,Ll(ρ;Ui), which is non-negative in
this case as shown in the beginning of the proof.

For outgoing pipes one defines ρi,min ⩾ 0, such that L′r(ρi,min;Ui) = 0,
if possible, or ρi,min = 0 otherwise, and obtains in the same way the
following proposition.

Proposition 4.13. Let Proposition B be fulfilled for the pressure. On an
outgoing pipe the wave speed between Ui and Vi = (ρ,Lr(ρ;Ui)) is positive
if and only if ρ > ρi,min.

Coming back to junctions, we define the minimal junction density as

ρmin = max
i∈E sv∪E fv

ρi,min.

As just proved, for a solution ρ of the equation∑
i∈E sv

Ll(ρ;Ui) −
∑
j∈E fv

Lr(ρ;Uj) = 0 (4.17)

the states (Vi = (ρ,Ll(ρ;Ui)))i∈E sv fulfill λ1(Vi) < 0 and the states
(Vj = (ρ,Lr(ρ,Uj)))j∈E fv

fulfill λ2(Vj) > 0 if and only if there holds
ρ > ρmin.

Therefore a solution (Vi)i∈Ev to the junction Riemann problem is
admissible if and only if the density ρ at the junction fulfills ρ > ρmin.

Note that a usual Riemann problem with sub-sonic initial conditions
can be treated as a junction with one incoming and one outgoing pipe.
In this case, only one new state V is created and the admissibility crite-
rion guarantees that λ1(V) < 0 < λ2(V). For the sake of completeness,
we classify the solutions to the usual Riemann problem by wave types
in Table 4.1.

4.1.4 Additional constraints for consistency

Up to now, we have given conditions under which the Riemann prob-
lem at the junction is well-posed for sub-sonic initial conditions. But
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Table 4.1: (r)arefaction waves and (s)hocks for different values
of the density ρ.

(a) wave types for ρl ⩽ ρr.

value of ρ left wave right wave

ρ ⩽ ρmin invalid
ρmin < ρ ⩽ ρl r r
ρl ⩽ ρ ⩽ ρr s r
ρr ⩽ ρ s s

(b) wave types for ρr ⩽ ρl.

value of ρ left wave right wave

ρ ⩽ ρmin invalid
ρmin < ρ ⩽ ρr r r
ρr ⩽ ρ ⩽ ρl r s
ρl ⩽ ρ s s

we have no guarantee that the appearing states (Vk)k∈Ev are them-
selves sub-sonic, as Propositions 4.12 and 4.13 only restrict the sign of
the wave speed between Uk and Vk. For example, it is still possible
that on an incoming pipe i we have λ1(Vi) < λ2(Vi) < 0. While this
may still be a valid junction solution, this is unsatisfactory for simu-
lation purposes as this introduces super-sonic states. Therefore we
introduce another restriction on the solution of the coupling condition,
namely that there must hold

λ2(Vi) > 0, i ∈ E sv

λ1(Vi) < 0, i ∈ E fv ,
(4.18)

because only then can we guarantee that the states Vi are sub-sonic.
The following example shows that without this further condition,
Equation (4.18) may actually be violated.

Example 4.14. We consider a junction with three incoming and no
outgoing pipes. As pressure law we use the isothermal pressure law,
p(ρ) = c2ρ, and take c = 1. Then choosing the following values for
Ui = (ρi, qi), i = 1, 2, 3,

ρ1 ρ2 ρ3 q1 q2 q3

3× 10−3 1.5× 10−3 3× 10−4 0.3ρ1 0.3ρ2 0.3ρ3

we find as the solution of Equation (4.17) ρ ≈ 1.25× 10−3. For the
eigenvalues we get

λ1(ρ,Ll(ρ,U1)) < 0 < λ2(ρ,Ll(ρ,U1))

λ1(ρ,Ll(ρ,U2)) < 0 < λ2(ρ,Ll(ρ,U2)),

but
λ1(ρ,Ll(ρ,U3)) < λ2(ρ,Ll(ρ,U2)) < 0,

while U1,U2,U3 are all sub-sonic. This means that the state V3 cannot
stay at the junction to fulfill the coupling condition.
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We can define a range of densities ρ at the junction, inside of which
corresponding states Vk are guaranteed to be sub-sonic. Consider
again an incoming pipe i with initial condition Ui. We define

ρi,max = min({ ρ > 0 | λ2(ρ,Ll(ρ;Ui)) < 0 }∪ {∞ })

for incoming pipes and

ρi,max = min({ ρ > 0 | λ1(ρ,Lr(ρ;Ui)) > 0 }∪ {∞ })

for outgoing pipes and further the maximal junction density

ρmax = min
i∈E sv∪E fv

ρi,max. (4.19)

Proposition 4.15. A collection (Vk)k∈Ev of states at a junction with sub-
sonic initial conditions Uk in each pipe, that fulfills the coupling condition
(4.17) is a valid solution of the junction problem and all Vk are sub-sonic,
if the minimal junction density is strictly less than the maximal junction
density and if the common density ρ of the Vk lies in between these,

ρmin < ρ < ρmax.

Although there is no knowledge about λ2(Vi) on incoming pipes
(and λ1(Vj) on outgoing ones), as it is not conveniently given by the
derivative of a Lax curve, we still have λ2(Vi) = λ1(Vi) + 2c(ρ) >

λ1(Vi), and especially

λ2(ρ,Ll(ρ;Ui)) > λ1(ρ,Ll(ρ;Ui) ⩾ 0 for ρ ⩽ ρi,min.

Therefore we have at least ρi,max > ρi,min in every pipe. Unfortunately
there is no guarantee that ρmax > ρmin.

4.2 coupling to an external gas sink

In this section, we focus on the coupling of the gas network to an
external gas consumer. The role of this consumer will be taken by gas-
fired power plants in the next chapter. Following the ideas in [HMS19;
Zlo+16], this external coupling is done by extending the already
existing coupling, namely the conservation of fluxes in Equation (4.6),
by an additional flux demand.

Well-posedness of the coupling

We focus on a junction with one incoming pipeline, one outgoing
pipeline and an outlet that draws a set amount of flow ε. The coupling
condition is taken from [HMS19] and reads

pin = pout,

qin = qout + ε,
(4.20)

where the outflow ε is non-negative. To find what ε are allowed, we
examine another generalized Riemann problem at the junction. We
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Figure 4.3: Solution after a short time, the junction is located
at x = 0.

start with two constant states on the incoming and outgoing pipes and
solve the Riemann problem where the flow q jumps by an amount ε at
the junction. We again demand the waves to leave the junction, giving
rise to a picture like that in Figure 4.3, where next to the junction in
red two new states Vl, Vr appear that fulfill the coupling conditions
(4.20). The analysis of this setting is similar to a three-way junction
but with the flow on one outgoing pipe fixed to ε. We must now solve
the equation

Ll(ρ) − Lr(ρ) = ε, (4.21)

which is similar to Equation (4.9) of a usual (two-way) Riemann
problem but with a non-zero right-hand side. For now we can forego
the additional consistency constraints of Section 4.1.4: One half of the
eigenvalues is on the right side of zero due to the ρmin-criterion, which
we need here again to make the waves have the right direction:

λ1(Vl) ⩽ 0 and λ2(Vr) ⩾ 0.

Instead of invoking ρmax, we note that ε ⩾ 0 and compute for the
remaining two eigenvalues

λ2(Vl) =
Ll(ρ)

ρ
+ c(ρ) =

Lr(ρ) + ε

ρ
+ c(ρ) = λ2(Vr) +

ε

ρ
⩾ λ2(Vr) ⩾ 0,

and
λ1(Vr) =

Lr(ρ)

ρ
− c(ρ) =

Ll(ρ) − ε

ρ
− c(ρ)

= λ1(Vl) −
ε

ρ
⩽ λ1(Vl) ⩽ 0.

In our setting this is sufficient. When we also consider power-to-gas
plants in Chapter 5 , we will need to also take negative ε into account.
In this case, we have to adhere to the ρmax-criterion (4.19) instead.

Solution structure for different outflows ε

For the usual Riemann problem we had a unique non-zero solution
due to our findings in Section 4.1.1. For ε > 0 we now have two
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solutions to Ll(ρ) − Lr(ρ) = ε, one of which is not admissible as it
lies to the left of the maximum and hence has non-negative derivative
(which means it would be super-sonic). As Ll − Lr is decreasing in
the admissible regime, greater ε result in smaller ρ. One of the two
solution structures is given in Table 4.2. The other, for ρr ⩽ ρl is
similar.

Table 4.2: (r)arefaction waves and (s)hocks in the solutions for
ρl ⩽ ρr.

value of ε left wave right wave

ε ⩾ (Ll − Lr)(ρmin) invalid
(Ll − Lr)(ρmin) > ε ⩾ (Ll − Lr)(ρl) r r
(Ll − Lr)(ρl) ⩾ ε ⩾ (Ll − Lr)(ρr) s r
(Ll − Lr)(ρr) ⩾ ε s s

This concludes the theoretical study of the gas-power coupling
(4.20). We now validate our findings with some simulation examples.

4.3 numerical results

Within the following numerical examples, we consider two different
discretization schemes. The first is the third-order CWENO3 scheme
(see Section 2.2.4 and [Kol14]) with a local Lax-Friedrichs numerical
flux. This scheme is used as a reference for validation, but is not used
further on, because the (usual) CFL condition makes it numerically
very expensive.

The coupling conditions of the CWENO3 scheme are handled by
the technique described in [NKS18], mentioned also in Section 2.2.4,
which retains the third-order accuracy of the CWENO3 method.

The second scheme is the implicit box scheme of Section 2.2.3. In
order to fulfill its inverse CFL condition (Proposition 2.45), we need
the gas flow to be not only sub-sonic (Equation (4.7)), but for the
eigenvalues to be bounded away from zero. Luckily, for gas flow in
pipeline networks, the application we are interested in, an estimate of
v(ρ) < 0.3c(ρ) or even less is fulfilled due to economical reasons, as a
high velocity can only be the result of a high pressure drop, which is
inefficient, as in that case, energy is lost in the expansion of the gas,
instead of its movement.

The inverse CFL condition is beneficial for problems with large
characteristic speeds whose solution is quasi-stationary. Along with
the low flow speed, this is usually the case for daily operation tasks
in gas networks and therefore motivates the choice of this scheme for
our scenarios.

The first test example in Section 4.3.1 is supposed to demonstrate
the different cases revealed in the analysis above (Section 4.2). Further,
since the applied implicit box scheme does not explicitly make use
of any Riemann solver, this scenario is also considered as a numeri-
cal validation of its applicability, where the CWENO3 scheme with
Riemann solver at the junction serves as reference.
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For the second example (Section 4.3.2) we demonstrate the differ-
ences resulting from various pressure functions, which are all covered
by our theoretical results from Section 4.1.1.

4.3.1 Validation

We consider the isentropic Euler equations without source term,
pressure law p(ρ) = κργ and parameters κ = 1.0, γ = 1.4, and a

Riemann problem with left state Ul =
(
4.0 1.0

)T
and right state

Ur =
(
3.0 −1.0

)T
for the setting described in Section 4.2. Accord-

ingly, we assume a gas demand ε at the coupling point of the two
states (whose position is chosen at x = 0 for a better readability of the
corresponding graphs). Then, from Table 4.2, we get the following
solution structure:

• s-s solution for ε ⩽ 0.57877,

• r-s solution for 0.57877 ⩽ ε ⩽ 3.0594,

• r-r solution for 3.0594 ⩽ ε.

Further, one can easily compute ρ1,min ≈ 1.8819, ρ2,min ≈ 1.5041, and
therewith ρmin ≈ 1.8819 and the maximum gas demand ε ≈ 4.3892.
We will consider the numerical simulation of the described setting until
time t = 0.1 for ε ∈ {0.25, 1.75, 3.25} and the following discretization
parameters:

• CWENO3: ∆t = 5 · 10−5, ∆x = 5 · 10−4,

• IBOX: ∆t = 5 · 10−4, ∆x = 5 · 10−5.

The different choices result from the (usual) CFL condition (similar to
Proposition 2.40) the explicit CWENO3 scheme has to obey, in contrast
to the inverse CFL condition of the IBOX scheme (see Proposition 2.45).
Figures 4.4 to 4.6 show the computed densities at the final time. Both
schemes show the correct solution structure (shock/rarefaction waves),
where CWENO3 expectably achieves the sharper resolution.
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Figure 4.4: Density profile at t = 0.1 for ε = 0.25. (s-s solu-
tion)
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Figure 4.5: Density profile at t = 0.1 for ε = 1.75. (r-s solu-
tion)
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Figure 4.6: Density profile at t = 0.1 for ε = 3.25. (r-r solu-
tion)

4.3.2 Different pressure laws

In our second test case, we apply various pressure laws, which are all
covered by our theoretical study, and are interested in the different
dynamics one may observe even on a single pipeline. Therefore, we
consider a single pipe with length l = 0.1 and the following pressure
laws:

• p(ρ) = 1
γρ
γ with γ = 1.4 (“γ-law”),

• p(ρ) = −1
0.99ρ

−0.99 (“inverse”, corresponding to γ = −0.99),

• p(ρ) = ln(ρ) (“logarithmic”),

• p(ρ) = 1
10

10∑
i=1

ρ1+i/5

1+i/5 (“sum of γ-laws”).

Apart from the usual γ-law, we also consider the “inverse” law as
it lies close to the boundary of the additional pressure laws. The
“logarithmic” law marks the transition from positive to negative γ and
the sum is an example of the last property shown in Proposition C
of sums of pressure functions again being pressure functions. It is
peculiar that the “inverse” and “logarithmic” pressure functions are
can be negative for positive densities. This may be counter-intuitive,
yet, as only differences in pressure are relevant, the sign of the pressure
function is of little consequence. Note that all considered pressure
functions are scaled in such a way that p ′(ρ = 1) = 1 and there is
no source term. Initially, we have ρ = 1 and q = 0 in the whole
pipe. Further, we fix ρ = 1 on the left-hand boundary, whereas
q at the right-hand boundary linearly increases from 0 to 0.2 until
time t = 0.1 and stays constant afterwards until the final time t =
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0.5. We approximate the solution to this problem by CWENO3 with
discretization parameters ∆t = 5 · 10−4 and ∆x = 10−3. The variety
of the resulting dynamics is demonstrated in Figures 4.7 and 4.8,
which show the density in the pipeline at times t = 0.25 and t = 0.5,
respectively.
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Figure 4.7: Simulation result at time t = 0.25 for different
pressure laws.
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Figure 4.8: Simulation result at time t = 0.5 for different pres-
sure laws.

4.4 summary

In this chapter we have presented a coupled model for gas and power
allowing for a mathematically well-defined transition from gas to
power. Along the way we have provided conditions on the pressure
function of the isentropic Euler equations for the well-posedness of the
Riemann problem. This led to some non-standard pressure functions.
Various simulation results show the properties of the presented ap-
proach. In this context, we also validated that the implicit box scheme
of [KLB10] is able to resolve the correct solution/wave structure of
standard Riemann problems. This is of particular interest since the
IBOX scheme allows for practically relevant discretization parameters
and does not need any (even approximate) Riemann solver at junctions
like the high resolution CWENO3 scheme we used for the validation.

Now that the theoretical ground work is done, we can move on to
the simulation of realistic gas networks





5
A P P L I C AT I O N T O C O U P L E D G A S - P O W E R
N E T W O R K S

In the last two chapters we have established the power flow equations
as a suitable model for power grids and the isentropic Euler equations
with pressure coupling conditions for gas networks. In addition we
have established the well-posedness of the gas-power coupling on the
gas side in Section 4.2.

We will use all of these findings in this chapter to propose a com-
bined gas-power model (Section 5.1) for a gas network coupled to a
power grid via gas-fired power plants, which consume gas to generate
power and also power-to-gas plants, which transform power into gas.
This model will then be put to the test by combining well-known
benchmark data for both gas networks (namely from GasLib [Sch+17])
and power grids (IEEE power networks from Matpower [ZMT11]) and
simulating operation of the combined gas-power network in the rest
of the chapter.

In doing so, we will also discuss vertex coupling conditions for the
gas network (Section 5.3.1), that represent a physically more accurate
model of gas flow, as already alluded to below Equation (4.5). Yet,
ultimately, we will come to the conclusion that the additional effort,
stemming mostly from lack of suitable network data, is not worth the
minuscule changes in simulation results for the task of simulating
realistic gas network settings.

Lastly we consider a slightly revised version of the combined net-
work just mentioned to examine a scenario of volatile and uncertain
power demand in Section 5.4. Here we will introduce volatility via
the Ornstein–Uhlenbeck process into the power network and exam-
ine repercussions of this on the gas network coupled to the power
network.

It is worth mentioning that for electrical grids and the correspond-
ing optimization problems, there exists a large number of established
benchmarks. This includes IEEE test cases, CIGRE benchmarks [Str06]
and, in case of the German system, the scigrid model [Mat+17]. Like-
wise for gas networks, the GasLib suite offers test cases for simulation
and optimization purposes, respectively.

However, when it comes to coupled gas-power systems, there do not
exist widely accepted benchmarks. One of the few exceptions appears
to be the case study presented in [Zlo+17], which comprises the IEEE
RTS96 One Area 24 node electrical grid and a 24 pipeline gas network.
Hence, the present chapter takes steps towards a more realistic sim-
ulation benchmark for multi-energy systems. Specifically, we couple
a model of the Greek gas network — the GasLib-134 model [Sch+17]
which includes 86 pipelines — with the IEEE 300-bus system under
AC conditions. We formulate a combined simulation framework, for
which we observe a significant influence of the power consumption
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on the gas pressure at the gas-fired plant nodes while the gas con-
sumed varies over time. In addition we provide simulation data of the
adapted version of the combined network, for which we investigate
the influence of uncertainty. The data provided in two data reposi-
tories can be used to benchmark simulation software for gas-power
networks.

5.1 the combined model

For the combined model we start from a directed graph G = (V , E ),
that contains two subgraphs GPower = (VPower, EPower) and GGas =

(VGas, EGas), such that V = VPower ∪ VGas and E = EPower ∪ EGas. For
the gas part, we choose the model from Section 4.1, for the power part
we choose the power flow equations (3.27).

Up to now we have two separated models, the underlying graph is
disconnected and the two connected components are the gas network
and the power network respectively and these different parts behave
quite differently. In the power network the edges just carry two param-
eters and their topological information, i.e. their starting and ending
node and the nodes carry most of the physical information, namely
active and reactive power, while the situation in the gas network is
reversed. Here the arcs carry a balance law describing gas dynamics
while the nodes only carry coupling information. Yet in all parts of
the network, only the nodes have boundary conditions1.

In order to connect gas and power networks, we introduce additional
edges EPG, which model the conversion of fuel ε, taken from the gas
network via Equation (4.20) into electrical power. Therefore a gas-
fired power plant e ∈ EPG must connect a node v ∈ VGas to a node
w ∈ VPower, such that gas can be turned into power.

The exact dependence of the amount of burned fuel on the generated
power is encoded in a heat rate formula. For example [Zlo+16] chooses
a heat rate of the form

ε(P) = a0 + a1P+ a2P
2, (5.1)

where P is the real power available at the node p and a0,a1 and a2
are constants. For our first example in Section 5.2, we will do the same.
Later on, in Section 5.3, we will use a linear relation as a simplification,
because realistic values for the coefficients are hard to come by.

An illustration of a combined network can be found in Figure 5.1.

Before we show simulation results, we describe the model for all
network components in detail, this will in part be a reprise of the last
two chapters, but will introduce some subtleties that arise for realistic
networks.

1 In the power network these are rightfully called node specifications and we only call
them boundary conditions to unify the wording between gas and power networks.
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Figure 5.1: A small combined gas-power network. The upper
right part is the power network “case9” from Mat-
power[ZMT11] with blue slack node, green power
plants (generator nodes) and red consumers (load
nodes). The lower part is a part of the GasLib-40

network ([Sch+17]). The bold arc is a gas-power
connection.

5.2 a simple network

5.2.1 Model

For our first simulation scenario we introduce the bare minimum of
models to get a meaningful coupled gas-power network. Let us start
with the power model.

Modeling electric power flow on GPower

On GPower we use the power flow equations (3.27). As stated, this
model is suitable to describe the behavior of power networks operating
at sinusoidal alternating current (AC). The power network consists
of nodes and transmission lines. The nodes fall into two categories,
generators and loads, where a generator models a power plant and a
load models a consumer (or a collection thereof).

At a node k ∈ VPower there are active (or real) power Pk(t), reactive
power Qk(t), the voltage magnitude |Vk| (t) and the phase angle ϕk(t).
These are now time dependent, because we are interested in scenarios
where the power demand changes over time.

Further, we model the admittance of nodes and transmission lines,
denoted by Y, which is split into real and imaginary part Y = G+ iB.
The admittance is the inverse of the impedance which in turn is a
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complex extension of ohmic resistance in the power network. These
quantities are assumed constant.

The admittance of a transmission line e ∈ EPower, connecting nodes
j,k ∈ VPower is denoted by Yjk = Gjk + iBjk, which we set to zero,
if no arc connects j and k. The admittance of a node k ∈ VPower is
denoted by Ykk = Gkk + iBkk.

At every node at every point in time we prescribe two out of the
four quantities Pk,Qk,|V |k ,ϕk, depending on the node:

• Load nodes k specify values for Pk,Qk.

• Generators k specify values for Pk,Vk.

• Slack nodes (which are also generators) k specify Vk,ϕk.

These settings are usually called bus specifications, as the nodes in
a power network are called buses. All in all we have 2|VPower| free
variables at every time point, that can be determined as a solution to
the power flow equations (3.27), which we restate here for the readers
convenience:

Pk =
∑

j∈VPower

|Vk|
∣∣Vj∣∣ (Gkj cos(ϕk −ϕj) +Bkj sin(ϕk −ϕj)),

Qk =
∑

j∈VPower

|Vk|
∣∣Vj∣∣ (Gkj sin(ϕk −ϕj) −Bkj cos(ϕk −ϕj)),

(5.2)

where P,Q,|V | and ϕ are time-dependent and these equations must
hold at each point in time.

Note, that a necessary condition for uniqueness of the solution is
to have at least one slack node k0, prescribing

∣∣Vk0∣∣ and ϕk0 , because

otherwise for any solution
(
Pk(t),Qk(t),

∣∣Vk(t)∣∣ ,ϕk(t))
k∈VPower

of the

power flow equations, a different solution is obtained by shifting all
phase angles ϕk by the same amount r ∈ R. This is possible, as
without a slack node, the equations only depend on differences in the
phase angles. Often only a single slack node is used, although also
multiple slack nodes can be used [Cha08] and we will do so in the
second of our numerical studies in Section 5.3.4.

Instead of the described AC power flow equations, it is possible
to use so-called direct current (DC) power flow equations, which are
a linear approximation, see [GS01] for an overview. This approach
simplifies the numerical treatment greatly at the cost of some accuracy.
Other linearizations are subject of active research, see e.g. [LPL19].

Modeling gas flow on GGas

We model the following quantities of the gas flow, namely, the pressure
p = p(x, t) as well as the flux q = q(x, t). The units of those quantities
are (bar) and (m3 s−1). Note that we use the volumetric flow as
opposed to mass flow, as is customary in real-world gas networks.
The pressure is given by a function of the gas density ρ = ρ(x, t).
An overview as well as recent results on gas flow can be found for
example in [BGH11; BHK06a; BHK06b; Bre+14; CG08; Rei14; Rei15]
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Pipelines

The direction of the edges in EGas determines the positive direction
of the flow. Pipelines e ∈ EGas in the gas network are modeled as an
interval [0, ℓe] with further structure. In these the gas flow is modeled
with the isentropic Euler equations from Section 4.1 as e.g. proposed
in [BHK06b].

Here a subtlety arises. The density ρ and flux q, that are governed
by the isentropic Euler equations as introduced in the last chapter
have implicit units, namely ρ = ρl is a line density with unit (kg m−1),
while q = qm is a mass flow with unit (kg s−1).

For real-world scenarios we need to work with a three-dimensional
density with unit (kg m−3) and volumetric flow with unit (m3 s−1).
These variables are given in terms of line density and mass flow as

ρ =
ρl
A

, q =
qm

ρ0
, (5.3)

where A is the cross section of the pipe in question and ρ0 is the
density of the gas at standard conditions. This is relevant for the
coupling of pipes with possibly different cross sections. With these,
the isentropic Euler equations (4.1) on every pipe e ∈ EGas acquire
additional coefficients:(

ρe
qe

)
t

+

(
ρ0
Ae
qe

Ae
ρ0
p(ρe) +

ρ0
Ae

q2e
ρe

)
x

=

(
0

S(ρe,qe)

)
. (5.4)

Here p is the pressure function and S is the source term modeling
wall friction in the pipes, both of which we prescribe presently. The
source term S is given by

S(ρ,q) =
ρ0λ(qe)

2Aede

|qe|

ρe
(−qe),

where de is the diameter of the pipe. The friction factor λ(qe) is the
flux-dependent Darcy friction factor, as for example detailed in [Bro].
The friction is governed by the so-called Reynolds number,

Re(qe) =
de

Aeη
ρ0|qe| ,

where η is the dynamic viscosity of the gas. For Re(qe) < 2000 the
friction is dominated by laminar flow and according to [Men15] we
may assume

λ(qe) =
64

Re(qe)
. (5.5)

For Re(qe) > 4000 the friction is dominated by turbulent flow and
must be determined by the Prandtl-Colebrook formula, see again
[Men15]:

1√
λ
= −2 log10

(
2.51

Re(qe)
√
λ
+

ke

3.71de

)
,
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where now ke is the roughness of the pipe. Instead of solving this
implicit formula, we rely on the Swamee-Jain approximation [SJ76],
namely,

λ(qe) =
1

4

1

log10(
ke

3.71de
+ 5.74

Re(qe)0.9 )2
. (5.6)

For the intermediate regime 2000 ⩽ Re(qe) ⩽ 4000, the two expres-
sions (5.5) and (5.6) are interpolated by the unique cubic polyno-
mial, that makes the function λ differentiable at Re(qe) = 2000 and
Re(qe) = 4000.

Now we come to the pressure function p. We use the isothermal
pressure function with compressibility factor, as was also used for
example in [Kol11],

p(ρ) =
c2vacρ

1−αc2vacρ
, (5.7)

where α is an empirical correction coefficient and cvac is the limit of
the speed of sound in the vacuum limit, that is, for ρ → 0. We also
define the compressibility factor z(p):

cvac =

√
p0
z0

T

T0

1

ρ0
,

z(p) = 1+αp.

The numerical values for parameters ρ0,p0, z0, T0, T ,α are listed in
Table 5.1.

Table 5.1: Gas net constants.

ρ0 [kg m−3] p0 [bar] z0 T0 [K] T [K] α [bar−1]

0.785 1.01325 1.005 273.15 283.15 -0.00224

In this table we see that α < 0. This means, that the pressure
function is of the form

p(ρ) =
aρ

b+ cρ
, with a,b, c > 0,

which, according to Proposition 4.10 yields a well-posed Riemann
problem for sub-sonic initial states, namely the pressure function
fulfills Conditions C1, C2(b) and C3(b)(ii).

Note that the pressure function can be inverted, yielding

p

c2vacz(p)
= ρ. (5.8)

Nodes of the gas network VGas

The previous set of differential equations on the edges has to be
accompanied by boundary conditions, as pipelines have a finite length
ℓe < ∞. Therefore the nodes v ∈ VGas between gas pipelines will
prescribe coupling conditions.

For our first examples we will simply use the coupling conditions
from Section 4.1, which we describe here in detail. Consider a vertex
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v ∈ VGas with attached pipelines e ∈ Ev = E sv ∪ E fv and the function
(already introduced in Equation (3.9))

s : Ev → {±1 } ,

s(e) =

 1 e ∈ E sv (e starts at v),

−1 e ∈ E fv (e ends at v).

Also let pe(t),qe(t) for e ∈ Ev denote the boundary values at time
t of edge e in node v, that is, pe(t) = pe(x = 0, t), if s(e) = 1 and
pe(t) = pe(x = ℓe, t), if s(e) = −1 and similarly for qe. Then the
coupling and boundary conditions at node v read

pe(t) = pf(t) for all e, f ∈ Ev,

qv(t) =
∑
e∈E

s(e)qe(t) for all e ∈ Ev, (5.9)

where qv : R+
0 → R is a possibly time dependent deterministic ex-

ternal demand or supply function, which is prescribed at boundary
nodes of the network to model external gas inflow or outflow. Bound-
ary nodes, where gas is supplied to the network, that is, qv ⩾ 0, are
called sources, while boundary nodes that demand gas, qv ⩽ 0, are
called sinks. For inner nodes, we have qv = 0. These are in total |Ev|
equations at a node v at each point in time.

5.2.2 Discretizations

Having defined our model we now need to discretize it in order
to search solutions numerically. This search will be carried out by
Newton’s method at each time step. Along the lines of Section 2.2
we discretize the simulation time horizon [0, T ] as (tn = n∆t)n=0,...,N

with ∆t = T
N for some N ∈ N. Every gas pipeline e ∈ EGas of length

ℓe is discretized into (xej = j∆xe)j=0,...,Je with ∆x = ℓe
Je

.

Power flow discretization

For the power network, the discretization is straightforward: We
simply evaluate the power flow equations (5.2) at each time point n∆t.

Gas pipeline discretization

For the pipeline discretization we follow Section 2.2 and replace the
continuous values of pressure (or density, see Equation (5.8)) and flow
with values at each discretization point:

(pe)
n
j = p(j∆xe,n∆t)

(ρe)
n
j = ρ(j∆xe,n∆t)

(qe)
n
j = q(j∆xe,n∆t)

where x = xj := j∆xe, 0 ⩽ j ⩽ Je. The isentropic Euler equations
are discretized with the implicit Box scheme [IBOX], Definition 2.44,
which is due to Kolb et. al. [KLB10].
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For a general hyperbolic balance law

ut + f(u)x = S(u)

with space discretization (xj = j∆x)0⩽j⩽J as above we have for the
time step between t and t∗ = t+∆t

u∗j + u
∗
j−1

2
=

uj + uj−1
2

−
∆t

∆x

(
f(u∗j ) − f(u

∗
j−1)

)
+
∆t

2

(
S(u∗j ) + S(u

∗
j−1)

)
,

(5.10)

where uj = u(xj, t) and u∗j = u(xj, t∗). In our case, uj has two
components, density and flux, and hence we get 2Je equations on a
pipeline for 2Je + 2 variables. Therefore for each pipeline we need an
additional 2 equations for the possibility of a unique solution. In our
case, as one eigenvalue of the isentropic Euler equations is negative
and the other positive, we need one boundary condition at the start
and one at the end of the pipeline, as per Proposition 2.34.

Note that no diagonalization is needed before a time step and
Equation (5.10) can be used directly. But the inverse CFL condition
(Proposition 2.45) must be fulfilled,

∆t ⩾
∆x

2λmin
.

Here, λmin denotes the minimum of the set

{|λ| | λ is an eigenvalue of f′(u),u ∈ B } ,

where B must contain all states that appear in the physical system in
question. For our purposes of pipelines it is reasonable to use

B =

{
(ρ,q) ∈ S

∣∣∣∣∣
∣∣v(ρ,q)

∣∣
c(ρ)

< 0.2

}
,

which means that states are far in the interior of the sub-sonic domain.
Apparently the scheme breaks down for transonic flow, where v(ρ,q)
approaches c(ρ).

We refer to [Kol11, Prop 4.2, following remark] for a proof of well-
posedness of the scheme in the scalar case. A proof for the systems
case is unfortunately still missing. The numerical study of the last
chapter, Section 4.3.1, directly evaluates the performance of the scheme
for the isentropic Euler equations.

Note that the inverse CFL condition is well-suited for the simula-
tion of gas networks, as large time steps are desirable for numerical
feasibility when simulating over large time horizons.

Gas node and gas-power discretization

As was the case in the power network, the node equations (5.9) can be
evaluated at each time step n∆t.

Also for the gas-power conversion plant equations (5.1) no further
challenges arise and they are also evaluated at every time step.
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5.2.3 Network properties and numerical results

With the model and discretizations we have just stated, we are ready
to examine the first example of a combined gas-power network.

We consider the network(s) depicted in Figure 5.1 on page 93,
containing a power grid from the example “case9” of the Matlab
programming suite Matpower [ZMT11] and a small part of the GasLib-
40 network [Sch+17], extended with a gas-to-power generator between
S4 and N1, providing the necessary power at the latter node.

We consider an increasing power demand within the power grid,
that leads to an increasing fuel demand of a gas-fired power plant and
further to a significant pressure drop in the gas network.

In the power network a per-unit system is used, such that power and
voltage are measured in multiples of base values. The base power and
voltage are 100MW and 345 kV, respectively. For example, a power of
200MW is is given in the per-unit system by 2 p.u..

Some parameters of the gas network are equal among all pipes in
this small network, namely

• diameter: d = 0.6m,

• roughness: k = 0.05mm,

• dynamical viscosity: η = 10−5 kg/meter/s.

All other parameters of the gas network are gathered in Table 5.2, the
parameters of the power network in Table 5.3. Within this scenario,

Table 5.2: Parameters of the gas network.

Pipe From To Length [km]

P10 S4 S20 20.322

P20 S5 S17 20.635

P21 S17 S4 10.586

P22 S17 S8 10.452

P24 S8 S20 19.303

P25 S20 S25 66.037

we use the discretization step sizes of (∆x = 1km, ∆t = 900s) and
apply the same time step sizes for the power flow equations. The entire
discretized system is solved time step by time step with Newton’s
method.

Initially, the gas network is in a stationary state: The pressure at S5

is fixed at 60 bar, the outflow at S25 is q = 100m3 s−1, and there is
an additional gas consumption at S4 resulting from the gas-to-power
transformation (a0 = 2, a1 = 5, a2 = 10) due to the power demand
at the slack bus N1. The initial (stationary) state of the power grid is
determined by boundary conditions given in Table 5.4.

In the course of the simulation, the power and reactive power
demand at N5 are linearly increased between t = 1 hour and t = 1.5
hours from 0.9 p.u. to 1.8 p.u. (reactive power from 0.3 p.u. to 0.6 p.u.),
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Table 5.3: Parameters of the power grid in per-unit quantities.

(a) Nodes

Node G B

N1 0.0000 -17.3611

N2 0.0000 -16.0000

N3 0.0000 -17.0648

N4 3.3074 -39.3089

N5 3.2242 -15.8409

N6 2.4371 -32.1539

N7 2.7722 -23.3032

N8 2.8047 -35.4456

N9 2.5528 -17.3382

(b) Transmission lines

Edge From To G B

TL14 N1 N4 0.0000 17.3611

TL45 N4 N5 -1.9422 10.5107

TL56 N5 N6 -1.2820 5.5882

TL36 N3 N6 0.0000 17.0648

TL67 N6 N7 -1.1551 9.7843

TL78 N7 N8 -1.6171 13.6980

TL82 N8 N2 0.0000 16.0000

TL89 N8 N9 -1.1876 5.9751

TL94 N9 N4 -1.3652 11.6041

Table 5.4: Initial boundary conditions of the power grid [p.u.].

Node P Q |V | ϕ

N1 - - 1 0

N2 1.63 - 1 -
N3 0.85 - 1 -
N4 0 0 - -
N5 -0.90 -0.30 - -
N6 0 0 - -
N7 -1 -0.35 - -
N8 0 0 - -
N9 -1.25 -0.50 - -

see Figure 5.2a. Accordingly, the power demand at the slack bus N1

increases, see Figure 5.2b, and therewith the gas consumption at S4,
which also results in an increase of the inflow at S5 (see Figure 5.3).
Due to the increased flow values, the pressure in the gas network
decreases, see Figure 5.4 for the pressure at the nodes S20 and S25.
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(a) Node N5.
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(b) Slack bus.

Figure 5.2: Power and reactive power at two example nodes.
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Figure 5.3: Inflow at node S5.
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Figure 5.4: Pressure at nodes S20 and S25.

5.3 a realistic network

5.3.1 A refined model for realistic networks

Having checked the validity of our approach on a small network,
a “toy model”, it is time to examine our approach on realistic data.
Therefore we employ larger networks and more gas-fired power plants.
In addition gas-fired power plants are now accompanied by power-to-
gas plants, that transform excess electrical power into gas for storage
in the pipeline network. An overview on power-to-gas possibilities
can be found in [Sch+15].

In order to model the physics of junctions more accurately, we will
also examine coupling conditions that have been proposed in [Rei14;
Rei15].

To simulate the operation of the network we have in mind, namely
the GasLib-134 network, which is — as the name suggests — also found
in [Sch+17], we must introduce some further models for network
components that appear in this network. These will be applied in
addition to those of Section 5.2.1.

Short pipes, control valves and compressors

In addition to pipelines there are three additional edge types in GasLib-
134. As they behave similarly, we discuss them together. Let us start
with short pipes.
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In pipelines we employ a physical model, in our case the isentropic
Euler equations, for the gas transport. In contrast, a short pipe has no
physical properties and its model simply encodes that the state at its
incoming end must be equal to the state at its outgoing end. That is,
for a short pipe with incoming and outgoing pressures pin(t),pout(t)

and fluxes qin(t),qout(t) there holds

pout(t) = pin(t),

qout(t) = qin(t).
(5.11)

Short pipes can be used to separate boundary conditions from cou-
pling conditions on the computational level by inserting an artificial
short pipe in between a node with multiple attached pipes and an
outer node of the network, see also [Kol11].

Next we come to control valves, which were also described in [ES05;
Kol11]. These are similar to short pipes but can be controlled to reduce
the pressure. Therefore they carry an additional control variable u(t),
that is externally prescribed. The relevant equations are

pout(t) = pin(t) − u(t),

qout(t) = qin(t).

Note that in order to model the technical component correctly, the
control must satisfy u(t) ⩾ 0 at all times.

Lastly there are compressor stations. These can be thought of as
inverse control valves, in that they raise the pressure of the gas flowing
through them. As this requires energy, this pressure increase incurs a
cost. If the compressor to be modeled burns gas in order to produce
the required energy, one needs to reduce the flux by the amount of
burned fuel. Examples of this approach can be found in [ES05; Her07;
Kol11]. On the other hand there are compressors that are powered
from an external source and therefore a higher pressure increase
should be more costly but not change the gas flow. We will follow this
approach and arrive at the compressor equations

pout(t) = pin(t) + u(t),

qout(t) = qin(t),
(5.12)

where u(t) is again a control variable that must also be non-negative,
u(t) ⩾ 0, to capture the behavior of real compressors. Later, in Chap-
ter 6, we will introduce a cost associated with compressor operation
and compute optimal controls.

Physical coupling conditions

We have already introduced coupling conditions in Equation (5.9), that
enforce the continuity of the pressure over a node. In addition, the
source nodes and the sink nodes carry the boundary conditions de-
scribing inflow and outflow, respectively. For the next numerical study
we will compare these pressure boundary conditions, indicated by
the subscript “p”, to so called Bernoulli invariant coupling conditions,
indicated by the subscript “b” and introduced in [Rei14; Rei15].
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There are also further physical coupling conditions found in [HHW20],
which we do not investigate, although it is plausible that our findings,
especially the numerical study in Section 5.3.4, may be applicable to
these as well.

We first reformulate the coupling conditions (5.9) with a new cou-
pling function H, to unify the coupling description:

H(ρe,qe) = H(ρf,qf) for all e, f ∈ Ev,

qv(t) =
∑
e∈E

s(e)qe(t) for all e ∈ Ev.

This results in the pressure coupling conditions, if we set

Hp(ρ,q) = p(ρ), (5.13)

while the new Bernoulli coupling condition is defined by

Hb(ρ,q) =
1

2

(
ρ0q

ρA

)2
+

∫ρ
ρ0

p′(ρ̂)
ρ̂

dρ̂. (5.14)

Note that we use the space-dependent density, not the line density,
as introduced in Equation (5.3). This is important, because the line
density is usually discontinuous over a node, when traveling from
one pipe through the node to another pipe. On the other hand,
for the pressure coupling function Hp, the three-dimensional space-
dependent density is continuous over the node.

The Bernoulli coupling condition has the advantage that it assures
that no energy is produced in a junction. This is not guaranteed by
the pressure coupling condition. For a derivation and an example of
this, see [Rei14]. Because ρ 7→ p(ρ) is one-to-one, (5.14) can be written
as

Hb(p,q) =
1

2

(
ρ0q

ρ(p)A

)2
+

∫p
p0

1

ρ(p̂)
dp̂. (5.15)

Note that v = ρ0q
ρA is simply the flow velocity of the gas. If we were

to omit the first part of Hb, this would be equivalent to the usual
condition of pressure equality.

If we rewrite the coupling condition with only pipes that start at
the node, using Lemma 2.32, we arrive at

Ψ(u(l, t)) =


H(ρ1,q1) −H(ρ2,q2)

...
H(ρn−1,qn−1) −H(ρn,qn)∑n

i=1 qi

 .

Here n enumerates the pipes connected in the node under consid-
eration and the dependence of of all ρi,qi on x = l and t has been
omitted for readability. Let us define for notational convenience

Hi = H(ρi,qi),

λi = λ2(ρi,qi),

ci =
∂Hi
∂ρi

+ ∂Hi
∂qi

λi,
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where λ2 denotes the second (and therefore positive) eigenvalue of the
isentropic Euler equations, see Equation (4.3). With these, the matrix
in Condition (2.18), needed for Proposition 2.34, is given by

M =


c1 −c2

c2 −c3
. . . . . .

λ1 . . . λn

 ,

and its determinant is given by

det(M) =
∑
1⩽i⩽n

λi
∏

1⩽k⩽n,k̸=i

ci,

as induction over n and Laplace expansion of the first column shows.
This is non-vanishing if λi > 0 and ci > 0. The first of which is just
the sub-sonic condition, the second is true, because

∂H
∂ρ > 0,
∂H
∂q > 0.

This is immediate for Hp, because p′ > 0 and for Hb it can be com-
puted from Equation (5.14), using again the sub-sonic condition.

Coming back the Equation (5.15), the integral can be solved when ρ(p)
is inserted from Equation (5.8). This yields

Hb(p,q) =
1

2

(
ρ0q

ρ(p)A

)2
+ c2vac

[
ln
(
p

p0

)
+α(p− p0)

]
.

Actually Hb behaves differently from Hp only because of the first
part, which involves the gas velocity

v(ρ,q) =
ρ0q

ρ(p)A
.

Note that this velocity in realistic pipelines is usually rather small
compared to the speed of sound in the gas c(ρ) =

√
p′(ρ) and this

suggests, that the impact of the first part may be small compared
to that of the second part. We will investigate this in our numerical
studies in Section 5.3.4.

Finally, let us remark on a technical property of the Bernoulli cou-
pling. Although Hb represents the more accurate physical model, it
brings about implementation issues: At a node where in addition
to pipelines a short pipe or any other connection type, as detailed
in Equations (5.11) through (5.12), is attached, the term Hb cannot
be easily evaluated, as this requires to know the cross section of the
component, a quantity often not available for these components. This
is of course an issue that stems mostly from the used data, in our
case the GasLib library. If it turns out that the physical coupling is
desirable, this problem could be addressed by supplying this physical
data.
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Gas-Power-Conversion revisited

In our second example we simplify the dependence of burned fuel
on generated power, and instead of Equation (5.1), we choose a linear
relation, which encodes the generation of power with a constant
efficiency EGtP, where the subscript indicates “gas-to-power”.

In contrast to our first example, whose model only dealt with
gas consumption, we would now like to incorporate the opposite
direction as well, namely the generation of gas from a power supply.
Therefore the edges EPG shall now model gas-fired power plants
with an additional power-to-gas plant, where surplus electric power
is converted to natural gas, e.g. by electrolysis and methanation..
An overview on power-to-gas capabilities can be found in [Sch+15],
while a description of a state-of-the art plant is found in [TA14].
The conversion of power into gas is also modeled as a process with
constant efficiency, called EPtG, where this time the subscript indicates
“power-to-gas”.

There are three reasons, why we put power-to-gas plants next to gas-
fired power plants in our model: First, existing gas-fired power plants
evidently have access to both the power and the gas network. Second,
from a numerical perspective it elegantly deals with the possibility of
power demand at a gas-fired power plant becoming negative as the
model in that case can simply switch to the gas generation. Third, as
one aim of power-to-gas plants is the reduction of carbon emissions, it
is promising to capture the carbon dioxide from the burning of fuel
during power generation for use during the gas generation. In that
way and provided enough average electrical power, the emission of
carbon can be avoided altogether.

The model equations for these combined plants relate the outgoing
flux q in the gas node to the power demand at the power node and
are given by

q = E(sign(P))P, (5.16)

where P is the power demand (positive) or supply (negative) of the
connected power node, q is the outflow of the sink, and

E(1) = EGtP

E(−1) = EPtG

determines the efficiency of the conversion processes dependent on
whether power is demanded or supplied. This piecewise linear model
serves as an approximation of the heat rate of a power plant, re-
spectively the efficiency of a power-to-gas plant. To overcome the
non-differentiability of (5.16) at P = 0, we employ an interpolating
function S with small parameter ϵ > 0 (which we choose in Sec-
tion 5.3.3),

S(x,a,b, ϵ) = x

(
1

2
(a+ b) −

3

4
(b− a)

x

ϵ
+

(b− a)

4

(
x

ϵ

)3)
.
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It is the unique polynomial (in x) of degree 4 satisfying

S(0,a,b, ϵ) = 0,

S(ϵ,a,b, ϵ) = a · ϵ,

S(−ϵ,a,b, ϵ) = b · (−ϵ),
∂S
∂x (ϵ,a,b, ϵ) = a,

∂S
∂x (−ϵ,a,b, ϵ) = b.

Using S we replace the conversion (5.16) by

q =


EPtG · P for P < −ϵ,

S(P,EGtP,EPtG, ϵ) for − ϵ < P < ϵ,

EGtP · P for ϵ < P,

(5.17)

which makes P 7→ q(P) ∈ C1(R) and q(0) = 0, so that no gas is taken
from or injected into the gas network if electrical power is neither
drawn nor supplied. In this way, we don’t have to account for switch-
ing times beforehand. Instead the switching happens automatically
by virtue of this conversion function.

5.3.2 Discretization

The new models introduced in Section 5.3.1 can be discretized directly
be evaluating them at each time step.

5.3.3 Network properties

We now describe the network of the first real example. It consists of a
gas network that is modeled after a real Greek gas network with some
distortions to protect trade secrets of the gas network operator and a
benchmark power network. The data we describe here can be found
in a git repository2 for future use.

Gas network

We use the GasLib-134 model [Sch+17] with inactive compressor and
inactive valve. This is a network with 90 sink nodes, 3 source nodes
and 86 inner nodes and an image of it can be found in Figure 5.5. As
connections, there are 86 pipes, 45 short pipes, one compressor and
one valve. The pipes have a total length of approximately 1500 km.
As valve and compressor are inactive, they just let gas flow through
them. We let them act like short pipes with the following exception:
Although GasLib-134 doesn’t provide it, we attach a cross section to
these components so they can partake in the Bernoulli coupling (5.14).
The compressor begins at the end of a single pipe and the valve ends
at a single pipe. Therefore we endow them with the cross section of
their respective attached pipes. We do so in order to have the coupling
reach through the entire network. Otherwise, there would be three

2 https://bitbucket.org/efokken/gas-power-benchmark

https://bitbucket.org/efokken/gas-power-benchmark
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Figure 5.5: The gas network with green sources, red sinks and
black junctions.

distinct parts, one before the compressor, one after the valve and one
in between, that are not coupled through the Bernoulli coupling. The
inflow of gas into the three source nodes and outflow at (non-gas
plant) sink nodes of the network is chosen constant. A list of both can
be found in Table 5.5.

Power network

For the power model we adapt the IEEE 300-bus test case that is part of
the Matpower software [ZMT11]. A possible depiction of this network
is shown in Figure 5.6. Originally, this system has a total of nbus = 300

nodes (1 slack bus, 68 PV-nodes, 231 PQ-nodes), and nline = 411 lines.
We modify the grid such that the original slack bus is now a PV-node,
and the nodes listed in Table 5.6 are all slack nodes. These are linked
to sinks of the gas network. At these nodes, gas and electricity can be
converted into each other. As GasLib-134 is inspired by the Greek gas
network we aim to have a plausible number of gas-fired power plants
for Greece. Unfortunately the author was unable to find reliable data
on the total number of gas-fired power plants in Greece, although a
choice of ten gas-fired power plants seems to be reasonable.3 The IDs
of the connected sinks in the gas network are given in Table 5.6.
Therefore we have a total of 10 slack nodes, 59 PV-nodes and 231 PQ-
nodes. The nominal total active power generation of the grid is about

3 See e.g. https://de.wikipedia.org/wiki/Liste_von_Kraftwerken_in_

Griechenland and https://en.wikipedia.org/wiki/List_of_power_stations_

in_Greece

https://de.wikipedia.org/wiki/Liste_von_Kraftwerken_in_Griechenland
https://de.wikipedia.org/wiki/Liste_von_Kraftwerken_in_Griechenland
https://en.wikipedia.org/wiki/List_of_power_stations_in_Greece
https://en.wikipedia.org/wiki/List_of_power_stations_in_Greece
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Table 5.5: Volumetric inflow and outflow at source and sink
nodes of the gas network.

(a) Volumetric inflow for gas network.

Node ID Inflow [m3 s−1]

node_1 58.993631
node_20 190.815287
node_80 61.866242

(b) Volumetric outflow at sinks other than
conversion plants.

Gas network ID Outflow [m3 s−1]

node_ld1 0.000000
node_ld3 0.000000
node_ld4 0.121019
node_ld5 0.000000
node_ld7 1.490446
node_ld8 2.089172
node_ld9 0.000000
node_ld11 5.490446
node_ld14 0.452229
node_ld15 0.280255
node_ld16 0.076433
node_ld17 4.617834
node_ld18 4.617834
node_ld19 0.802548
node_ld20 0.445860
node_ld21 0.286624
node_ld22 7.592357
node_ld23 0.082803
node_ld25 0.802548
node_ld26 0.000000
node_ld27 0.012739
node_ld28 0.000000
node_ld30 1.426752
node_ld32 0.000000
node_ld33 1.101911
node_ld34 0.000000
node_ld35 0.000000
node_ld37 7.732484
node_ld38 0.000000
node_ld39 0.000000
node_ld40 7.732484
node_ld41 1.528662
node_ld43 0.000000
node_ld44 0.000000
node_ld45 0.000000
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Figure 5.6: Power network with green gas-fired power plants,
blue non-gas power plants and red loads.

Table 5.6: Connection of gas nodes and power nodes for con-
version.

Power grid ID Gas network ID

213 node_ld31

221 node_ld24

230 node_ld13

7001 node_ld36

7017 node_ld2

7024 node_ld12

7039 node_ld42

7057 node_ld6

7061 node_ld29

7071 node_ld10
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24, 000 MW. For the slack nodes and the PV-nodes, we use the bus
specifications from the original case file “case300” in the Matpower
suite. For PQ-nodes we use time-dependent bus specifications given
by

P(t) = P300

(
0.9+ 0.4 sin

(
2πt

24h

))
,

Q(t) = Q300

(
0.9+ 0.4 sin

(
2πt

24h

))
,

(5.18)

where P300 and Q300 are the active and reactive power demand from
the original case file.

Parameters of Gas-Power conversion

We need to specify values for the conversion factors EGtP and EPtG

in (5.16). For the operation as a gas-fired power plant we choose an
efficiency of ηGtP = 0.4 with respect to the lower heating value of the
gas. This is a realistic value, given that there are gas-fired power plants
with efficiencies of up to 60% [Age19]. The lower heating value L of
natural gas is usually in the range of 36MJ kg−1 ⩽ L ⩽ 50MJ kg−1,
depending on the gas composition [CL16]. We choose L = 40MJ kg−1.
The parameter EGtP is then obtained from

EGtP =
1

ρ0LηGtP
≈ 0.0796m3MJ−1.

For PtG conversion we choose an efficiency of ηPtG = 0.8, this time
with respect to the upper heating value according to [TA14]. The
upper heating value U of natural gas is given by U = 1.11L. Therefore
we obtain

EPtG =
ηPtG

ρ0U
≈ 0.0229m3MJ−1.

Lastly for the parameter ϵ, which smooths Equation (5.16), we use
ϵ = 0.01, which was found by trial and error, chosen to yield reliable
convergence of the Newton method while being as small as possible
to keep the conversion factor close to the piecewise linear model. Note
that the choice of ϵ must depend on the time step size, where smaller
time steps allow for smaller ϵ and therefore more sudden switching
behavior.

5.3.4 Numerical results

Using the network data from Section 5.3.3 we simulate the combined
network over a time horizon of 24 hours. Therefore we use a time step
size of ∆t = 30min and a pipeline-dependent spatial step size that is
chosen near ∆x = 10 km, such that for every pipeline e there holds
that ℓe

∆xe
is an integer.

Comparison of coupling conditions

In order to quantify the difference of the two coupling conditions Hp
and Hb in Equations (5.13) and (5.14), we simulate once (simulation
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Table 5.7: Absolute and relative differences for the two cou-
pling constants.

(a) Absolute and relative difference of pressure.

max
∣∣pp − pb∣∣ max |

pp−pb|
pp

0.1828 bar 0.0041

(b) Absolute and relative difference of flow for different ranges near 0.

range [m3 s−1] max
∣∣qp − qb∣∣ max |

qp−qb|
|qp|

10−3 <
∣∣qp∣∣ < 10−2 0.0004m3 s−1 0.3270

10−2 <
∣∣qp∣∣ < 10−1 0.0180m3 s−1 0.32670

10−1 <
∣∣qp∣∣ < 100 0.0225m3 s−1 0.1105

100 <
∣∣qp∣∣ < 101 0.0227m3 s−1 0.0207

101 <
∣∣qp∣∣ 0.0570m3 s−1 0.0029

“p”) with the pressure coupling constant Hp, and once (simulation
“b”) with the Bernoulli coupling constant Hb. We compare the values
of the pressures and the volumetric flows on the whole gas network at
every time step. Let pp(x, t) be the pressure obtained from simulation
“p” at time t and at some position in the network (x ranges over
all pipes and all pipe lengths). Further, let pb(x, t) be the analogue
for simulation “b” and let qp(x, t) and qb(x, t) be the corresponding
values for the volumetric flow. Table 5.7 shows our findings with
regard to the different coupling constants. For the relative differences
in the flow we used different ranges of q, because although the relative
error grows when approaching q = 0, the absolute values are very
small and hence probably of little significance. In contrast to [Rei14]
we find little difference for the two coupling conditions. The key
difference of our model, compared to that of [Rei14], is the absence
of a friction term in the latter, which allows errors to accumulate.
In our case, artificial energy produced at the nodes is consumed
by friction and cannot cause much error. In light of the small size
of the error introduced by using the physically unsound pressure
coupling constant, practitioners should trade-off carefully the need for
more accuracy against the practical hurdles mentioned at the end of
Section 5.3.1.

We, for instance, drop the Bernoulli coupling from now on. Besides
the implementation issues, it is questionable whether the small errors
observed could ever exceed inevitable modeling errors, that stem from,
for example, not considering a pipeline as a three-dimensional object,
but as a line.

Gas-power conversion

We now present the results of gas-to-power conversion and power-
to-gas conversion. Because of the changing power demand (5.18) at
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Figure 5.7: State variables at gas-plant nodes over time.

the loads, the gas-power conversion plants will go through a similar
cycle. Over the course of a day, all of the plants go through a peak of
power demand during which gas is consumed to power a generator.
During the second half of the time horizon much less power is needed
and so the gas-to-power mode is used to convert power back to gas.
All the data of pressure and flow in the conversion plants is found
in Table 5.8 and Table 5.9 on pages 114 and 115. The total volume
of gas consumed by the power plants is obtained by integrating the
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outflow over time: As it is only given ad discretization points, we
use the trapezoidal rule for this task. In our case the amount of
consumed gas is 2.3098× 107m3, the total volume of gas generated is
2.0522× 106m3.

Figure 5.7a shows the pressure evolution at those gas nodes attached
to a conversion plant. It shows that the gas network cannot provide the
peak power demand indefinitely as the pressure drops considerably
during power generation (in the first 12 hours). But it is suitable to
counter-balance high and low power demand over the course of a day
as it recuperates during low power demand when gas is injected into
the pipeline network by power-to-gas operation.

Figure 5.7b shows the amount of gas consumed (q > 0) by power
generation and generated (q < 0) by power-to-gas operation. Note the
kink at the switching times, where q = 0 which is due to the difference
in efficiencies of the two processes.
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Table 5.8: Pressure values at the gas-power conversion plants (time in hours,
pressure in bar).

t N7071 N7024 N230 N221 N7061 N7017 N213 N7001 N7039 N7057

0.5 71.05 68.77 69.15 53.77 51.88 74.85 51.15 51.06 50.18 73.85
1.0 70.72 67.58 68.34 53.21 51.72 74.67 51.13 50.83 49.93 73.57
1.5 70.24 66.09 67.32 52.11 51.25 74.33 50.85 50.29 49.41 73.17
2.0 69.63 64.22 66.07 50.44 50.48 73.82 50.29 49.41 48.58 72.63
2.5 68.91 62.20 64.71 48.41 49.47 73.18 49.47 48.27 47.50 71.96
3.0 68.06 59.80 63.14 45.84 48.21 72.40 48.40 46.83 46.15 71.16
3.5 67.13 57.44 61.57 43.09 46.77 71.53 47.14 45.21 44.61 70.27
4.0 66.09 54.74 59.81 39.86 45.12 70.55 45.69 43.35 42.85 69.27
4.5 65.01 52.36 58.18 36.72 43.38 69.51 44.12 41.43 40.99 68.22
5.0 63.86 49.73 56.42 33.22 41.51 68.40 42.44 39.34 38.99 67.10
5.5 62.71 47.80 54.96 30.18 39.66 67.29 40.71 37.33 36.98 65.98
6.0 61.54 45.78 53.45 27.02 37.76 66.16 38.94 35.26 34.93 64.84
6.5 60.43 44.76 52.35 24.79 35.98 65.08 37.21 33.41 32.99 63.76
7.0 59.36 43.79 51.29 22.81 34.26 64.02 35.51 31.61 31.11 62.71
7.5 58.38 43.86 50.69 22.15 32.74 63.06 33.93 30.13 29.45 61.75
8.0 57.48 43.97 50.16 21.96 31.37 62.17 32.47 28.81 27.94 60.87
8.5 56.72 44.86 50.06 22.95 30.27 61.40 31.18 27.87 26.73 60.12
9.0 56.07 45.73 50.04 24.20 29.39 60.74 30.07 27.15 25.76 59.47
9.5 55.58 47.06 50.35 26.02 28.82 60.23 29.20 26.80 25.13 58.96
10.0 55.23 48.29 50.73 27.77 28.50 59.84 28.56 26.67 24.80 58.58
10.5 55.04 49.69 51.33 29.59 28.49 59.61 28.19 26.84 24.82 58.35
11.0 55.00 50.98 51.98 31.17 28.73 59.52 28.06 27.21 25.14 58.25
11.5 55.12 52.26 52.75 32.55 29.26 59.58 28.17 27.80 25.76 58.31
12.0 55.39 53.43 53.57 33.63 30.03 59.78 28.54 28.56 26.66 58.50
12.5 55.81 54.52 54.44 34.36 30.96 60.13 29.22 29.51 27.81 58.84
13.0 56.37 55.52 55.35 35.18 32.02 60.61 30.14 30.55 29.15 59.31
13.5 57.04 56.42 56.26 36.12 33.16 61.20 31.24 31.71 30.60 59.89
14.0 57.76 57.21 57.15 37.19 34.38 61.83 32.48 33.00 32.15 60.56
14.5 58.52 58.00 57.98 38.33 35.64 62.49 33.82 34.39 33.72 61.27
15.0 59.30 58.81 58.78 39.56 36.96 63.20 35.23 35.83 35.29 62.01
15.5 60.09 59.63 59.57 40.83 38.32 63.93 36.67 37.29 36.81 62.75
16.0 60.89 60.46 60.38 42.15 39.71 64.68 38.13 38.77 38.32 63.51
16.5 61.69 61.29 61.20 43.47 41.11 65.44 39.60 40.25 39.82 64.29
17.0 62.51 62.13 62.03 44.81 42.53 66.22 41.09 41.73 41.33 65.07
17.5 63.33 62.96 62.86 46.12 43.94 67.00 42.57 43.19 42.81 65.86
18.0 64.15 63.80 63.69 47.44 45.34 67.78 44.04 44.65 44.29 66.65
18.5 64.97 64.62 64.52 48.70 46.72 68.55 45.49 46.07 45.73 67.44
19.0 65.79 65.43 65.34 49.96 48.09 69.33 46.92 47.48 47.15 68.23
19.5 66.59 66.22 66.14 51.15 49.41 70.08 48.32 48.83 48.52 69.00
20.0 67.39 67.00 66.94 52.31 50.70 70.83 49.67 50.15 49.85 69.76
20.5 68.16 67.75 67.70 53.41 51.93 71.56 50.97 51.41 51.12 70.51
21.0 68.91 68.49 68.46 54.48 53.12 72.26 52.22 52.62 52.34 71.24
21.5 69.61 69.16 69.15 55.46 54.22 72.94 53.37 53.73 53.43 71.92
22.0 70.25 69.78 69.73 56.38 55.22 73.57 54.41 54.73 54.38 72.54
22.5 70.79 70.28 70.15 57.19 56.07 74.15 55.30 55.59 55.16 73.09
23.0 71.19 70.51 70.37 57.87 56.75 74.60 56.05 56.29 55.77 73.52
23.5 71.44 70.42 70.36 58.41 57.23 74.89 56.62 56.80 56.18 73.82
24.0 71.55 70.03 70.14 58.79 57.50 75.04 56.96 57.02 56.33 73.98
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Table 5.9: Flow values at the gas-power conversion plants (time in hours, in
m3 s−1). Positive flow means gas is converted to power, negative
flow means gas is generated with power.

t N7071 N7024 N230 N221 N7061 N7017 N213 N7001 N7039 N7057

0.5 8.32 28.86 24.80 12.50 28.10 25.10 19.43 29.81 44.63 13.46
1.0 10.95 35.72 28.95 25.90 34.59 32.19 22.82 42.70 52.16 15.87
1.5 13.44 42.21 32.84 38.58 40.72 39.02 26.03 54.83 59.24 18.18
2.0 15.98 48.82 36.77 51.45 46.94 46.09 29.28 67.08 66.39 20.54
2.5 18.21 54.61 40.18 62.67 52.37 52.36 32.12 77.70 72.59 22.63
3.0 20.49 60.52 43.63 74.06 57.90 58.86 35.00 88.42 78.85 24.78
3.5 22.27 65.17 46.30 82.93 62.22 64.01 37.25 96.73 83.71 26.49
4.0 24.10 69.92 49.01 91.94 66.63 69.34 39.53 105.10 88.63 28.25
4.5 25.28 72.98 50.74 97.68 69.47 72.80 40.99 110.42 91.76 29.40
5.0 26.47 76.10 52.48 103.48 72.36 76.35 42.47 115.78 94.93 30.58
5.5 26.89 77.19 53.08 105.48 73.37 77.59 42.98 117.62 96.02 30.99
6.0 27.31 78.28 53.69 107.49 74.38 78.84 43.50 119.46 97.12 31.41
6.5 26.89 77.19 53.08 105.48 73.37 77.59 42.98 117.62 96.02 30.99
7.0 26.47 76.10 52.48 103.48 72.36 76.35 42.47 115.78 94.93 30.58
7.5 25.28 72.98 50.74 97.68 69.47 72.80 40.99 110.42 91.76 29.40
8.0 24.10 69.92 49.01 91.94 66.63 69.34 39.53 105.10 88.63 28.25
8.5 22.27 65.17 46.30 82.93 62.22 64.01 37.25 96.73 83.71 26.49
9.0 20.49 60.52 43.63 74.06 57.90 58.86 35.00 88.42 78.85 24.78
9.5 18.21 54.61 40.18 62.67 52.37 52.36 32.12 77.70 72.59 22.63
10.0 15.98 48.82 36.77 51.45 46.94 46.09 29.28 67.08 66.39 20.54
10.5 13.44 42.21 32.84 38.58 40.72 39.02 26.03 54.83 59.24 18.18
11.0 10.95 35.72 28.95 25.90 34.59 32.19 22.82 42.70 52.16 15.87
11.5 8.32 28.86 24.80 12.50 28.10 25.10 19.43 29.81 44.63 13.46
12.0 5.75 22.11 20.68 −0.20 21.71 18.22 16.06 17.05 37.18 11.11
12.5 3.21 15.44 16.59 −3.96 15.41 11.57 12.74 4.42 29.80 8.81
13.0 0.72 8.85 12.51 −7.66 9.19 5.11 9.44 −2.32 22.50 6.56
13.5 −0.45 2.76 8.73 −11.05 3.49 −0.21 6.39 −5.64 15.76 4.50
14.0 −1.10 −0.94 4.97 −14.40 −0.61 −1.84 3.37 −8.92 9.08 2.49
14.5 −1.65 −2.43 1.74 −17.23 −1.98 −3.21 0.79 −11.70 3.41 0.79
15.0 −2.19 −3.91 −0.42 −20.02 −3.33 −4.53 −0.51 −14.46 −0.64 −0.25
15.5 −2.61 −5.03 −1.13 −22.13 −4.35 −5.53 −1.08 −16.55 −1.87 −0.61
16.0 −3.01 −6.16 −1.84 −24.21 −5.34 −6.50 −1.64 −18.62 −3.09 −0.97
16.5 −3.27 −6.87 −2.29 −25.50 −5.96 −7.10 −2.00 −19.91 −3.85 −1.19
17.0 −3.52 −7.57 −2.73 −26.77 −6.57 −7.68 −2.35 −21.19 −4.60 −1.41
17.5 −3.60 −7.81 −2.88 −27.20 −6.78 −7.88 −2.47 −21.62 −4.86 −1.48
18.0 −3.69 −8.05 −3.03 −27.63 −6.98 −8.08 −2.59 −22.06 −5.12 −1.55
18.5 −3.60 −7.81 −2.88 −27.20 −6.78 −7.88 −2.47 −21.62 −4.86 −1.48
19.0 −3.52 −7.57 −2.73 −26.77 −6.57 −7.68 −2.35 −21.19 −4.60 −1.41
19.5 −3.27 −6.87 −2.29 −25.50 −5.96 −7.10 −2.00 −19.91 −3.85 −1.19
20.0 −3.01 −6.16 −1.84 −24.21 −5.34 −6.50 −1.64 −18.62 −3.09 −0.97
20.5 −2.61 −5.03 −1.13 −22.13 −4.35 −5.53 −1.08 −16.55 −1.87 −0.61
21.0 −2.19 −3.91 −0.42 −20.02 −3.33 −4.53 −0.51 −14.46 −0.64 −0.25
21.5 −1.65 −2.43 1.74 −17.23 −1.98 −3.21 0.79 −11.70 3.41 0.79
22.0 −1.10 −0.94 4.97 −14.40 −0.61 −1.84 3.37 −8.92 9.08 2.49
22.5 −0.45 2.76 8.73 −11.05 3.49 −0.21 6.39 −5.64 15.76 4.50
23.0 0.72 8.85 12.51 −7.66 9.19 5.11 9.44 −2.32 22.50 6.56
23.5 3.21 15.44 16.59 −3.96 15.41 11.57 12.74 4.42 29.80 8.81
24.0 5.75 22.11 20.68 −0.20 21.71 18.22 16.06 17.05 37.18 11.11
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5.4 a network with volatile power demand

5.4.1 Stochastic power demand

We now come to our final simulation scenario. It will introduce
stochastic power demand to model the uncertainty intrinsic to realis-
tic power systems, which must react to customers extracting power
without any central planning.

Stochastic power nodes in VPower

In order to incorporate uncertain power demands into our model we
add a new kind of load node, the stochastic PQ-node. The type of
uncertainty employed, the Ornstein–Uhlenbeck process, has a long
history in modeling uncertain demands of various types and has also
been used for electricity demand, see [Bar02; GKL21]. In [GKL21] a
setting similar to ours was examined but applied to the Telegrapher’s
equations, that were introduced in Chapter 3, instead of the power
flow equations and only a single power plant was used.

The stochastic PQ-node, just like its deterministic cousin prescribes
a real and reactive power demand as boundary conditions but now
these demands are stochastic time-dependent quantities modeling the
uncertainty of demand at this node. Of course this uncertainty is not
total, as one may expect the demand to follow historic timelines of
demand or some other estimate derived from knowledge about the
season, weather or even current events like a sports tournament. This
structure of uncertain fluctuation about a deterministic estimate sug-
gests using a mean reverting stochastic process for the power demand,
(Pt)t∈[0,T ], that is, a process that is drawn back to some deterministic
function µ(t) over time. If we further assume that fluctuations around
µ are independent of the current time and also of the current value
of P, a natural choice for the process is the Ornstein–Uhlenbeck pro-
cess (OUP). It is characterized by the following stochastic differential
equation,

dPt = θ
(
µ(t) − Pt

)
dt+ σdWt, Pt0 = p0, (5.19)

where Wt is a one-dimensional Brownian motion, θ,σ > 0 are the
so-called drift and diffusion coefficients, and p0 is the demand at
the starting time t0. Note, that here we use the subscript t for the
evaluation at time t instead of the derivative with respect to t. This
ambiguity is unfortunate but this use of the subscript is customary for
stochastic processes. However, as the stochastic process models power,
where no PDEs enter our model, confusion is unlikely.

Whenever the current demand Pt differs from µ(t), the drift term
enacts a force towards the deterministic demand estimate µ(t). This
behavior is called mean reversion. The size of this force is characterized
by the drift coefficient θ. In absence of diffusion (for σ = 0), the
OUP degenerates to a deterministic ordinary differential equation,
that is drawn to the mean exponentially. For σ > 0 on the other
hand, this mean reversion is counteracted by fluctuations, whose size
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is determined by σ. OUP realizations are similar to Figure 5.8 and
Figure 5.9, although these realizations are capped at certain cut-offs,
as described in Section 5.4.2.

Both the real power demand P as well as the reactive power demand
Q are realized as an OUP in our setting.

Note that it is even possible to solve the stochastic differential
Equation (5.19) explicitly via

Pt = p0e
−θ(t−t0) + θ

∫t
t0

e−θ(t−s)µ(s)ds+σ
∫t
t0

e−θ(t−s) dWs. (5.20)

From this explicit expression one can see that Pt is normally dis-
tributed with mean

µt = p0e
−θ(t−t0) + θ

∫t
t0

e−θ(t−s)µ (s)ds

and variance

V = σ2
t∫
t0

e−2θ(t−s) ds.

The mathematical simplicity as well as the possibility to account
for forecasts make the OUP a convenient candidate for modeling
uncertainty in power demand, see also [BBK08]. A drawback is the
unbounded range, which can become a problem and which we will
mitigate by introducing a cut-off.

5.4.2 Discretization

A general stochastic process is time-dependent and cannot simply be
evaluated at every time step. Although this would be possible for
the Ornstein–Uhlenbeck process as evidenced by Equation (5.20), we
choose a discretization that can be extended to different stochastic
processes, namely the explicit Euler-Maruyama method, see [SM96].
Due to the explicit nature, the time steps for this method must usually
be chosen much finer than the time steps for the implicit box scheme,
as we detail below. To make this distinction explicit we call the step
size for the Euler-Maruyama method ∆tstoch. To choose the power
boundary condition at a stochastic power node at time t∗ = t+∆t, we
make steps of size ∆tstoch according to

P(t+∆tstoch) = P(t) + θ
(
P̂(t) − P(t)

)
∆tstoch + σS(∆tstoch), (5.21)

where P̂ takes on the role of the deterministic mean µ of Equation (5.19)
and S(∆tstoch) is a sample from a normal distribution with mean 0 and
variance ∆tstoch. The same process is applied to get the discretized
values of Q(t). For stability in the mean (see again [SM96]), this
discretization has the step size constraint

|1− θ∆tstoch| < 1,

which for θ > 0 yields

0 < ∆tstoch <
2

θ
. (5.22)
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In addition we also restrict the stochastic power demand according
to

(1− c)P̂(t) ⩽ P(t) ⩽ (1+ c)P̂(t) if P̂(t) > 0,

(1− c)P̂(t) ⩾ P(t) ⩾ (1+ c)P̂(t) if P̂(t) < 0,

for some cut-off c with 0 ⩽ c ⩽ 1. If the condition is violated, P(t) is
set to the boundary of the allowed interval. This cut-off prevents great
outliers that would prevent our numerical methods from converging.
Depending on the size of the chosen cut-off it may also be argued that
such outliers are improbable and hence ignored. For real applications,
the occurrence of such very drastic changes in power demand would
possibly lead to black-outs, see [Pra+16].

It may be argued that a stochastic process, whose samples must
sometimes be cast away to yield usable solutions, is a bad fit for its
purpose. Unfortunately we are not aware of a process that has been
shown to be especially accurate for power fluctuations. However, an
alternative might be the Jacobi process, as recently proposed in [CK21],
which stays within a predefined interval.

Samples of the OUP for a couple of choices for the cut-off can be
found in Figure 5.8 and a zoomed in version in Figure 5.9. In these
figures the influence of the cut-off is easily seen. Naturally a higher
the cut-off means fewer instances of actually capping the stochastic
process, which in turn means that the OUP is followed more faithfully
for a high cut-off. Any cut-off 0 ⩽ c < 1 can be chosen in principle,
yet, the more volatile the process due to high σ, the more difficult
numerical convergence becomes.

The process for the reactive power Q(t) is the same.
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no cut-off

Figure 5.8: Ornstein–Uhlenbeck realizations for µ = 1.0, θ =

3.0,σ = 0.45 and different cut-off values c.

5.4.3 Network properties

Scenario description

Here we describe the considered scenario of a combined power and
gas network. The data of the described networks of this section can
be found in the git repository4, we created for this purpose.

4 https://github.com/eike-fokken/efficient_network-data.git

https://github.com/eike-fokken/efficient_network-data.git


5.4 a network with volatile power demand 119

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2
c = 0.1

c = 0.2

c = 0.4

no cut-off

Figure 5.9: Zoomed-in version of Figure 5.8.

Specification of the power network

As starting point for the power network we use again the IEEE-300-bus
system of the last example. This time we alter the IEEE-300 network
in the following way.

• The power demand (real and reactive) is lowered by 10%.

• The former slack node N7049 is changed into a PV-node.

• The old PV-nodes given in Table 5.11 are turned into slack busses
(Vϕ-nodes).

• All PQ-nodes are turned into stochastic PQ-nodes described in
Section 5.4.1 and Section 5.4.2.

Once again, at the new Vϕ-nodes, power that is generated from gas
burned in gas-fired power plants is injected into the power network
according to Equation (5.16). An image of the power net can be found
in Figure 5.6.

Specification of the gas network

As starting point for the gas network we again use the GasLib-134
system (see [Sch+17]), which was depicted in Figure 5.5 on page 107.
It is the same gas network as before, consisting of 86 pipelines, 3

Source node id inflow [m3 s−1]

1 105.3282
20 280.6652
80 170.4607

Table 5.10: Inflow into the gas network

inflow nodes (sources) and 45 outflow nodes (sinks). The inflow of gas
this time remains constant over time and is given in Table 5.10.

Also we increase the number of gas-power conversion plants and
therefore, 17 of the sinks of the gas network, all gathered in Table 5.11,
draw gas to be converted into power. The amount is set by the power
network and is computed from the power flow equations. All other
sinks do not consume gas in this scenario.
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Specification of the Gas-Power connections

The two networks are connected through gas-power conversion plants,
that turn gas into power, when power is needed, and turn power
into gas, when surplus power is available. The gas-power conversion
plants are arcs between the nodes listed in Table 5.11. For simplicity
they all share the same efficiencies both for power generation and gas
generation, that were used before, namely

EGtP = 0.0796m3MJ−1,

EPtG = 0.0229m3MJ−1.

All further data concerning these plants is gathered in Table 5.11.
In there, also a real power demand is given, which corresponds to the
default demand in our setting, when no uncertainty is present.

Gasnode Powernode P[100MW]

ld2 N7017 2.2890
ld6 N7057 1.3952
ld10 N7071 0.7217
ld12 N7024 2.7771
ld13 N230 2.5978
ld23 N119 19.3000
ld24 N221 −0.0893
ld27 N187 11.4020
ld29 N7061 2.7269
ld31 N213 2.0176
ld33 N9051 −0.3581
ld35 N186 11.4020
ld36 N7001 2.1410
ld37 N9002 −0.0420
ld38 N7166 5.5300
ld39 N7003 12.1000
ld42 N7039 4.6702

Table 5.11: Start and end nodes of gas-power-conversion
plants and the deterministic demands of real
power.

Specification of the stochastic power demand nodes

As mentioned, all PQ-nodes of the IEEE-300-bus system are replaced
by stochastic PQ-nodes. As mean function we choose the power
demands given by the IEEE-300-bus problem, but lowered by 10%. In
addition, we choose θ = 3for the drift coefficient and for the stability
constraint we choose

∆tstoch =
0.1
θ

,

which results in rather high numbers of stochastic time steps but
is unfortunately needed for convergence. For the cut-off we use
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c = 0.4, which means that power demand will not deviate more than
40% from the anticipated (mean) power demand. This choice was
made to investigate high deviations while keeping the number of
non-converging simulations small. The diffusion coefficient σ will be
varied to compare different values.

5.4.4 Numerical results

In each run we simulate the combined network over a time horizon of
24h (86 400 s) with the same time step size as before, ∆t = 0.5h (1800 s)
and the same spatial step sizes in the pipeline as before (∆x ≈ 10 km).

Steady-state vs. stochastic example

At first we simulate the network in a deterministic setting, which can
be achieved by setting σ in (5.21) to zero. To keep the scenario simple,
we choose steady-state initial conditions, which were generated by
using arbitrary initial conditions and integrating them for a long time.
The resulting end state is then used as initial conditions for our setting.

In this deterministic setting we find the (constant) power demands
in the gas plants given in Table 5.11. To illustrate our results we will
usually picture the situation of pipe p_br71, which is located to the
lower right in Figure 5.5 connecting nodes 71 and 72. The steady-state
solution in pipe p_br71 remains constant over time as is fitting for a
steady-state solution. The same is true for the flow, and also for all
other pipes in the network.

Along with the deterministic setting, we simulate a scenario with
θ = 3.0 and σ = 0.45 for all PQ-nodes. The number of stochastic
steps is set to at least 1000 which, due to stability constraints of
Equation (5.22), is then automatically raised to 18000.

A comparison of the steady-state and stochastic pressure can be seen
in Figure 5.10, while a comparison of the fluxes is given in Figure 5.11.
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Figure 5.10: Pressure evolution in p_br71 for deterministic
and some realizations of stochastic demand.

In the power network we find for the PQ-node N1 power demands
over time like those in Figure 5.12 and Figure 5.13. Of course the
situation is similar for all PQ-nodes.
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Figure 5.11: Flow evolution in p_br71 for deterministic and
some realizations of stochastic demand.
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Figure 5.12: Real power demand in N1 for deterministic and
stochastic demand with σ = 0.45.
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Figure 5.13: Reactive power demand in N1 for deterministic
and stochastic demand with σ = 0.45.

Stochastic demand with variable noise

Now we examine repercussions of the uncertainty on the gas network.
Therefore we make 100 runs for each σ ∈ {0.05, 0.1, 0.3, 0.45} and
compare the quantiles at 50%, 75% and 90%. Taking an arbitrary
point in time, t = 12h, the quantiles for the pressure can be seen in
Figure 5.14. For the flow the quantile comparison can be found in
Figure 5.15.

For both quantities we see the expected expansion of quantile bound-
aries with higher diffusion σ.
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Figure 5.14: Comparison of pressure quantile boundaries at
different σ at t = 12h in pipeline p_br71.
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Figure 5.15: Comparison of flow quantile boundaries at dif-
ferent σ at t = 12h in pipeline p_br71.

Comparison of deterministic and stochastic pressure prediction

Now we give an overview of the impact of the volatility in power
demand on the network. Therefore we revisit the scenario with the
highest volatility, that is with σ = 0.45 and consider again a time
frame of 24h. In Figure 5.16 on page 125 one can see the maximal
deviation of real power demand from the steady-state solution. At
a first glance this looks similar to Figure 5.6, just with colors cycled
around. Although this impression turns out false, the similarity is
due to the fact, that the load nodes have defined volatility as they
follow their own Ornstein–Uhlenbeck process approximation defined
in Equation (5.21). The PV-nodes on the other hand have zero volatility
in real power. Yet the Vϕ-nodes must account for all remaining power
demand and as such have the highest volatility. A similar picture
can be found in Figure 5.17 on page 126, where the deviation of
the reactive power is depicted. Here the PV-nodes do not have zero
volatility, yet it seems that they also do not carry much volatility in Q.

At last we consider the possible impact of the volatility in the power
network on the gas network. Therefore we show the maximal pressure
deviation from the steady-state solution over the course of 24h for
σ = 0.45 in Figure 5.18 on page 126. It is easily seen that the lower
part of the network experiences much higher pressure volatility than
the upper part. This is expected, as on the one hand the upper part
has higher pressure as the three gas sources are located there and on
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the other hand many more gas-power conversion plants are located in
the lower part, so that the volatility can add up.

5.5 summary and outlook

In this chapter we have applied the theory of the last two chapters
in three different scenarios. The first example showed the general
applicability of our approach and showed plausible results for a small
network.

The second scenario introduced power-to-gas plants and proved
that our techniques can deal with bigger problems. Here we inves-
tigated the solution of a combined gas and power network where
the gas network is used as an energy storage for surplus electrical
power that can be tapped in times of deficient electrical power supply.
Additionally we compared Bernoulli coupling and pressure coupling
for this scenario and found little difference for our parameters. The
data of these experiments have been gathered in a git repository5 for
comparison with other approaches.

Lastly we introduced stochastic power demand and examined reper-
cussions on the gas network given different levels of volatility in power
demand. The data of these experiments can also be found in a git
repository6 created for this purpose.

Although the different coupling conditions as proposed in [Rei15]
do not introduce great changes in the results of realistic pipeline
network simulations, it would be interesting to retrace the steps of
[Rei15] in order to prove results similar to those of Section 4.2 and the
bounds on the fuel demand in Equation (4.2).

5 https://bitbucket.org/efokken/gas-power-benchmark

6 https://github.com/eike-fokken/efficient_network-data.git

https://bitbucket.org/efokken/gas-power-benchmark
https://github.com/eike-fokken/efficient_network-data.git
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Figure 5.16: Heatmap of the maximal real power deviation
over the course of 24h, units are in 100MW.
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Figure 5.17: Heatmap of the maximal reactive power devia-
tion over the course of 24h, units are in 100MW.
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6
O P T I M I Z AT I O N

Over the course of this thesis we have defined models for coupled
gas and power networks, discretized them and simulated different
scenarios. While this is valuable, it is often necessary to not only
simulate, but also to find an optimal way of operating energy networks
in order to achieve some goal, usually expressed as controlling the
networks in such a way, that minimal costs are incurred, while still
satisfying some demands.

Finding such an optimal operating procedure can often be cast as
an optimal control problem, as defined in Section 2.3. This amounts to
defining functions f,g,h, that model certain properties of the scenario
in question, such that an optimal control of the network is given as
the solution to

u = argmin f(u)

s.t. g(u) = 0

h(u) ⩾ 0.

In the case where all quantities of interest — in our case power and
voltage in the power network, pressure and flux in the gas network —
depend smoothly on all input quantities, such a problem can be solved
with the tools of smooth optimization, see [NW06] for an introduction.
Note that along with the discretizations of the last chapters we only
consider control variables, that are themselves discrete (with a possibly
different discretization lattice) so that our optimization falls under the
so-called “first-discretize-then-optimize” approach. For the opposite
approach see for instance [Ulb02].

In order to compute minima of the above problem, we need to
compute the derivatives of f,g and h. Note that first derivatives
are sufficient to employ quasi-Newton optimization algorithms, see
[NW06, Chapter 6]. Unfortunately the simulation implementation we
used throughout Chapter 5 relies on solving non-linear systems of
equations. Therefore the quantities of interest, usually called states,
can be thought of as functions of initial and boundary conditions,
that are only given implicitly. Although it is possible, via Newton’s
method, to compute these functions, their derivatives are not readily
available. Luckily, there are two well-known algorithms to produce
these derivatives. On the one hand there is the so-called direct approach,
which computes derivatives of the states directly, along the lines of
the implicit function theorem, see for example [PG08], in order to
compute derivatives of the functions f,g and h. On the other hand
there is the adjoint approach, see [Her07; Kol11; PG08], which sidesteps
computing the state derivatives and directly computes the derivatives
of f,g and h. In this chapter we will present and analyze both of
these approaches for an optimal control problem that is discretized
into distinct time steps.

127



128 optimization

Afterwards we will solve an optimal control problem on the com-
bined gas-power network of Section 5.3 to showcase the optimization.

Before we come to the main part of this chapter, let us note that it
is possible to also obtain second derivatives via a combination of the
direct and adjoint method, detailed in [PG08]. This would enable us
to use Newton’s method instead of quasi-Newton methods, but we
forego this, as the quasi-Newton methods that rely on first derivatives
only are performant enough and have a much reduced implementation
overhead.

6.1 optimization with control and state variables

When setting up an optimization problem for use with our networks,
an immediate challenge is, that the objective and constraint functions
do not solely depend on controls directly but also on state variables —
in our case pressure, flow, power and voltage — that in turn depend
on the controls.

We will now describe the theory of such problems in general and
only later on come back to the gas and power networks.

Mathematically the dependence of state variables on the controls
means that the state variables can be eliminated by replacing them
with the function that computes them from the controls. Yet, often
this function is only given implicitly by a set of equality constraints
which the controls and states have to fulfill.

Such a problem is of the form

u = argmin f(u, x)

s.t. E(u, x) = 0

g(u, x) = 0

h(u, x) ⩾ 0,

(6.1)

where all variables are now discretized, corresponding to our “first-
discretize-then-optimize” approach. Let therefore u ∈ Rnu , x ∈ Rns

and

f : Rnu × Rns → R,

E : Rnu × Rns → Rns ,

g : Rnu × Rns → Rng ,

h : Rnu × Rns → Rnh .

Additionally we require that the equation E(u, x) = 0 determines
x = y(u) uniquely as a function of u. We also only consider prob-
lems where all these functions are smooth. By this replacement of
x, Problem (6.1) can be thought of as an optimization problem of
type (2.30).
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Therefore, if we can evaluate y(u) ∈ Rns and the derivative of y
with respect to u, y′(u) =

∂y(u)
∂u ∈ Rns×nu , we can construct the

functions

f̃(u) = f(u,y(u))

f̃
′
(u) =

df̃(u)
du = ∂uf(u,y(u)) + ∂xf(u,y(u)) · y′(u)

g̃(u) = g(u,y(u))

g̃′(u) = dg̃(u)
du = ∂ug(u,y(u)) + ∂xg(u,y(u)) · y′(u)

h̃(u) = h(u,y(u))

h̃
′
(u) =

dh̃(u)
du = ∂uh(u,y(u)) + ∂xh(u,y(u)) · y′(u).

(6.2)

With these we can solve the problem (6.1) by solving (2.30) with the
functions f̃, g̃, h̃.

To evaluate these functions at some point u, we first must compute
y(u), which is straightforward to do by applying a Newton-type
method to the system of equations E(u, x) = 0 and setting y(u) = x.
Then we can evaluate f̃(u), g̃(u), h̃(u). Yet, there are two alternatives
to evaluate the derivatives f̃

′
(u), g̃′(u), h̃′

(u), both of which we now
describe shortly. A more detailed explanation can be found in [PG08]
and [Cap11].

On the one hand we can compute y′(u) via the so-called direct
method, by noting first that E(u,y(u)) = 0 for all u implies

0 =
d

du
E(u,y(u)) = ∂uE(u,y(u)) + ∂xE(u,y(u)) · y′(u)

and therefore

∂xE(u,y(u))y′(u) = −∂uE(u,y(u)), (6.3)

through which y′(u) can be evaluated by a linear solve. Note, that
y′(u) is a matrix and therefore Equation (6.3) can be thought of as a
collection of nu usual linear equations, one of each column of y′(u).
This can be plugged into Equation (6.2) to evaluate the derivatives.

Note however that y′(u) is an ns ×nu matrix and hence the linear
solve must be done for nu right-hand sides. If there are many controls,
it may be desirable to use another method.

This other method is the so-called adjoint method. Here we define
new types of Lagrange functions, Lf,Lg,Lh, one for the objective
function, one for the equality constraints and one for inequality con-
straints1. The procedure is the same for each of these and therefore
we show it only for the inequality constraints,

Lh(u, x, ξ) = h(u, x) + ξTE(u, x),

where ξ ∈ Rns×nh is a matrix of Lagrange multipliers.
As before there holds E(u,y(u)) = 0 and d

duE(u,y(u)) = 0. For the
Lagrange function evaluated at x = y(u) this means

Lh(u,y(u), ξ) = h(u,y(u)) + ξTE(u,y(u)) = h(u,y(u))

1 Actually the optimization library we use, namely IPOPT [WB06], only accepts inequal-
ity constraints as input and checks internally, whether pairs of inequality constraints
of the form g(x) ⩽ 0, g(x) ⩾ 0 appear, which are then treated as equality constraints.
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and
d

duLh(u,y(u), ξ) = d
duh(u,y(u)) + ξT d

duE(u,y(u))

= d
duh(u,y(u)).

Therefore we find for the derivative h̃
′
(u) = d

duh(u,y(u)):

h̃
′
(u) = d

duLh(u,y(u), ξ)

= ∂uLh(u,y(u), ξ) + ∂xLh(u,y(u), ξ)y′(u)

= ∂uh(u,y(u)) + ξT∂uE(u,y(u))

+ ∂xLh(u,y(u), ξ)y′(u)

(6.4)

This is easy to evaluate, if the last line vanishes. Luckily we are still
free to choose ξ and therefore demand

0 = ∂xLh(u,y(u), ξ) = ∂xh(u,y(u)) + ξT∂xE(u,y(u)),

which is equivalent to

∂xE(u,y(u))Tξ = −∂xh(u,y(u))T , (6.5)

from which ξ can be determined by a linear solve.
This time ∂xh(u,y(u))T is an ns ×nh matrix (mind the transpose).

To compute all derivatives in Equation (6.2), we also must follow these
steps for f, which yields one additional linear solve, and g, which
yields ng additional solves, summing up to ng +nh + 1 linear solves.

Comparing the two methods, it seems plausible to favor the direct
method, if nu < ng + nh + 1, and the adjoint method in the other
case.

One big drawback of both methods is the need to solve a linear
system involving the (sometimes huge) matrix ∂E

∂x . To overcome this
issue we will now describe algorithms to carry out direct and adjoint
methods that exploit the structure that arises from the decomposition
of our problems into separate time steps.

6.2 derivatives of time-dependent systems

The computation of derivatives up to now is valid for any optimization
problem with objective and constraints given by Equation (6.2). Yet,
the problems we solve have a special structure, they are discretized
into time steps. Therefore it is on the one hand natural to look for
opportunities to break apart the computations into computations
for each time step and on the other hand it is clear that states and
evaluations of f,gandh at earlier time steps cannot depend on controls
or states of later steps.

To break apart all quantities into the different time steps we need
three different time lattices, one for states (and objective function), one
for the constraints and one for the controls. Corresponding quantities
are listed in Table 6.1.

Of course there must hold ms ·Ns = ns and likewise for controls
and constraints. In addition we demand Th ⊂ Ts, so that every
constraint time point must also be a state time point. The control
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Table 6.1: Time lattices and corresponding quantities

states s controls u constraints h

lattice sets Ts Tu Th

index sets Is Iu Ih

number of time points Ns = |Ts| Nu = |Tu| Nh =
∣∣∣Th∣∣∣

time points tsi ∈ Ts, tui ∈ Tu, thi ∈ Th,
i ∈ Is i ∈ Iu i ∈ Ih

number per time point ms mu mh

quantity at time point xi ∈ Rms ui ∈ Rmu hi ∈ Rmh

time points are allowed to be different, but we demand that they
enclose the state time points in the sense that min Tu ⩽ min Ts and
max Tu ⩾ max Ts.

As the state time lattice and the control time lattice can be disjoint,
it doesn’t make sense at first to speak of u(tsi ), a control at a state time
point. We define this quantity by linear interpolation. Let us make
that explicit. For a state index i ∈ Is we define ı̌, ı̂ ∈ Iu by

ı̌ = argmax
i∈Iu

tui

s.t. tui ⩽ tsi
ı̂ = argmin

i∈Iu
tui

s.t. tui ⩾ tsi .

So tuı̌ and tuı̂ are the closest control time points that surround tsi .
Actually there always holds ı̂ = ı̌+ 1. Then there is a unique λi ∈ [0, 1],
such that

tsi = (1− λi)t
u
ı̌ + λit

u
ı̂ .

With this we can define controls at state time points,

ũi = (1− λi)uı̌ + λiuı̂ ∈ Rmu . (6.6)

We will always write these state-time controls with a tilde, to distin-
guish them from the control variables defined on the control time
lattice Tu. Also the matrix ∂ũ

∂u will be useful. It is a block matrix
with block-size mu ×mu. Its structure is given as follows, where the
indices indicate the respective block.

∂ũ
∂u ∈ Rns×nu(
∂ũ
∂u

)
i,ı̌

= (1− λi) Idmu(
∂ũ
∂u

)
i,ı̂

= λi Idmu(
∂ũ
∂u

)
i,j

= 0, for j ̸= ı̌, ı̂.

(6.7)

We now explain the reason for the structure of the constraint time
lattice. The constraints we are interested in, are, in continuous time
given by some function ĥ(u, x), that should fulfill ĥ(u(t), x(t)) ⩾ 0 for
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every time t ∈ [0, T ]. For the discretized time we instead demand the
inequality to hold at all lattice time points t ∈ Ts. But to reduce the
numerical cost, we may opt to check the constraints only at a subset
Th ⊂ Ts. Therefore the continuous constraint ĥ(u(t), x(t)) ⩾ 0 for
t ∈ [0, T ] is transformed into the discretized constraint

h = (hi)i∈Ih

hi = ĥ(ũi, xi) ∈ Rmh ,
(6.8)

where hi ∈ Rmh . Because the index structure is a bit non-standard,
we provide an example.

Example 6.1. Let Is = { 1, . . . , 5 } and Ih = { 1, 3, 5 }. In that case, h is
given as h = (h1,h3,h5), while h2 and h4 are not defined.

This of course leads to a very sparse structure of ∂h∂x and ∂h
∂ũ , namely

∂h
∂x ∈ Rnh×ns

∂hi
∂xi

∈ Rmh×ms

(
∂h
∂x

)
i,i

=


∂hi
∂xi

if i ∈ Ih

0 else.

(6.9)

and likewise for ∂h∂ũ . We will write this out for our example above.

Example 6.2. For the setting of Example 6.1 there holds

∂h

∂x
=


∂h1
∂x1

0 0 0 0

0 0 ∂h3
∂x3

0 0

0 0 0 0 ∂h5
∂x5

 .

Note again the index structure. ∂h3∂x3
for example is in the second row,

not in the third.

The objective function is evaluated at every state time point but
apart from that similar to the constraints. We consider continuous
objective functions f̂ of the form

f̂(u, x) =
∫T
0

fkernel(u(t), x(t))dt. (6.10)

It is discretized with the trapezoidal rule at every state time point
yielding for the discretized objective:

f̃(u, x) =
Ns∑
i=0

αifkernel(ũi, xi), (6.11)

where αi is the weight of the trapezoidal rule, namely

α0 =
1

2
(t1 − t0)

αNs =
1

2
(tNs − tNs−1)

αi =
1

2
(ti+1 − ti−1), for 0 < i < Ns.
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Its derivatives ∂f̃
∂x ∈ R1×ns and ∂f̃

∂ũ ∈ R1×ns on the other hand are
usually dense and given by(

∂f̃
∂x

)
i
= αi∂xfkernel(ũi, xi) ∈ Rms ,(

∂f̃
∂ũ

)
i
= αi∂ufkernel(ũi, xi) ∈ Rmu .

The only quantities left to discretize are the equality constraints
E that determine the state variables x for given control variables u.
These can also be decomposed into Ei, one for every state time point,
such that E = (E1, . . . ,ENs). The components of Ei have the structure

Ei = Ei(ui, xi, xi−1) ∈ Rms .

This structure means that the state variable xi can depend directly
only on the preceding state variable (called xi−1) and the control at
the current time point, ũi (remember that ũi itself depends on the
two control variables uı̌,uı̂). For the derivatives of Ei we define

Ai =
∂Ei
∂xi−1

∈ Rms×ms

Bi =
∂Ei
∂xi

∈ Rms×ms

Ci =
∂Ei
∂ũi

∈ Rms×mu ,

similar to [Kol11, Section 5.2.2] and find

∂E

∂x
=


B1
A2 B2

. . . . . .
ANs BNs

 ,
∂E

∂ũ
=


C1

. . .
CNs

 , (6.12)

where all omitted entries are 0 and of course

∂E

∂u
=
∂E

∂ũ

∂ũ

∂u
∈ Rns×nu

from (6.7). The structure of this last matrix is given as follows:

∂E
∂u ∈ Rns×nu(
∂E
∂u

)
i,ı̌

= (1− λi)Ci(
∂E
∂u

)
i,ı̂

= λiCi(
∂E
∂u

)
i,j

= 0, for j ̸= ı̌, ı̂.

With this we can examine the direct and adjoint method in detail.

6.2.1 The discretized direct method

For the direct method we have to solve the system (6.3), namely

∂E

∂x
Y = −

∂E

∂u
, (6.13)
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for Y = y′(u) ∈ Rns×nu . This can be done block-row by block-row,
starting from the first and using the structure of the matrices. We have
gathered the steps in Algorithm 6.12. There Yi denotes the i-th block-
row of Y and the inverse algorithmically means a linear solve, usually
by LU-decomposition. This procedure results in a special structure

Algorithm 6.1 Computation of Y = dy
du

Y = 0

Y1,1̌+ = (1− λ1)C1
Y1,1̂+ = λ1C1

Y1 = −B−1
1 Y1

for i = 1 to Ns do
Yi = AiYi−1
Yi,ı̌+ = (1− λi)Ci
Yi,ı̂+ = λiCi
Yi = −B−1

i Yi
end for

of Y, similar to that of a lower block-triangular matrix. If ∂ũ∂u = Id, it
actually is a block-triangular matrix. The structure is characterized by

Yi,j = 0 for j > î.

This structure can be exploited to make the algorithm numerically
cheaper. In addition it encodes the physical property that future
controls cannot influence states in the past with the exception of an
influence via the interpolation (6.6).

What still needs to be done is, plugging dy
du into Equation (6.2),

which is straight-forward. As the derivatives ∂h∂x and ∂h
∂u , found in

and below Equation (6.9), are extremely sparse, computing dh
du from

dy
du is numerically cheap. Also storage of the whole matrix dy

du can be
avoided, using each row of it directly in the loop of Algorithm 6.1 to
compute the corresponding row in dh

du .
The most expensive part of the direct method is the solution of

System (6.13), which is more expensive, the more columns its right-
hand side has, which in turn is given by the number of controls u

in the optimization problem. For the direct method we can therefore
summarize that choosing it is the better, the fewer controls are in the
system.

6.2.2 The discretized adjoint method

The adjoint method also benefits from the decomposition of the system
in time steps. This time we have to solve the system (6.5), namely we
have to solve

∂E

∂x

T

ξ = −
∂h

∂x

T

, (6.14)

2 Note that in algorithms, an equality sign “=” denotes an assignment, meaning, that
the right-hand side of it should be computed and the left-hand side should then be
replaced by the result of that computation. One and the same quantity may appear on
both sides and the rule applies in that case, too. Also a+ = b shall mean a = a+ b.
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where ξ ∈ Rns×nh . The matrix ∂E
∂x

T
is just the transpose of the

matrix in (6.12), but we present it here, so the algorithm for solving
Equation (6.13) is easier to understand:

∂E

∂x

T

=


BT1 AT2

BT2
. . .
. . . ATm

BTm

 (6.15)

With this, (6.15) can be solved block-row by block-row, this time
starting from the last row. A description of this can be found in [Kol11,
Section 5.2.2], especially Equation 5.15 therein.

The full solution algorithm is given in Algorithm 6.2, where ξi
means the i-th block-row of ξ. The solution ξ will again exhibit a

Algorithm 6.2 Computation of ξ

ξ = 0

ξNs,Ns = −
(
BTNs

)−1 ∂hNs
∂xNs

T

for i = Ns − 1 to 1 do
ξi = A

T
i+1ξi+1 ▷ A

if
(
∂h
∂x

T
)
i,j

̸= 0 then

ξi,j+ =
(
∂h
∂x

T
)
i,j

end if
ξi = −

(
BTi

)−1
ξi. ▷ B

end for

special structure, which this time is upper block-triangular. This can
be exploited in the lines marked A and B, by not taking a full row of
ξ but only the part of it, that can be non-zero at all.

We still need to compute dh
du from ξ via (6.4), which can be done

block-column by block-column and is shown in Algorithm 6.3. Here
the interpolation (6.6) is also incorporated. The structure of ξ again
forces a block-trigonal structure on dh

du , which is lower trigonal, because
ξ appears transposed. This again encodes the impossibility of future
controls influencing past constraints.

Algorithm 6.3 Updating columns of dh
dũ and dh

du

dh
dũi

= (ξi)
T · ∂E∂ũi

dhi
dũi

+ = ∂hi
∂ũi

dhi
duı̌

+ = (1− λi)
dhi
dũi

dhi
duı̂

+ = λi
dhi
dũi

Like in the direct case (stated after Algorithm 6.1), storage of the
whole matrix ξ can be avoided by evaluating Algorithm 6.3 inside the
for-loop of Algorithm 6.2. We will now give an example to show the
structure of ξ.
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Example 6.3. As in Example 6.2, we consider a problem with Ns = 5
time steps and nh = 3 constraint evaluations, which take place on
time steps 1, 3, 5, that is, Ih = { 1, 3, 5 }. The matrices in the linear
system to be solved have the form

∂E

∂x

T

=


BT1 AT2

BT2 AT3
BT3 AT4

BT4 AT5
BT5

 ,

ξ =


ξ1,1 ξ1,3 ξ1,5

ξ2,1 ξ2,3 ξ2,5

ξ3,1 ξ3,3 ξ3,5

ξ4,1 ξ4,3 ξ4,5

ξ5,1 ξ5,3 ξ5,5

 ,

and

∂h

∂x

T

=



∂h1
∂x1

T

0 0
∂h3
∂x3

T

0 0
∂h5
∂x5

T


.

With these the condition of the if-statement in Algorithm 6.2 is satisfied
exactly for ξ3,3, ξ1,1 and of course at the start of the algorithm for ξ5,5.
Therefore the structure of ξ is given as

ξ =


ξ1,1 ξ1,3 ξ1,5

0 ξ2,3 ξ2,5

0 ξ3,3 ξ3,5

0 0 ξ4,5

0 0 ξ5,5

 .

We have presented the adjoint method for the inequality constraints
h. IPOPT, our optimization library (see [WB06]), only accepts in-
equality constraints, so these are all constraints we must consider.
Algorithms 6.2 and 6.3 can be used verbatim for the objective function
f by replacing h with f. The only differences are, that ∂f∂x and ∂f

∂u have
only one row and that the condition in the if-statement is true in every
iteration of the loop.

For the adjoint method, the most expensive part of the evaluation
of dh

du is — similar to the direct method — the solution of the linear
system (6.14). Again this is more expensive, the more columns the
right-hand side has. In this case this means, the adjoint method is
better, the fewer constraints are in the problem.

Choosing a method to implement

As just explained both the direct and the adjoint method have their
advantages. In our software grazer we implement only the adjoint
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method, mostly because its performance is high enough that there
is no need for further optimization. One reason for this is that in
order to use any method for computing the derivative, we first must
solve E(u, x) = 0. This is done via Newton’s method and usually
involves many more linear solves than those needed for the derivative
computation in this chapter. Hence, the number of time steps needed
(with a constraint in every time step) to yield a considerable cost
of evaluating (6.14) in comparison to the cost of solving E(u, x) = 0

is difficult to reach. Still it would be interesting to implement the
direct method as an alternative for problems of few controls but many
constraints.

6.3 additional models for optimal control problems

In order to apply the adjoint method to an optimal control problem,
we revisit the controlled components of Section 5.3.1.

6.3.1 Compressors and control valves

Compressors and control valves were introduced in Section 5.3.1. Both
are modeled similarly and come equipped with a control function
u that influences the pressure. For the compressor we introduce a
quadratic cost integrated over time, such that the kernel function in
Equation (6.10) for the compressor is given by

f
comp
kernel(u(t)) = u(t)2.

After discretizing the integral, as in Equation (6.11), the total cost of
compressor usage for a single compressor over the time horizon is
given by

f̃
comp

(u, x) =
Ns∑
i=0

αi(u
comp
i )2,

where the αi are the weights of the integral discretization and hence
contain the time intervals between two discretization points, see Equa-
tion (6.11). The cost functions of multiple compressors or of different
cost incurring components must of course be added together to yield
the final cost.

For compressors this means that a pressure increase, mediated by
the model equation

pout(t) = pin(t) +u(t),

must be balanced with the cost of the usage.
Control valves on the other hand are controlled, but in our model

incur no cost. This means that they can be used freely in order to
satisfy inequality constraints or reduce costs of other components.

6.3.2 Pressure-constrained gas nodes

In addition to controlled components that may contribute to the cost
function of an optimal control problem, we also have components that
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model certain bounds on variables and therefore contribute to the
vector h of inequalities (6.8).

Therefore a gas node may demand a certain pressure range, specifi-
cally it may demand

pmin(t) ⩽ p(t) ⩽ pmax(t), (6.16)

where the lower and upper bound must be specified as additional
conditions of the optimal control problem. These translate to two
inequalities per node.

6.4 discretization

As explained in Section 6.2, the discretization of the control-related
equations is different from the model equations that were introduced
in Chapter 5.

The controls themselves are discretized with some control step size
(which does not have to be uniform, although it is in our examples)
and controls at each state time point are evaluated according to Equa-
tion (6.6).

The objective function is evaluated at every time point of the state
discretization, that is, the discretization of the model equations in
Chapter 5.

Lastly constraints like those of the pressure-constrained gas nodes
in Equation (6.16) are evaluated at a subset of the state time points.
Here we can see, that guaranteeing the inequality constraints at every
time point may lead to a great numerical expense, when using the
adjoint method.

6.5 a small optimal control problem

6.5.1 Network properties

We solve an optimal control problem on a network very similar to
that of Section 5.2. The whole network can be seen in Figure 6.1. The
only difference is the insertion of a compressor station right before the
branching junction at S17.

Table 6.2: Parameters of the gas network.

Pipe From To Length ℓe [km]

P10 S4 S20 20.322

P20 S5 S0 20.635

P21 S17 S4 10.586

P22 S17 S8 10.452

P24 S8 S20 19.303

P25 S20 S25 66.037

The gas network is again a small part of GasLib-40 and the pipeline
parameters are given in Table 6.2, which is almost the same as Table 5.2,
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but the edge between S5 and S17 was moved to the left to make room
for the compressor. The parameters for the power grid stay the same,
see Table 5.3 and Table 5.4.

N1

N2N3

N4 N5 N6 N7 N8

N9

S5 S0 S17

S4

S8

S20 S25

Figure 6.1: Coupled gas-power network with a compressor
between S0 and S17.

6.5.2 Numerical results

For this network, we simulate a sudden increase in power demand
within the power grid and study its effect on the gas network. The
compressor station is supposed to compensate part of the pressure
losses in the gas network such that a pressure bound of pmin = 41 bar
is satisfied at the node S25 at all times, while power consumption of
the compressor is minimized.

Our time horizon is 12h and we discretize with a step size of
∆t = 15min. We leave all power demands and supplies in the power
network at their initial settings in Table 5.4, except for the demand
of node N5, which increases its active and reactive power demand
sharply after one hour, exactly as in Section 5.2.3, see Figure 5.2.

To guarantee the pressure bound of 41 bar at the outflow node of the
gas network we must use the compressor, as can be seen in Figure 6.2.
We see that the pressure bound is violated after approximately 4 hours,
unless we employ the compressor, which, due to its associated cost
controls the pressure to just barely satisfy the bound.

6.6 a large optimal control problem

Finally, we show results of an optimization task on a large network.
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Figure 6.2: Pressure for active and in-active compressor.

6.6.1 Network properties

As underlying network we use that of Section 5.4, whose gas and
power network parts are pictured in Figures 5.5 and 5.6, respectively.
The GasLib-134 network actually contains two controllable compo-
nents, a compressor between the nodes 29/30, slightly to the lower
left of the top-most (green) source in Figure 5.5 and a control valve
between the nodes 65/66, in the “lower right leg” at the bottom of
Figure 5.5. Both of these were inactive in the preceding simulation
scenarios. The power network is operated at deterministic conditions,
that is with the stochastic parameter σ set to zero, as already done in
Section 5.4.4.

6.6.2 Numerical results

We take the steady state initial conditions, also used in Section 5.4.4 as
a starting point but add two continuous constraints in order to make
the compressor and the valve actually do some work. At the sink
ld_22, which is located at the end of the “right arm” in the middle of
Figure 5.5, we impose a lower pressure bound of pmin(t = 0) = 70 bar
and pmin(t = 24h) = 90 bar and interpolate linearly in between. At
this sink the upper bound pmax is set to infinity.

In addition we impose an upper pressure bound at sink ld_40 of
90 bar at t = 0, 70 bar at t = 24h and again interpolate linearly in
between. This sink is located in the “lower right leg” at the bottom of
Figure 5.5.

As mentioned, using the valve is free but compressor costs should
be minimized. The control is discretized with the same discretization
already used by the states, yielding 49 time points. Also the constraints
are evaluated at every state time step. While our algorithm is capable
of using coarser resolutions of both constraints and controls, the
problem at hand is again small enough to compute a solution in
acceptable time3. The control of the valve is constrained to not exceed
40 bar to keep the optimization routine from trying controls that are

3 On a work station finding a minimum of this problem took approximately a minute.
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too high to yield a solution of the simulation. The compressor control
is capped at 120 bar, although this bound is never attained.

With this data we compute the optimal controls shown in Figure 6.3
and Figure 6.4. The compressor control in Figure 6.3 ramps up as the
lower pressure bound in ld_22 rises. On the other hand, the valve
control in Figure 6.4 stays at zero until this is not sufficient anymore
to satisfy the decreasing upper pressure bound in ld_40 at which
point the control rises up to the maximal value, staying there until the
end. As the valve control incurs no cost, this is one of many possible
configurations.
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Figure 6.3: Computed optimal control of the compressor at
nodes 29/30.
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Figure 6.4: Computed optimal control of the valve at nodes
65/66.

A comparison of pressure evolution at the two sinks ld_22 and ld_40

is given in Figure 6.5 and Figure 6.6. It can be seen that the compressor
increases the pressure just enough to satisfy the lower pressure bound
as its usage is penalized, while the (free to use) valve at first matches
the upper pressure bound exactly but later on over-compensates it
rather strongly.

6.7 summary and outlook

In this chapter, we introduced the direct and adjoint methods for
computing derivatives of objective and constraint functions, as well
as refinements of both for optimization problems discretized in time.
Two optimal control problems were solved by computing the needed
derivatives via the adjoint method.
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Figure 6.5: Comparison of controlled and uncontrolled pres-
sure at ld_22.
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Figure 6.6: Comparison of controlled and uncontrolled pres-
sure at ld_40.

Possible extensions include optimization in the power network
itself in the sense of optimal power flow, see for example [Eng+19;
Guo+19; MFH18; Müh+19; XA18] as well as the computation of second
derivatives as mentioned in the beginning of this chapter.
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S U M M A RY A N D C O N C L U S I O N

In this thesis we have investigated the mathematical properties of
power networks and gas networks as well a the coupling between
them.

In Chapter 3 we have analyzed two models for electricity networks,
on the one hand the Telegrapher’s equations and on the other the
power flow equations. We showed with the help of Lyapunov stabil-
ity theory, that for periodic boundary conditions the former model
converges to a periodic solution (Section 3.1) which in turn can be
described with the help of the power flow equations (Section 3.2).
In addition, we examined a second order numerical method for the
solution of the Telegrapher’s equations on a network and showed that
it mimics the Lyapunov stability of the analytical solution (Section 3.3).
The numerical experiments in Section 3.4 provided justification for
choosing the power flow equations over the Telegrapher’s equation
model.

In Chapter 4 we examined the isentropic Euler equations and
provided conditions on the pressure function, that guarantee well-
posedness of the corresponding Riemann problems for all sub-sonic
initial conditions (Section 4.1.1). Additionally, we showed that the
usual family of γ-laws with 1 ⩽ γ ⩽ 3 can be extended to −1 < γ ⩽ 3
while still guaranteeing well-posedness of these Riemann problems,
but also that for any γ-law with γ ̸∈ [−1, 3] there are sub-sonic initial
conditions that define an ill-posed Riemann problem. The findings
were extended to Riemann problems at junctions of a gas network
(Section 4.1.3) and finally to junctions with external gas sinks and
sources, where a power grid can be interfaced with the gas network
(Section 4.2).

Chapter 5 was dedicated to the application of the findings of the
previous chapters to coupled gas and power networks. To this end,
models for different components of such networks were presented
(Section 5.2.1) and discretized, which were then applied to a small
network (Section 5.2.3). Then we examined a bigger network, the
GasLib-134 network, that also incorporates a compressor station and
a control valve (Section 5.3) and compared the simple coupling via
equality of pressure to the physically more accurate Bernoulli coupling,
finding little difference but much higher implementation effort, which
may often not be justified (Sections 5.3.1 and 5.3.4). In this chapter
we also introduced a simple model for gas-power conversion with
different efficiencies for gas-to-power and power-to-gas conversion
(Section 5.3.1). In a numerical study we showcased the repercussions
of changing power demand on the gas network in Section 5.3.4.

In the final part Section 5.4 of Chapter 5 we extended the power
model further to include uncertain power demands modeled by the

143
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Ornstein–Uhlenbeck process (Section 5.4.1) and compared scenarios
of different volatility in the numerical study (Section 5.4.4).

Lastly in Chapter 6 we enhanced both the model and the underlying
software grazer with optimization capabilities, presenting in detail the
direct and adjoint methods for solving constrained non-linear optimal
control problems with control and state variables (Section 6.1) as well
as certain improvements that can be made by exploiting the decom-
position of the problem into time steps (Section 6.2). In numerical
studies (Sections 6.5.2 and 6.6.2) the optimization capabilities of our
software were applied to both the small network and the GasLib-134

network already examined in the preceding chapter.
All in all we have presented and analyzed models for coupled gas

and power networks and applied them to simulation and optimization
problems on a network of realistic size. The last distinguishing feature
of this work is that the software that was developed during this work
is accessible for application and extension by both academic and
industrial users.
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A
A P P E N D I X : O N T H E I M P L E M E N TAT I O N O F G R A Z E R

a.1 overview

For most of the computations in this thesis we use the network simula-
tion and optimization tool grazer1 written specifically for this purpose.
In this appendix we give a broad overview of grazer. More on grazer
can be found in its documentation, which is distributed along with its
source code.

grazer is an open source software suite developed by the author at
the Chair of Scientific Computing at the University of Mannheim. For
the purpose of long-term usability the following design goals have
been chosen:

• Easy installation

• Full C++17-standard compliance with tested support for compil-
ers GCC-9, Clang-9 and later versions thereof.

• Few external dependencies

• High test coverage

• Clean warning profile

• Open Source License (MIT)

grazer depends on external code, namely on Eigen, ([GJ+10]), N.
Lohmann’s json library2, googletest3, pcg-random ([ONe14]), IPOPT
([WB06]) and CLI11

4.
Support for MSVC++ was dropped, when optimization was incor-

porated, as IPOPT is more difficult to use in this case, yet it is planned
to re-support MSVC++ again.

a.2 installation

In order to build grazer on a UNIX-like operating system (for example
Linux or MacOs) you need four pieces of software: CMake5, Git6

and a C++17 capable C++ compiler, e.g. clang7 or gcc8. The fourth
requirement is installation of IPOPT. If you don’t supply an IPOPT
installation the script coinbrew9 is automatically called from CMake

1 https://github.com/eike-fokken/grazer

2 https://github.com/nlohmann/json

3 https://github.com/google/googletest

4 https://github.com/CLIUtils/CLI11

5 https://cmake.org/

6 https://git-scm.com/

7 https://clang.llvm.org/

8 https://gcc.gnu.org/

9 https://coin-or.github.io/coinbrew/
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when building grazer. In this case, all dependencies of coinbrew must
also be installed.

Installation of grazer can be done by executing

git clone https://github.com/eike-fokken/grazer.git

cd grazer

git submodule update --init --recursive --depth=1

cmake -DCMAKE_BUILD_TYPE=Release -S . -B release

Afterwards there is a grazer binary in .../grazer/release/src/Grazer

called grazer.

a.3 usage

Up to now grazer is a command-line application usable from a shell,
that is controlled by a number of input json files. In the future it is
planned to also support a python interface.

grazer is used by pointing it to a directory with input json files.

grazer run data/one_pipeline

will run the problem defined in the directory data/one_pipeline for
example. The problem directory contains a directory problem, which
holds the json files

problem_data.json,

topology.json,

boundary.json,

initial.json

control.json.

For optimization problems, the files

upper_bounds.json,

lower_bounds.json,

constraint_upper_bounds.json,

constraint_lower_bounds.json

are also needed to provide box constraints for the controls and for the
constraints as in Equation (6.16). Note that the layout of topology.json
was heavily inspired by the layout of GasLib files, see [Sch+17]. It is
probably best to browse through the data directory of the grazer git
repository to get an understanding of these files.

After solving the problem, an output directory will be generated in
data/one_pipeline/output. This again a json file, so it can be read
with almost all software. For ease of use, some helper programs, com-
piled alongside grazer, can be found in release/helper_functions/.
For example calling

generate_printing_csv \

data/one_pipeline/output/<output_directory>/states.json \

p_br1

will extract the json data into a csv file for usage with plotting tools.
In addition, json schemas can be generated and inserted into the

jsons (up to now with the exception of problem_data.json) with

grazer schema make-full-factory data/one_pipeline

grazer schema insert-key data/one_pipeline
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This has the advantage that json-aware editors help the users to only
write jsons that are valid inputs for grazer which cuts down on bug
searches.

As a final note on the usage, be aware that although grazer runs
only sequentially, the output directory names are chosen “atomically”,
meaning that two instances of grazer running in parallel will not
interfere with each others output. This is especially useful when
executing many runs of stochastic problems in a Monte-Carlo method
as was done in Section 5.4.

Note that parts of the API are still subject to change. For an up-to-
date explanation check out the user guide in docs/userguide.tex in
the repository.

a.4 a rough overview of the inner workings

On execution, grazer will read the input files, configure the New-
ton solver according to settings in problem_data.json, construct a
representation of the network from topology.json, set initial and
boundary values from the respective files, configure the optimization,
set constraints and then start solving the problem.

For simulations, the problem is solved time step per time step.
In each time step the model equations described in Chapter 5 and
their derivatives are evaluated to find a solution of them with New-
ton’s method. Note that therefore along with the model equations
themselves, their derivatives are implemented in grazer. If Newton’s
method yields a solution, it is saved and the next time step is started.
If no solution can be found, the user is notified and all data computed
in prior time steps is written to the output files. If all time steps can
be solved, all data is written out.

For optimizations on the other hand, each optimization iteration
contains a full simulation run. After this run, the derivatives for IPOPT
are computed according to Chapter 6.

If a stochastic component is present in the network, a pseudo ran-
dom number generator must be initialized with a seed. These are
generated automatically or taken from the boundary.json file, if a
seed is present in there.

Note that it is up to now not supported to use stochastic components
in an optimization problem.
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