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Abstract
Rapid GUI prototyping has evolved into a widely applied technique in early stages of 
software development to facilitate the clarification and refinement of requirements. 
Especially high-fidelity GUI prototyping has shown to enable productive discus-
sions with customers and mitigate potential misunderstandings, however, the ben-
efits of applying high-fidelity GUI prototypes are accompanied by the disadvantage 
of being expensive and time-consuming in development and requiring experience 
to create. In this work, we show RaWi, a data-driven GUI prototyping approach that 
effectively retrieves GUIs for reuse from a large-scale semi-automatically created 
GUI repository for mobile apps on the basis of Natural Language (NL) searches to 
facilitate GUI prototyping and improve its productivity by leveraging the vast GUI 
prototyping knowledge embodied in the repository. Retrieved GUIs can directly be 
reused and adapted in the graphical editor of RaWi. Moreover, we present a compre-
hensive evaluation methodology to enable (i) the systematic evaluation of NL-based 
GUI ranking methods through a novel high-quality gold standard and conduct an in-
depth evaluation of traditional IR and state-of-the-art BERT-based models for GUI 
ranking, and (ii) the assessment of GUI prototyping productivity accompanied by an 
extensive user study in a practical GUI prototyping environment.
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1 Introduction

GUI prototyping represents an important technique to visualize the analysts’ 
understanding of the NL requirements from customers, enables their verifica-
tion by the customer as a tangible artifact, provides the foundation for incorpo-
rating the customer early into the application development and leads to fruitful 
discussions, clarification and refinement of requirements (Mukasa and Kaindl 
2008; Ravid and Berry 2000; Rudd et al. 1996; Windsor and Storrs 1992; Beau-
douin-Lafon and Mackay 2002). Especially high-fidelity GUI prototypes have 
been proven to be effective, since these prototypes provide the foundation for 
discussions of higher quality between customers and analysts, and more detailed 
feedback can be obtained during user tests compared to low-fidelity approaches 
(Rudd et  al. 1996; Coyette et  al. 2007; Landay and Myers 1994). However, the 
benefits of high-fidelity GUI prototypes are accompanied by the disadvantages of 
increased time and experience required for their development (Rudd et al. 1996). 
Thus, the applicability for interactive GUI prototyping in the requirements elici-
tation phase with customers is restricted, since only limited time is available in 
such a scenario. In general, by reusing GUI prototypes, the required prototyp-
ing effort can be reduced (Suleri et al. 2020), however, the search, retrieval and 
application of a vast amount of such reusable GUIs for prototyping still remains 
expensive and difficult without adequate support, particularly for novice and 
inexperienced analysts. Therefore, fast translation of the NL requirements (NLR) 
from the customer into GUI prototypes with the respective functionality has the 
potential of positively impacting the quality and efficiency of the overall process. 
Consequently, in this paper we exploit advances in NLP to investigate NL-based 
GUI retrieval from a large-scale GUI repository for GUI reuse, and make first 
steps towards quantifying the potential to tackle this problem and to provide auto-
matic assistance to analysts for interactive GUI prototyping with customers.

To facilitate and simplify GUI prototyping, a plethora of approaches has 
been proposed before. First, many popular GUI prototyping tools are available 
and employed in practical prototyping environments such as Sketch (Sketch 
2019), Adobe XD (Adobe XD 2015), Mockplus (Mockplus 2014), Figma (Figma 
2016) and Balsamiq (Faranello 2012). These approaches typically allow users 
to combine basic GUI components and a small amount of GUI templates, how-
ever, are time-consuming and demand a wide prototyping experience for effec-
tive application. Second, recent GUI retrieval approaches such as Swire (Huang 
et  al. 2019), GUIFetch (Behrang et  al. 2018), Screen2Vec (Li et  al. 2021) and 
VINS (Bunian et al. 2021) use sketches or GUI screenshots as input for retriev-
ing GUIs to support prototyping, however, initially require a basic GUI proto-
type and the retrieved GUI images cannot be directly reused or adapted. Over-
all, these approaches focus on supporting the prototyping of the final GUI design 
by showing GUI design alternatives, however, cannot be applied for interactive 
GUI prototyping for requirements elicitation. Third, Guigle (Bernal-Cárdenas 
et al. 2019) represents the first basic search engine for GUIs of mobile apps sup-
porting a query language and stylistic searches, however, proposes only a simple 
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retrieval approach and found GUI screenshots are not directly reusable. Finally, 
recent GUI prototyping assistance approaches such as GUIComp (Lee et al. 2020) 
attempt to simplify prototyping by showing GUIs similar to the design created by 
the user and providing GUI complexity characteristics. Thus, GUIComp can only 
effectively support users after initial GUI design creation, recommended GUIs are 
not directly reusable and the focus lies on supporting the creation of high-quality 
GUI designs. Therefore, these approaches cannot be employed to assist analysts 
during the requirements elicitation phase via interactive GUI prototyping.

NL-based GUI retrieval for GUI prototyping In this work, we introduce RaWi, 
a data-driven rapid GUI prototyping approach to create high-fidelity GUI pro-
totypes that (i) exploits a large-scale semi-automatically created GUI repository 
of mobile applications by employing NL-based ad-hoc GUI retrieval and auto-
matically derives editable GUI screens for reuse and (ii) thus effectively lever-
ages the GUI prototyping knowledge embodied in the repository to facilitate 
prototyping and improve prototyping productivity. Due to enabling fast transla-
tion of NL fragments from customers to GUI prototypes, our approach allows for 
significantly faster GUI prototyping compared to a traditional approach and thus 
can be applied more effectively by analysts to elicit requirements with custom-
ers via interactive GUI prototyping. In particular, we envision to support novice 
analysts with little or no prior experience in GUI prototyping with our approach 
by providing easy access to plenty of reusable GUIs and domain knowledge 
embodied in the GUI repository. Due to the automatic derivation of partly edit-
able GUI screens from a large-scale GUI screenshot repository, our approach is 
able to provide a vast number of reusable GUI screens, which eliminates the man-
ual effort typically required for providing GUI templates in traditional prototyp-
ing approaches. RaWi integrates both the GUI retrieval mechanism and editable 
GUI screen derivation techniques in a web-based graphical prototyping editor. 
Our approach builds upon recent work from Kolthoff et al. (2020, 2021) and sub-
stantially extends it in terms of a comprehensive evaluation methodology, novel 
experiments, datasets, state-of-the-art retrieval techniques and prototype.

Contributions With our work we make the following research contributions:

• We present a BERT-based Learning-To-Rank (LTR) approach that is trained on 
GUI relevance data harvested using crowdsourcing techniques, which signifi-
cantly outperforms all traditional ranking methods.

• We create the first and comprehensive gold standard for NL-based GUI retrieval 
with crowdsourcing techniques to enable a systematic evaluation of NL-based 
GUI ranking models and make it publicly available to foster further research.

• We conduct the first in-depth analysis and evaluation of various traditional Infor-
mation Retrieval (IR), Automatic Query Expansion (AQE) and trained BERT-
based Learning-To-Rank models for NL-based GUI ranking using the newly pro-
posed gold standard.

• We propose a comprehensive and general evaluation methodology including 
multiple metrics for measuring GUI prototyping productivity and conduct an 
extensive user study to assess the usefulness of the GUI prototyping approach in 
a practical rapid prototyping environment.



 Automated Software Engineering (2023) 30:13

1 3

13 Page 4 of 34

Comparison with our own previous work Our prior work (Kolthoff et  al. 2020, 
2021) focused mainly on the investigation of traditional IR methods for GUI 
retrieval, thereby neglecting recent advances in NLP (Young et  al. 2018; Dev-
lin et  al. 2018), and lacks an extensive evaluation methodology for (i) properly 
and systematically assessing the performance of NL-based GUI ranking systems 
and for (ii) assessing the GUI prototyping productivity. Therefore, we highlight 
the importance of this paper to fill this gap by investigating state-of-the-art GUI 
retrieval methods and proposing a comprehensive evaluation methodology. Our 
interactive prototype, source code and datasets (including the newly created gold 
standard) are all freely available (RaWi Prototype 2022; RaWi Repository 2022) 
to foster future work along these research lines.

Focus on the requirements elicitation process GUI prototyping basically con-
sists of two broad activities: (i) eliciting the required functionality of the GUIs 
where the requirements are formulated typically in NL by the customer and (ii) 
creating a final, professional GUI design subsequently. Our approach targets to 
provide support for the first step: the requirements elicitation. As stated before, 
previous research showed that by employing high-fidelity GUIs for elicitation, 
the feedback quality and detail is improved (Rudd et al. 1996; Coyette et al. 2007; 
Landay and Myers 1994). In an interactive elicitation with customers, the availa-
ble time for GUI prototyping is typically very limited and requires fast translation 
of the NL fragments from the customer into GUI prototypes with the respective 
functionality as shown in Fig. 1. Here our approach provides automatic assistance 
especially for inexperienced analysts. Accordingly, in our conducted experiments 
we restricted the available time for GUI prototyping and quantified productivity 
in terms of selecting the necessary GUI components (cf. Sect. 3.2.3). Similarly, 
our process of creating a gold standard for GUI retrieval using crowdsourcing 
techniques is meant to capture the scenario of customers with no particular expe-
rience in GUI prototyping providing NL queries, since users of crowdsourcing 
platforms have much diverse backgrounds.

Structure of the paper The remainder of this article is structured as follows. In 
Sect. 2 we provide a summary of our GUI retrieval and GUI prototyping approach 
RaWi. Section 3 presents the details on the experimental setting used for evalua-
tion, whose results are presented in Sect. 4. Threats to validity and limitations of 
this work are presented in Sects. 5 and 6, respectively. In Sect. 7 we provide an 
overview of related work. Section 8 covers the concluding remarks and presents 
multiple lines of research for the future.

Customer
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Requirements

Requirements 
Analyst with RaWi

+

(2) Incremental Interac�ve GUI Prototype

(1) Natural Language Requirements

…

NLR

1

NLR NLR

Output

GUI 
Specifica�on

2 3 …
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Fig. 1  Requirements elicitation via interactive GUI prototyping assisted by our approach RaWi to rapidly 
translate NL requirements into GUI prototypes
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2  Approach: RaWi

The main goal of our approach is to (i) enable fast GUI retrieval from a large-scale 
GUI repository via NL-based search queries to leverage the embodied GUI proto-
typing knowledge and (ii) to allow users to rapidly build prototypes using automati-
cally derived editable GUI screens. Figure 2 shows an overview of the architecture 
of RaWi separated into four components. First, (A) we employ the large-scale semi-
automatically created GUI repository Rico (Deka et  al. 2017) for mobile applica-
tions as the basis for GUI retrieval. This dataset encompasses a large number of 
Android applications that are crawled from Google Play. To improve the quality of 
the GUI repository, we initially cleanse the GUIs based on multiple criteria. After-
wards, we create textual representations of the GUIs by extracting different text seg-
ments from the GUI hierarchy data. Second, (B) we apply an identical pipeline of 
text preprocessing techniques to both the textual GUI representations and the NL 
search queries. The retrieval architecture employed in RaWi follows the extended 
Boolean model (Manning et al. 2008). To this end, we compute an index over the 
GUI text representations and match the NL query against it to obtain initial matches. 
Subsequently, we compute a ranking over the GUI matches using popular IR and 
state-of-the-art BERT-based Learning-To-Rank models. In addition, we experi-
mented with multiple automatic query expansion (AQE) techniques. Third, (C) we 
automatically create partly editable GUI screens by exploiting the GUI screenshots 
and GUI hierarchy data and extract basic style properties of some GUI components. 
Finally, (D) we provide a web-based implementation of our approach that integrates 
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Fig. 2  Overview of RaWi with (A) the large-scale GUI repository Rico and GUI text extraction, (B) GUI 
retrieval and text preprocessing pipeline, (C) automatic GUI screen derivation and (D) the rapid GUI 
prototyping editor
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all of the previously discussed components. In the following, we describe the indi-
vidual components of our approach in detail.

2.1  GUI repository and text extraction

To retrieve relevant GUIs for NL-based search queries, we first require a suitable 
GUI repository. Recent data-driven design research constructed and released sev-
eral GUI datasets appropriate for our approach by automatically crawling a vast 
amount of Android applications from Google Play such as ReDraw (Moran et  al. 
2018), ERICA (Deka et al. 2016), Rico (Deka et al. 2017) and Enrico (Leiva et al. 
2020). ReDraw collects GUIs by automatically exploring 5416 Android applications 
comprising a total of 14,382 unique GUI screenshots and GUI hierarchy data using 
GUI testing automation techniques to simulate user input. Screenshots of the GUIs 
are captured either with third-party frameworks or platform-dependent utilities. In 
contrast, ERICA solely relies on manual human-based GUI exploration and is pri-
marily developed for capturing user interaction traces. ERICA comprises around 
18,600 unique GUIs harvested from 2400 applications. Rico, an extension of the 
ERICA dataset, mines GUI screenshots, GUI hierarchy data, application meta data 
and interaction traces with both human-based and automatic exploration techniques 
and constitutes the largest design dataset of the discussed ones with 72,219 GUIs 
collected from 9772 unique Android applications (from 27 different application 
categories). Rico employs a custom Android service to access detailed information 
about all GUI components such as text, absolute position on the screen, visibility 
indicators, resource identifiers and the activity name, among others. For our proto-
typing approach, we employ Rico based on multiple important reasons: (i) the large 
amount of GUIs available for retrieval, (ii) the coverage of many diverse application 
domains and (iii) the comprehensive textual information provided particularly valu-
able for NL-based GUI retrieval.

2.1.1  GUI filtering

Due to the partly automated extraction of GUIs in Rico, the GUI repository natu-
rally contains erroneous GUIs inapplicable for our approach. We recognized mul-
tiple GUI types to be excluded through manual inspection of the dataset. First, 
(1) GUIs of the entertainment category (e.g. gaming) are discarded since RaWi 
should specifically support rapid prototyping of business and utility applications. 
Second, (2) GUIs displaying advertisement overlays and full screen web views 
are identified heuristically by particular patterns of component labels and dis-
carded from the repository (based on the presence of a specific number of com-
ponents and component types e.g., only web view, web view and icons, etc.). By 
employing this filtering heuristic, a common hierarchy-GUI-screenshot mismatch 
error type, in which the GUI screenshot appears to be a normal GUI with many 
low-level GUI components, however, the Rico view hierarchy data represents the 
entire GUI only as a single full screen web view, is identified and removed. This 
mismatch occurs often since e.g., developers directly embed their web apps into 
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Android apps instead of developing a native application. Third, (3) we discard 
non-English GUIs identified through a language detection framework that com-
putes language probabilities by accumulating character-level n-gram spelling fea-
ture probabilities (Shuyo 2010). In general, other languages could be supported 
by adapting the retrieval models (e.g. by employing multilingual embeddings 
or simply translating the corpus). After applying filtering, the GUI repository 
encompasses 57,764 unique GUIs. Furthermore, research identified several other 
error types encompassed in the Rico GUI dataset (Leiva et  al. 2020). Many of 
these errors are concerned with component-level mismatches (e.g., vertical offset, 
missing background image, wrong component type), which are not affecting our 
retrieval methods. However, the Rico GUI dataset also rarely contains completely 
mismatched hierarchy-GUI-screenshot pairs, where the GUI screenshot shows 
completely different functionality compared to the available view hierarchy. 
These cases can potentially create false positives during the GUI retrieval, how-
ever, they cannot be identified easily. Available research provides no evaluation 
of the extent of their occurrences in Rico and based on our manual inspection, the 
occurrence of these cases appears to be infrequent. Moreover, the potential nega-
tive impact of erroneous GUIs on the retrieval performance is mitigated by the 
vast amount of available GUIs in the Rico GUI dataset.

2.1.2  GUI text extraction

To support GUI retrieval from NL-based search queries over the GUI repository, we 
construct a textual representation for each GUI by extracting several text segments 
through XPath expressions from the GUI hierarchy. First, we extract displayed text 
and text hints that are marked as being visible on the captured GUI screenshot. Based 
on initial experiments, we decided to neglect the extraction of text from components 
marked as non-visible on the captured GUI screenshot since these text sections often 
tend to mislead the retrieval models. Similarly, we exploit the full activity name of 
the GUI and the resource identifier of each GUI component since developers often 
provide semantically descriptive naming especially valuable for GUI retrieval. How-
ever, these strings (for example “com.sample.sens.register.CreateNewAccountActiv-
ity”) require additional preprocessing through a tokenization pipeline to make them 
fully searchable. To this end, we apply punctuation, camel and snake case tokeniza-
tion and finally use a probabilistic tokenizer based on English Wikipedia unigram 
frequencies to extract tokens from the remaining parts. To clean the created tokens 
from non-descriptive and general tokens (for example “com”, “main” and “activ-
ity”), we employ a custom domain-specific stopword list for filtering, containing the 
top most frequent words in the corpus. Furthermore, we exploit the semantic labels 
of icons provided by Rico due to their similarly meaningful semantic descriptions. 
Figure  3 shows an example GUI retrieved with RaWi and multiple text segments 
that are extracted for retrieval, including the activity name, the icon labels and the 
resource identifiers. By extracting these dimensions of text, our approach supports 
both the search for entire GUIs and the retrieval of GUIs that only contain parts rel-
evant to the NL search query.
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2.2  GUI retrieval and text preprocessing

For text preprocessing of both the GUI text representations and the NL input query, 
we apply a standard preprocessing pipeline. First, we lowercase the text and apply 
tokenization. Tokens are then excluded by the following multiple filters. We discard 
stopwords and words comprising numeric or non-ASCII characters. Subsequently, 
we describe the employed baseline ranking models, the AQE techniques and the 
semantic BERT-based Learning-To-Rank models.

2.2.1  Baseline ranking models

For enabling retrieval of relevant GUIs with NL-based search queries from our GUI 
repository, we adopt well-known ranking models that showed their effectiveness in 
various domains before and are established in general-purpose search engines (Man-
ning et  al. 2008). Therefore, we decided to adopt the TF-IDF, BM25 (Robertson 
et al. 1995) and a TF-IDF-weighted neural Bag-Of-Words (nBOW) method (Galke 
et al. 2017) using pretrained dense word embeddings for similarity scoring to estab-
lish a first baseline for GUI ranking.

2.2.2  Automatic query expansion

For further enhancements of the retrieval performance and tackling the vocabulary mis-
match problem (or synonymy) we additionally examined Automatic Query Expansion 
(AQE) techniques (Manning et al. 2008; Azad and Deepak 2019). Synonyms such as 
“choose” and “select” can not be matched by traditional IR methods such as BM25 
(although the later described BERT-LTR approach mitigates this problem). AQE meth-
ods attempt to extend and refine the initial query automatically with relevant terms in 
order to improve the ranking performance. In the absence of user feedback, AQE meth-
ods employ pseudo-relevance feedback (PRF) where the initially retrieved top-k docu-
ments (from a base model such as BM25) are assumed to be relevant and thus used as 
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com.zappos.sixpm:id/menu_cart (bag)

com.zappos.sixpm:id/product_price
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Fig. 3  Multiple GUI text segments (activity name, icon and resource identifiers) that are extracted and 
preprocessed for NL-based GUI retrieval
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input to compute the query expansion terms. For our GUI retrieval approach, we there-
fore focused on the incorporation and evaluation of PRF methods. Based on the notion 
of PRF, many expansion term scoring techniques have been devised in AQE research 
before (Azad and Deepak 2019). These scoring techniques generally follow a similar 
procedure. By comparing the term distributions of term t in the relevant documents DR 
and the entire corpus DC , the importance of a term in the relevant documents DR can be 
estimated. The initial NL query can then be expanded with the top-n terms according 
to their ranking score. For our GUI retrieval system, we compute the Kullback–Leibler 
Divergence (KLD) score (Carpineto et al. 2001) for each term t ∈ DR as

with p(t ∣ DR) and p(t ∣ DC) being the probability of term t occurring in the relevant 
documents DR and in the entire document collection DC , respectively. To compute 
these probabilities we use the maximum likelihood estimates (MLE) i.e. 
p(t ∣ DX) =

ft,x∑
d∈Dx

∣d∣
 , where d is a document of Dx with ∣ d ∣ tokens. Applying and 

evaluating the KLD score in our AQE experiments is based on the notion that the 
KLD score showed its effectiveness compared to other expansion term scoring 
methods before (Carpineto et al. 2001). In addition to using this method for expan-
sion term selection solely, we evaluated a second variant that includes the KLD 
score as a weight for the expanded terms in the retrieval model in order to control 
their effect on the GUI document ranking. Since the GUI prototypes are represented 
through multiple text segments, we adapt the PRF-KLD score to compute expansion 
candidates for each GUI text segment individually and aggregate the top-n terms of 
the different text segments to obtain the query expansion terms. If duplicate top-n 
terms from different text segments appear, we only incorporate them once in the 
expanded query. Similarly to the previously discussed method, we additionally eval-
uated a second variant of the text segment-wise PRF-KLD by weighting the expan-
sion terms with their respective scores to control their influence on the ranking. Fig-
ure  4 exemplifies the employed AQE technique as (1) retrieving the initial top-k 

ScoreKLD(t) = p(t ∣ DR) ⋅ log
p(t ∣ DR)

p(t ∣ DC)
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Fig. 4  Example of AQE using the KLD scoring: (1) Initial top-k GUI retrieval with a base ranking model 
and (2) calculating KLD scores based on the MLEs
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GUIs and extracting the text (TE) to obtain DR , then (2) computing the MLEs for DR 
and DC to obtain the KLD scores.

2.2.3  BERT‑based learning‑to‑rank models

The models presented previously can be applied to our GUI text documents, how-
ever, GUI ranking differs from other text-based ranking tasks in multiple aspects. 
First, GUIs are not standard well-structured text documents, but typically provide 
only short text fragments (e.g. button or short label text), named components (often 
with proprietary abbreviations), many irrelevant data items (e.g. product descrip-
tions or names) and no natural ordering of the text. Accordingly, the gap between 
the NL queries and the GUI text representations is large. Therefore, more sophisti-
cated semantic models are required to further improve the retrieval performance. To 
this end, we fine-tune a state-of-the-art BERT-based (Devlin et al. 2018) learning-
to-rank (LTR) model (Han et al. 2020). BERT is a generally effective pretrained and 
large-scale language model that outperforms many traditional models in different 
NLP tasks. We prepare the model by concatenating the [CLS] token, followed by 
the NL query, a separator [SEP] token and the GUI document text and a final [SEP] 
token as the input to the BERT-LTR model. Then, the pooled [CLS] representation 
is used as input to a ranking model. We trained three BERT-LTR models includ-
ing (1) a pointwise LTR model (with sigmoid cross entropy loss), (2) a pairwise 
LTR model (with pairwise logistic loss) and (3) a pointwise LTR model (with soft-
max loss) and evaluated their NL-based GUI ranking performance. We employ the 
BERT-LTR model proposed by (Han et  al. 2020) and illustrate its application for 
NL-based GUI ranking in Fig. 5. The respective GUIs are first transformed to GUI 
text documents, concatenated with the NL query and fed into the BERT model to 
obtain the BERT embedding. To compute the ranking score for a GUI, the embed-
ding is fed through a feed-forward network. On this basis, pointwise and pairwise 
losses can be computed to optimize the feed-forward network and fine-tune the pre-
trained BERT model. In addition, we included a pretrained Sentence-BERT model 
(Reimers and Gurevych 2019) in our evaluation, in order to better understand the 
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[SEP]
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[SEP]

Fig. 5  BERT-LTR model based on the work of Han et al. (2020) illustrated for its application for NL-
based GUI ranking using a pretrained BERT model
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performance gained by the proposed BERT-LTR models, which are trained specifi-
cally for the NL-based GUI ranking task. This model has also been used as a text-
only baseline in the Screen2Vec approach (Li et al. 2021).

2.3  Deriving editable GUI screens

Since Rico provides only GUI screenshots which are not directly reusable for rapid 
GUI prototyping and editing, we propose a simple yet effective algorithm to trans-
form them into partly editable GUI screens. The automatic derivation of editable 
GUIs from the GUI repository is integrated into the graphical editor of RaWi, which 
will be described in more detail in the subsequent section. In particular, we can 
exploit the GUI hierarchy data and semantic labels for GUI components encom-
passed in Rico to extract them accordingly from the accompanied GUI screenshots. 
Therefore, (1) we initially obtain the original GUI screenshot provided by Rico and 
(2) crop each contained GUI component from the screenshot based on their abso-
lute position. We applied this procedure for both individual GUI components and 
additionally identified layout components. Third, (3) for three GUI component types 
including labels, buttons and text-input we extract multiple style properties in our 
current prototype to provide more detailed editing capabilities. For the remaining 
components, we currently simply reuse their image crop in the editable GUI screens. 
For each layout group, we compute the background color as the top-ranked RGB 
color in their histogram. For labels, we identify the font color by first obtaining the 
background color as before and then computing a normalized color distance to the 
background color for all colors in the histogram. The first top-ranked color in the 
histogram that exceeds a predefined distance threshold is selected as the font color 
being a simple yet effective heuristic. In addition, we estimate the font size by com-
paring the bounding boxes from the hierarchy data and an instantiated bounding 
box containing the text. Since Rico often provides only rough bounding boxes for 
the labels, we compute refined bounding boxes using Tesseract-OCR (Smith 2007). 
For buttons and text-inputs we similarly extract the background and font colors. We 
enrich the Rico dataset with the identified style properties for enabling proper GUI 
component instantiation in the editor later. Finally, (4) the cropped GUI components 
are placed on their exact GUI screen positions. Subsequently, we describe our proto-
typical implementation.

2.4  Prototype implementation

The presented GUI retrieval and GUI screen derivation components are integrated 
in a prototype that we implemented as a web-based rapid prototyping editor using 
HTML5 and JavaScript. Our current prototype provides a GUI search view, a graph-
ical prototyping editor and an interactive and dynamically updated preview of the 
built application as shown in Fig. 6. Subsequently, we provide more details about 
the features of our current implementation. Our current interactive prototype is pub-
licly available at RaWi Prototype (2022).
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2.4.1  GUI search

NL-based search queries can be submitted by users through a simple search view 
with autocompletion capabilities. The Python-based GUI retrieval component is 
accessible through a REST interface which is implemented in a Django application. 
In our interactive prototype, BM25 is the retrieval preset.

2.4.2  GUI prototyping editor

Users are enabled to add retrieved GUI prototypes to the graphical rapid prototyp-
ing editor. Here, the previously created enriched GUI hierarchy data is employed to 
create the editable GUI screens. Initially, we place all the image crops of layout and 
individual GUI components at their absolute positions on the GUI screen to preserve 
the complete original appearance of the GUI. By clicking on labels, buttons or text-
input components, an editable version of the GUI component is instantiated and basic 
properties such as text, color and size can be modified. Furthermore, users can create 
a number of custom GUI components directly or reuse different components from 
other retrieved GUI screens. In addition, we currently provide basic editing function-
ality: GUI components can be removed, copied and bound to other GUI screens. To 
create an interactive prototype, RaWi provides the capabilities to create simple click-
event transitions on the components. The graphical editor of our approach RaWi is 
based on the 2D canvas JavaScript library KonvaJS (Konva.js 2015).

2.4.3  GUI prototype preview

We provide a dynamically updated preview of the created prototype showing all 
modifications similar to traditional prototyping approaches. The preview enables 

Fig. 6  Web-based GUI prototyping editor of our approach RaWi with (1) the GUI search view, (2) the 
graphical editor and (3) the prototype preview
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users to directly explore an interactive version of the created application proto-
type using previously created click-events as the foundation.

3  Experimental evaluation

In this section, we present the design and methodology of our experimental pro-
cedure to evaluate RaWi. In particular, the main goals of our experimental evalua-
tion are (i) to measure the performance of the employed GUI retrieval techniques 
and conduct a comprehensive comparison between them on a newly created gold 
standard, (ii) to assess the productivity improvements of RaWi compared to a 
traditional rapid prototyping approach in a practical GUI prototyping environ-
ment and (iii) to measure the perceived usefulness and gain user insights for our 
approach. To this end, we investigate the following three research questions in 
our evaluation:

• RQ1 : Which retrieval method performs best for GUI retrieval on the basis of NL 
search queries?

• RQ2 : Does RaWi increase the GUI prototyping productivity compared to a tradi-
tional prototyping tool?

• RQ3 : Do users perceive RaWi as useful for rapid high-fidelity GUI prototyping?

3.1  RQ1 : GUI retrieval performance

3.1.1  Gold standard

Due to the absence of an evaluation dataset for GUI retrieval from NL queries, we 
decided to build a new and comprehensive gold standard through crowdsourcing 
techniques (Carvalho et al. 2011) and publicly release it to foster further research. 
The construction of the retrieval gold standard is divided into three main phases: (i) 
the collection of NL queries, (ii) the collection of relevancy annotations for poten-
tially relevant GUIs with reference to NL queries and (iii) the derivation of the final 
gold standard via data cleansing. To accomplish the large-scale data collection, 
we used the well-established crowdsourcing platform Amazon Mechanical Turk 
(AMT) (Paolacci et al. 2010). The GUI retrieval gold standard is available at RaWi 
Repository (2022) including detailed descriptive statistics of the dataset (such as the 
distribution of contained app categories, the average number of tokens per query 
etc.), which will also be discussed briefly at the end of this section. Subsequently, 
we explain the three phases of the gold standard construction in detail as shown in 
Fig. 7.

First, (i) the collection of NL queries poses a challenge due to the difficulties of 
assuring high data quality for free-form NL-based crowdsourcing tasks (Rashtchian 
et al. 2010). Therefore, we decided to employ AMT for data collection but restricted 
the tasks to workers that we instructed (hired) specifically for the completion of this 
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task. These annotators represent a good proxy for the population in our scenario, 
since workers on AMT typically have diverse demographics (Difallah et al. 2018; 
Ross et  al. 2010) (potential threats to validity on worker selection are discussed 
later). As the foundation for writing queries and to avoid bias, we randomly sampled 
GUI screenshots from the filtered Rico dataset and asked the workers to write que-
ries for them in a Human Intelligence Task (HIT). Overall, for each of 1045 unique 
GUIs from the sample, we gathered one unique NL query written by one of our 
overall 56 unique workers (resulting in 1045 GUI-NL-query pairs). For additional 
quality assurance, we manually reviewed the queries and filtered both six individual 
queries for GUIs that were erroneous or unusable screenshots from Rico (e.g. white 
screen, foreign language not detected by the language detection framework, among 
others) and all queries from six workers that made systematic errors due to misun-
derstandings of the task. By filtering these queries, only apparently erroneous NL 
queries were discarded, thus no bias is introduced but the quality of the dataset is 
enhanced. After filtering, we retain 931 GUI-NL-query pairs with queries written by 
50 unique workers and apply basic text preprocessing methods (dequoting, stripping 
and removal of special characters). By employing AMT for query collection, we are 
enabled to gather a large amount of different NL queries from a variety of anno-
tators, thereby increasing the heterogeneity of the NL queries the ranking models 
have to handle. Four GUI-NL-query pairs taken from the gold standard are shown 
in Fig. 8. The examples illustrate the diversity of the gathered NL queries ranging 
from short and general queries (e.g. Fig. 8a) to long and detailed search queries (e.g. 
Fig. 8c) across a broad selection of different application domains.

Second, (ii) to accomplish the collection of relevance annotations, we initially 
require a collection of potentially relevant GUI documents to be annotated for each 
query. Due to the infeasibility of annotating the relevancy of every GUI in Rico for 
each query, we decided to heuristically employ our three baseline retrieval models 
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Fig. 7  Overview of the pipeline to create the gold standard for NL-based GUI ranking using crowdsourc-
ing with the three main steps: (1) NL query collection, (2) GUI relevance annotation and (3) dataset 
filtering and cleaning
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(TF-IDF, BM25 and nBOW) to retrieve the potentially relevant top-30 GUIs for 
each query. To retain a diverse and heterogeneous GUI collection for each query, 
we apply the pooling technique (Jones and Van Rijsbergen 1976; Teufel 2007) on 
the GUI retrieval results of the three models by iterating over them in an alternating 
fashion and adding the top-ranked GUI not yet contained in the pool to the GUI col-
lection. Moreover, we directly added the reference GUI that we previously showed 
to workers during the NL query harvesting to the pool of potentially relevant GUI 
documents. The pooling technique comprises the disadvantage of potentially exclud-
ing some relevant documents in the collection, however, represents a standard pro-
cedure for constructing large IR test collections by overcoming the infeasibility of 
annotating the large-scale corpus entirely. To keep the data collection feasible while 
ensuring a sufficient amount of data for a valid retrieval evaluation, we randomly 
sampled 450 queries from our previously created query collection, computed the 
pooled top-30 GUIs for each query with the approach described previously and pub-
lished another HIT on AMT that asked workers for their relevancy annotations. Due 
to the subjectivity of the relevancy R, each GUI was annotated by three different 
workers on a relevancy scale of R = 0 (low relevance), R = 1 (medium relevance) 
and R = 2 (high relevance). All 30 GUIs of an NL query were annotated exactly 
three times, resulting in 90 GUI relevance annotations per NL query by three distinct 
annotators. As a guidance for the annotators, we provided multiple annotation exam-
ples for the relevancy scale and included them in our accompanying material (RaWi 
Repository 2022). To assure high annotation quality, we restricted the task solely 
to workers that met multiple qualifications (#Approved-HITs ≥ 1000, Approval-Rate 
≥ 90%, Residence in English-speaking country (USA/GB/AU)) as previous research 
found these metrics particularly effective for enhancing the annotation quality (Peer 
et al. 2014; Akkaya et al. 2010). In addition to these generic AMT platform require-
ments calculated based on the workers history, we created a custom qualification 
test to assess the comprehension of the relevancy criteria and the overall task of the 
annotators on a small set of GUI-NL-query pairs, which simultaneously acted as a 
training phase. Workers were required to meet a certain performance to be allowed 

q = „Ui for user profile“ q = „Shop for Men’s, Women's and 
Kids“

q = „Delivery details input boxes 
for address and bu�ons for home, 

work or other“

q = „podcast episode screen with 
download op on“

(a) GUI (49799) (b) GUI (479) (c) GUI (66919) (d) GUI (3560)

Fig. 8  Four a–d GUI-NL-query pairs taken from the gold standard with the NL queries gathered via 
crowdsourcing and the respective Rico GUI index
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to work on the annotation task. Furthermore, we informed the workers that submis-
sions were rejected if a submission scored below 2

3
 agreement with the majority vot-

ing of a query. Overall, we gathered 40,500 relevancy annotations (for 450 queries 
with each of the 30 GUIs annotated three times) from 49 unique workers.

Third, (iii) to obtain a high-quality gold standard from the previously harvested 
dataset, we run a pipeline of selection steps described subsequently. Due to the fil-
tering, the final gold standard comprises a reduced set of 100 queries each with their 
top-20 GUIs. To increase data quality, we removed GUIs with high annotation per-
plexity. In particular, we discarded GUIs with annotation ties and where annotations 
diverged to the extremes, for example, two votes for R = 0 and one vote for R = 2 
or vice versa since these annotations indicate high uncertainty towards deciding 
for the ground truth. Annotators may have different opinions on relevancy and are 
more or less strict in close annotation cases. Therefore, these annotation ties can-
not be resolved and the respective GUIs are excluded. Afterwards, we set a suitable 
predefined ratio of different relevancy scores per query: 14 × R = 0 , 3 × R = 1 and 
3 × R = 2 . This provides a typical relevance distribution with mainly non-relevant 
GUIs while ensuring a small amount of relevant GUIs. For each query, we ran-
domly sampled GUIs with the respective relevance scores according to the previ-
ously defined quantities. If the quantity for a relevance score could not be reached, 
we randomly sampled from the other scores to obtain 20 GUIs per query. However, 
we only kept queries that have a minimum of two R = 1 , two R = 2 GUIs and 20 
GUIs remaining. To obtain the same amount of GUIs per query, we decided to set 
the cutoff at the top-20. In addition, we discarded queries where the reference GUI 
that was used to write the query did not receive a relevance score of R = 1 or R = 2 
from the human relevance annotators, as a query sanity check. The rationale for dis-
carding these queries is to ensure high-quality in the written NL queries. If the NL 
queries do not match the shown reference GUIs (based on the relevance annotators 
judgements), the query is potentially of low quality (e.g., the annotator that wrote 
the query did not understand the GUI, provided an ambiguous query etc.). From 
the remaining query collection, we randomly sampled 100 queries to obtain the 
final gold standard. To illustrate the gold standard, an example NL query with three 
GUIs and their respective ground truth relevance annotations is shown in Fig.  9. 
Each of the GUIs comes with a different relevancy with respect to the NL query. 
For example, GUI1 is annotated with R = 2 since it fully corresponds to functional-
ity requested in the query. However, GUI2 only receives a relevancy of R = 1 since 
the GUI contains the requested photo selection options, but the functionality is not 
embedded in a user profile context. Finally, GUI3 is annotated with R = 0 since it is 
unrelated to the query showing a user profile for water management.

To gain insights into the overall collected dataset and gold standard, we com-
puted several statistics. To assess the Inter-Annotator Agreement (IAA) of the gold 
standard, we computed Krippendorff’s � (Krippendorff 2011), a chance-corrected 
IAA metric supporting ordinal data. As a result, we obtain a score of � = 0.67 
which indicates a substantial agreement according to score interpretation methods 
(Landis and Koch 1977; Kraemer et  al. 2012). In addition, the collected NL que-
ries consist of 6.17 tokens on average (SD: 3.69) in our dataset, which indicates 



1 3

Automated Software Engineering (2023) 30:13 Page 17 of 34 13

higher information need complexity and specificity for NL-based GUI searches in 
comparison to typical search queries, where most of the queries consist of only up 
to three tokens (Phan et al. 2007). Furthermore, based on the applied GUI sampling 
approach, the distribution of included app categories is similar to the distribution 
of the original Rico dataset, which corresponds to high diversity (26 app catego-
ries). Moreover, high diversity is also achieved among the queries indicated by a 
very small average pairwise Jaccard similarity (2.7%) over all queries in the gold 
standard.

3.1.2  Ranking model parameters

To evaluate the various ranking models in our experiments, we used TF-IDF, BM25 
( k1 = 1.5 , b = 0.75 , � = 0.25 as standard parameters Manning et  al. 2008) and 
nBOW (using 300-dimensional word2vec embeddings Mikolov et  al. 2013). The 
four considered AQE methods based on PRF-KLD are evaluated using BM25 as the 
base ranking model. In particular, we restricted the number of documents employed 
for expansion term computation to k = 10 and set the number of added expansion 
terms to n = 10 . We used a similar setup for the text-segment-wise PRF-KLD vari-
ants, however, restricted the number of expansion terms per text segment to nts = 2 . 
For brevity, we refer to the text-segment-wise PRF-KLD method as (s) and to the 
weighted variants as (w) in the evaluation results. For the BERT-LTR models, we 
used the pretrained large BERT-base version (Devlin et al. 2018) with a vector size 
of 768 and applied fine-tuning using the relevance annotations of the remaining 
350 queries (9,495 instances) not contained in the gold standard. We employed the 
Tensorflow-Ranking BERT-Extension for training (Han et al. 2020) and train each 
model for 30,000 iterations ( learning-rate = 1 × 10−5 and batch-size = 1 ). For the 
Sentence-BERT baseline (Reimers and Gurevych 2019), we employed the full pre-
trained 768-dimensional model with cosine similarity GUI ranking.

R=2 R=1 R=0

„profile window with 
a bu�on to take a 
photo or select it 
from galary“
query

GUI

Relevance

GUI1 (46344) GUI2 (28870) GUI3 (14492)

Fig. 9  Example of a NL query with three GUIs annotated with different relevancy levels with reference 
to the shown query taken from the gold standard
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3.1.3  Evaluation metrics

To measure the performance of the GUI ranking models, we computed several well-
known IR metrics. First, (1) we computed the Precision at rank k (P@k) as the frac-
tion of relevant GUI documents |Rk| over the number of all retrieved GUI documents 
k. Second, (2) we computed the Average Precision ( AveP ) as the average of P@k 
values at all relevant GUI document positions with relk being an indicator for the rel-
evance at position k and |R| the number of relevant documents. The P@k and AveP 
metrics are shown in the following:

Third, (3) we computed the Mean Reciprocal Rank ( MRR ), where ranki denotes the 
rank of the highest ranked relevant GUI document of the i-th query. In addition, 
(4) we computed the HITS@k indicating if at least one relevant GUI document is 
ranked among the top-k ranked documents. To compute these metrics (1)–(4) that 
require binary relevance annotations on the employed relevancy scale, we binarize 
the relevance scores beforehand, thereby only high relevance scores ( R = 2 ) are 
considered relevant. In particular, the MRR and HITS@k metrics are computed as 
follows:

In order to further take into account the full annotation scale and the ranking posi-
tion of GUI documents with high and medium relevance (R = 2 or R = 1 ), we addi-
tionally considered (5) the Dicounted Cumulative Gain at rank k ( DCG@k ). Rel-
evant GUI documents ranked higher in the retrieval collection are more valuable 
and the relevance score should accordingly be weighted more than the score of GUI 
documents at lower ranked positions. Hence, in DCG@k each relevancy score is dis-
counted by a weight (log-based smoothing) that is computed based on the ranking 
position which decreases with lower ranking positions. The DCG@k is normalized 
by the IDCG@k (Ideal DCG@k ) to obtain (6) the NDCG@k (normalized DCG@k ), 
which is employed in our evaluation. The IDCG@k is computed as the DCG@k of 
relevancy scores sorted in descending order. To compute the final results, all metrics 
are averaged over all queries of the GUI ranking gold standard. Subsequently, the 
DCG@k and NDCG@k metrics are shown, with reli denoting the relevance score at 
the i-th rank:
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3.2  RQ2 : productivity of rapid prototyping

3.2.1  User study design

To measure potential productivity improvements of our data-driven GUI prototyping 
approach, we conducted a controlled experiment with 19 participants as a within-
subjects study. In the experiment, we compared our approach to a traditional high-
fidelity GUI prototyping approach. With reference to the discussed requirements 
elicitation scenario, participants in the role of analysts were asked to create two dif-
ferent application prototypes (consisting of two GUIs each) on the basis of typical 
NL requirements, with each approach separately to mitigate carry-over effects. To 
avoid bias from both the tasks and the ordering of the approaches, we considered 
all four combinations of the approaches A/B and the tasks 1/2 (A1B2/A2B1/B1A2/
B2A1) and assigned the conditions to participants randomly while ensuring that the 
occurrence of conditions is evenly distributed. As the approach for comparison, we 
employed Mockplus (Mockplus 2014) since it can be regarded as a representative 
tool for traditional GUI prototyping approaches, providing a restricted number of 
manually crafted GUI screens to reuse and enabling users to build GUIs by combin-
ing a large number of searchable GUI components in a graphical editor. Overall, we 
recruited 19 participants with technical backgrounds (BSc: 7/MSc: 8/PhD: 4) mainly 
having medium to high experience in software development (Mean: 3.52/SD: 1.02) 
and mainly having little to medium GUI prototyping experience (Mean: 2.42/SD: 
0.96) as self-reported by the participants on a five-point Likert scale. Most of the 
participants (13) reported that they used a prototyping tool before, with the most fre-
quently mentioned ones being general-purpose tools such as PowerPoint (9), Photo-
shop (2) and Adobe XD (2). Thus, the participants are representative regarding the 
requirements elicitation scenario, especially targeting to support the inexperienced 
analysts.

3.2.2  User study tasks

Both GUI prototyping tasks are based on real Android applications within the 
top-50 apps on Google Play, which are not included in the Rico GUI repository to 
avoid bias. The first task represents a shopping browser consisting of a start GUI 
asking the user to select from a list of countries (#GUI-comps: 25) and the actual 
main shopping browser GUI that allows users to search for websites and displays 
the favorite websites (#GUI-comps: 33), among others. The second task represents 

(5)DCG@k =

k∑

i=1

reli

log2(i + 1)

(6)NDCG@k =
DCG@k

IDCG@k
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a hotel booking application consisting of a GUI that allows users to enter search 
details (#GUI-comps: 25) and a GUI that shows a list of search results (#GUI-
comps: 29). We omit the detailed task descriptions and NL requirements for brevity, 
however, provide all study instructions among the other publicly released materials 
in our accompanying repository (RaWi Repository 2022). We decided to employ 
these GUIs in our experiments due to multiple reasons. First, (i) the GUIs contain a 
large number of different GUI components, thus providing difficulty to create espe-
cially for novice users. Second, (ii) both approaches RaWi and Mockplus cover both 
the shopping and booking application domain with basic screens allowing for a fair 
comparison.

3.2.3  Experimental procedure

In the study, we asked the participants to create a GUI prototype with each approach 
separately. Depending on the assigned condition, the participant started with the first 
approach and task. Before working on the actual task, we showed a short tutorial 
video of the approach with a GUI prototyping example and allowed the participants 
as much time as they needed to test the approach. Afterwards, the actual task was 
conducted. With regard to the interactive GUI prototyping scenario with custom-
ers for requirements elicitation, the available time for prototyping is highly limited. 
Therefore, we accordingly restricted the available time for creating the GUI proto-
types to several minutes, with a maximum of seven minutes. To obtain a fine-grained 
productivity measurement, we captured screenshots of the current GUI prototype 
state after each minute starting from three minutes and thus collected five screen-
shots per GUI. These screenshots formed the basis for our post-experiment analysis. 
After completing the first task, we continued with the identical procedure for the 
second approach and task. Overall, we gathered 20 GUI screenshots per participant.

3.2.4  Evaluation metrics

From the gathered screenshots, we computed multiple metrics. However, no prior 
research proposed metrics for assessing GUI prototyping productivity before. In 
particular, a closely related problem on GUI implementation effort estimation (Lo 
et  al. 1996) finds especially the number and type of GUI components as valuable 
factors for predicting the overall GUI implementation effort. In a similar fashion, 
GUI prototyping in the requirements elicitation phase asks analysts to quickly 
select and arrange GUI components that properly reflect the requirements specified 
by the customer. Here, one or more GUI components represent a particular func-
tional requirement and therefore, we consider the number of GUI components as 
a proxy for GUI prototyping productivity. Thus, we first (a) count the number of 
correct (based on GUI component type e.g. using a password field instead of a plain 
text field for the functionality to enter passwords etc.) GUI components available 
at the considered GUI prototype at time t appropriate for the given requirements as 
an approximation for productivity (denoted by #GUI-comps). GUI components that 
overlapped the GUI screen or other GUI components were not included in the count. 
Detailed design decisions (e.g. placing a button bar on top or bottom or similar) 
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are apparently neglected in this metric, since in the requirements elicitation phase, 
the focus lies on quickly representing the main functionality and not the final GUI 
design. Different working styles and other relevant individual factors of participants 
that influence the outcome are considered by our within-subject design, comparing 
productivity only between the participants themselves. Second, (b) we count the 
number of GUI components as before, however, data elements (e.g. images or text) 
are only counted multiple times if they contain realistic and diverse data (e.g. not 
simple template and copied data) (denoted by #GUI-comps-div). We considered to 
compute this corrected count since having high content diversity through realistic 
data is important for more realistic high-fidelity GUI prototypes. Third, (c) we count 
the number of incorrect GUI components available at time t that were not included 
in the requirements (denoted by #GUI-comps-neg). Finally, (d) we compute an 
adjusted count where including non-required components is punished by taking 
the count of required GUI components (a) minus the count of GUI components not 
included in the requirements (c). In our evaluation, we want to compare the produc-
tivity between the two approaches at each time step t. To evaluate if the productivity 
is significantly higher using our approach, we compute the Wilcoxon signed-rank 
test (Woolson 2007) over all pairs of study tasks. Therefore, we compare the produc-
tivity of each participant between both first GUIs of the tasks and both second GUIs 
of the tasks. Moreover, we compute Cliff’s � (Macbeth et al. 2011) to estimate the 
overall statistical effect size.

3.3  RQ3 : perceived usefulness

In addition to measuring the GUI prototyping productivity, we assessed the per-
ceived usefulness of our GUI prototyping approach by the study participants. Using 
a five-point Likert scale, we asked participants (a) how much our approach sup-
ported them during the prototyping process, (b) how relevant the retrieved GUIs 
were on average, (c) how much the GUI retrieval results supported the users during 
the prototyping and (d) how much the GUI search results helped in better visualizing 
how the GUI could be prototyped. Moreover, we computed the System Usability 
Scale (SUS) (Brooke 1996) which is a reliable and well-known measurement for 
system usability. To gain further insights, we asked the participants for free-form 
feedback to potentially discover interesting ideas for improvements of our GUI pro-
totyping approach.

4  Results and discussion

4.1  RQ1 : GUI retrieval performance

Table  1 shows the evaluation results of the different baseline ranking models, 
AQE techniques and BERT-based LTR models for the P@k and NDCG@k met-
rics, whereas Table 2 shows the evaluation results for the AP , MRR and HITS@k 
metrics. Considering the three baseline ranking models, we can observe that BM25 
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outperforms the other two models to a large extent across most of the examined met-
rics. In particular, the MRR of the BM25 model indicates that the first relevant GUI 
appears at rank 1.92 on average over the gold standard. Moreover, the HITS@5 indi-
cates that in 69% of the queries the BM25 model ranked at least one relevant GUI 
among the top-5. Thus, BM25 seems to be an effective baseline model for NL-based 
GUI retrieval. Comparing the plain TF-IDF and nBOW models, we can observe that 
especially the P@k and HITS@k as well as the NDCG@k for small k are higher 
for the nBOW model, indicating that pretrained word embeddings can provide addi-
tional benefit for GUI retrieval from NL searches.

In addition, both tables show the results of the four different AQE methods based 
on the PRF-KLD score using the previously best performing baseline ranking model 
BM25 as the base ranker. The results show that the text-segment-wise PRF (s) 
method obtains the highest scores among most of the considered metrics and clearly 
outperforms the BM25 base model across all the ranking metrics. Both weighted 
PRF-KLD variants can outperform the PRF (s) method for some individual metrics 
and mainly perform better for the binary metrics P@k and HITS@k compared to 
the BM25 base ranker. However, both are outperformed on the NDCG@k metric 
that takes into account the entire relevancy scale and additionally requires to rank 
GUIs with medium relevance high. Overall, the results indicate that AQE techniques 
in the form of PRF-KLD can improve the performance for NL-based GUI retrieval 
compared to the baseline BM25 ranking model on average, especially the variant 
that takes the GUI-specific text segments into account. Additionally, we provide a 
more detailed per-query analysis of the AQE evaluation results in our accompanying 

Table 1  Evaluation results overview of the different models on the NL-based GUI ranking gold standard 
using the Precision@k (p@k) and NDCG@k metrics

Bold values indicate best metric score within the result group (baselines, AQE methods and BERT)
Underline values indicate best metric score over all result groups

P@k NDCG@k (N@k)

P@3 P@5 P@7 P@10 N@3 N@5 N@10 N@15

TF-IDF 0.223 0.204 0.181 0.175 0.329 0.339 0.395 0.480
BM25 0.303 0.276 0.246 0.226 0.426 0.441 0.515 0.579
nBOW 0.270 0.234 0.220 0.193 0.395 0.370 0.374 0.398

BM25 0.303 0.276 0.246 0.226 0.426 0.441 0.515 0.579
+PRF 0.313 0.266 0.259 0.236 0.432 0.443 0.520 0.584
+PRF (s) 0.317 0.280 0.260 0.235 0.441 0.462 0.536 0.604
+PRF (w) 0.320 0.276 0.244 0.231 0.439 0.417 0.421 0.446
+PRF (sw) 0.317 0.280 0.256 0.237 0.429 0.416 0.426 0.456

Sentence-BERT 0.343 0.314 0.294 0.267 0.481 0.511 0.611 0.667
BERT-LTR(1) 0.377 0.350 0.307 0.269 0.530 0.560 0.634 0.697
BERT-LTR (2) 0.400 0.340 0.304 0.281 0.543 0.556 0.636 0.701
BERT-LTR (3) 0.363 0.354 0.317 0.287 0.517 0.554 0.646 0.694
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material (RaWi Repository 2022). For example, the MRR and P@5 metrics were 
improved or at least as good in 69% and 77% of the queries with an average improve-
ment of .19 and  .07 compared to the base model BM25 by applying the PRF (s) 
method. In particular, for queries that have many relevant GUIs in the GUI reposi-
tory and the initial retrieval results with the base model BM25 provides relevant and 
cohesive GUIs, the AQE method can improve the results. For instance, for the query 
“a list of songs” meaningful expansion words such as artist, bookmark, and play can 
be extracted, which strengthen the query.

Considering the results of the trained BERT-LTR models, we can observe that 
all of the three models significantly outperform both the baseline ranking and AQE 
models. In our experiments, the pairwise (BERT-LTR (2)) and pointwise (BERT-
LTR (3)) model appear to mainly perform best among the examined models. In 
addition, the pretrained Sentence-BERT baseline similarly outperforms the stand-
ard baseline ranking and AQE models, however, is significantly outperformed by 
the trained BERT-LTR models across all metrics. Regarding the NDCG@k metrics, 
the BERT-LTR models outperform the Sentence-BERT baseline to a large extent, 
indicating that the models learned to rank GUIs with both medium ( R = 1 ) and high 
relevance ( R = 2 ) higher in the overall ranking. Overall, the results indicate that 
the pretrained and fine-tuned BERT language model helps to better represent the 
semantics of the query and GUI documents and that, in combination with a LTR 
model trained specifically on the task of GUI ranking, it can be effectively applied 
to significantly improve the NL-based GUI ranking performance compared to the 
examined traditional IR methods and the pretrained Sentence-BERT baseline. In 
particular, these specifically trained semantic models are better in bridging the gap 

Table 2  Evaluation results overview of the different models on the NL-based GUI ranking gold standard 
using Average Precision (AP), MRR and HITS@k

Bold values indicate best metric score within the result group (baselines, AQE methods and BERT)
Underline values indicate best metric score over all result groups

AveP MRR HITS@k (H@k)

H@1 H@3 H@5 H@7 H@10 H@15

TF-IDF 0.331 0.451 0.320 0.460 0.580 0.650 0.760 0.910
BM25 0.413 0.520 0.370 0.600 0.690 0.760 0.860 0.930
nBOW 0.281 0.490 0.340 0.540 0.630 0.750 0.840 0.980

BM25 0.413 0.520 0.370 0.600 0.690 0.760 0.860 0.930
+PRF 0.419 0.505 0.370 0.580 0.680 0.780 0.850 0.930
+PRF (s) 0.427 0.532 0.380 0.610 0.700 0.780 0.880 0.960
+PRF (w) 0.325 0.523 0.380 0.580 0.700 0.720 0.860 0.930
+PRF (sw) 0.333 0.533 0.390 0.590 0.700 0.770 0.870 0.930

Sentence-BERT 0.454 0.560 0.370 0.680 0.760 0.880 0.960 0.990
BERT-LTR (1) 0.486 0.618 0.460 0.710 0.860 0.920 0.980 1.00
BERT-LTR (2) 0.501 0.631 0.440 0.750 0.910 0.960 0.980 1.00
BERT-LTR (3) 0.499 0.626 0.450 0.730 0.860 0.940 1.00 1.00
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between the language used in NL queries and the GUI text representations. Fig-
ure 10 shows two example queries taken from the gold standard with their respective 
top-5 GUIs as ranked by the trained BERT-LTR (2) model. Each GUI is annotated 
with its ground truth relevance. For the queries we can observe that only a single 
GUI is annotated with a low relevance (due to an information overlay), whereas all 
other GUIs appear to have a medium to high relevance for the queries, which shows 
the ranking strength of the BERT-LTR.

4.2  RQ2 : productivity of rapid prototyping

In Fig. 11 we show the evaluation results of our controlled experiment. Each of 
the four boxplots (a)–(d) shows one of the four #GUI-comp metrics as a proxy 
for productivity as explained earlier. For the basic #GUI-comp count shown in 
Fig. 11a, we can observe that our approach outperforms the traditional approach 
to a large extent at each time step t. Naturally, the counts in both approaches 
increase with increasing t, however, the differences between the two approaches 
become smaller with increasing t. Participants are often able to find suitable start-
ing GUI screens via adequate searches in RaWi and thus often begin with higher 
counts followed by smaller adjustments (adding and removal of components). In 
contrast, in the traditional approach it was often more difficult for participants to 
find an appropriate GUI at the beginning, however, repetitive component groups 
could be copied quickly after initial creation which led to a strong increase in 

R=2

„Weekday 
digest for 

meal 
planning“

query

BERT-
LTR (2)

Rank 1

R=2 R=1 R=2 R=2

Rank 2 Rank 3 Rank 4 Rank 5

R=1

„income 
and 

expenses 
reports“
query

BERT-
LTR (2)

Rank 1

R=2 R=2 R=0 R=1

Rank 2 Rank 3 Rank 4 Rank 5

1

2

Fig. 10  Example of two queries from the gold standard with the respective top-5 GUI rankings with rel-
evance scores ranked by the BERT-LTR (2) model
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counts over time t. When working with RaWi, participants were challenged to 
extract good queries on the basis of the given NL requirements and select rel-
evant starting GUIs. Here, participants were not always able to find optimal start-
ing GUIs, however, productivity improvements typically could still be observed 
in comparison to the traditional prototyping approach since RaWi simplified the 
task in general. For the #GUI-comp-div counts that take into account the con-
tent diversity shown in Fig.  11b, we can observe a similar behaviour as in (a), 
however, the differences between the two approaches are apparently larger. GUIs 
retrieved with RaWi typically display already diverse and realistic data since they 
are derived from GUI screenshots of real applications. In contrast, participants 
often copied repetitive component groups and often were not able to provide 
diverse data in their GUI prototypes with the traditional approach. For the #GUI-
comp-neg counts that measure the components available not requested shown in 
Fig. 11c, we can observe that in both approaches the counts decrease over time t 
due to the removal of components available in the initial GUI screens that were 
not required, however, at the same time the GUI prototypes created with RaWi 
tend to contain more unrequested components. In RaWi, participants frequently 
found suitable screens in the beginning, yet often these GUIs included many 

(a) #GUI-comps correct based on the
requirements

(b) #GUI-comps-div with content
diversity

(c) #GUI-comps-neg that were not
requested

(d) #GUI-comps of (a) adjusted by
#GUI-comps-neg (c)

Fig. 11  Evaluation results of our controlled experiment: Each boxplot a–d shows one of the computed 
#GUI-comp metrics that the participants achieved with each approach RaWi and Mockplus at each min-
ute t from minutes 3–7
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additional components for other specific requirements that were not relevant for 
the requested prototype. However, we can observe a similar phenomenon in the 
traditional approach were participants that started with unsuitable GUI screens 
obtained high counts indicated by the outliers. In particular, one participant used 
a GUI with many unrequested components and did not manage to remove them 
up to minute 7. In addition, users of RaWi tend to focus on adding more requested 
functionality not yet contained in the starting GUIs and neglect removing unre-
quested components initially. This could potentially be due to the fact that the 
unrequested components in RaWi were possibly often perceived as less wrong 
(e.g., a star rating for each of multiple search results) compared to unrequested 
features in the templates in the traditional approach, and therefore potentially 
neglected initially more. For the adjusted #GUI-comp counts that represents the 
difference between the original count in (a) and (c) shown in Fig. 11d, we still 
can observe that our approach has higher counts at time t, however, the differ-
ences become smaller when punishing the prototypes for containing unrequested 
components. In addition to the differences observed in the boxplots, the Wil-
coxon signed-rank test results indicate that the counts as a proxy for productivity 
using our approach are statistically significant larger at all considered time steps 
t (p-value < 0.05) and all considered counts (a), (b) and (d). Moreover, Cliffs � 
indicates a large difference between counts of the approaches also in the cases 
where the difference appears smaller in the boxplots. Overall, the results indicate 
that our approach can improve the prototyping productivity compared to a tradi-
tional GUI prototyping approach and therefore provides a better applicability for 
interactive GUI prototyping.

4.3  RQ3 : perceived usefulness

Figure 12 shows the evaluation results of the perceived usefulness of our GUI pro-
totyping approach. The first question (a) regarding the support during the prototyp-
ing process received a high score (Mean: 3.73/SD: 0.80). The second question (b) 
regarding the perceived relevancy of the search results received a similarly high 
score (Mean: 3.63/SD: 0.68). The third question (c) regarding the support of the 
results received an even higher score (Mean: 4.21/SD: 0.78). Finally, the fourth 
question (d) regarding the support of the search results for better visualization 
received the highest score (Mean: 4.47/SD: 0.61). Overall, we achieved a SUS of 
81.57 which indicates that our approach has a high usability compared to the aver-
age SUS of 68. Participants found our approach very easy to understand and use, 
even for inexperienced and novice users in GUI prototyping. In general, the par-
ticipants reported further that they liked the large choice of available GUI screens 
to create a first GUI prototype quickly. Concerning improvements of the approach, 
participants mainly reported that the editor functionalities should be extended to 
include more editing options.
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5  Threats to validity

First, we discuss threats to internal validity which refers to potential bias comprised 
in our experimental evaluation. To reduce bias and subjectivity in the creation of the 
gold standard, we conducted several steps. Due to the absence of any prior acces-
sible system that could be used to extract search queries for GUIs, we employed 
50 workers from AMT to write queries on a random sample of the Rico GUIs to 
reduce bias during the query creation. AMT provides a large amount of workers 
with diverse demographics, suiting the need for including a large bandwidth of dif-
ferent ways of formulating queries, use of language and vocabulary. However, there 
could be potential selection bias. For example, workers that are willing to work on 
the task may have a specific interest in apps and thus may have more knowledge on 
the topic compared to the average worker on AMT. Similarly, we asked 49 workers 
to provide relevance judgments and annotated each GUI by three workers to reduce 
subjectivity. These workers were required to pass our task-specific qualification test, 
which served the purpose of increasing the relevance annotation quality. Final rel-
evance annotations are based on majority voting and GUIs with high annotation 
perplexity were discarded due to the high uncertainty of the ground truth relevance 
for these instances. To obtain a high-quality gold standard, we applied several fil-
ters and randomly sampled from both the remaining queries and the GUIs to avoid 
selection bias. To reduce bias in our controlled experiment, we randomized the tasks 

(a) Support during GUI prototyping (b) Average relevancy of GUIs for query

(c) Support of GUI search results
during GUI prototyping

(d) Support of GUI search results for
visualizing how the screen could look

Fig. 12  Four histograms showing the results to the four usability questions a–d regarding RaWi for rapid 
GUI prototyping as perceived by participants
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and the ordering of the approaches. In addition, we ensured that the applications 
employed in the user study tasks are not included in Rico and both approaches basi-
cally support the selected categories. For each approach we conducted the identical 
experimental procedure.

Second, we discuss threats to external validity which refers to the generaliz-
ability of the results obtained in our experimental evaluation. Similarly, due to the 
absence of any prior system for GUI search that could be used as a resource for 
obtaining real-world queries, we employed GUIs taken from Rico to write queries 
for. We already discussed the plenty reasons of employing Rico and emphasize that 
Rico is large-scale and covers many diverse domains making it applicable in plenty 
scenarios. In addition to many domain-specific GUIs, Rico provides a plethora of 
domain-independent GUIs. Using GUIs from Rico as the basis for writing queries 
also assures that models could at least principally retrieve a single relevant GUI for 
the query. We restricted our controlled experiment to two domains, however, we 
hypothesize that we could obtain similar results for other domains covered by Rico. 
However, more user evaluation is required that includes more diverse application 
domains to confirm the obtained results. Moreover, since Rico is a semi-automatic 
approach it could be scaled up to harvest millions of GUIs making our GUI proto-
typing approach even more valuable for more domains.

6  Limitations

Our retrieval is currently restricted to the Rico dataset which, however, is large-scale 
and covers many diverse domains already. To extend the GUI repository, other smaller 
GUI datasets could be integrated. Since prototypes are created on the basis of GUIs 
from different real applications in RaWi, the design of the resulting application proto-
type may not be cohesive. However, the focus of our work lies on rapidly creating GUI 
prototypes that properly reflect requirements of customers neglecting the final GUI 
design. Since the implementation of our GUI prototyping approach is an early proto-
type, the editing functionality is currently restricted, however, we plan to extend our 
prototype to a fully-fledged graphical GUI editor with more editing options.

7  Related work

7.1  GUI retrieval

Guigle (Bernal-Cárdenas et al. 2019) similarly exploits automatically crawled Android 
apps from Google Play (Moran et al. 2018) to index multiple parts from the crawled GUI 
hierarchy data such as the app name, text and type from GUI components, the screen 
color and employs a basic Boolean query language for relevant GUI retrieval. In con-
trast, our approach RaWi enables users to specify simple NL-based searches to retrieve 
relevant GUIs and employs a more sophisticated ranking mechanism including BERT-
based LTR models. In addition, RaWi enables users to directly employ retrieved GUIs to 
rapidly create GUI prototypes including the derivation of partly editable screens whereas 
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Guigle stops after GUI image retrieval. However, a direct comparison of the retrieval per-
formance is not possible due to the unavailability of the implementation and the employ-
ment of a different, much smaller GUI dataset in Guigle. As stated in their paper, Gui-
gle is built on top of the open-source retrieval framework Lucence (Lucene 2011). The 
Lucene framework employs TF-IDF and BM25 retrieval methods, which are included 
in our evaluation experiments as well-known standard IR baselines. Therefore, although 
implementation details such as preprocessing and retrieval function parameters are not 
specified in Guigle, the presented IR baselines can be considered a good proxy to the 
retrieval methods employed in their approach. To support further research and enable a 
direct comparison between approaches in the first place, we publicly provide the first and 
high-quality gold standard for NL-based GUI retrieval on a state-of-the-art GUI reposi-
tory in this work. Prior research already introduced NL-based GUI retrieval (Kolthoff 
et  al. 2020, 2021), however, we (i) considerably extend the retrieval techniques using 
BERT-based LTR models, (ii) conduct a novel and more comprehensive retrieval per-
formance evaluation on the basis of a newly created and contributed high-quality gold 
standard and (iii) provide an extensive user study for evaluating the GUI prototyping pro-
ductivity improvements in practical GUI prototyping settings. Gallery D.C. (Chen et al. 
2019) crawls a large number of real-world applications and automatically extracts GUI 
components such as various types of buttons from GUI screenshots and provides a multi-
modal search supporting multiple dimensions such as width, height, main color and text 
for them. In addition, there is a plethora of GUI retrieval approaches that employ visual 
inputs such as screenshots, hand-drawn sketches or basic wireframes to retrieve simi-
lar GUIs in contrast to our approach that focuses on NL input. For example, Chen et al. 
(2020) trains an image autoencoder to find relevant GUIs employing a basic wireframe of 
the GUI as their input. Similarly, VINS (Bunian et al. 2021) expects visual input either as 
a basic wireframe prototype or fully designed GUI image to retrieve similar GUIs using a 
multi-modal embedding network. Swire (Huang et al. 2019) also employs a visual embed-
ding approach to find relevant GUI images on the basis of hand-drawn sketches provided 
by the user. GUIFetch (Behrang et al. 2018) requires an entire Android application sketch 
as input to retrieve similar apps from GitHub. d.tour (Ritchie et al. 2011) uses stylistic 
keywords and stylistic similarity to find similar website designs. Using a web design as 
input and structure matching, FaceOff retrieves web GUI components fitting the design. 
Another approach proposes a neural translator for transforming GUI images to GUI skel-
etons (Chen et al. 2018). Screen2Vec (Li et al. 2021) proposes a technique for learning 
multi-modal (textual content, visual design and layout patterns) GUI embeddings, which 
are useful for many GUI-related downstream tasks (e.g., retrieving similar GUIs using 
a GUI as the query). Due to the difference of the problem, these GUI embeddings can-
not be directly reused in our approach for comparison. The NL query embeddings (e.g., 
based on BERT) and Screen2Vec embeddings represent two separate embedding spaces 
that require alignment in order to enable NL-based GUI retrieval with Screen2Vec GUI 
embeddings. However, we included the same text-only Sentence-BERT baseline in our 
experiments, also used in their approach. The Screen2Words (Wang et al. 2021) approach 
proposes an Encoder–Decoder architecture for translating GUIs into short text descrip-
tions. The GUI encoder could potentially be employed to obtain GUI embeddings, how-
ever, these embeddings similarly cannot be directly employed for retrieval based on NL 
queries as described earlier. Considering general-purpose search engines (e.g., Google), 
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a direct comparison with our approach is not meaningful since these engines cannot be 
evaluated directly on our gold standard. Especially due to the huge differences in the 
employed datasets (specialized Rico GUI dataset vs. general Google Image dataset), it 
would be unclear whether differences between the retrieval performances are due to dif-
ferences in the algorithms or due to the differences in the datasets. For example, since 
Google uses a general image dataset, many image results would be obtained that are not 
related to GUIs, compared to the Rico dataset specializing in Android GUI screenshots. 
To make the comparison between these approaches meaningful, the algorithm would 
need to be evaluated directly on the new gold standard.

7.2  Program code retrieval

Apart from GUI search approaches, retrieving code through NL queries has been stud-
ied extensively in research before (McMillan et al. 2011; Cambronero et al. 2019; Gu 
et al. 2018; Lv et al. 2015; Zhang et al. 2016). These approaches range from the appli-
cation of traditional IR algorithms to specifically developed semantic Deep Learning 
architectures to find relevant program code for a given NL query. Recently, the Code-
SearchNet challenge (Husain et al. 2019) released a dataset of NL queries and expert 
relevance annotations of respective functions from various programming languages to 
provide a source for systematic evaluation of code search approaches. In contrast, we 
created the first GUI retrieval gold standard in this work, to foster further research on 
retrieval methods specifically for NL-based GUI search.

7.3  GUI prototyping

In addition, many traditional prototyping approaches exist and are employed by many 
designers, developers and analysts in their everyday work such as Balsamiq (Faranello 
2012), Sketch (Sketch 2019), Figma (Figma 2016) and Mockplus (Mockplus 2014), 
among others. These approaches enable users typically to create prototypes in a graphi-
cal editor on the basis of a small number of hand-crafted templates and basic GUI com-
ponents supporting low-fidelity or high-fidelity prototyping. Other approaches such as 
UISKEI (Segura et al. 2012) and SketchiXML (Coyette et al. 2006) attempt to automat-
ically identify GUI components from hand-drawn sketches and generate reusable GUI 
representations. Recent work on GUI prototyping assistance such as GUIComp (Lee 
et  al. 2020) support novice users during the prototyping process via the recommen-
dation of similar GUIs, provide various complexity metrics and visual attention maps 
based on the design currently created by the user. In contrast to these approaches, RaWi 
enables users to quickly retrieve matching GUIs based on simple NL queries from a 
large-scale GUI repository and automatically provides partly editable GUI screens to 
reuse for requirements elicitation via interactive GUI prototyping.
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8  Conclusions and future work

In this work, we presented RaWi, a data-driven GUI prototyping approach based on 
exploiting a large-scale GUI repository via effective NL-based GUI retrieval meth-
ods and automatically deriving partly editable GUI screens for interactive GUI pro-
totyping in the requirements elicitation phase. Our evaluation indicates that tradi-
tional retrieval models and especially state-of-the-art BERT-based semantic ranking 
models, can be adopted for effective GUI retrieval. In addition, our approach is able 
to improve the prototyping productivity particularly for novice analysts in compari-
son to a traditional GUI prototyping approach.

In future work, we plan to further investigate BERT-based LTR semantic models 
for NL-based GUI ranking. We also plan to examine the applicability of multilin-
gual language models to support GUI retrieval for various languages. This could be 
extended by automatically translating the editable GUI screens into target languages. 
In addition, we plan to further extend our evaluation to more users and examine 
additional domains.
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