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Preface

Every day, we interact with each other in various markets and economic mechanisms.

The rules that shape these markets and mechanisms shape our economic interactions.

In particular, rules create incentives that govern economic interactions. The design of

rules then allows us to shape economic incentives to pursue different market outcomes.

This thesis is dedicated to studying the design of markets and mechanisms, their rules,

incentives and goals in three applications.

Blockchains: Blockchains are a new and rapidly developing technology. Most promi-

nently, they are used in cryptocurrencies. They have been experiencing alternating pe-

riods of hype and disappointment. Proponents of the technology argue that it has the

potential to change economic interactions fundamentally, while critics see little economic

value. In short, there does not seem to be a consensus whether, and in which situations,

Blockchains bring any value to economic interactions. Recently, an exciting new strand of

literature has developed that examines this question in detail. I contribute to this liter-

ature by highlighting the value that commitment created by a blockchain can have for a

particularly important application in this day and age: creating a platform with network

effects that locks in its users.

In the first chapter, I develop a model of an entrepreneur, who can create a network for

her users. She can decide to retain control of the network with centralized implementation

through a regular company, or surrender control over the network with a decentralized

implementation through the blockchain. Users that join the network are subject to a

locked-in effect. As the main finding, I show that a decentralized implementation of the

network is (i) preferred by the entrepreneur and (ii) a Pareto improvement, if and only

if the size of the locked-in effect is sufficiently large.

Inequality: In the second chapter, based on joint work with Carl-Christian Groh,

I revisit a classic problem in mechanism design: the assignment of goods to agents. It

is a well-established result that both the ex-post Pareto efficient and utilitarian optimal

assignment rules assign the goods to the agents with the highest willignesses to pay. In

recent times, drastic inequality has become more and more prevalent and is being tack-

vii
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led by a variety of governments and organizations. To derive its implications on optimal

mechanisms, I consider inequality in the classic mechanism design framework. Intuitively,

if the utility of money exhibits decreasing returns, richer agents value money marginally

less than poorer agents. I then show that it is necessary to account for inequality in

utilitarian optimal mechanisms derive the optimal mechanism for the problem of goods

assignment.

In particular, I study optimal mechanisms for a utilitarian designer who seeks to assign

multiple units of an indivisible good to a group of agents. The agents have heterogeneous

marginal utilities of money, which may naturally arise in environments where agents have

different wealth levels or financing conditions. The designer faces constraints on ex ante

transfers. I show that the ex post efficient allocation rule is not utilitarian optimal in

the setting. In certain situations, it is utilitarian optimal to deterministically assign the

good to an agent with a lower willingness to pay. This is because a high willingness to

pay may stem from a low marginal utility of money. Moreover, the transfer rule does not

only facilitate implementation of the desired social choice function in our setting, but also

directly affects social welfare. Finally, I highlight how the mechanism can be implemented

as an auction with minimum bids and bidding subsidies.

Partially Verifiable Information: Typically, there are at least two types of infor-

mation that are of interest to a seller. First, how much a buyer is willing to pay for a good.

Usually, this information is privately known by the buyer, and thus the buyer will enjoy

information rents when buying from the seller. Second, auxiliary information which does

not directly reveal the buyer’s willingness to pay, but is informative. For example, where

the buyer lives or how wealthy the buyer is. Another example is procurement, where

a supplier’s costs may depend on the type of machine with which a good is produced.

Nowadays, an ever-increasing amount of data is produced, collected and used. Therefore,

in the third chapter, I focus on the implications of auxiliary information, what I refer to

as characteristics, on the optimal mechanism for the sale of a good.

In the model, I consider a seller selling a good to bidders with two-dimensional private

information: their valuation for a good and their characteristic. While valuations are

non-verifiable, characteristics are partially verifiable and convey information about the

distribution of a bidder’s valuation. I derive the revenue-maximizing mechanism and show

that it can be implemented by introducing a communication stage before an auction. I

show that granting bidders a right to remain anonymous, i.e., to refuse participation

in the communication stage, leaves the optimal mechanism unchanged and provides no

benefits for the bidders.
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Chapter 1

The Value of Decentralization Using

the Blockchain1

Abstract: The popularity of blockchain technology and cryptocurrencies has grown in

recent years, but there is still disagreement about their value in economic interactions.

In this paper, I examine the value of a blockchain for an entrepreneur who creates a

network. The entrepreneur can decide to retain control of the network with a centralized

implementation through a regular company, or surrender control over the network with

a decentralized implementation through the blockchain. The network’s users experience

a locked-in effect. I show that a decentralized implementation of the network is both (i)

preferred by the entrepreneur and (ii) a Pareto improvement, if and only if the size of the

locked-in effect is sufficiently large.

Keywords: Blockchain, Smart Contracts, Decentralization, Cryptocurrency, Commit-

ment, Networks

JEL Classification: C70, D00, D2, D4, L2

1.1 Introduction

AWS (Amazon Web Services), Google, Facebook, Spotify, and Twitter are some of the

largest tech companies that have billions of users worldwide. For an entrepreneur look-

ing to create a competitor to these companies, the question arises: should they start

a traditional company, or should they follow the path of decentralized networks like

1I thank Thomas Tröger for his continued support. I also thank Piotr Dworczak, Vitali Gretschko,
Carl-Christian Groh, Federico Innocenti, Scott Duke Kominers, Volker Nocke, Marion Ott, Jonas von
Wangenheim and audiences at the 2022 DICE Winter School for Applied Micro Theory, the 2022 CRC
TR 224 Young Researchers Workshop and the 10th CRC TR 224 Retreat, NYU Stern, a16z and the
EWMES for insightful comments. This work was supported by the University of Mannheim’s Graduate
School of Economic and Social Sciences. Support by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) through CRC TR 224 (Project B01) is gratefully acknowledged.
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Filecoin, Internet Computer, Presearch, Decentralized Social, Minds, and Audius and

leverage blockchain technology?2 What is the benefit of decentralization and what incen-

tives do entrepreneurs have to decentralize? Vitalik Buterin, co-founder of the Ethereum

blockchain, argues that decentralization is, among other things, useful for “Collusion re-

sistance — it is much harder for participants in decentralized systems to collude to act in

ways that benefit them at the expense of other participants, whereas the leaderships of

corporations and governments collude in ways that benefit themselves but harm less well-

coordinated citizens, customers, employees, and the general public all the time.”3 Similar

sentiments are shared throughout the white papers of several of the networks listed above.

The contribution of this paper is to develop a theoretical model that determines when

an entrepreneur should implement a network in a centralized manner and when it is op-

timal to decentralize through the use of a blockchain. With that, I provide an answer

to a question that is frequently raised when it comes to the topic of blockchain and

cryptocurrencies: Why should anybody use it? As the core friction at play, I assume that

users of the network are subject to a locked-in effect, for example due to switching costs.4

If the frictions that arise due to the potential of exploiting this locked-in effect by the

entrepreneur are sufficiently large, I show that an entrepreneur prefers decentralizing her

network. As a result, she effectively gives up control over the network and thus generates

commitment to not abuse the locked-in effect of the users.

Achieving such commitment can lead to a Pareto improvement compared to a cen-

tralized implementation of a network through a regular company. That is, both the en-

trepreneur who creates the network, and the users may be better off if the network is

decentralized. However, decentralization also comes at a cost for the entrepreneur: she

surrenders the control over the network to the users and, to align incentives, engages in

revenue sharing. Therefore, there is a trade-off between the costs of centralization and

decentralization. I show that if the locked-in effect is small, an entrepreneur should im-

plement her network in a centralized manner. On the other hand, if the locked-in effect

is sufficiently large, an entrepreneur should implement her network in a decentralized

2https://www.filecoin.io/ is "a decentralized storage network designed to store humanity’s most
important information".https://www.internetcomputer.org/ is a "public blockchain that hosts smart
contracts [...]". https://www.presearch.io/ is a "decentralized search engine". https://www.deso.org/
is "the decentralized social blockchain". https://www.minds.com/ is an "open source social network
dedicated to Internet freedom". https://audius.org/ is a "decentralized protocol for audio content". Other
examples of centralized companies with decentralized counterparts include: 1) payment processors such
as Visa and various cryptocurrencies 2) centralized finance providers such as Banks and decentralized
finance (DeFi) applications and centralized exchanges such as Binance and Coinbase and decentralized
exchanges (Dex) such as Uniswap, Pancakeswap and others.

3https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
4For example, Shapiro and Varian (1998) remark that “switching costs are the norm, not the excep-

tion, in the information economy”. For empirical measurements of switching costs, see for example Chen
and Hitt (2002), Li and Agarwal (2017)

https://www.filecoin.io/
https://www.internetcomputer.org/
https://www.presearch.io/
https://www.deso.org/
https://www.minds.com/
https://www.audius.org/
https://medium.com/@VitalikButerin/the-meaning-of-decentralization-a0c92b76a274
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manner. Given this result, the list of companies with decentralized counterparts is not

surprising. Arguably, users of AWS, Facebook, and other tech companies are subject to

particularly large locked-in effects.

In the model, an entrepreneur (she) creates a network for her (potential) users (he).

The users need the network to interact or achieve a goal. However, they lack the abil-

ity to develop a technological solution that suits their needs. The entrepreneur, on the

other hand, possesses the necessary skills to build a network that fits the users’ needs.

At the start of the game, the entrepreneur decides between a centralized implementation

of the network through a regular company and a decentralized implementation using

the blockchain.5 In both implementations, the network can be monetized (for example

through advertisement, sale of user data, or other means), and any revenues that are

raised can be shared between the entrepreneur and the users. The entrepreneur and the

users interact with each other through the network over an infinite time horizon. If the

entrepreneur chooses centralized governance, she can change monetization and revenue

sharing in every period. Each period, the existing users of the network have the choice

to stay in the network or leave the network. Further, new users arrive every period and

can choose to join the network. If the entrepreneur chooses decentralized governance,

revenue sharing is decided by the entrepreneur through the tokenomics at the start of

the game.6 Then, the users decide on monetization in every period through decentralized

governance.7 As in centralized governance, each period, the existing users of the network

have the choice to stay in the network or leave the network, and new users arrive who

have the choice to join the network.

There is complete information, and the full history of the game is observed by both the

entrepreneur and the users. The entrepreneur is purely interested in generating revenue

through monetization, while the users’ utility consists of three parts: First, they derive

utility from using the network. Second, they dislike monetization such as advertisements,

and third, they benefit from any revenue that is shared with them. I use sub-game perfect

equilibria to analyze the game. Therefore, an entrepreneur using a centralized implemen-

tation of the network is unable to credibly commit to future levels of monetization and

revenue sharing. Instead, her choice of monetization and revenue sharing has to be se-

quentially optimal for every history of the game given the strategy of the users.

5In an extension in section 1.3.1, I allow the entrepreneur to delay decentralization. That is, she can
decentralize at a later time using an airdrop.

6Tokenomics is a mix of the two words token and economics. Token refers to a digital asset. The
tokenomics then describe the underlying economics of that particular token, such as supply, distribution,
vesting and other parameters.

7In practice, there are many mechanisms for on-chain governance. In the model, I use majority voting,
where 1 unit of the token equals 1 vote, and an even split of tokens among the users.



4

I divide the analysis of the model into three subsections. First, the sub-game of central-

ized governance. Second, the sub-game of decentralized governance and third, determining

the optimal governance structure for the network.

In the analysis of centralized governance, I show that the equilibrium of the game

features two distinct phases. A growth phase in which new users join the network, and an

exploitation phase in which no new users join the network and the entrepreneur exploits

the locked-in effect of the existing users through increased monetization and decreased

revenue sharing. The transition between the two phases crucially depends on network

effects and the network’s future growth, and is characterized by the point at which the

entrepreneur is indifferent between attracting new users and foregoing growth to exploit

the locked-in effect of the existing users. In equilibrium, the users anticipate being locked-

in to the network and have to be compensated up front to be incentivized to join the

network.8 The compensation equals the discounted value of the switching costs that lead

to the locked-in effect. Thus, as the severity of the locked-in effect increases, it becomes

increasingly harder for the entrepreneur to attract users in the first place. I show that

for a sufficiently large locked-in effect, no users join the network in equilibrium, resulting

in zero revenues for the entrepreneur. This highlights the commitment problem, that an

entrepreneur may try to solve with decentralization through a blockchain.9

If the entrepreneur chooses decentralized governance, the degree of monetization is

decided by the users. Unlike the entrepreneur, the users internalize the negative effects of

monetization through their utility function. As a result, the locked-in effect will not be

exploited when the monetization of the network is controlled by the users. To align incen-

tives, the entrepreneur engages in revenue sharing with the users. Further, the network

grows every period, unlike in centralized governance. However, decentralized governance

has two drawbacks. First, the entrepreneur surrenders control over the network, such that

she cannot choose the degree of monetization she prefers. Second, because users choose

the degree of monetization, the entrepreneur has to engage in revenue sharing to align

incentives.

Finally, I determine the optimal governance structure of the network by comparing

centralized governance to decentralized governance. I show that for minimal locked-in ef-

fects, an entrepreneur is better off choosing centralized governance. In contrast, for a suf-

ficiently large locked-in effect, decentralized governance is preferred, as the entrepreneur

8This property of the equilibrium is nicely summarized in Shapiro and Varian (1998)’s advice to
buyers that anticipate becoming locked-in: “Bargain hard at the outset of the lock-in cycle for a sweetener
or some form of long-term protection before you become locked in”

9An alternative solution to creating commitment for a centralized network could be contracting over
monetization and revenue sharing. However, it is likely that these contracts would be incomplete. Thus,
contracting may face issues such as renegotiation, as discussed in the literature on incomplete contracts
(e.g., Hart and Moore (1988), Hart and Moore (1999)), and fail to be a suitable solution.
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is unable to attract any users when choosing centralized governance. To determine the

optimal mode of governance for an arbitrary size of the locked-in effect, I show that the

revenue that the entrepreneur can achieve with centralized governance is a decreasing

function of the size of the locked-in effect. In contrast, the revenue that the entrepreneur

can raise with decentralized governance is independent of the size of the locked-in effect.

Thus, there exists a threshold size, such that the entrepreneur should decentralize her

network if and only if the locked-in effect is sufficiently severe.

Literature: This paper contributes to the literature on the economics of blockchains.

It most closely relates to papers that have discussed blockchain technology regarding

commitment and competition. Similar to Sockin and Xiong (forthcoming), I consider an

entrepreneur who can exploit the platform’s users and show that creating commitment

through the blockchain may be beneficial for the entrepreneur. My paper contributes

relative to theirs as follows: First, they consider a one shot interaction between the en-

trepreneur and the users on the platform. As such, in centralized governance, exploitation

occurs for sure since there is no ongoing relationship between the entrepreneur and the

users. I contribute by considering a repeated interaction between the entrepreneur and

the users, and show that the problem of exploitation persists even in repeated interac-

tions. Further, I consider the potential for user growth in the network, and show that

user growth can be a substitute for commitment when future growth is strong, but fails

to generate commitment when future growth is sufficiently low. Finally, the longer time

horizon allows me to consider locked-in effects and show that the entrepreneur decentral-

izes her network if and only if the locked-in effect is sufficiently large.

Goldstein et al. (2019) argue that using an initial coin offering (ICO) and committing

to the free resale of tokens can enable a monopolistic entrepreneur to commit to compet-

itive pricing. My paper complements their contribution by focussing on the importance

of locked-in effects in platforms. Both papers demonstrate that commitment through the

blockchain may improve welfare. However, Goldstein et al. (2019) show that committing

to the free resale of tokens yields lower profits for an entrepreneur compared to operating

the network in a traditional, centralized manner. In contrast, I show that an entrepreneur

can increase her revenue by implementing her network through the blockchain, if the costs

of centralization are too large. Further, I contribute by adding network growth and show-

ing that growth can be a substitute for commitment at first, but fails to be a substitute

for commitment when growth slows down over time.

Huberman et al. (2021) focus on bitcoin as a payment system (BPS), which can be

considered as a network in the terms of my model, and show that user surplus in the

BPS is larger compared to a monopolist payment provider. However, the incentives for a
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monopolist to set up a decentralized network such as bitcoin remain unclear. Brzustowski

et al. (2021) show that the Coase conjecture fails if a seller can generate commitment

through smart contracts.

Catalini and Gans (2018) focus on entrepreneurs that are capital constrained and need

to raise capital through an ICO to fund their network. Bakos and Halaburda (2018), Li

and Mann (2018) and Cong et al. (2021), show how ICOs can mitigate coordination

failures in the users’ decision to join or not join a particular network. In empirical assess-

ments of ICOs, Howell et al. (2020) find that success in ICOs is associated with disclosure,

credible commitment to the network, and quality signals, while Adhami et al. (2018) find

that, among other things, revenue sharing makes ICOs more successful.

Arruñada and Garicano (2018) and Chen et al. (2021) investigate the details of de-

centralized governance more closely. Further, this paper also relates to the literature of

blockchain consensus, as it shares some intersections with blockchain governance. Contri-

butions include Abadi and Brunnermeier (2018), Biais et al. (2019), Catalini et al. (2020)

and Saleh (2021). Decentralization through the blockchain gives users decision power in

the network. Thus, my paper also shares some commonalities with the literature on com-

mon ownership in traditional corporations, for example Magill et al. (2015), Cres et al.

(2020) and Azar and Vives (2021), but with a drastically different focus.

Another strand of the literature that connects to my model is the IO literature on

(two-sided) platforms and network effects, as all the applications I have mentioned are

platforms, with seminal contributions by Katz and Shapiro (1985), Farrell and Saloner

(1986), Rochet and Tirole (2003) and Armstrong (2006). Cabral (2011) develops a dy-

namic model of platform competition.10 This literature focuses on equilibrium pricing

and competition between platforms. As such, my paper is complementary, as my model

features neither competition between platforms nor focuses on prices for either side of

the market. I focus on the value of commitment for the entrepreneur as a function of

the size of the locked-in effect of the platform. I also connect to papers that - from a

regulatory perspective - investigate platform governance, for example Jullien and Pavan

(2019), Choi and Jeon (2022) and Teh (2022). For a general overview of the literature,

see for example Farrell and Klemperer (2007) and Belleflamme and Peitz (2021).

The rest of the paper is structured as follows: Section 1.2 consists of the model and

the results that outline when decentralization through the blockchain is preferable to

centralization. Section 1.3 discusses extensions of the model. Section 1.4 concludes. For

readers that are not familiar with blockchains, appendix 1.5.1 provides a supplementary

overview over the blockchains, some use cases, and how it enables an entrepreneur to

10Peitz et al. (2017) study price setting dynamics on platforms experimentally.
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generate commitment.

1.2 Model

The model is a sequential game with infinitely many periods t = 0, 1, 2, ... between an

entrepreneur (she) and a continuum of users (he), indexed by i. The entrepreneur creates

a network for the users in t = 0 and the mass of users in the network at time t is denoted

by µt. In t = 1, 2, 3, ... the network can be monetized (for example through advertisement,

sale of user data, or other means). The revenue from monetization can be decomposed

into two parts. First, there is a level of monetization of the network πt ∈ R+. This vari-

able represents the intensity with which the network is monetized, such as how often or

how many advertisements are displayed, or how much of the user data is sold. Second,

given a measure of users µt and a level of monetization πt, the revenue generated by the

network equals πtϕ(µt) where ϕ is an increasing, continuously differentiable function with

ϕ(0) = 0. ϕ(µt) represents the rate an advertiser is willing to pay for advertisements or

for user data. Throughout the paper, I assume that ϕ(µt)
µt

is non-decreasing in µt.
11 Any

revenues that are raised can be shared between the entrepreneur and the users. The frac-

tion of revenue that the entrepreneur keeps is denoted by αt, while the leftover fraction

of revenue (1− αt) is shared with the users.

How monetization and revenue sharing are chosen depends on the mode of governance

of the network. At the beginning of the game, in t = 0, the entrepreneur chooses the mode

of governance (centralized or decentralized). If the entrepreneur chooses centralized gover-

nance, she can change monetization πt and revenue sharing αt in every period t = 1, 2, ....

Each period, users have a binary choice. The existing users of the network have the choice

to stay in the network or leave the network. Further, new users arrive every period and

can choose to join or not join the network.

If the entrepreneur chooses decentralized governance, she commits, without loss of gen-

erality, to a fixed percentage α of revenue sharing in t = 0 through the tokenomics of

the network.12 She achieves this through the appropriate distribution of the network’s

token between herself and the users.13 In every period t = 1, 2, ... the users of the network

determine the amount of monetization πt through on-chain governance. As in centralized

governance, each period, users have a binary choice. The existing users of the network

11For example, this holds true in cost-per-view and cost-per-click advertisement that is commonly
used in online advertisement. If c is the cost per click/view and a fraction γ ∈ [0, 1] of the users interacts
with advertisement, it holds that ϕ(µt)

µt
= cγ, which is constant in µt.

12In an extension in appendix 1.5.12, I allow the entrepreneur to pre-commit to a path for revenue
sharing and show that she chooses a constant percentage of revenue sharing. Thus, considering a fixed
percentage throughout the main body of the paper is without loss of generality.

13For the example of Uniswap, 60% of the token supply has been allocated to users, while the other 40%
is split between the Uniswap team, investors, and advisors. For details, see https://uniswap.org/blog/uni.

https://uniswap.org/blog/uni
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have the choice to stay in the network or leave the network. Regardless of the mode of

governance, users that decide to leave the network or newly arriving users who decide not

to join the network drop out of the game and realize the value of their outside option.

Every period, new potential users become aware of the network. Let µt−1 be the

mass of users in the network in period t − 1. Then, in period t there will be a mass of

g(µt−1)−µt−1 ≥ 0 new users who become aware of the network. Each potential new user

has the choice to join or not join the network. For example, if all new users join, the new

measure of users in the network is equal to g(µt−1). If no new user joins, the network

remains at µt−1 users. The growth function g is continuously differentiable and the mass

of users in period 0 is equal to µ0 = 0. If the network loses all its users within a period,

no new users will arrive at any point in the future. This assumption rules out cyclical

equilibria in which the entrepreneur continuously "starts over". There is complete infor-

mation and both the entrepreneur and the users observe the full history of the game.

The entrepreneur is strictly interested in revenue: her utility in a particular period t is

equal to her revenue share αt multiplied by the revenue raised by monetization πtϕ(µt):

uEt = αtπtϕ(µt). The utility a user receives from participating in the network has three

components: First, a user derives utility V (µt) from using the network. I assume that V

is increasing, continuously differentiable and that V (0) = 0. Second, as a result of the

monetization of the network, πt, the user’s utility decreases by kπ2
t , where k > 0 describes

the user’s aversion to monetization. This represents the decrease in utility a user suffers

when being forced to watch advertisements, through the sale of his data, or other detri-

mental effects of monetization. As a third component, a user may potentially receive a

share of the revenues that the network generates. I assume that this share is equally split

between all users, such that each user receives a fraction 1−αt

µt
of the revenue. The utility

function of a user thus equals ut = V (µt)− kπ2
t +

(1−αt)
µt

πtϕ(µt).

A user who newly arrives in the network can decide to join the network and realize

the utility as described above. If the user decides not to join the network, he realizes an

outside option that is normalized to 0. A user who has already taken part in the network

for at least one period can decide to stay in the network, realizing the utility of participat-

ing, or leave the network. However, the outside option for these users is equal to −u < 0.

Thus, users that already take part in the network suffer from a locked-in effect. This

assumption represents the idea that users have spent time interacting with the network,

such that its algorithm has adapted to their needs.14 An equivalent interpretation is that

14For example, Google’s search algorithm learns from a user’s past searches and improves its search
results. Spotify’s algorithm learns a user’s taste in music, improving the likelihood of playing music that
the user likes.
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the value of the outside option has remained constant, but users encounter a switching

cost equal to u when leaving the network in favor of the outside option.

Both the entrepreneur and the users maximize the sum of their discounted utilities.

Future utilities are discounted by a common discount factor δ ∈ (0, 1). I divide the analysis

into subsections dedicated to the sub-games of centralized and decentralized governance.

Within those sections, I give a detailed description of the structure of the sub-games

of centralized and decentralized governance. Then I derive the sub-game perfect Nash

equilibria and discuss their properties. Finally, I determine the optimal decision of the

entrepreneur at the start of the game: to choose centralized or decentralized governance

for her network.

1.2.1 Centralized Governance

If the entrepreneur chooses centralized governance, every period t = 1, 2, ... has the fol-

lowing timing:

1. The entrepreneur chooses a level of monetization πt and a fraction of revenue sharing

αt

2. Users make a simultaneous choice:

(a) Users that arrived in period t choose to join or not to join

(b) Users who are already present in the network choose to stay or leave

3. Utilities realize

A centralized entrepreneur retains full control over the monetization and revenue sharing

of the network. However, she lacks the ability to commit to the levels of monetization

and revenue sharing for future periods because her strategy has to be sequentially opti-

mal. Now I can define strategies for the entrepreneur and the users in more detail. For

that, define by ht a history of the game up to period t. Then a strategy is defined as a

mapping from the set of possible histories into the possible actions. Specifically, for the

entrepreneur, a strategy maps any possible history into some degree of monetization πt

and revenue sharing αt. For the users, a strategy maps into the binary decisions to join

or to not join at their time of arrival in the network, or, if already present in the network,

into a binary decision of staying or leaving. I impose the following tie-breaking rules:

Newly arriving users that are indifferent between two strategies, such that one prescribes

joining the network and one prescribes not joining the network will join the network.

Users that are indifferent between two strategies, such that one strategy prescribes leav-

ing the network and another strategy prescribes not leaving in the network, will choose
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to remain in the network.

As a preliminary step in the analysis, it is useful to think about optimal choices of

monetization and revenue sharing within a given period. That is, what choice of mone-

tization and revenue sharing maximizes the entrepreneur’s revenue, given that the users

should receive some arbitrary level of utility û, and how large is the corresponding rev-

enue for the entrepreneur. The result is derived from a standard constrained optimization

problem. From now on, I will denote the entrepreneur’s revenue that results from the op-

timal choice of monetization and revenue sharing for a network of size µt with user utility

level û by ψ(µt, û). This function ψ(µt, û) will be crucial for the analysis of centralized

governance. For brevity, the derivation of ψ(µt, û) is relegated to appendix 1.5.2. In the

main body of the paper, I focus on describing the characteristics of ψ(µt, û) and providing

some intuitions. First, the entrepreneur’s revenue is increasing in the amount of users µt

and decreasing in the level of utility û that the users receive. As such, there is a conflict

of interest between the entrepreneur and the users. Second, there is a limit to how large

the user utility level û can be for a given network size µt. It is not feasible to provide a

user utility level that exceeds what a user would receive if the entrepreneur distributed

the entire revenue to the users. Last, depending on the users’ aversion to monetization k,

the centralized network may feature revenue sharing. That is, for small values of k, the

entrepreneur will increase the monetization of the network and compensate the users by

sharing some of the revenue. In contrast, when k is large, the entrepreneur will not share

any revenue with the users.

To derive the equilibrium of the centralized governance sub-game, it is instructive to

consider the entrepreneur’s incentives to grow her network. Every period, new users arrive

to join the network potentially. For the network to grow, joining the network has to be

weakly beneficial for a newly arriving user. That is, joining the network has to yield at

least utility equal to 0. Instead of growing the network, the entrepreneur can exploit the

existing users. Given that existing users are locked into the network and have an outside

option that is valued at −u < 0, the entrepreneur can potentially achieve a higher level of

revenue when focusing on extracting additional revenue from existing users. To quantify

the revenue that an entrepreneur generates when she decides to exploit the users in her

network, consider some period t. The amount of existing users at the start of the period

is equal to µt−1. If she exploits the existing users forever, the present value of the stream

of her discounted future revenue equals

1

1− δ
ψ(µt−1,−(1− δ)u) (1.2.1)

Note that the entrepreneur provides a per-period utility of−(1−δ)u to the users, such that
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the discounted utility is equal to −u, keeping the users indifferent between staying and

leaving. To grow the network, the entrepreneur has to provide enough utility to the users,

such that they are better off joining the network in the first place. If the entrepreneur

grows the network one last time in some period t before exploiting the existing users, she

has to provide utility δu to the last users who are to join the network. The entrepreneur’s

revenue from growing the network one more time and then exploiting the network’s users

from that point onward equals

ψ(g(µt−1), δu) +
δ

1− δ
ψ(g(µt−1),−(1− δ)u) (1.2.2)

The point at which the entrepreneur is indifferent between growing the network one last

time and exploiting the existing users in her network will be crucial for the analysis of

the equilibrium. I denote the solution to the following equation by µ̄:

1

1− δ
ψ(µ̄,−(1− δ)u) = ψ(g(µ̄), δu) +

δ

1− δ
ψ(g(µ̄),−(1− δ)u) (1.2.3)

It is exactly at the network size µ̄ where the entrepreneur is indifferent between growing

the network one last time and then exploiting the users in the future, and exploiting the

users right away. It highlights the trade-off between exploiting the locked-in effect of a

smaller mass µt−1 of users starting today, or, growing the network at the cost of provid-

ing utility δu to the users to then exploit a larger network with g(µt−1) users starting

tomorrow. For the purpose of this paper, I focus on the case where such a value µ̄ exists.

Indeed, this captures the economically interesting case of the model. If no such µ̄ exists,

the entrepreneur never wants to exploit her users, regardless of how many users there

are to exploit and how few users will arrive in the future. In appendix 1.5.3 I provide an

extensive discussion of sufficient conditions to assure that µ̄ is well-defined. For the main

body of the paper, I focus on providing an intuitive characterization of these settings.

The key feature is the idea, that user growth will slow down over time. Indeed, if the

overall pool of potential users is limited and a large amount of users has already joined

the network, user growth necessarily slows down mechanically over time. However, there

is some nuance in that a slowdown in user growth can be partially offset through an in-

crease in revenues due to network effects. If these network effects are particularly strong

relative to the growth rate of the network, growing the network remains preferable for

the entrepreneur. What is important for µ̄ to exist, is that eventually growth slows down

sufficiently to offset increased network effects, or that the network effect of attracting an

additional eventually diminishes when the network is large. As a last point, I want to

provide one particularly tractable example: V (µt) is constant, ϕ(µt) is linear in µt and

g(µt) = µt + γ(µt) where γ(µt) is a strictly decreasing, strictly positive function that

approaches 0 as µt → ∞
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For the following analysis, suppose that

ϕ(µ̄)2

4kµ̄2
+ V (µ̄) ≥ δu (1.2.4)

This condition ensures that it is feasible to the entrepreneur to ensure the utility level δu

to a network of size µ̄. Later, I discuss what happens when this condition is not satisfied.

For a better understanding of the equilibrium that will follow shortly, I want to emphasize

that the level of user utility ût that is implied by a degree of monetization πt and revenue

sharing αt is a function of the amount of users µt that are present in the network at

the end of period t. For example, a particular tuple (πt, αt) implies different user utility

levels ût when µt = 0 compared to when µt > 0. Now, the intuition of the trade-off

between growing the network and exploiting the existing users can be condensed into an

equilibrium:

Proposition 1 Suppose condition 1.2.4 is satisfied. Then the following strategies consti-

tute a sub-game perfect Nash equilibrium:

Entrepreneur’s strategy:

• If µt−1 < g−1(µ̄), set πt and αt to maximize revenue as given by ψ(µt, ût) for user

utility level ût = 0 and network size µt = g(µt−1)

• If g−1(µ̄) ≤ µt−1 < µ̄, set πt and αt to maximize revenue as given by ψ(µt, ût) for

user utility level ût = δu and network size µt = g(µt−1)

• If µ̄ ≤ µt−1 set πt and αt to maximize revenue as given by ψ(µt, ût) for user utility

level ût = −(1− δ)u and network size µt = µt−1

Users’ strategy:

• In the period of arrival, join the network iff

1. µt−1 < g−1(µ̄) and πt, αt are such that user utility level ût ≥ 0 for a network

size µt = g(µt−1)

2. g−1(µ̄) ≤ µt−1 and πt, αt are such that user utility level ût ≥ δu for a network

size µt = g(µt−1)

• If already locked in to the network, stay in the network iff πt, αt are such that user

utility level ût ≥ −(1− δ)u for a network size µt ≥ µt−1

Proof. See appendix 1.5.4
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The equilibrium features the cutoff µ̄, at which the entrepreneur switches from growing

the network to exploiting the existing users in the network. The entrepreneur’s strategy

has three distinct parts. If µt−1 < g−1(µ̄), the entrepreneur will grow the network again in

the next period, as g(µt−1) < µ̄. Thus, the entrepreneur sets user utility equal to ût = 0

and the users are willing to join the network. Note that in these periods, the entrepreneur

has basically regained commitment to not abuse the locked-in effect of the users. The en-

trepreneur refrains from exploiting the locked-in effect of the existing users in the network

with the aim to grow the network larger. At g−1(µ̄) ≤ µt−1 < µ̄, the entrepreneur reaches

the limits of how far she is willing to grow the network. If the entrepreneur grows the

network it holds that µt = g(µt−1) > µ̄, such that in the future, the entrepreneur will

be better off with exploiting the locked-in effect of the users compared to growing the

network any further. However, to attract users to the network, the entrepreneur has to

offer a utility level equal to ût = δu. In the last part, when µ̄ ≤ µt−1, the entrepreneur

is better off exploiting the locked-in effect of the network’s existing users compared to

growing the network any further.

The users’ strategies are as follows: when they newly arrive at the network, they do

not suffer from a locked-in effect. They observe the network size and if µt−1 < g−1(µ̄),

anticipate that the entrepreneur will grow the network further in the future, such that

it is optimal for them to join the network if ût ≥ 0. If g−1(µ̄) ≤ µt−1, they know that

the entrepreneur will grow the network at most one more time. As such, they require a

level of utility at least equal to δu to join the network. If they are already locked into

the network, they will remain in the network iff ût ≥ −(1 − δ)u, as this implies that

the discounted value of their future utility is at least equal to the value of their outside

option −u. Note that no profitable deviations exists for neither the entrepreneur nor the

users. In equilibrium, newly arriving users are indifferent between joining and not joining

the network, while users that are already locked into the network strictly prefer staying

in the network before the entrepreneur starts exploiting the users and are indifferent be-

tween staying and leaving when the entrepreneur starts exploiting the network. For the

entrepreneur, deviations that increase the users’ utility level are not profitable, since it

does not change the users actions on the equilibrium path and her revenues are decreas-

ing in the users’ utility levels. Decreasing the utility offered to the users at any point in

time will cause the users to leave the network, resulting in 0 revenues, thus not being a

profitable deviation.

Now reconsider what happens if

ϕ(µ̄)2

4kµ̄2
+ V (µ̄) < δu (1.2.5)
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Then, the entrepreneur cannot pay the compensation utility δu in the last period where

she will grow the network. If the entrepreneur sets a utility level of less than δu, no new

users will join, as the value of joining is below the outside option of 0. However, if the

entrepreneur is unable to attract any new users, she should maximize revenues from the

existing users of the network. That is, setting user utility equal to −(1 − δ)u instead.

Denote this last period of potential growth in which this issue occurs as t∗. Then, users

should anticipate that the entrepreneur will exploit the locked-in effects not starting from

period t∗+1 onward, but from period t∗. Then, the users who arrive at period t∗−1 need

to be provided utility level δu, for them to be incentivized to join the network. However,

note that at period t∗ − 1 the size of the network is necessarily smaller than at t∗. Thus,

since the network’s revenues are increasing in the mass of user µt, it is also not feasible

for the entrepreneur to provide utility level δu to the users in period t∗ − 1. This logic

carries forward until the first period, such that no users should join the network at all.

To further examine when this issue occurs, define by µ the solution to the equation

ϕ(µ)2

4kµ2
+ V (µ) = δu (1.2.6)

Intuitively speaking, µ is the minimum required size the of the network, such that it is

feasible for the entrepreneur to provide utility δu to the users. Now, if µ̄ ≥ µ, the case

discussed above does not occur and the entrepreneur can attract users to her network.

However, if µ̄ < µ, the entrepreneur is unable to attract any users to her network.

The entrepreneur’s main issue in the network with centralized governance is her lack of

commitment to not abusing the locked-in effect of the users. Thus, I focus on the effects

of the severity of the locked-in effect u on µ and µ̄.

Lemma 1 µ strictly increases in u. As u→ ∞ it holds that µ→ ∞.

To see why the lemma holds true, consider equation 1.2.6. When u increases, the RHS

of the equation increases. Then the lemma clearly holds true, as the LHS of the equa-

tion is increasing in µ since
ϕ(µ)2

4kµ2
is increasing in µ

(
recall that

ϕ(µ)

µ
is increasing in

µ by assumption
)
and V (µ) is also increasing in µ by assumption.

Next, consider µ̄. Note that µ̄ is only implicitly defined in equation 1.2.3. It is the size of

the network that makes the entrepreneur indifferent between growing the network once

more today and exploiting the users in the future vs. exploiting the users starting today.

As such, I employ the implicit function theorem to show the following lemma:

Lemma 2 µ̄ strictly decreases in u. As u→ 0 it holds that µ̄→ ∞.

Proof. See appendix 1.5.5.

As the size of the locked-in effect grows, the entrepreneur stops growing the network

and start exploiting the existing users earlier. With a larger locked-in effect, there is
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more to gain by exploiting the existing users. To sum things up, I have shown that µ is

strictly increasing in u and that µ̄ is strictly decreasing in u. Therefore, as u increases,

the following two effects take place. First, the entrepreneur needs a larger size network

to make it feasible to guarantee users a utility level δu in the last period of growth.

Second, as u increases, the entrepreneur is more tempted to exploit the existing users

of the network and stops growing the network earlier. Therefore, the following corollary

formalizes that when u grows too large, the entrepreneur is unable to attract any users

to her network:

Corollary 1 There exists some value u∗ such that the entrepreneur is unable to attract

any users to the network if u > u∗. Consequently, the equilibrium revenue of the network

with centralized governance is 0.

The corollary follows by defining u∗ as the value of u for which µ = µ̄. Then for all

u > u∗ it holds that µ̄ < µ. As the size of the locked-in effect grows too large, the

entrepreneur will more readily exploit users who are already in the network, rather than

growing the network by attracting new users. However, in equilibrium, this is anticipated

by any users that arrive at the network, such that no users join the network at all. This

highlights the commitment problem of the entrepreneur. If she was able to commit to not

abusing the locked-in effect of the users, she would be able to attract users to her network

and generate revenues. Note that this corollary establishes a sufficiency result. When the

size of the locked-in effect is sufficiently large, it is better to decentralize the network, if

the entrepreneur can attract at least some users in decentralized governance. In section

1.2.3 I show that this result carries over more generally, by determining the cutoff size for

the locked-in effect such that the entrepreneur prefers to decentralize the network if and

only if the locked-in effect is sufficiently severe. Before that, the next section discusses

the sub-game of decentralized governance.

1.2.2 Decentralized Governance

If the entrepreneur chooses decentralized governance, every period t = 1, 2, ... has the

following timing:

1. Users make a simultaneous choice:

(a) Users who are not present in the network choose to join or not to join

(b) Users who are already present in the network choose to stay or leave

2. Users collectively choose πt

3. Utilities realize
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This section focuses on the sub-game of decentralized governance. First, the entrepreneur

chooses, without loss of generality, a permanent revenue split α. Then, users that have

newly arrived have the choice to join or not join the network. Existing users have the

choice to stay or leave the network. Afterward, users vote on the degree of monetization

πt for the period and utilities realize. When analyzing the voting equilibria, I will restrict

the equilibrium analysis to weakly undominated strategies. In voting games, the strategy

of voters has to be optimal, conditional on being pivotal. As no single voter is ever pivotal

when there is a continuum of users, basically any strategy can be played in an equilibrium.

Therefore, restricting the users’ strategies to be weakly undominated, implies that they

truthfully vote for their preferred degree of monetization πt as if they were pivotal. This

leads to the following equilibrium:

Proposition 2 There is a sub-game perfect equilibrium such that every period the users

of the network will vote for a degree of monetization

π∗
t =

1− α

2k

ϕ(µt)

µt
(1.2.7)

The network will grow every period. The entrepreneur shares half of the revenue with the

users.

Proof. See appendix 1.5.6.

The equilibrium highlights that decentralized governance is an effective commitment tool

for the entrepreneur. In contrast to centralized governance, the users can be certain that

their locked-in effect will not be exploited by the entrepreneur. Thus, users will continue

to join the network every period. However, for the entrepreneur, this commitment comes

at a substantial cost: she shares half the revenues of the network with her users. Nonethe-

less, it is necessary for her to share revenue with her users. If she would not share any

revenue, the users would subsequently vote to stop the monetization of the network. As a

result, the entrepreneur would not receive any revenue. Therefore, the sharing of revenue

in a decentralized implementation of the network is necessary, as it aligns the incentives

of the entrepreneur and the incentives of the network’s users.

One potential point of contention in decentralized governance could be conflicts of

interest between existing and newly arriving users. The users’ utility function equals

V (µt) − kπ2
t +

1−α
µt
πtϕ(µt). The share of revenue that each user gets in the network is

1−α
µt

. As such, newly arriving users will dilute the revenue shares of existing users in

the network. However, note that the users’ per period utility in the equilibrium equals

V (µt) +
ϕ(µt)2

8kµ2t
. Since ϕ(µt)

µt
is non-decreasing by assumption, the equilibrium utility is

increasing in µt. Intuitively speaking, the network effects that accompany the entry of

new users sufficiently compensate the dilution of the revenue share of existing users. Thus,
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there is no incentive for existing users to try to prevent entry from newly arriving users

to avoid dilution of their revenue shares.

1.2.3 Optimal Governance

The two preceding sections have solved the sub-games of centralized and decentralized

governance. Now the main question remains: which form of governance the entrepreneur

should choose when she creates her network? As has been shown in proposition 1, central-

ized governance will result in the entrepreneur eventually stopping to grow the network

and starting to exploit the locked-in effect of the users. This change from network growth

to exploiting the users is inherent in centralized governance, as the entrepreneur is unable

to commit to future monetization and revenue sharing. Subsequently, corollary 1 showed

that, when the locked-in effect is sufficiently large, the entrepreneur is unable to attract

any users to the network, yielding her 0 revenue in equilibrium. This threshold of the

locked-in effect serves as a sufficient condition for when it is optimal to decentralize.

However, a complete comparison between the entrepreneur’s revenue in centralized and

decentralized governance remains. That is, what is the optimal mode of governance for

any arbitrary size of the locked-in effect? To answer this question, I start by considering

the opposite extreme of what was discussed in the corollary, namely when the locked-in

effect is very small. Then, I move to locked-in effects of arbitrary size.

For small locked-in effects, the commitment problem of the entrepreneur becomes less

and less severe, and in the limit of u = 0, disappears entirely. Comparing centralized and

decentralized governance for u = 0 is rather straightforward. When u = 0, there is no

locked-in effect that can be abused by the entrepreneur in the future. Thus, users will join

the network every period, resulting in growth in any period in the centralized network.

In comparison, note that the decentralized network also featured growth in every period.

As such, the potential revenues that can be generated in both modes of governance are

the same. However, in centralized governance, the entrepreneur stays in control and can

generate maximum amounts of revenue for herself, while she surrenders control over the

network in decentralized governance and has to engage in revenue sharing to align the

users’ preferences with hers. Thus, centralized governance is superior when the locked-in

effect is small. This intuition is condensed in the following lemma:

Lemma 3 As u→ 0 centralized governance is always preferred over decentralized gover-

nance.

Proof. See appendix 1.5.7

So far, I have established comparisons of centralized and decentralized governance at

both extremes of the size of the locked-in effect. For minimal locked-in effects, centralized
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governance is optimal for the entrepreneur, while for sufficiently large locked-in effects,

decentralized governance is optimal for the entrepreneur. For intermediate values, the op-

timal mode of governance is hard to compute explicitly, as the revenue of the entrepreneur

in the centralized network is only given implicitly, through the implicit definition of the

maximum network size µ̄. However, what can be shown is a monotonicity result. That

is, as the size of the locked-in effect increases, the entrepreneur’s revenue in centralized

governance decreases. As a result, there is a clear cutoff in the size of the locked-in effect,

such that decentralized governance is preferred if and only if the size of the locked-in

effect is larger than this cutoff. This idea is condensed into the following proposition:

Proposition 3 There exists a well-defined size of the locked-in effect, u∗∗, such that

decentralized governance is preferred by the entrepreneur if and only if u > u∗∗.

Proof. See appendix 1.5.8.

The idea of the proof is as follows. First, recall that I have shown that at the two ex-

tremes of minimal and very large locked-in effects, the entrepreneur prefers centralized

and decentralized governance respectively. Next, note that the entrepreneur’s revenue

with decentralized governance is independent of the size of the locked-in effect u. This

holds as the users decide the level of monetization in the network with decentralized

governance, and their optimal decision does not depend on u. The final step of the proof

shows, that the entrepreneur’s revenue with centralized governance is decreasing in the

size of the locked-in effect u. Together, these observations imply the result, as they im-

ply that the functions of the revenue under centralized and decentralized governance can

cross at most once.

To realize why the entrepreneur’s revenue with centralized governance is decreasing

in u, consider the effect of a change in the size of the locked-in effect. In the centralized

network, revenue is generated in three different phases. First, is the growth phase in which

the entrepreneur provides 0 period utility to the users. Second, the last period of growth

in which the entrepreneur provides utility equal to δu to the users, and lastly, the periods

of exploiting where the entrepreneur provides utility equal to −(1 − δ)u to the users.

Consider the immediate effect of an increase in u. The revenues of the first phase of the

network are independent of u and remain unchanged. Second, the required period utility

of the users in the last phase of growth, δu increases, resulting in decreased revenue for the

entrepreneur. Finally, the user utility level in the exploitation phase, −(1− δ)u decreases

and leads to increased revenues for the entrepreneur. However, the entrepreneur’s revenue

is a function that is concave in the utility level
(
c.f. ψ(µt, û) = µtV (µt) +

ϕ(µt)2

4kµt
− µtû or

ψ(µt, û) =
√

V (µt)−û
k

ϕ(µt)
)
that is extracted from the users. As a result, the additional

cost of providing additional utility in the last period of growth does not outweigh the

additional benefit from the extra revenue the entrepreneur generates in the exploitation
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phase. Thus, the immediate effect on the entrepreneur’s revenue of an increase in the size

of the locked-in effect is negative.

As a secondary effect, an increase in the size of the locked-in effect u, decreases the

maximum size of the network µ̄, as was shown in Lemma 2. Note that the change in

the maximum size of the network size is only relevant for the last period of growth and

the following period of exploitation, but not for the first periods of network growth. As

such, the smaller amount of users that the entrepreneur has to provide utility level δu

to in the last period of growth is offset by an equally smaller amount of users that the

entrepreneur can exploit by providing utility level −(1 − δ)u in the following periods.

Further, the entrepreneur’s revenue is increasing in the size of the network, such that a

decrease in the network size decreases the entrepreneur’s revenue. As both the immediate

and secondary effects on the entrepreneur’s revenue from an increase in the size of the

locked-in effect are negative, the total effect is negative. Thus, the entrepreneur’s revenue

with centralized governance is decreasing in u.

1.2.4 Welfare

Finally, I want to address the welfare implications of the governance decision. In particu-

lar: When does decentralization improve welfare? It turns out, that this question can be

answered with the analysis that has been conducted so far. First, note that users in the

centralized implementation of the network are always indifferent between joining the net-

work and their outside option ex-ante. In contrast, users receive strictly positive utility in

the decentralized implementation of the network. Thus, users always prefer decentralized

governance. For the entrepreneur, proposition 3 has established that she prefers decen-

tralization if and only if the size of the locked in effect u is larger than the threshold u∗∗.

Therefore, the following corollary can be established:

Corollary 2 Decentralized governance of the network is a Pareto improvement over cen-

tralized governance if and only if the size of the locked-in effect u is larger than u∗∗

As an alternative, one might consider utilitarian welfare. Then, utilitarian welfare is also

increased through decentralization if decentralization constitutes a Pareto improvement,

i.e. if the size of the locked-in effect u is larger than u∗∗. However, the statement for

utilitarian welfare is not an if and only if statement. In general, it is not obvious whether

it would improve welfare to force an entrepreneur to decentralize her network when locked-

in effects are smaller than u∗∗. Doing so creates two welfare effects with opposing signs:

the decrease in welfare through the decrease in revenue for the entrepreneur, and the

increase in welfare through the increase in utility for the users. The sign of the aggregate

of these two effects will generally depend on the parametrization of the model.
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1.3 Discussion

1.3.1 Airdrops: Decentralizing at a Later Time

One thing that commonly occurs in practice when an entrepreneur decentralizes her net-

work are so-called airdrops. That is, instead of decentralizing her network at the very

beginning, the entrepreneur delays decentralizing her network until a later time. At the

time of decentralization, past users are then sent tokens to their wallet (the tokens are "air-

dropped") and moving forward, the network is subject to decentralized governance.15 This

practice of airdrops can be rationalized within my model by allowing the entrepreneur

to delay decentralizing her network until a later period. The main concern is once again

commitment, that is, the entrepreneur is unable to commit that she will decentralize the

network in the future. Instead, it has to be sequentially optimal for her to decentralize the

network. Intuitively, she cannot delay decentralizing for too long, as otherwise exploiting

the users becomes too tempting.

Lemma 4 Suppose g(µt)−µt → 0 as µt → ∞ Then, for a sufficiently large network size

µt it is sequentially optimal to keep the network centralized.

Proof. See appendix 1.5.10

Next, I show that the entrepreneur can increase her revenues by delaying decentral-

ization of her network for some time. The intuition is, that at the start, when the amount

of users in the network is small, a centralized entrepreneur gains implicit commitment

to not exploit the locked-in effect of the users by the prospects of future growth. Using

that commitment, she can avoid the costs of decentralization for some time to increase

her overall profits.

Proposition 4 Suppose it is optimal for the entrepreneur to decentralize in t = 0. Then

it is optimal for the entrepreneur to delay decentralizing the network. Further, the option

to decentralize the network at a later time increases the range of locked-in effects for which

decentralization is optimal.

Proof. See appendix 1.5.11

As a secondary result, the proposition shows that giving the entrepreneur more flexi-

bility for when she decentralizes, makes decentralization naturally more appealing. Thus,

it is profitable for the entrepreneur to (eventually) decentralize her network for even

smaller locked-in effects than when she was restricted to decentralizing the network at

the very start.

15For example, Uniswap was founded in November 2018 and decentralized its governance after an
airdrop in September 2020.



21

1.3.2 Equilibrium Multiplicity

Section 2 has discussed the implications of centralized governance for an equilibrium in

which the entrepreneur grows the network up to a particular size and then stops grow-

ing the network to exploit the locked-in effect of its users. However, there exist other

sub-game perfect equilibria.16 Here, I argue that I perceive them as less convincing, due

to the high degree of coordination necessary among the users. In particular, when δ is

sufficiently large, there exists the following folk-theorem type of equilibrium:

Users’ strategy: Existing users leave the network and newly arriving users do not

join the network if the level of utility implied by any revenue sharing αt and mon-

etization πt in the history of the game at any time t is strictly lower than the level

ût = V (g(µt−1))− (1− δ)u, for a network of size µt = g(µt−1).

Entrepreneur’s strategy: In every period t, set revenue sharing αt and monetization πt

such that the level of utility for the users is equal to ût for a network of size µt = g(µt−1).

If the entrepreneur is being “punished” by the users, set utility equal to −(1 − δ)u con-

ditional on 0 (measure) users being in the network.

A proof that these strategies constitute a sub-game perfect Nash equilibrium can

be found in appendix 1.5.9. Now, while this type of equilibrium exists, it is particular

demanding in terms of coordination between the users. To illustrate this point, I will show

its instability regarding small uncertainties. Suppose that the entrepreneur deviates and

instead offers utility level ût− ϵ for some arbitrarily small ϵ. Since the utility level of the

deviation is arbitrarily close to ût, suppose that user i is not entirely certain whether all

other users will follow the equilibrium strategy and punish the entrepreneur by leaving

the network/not joining the network. User i assigns probability p to the event that all

other users unexpectedly stay in the network, for example because the trigger strategy

they follow is slightly more lenient than expected. With probability 1− p all other users

leave the network as prescribed by the equilibrium. An equilibrium is considered unstable,

if, for a degree of uncertainty of punishment p, there is a small deviation ϵ in the utility

offered by the entrepreneur such that any user i is better off staying in the network and

not punishing the entrepreneur.

Proposition 5 The alternative equilibrium discussed in this section is unstable for any

degree of uncertainty p > 0. In contrast, the equilibrium of the main body of the paper,

i.e., in proposition 1, is stable for all degrees of uncertainty.

Proof. See appendix 1.5.9

16A multitude of equilibria is common in dynamic games and has been establishes through various
folk theorems (e.g., Abreu (1983), Abreu et al. (1986), Fudenberg and Maskin (1990)).
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Intuitively speaking, the folk-theorem style equilibrium has the feature that a partic-

ular user i will want to follow through with punishing the entrepreneur for deviating only

if all other users also follow through. He wants to avoid punishing the entrepreneur, if the

other users do not follow suit. Thus, this kind of equilibrium requires an incredibly large

degree of coordination. In contrast, the equilibrium presented in the main paper has the

feature that a particular user i will want to leave the network (punish the entrepreneur)

regardless of whether the other users also leave. Thus, no degree of coordination is nec-

essary.

1.4 Conclusion

Before concluding, I want to briefly discuss some further points of interest. First, the

reader may wonder if this model implies that an established network such as Google

or Facebook should decentralize their business through the blockchain. Such a conclu-

sion cannot be drawn from this model, as these networks have already established a

large amount of users (e.g. Facebook already has around 3 billion users17). As such, the

value of extracting additional revenues from existing users that are already locked-in may

outweigh the value of commitment that is offered by a decentralized implementation.

However, the model provides insights on the optimal governance of newly founded com-

petitors.

Second, it may be plausible that locked-in effects become larger when there are more

users. When the network size is small, growth has been shown to be a substitute for

commitment in section 1.2.1. Smaller locked-in effects would leave this result unchanged.

Further, when the network size, and thus the locked-in effect, would be large, the en-

trepreneur will find it even more beneficial to stop growing the network and exploit the

existing users. Therefore, such an extension will leave the model qualitatively unchanged.

Last, consider the possibility that the entrepreneur may treat newly arriving and already

existing users differently. For example, she could try to treat newly arriving users or early

adopters favorably. However, if this also implies that she can treat existing users less fa-

vorably, this change would exacerbate the commitment problem of the entrepreneur when

choosing centralized governance even further. That is, it would be sequentially optimal to

exploit the locked-in effect of all users as soon as possible. Therefore, commitment should

become even more valuable for the entrepreneur.

To summarize, this paper provides an answer to a question that is frequently raised

when it comes to the topic of blockchain and cryptocurrencies: Why should anybody use

it? As the main result, I showed that (i) an entrepreneur prefers to decentralize her net-

17Meta Earnings Presentation Q2, 2022, p.14

https://s21.q4cdn.com/399680738/files/doc_financials/2022/q2/Q2-2022_Earnings-Presentation.pdf
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work and (ii) decentralization is a Pareto improvement, if and only if the locked-in effect

is sufficiently large. To broaden our understanding of further implications of decentral-

ization, I believe that further research is needed, especially regarding the economics of

decentralized governance.

1.5 Appendix

1.5.1 Explanation of Blockchain, Smart Contracts and the Cre-

ation of Commitment

This section provides a brief overview over blockchains, smart contracts and some exam-

ples of projects that leverage this technology. It is intended to provide sufficient back-

ground information for this paper for readers that are not familiar with the topic. How-

ever, a thorough treatment of the topic itself is outside the scope of this paper. For a

basic introduction to the topic, see for example Lewis (2021). For some further informa-

tion and more current research, see for example the contributions on https://www.cber-

forum.org/.

Blockchain

A blockchain is a ledger that allows for the storage of information. In this paper, the focus

lies on decentralized blockchains, i.e., those that are permissionless, and public. They are

updated and maintained decentrally by their users through a consensus mechanism. The

two most common consensus mechanisms are Proof of Work and Proof of Stake.18 For a

more detailed introduction to Blockchain, and its consensus mechanisms, see for example

Saleh (2021). I focus on the implications of blockchains for economic interactions. As they

are permissionless, there is no central authority that can censor access to the blockchain.

As such, an entrepreneur that leverages a decentralized blockchain finds herself unable to

interfere with the users’ ability to use the blockchain. Further, it is tamper-proof, i.e. the

entrepreneur and any single user are unable to change records on the blockchain. As the

blockchain is public, anyone can publicly observe – and trust in – the current consensus

of information on the blockchain.19 Bitcoin is probably the most well-known blockchain

to date. It was created in 2008 by Satoshi Nakamoto.20 The Bitcoin blockchain securely

stores account balances and facilitates transactions between its users.

18In practice, blockchains are updated by a subset of their users. In Proof of Work blockchains, this
subset is commonly referred to as miners. In Proof of Stake blockchains, they are commonly referred to
as validators.

19There are a variety of explorers that allow for easier reading of blockchains. For example, https:
//etherscan.io/ covers the Ethereum blockchain.

20Satoshi Nakamoto is a pseudonym. The real name of the bitcoin founder is unknown. Furthermore,
it is unknown if Satoshi Nakamoto is a single person or a group of people.

https://www.cber-forum.org/
https://www.cber-forum.org/
https://etherscan.io/
https://etherscan.io/
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Smart Contracts

From a technological standpoint, Bitcoin is not as advanced as many newer blockchains.

Most notably, it is not smart contract compatible.21 Essentially, a smart contract is a

piece of code that can be executed on the blockchain. Smart contracts have first been

formalized by Szabo (1997). The first smart contract compatible blockchain, Ethereum,

was conceived in a white paper by Vitalik Buterin in 2014.22 Smart contract compatible

blockchains offer vast possibilities for interactions between economic agents in a trust-

less environment. For example, they can be programmed to facilitate the exchange of

cryptocurrencies between two economic agents, without the need for trust in each other

or a central party as an intermediary. To date, the top 10 cryptocurrencies by mar-

ket capitalization consist of Bitcoin, three stablecoins, and six smart contract compati-

ble blockchains.23 This highlights the growing importance of smart contract compatible

blockchains.

Creating commitment through smart contracts: the example of Uniswap

One of the simplest examples of networks that rely on smart contracts to govern the

economic interactions between its users is decentralized exchanges. The largest decentral-

ized exchange to date is Uniswap24. It was founded in November 2018 by Hayden Adams

and deployed on the Ethereum blockchain. Uniswap allows its users to exchange different

cryptocurrencies in a trustless environment using smart contracts as intermediaries. As of

September 2022, it has facilitated the exchange of roughly $1.1 trillion worth of cryptocur-

rencies in 110 million trades. As the exchange is facilitated by smart contracts, which are

immutable once deployed to the blockchain, the terms of the exchange remain unchanged

at a 0.3% fee, regardless of how popular it has become.25 It is entirely impossible for

Adams to change the terms of the smart contracts governing Uniswap to extract addi-

tional rents from its sizeable user base. Changes to the Uniswap protocol are facilitated

through a decentralized governance mechanism that uses UNI “governance tokens”.26 Such

an arrangement is also referred to as a Decentralized Autonomous Organization (DAO).

Changes to the protocol are then voted on in a majority vote where 1 token equals 1 vote.

21As pointed out in the Ethereum white paper, technically Bitcoin can perform some computations,
but it is severely limited. For example, it is not Turing complete.

22https://ethereum.org/en/whitepaper/ethereum
23At the date of writing the top 10 cryptocurrencies are: Bitcoin, 3 stablecoins (USDT, USDC, BUSD)

and 6 smart contract compatible blockchains (Ethereum, Binance Smart Chain, Ripple, Cardano, Solana
and Dogecoin. A stablecoin is a cryptocurrency pegged to a fiat currency, most commonly the US Dollar.

24https://uniswap.org/
25There are other Uniswap smart contracts available with fees of 0.01%, 0.05% and 1% respectively.
26The UNI governance token is a digital asset. A digital asset is referred to as a cryptocurrency if

it has its own underlying blockchain. If it utilizes another blockchain, it is referred to as a token. UNI
exists under the ERC-20 token standard on the Ethereum blockchain

https://ethereum.org/en/whitepaper/##ethereum
https://uniswap.org/
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Creating commitment when smart contracts are not sufficient: the example

of Presearch

For some networks, it is not feasible to contain the entire interaction between agents

within a smart contract. Consider the example of Presearch, a decentralized search en-

gine. When a user searches on a search engine, a simplified workflow is as follows: 1)

The user issues a search request and sends it to the search engine, 2) the search engine

computes the search results and sends them back to the user. If one were to try to contain

this interaction in a smart contract, there would be at least two serious challenges. First,

the block creation times on current blockchains range from minutes (Bitcoin) to seconds

(Ethereum) to several hundred milliseconds (Solana). As such, the execution of a search

through a smart contract would simply be too slow to be practical. Second, interaction

with a smart contract requires the user to pay for “gas fees”27. With Ethereum, these gas

fees are typically in the range of several dollars.28 As such, they are too high to facilitate

millions to billions of searches a day.29 Therefore, for many networks, at least some inter-

actions have to happen “off-chain”.

To see how this works in practice, consider an entrepreneur who wishes to create a

search engine. In a centralized implementation, she develops the code and sets up a data

center with the computing infrastructure to handle the users’ search requests. To mon-

etize her search engine, she allows advertisers to place advertisements within the search

results. The entrepreneur starts off with minimal advertisement to attract new users.

As users are locked-in to her search engine, she increases the number of advertisements

she displays with the search results. Suppose the users anticipate this behavior by the

entrepreneur and that it is necessary for the entrepreneur to be able to commit. How can

she create commitment through decentralization and the blockchain?

Instead of operating the search engine through her own infrastructure, she decides to

distribute the code of the search engine freely and asks her users to set up the infras-

tructure (a so-called node) for the search engine. Now, suppose the entrepreneur tries

to update the software to increase the advertisement on the search engine as the users

have become locked in. Since the users are effectively operating the search engine, they

can simply refuse to install the software update that the entrepreneur has put forward.

Thus, the entrepreneur is unable to abuse the locked-in effect of the users. So far, this

does not necessarily require the use of the blockchain. However, to compensate the users

for the costs of operating the infrastructure, the entrepreneur promises to share part of

27Gas fees are transaction fees that have to be paid to interact with a smart contract on a blockchain.
They are necessary to ensure that computations finish within a finite amount of time and keep malicious
actors from impeding the operation of the blockchain through endless smart contract calculations.

28Current Ethereum gas fees can be found using https://etherscan.io/gastracker
29For example, Google handles around 5-6 billion search requests a day.

https://etherscan.io/gastracker
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the advertisement revenue with them. In this interaction, an opportunity for blockchain

technology to mitigate economic frictions arises.

Suppose the entrepreneur has promised the users 50% of advertisement revenues. Fur-

ther, suppose there are two potential advertisers that are willing to pay $100 to advertise

on the search engine, but it is only possible to display advertisements from one of the

advertisers. The willingness to pay is known to the entrepreneur, but not the users. The

payment of the advertisers to the entrepreneur is not publicly observable. If everybody

behaves honestly, competition will drive the advertisers to pay $100 for the advertise-

ment, and the entrepreneur and the users will receive $50 each. Now suppose that the

entrepreneur and one of the advertisers decide to collude: The entrepreneur proposes that

she will tell the users that the advertiser was only willing to pay $50 for the advertise-

ment. The other $50 will be split 30-20 between the entrepreneur and the advertiser. Such

collusion between the entrepreneur and the advertiser is profitable for both, since now,

the entrepreneur pockets $55 and the advertiser gets to advertise on the search engine

for $80 instead of $100. If the users anticipate such collusion, it may be optimal for them

to refrain from operating a node in the first place.

This situation can be remedied through the use of the blockchain: when setting up

her search engine, the entrepreneur employs a smart contract on the blockchain. It is

structured such that advertisers pay the smart contract for the advertisement. The soft-

ware of the search engine is programmed, such that it displays the advertisement for the

highest paying advertiser in the smart contract. Revenues are distributed 50/50 between

the entrepreneur and the users using the smart contract. Now collusion between the en-

trepreneur and one of the advertisers is no longer possible: Suppose the entrepreneur and

one of the advertisers agree to pay $50 for advertising into the smart contract and again

split the other $50 between each other. Now the second advertiser can simply deposit $51

into the smart contract to have their advertisement displayed, breaking the possibility of

collusion between the other advertiser and the entrepreneur.

In this example, the decentralized network run by the users serves as a commitment

device for the entrepreneur to not abuse their locked-in effect through increased adver-

tisement. The blockchain serves as a commitment device for the entrepreneur to honor

her revenue-sharing agreement with the users.

1.5.2 Myopic Revenue Maximization

Lemma 5 Consider the entrepreneur’s problem to maximize revenue myopically in a

single period t while ensuring utility û for users when the network size is µt.

1. If ϕ(µt)2

4kµ2t
+ V (µt) < û the entrepreneur is unable to ensure utility û for the users.
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2. If ϕ(µt)2

4kµ2t
+ V (µt) ≥ û and

(a)
(
ϕ(µt)
2kµt

)2
≥ V (µt)−û

k
, the optimal πt, αt are given by

πt =
ϕ(µt)

2kµt
(1.5.1)

αt =
1

2
+

2kµ2
t (V (µt)− û)

ϕ(µt)2
(1.5.2)

The entrepreneur’s revenue is equal to

µtV (µt) +
ϕ(µt)

2

4kµt
− µtû (1.5.3)

(b)
(
ϕ(µt)
2kµt

)2
< V (µt)−û

k
, the optimal πt, αt are given by

πt =

√
V (µt)− û

k
(1.5.4)

αt = 1 (1.5.5)

The entrepreneur’s revenue is equal to√
V (µt)− û

k
ϕ(µt) (1.5.6)

Proof. The lemma follows from the following maximization problem:

max
αtπt

αtπtϕ(µt) (1.5.7)

s.t. V (µt)− kπ2
t +

1− αt
µt

πtϕ(µt) = û (1.5.8)

1 ≥ αt ≥ 0 (1.5.9)

The problem can be solved through a standard KKT approach. The FOCs associated
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with the resulting Lagrangian with the complementary slackness conditions then reads

∂

∂αt
= πtϕ(µt) + λ1

(
−πt
µt

ϕ(µt)

)
− λ2 + λ3 = 0 (1.5.10)

∂

∂πt
= αtϕt(µt) + λ1

(
−2kπt +

1− αt
µt

ϕ(µt)

)
= 0 (1.5.11)

∂

∂λ1
= V (µt)− kπ2

t +
1− αt
µt

πtϕ(µt)− û = 0 (1.5.12)

∂

∂λ2
λ2 = (1− αt)λ2 = 0 (1.5.13)

∂

∂λ3
λ3 = αtλ3 = 0 (1.5.14)

First, focus on the case where αt ∈ (0, 1), such that λ2, λ3 = 0. Then straightforward

calculations yield that

πt =
ϕ(µt)

2kµt
(1.5.15)

αt =
1

2
+

2kµ2
t (V (µt)− û)

ϕ(µt)2
(1.5.16)

And the entrepreneur’s revenue equals(
V (µt) +

ϕ(µt)

4kµ2
t

− û

)
µt (1.5.17)

Note that αt ∈ (0, 1) requires that

αt > 0 (1.5.18)

⇐⇒ ϕ(µt)
2

4kµ2
t

+ V (µt) ≥ û (1.5.19)

and

1 > αt (1.5.20)

⇐⇒
(
ϕ(µ)

2kµt

)2

>
V (µt)− û

k
(1.5.21)

Next, consider the possible solution with αt = 1. Then it follows that

πt =

√
V (µt)− û

k
(1.5.22)
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The entrepreneur’s revenue then equals√
V (µt)− û

k
ϕ(µt) (1.5.23)

Last, consider the possible solution where αt = 0. Notice that in this case, the en-

trepreneur’s revenue is equal to 0, regardless of the choice of πt. The choice of πt that

maximizes the users’ utility is πt =
ϕ(µt)
2kµt

. Then it is not possible to ensure utility û for

the user if

V (µt)− k

(
ϕ(µt)

2kµt

)2

+
ϕ(µt)

2kµt

ϕ(µt)

µt
< û (1.5.24)

⇐⇒ V (µt) +
ϕ(µt)

2

4kµ2
t

< û (1.5.25)

1.5.3 Sufficient conditions for µ̄ to be well-defined

In this section I first provide sufficient conditions for the existence and uniqueness of µ̄

and then discuss how these conditions can be weakened further. Consider the following

conditions:

For existence:

1. As µt → ∞ it holds that g(µt)− µt → 0

2. ψ(g(µt), û)− ψ(µt, û) is decreasing in µt for all û

For uniqueness:

1.
√

2kV ′(µt)µt <
ϕ(µt)
µt

for all µt > 0

First, I provide an intuitive description of the conditions. They represent the idea that user

growth will slow down over time and there are decreasing returns to the entrepreneur’s

revenue when growing the network. As the size of the network increases, fewer new users

will arrive. This condition should be satisfied in many applications, as the potential

amount of users of a network is limited. Further, the conditions impose a regularity on

the difference between the revenue that the entrepreneur generates. As the network grows,

the gap between the revenue created from a network that has grown one more time and

a network that has not, shrinks.

Mathematically, the condition requires that the revenue function ψ, which depends on

the functions V and ϕ, is not too convex in the network size µt, in relation to the rate

at which the network growth slows down over time. To illustrate the point, consider an
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example with V (µt) constant and ϕ(µt) = µt. Note that in this specification ψ is a linear

function in µt, and as such at the extreme end of “not too convex” functions that can be

considered.

Proposition 6 The conditions presented above are sufficient to guarantee the existence

and uniqueness of µ̄.

Proof of proposition 6

Recall the definition of µ̄ as the value that solves the equation

1

1− δ
ψ(µ̄,−(1− δ)u) = ψ(g(µ̄), δu) +

δ

1− δ
ψ(g(µ̄),−(1− δ)u) (1.5.26)

Note that at µ = 0 it holds that LHS of equation < RHS of the equation. Evaluating

at µ → ∞ implies LHS of equation > RHS of the equation. Given the continuity of all

functions involved, an application of the intermediate value theorem implies existence.

To show the unique cutoff, consider the first derivative of the difference of the RHS and

the LHS with respect to µ:

g′(µ)ψµ(g(µ), δu) + g′(µ)
δ

1− δ
ψµ(g(µ),−(1− δ)u)− 1

1− δ
ψµ(µ,−(1− δu))

(1.5.27)

= g′(µ)ψµ(g(µ), δu)− ψµ(µ,−(1− δ)u) +
δ

1− δ
(g′(µ)ψµ(g(µ),−(1− δ)u)− ψµ(µ,−(1− δ)u))

(1.5.28)

What is to be shown is that this first derivative is negative. To this end, I show the

intermediate result that under the assumption that
√
2kV ′(µ)µ < ϕ(µ)

µ
for all µ > 0 it

holds that ∂ψ2

∂µ∂û
< 0 for all µ > 0.

Lemma 6
√

2kV ′(µ)µ < ϕ(µ)
µ

for all µ > 0 implies ∂ψ2

∂µ∂û
< 0 for all µ > 0.

Proof. Note that

∂ψ2

∂µ∂û
=

−1 if
(
ϕ(µ)
2kµ

)2
≥ V (µ)−û

k

−ϕ′(µ)

2
√
k
(V (µ)− û)−0.5 + V ′(µ)

4
√
k
(V (µ)− û)−1.5ϕ(µ) if

(
ϕ(µ)
2kµ

)2
< V (µ)−û

k

(1.5.29)

Therefore I focus on showing that the second case is negative:

−ϕ
′(µ)

2
√
k
(V (µ)− û)−0.5 +

V ′(µ)

4
√
k
(V (µ)− û)−1.5ϕ(µ) < 0 (1.5.30)

⇐⇒ −2ϕ′(µ)(V (µ)− û) + V ′(µ)ϕ(µ) < 0 (1.5.31)
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Note that to be in this second case, û is bounded above such that û < −
(
ϕ(µ)
2kµ

)2
k+V (µ).

Therefore, it holds that

−2ϕ′(µ)(V (µ)− û) + V ′(µ)ϕ(µ) < −2ϕ′(µ)

(
ϕ(µ)

2kµ

)2

k + V ′(µ)ϕ(µ) (1.5.32)

This is smaller than 0 if

−2ϕ′(µ)

(
ϕ(µ)

2kµ

)2

k + V ′(µ)ϕ(µ) < 0 (1.5.33)

⇐⇒ 2kµ3V ′(µ)
ϕ(µ)

ϕ′(µ)µ
< ϕ(µ)2 (1.5.34)

Note that the assumption that ϕ(µt)
µt

is non-decreasing guarantees that ϕ(µ)
ϕ′(µ)µ

≤ 1. This

implies that the inequality below is a sufficient condition for 1.5.34

√
2kV ′(µ)µ <

ϕ(µ)

µ
(1.5.35)

Which is the uniqueness part of the conditions.

Now, I revisit the initial derivative

g′(µ)ψµ(g(µ), δu)− ψµ(µ,−(1− δ)u) +
δ

1− δ
(g′(µ)ψµ(g(µ),−(1− δ)u)− ψµ(µ,−(1− δ)u))

(1.5.36)

Using the lemma derived above, note that ψµ(µ, δu) < ψµ(µ,−(1 − δ)u). Thus, it holds

hat

g′(µ)ψµ(g(µ), δu)− ψµ(µ,−(1− δ)u) +
δ

1− δ
(g′(µ)ψµ(g(µ),−(1− δ)u)− ψµ(µ,−(1− δ)u))

(1.5.37)

< g′(µ)ψµ(g(µ), δu)− ψµ(µ, δu) +
δ

1− δ
(g′(µ)ψµ(g(µ),−(1− δ)u)− ψµ(µ,−(1− δ)u))

(1.5.38)

Further, the assumption that ψ(g(µt), û) − ψ(µt, û) is decreasing in µt for all û implies

that

g′(µ)ψµ(g(µ), û)− ψµ(µ, û) ≤ 0 (1.5.39)

Using this implies that expression 1.5.38 is smaller than 0 which finishes the proof.
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An example with a general growth function and linear revenues:

First off, I show that the specification of V (µ) constant and ϕ(µ) = µ with g(µ) = µ+γ(µ)

and γ being strictly decreasing, strictly positive and approaching 0 as µ→ ∞ satisfy the

sufficient conditions above. Clearly, as µ→ ∞ it holds that g(µt)−µt → 0 as γ(µ) → 0 as

µ → ∞. Next, consider the difference ψ(g(µt), û)− ψ(µt, û). Plugging in V and ϕ yields

that ψ(µt, û) is a linear function of µt. Now for the assumption to hold, consider the first

derivative of the difference ψ(g(µt), û)− ψ(µt, û):

∂

∂µt
(ψ(g(µt), û)− ψ(µt, û)) = g′(µt)ψµt(g(µt), û)− ψµt(µt, û) (1.5.40)

= g′(µt)ψµt(µt, û)− ψµt(µt, û) (1.5.41)

= γ′(µt)ψµt(µt, û) < 0 (1.5.42)

The condition for uniqueness can be easily confirmed.

An example with a general revenue function and growth that slows abruptly:

For another example, consider the opposite end of the spectrum. That is, consider a

growth function g(µ) such that

g(µ) =

g(0) > 0 if µ = 0

µ if µ > 0
(1.5.43)

and arbitrary functions V (µ) and ϕ(µ). Then clearly we have

ψ(g(µ), û)− ψ(µ, û) > 0 (1.5.44)

if µ = 0 and the difference equals 0 otherwise. Intuitively speaking, this growth function

allows the network to grow for exactly 1 period at the start, and then in future periods

no new users arrive. Restricting the growth function in this way allows for maximum

freedom regarding the functions V and ϕ.30

To recap, the sufficient conditions rely on a balance between the convexity of the

revenue function ψ in relation to the growth function g. For the minimum degree of con-

vexity of ψ, i.e., when ψ is linear when V is constant and ϕ(µ) = µ it is possible to allow

very general growth functions g. On the other end, it is possible to allow very general

functions V and ϕ, implying very general shapes on the revenue function ψ, if growth

slows down extremely fast, that is, decreases to 0 within 1 period. In general, appropriate

30Note that this definition of g includes a discontinuity. To use such a g in the model, one would have
to extend g to a continuous function or use a slightly more general definition of µ̄, both of which can be
accommodated fairly easily.
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functions for V , ϕ and g can be found by keeping in mind the trade-off between relatively

more convex revenue functions ψ (as calculated by V and ϕ) for growth functions g that

slow down relatively faster and vice-versa.

More general sufficient conditions:

What is important for the proofs in the paper is that µ̄ exists and is unique. For this, I

have presented sufficient conditions above. However, they are not necessary. Alternatively,

it is possible to assume that

ψ(g(µ), δu) +
δ

1− δ
ψ(g(µ),−(1− δ)u)− 1

1− δ
ψ(µ,−(1− δ)u) (1.5.45)

is

1. Increasing up to some value µ̃

2. Strictly decreasing for any µ > µ̃

This case carries the intuition that the network effects through the entry of additional

users outweigh a slowdown in growth up to µ̃ users. Afterwards, the relationship reverses.

Note that mathematically this assumption also guarantees the existence of a unique µ̄

and that it is more general in the sense that it contains the sufficient conditions from

above for the case where µ̃ = 0. However, it is considerably more challenging to calculate

examples that satisfy this assumption.

1.5.4 Proof of Proposition 1

To check for profitable deviations by the entrepreneur or the users, I employ the one-

shot deviation principle (see for example Theorem 4.2 in Fudenberg and Tirole (1991)).

Note that the one-shot deviation principle applies, as the game is obviously continuous

at infinity.31 Therefore, it is sufficient to check that there is no single period profitable

deviation.

Deviations by the entrepreneur:

Consider a history of the game up to some period t that results in a mass of users µt−1

at the start of the period. Then there are two cases:

31c.f. Definition 4.1 and explanation in Fudenberg and Tirole (1991): A game is continuous at infinity
if for each player i the utility function ui satisfies suph,h̃ s.t. ht=h̃t |ui(h) − ui(h̃)| → 0 as t → ∞. It is
satisfied if the overall payoffs are a discounted sum of per-period payoffs and the per period payoffs are
uniformly bounded.
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Case 1(µt−1 ≤ µ̄): First, note that deviations that increase the utility of the users are not

profitable, since the equilibrium path remains unchanged and the entrepreneur’s revenue

is decreasing in the utility level she provides to the users. Now, consider a deviation

that decreases the utility level the entrepreneur provides for the users. Given the users’

strategies, a large decrease in the utility level below −(1−δ)u will cause all users to leave

the network and not be profitable. A small decrease will cause existing users to remain

in the network and newly arriving users to not join the network. Therefore, the most

profitable deviation would be to a utility level of −(1− δ)u. The entrepreneur’s revenue

for this deviation is ψ(µt−1,−(1 − δ)u) plus the discounted revenue of the continuation

of the initial strategy starting in the next period. If the entrepreneur had not deviated,

she would receive the value of the continuation of the initial strategy starting this period.

Note that this value depends on how many more periods the entrepreneur will grow the

network according to the initial strategy. I show that the deviation is not profitable by

induction on the number of periods of future growth. First, consider the case with 1

period of future growth. Then the deviation is not profitable if

ψ(µt−1,−(1− δ)u) + δ

(
ψ(g(µt−1), δu) +

δ

1− δ
ψ(g(µt−1),−(1− δ)u)

)
(1.5.46)

≤ ψ(g(µt−1), δu) +
δ

1− δ
ψ(g(µt−1),−(1− δ)u) (1.5.47)

⇐⇒ 1

1− δ
ψ(µt−1,−(1− δ)u) ≤ ψ(g(µt−1), δu) +

δ

1− δ
ψ(g(µt−1),−(1− δ)u) (1.5.48)

Which holds true since µt−1 ≤ µ̄. Now suppose that it is not profitable to deviate when

there are T periods of future growth. Next, I show that it is not profitable to deviate

with T + 1 periods of future growth. A deviation with T + 1 periods of future growth is

not profitable if

ψ(µt−1,−(1− δ)u) + δ

(
T−1∑
s=0

δsψ(g(s)(µt−1), 0) + δTψ(g(T )(µt−1), δu) +
δT+1

1− δ
ψ(g(T )(µt−1),−(1− δ)u)

)
(1.5.49)

≤
T−1∑
s=0

δsψ(g(s)(µt−1), 0) + δTψ(g(T )(µt−1), δu) +
δT+1

1− δ
ψ(g(T )(µt−1),−(1− δ)u) (1.5.50)

⇐⇒ 1

1− δ
ψ(µt−1,−(1− δ)u) (1.5.51)

≤
T−1∑
s=0

δsψ(g(s)(µt−1), 0) + δTψ(g(T )(µt−1), δu) +
δT+1

1− δ
ψ(g(T )(µt−1),−(1− δ)u) (1.5.52)

Since by induction the assertion holds true for T periods of future growth, it suffices to

show that the RHS of the inequality above for T periods of future growth is smaller than

the RHS of the inequality above for T + 1 periods of future growth, since the LHS is
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identical in both cases. Thus, I have to show that

T−2∑
s=0

δsψ(g(s)(µt−1), 0) + δT−1ψ(g(T−1)(µt−1), δu) +
δT

1− δ
ψ(g(T−1)(µt−1),−(1− δ)u)

(1.5.53)

≤
T−1∑
s=0

δsψ(g(s)(µt−1), 0) + δTψ(g(T )(µt−1), δu) +
δT+1

1− δ
ψ(g(T )(µt−1),−(1− δ)u)

(1.5.54)

⇐⇒ δT−1ψ(g(T−1)(µt−1), δu) +
δT

1− δ
ψ(g(T−1)(µt−1),−(1− δ)u)

(1.5.55)

≤ δT−1ψ(g(T−1)(µt−1), 0) + δTψ(g(T )(µt−1), δu) +
δT+1

1− δ
ψ(g(T )(µt−1),−(1− δ)u)

(1.5.56)

Now note that ψ(g(T−1)(µt−1), δu) < ψ(g(T−1)(µt−1), 0). Then this implication and some

rearranging yields

1

1− δ
ψ(g(T−1)(µt−1),−(1− δ)u) ≤ ψ(g(T )(µt−1), δu) +

δ

1− δ
ψ(g(T )(µt−1),−(1− δ)u)

(1.5.57)

Which holds true since this is precisely the condition that it is optimal to grow T + 1

times. Therefore, one-shot deviations by the entrepreneur to abuse the locked-in effect of

the users are not profitable.

Case 2(µt−1 > µ̄): For this case, deviations that decrease the user utility are not prof-

itable, since they will result in all users leaving the network and zero revenues. Now con-

sider deviations that increase the users’ utility. First, marginal increases will not change

the user behavior on the equilibrium path and are not profitable. Second, the smallest

deviation that changes the users’ behavior on the equilibrium path is to increase the

utility sufficiently to grow the network one more time. However, by definition of µ̄ such

deviations are not profitable when µt−1 > µ̄.

Deviations by a user:

Newly arriving users: First, consider any histories on the equilibrium path. Then,

there is no profitable deviation, since users are exactly indifferent between joining and

not joining the network. Now, consider deviations off the equilibrium path. For any histo-

ries that offer more utility than the equilibrium path, clearly it is still optimal to join the

network, such that not joining is not a profitable deviation. In contrast, any histories that
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have reduced utility imply that it is optimal to not join the network, such that joining is

not a profitable deviation.

Users that are locked-in: First, consider any histories on the equilibrium path. There

are two cases. Before the exploitation phase begins, there are no profitable deviations since

remaining in the network provides 0 utility, while leaving gives utility −u < 0. During

the exploitation phase, the users are indifferent between staying and leaving, such that

leaving is not a profitable deviation.

Second, consider histories off the equilibrium path. Histories that result in increased user

utility obviously do not offer profitable deviations. Now, consider histories such that the

user’s utility is reduced. Leaving the network provides −u utility, while remaining in the

network provides the user a utility level smaller than −(1−δ)u for the period in which he

is alone in the network and utility −δu from leaving the network the next period. Total

utility is thus smaller than −(1−δ)u−δu = −u, such that the deviation is not profitable.

1.5.5 Proof of Lemma 2

First, I show that the implicit function theorem is applicable in this situation. In particu-

lar, it has to be shown that the revenue function is differentiable. Clearly, it is piece-wise

differentiable. However, it has to be shown that it is also differentiable at the point where

the entrepreneur stops revenue sharing, i.e., when(
ϕ(µt)

2kµt

)2

=
V (µt)− û

k
(1.5.58)

The two pieces of the function are

µtV (µt) +
ϕ(µt)

2

4kµt
− µtû (1.5.59)

and √
V (µt)− û

k
ϕ(µt) (1.5.60)

Consider differentiability regarding û. The derivatives regarding û are

−µt (1.5.61)

and

− 1

2
√
k

1√
V (µt)− û

ϕ(µt) (1.5.62)
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It is straightforward to verify algebraically that the two derivatives are equal to each

other when
(
ϕ(µt)
2kµt

)2
= V (µt)−û

k

Next, I consider the derivatives regarding µt. They are

V (µt) + µtV
′(µt) +

2ϕ′(µt)ϕ(µt)4kµt − 4kϕ(µt)
2

(4kµt)2
− û (1.5.63)

and

1√
k

(
V ′(µt)

2

1√
V (µt)− û

ϕ(µt) +
√
V (µt)− ûϕ′(µt)

)
(1.5.64)

Using the identity
(
ϕ(µt)
2kµt

)2
= V (µt)−û

k
at the point of interest we can simplify the two

derivatives to(
ϕ(µt)

2kµt

)2

k + µtV
′(µt) +

ϕ′(µt)ϕ(µt)

2kµt
−
(
ϕ(µt)

2kµt

)2

k = µtV
′(µt) +

ϕ′(µt)ϕ(µt)

2kµt
(1.5.65)

and

1√
k

(
V ′(µt)

2
√
k

2kµt
ϕ(µt)

ϕ(µt) +
ϕ(µt)

√
k

2kµt
ϕ′(µt)

)
= µtV

′(µt) +
ϕ′(µt)ϕ(µt)

2kµt
(1.5.66)

respectively, which are equal to each other. Therefore, the implicit function theorem

applies. To shorten notation define

F := ψ(g(µt), δu) +
δ

1− δ
ψ(g(µt),−(1− δ)u)− 1

1− δ
ψ(µt,−(1− δ)u) (1.5.67)

and by the implicit function theorem it holds that

∂µ̄

∂u
= −

∂F
∂u
∂F
∂µt

∣∣∣∣∣
µ̄,u

(1.5.68)

For the denominator, notice that the derivative is negative by the definition of µ̄.

For the numerator, notice that at u = 0 it holds that F > 0. Moreover, note that the

three parts of F are decreasing and concave, increasing and concave, and decreasing

and convex with respect to u respectively. In order for F to be equal to 0 at (µ̄, u), the

derivative of F regarding u has to be negative for at least some values of U . However, note

that when the derivative of F turns negative, it will remain negative. This holds, as the

middle part of F is increasing and concave, such that its growth slows down. When the

derivative turns negative, the third part of F , − 1
1−δψ(µt,−(1 − δ)u) alone will keep the

derivative negative, as µt < g(µt). Thus, the negative slope is steeper than the positive
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slope of δ
1−δψ(g(µt),−(1− δ)u). In particular, this implies that the slope of F regarding

u at (µ̄, u) is negative. Therefore, the numerator is negative and the fraction as a whole

is negative.

1.5.6 Proof of Proposition 2

The degree of monetization follows from a simple optimization problem. Namely,

max
πt

V (µt)− kπ2
t +

1− α

µt
πϕ(µt) (1.5.69)

The equilibrium is confirmed by an application of the one-shot deviation principle. First,

no user has an incentive to deviate in the degree of monetization in weakly dominant

strategies. Second, as all users receive strictly positive utility from participation in the

network, there is no incentive to deviate into not joining.

Last, the entrepreneur’s optimization problem in t = 0 equals

max
α

∞∑
t=1

(
α
1− α

2k

ϕ(g(t)(µ0))

g(t)(µ0)
ϕ(g(t)(µ0))

)
(1.5.70)

Where g(t) denotes the t-time chaining of the growth function. From this, it is straight-

forward to derive α∗ = 0.5

1.5.7 Proof of Lemma 3

Note that at u = 0 the strategy of the entrepreneur is to ensure 0 utility for the users in

every period. Further, it holds that there is no value of µ̄ that makes the entrepreneur

indifferent between growing the network once more and exploiting the users in the future

and exploiting the users right away. Namely, it will always be better to grow the network

as g(µ) − µ ≥ 0. Therefore, at u = 0 the network will grow every period, as it does

with decentralized governance. However, since the choice set regarding monetization and

revenue sharing is larger in centralized governance than it is in decentralized governance,

her revenues are necessarily higher with centralized governance. Since the entrepreneur’s

revenues are continuous in u, this result also holds for u > 0, but sufficiently close to 0.

1.5.8 Proof of Proposition 3

Corollary 1 established that decentralized governance is preferred over centralized gover-

nance if u is sufficiently large, i.e. u > u∗. Further, lemma 3 established that centralized

governance is preferred if u is sufficiently small. To derive the result of the proposition,

note that the entrepreneur’s revenue with decentralized governance is independent of
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u. Thus, it is sufficient to show that centralized revenue is decreasing in u to prove the

proposition. Now, consider the change in the entrepreneur’s revenue with centralized gov-

ernance as u increases. Note that the entrepreneur does not exploit the locked-in effect in

the first periods of growth, that is, she sets ût = 0 for all periods of growth except the last

period. Now, consider the last period of growth and the following periods of exploiting

the locked-in effect. Note that the size of the network in all of those periods is the same.

Then the first order effect from increasing the size of the locked-in effect is equal to

δψu(µ, δu)− (1− δ)
δ

(1− δ)
ψu(µ,−(1− δ)u) (1.5.71)

This is negative if

ψu(µ, δu) ≤ ψu(µ,−(1− δ)u) (1.5.72)

Now there are three options to compare. They are 1) both sides of the equation are in

the linear part of ψ. 2) The LHS is in the linear part and the RHS is in the concave part

of ψ. 3) Both sides are in the concave part of ψ. The first case holds trivially. The second

case holds as

−µ ≤ − 1

2
√
k

1√
V (µ) + (1− δ)u

ϕ(µ) (1.5.73)

⇐⇒
(
ϕ(µ)

2kµ

)2

<
V (µ) + (1− δ)u

k
(1.5.74)

Which is a true statement, as it is precisely the condition from lemma 5 that ensured

that the RHS is in the concave part of the function.

Last, I show that the inequality holds if both the RHS and the LHS of the equation

are in the concave part of ψ.

− 1

2
√
k

1√
V (µ)− δu

ϕ(µ) ≤ − 1

2
√
k

1√
V (µ) + (1− δ)u

ϕ(µ) (1.5.75)

⇐⇒ u ≥ 0 (1.5.76)

For the second order effect, note that the maximum network size µ̄ is dependent on u.

In particular, lemma 2 showed that µ̄ is decreasing in u. Further, the entrepreneur’s

revenue ψ is increasing in µ, such that the decrease in the maximum size of the network

decreases the entrepreneur’s revenues. Thus, the total effect of an increase in u on the

entrepreneur’s revenues is negative.
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1.5.9 Proof of equilibrium of section 1.3.2 and proof of propo-

sition 5

Proof of equilibrium of section 1.3.2

First, consider why these strategies constitute a sub-game perfect equilibrium by checking

for one shot deviations.

Deviations by the entrepreneur: Given the users strategies, and the fact that the

entrepreneur’s revenue is decreasing in ût, clearly there are no profitable deviations for

the entrepreneur. Increasing ût lowers her revenue without changing the users’ behavior

on the equilibrium path. Decreasing ût causes all users to leave the network, resulting in

0 revenues for the entrepreneur. When the entrepreneur is being punished and there are

no users in the network, the entrepreneur is indifferent between all of his choices, such

that there is no inventive to deviate.

Deviations by the users: Fix the strategies of the entrepreneur and the users. Now

consider some arbitrary user i. For sub-game perfection, the user cannot have any incen-

tive to (one-shot) deviate from the equilibrium strategy at any history of the game.

First, consider histories of the game such that the entrepreneur has offered at least

utility level ût in every period. Suppose user i is already locked into the network. If

user i leaves, his utility will be equal to −u. If he stays, his utility will be equal to∑∞
t=0

(
δtV (g(t)(µt)

)
− u which is larger than −u, such that leaving is not a profitable

deviation. Now consider the case where user i is newly arriving to the network. Again,

his utility is
∑∞

t=0

(
δtV (g(t)(µt)

)
− u. This will be larger than 0 for δ large enough, such

that there is no incentive to deviate.

Next, consider histories of the game such that the entrepreneur is offering a utility

level ũt < ût in some period t. If user i leaves, his utility will be equal to −u. If user i
stays on the other hand, his utility will be equal to

ũt − V (g(µt−1))− δu (1.5.77)

Staying is optimal iff

ũt − V (g(µt−1))− δu > −u (1.5.78)

⇐⇒ ũt > V (g(µt−1))− (1− δ)u (1.5.79)

Which cannot hold since V (g(µt−1)) − (1 − δ)u = ût > ũt. Therefore, staying in the

network is not a profitable deviation for user i.
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1.5.10 Proof of Lemma 4

Revenue from decentralizing at size µ is equal to

T∑
t=0

δt
1

8

ϕ(g(t)(µt))
2

kg(t)(µt)
(1.5.80)

and can be approximated by

1

1− δ

(
1

8

ϕ(µt)
2

kµt
+ ϵ(µt)

)
(1.5.81)

and given that g(µt) − µt → 0 as µt → ∞ it holds that ϵ(µt) → 0 as µt → ∞. Revenue

from staying centralized and exploiting (given that µt is large enough) is equal to

1

1− δ
ψ(µt,−(1− δ)u) (1.5.82)

Thus, it is not sequentially optimal to remain centralized if

1

1− δ
ψ(µt,−(1− δ)u) >

1

1− δ

(
1

8

ϕ(µt)
2

kµt
+ ϵ(µt)

)
(1.5.83)

⇐⇒ ψ(µt,−(1− δ)u)− 1

8

ϕ(µt)
2

kµt
> ϵ(µt) (1.5.84)

Now, I show that the LHS of this inequality positive and increasing. Once that has been

shown, the inequality follows, since the RHS of the inequality goes to 0 for µt large

enough. To establish that the LHS of the inequality is positive and increasing, consider

both possible cases for ψ(µt,−(1− δ)u). First, consider

µt

(
V (µt) +

ϕ(µt)
2

4kµ2
t

+ (1− δ)u

)
− 1

8

ϕ(µt)
2

kµt
= µt

(
V (µt) +

ϕ(µt)
2

8kµ2
t

+ (1− δ)u

)
(1.5.85)

Which is both positive and increasing. Next, consider the second case:√
V (µt) + (1− δ)u

k
ϕ(µt)−

1

8

ϕ(µt)
2

kµt
= ϕ(µt)

(√
V (µt) + (1− δ)u

k
− 1

8

ϕ(µt)

kµt

)
(1.5.86)

Note that to be in the square root part of ψ(·) it holds that ϕ(µt)
2kµt

<
√

V (µt)+(1−δ)u
k

, which

implies that the RHS of the equation above is positive and increasing.

1.5.11 Proof of proposition 4

I start by proving the first statement of the proposition. Suppose it is optimal for the en-

trepreneur to decentralize in t = 0. Now, specifically consider the entrepreneur’s revenue
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in t = 1 when the network has just become operational. By definition of ψ(·), revenue for
the entrepreneur in t = 1 is maximal for a user utility level of ût = 0. Further, note that

the entrepreneur’s revenues are decreasing in the amount of user utility and that the user

utility in a decentralized implementation is strictly positive. Further, the entrepreneur’s

revenues in t = 1 with the decentralized implementation are necessarily smaller for the

same user utility level, than if she had retained control of the monetization, by definition

of ψ. Thus, period 1 profits are larger for the entrepreneur if she remains centralized.

Note however, that the profits of the remaining periods starting in t = 2 are necessarily

larger for a decentralized implementation, since it was optimal to decentralized in t = 0.

Thus, it will be sequentially optimal to decentralize the network in t = 2, or in a later

period, if it is optimal to delay decentralizing again.

Now, I prove the second statement of the proposition. Suppose that it is barely not

optimal for the entrepreneur to decentralize her network in t = 0, that is, the present value

of centralized revenues exceeds that of decentralized revenues by some small amount ϵ > 0.

Now, the argument made in the paragraph above shows that delaying decentralization

by 1 period increases the entrepreneur’s revenue by the amount with which centralized

revenues exceed decentralized revenues in t = 1. For ϵ small enough, the present value of

revenues when decentralizing in t = 2 now necessarily exceed those of staying centralized.

Thus, the range of locked-in effects for which decentralization is optimal is increased.

Proof of proposition 5

Consider the equilibrium of section 1.3.2 and the incentive of a user i to deviate from

punishing the entrepreneur. For that, compare his utility −u from leaving with the utility

of staying

p

∞∑
t=0

δtût + (1− p)(ût − V (g(µt−1))− δu)− ϵ < −u (1.5.87)

⇒ p

∞∑
t=0

δt
(
V (g(t)(µ0)− (1− δ)u

)
+ (1− p)(−(1− δ)u− δu)− ϵ < −u (1.5.88)

⇒ p

∞∑
t=0

δt
(
V (g(t)(µ0)− (1− δ)u

)
+ (1− p)(−(1− δ)u− δu)− ϵ < −u (1.5.89)

⇒ p
∞∑
t=0

δt
(
V (g(t)(µ0)

)
< ϵ (1.5.90)

Which is a contradiction for ϵ small enough, i.e. the user is better off when deviating to

staying in the network.

Now consider the equilibrium of the main body of the paper. Consider user i’s utility
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when staying. If all other users unexpectedly stay in the network, the discounted utility

of user i is strictly less than the value of his outside option, since he receives utility

−(1 − δ)u − ϵ today and discounted future utility equal to −δu. Thus the utility of

staying is equal to −u− ϵ < −u. If, on the other hand, all other users leave the network

and user i remains in the network alone, his utility is less than −(1− δ)u− δu− ϵ < −u
for any ϵ > u. Therefore, user i prefers to stick to the initial equilibrium, regardless of

the level of uncertainty p.

1.5.12 Extension: Pre-commitment to revenue sharing path in

decentralized governance

Suppose that the entrepreneur can pre-commit to the full path of revenue sharing for

all periods t = 1, 2, ... at the start of the game in t = 0. Now, note that for any pre-

commited level of αt, the user’s optimal choice of monetization πt is derived analogously

to the optimal monetization π∗
t for a fixed percentage of revenue sharing, and thus equals

1− αt
2k

ϕ(µt)

µt
(1.5.91)

and that the user’s utility level for the period thus is

V (µt) +
1

4k

(
(1− αt)

ϕ(µt)

µt

)2

≥ 0 (1.5.92)

such that the user’s choice of monetization implies that it is always optimal for new users

to join. Then the entrepreneur’s maximization problem in t = 0 is equal to

max
{αt}∞t=1

∞∑
t=1

(
δt
αt(1− αt)

2k

ϕ(µt)

µt

)
(1.5.93)

Now, straightforward maximization over the αt implies that in the optimum αt = α = 0.5

for all t = 1, 2, ....



Chapter 2

Mechanism Design for Unequal

Societies1

Based on joint work with Carl-Christian Groh2

Abstract: We study optimal mechanisms for a utilitarian designer who seeks to assign

multiple units of an indivisible good to a group of agents. The agents have heterogeneous

marginal utilities of money, which may naturally arise in environments where agents have

different wealth levels or financing conditions. The designer faces constraints on ex ante

transfers. We show that the ex post efficient allocation rule is not utilitarian optimal in

our setting. In certain situations, it is utilitarian optimal to deterministically assign the

good to an agent with a lower willingness to pay. This is because a high willingness to

pay may stem from a low marginal utility of money. Moreover, the transfer rule does

not only facilitate implementation of the desired social choice function in our setting,

but also directly affects social welfare. Finally, we highlight how our mechanism can be

implemented as an auction with minimum bids and bidding subsidies.

Keywords: optimal mechanism design, redistribution, inequality, auctions

JEL Classification: D44, D47, D61, D63, D82

2.1 Introduction

Consider the following canonical mechanism design problem with a twist: The designer

owns a limited number of indivisible goods and a finite number of ex-ante heterogeneous

agents with different marginal utilities of money are vying for the allocation of this good.

1We thank Vitali Gretschko, Hans-Peter Grüner, Volker Nocke, and Thomas Tröger for insightful
comments. This work was supported by the University of Mannheim’s Graduate School of Economic and
Social Sciences. Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
through CRC TR 224 (Project B03) and the SFB 884 Political Economy of Reforms is gratefully ac-
knowledged. Declarations of interest: none.

2Department of Economics, University of Mannheim
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This optimization problem is faced by many entities in the real world. In frequency auc-

tions or airport slot allocation mechanisms, incumbents with large amounts of collateral

have significantly easier financing conditions than potential entrants. In government real

estate auctions, corporations compete with private citizens. The assignment of kinder-

garten spots is conducted by small-scale kindergarten providers in many places and the

pool of applicants contains families with significantly different wealth levels.3

Designers in these settings will face constraints on transfers. We consider two such con-

straints motivated by our examples, namely: (1) the constraint that no agent may receive

payments from the mechanism in expectation and (2) the requirement that the designer’s

budget must be balanced ex ante. In any commercial auction conducted by a member

state of the European Union (EU), a violation of constraint (1) would imply that the

country grants state aid to a participant, creating the possibility for legal penalties.4 In

our kindergarten example, the local providers we have in mind generally operate under

tight budget constraints - thus, kindergarten spot allocations must satisfy constraint (2).

The preferences of the responsible entities may be well reflected by the utilitarian so-

cial welfare function. The goals of frequency auctions in the US are, among others, the

"efficient use of the spectrum" and "the rapid deployment of new systems".5 Similarly,

many kindergarten providers such as municipal entities are non-profit organizations. In

an attempt to guide the design of mechanisms in these examples, we study the following

questions: What allocation rule should a utilitarian designer choose in the small-market

allocation problems we have outlined? How can the optimal allocation rule be imple-

mented by slightly altering widespread mechanisms such as auctions?

We show that the utilitarian optimal allocation rule is not ex-post efficient when the

marginal utilities of money are heterogeneous across agents. When all agents have the

same marginal utility of money, the utilitarian optimal allocation rule is equivalent to the

ex post efficient allocation rule, in which the goods are allocated to the agents that state

the highest willingnesses to pay. In that setting, the sole purpose of the transfer rule is to

3In Germany, for instance, kindergarten spot allocation decisions are largely made by municipal
entities, parent associations, and non-for profit organizations - as detailed by Fritz (2021). Moreover,
local authorities condition their decision on several observables that are linked with income - see LH-
Mainz (2018).

4As defined in article 107 of the TFEU (1957), a government agency grants state aid as defined by
European Law if "an intervention gives the recipient an advantage on a selective basis, for example to
specific companies or industry sectors" and when "competition has been or may be distorted". An auction
setup where the government systematically siphons money to a certain company would thus represent
state aid. By contrast, a payment scheme that transfers no money to any company in expectation would
arguably not grant any specific company an advantage nor distort competition, thus complying with EU
law.

5For details, please see Crippen (2000).
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implement the desired social choice function because transfers are neutral in terms of so-

cial welfare. If the agents have different marginal utilities of money, this is no longer true.

This notion breaks the equivalence between the ex-post efficient allocation rule and the

utilitarian optimal allocation rule. It is utilitarian optimal to deterministically allocate

the good to agents with lower willingnesses to pay in some states of the world. Moreover,

the utilitarian optimal allocation rule leaves some units of the good unallocated in certain

states of the world when the designer can redistribute. Both of these features imply that

the utilitarian optimal allocation rule is not ex-post efficient.

When agents have different marginal utilities of money, the designer will have a re-

distributive motive. The role of inequality and redistributive preferences of the designer

for the allocation of scarce resources has been studied in several papers that preceed

our work. Weitzman (1977) analyses when a simple rationing scheme in which all con-

sumers get the same amount of a good is preferable to a market price rule. We go a step

further and derive a utilitarian optimal mechanism. Condorelli (2013) provides a method-

ological contribution that enables the derivation of optimal mechanisms for generalized

social welfare functions in small markets. We apply this general methodology, but our

two particular setups are not discussed by Condorelli (2013). Our preference framework

resembles Dworczak et al. (2021) and Akbarpour et al. (2020). By contrast, these authors

study settings with a continuum of goods and agents while we study small markets and

consider different research questions. Moreover, the designer’s willingness and ability to

redistribute is central for the results of Dworczak et al. (2021) and Akbarpour et al.

(2020), while we derive a bulk of our results for a situation where the designer is unable

to redistribute across agents.

We study the following framework: A utilitarian designer initially owns m units of an

indivisible good which can be allocated to N > m agents with unit demand for this

good. Following Dworczak et al. (2020), an agent’s utility consists of two parts. An agent

receives utility vKi when being allocated the good. Moreover, agents attain utility from

the money that they receive from the mechanism. The marginal utility of money for an

agent, which we call vMi , is constant for each agent but varies across agents. Both vKi

and vMi are private information, but the joint distribution of these variables is common

knowledge. In this framework, we characterize the utilitarian optimal mechanism which

obeys individual rationality, Bayesian incentive compatibility6, and satisfies either (1) the

constraint that no agent may receive payments from the mechanism in expectation or (2)

6By the results of Gershkov et al. (2013), there also exists an equivalent dominant-strategy imple-
mentable mechanism that yields the same utilitarian social welfare as our Bayesian incentive-compatible
mechanism.
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ex-ante budget balance.7

We derive the optimal mechanism based on the following ideas: First, we note that a

sufficient statistic for individual behavior is the willingness to pay, namely ri = vKi /v
M
i .

Dworczak et al. (2021) show that restricting attention to mechanisms that elicit only ri

is without loss of optimality in the settings we study. Secondly, changes in the transfer

rules are not neutral in terms of social welfare when agents have heterogeneous marginal

utilities of money. The total effect of allocating a good to an agent with a given type r

on social welfare is captured by the key statistic of our model: The inequality adjusted

valuation. In the utilitarian optimal mechanism, the goods will always be allocated to the

agents with the highest positive inequality adjusted valuations, which are not necessarily

the agents with the highest willingnesses to pay.

Consider the setting where no agent can receive payments from the mechanism in ex-

pectation. Because these no-subsidy constraints rule out ex-ante redistribution of money,

a utilitarian designer will give any revenue that is raised from an agent back as an ex-ante

transfer. In this setting, allocating the good to an agent impacts the expected utility of

this agent, and thus social welfare, in three ways. Firstly, it grants the agent consumption

utility. When the marginal utilities of money are heterogeneous, consumption utility is

not directly inferable from willingness to pay. Secondly, allocating the good to the agent is

associated with transfers from the agent to the designer which ensure that incentive com-

patibility is satisfied. Such changes in the transfer rule impact social welfare. In addition,

they affect the expected revenue that the designer raises from the agent, which changes

the ex ante transfer that the agent receives - the third effect. When an agent’s marginal

utility of money is stochastic, acquiring revenue from this agent when her marginal utility

money is below average to fund ex-ante transfers (i.e. redistributing within a given agent)

is beneficial. The inequality adjusted valuation condenses these three notions.

To see why allocation by willingness to pay is not optimal in this framework, suppose

that different agents have heterogeneous, but deterministic, marginal utilities of money.

In that case, the inequality adjusted valuation of any agent equals her consumption utility

vKi , because the second and third effects mentioned above cancel each other out. Thus,

there will be situations where the good is optimally allocated to agents with the lower

willingness to pay (but the higher vKi ). Why would the designer not assign the good to the

agent with the higher willingness to pay and compensate the other agent with a payment

somewhere in between the willingesses to pay of the agents? After all, such a deviation

would increase the utility of both agents in that particular state of the world. However,

7The fact that we only require the budget to be balanced ex ante and not in every possible state of
the world is without loss of generality, given the insights of Börgers and Norman (2009).



48

committing to not executing this trade will be beneficial overall. Recall that the expected

payment any agent receives from the designer must be zero. Thus, any money that is

moved between the agents would have to be counterbalanced by the designer (either ex

ante or in some other states of the world) to ensure that the expected transfers remain

zero for each agent. Because the marginal utilities of money are deterministic, the utility

any agent obtains from transfers as such must remain unaffected by the aforementioned

changes. However, implementing the trade would imply that the agent with the lower vKi

ultimately receives the good, which is suboptimal.

Now suppose that the designer just faces the ex-ante budget balance requirement dis-

cussed earlier. The fact that ex-ante redistribution from one agent to another is now pos-

sible endows the designer with a desire to raise revenue from agents with low marginal

utilities of money and redistribute this in the form of ex-ante transfers. This additional

motive will be reflected in the inequality adjusted valuations of the agents, which still

condense all the notions at play under the no-subsidy constraints. Under the ex-ante bud-

get balance condition, there are situations where some units of the good are optimally left

unallocated. Mirroring the insights of Myerson (1981), this is beneficial for social welfare

because it raises the revenue that is available for redistribution.

To fix ideas, reconsider the two-agent setting introduced previously. Suppose that agent

1 has the higher expected marginal utility of money. This agent’s inequality adjusted val-

uation is the same as in the previous setting with the no-subsidy constraints. However,

the designer is now able to redistribute any revenue he raises from agent 2 to agent 1

ex ante. This is reflected by agent 2’s inequality adjusted valuation. Allocating the good

to agent 2 changes the expected revenue the designer receives from this agent, and thus

agent 1’s ex-ante transfer, by the virtual valuation of agent 2.8 Thus, allocating the good

to agent 2 will enable redistribution when agent 2’s virtual valuation is positive.

As before, the goods will be allocated to the agents with the highest inequality adjusted

valuations, provided they are positive. There will be situations where the good is allocated

to the agent with the lower willingnesses to pay, because the agents’ inequality adjusted

valuations are not equal to their willingnesses to pay. In these situations, changing the

allocation such that the agent with the higher willingness to pay receives the good would

reduce utilitarian welfare. Committing to refrain from allocating the good to an agent

with the higher willingness to pay, but lower inequality adjusted valuation, will enable the

designer to generate more revenue from this agent, which is beneficial. For instance, im-

plementation of the ex-post efficient allocation rule through a second-price auction would

8As defined in Myerson (1981), the virtual valuation is the maximal amount of revenue that can be
raised from an agent in exchange for the allocation of the good at a given willingness to pay.
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entail allocation of the goods at prices below those attained in the utilitarian optimal

mechanism.

To guide the practical implementation of our ideas, we provide auction rules which im-

plement the respective utilitarian optimal mechanisms in Bayesian equilibrium. Under

the no-subsidy constraints, agents with high marginal utilities of money receive bidding

subsidies which allow them to compete against agents with easier financing conditions.

Under ex-ante budget balance, a similar result holds and the appropriate auction also

features bidder-specific minimum bids. We calculate the optimal bidding subsidies and

minimum bids for particular examples in section 5.

The rest of our paper proceeds as follows: We offer a detailed literature review in section

2. In section 3, we outline our framework. Sections 4 is devoted to the characterization of

the optimal mechanisms in the two aforementioned settings. Afterwards, we discuss the

implementation of our mechanisms through auctions in section 5, provide some numerical

illustrations in section 6, and conclude thereafter.

2.2 Related Literature

In our setting, the role of transfers goes beyond the implementation of the desired allo-

cation rule. Thus, our work relates to three strands of literature. Firstly, our research has

strong connections to the contributions that characterize optimal mechanisms in non-

quasilinear settings. Secondly, our work relates to the contributions from various fields

which investigate the role of heterogeneous, but constant, marginal utilities of money.

Thirdly, some of our key ideas complement insights from social choice theory and public

finance.

One of the earliest extensions of the standard quasilinear framework was Maskin and

Riley (1984), who pin down the optimal auction in a setting with risk-averse buyers.

Saitoh and Serizawa (2008), Hashimoto and Saitoh (2010), and Kazumura et al. (2020)

characterize, among others, the set of mechanisms that retain certain desiderata in non-

quasilinear settings, such as the VCG features. Eisenhuth (2019) studies the revenue-

maximizing auction when agents are loss averse and the reference point is endogenous to

the choice of the mechanism. Pai and Vohra (2014) and Kotowski (2020) analyse, among

others, allocation problems where buyers face heterogeneous budget constraints.

Within this literature, the paper that is most closely related to our own is Huesmann

(2017), who examines the problem of assigning a number of indivisible goods to a unit

mass of agents with two different wealth levels. All agents have the same underlying
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utility function and have concave utility-for-money. Agents only differ in their wealth

levels and an agent’s wealth is private information. This setup differs from our own in the

following ways: Firstly, Huesmann (2017) assumes that an agent’s preferences are fully

pinned down by the agent’s type report (wealth). In our framework, the preferences of

an agent are not fully known by the designer, even conditional on the reported willing-

ness to pay. Secondly, she assumes that the utility an agent receives when consuming

the good is identical across agents, which we do not. Finally, Huesmann (2017) models

a situation with a continuum of agents, whereas we model a finite number of agents to

understand the local allocation problems we have in mind. Our key result, namely that

it may be utilitarian optimal to deterministically allocate the good to an agent with the

lower willingness to pay in certain situations, is unobtainable in the framework of Hues-

mann (2017). In addition, we show how a designer may account for wealth inequality by

implementing an auction with bidding subsidies and minimum bids.

The second related strand of literature consists of papers that study settings where agents

differ in their marginal utilities of money, but there are no wealth effects. Esteban and

Ray (2006) study a lobbying framework where different lobby groups have different wealth

levels and the costs of lobbying fall in wealth. Kang and Zheng (2019) characterize the

set of interim-pareto-optimal mechanisms in a setting where one "good" and one "bad"

are to be allocated. In their framework, agents have identical values for the "good" and

the "bad", but have different (constant) marginal values of money.

Within this literature, the papers that are closest to our own are Dworczak et al. (2021)

and Akbarpour et al. (2020). Our modeling technique, in particular the utility function

with two dimensional types, is based on the setup in Dworczak et al. (2021). However,

both these papers consider a setting with a continuum of goods to be allocated and a

continuum of agents to allocate the goods to. By contrast, we model settings with a fi-

nite number of agents and goods to be allocated.9 Our two main contributions are the

closed form expressions governing the utilitarian optimal allocation decision for any given

realization of types in our two settings. By construction, these have no counterpart in

Dworczak et al. (2021) and Akbarpour et al. (2020), because such characterizations are

not required in these papers due to the large markets assumption. Moreover, we derive a

bulk of our results under the constraint that no agent can receive positive transfers from

the mechanism in expectation, which is not considered by either of these two papers. In

addition, our results regarding the implementation of the utilitarian optimal mechanisms

via auctions are exclusive to our paper.

9In the examples we have mentioned, the number of goods to be allocated and the number of agents
vying for the allocation of the goods are small. In such local markets, feasibility constraints have to hold
for every possible type realization.
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Moreover, both Dworczak et al. (2021) and Akbarpour et al. (2020) consider research

questions that differ from the one we study. Dworczak et al. (2021) pin down optimal

trading mechanisms in markets with a distinct buyer and seller side where the designer

chooses the mechanism. Akbarpour et al. (2020) investigate under what conditions the op-

timal mechanism in settings where agents have heterogeneous pareto weights is a market-

based mechanism such as an auction or employs random allocation.

Condorelli (2013) outlines a method for determining the optimal allocation of goods

under generalized objectives of the planner in small-market situations, subject to incen-

tive compatibility and individual rationality. We apply the linear programming approach

outlined by Condorelli (2013) to the two particular allocation problems of our paper,

both of which are not discussed in Condorelli (2013). In Condorelli (2013), allocation is

based on exogenously given priority functions. The inequality adjusted valuations in our

model can be understood as endogenous counterparts of these priority functions. These

inequality adjusted valuations are determined through the interplay of the incentive com-

patibility, the individual rationality, and the transfer constraints in our settings.

The idea of assigning different agents heterogeneous welfare weights based on their eco-

nomic standing was already voiced by Diamond and Mirrlees (1971) and Atkinson and

Stiglitz (1976). Our paper is also related to Weitzman (1977), who analyses when a sim-

ple rationing scheme in which all consumers get the same amount of a good is preferable

to a market price mechanism. Not surprisingly, the advantage of the price based system

is increasing in the heterogeneity of taste for the product and falling in the level of in-

equality. The idea of using the public provision of goods as a redistributive tool is also

reflected in the work of Besley and Coate (1991) and Gahvari and Mattos (2007). The

authors study a market for an indivisible and rivalrous good such as healthcare. A state

with utilitarian objectives will provide an intermediate quality of the good at no costs,

which a redistributive act under lump-sum taxation.

2.3 Framework

We consider a finite but arbitrary number of agents i ∈ {1, 2, ..., N} with unit demand

for an indivisible good. Initially m < N units of this good are owned by the mechanism

designer and are to be allocated among the agents. Following Dworczak et al. (2021), the

agents’ behavior is described by the utility function ui = vKi x
K
i + vMi x

M
i , where vKi repre-

sents the valuation for the good (which we sometimes refer to as the consumption utility)

and xKi is a binary variable that describes whether or not the agent has received the good.

What sets this specification apart from most of the literature is that the marginal utility
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of money may vary across agents. More precisely, the utility derived from money consists

of two parts: it equals the marginal utility of money of the agent, namely vMi , multiplied

by the amount of money received or paid by the agent in the mechanism, namely xMi .

Both vKi and vMi are assumed to be private information. However, the joint distribution

of these variables, namely Fi, is common knowledge. The marginal densities of vKi and vMi

are denoted by fKi (·) and fMi (·), respectively. We assume that the mechanism designer is

utilitarian and wants to maximize the ex ante welfare given by

N∑
i=1

E[vKi xKi + vMi x
M
i ] (2.3.1)

subject to incentive compatibility, individual rationality and potential constraints on the

transfer rules. Everything else equal, moving money between the agents thus impacts

social welfare. We denote the allocation rule by xi and the transfer rule by ti. In line with

the standard definitions of the literature we say that a mechanism is (Bayesian) incentive

compatible if and only if for all agents i and possible types (vKi , v
M
i )

E−i[v
K
i xi(v

K
i , v

M
i , v

K
−i, v

M
−i) + vMi ti(v

K
i , v

M
i , v

K
−i, v

M
−i)]

≥ E−i[v
K
i xi(v̂

K
i , v̂

M
i , v

K
−i, v

M
−i) + vMi ti(v̂

K
i , v̂

M
i , v

K
−i, v

M
−i)] (2.3.2)

holds for all other possible type reports (v̂Ki , v̂
M
i ). We say that participation in a mecha-

nism is individually rational if and only if for all agents and possible types (vKi , v
M
i )

E−i[v
K
i xi(v

K
i , v

M
i , v

K
−i, v

M
−i) + vMi ti(v

K
i , v

M
i , v

K
−i, v

M
−i)] ≥ U i (2.3.3)

holds true, where U i denotes the utility attached to each agent’s outside option. Because

utility functions are linear in both components, one can normalize the outside option

to 0. The transfer ti represents the money that the agent receives from or pays to the

mechanism. Moreover, vKi represents the utility gain achieved when receiving the good.

In section 4.1., we require that the expected transfer any agent receives from the mecha-

nism must be weakly negative, i.e. that the following no-subsidy constraints hold for all

agents i:

E[ti(vKi , vMi , vK−i, vM−i)] ≤ 0 (2.3.4)
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In section 4.2., we restrict attention to mechanisms that satisfy ex ante budget balance.

We say that a mechanism satisfies ex ante budget balance if and only if

N∑
i=1

E[ti(vKi , vMi , vK−i, vM−i)] ≤ 0 (2.3.5)

Restricting attention to a budget balance condition that is expressed in ex ante and not

in ex post terms is without loss, given the insights of Börgers and Norman (2009).10 Note

that we do not require transfers to be negative for any possible realization of types. Before

deriving the optimal mechanism, we establish some preliminary results following the

approach of Dworczak et al. (2021). Because von Neumann-Morgenstern utility functions

are only unique up to affine transformations, an agent’s rate of substitution ri = vKi /v
M
i

will be sufficient to describe her behavior. As derived in Dworczak et al. (2021), an agent’s

utility function can be rewritten as follows:

E[vKi xKi + vMi x
M
i ] = Eri [E[vMi |ri]︸ ︷︷ ︸

λi(ri)

(rix
K
i + xMi )] (2.3.6)

We assume that for every agent i the rate of substitution ri is independently and contin-

uously distributed on an interval [ri, r̄i] with 0 ≤ ri ≤ r̄i. The cdf of ri will be denoted by

Gi(ri). This distribution is pinned down by the joint distribution of vKi and vMi . Further

note that the factor λi(ri) represents a Pareto weight.

Because the statistic ri fully pins down an agent’s behaviour, any attempt at treating two

agents with the same ri (but potentially heterogeneous realizations of vMi and vKi ) differ-

ently can not be successful. Thus, restricting attention to mechanisms that elicit only ri

is without loss of optimality. This intuition is formalized in the following proposition due

to Dworczak et al. (2021):

Proposition 1 (Dworczak et al. (2021), Theorem 8) If a mechanism is feasible (re-

spectively, optimal) in the two dimensional model, then there exists a payoff-equivalent

mechanism eliciting only ri that is feasible (respectively, optimal) in the one dimensional

model with Gi being the distribution of ri under the joint distribution Fi for v
K
i and vMi ,

where λi is given by:

λi(ri) = Ei[vMi |ri] (2.3.7)

In light of this result, we restrict ourselves to mechanisms that elicit only the rate of

substitution ri. Due to the revelation principle, we are also free to restrict our attention to

10This is because we study independent types and assume that the agents’ marginal utilities of money
are constant. Proposition 2 in Börgers and Norman (2009) thus establishes the following: For any ex ante
budget balanced mechanism in our framework, there exists an ex post budget balanced mechanism with
the same allocation rule and interim expected payments (and thus the same utilitarian welfare).
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direct mechanisms subject to incentive compatibility constraints. As derived in Dworczak

et al. (2021), characterizing incentive compatibility follows the familiar formulation of the

literature. Let Xi(ri) = E−i[xi(ri, r−i)] be the expected allocation probability of agent i,

given type report ri, and let Ti(ri) = E−i[ti(ri, r−i)] be the expected transfer of agent i,

given type report ri. Incentive compatibility is characterized by the following lemma:

Lemma 1 (Incentive Compatibility) A mechanism {xi(ri, r−i), ti(ri, r−i)}Ni=1 is in-

centive compatible if and only if

1. Xi(ri) is non-decreasing in ri (Monotonicity)

2. riXi(ri) + Ti(ri) = Ui(ri) +
∫ ri
ri
Xi(s)ds (Integrability)

This result follows after rescaling the utility functions and then applying the standard

arguments of the literature. By integrability, the expected transfer of an agent is given

by

E[Ti(ri)] = Ui(ri)−
∫ r̄i

ri

Xi(ri) Ji(ri)︸ ︷︷ ︸
r− 1−Gi(ri)

gi(ri)

dGi(ri) (2.3.8)

where Ji(ri) denotes the virtual valuation of an agent as defined in Myerson (1981). Note

that the integrability condition implies that participation of an agent in the mechanism

is individually rational if and only if it is individually rational for the lowest type of the

agent. We can use the integrability condition, together with a change of the order of

integration, to rewrite the ex ante utilitarian welfare as follows:

∑
i

E[λi(ri)(riXi(ri) + Ti(ri))] =
∑
i

ΛiUi(ri) +

∫ r̄i

ri

Xi(s)

∫ r̄i
s
λi(ri)dGi(ri)

gi(s)︸ ︷︷ ︸
Πi(s)

dGi(s)


(2.3.9)

We remark that we have defined Λi := E[λi(ri)] = E[vMi ] and:

Πi(s) :=

∫ r̄i
s
λi(ri)dGi(ri)

gi(s)
(2.3.10)

Note that for λi(ri) = 1, we have Πi(ri) = 1−Gi(ri)
gi(ri)

, the standard inverse hazard rate

formulation. Therefore, it seems instructive to think about the function Πi(ri) as an

inequality adjusted inverse hazard rate. Before moving forward, we make the following

assumption for the remainder of the paper:

Assumption 1 For all agents, there exists an r̂i ∈ [ri, r̄i] such that:
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• For all ri < r̂i, it holds that Ji(ri) ≤ 0

• For all ri ≥ r̂i, it holds that Ji(ri) ≥ 0

Assumption 1 means that the virtual valuation can cross 0 at most once. Moreover,

monotonicity of Ji(ri) implies assumption 1 but not vice versa. This assumption is useful

because, together with monotonicity of Xi(ri), it is sufficient to ensure that the expected

revenue that is raised from an agent in exchange for allocation of the goods will always

be weakly positive. A violation of this property in the optimal mechanism would be quite

unintuitive, because the agents are generally willing to pay for the consumption of the

good. The regularity condition laid out in assumption 1 rules out such outcomes.

2.4 Optimal mechanisms

2.4.1 No-subsidy constraints

For this subsection, we assume that the expected transfer any agent receives from the

mechanism must be weakly negative. These constraints make it impossible for the planner

to provide ex ante (positive) transfers to any agent. Plugging in the integrability condition,

these constraints may be expressed as follows:

E[Ti(ri)] = Ui(ri)−
∫ r̄i

ri

Xi(ri)Ji(ri)dGi(ri) ≤ 0 ∀i (2.4.1)

Noting the way in which we have rewritten the utilitarian social welfare function, the

maximization problem can be stated as:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(
ΛiUi(ri) +

∫
Πi(ri)xi(ri, r−i)dG(ri, r−i)

)
s.t. Ui(ri)−

∫ r̄i

ri

Xi(ri)Ji(ri)dGi(ri) ≤ 0 ∀i (No-subsidy)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)∑
i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing ∀i (Mono)

Ui(ri) ≥ 0 ∀i (IR)

Then, the optimization problem boils down to choosing the optimal allocation rule and the

optimal utility levels for the lowest type of each agent. In the optimal solution to the above

problem, all no-subsidy constraints must bind. Suppose, for a contradiction, that the no-

subsidy constraint is slack for some agent i in the optimal solution. Then, the designer
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could increase Ui(ri) in compliance with this constraint. This change would not violate

any other constraint and would raise social welfare, a contradiction. Plugging in these

results into our objective function implies that our problem involves the maximization of

the following functional, subject to the remaining constraints:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(∫ (
Πi(ri) + ΛiJi(ri)

)
xi(ri, r−i)dG(ri, r−i)

)

Key components of this objective functional are the functions Πi(ri)+ΛiJi(ri), which we

label now:

Definition 1 (Inequality adjusted valuation - I) We define the expression γi(ri) :=

Πi(ri) + ΛiJi(ri) to be the inequality adjusted valuation of agent i under the no-subsidy

constraints.

The optimal mechanism, which revolves around these inequality adjusted valuations, is

characterized by the following proposition:

Proposition 2 (Optimal Mechanism - I) Suppose that γi is weakly increasing. When

ex ante transfers must be weakly negative, the optimal mechanism assigns the goods to

the m agents with the highest γi(ri). All units of the good are always allocated.

To understand the result, consider the following relaxed version of our optimization prob-

lem, where the monotonicity and the IR constraints are ignored:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(∫ (
Πi(ri) + ΛiJi(ri)

)
xi(ri, r−i)dG(ri, r−i)

)
s.t. 0 ≤ xi(ri, r−i) ≤ 1 (Prob)∑

i

xi(ri, r−i) ≤ m (Feas)

The structure of the relaxed problem defined above implies that its solution, which can

be found using the linear programming approach outlined by Condorelli (2013), must

have a bang-bang property. In the solution to this relaxed problem, the agents with the

highest positive inequality adjusted valuations γi(ri) should always receive the goods.

The assumption that γi(ri) is weakly increasing implies that these functions will always

be positive. Moreover, said assumption also guarantees that the monotonicity constraint

will be satisfied in the solution of the relaxed problem. Finally, it remains to show that

all IR constraints are also satisfied in this solution. Because the no-subsidy constraints

bind, the utility of an agent i with type ri is given by:

Ui(ri) =

∫ r̄i

ri

Xi(ri)Ji(ri)dGi(ri) (2.4.2)
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Assumption 1 guarantees that the right-hand side of this expression is always strictly

positive when the allocation rule Xi(ri) satisfies monotonicity, which we have shown

to hold true. Thus, all IR constraints will be satisfied and the solution of the relaxed

problem also constitutes a solution to the original problem. To gain further intuition

for the determinants of the optimal mechanism, consider the following decomposition of

γi(r):

γi(ri) = Πi(ri) + ΛiJi(ri) (2.4.3)

= Λiri︸︷︷︸
Efficient allocation

+

∫ r̄i
ri

(
λi(s)− Λi

)
dGi(s)

gi(ri)︸ ︷︷ ︸
Ex interim uncertainty

(2.4.4)

The inequality adjusted valuation captures the total effect of allocating a good to an agent

i with type ri on this agent’s expected utility, and thus social welfare. They represent

endogenous counterparts of the exogenously given priority functions found in Condorelli

(2013). In the standard case when λi(ri) = 1 holds for any agent i and any ri, the in-

equality adjusted valuation equals ri for all agents.

Suppose firstly that the marginal utility of money of any agent i, namely vMi , is non-

stochastic. Then, the second term of the function γi(ri) becomes zero and the inequality

adjusted valuation of any agent is exactly equal to her consumption utility vKi . This holds

due to the following reasoning: Given that vMi is non-stochastic, the total expected utility

an agent derives from transfers is pinned down by the expected transfer the agent receives.

Since this is fixed at 0 by the no-subsidy constraints, allocating the good to agent i only

impacts this agent’s expected utility via the consumption utility it generates. Any shifts

in the transfer schedule induced by the allocation decisions will not affect this agent’s

expected utility. Thus, the total benefit of allocating the good to agent i with type ri is

given by vKi .

Now suppose that an agent’s marginal utility of money is stochastic. Then, an allocation

decision affects an agent’s expected utility even beyond generating consumption utility.

This is because an allocation choice affects the transfer schedule of an agent and these

shifts are not neutral when the agent’s marginal utility of money is stochastic. Intuitively,

this stochasticity endows the designer with a desire to transfer money to the agent when

this agent’s inferred marginal utility of money, namely λi(ri), is high and vice versa. This

desire is captured by the second component of the inequality adjusted valuation.

The results of this section show that it is not generally utilitarian optimal to allocate

goods to the agents with the highest willingnesses to pay. A high willingness to pay does
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not necessarily imply a high consumption utility, in particular for agents with a high

expected marginal utility of money. Moreover, stochasticity of the marginal utilities of

money implies that the impact of allocation choices on transfer rules must be taken into

account when maximizing social welfare.

2.4.2 Ex ante budget balance

In this section, we replace the no-subsidy constraints with an ex ante budget balance

condition. The implied optimization problem can be stated as:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(
ΛiUi(ri) +

∫
Πi(ri)xi(ri, r−i)dG(ri, r−i)

)
s.t.

∑
i

(
Ui(ri)−

∫
Ji(ri)xi(ri, r−i)dG(ri, r−i)

)
≤ 0 (Budget)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)∑
i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing (Mono)

Ui(ri) ≥ 0 (IR)

We define Λ∗ = max{Λi} and set i∗ ∈ argmaxi Λi. Note firstly that the ex ante budget

balance requirement must bind in any optimal mechanism. Otherwise, U∗
i (ri) could be

increased, leading to a rise in social welfare. Moreover, the IR constraints of all agents

i /∈ argmaxi Λi must also bind in the optimal mechanism. If any such constraint were

slack, the designer could decrease Ui(ri) for some agent i /∈ argmaxi Λi to raise Ui∗(ri∗)

by the same amount. This change would satisfy all constraints and improve social welfare

because Λ∗ > Λi. Thus, Ui(ri) = 0 must hold for all agents i /∈ argmaxi Λi. Taken

together, these two arguments imply that the budget constraint can be rewritten as

follows:

Ui∗(ri∗) =
∑
i

∫
Ji(ri)xi(ri, r−i)dG(ri, r−i)

Plugging these results into the objective function implies that our maximization problem,

when ignoring the IR and the monotonicity constraints, becomes the following:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(∫ (
Πi(ri) + Λ∗Ji(ri)

)
xi(ri, r−i)dG(ri, r−i)

)
s.t. 0 ≤ xi(ri, r−i) ≤ 1 (Prob)∑

i

xi(ri, r−i) ≤ m (Feas)

The structure of this relaxed problem is almost the same as in the previous section, with
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the only difference being that the arguments in the objective function are now slightly

different. To that end, we define the inequality adjusted valuation for this particular

setting now:

Definition 2 (Inequality adjusted valuation - II) We define the expression

φi(ri) := Πi(ri) + Λ∗Ji(ri) (2.4.5)

to be the inequality adjusted valuation of agent i under the ex ante budget balance require-

ment.

Note that the function φi in this setting differs from the inequality adjusted valuation of

the previous setting (γi) only in the factor with which an agent’s virtual valuation Ji(ri)

is multiplied. Previously, this was Λi, and now it is Λ∗. This reflects the following logic:

In the previous setting, any money that was raised from an agent i was refunded to this

agent ex ante (raising social welfare by Λi), while any such money will now be optimally

redistributed to the agent with the highest Λi, raising social welfare by Λ∗.

In the standard case when λi(r) = 1, the inequality adjusted valuation φi(ri) equals

ri as before. Having established this, we characterize the optimal mechanism when φi are

weakly increasing functions for all agents i.

Proposition 3 (Optimal Mechanism - II) Suppose that φi is weakly increasing for

all agents i. Then, the optimal mechanism assigns the good to the m agents with the high-

est inequality adjusted valuations φi(ri) = Πi(ri) + Λ∗Ji(ri), given that they are positive.

Consider a realization of types (r1, ..., rN) for which the number of positive φi(ri)’s is

below m. Then, some units of the good will remain unallocated.

Once more, the structure of the relaxed problem implies that its solution has a bang-

bang property and assigns the goods to the agents with the highest inequality adjusted

valuations φi(ri), provided they are positive. The assumption that φi(ri) are all weakly

increasing guarantees that the solution to the relaxed problem satisfies the monotonicity

constraints. Moreover, assumption 1 (together with monotonicity of Xi(ri) for all agents)

implies that the IR constraint of any agent i∗ will be satisfied as well, because this agent

is guaranteed positive ex-ante transfers. Once more, the solution to the relaxed problem

thus constitutes a solution to the general problem.

We now provide sufficient conditions under which assumption 1 holds and the inequality

adjusted valuations we have studied (γi and φi) are weakly increasing:
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Remark 1 Consider an agent i and denote the support of vMi for this agent by [vMi , v̄
M
i ].

Suppose that the following holds true for an agent i: (i) ∂Ji(ri)
∂ri

≥ 0, (ii) λi(ri) is weakly

decreasing in ri for all ri ∈ [ri, r̄i], and (iii) v̄Mi ≤ 2vMi . Then, both γi and φi are weakly

increasing. Moreover, if point (i) holds true for all agents, assumption 1 is satisfied.

Remark 1 states that monotonicity of the inequality adjusted valuations is satisfied in

an environment with three characteristics. First, the virtual valuation must be weakly

increasing as in Myerson (1981). Secondly, a high willingness to pay is most likely to be

supported, ceteris paribus, by a relatively low expected valuation for money. As Dworczak

et al. (2021) point out, this assumption is "fairly natural: Generating an increasing λi(ri)

would require a very strong positive correlation between vKi and vMi ." Thirdly, the spread

of possible marginal utilities of money for any given agent must be sufficiently small.

Intuitively, the last requirement requires that the designer knows an agent’s marginal

utility of money with relatively high precision and that the remaining stochasticity plays

no major role. When the inequality adjusted valuations are non-monotonic, the optimal

mechanism can be derived using the ironing procedure put forth by Condorelli (2013),

which is based on the classical approach of Myerson (1981).

To build further intuition for our results, we present a decomposition of the inequal-

ity adjusted valuation φi into three components that highlight the trade-offs the designer

faces:

φi(ri) = Πi(ri) + Λ∗Ji(ri) (2.4.6)

= Λiri︸︷︷︸
Efficient allocation

+(Λ∗ − Λi)Ji(ri)︸ ︷︷ ︸
Ex ante transfers

+

∫ r̄i
ri

(
λi(s)− Λi

)
dGi(s)

gi(ri)︸ ︷︷ ︸
Ex interim uncertainty

(2.4.7)

The first and third components are present in the inequality adjusted valuation of the

previous section as well - only the second term is new. This second component is added be-

cause ex-ante redistribution is now possible, which impacts the effect of allocation choices

on social welfare. Intuitively, raising revenue as captured by the virtual valuation Ji(ri)

is beneficial for the designer. This revenue will be redistributed ex ante to the poorest

agent, increasing welfare by Λ∗ at the cost of the ex ante marginal utility of money of the

agent from which the revenue was generated, namely Λi. The total effect of this ex-ante

movement of money on social welfare is captured by the second term.

Naturally, it is of interest to investigate when our allocation rule simplifies to the ex

post efficient allocation rule which allocates the good to the m agents with the highest

valuations ri. As pointed out before, our model simplifies to the standard framework

when λi(r) = 1 for all agents and thus yields the ex post efficient allocation rule in that
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case. More interestingly, our allocation rule also simplifies to the standard allocation in

the well studied i.i.d. environment, as is shown in the next corollary:

Corollary 3 Suppose that either of the following conditions is met:

1. λi(ri) = 1 for all i and ri

2. The pair (vKi , v
M
i ) is i.i.d. for all agents i and φi(ri) is strictly increasing.

Then, the utilitarian optimal allocation rule is equal to the ex-post efficient allocation

rule, i.e. the good is assigned to the m agents with the highest valuations ri.

Suppose that (vKi , v
M
i ) is i.i.d. among all agents. From an ex ante standpoint, the mapping

from willingness to pay into consumption utility is thus the same for all agents. More-

over, we recall from the discussion of proposition 3 that redistribution in the optimal

mechanism is implemented through ex ante redistribution to the agent with the highest

expected marginal utility of money. However, if every agent is considered equally rich

or poor ex ante, then the designer finds himself unwilling and unable to engage in any

kind of redistribution. For these reasons, the designer applies the standard allocation rule.

We have noted that some units of the good may be left unallocated in particular situa-

tions when the designer faces the ex ante budget balance condition. We say that rationing

occurs whenever some units of the good are left unallocated. Rationing is a key source of

allocative inefficiency in our model and hence plays an important role for social welfare.

Thus, it is instructive to understand how wealth inequality affects the incidence of ra-

tioning. Intuitively, rationing is a part of the optimal solution under the ex ante budget

balance requirement because, as in Myerson (1981), it positively impacts the amount of

money a designer can raise.

In the optimal mechanism, rationing will occur if more than N − m agents have an

inequality adjusted valuation that is negative. There is a particularly interesting connec-

tion between the ex ante expected valuation of money of each agent, namely Λi, and

whether or not an agent may be subject to rationing. We say that an agent is subject to

rationing when some units of the good are not allocated but this agent still has demand

for the good.

Proposition 4 (Rationing) Let i∗ denote the index of the agent with Λi∗ = Λ∗. Then

1. Agent i∗ is never subject to rationing

2. All agents i ̸= i∗ may be subject to rationing

Let ri = 0 for all i. Then, all agents except agent i∗ will be subject to rationing.
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To understand the quantitative magnitude of rationing in a given setting, we consider the

probability that rationing occurs, i.e. the fraction of possible type realizations for which

rationing would occur. To fix ideas, we assume that the valuations for money are fixed

for any agent, but can vary across agents. This allows us to obtain the following results:

Proposition 5 (Inequality and the probability of rationing) Assume that the marginal

utility of money of all agents is non stochastic. Then, it holds that:

1. ∂Pr(φi(ri)<0)
∂Λ∗ ≥ 0 holds for all agents i ̸= i∗. Thus, when Λ∗ increases, the probability

with which rationing occurs weakly increases.

2. When ∂Pr(φi(ri)<0)
∂Λi

< 0, a decrease of Λi ̸= Λ∗ will imply an increase of the probability

with which rationing will occur. Note that ∂Pr(φi(ri)<0)
∂Λi

< 0 holds true if the virtual

valuation is weakly increasing.

Note that a higher probability of rationing reflects a greater extent of allocative ineffi-

ciency. Modelling the effects of an increase in wealth inequality offers several degrees of

freedom. In general, the effect of such a change on the probability with which rationing

occurs depends on how an increase in inequality is modelled. Proposition 5 allows us

to make the following definitive statements: When the wealth of the poorest members

of society decreases, which is reflected by an increase in Λ∗, the probability with which

rationing occurs increases, ceteris paribus. Result 2 yields insights into the effects of an

increase in wealth inequality along the lines of the development of real wages of men in

the USA over the years 1990-2010. In these years, real wages of men have stagnated at the

10th percentile and 50th percentile, while they have gone up by around 1% (annualized)

at the 90th percentile - see Donovan and Bradley (2019). Thus, over this period, the real

wages of the 90th percentile have risen by 22%. Within our model, this can be viewed as

a decrease of Λi for the wealthier members of the distribution, while all other Λi’s are left

unchanged. Result 2 shows that the probability with which rationing occurs will increase

as a result of these developments.

2.5 Implementation via auctions

2.5.1 No subsidy constraints

In this subsection, we describe how our optimal mechanism in the presence of the no-

subsidy constraints can be implemented as an auction. Assume that there is just one good

to be allocated and that ri is continuously distributed on [ri, r̄i], with ri = 0. Assume

further that γi(ri) is strictly increasing and define the support of possible inequality ad-

justed valuations of an agent i as [γ
i
, γ̄i].
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In the auction we describe, agents only make payments if they win the auction - the

winning agent pays their bid, as in a first-price auction. Unlike in a classical first-price

auction, our auction employs bidding subsidies. Thus, the bidder who bids the highest

amount will not necessarily win the auction. To describe which agent will win the auction,

we define the following functions:

Γi(ri) = Pr{max
j ̸=i

{γj(rj)} ≤ γi(ri)|ri} (2.5.1)

τi(ri) :=

ri − (1/Γi(ri))
[ ∫ ri

ri
Γi(s)ds

]
ri > 0

0 ri = 0
(2.5.2)

Note that the functions Γi(ri) represent the interim allocation probabilities under the

utilitarian optimal allocation rule, which the auction needs to implement in Bayesian

equilibrium. Order the N agents in a way that γ̄1 ≤ ... ≤ γ̄N−1 ≤ γ̄N . Let b = (b1, ...., bN)

denote the vector of the agents’ bids and consider the following functions:

τ̃i(bi) =

τ−1
i (bi) bi ≤ τi(r̄i)

r̄i bi > τi(r̄i)
(2.5.3)

Whenever an agent i ∈ {1, ..., N − 1} places a bid above τi(r̄i), the function τ̃i(bi) will

map this bid into the type r̄i.

Now consider agent N . Define r̃N as the type of this agent that solves γN(r̃N) = γ̄N−1.

In the utilitarian optimal mechanism, this agent will receive the good with probability

1 if her type rN is above r̃N , which means that τN(rN) will be flat when rN ≥ r̃N . This

distinguishes agent N from all the other agents, whose probabilities of receiving the good

are almost surely strictly below 1. Thus, a slight adjustment of τ̃N(bN) is necessary to

accomodate settings where γ̄N−1 < γ̄N (and hence r̃N < r̄N), and τ̃N(bN) is defined as

follows11:

τ̃N(bN) =

τ−1
N (bN) bN ≤ τN(r̃N)

r̃N bN > τN(r̃N)
(2.5.4)

Having defined the functions τ̃i(bi), we close the definition of the auction rules by speci-

fying that an agent i wins the auction if and only if:

γi(τ̃i(bi)) ≥ max
j∈{1,,2,...,N}

{γj(τ̃j(bj)} (2.5.5)

11If γ̄N−1 = γ̄N , then r̃N = r̄N .
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This auction has a Bayes-Nash equilibrium in which the utilitarian optimal allocation

rule for this setting is implemented.

Proposition 6 Suppose that γi(ri) is strictly increasing. In the aforementioned auc-

tion, the profile of bidding functions (b1(r1), ..., bN(rN)) = (τ1(r1), .., τN(rN)) constitutes

a Bayes- Nash equilibrium in which the utilitarian optimal allocation rule is implemented.

By the results of Milgrom and Segal (2002), these bidding functions constitute an equi-

librium because the social choice function they induce satisfies the integrability condition

and implements the desired allocation rule.

In practical terms, this auction implements our allocation rule via multiplicative bidding

subsidies. To see this, consider a setting with two agents i ∈ {1, 2} that have deterministic

marginal utilities of money and vKi ∼ U [0, 1]. Define Λ1 as agent 1’s marginal utility of

money and Λ2 as agent 2’s marginal utility of money. In the outlined auction, each agent

will bid according to the rule τi(ri) = 0.5ri. For a given vector of bids (b1, b2), agent 1

will receive the good if and only if12:

γ1(τ
−1
1 (b1)) ≥ γ2(τ

−1
2 (b2)) ⇐⇒ (Λ1/Λ2)b1 ≥ b2 (2.5.6)

Suppose that agent 1 has tougher financing conditions than agent 2, i.e. Λ1 > Λ2. Then,

agent 1’s bids will be scaled up by a factor greater than 1. Thus, agent 1 will receive

bidding subsidies in these auctions. The larger the inequality between the agents, i.e. the

higher Λ1/Λ2, the greater will be the bidding subsidies received by the agent 1.

2.5.2 Ex ante budget balance

Now, we move on to describe how the utilitarian optimal mechanism in the presence of

an ex-ante budget balance constraint can be implemented as an auction. The environ-

ment is the same as before: There is one good to be allocated and all agent’s types ri

are continuously distributed on [0, r̄i]. The inequality adjusted valuations of all agents

are strictly increasing and the supports of the inequality adjusted valuations are given

by [φ
i
, φ̄i], where the agents are ordered such that φ̄1 ≤ ... ≤ φ̄N−1 ≤ φ̄N .

As before, we consider an auction where an agent pays her bid bi if and only if she

wins the auction. All other agents pay nothing. The auction we will outline features bid-

ding subsidies and minimum bids - thus, the highest bidder does not necessarily win the

auction. To specify the assignment rule, we have to specify some auxiliary functions.

12The corresponding calculations may be found in appendix 2.8.11.
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The utilitarian optimal allocation rule implements the following interim allocation prob-

abilities:

Φi(ri) := Pr{max
j ̸=i

{φj(rj)} ≤ φi(ri)|ri} (2.5.7)

Note that the inequality adjusted valuations can be negative in this setting. To that end,

define rmini as the agent’s type that satisfies φi(r
min
i ) = 0. Analogously as before, we

define the following functions:

βi(ri) :=

ri − (1/Φi(ri))
[ ∫ ri

ri
Φi(s)ds

]
ri > rmini

rmini ri ≤ rmini

(2.5.8)

For all agents i ≤ N − 1, we define the following functions:

β̃i(bi) =


rmini bi ≤ βi(r

min
i )

β−1
i (bi) bi ∈ (βi(r

min
i ), βi(r̄i))

r̄i bi ≥ βi(r̄i)

(2.5.9)

For agent N , this function has to be slightly altered to adjust for the fact that this agent

will certainly receive the good when rN > r̃N , where φN(r̃N) = φ̄N−1. This function is:

β̃N(bN) =


rminN bN ≤ βN(r

min
N )

β−1
N (bN) bN ∈ (βN(r

min
N ), βN(r̃N))

r̃N bN ≥ βN(r̃N)

(2.5.10)

Finally, agent i wins the auction if and only if:

φi(β̃i(bi)) > 0 ∧ φi(β̃i(bi)) ≥ max
j∈{1,2,...,N}

{φj(β̃j(bj)} (2.5.11)

The following proposition formalizes that this auction has a Bayes-Nash equilibrium in

which our allocation rule is implemented.

Proposition 7 In the auction described above, the profile of bidding functions (b1(ri), ..., bN(rN))

= (β1(r1), .., βN(rN)) constitutes a Bayes-Nash equilibrium, in which the utilitarian opti-

mal allocation rule is implemented.

In the auction outline above, there are bidder-specific minimum bids. For every agent i,

her minimum bid is given by rmini , since these solve γi(r
min
i ) = 0. A bidder i has a positive

chance of receiving the good if and only if her bid is above the bidder-specific minimum

bid rmini . Note that all agents i /∈ argmaxj Λj will have strictly positive minimum bids,



66

while all agents i∗ ∈ argmaxj Λj will have a minimum bid equal to 0.13

To illustrate the above insights, we calculate the auction rules and equilibrium for the

following example: Suppose agent 1 has a valuation of the good vK1 ∼ U [0, 1] and a de-

terministic utility of money Λ1 = 1, such that r1 ∼ U [0, 1]. Agent 2 has a valuation of

the good vK2 ∼ U [0, 2] and a deterministic utility of money Λ2 = 2 such that r2 ∼ U [0, 1].

Using equations (2.5.7) and (2.5.8), the equilibrium bidding function of agent 1 equals

b1(r1) = 0.5r1 +
1
6
while agent 2 bids according to b2(r2) =

r22
2r2+1

. Agents 1 and 2 have

minimum bids equal to rmin1 = 1
3
and rmin2 = 0, respectively. When agent 1 submits a

bid below her minimum bid, she will never win the auction. If agent 1 bids above this

minimum bid, she will win the auction if and only if14:

b1 ≥ b2 +
1

3

(√
b22 + b2 − 2b2 + 1

)
︸ ︷︷ ︸

bidding subsidy

(2.5.12)

This bidding subsidy is non-constant and exactly equal to 1
3
at bids b2 = 0 and b2 = 1

3
,

and is slightly larger at bids b2 in between these values.

2.6 Numerical illustrations

To further emphasize the key points of our paper, we provide some numerical illustra-

tions. Assume that there are two agents i = 1, 2 with vKi ∼ U [0, 1] and vM1 ∼ Pareto(k =

3, xmin = 1.5) while vM2 ∼ Pareto(k = 3, xmin = 1). Note that the support of the Pareto

distribution is [xmin,∞). Therefore, agent 2 has support on lower values of vM than agent

1. This can naturally arise in a setting where agent 2 is ex ante more wealthy than agent

1 or has easier financing conditions, but preferences are not fully known ex ante. In this

example, both inequality adjusted valuations will be non-decreasing.

In the following figure, we demonstrate how the utilitarian optimal allocation rule is

modified in the presence of inequality.15 The yellow line illustrates the ex post efficient

allocation rule. The blue line represents the utilitarian optimal allocation rule under ex

ante budget balance. The red line represents the utilitarian optimal allocation rule under

the no-subsidy constraints. All three allocation rules can be understood as follows: For

13Formally, this holds because the inequality adjusted valuation of any agent i∗ is zero when this
agent’s type is ri∗ = 0. For any other agent j, the inequality adjusted valuation at rj = 0 is strictly
negative.

14The corresponding calculations may be found in appendix 2.8.11.
15The algebra involved in calculating the inequality adjusted valuations may be found in appendix

A.11.
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a given r1 (on the x-axis), agent 2 is allocated the good under a given allocation rule

if and only if her willingness to pay r2 is such that the point (r1, r2) lies above the line

corresponding to the allocation rule.

Figure 2.1: Utilitarian optimal allocation rule vs. ex post efficient allocation rule

In either utilitarian optimal mechanism, agent 1 (who is perceived to have more difficult

financing conditions) receives the good more often than under the ex post efficient allo-

cation rule. This result is driven by two forces. Firstly, when agent 1 reports low values

of r, this is often driven by a high marginal utility of money, not by a low consump-

tion utility. Achieving allocative efficiency necessitates controlling for this. Secondly, the

designer can realize his preference to redistribute money from agent 2 to agent 1 under

the ex ante budget balance requirement. When agent 2 has a negative virtual valuation,

allocating the good to this agent reduces the revenue that is raised from her, which is

undesirable to the designer. This second effect leads to greater differences between the

utilitarian optimal and the ex post efficient allocation rules when r2 is low because the

virtual valuation is monotonic in this example. Even when r1 = r2 = 0, agent 1 would

surely receive the good under the ex ante budget balance requirement, because allocating

the good to agent 2 would negatively impact the revenue that can be raised from the latter.

Finally, it remains to discuss the discrepancies between the utilitarian optimal alloca-

tion rules under the no-subsidy constraints and under the ex ante budget balance con-

straint. Any differences inbetween these rules are exclusively driven by the fact that the

designer can redistributive towards agent 2 under ex ante budget balance, but not under

the no-subsidy constraints. At low values of r2, agent 2’s virtual valuation is negative,

thus favoring allocation of the good towards agent 1 when the budget has to be balanced

(blue line). At high values of r2, the opposite holds, thus motivating the assignment of
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the good to agent 2. These notions do not affect the designer’s choices when he only

has to obey the no-subsidy constraints (red line). Taken together, these arguments imply

the following: When r2 is low, there is an interval of r1 where agent 1 would receive the

good when the budget has to be balanced ex ante but not when the designer only faces

the no-subsidy constraints. The opposite holds true when r2 is large. Graphically, this is

reflected by the fact that the blue line lies above the red line when r2 is small and vice

versa.

2.7 Conclusion

We have derived the utilitarian optimal mechanism for an assignment problem in which

the designer initially owns m units of an indivisible good which are to be distributed

among a finite number N of agents, where N > m. In contrast to the usual assumption

made in the literature, we work with heterogeneous marginal utilities of money. This

implies that utility is not perfectly transferable between agents. We have formalized this

feature by adapting the model of Dworczak et al. (2021) to our framework. In addition to

the standard incentive compatibility and individual rationality constraints, the designer

also faces additional constraints on transfers, namely (i) a constraint stating that no agent

can receive positive transfers from the mechanism in expectation or (ii) a requirement

that the designer’s budget must be balanced ex ante. In these settings, it is generally not

utilitarian optimal to allocate the goods to the agents with the highest willingnesses to

pay.

We derive the utilitarian optimal mechanism using methodologies developed in Con-

dorelli (2013) and Dworczak et al. (2021). It revolves around a key statistic which we call

the inequality adjusted valuation. The inequality adjusted valuation, whose exact form

depends on the constraints on transfers that are imposed, condenses three critical con-

siderations: First, the designer has a desire to allocate the goods to the agents with the

highest consumption utilities, ceteris paribus. Second, when there is ex-interim uncer-

tainty about the agent’s marginal utilities of money, the designer wants to pay transfers

to the agent when her marginal utility of money is above its average and vice versa. The

allocation rule will reflect this, because assignment of the good will always be associated

with payments. Thirdly, when redistribution is possible under the ex ante budget balance

requirement, the allocation rule will affect the revenue that the designer raises for redis-

tribution.

We have shown that the utilitarian optimal mechanism allocates the good to an agent if

and only if (i) her inequality adjusted valuation is among the m highest inequality ad-

justed valuations and (ii) her inequality adjusted valuation is positive. The agents with the
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highest inequality adjusted valuations do not necessarily have the highest willingnesses

to pay. Thus, heterogeneity in the marginal utilities of money creates a tension between

ex-post efficiency and ex-ante optimality. Under the ex ante budget balance condition,

there are states of the world in which some units of the good are left unallocated. Such

outcomes, which are a byproduct of the designer’s revenue motive, may be exacerbated

by high levels of inequality.

In addition, we have discussed how the optimal mechanism may be implemented as an

auction in which agents with high marginal utilities of money receive bidding subsidies.

This mechanism provides a simple way of achieving optimal allocation in the presence of

heterogeneity in the marginal utilities of money. Finally, we have illustrated our results

with numerical examples and have shown that agents who are perceived to have high

marginal utilities of money have a higher chance of receiving the good in either utilitar-

ian optimal mechanism than in the ex post efficient allocation rule.

We have provided further evidence that it is not without loss of generality to normalize

the marginal utility of money of all agents to 1 when studying utilitarian social welfare

maximization. In the real world applications we have discussed, incorporating our ideas

into the implemented mechanisms may be beneficial even beyond raising instantaneous

social welfare. In the kindergarden example, accounting for wealth inequality may foster

equality of opportunity by promoting equal access to education. In the auction examples

we discussed, applying our insights may be quite pro-competitive. This is because our

mechanism reduces the advantage that incumbents with easy financing conditions have

in traditional auction mechanisms.

2.8 Appendix for Mechanism Design for Unequal So-

cieties

2.8.1 Proof of Proposition 1

See Dworczak et al. (2021).

2.8.2 Proof of Lemma 1

The result follows directly from rescaling the agents’ utility functions and applying the

standard results from the literature.
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2.8.3 Proof of Proposition 2

Part 1: Deriving the relaxed problem

The full optimization problem is given by the following:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(
ΛiUi(ri) +

∫
Πi(ri)xi(ri, r−i)dG(ri, r−i)

)
s.t. Ui(ri)−

∫
Ji(ri)xi(ri, r−i)dGi(ri, r−i) ≤ 0 ∀i (Transfers)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)∑
i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing (Mono)

Ui(ri) ≥ 0 (IR)

The transfer constraints must bind for all agents. Otherwise, Ui(ri) could be increased

for a given agent i, which is in line with all constraints and would raise welfare.

Plugging in this result into our objective function yields the following:

∑
i

(
ΛiUi(ri) +

∫
Πi(ri)xi(ri, r−i)dG(ri, r−i)

)
=

∑
i

(
Λi

∫
Ji(ri)xi(ri, r−i)dGi(ri, r−i) +

∫
Πi(ri)xi(ri, r−i)dG(ri, r−i)

)
=

∑
i

(∫ (
Πi(ri) + ΛiJi(ri)

)
xi(ri, r−i)dG(ri, r−i)

)
(2.8.1)

Ignoring the monotonicity and the IR constraints, our optimization problem thus boils

down to maximizing the aforementioned function, subject to the feasibility and the prob-

ability constraints.

This is a standard linear programming problem. Mirroring the insights of Condorelli

(2013), the goods will be allocated to the m agents with the highest γi(ri) for any given

realization of types in the solution of this relaxed problem.

Part 2: Showing that the solution to the relaxed problem solves the full optimization

problem.
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It remains to show that both the monotonicity and the IR constraints will be satis-

fied in the solution to this relaxed problem. Monotonicity will be satisfied because γi is

increasing in ri and the allocation probability Xi(ri) is increasing in γi.

Now consider the IR constraint of agent i∗. We show the following: Under assumption

1 and for a monotone Xi(ri), the integral
∫ r̄i
ri
Ji(ri)gi(ri)dri will always be strictly positive.

Firstly, note the following:∫ r̄i

ri

Ji(ri)gi(ri)dri =

[ ∫ r̄i

ri

(
ri −

1−Gi(ri)

gi(ri)

)
gi(ri)dri

]
=

[ ∫ r̄i

ri

(
gi(ri)ri −

(
1−Gi(ri)

))
dri

]
=

[ ∫ r̄i

ri

(
gi(ri)ri +Gi(ri)

)
dri −

∫ r̄i

ri

(1)dri

]
(2.8.2)

Note that:
∂Gi(ri)ri
∂ri

= gi(ri)ri +Gi(ri) (2.8.3)

Plugging this in yields that:∫ r̄i

ri

Ji(ri)gi(ri)dri =

[[
Gi(ri)ri

]r̄i
ri
−
∫ r̄i

ri

(1)dri

]
=

[
r̄i −

∫ r̄i

ri

(
1
)
dri

]
= ri (2.8.4)

Thus, this term is always weakly positive as long as ri ≥ 0.

By assumption 1, there exists an r̂i such that:

∀ri ≥ r̂i : Ji(ri) ≥ 0 (2.8.5)

∀ri < r̂i : Ji(ri) ≤ 0 (2.8.6)

By this assumption and because gi(ri) is always positive, it holds that:

∀ri ≥ r̂i : Ji(ri)gi(ri) ≥ 0 (2.8.7)

∀ri < r̂i : Ji(ri)gi(ri) ≤ 0 (2.8.8)
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Consider a monotone Xi(ri). By monotonicity of Xi and the above arguments, we have

that:

∀ri ≥ r̂i : Xi(ri) ≥ Xi(r̂i) =⇒ Xi(ri)Ji(ri)gi(ri) ≥ Xi(r̂i)Ji(ri)gi(ri) (2.8.9)

∀ri < r̂i : Xi(ri) ≤ Xi(r̂i) =⇒ Xi(ri)Ji(ri)gi(ri) ≥ Xi(r̂i)Ji(ri)gi(ri) (2.8.10)

Thus, we have that:∫ r̄i

ri

Xi(ri)Ji(ri)gi(ri)dri =

∫ r̂i

ri

Xi(ri)Ji(ri)gi(ri)dri +

∫ r̄i

r̂i

Xi(ri)Ji(ri)gi(ri)dri ≥

∫ r̂i

ri

Xi(r̂i)Ji(ri)gi(ri)dri +

∫ r̄i

r̂i

Xi(r̂i)Ji(ri)gi(ri)dri = Xi(r̂i)

∫ r̄i

ri

Ji(ri)gi(ri)dri = Xi(r̂i)ri ≥ 0

(2.8.11)

The last inequality holds since Xi(r̂i) is a weakly positive constant.

This result implies that the IR constraints will also be satisfied in the solution of the

relaxed problem. Thus, we are done.

Part 3: No rationing

Finally, it remains to show that all units of the good will always be allocated. Suffi-

cient for this is to show that γi is always strictly positive.

Thus, we need to show that γi(ri) ≥ 0 for all i. To show this, it suffices to show that

γi(ri) ≥ 0, together with our assumption that γi is increasing in ri. Thus, note that:

γi(ri) =Λiri +

∫ r̄i
ri

(
λi(s)− Λi

)
dGi(s)

gi(ri)
(2.8.12)

=⇒ γi(ri) =Λiri +

∫ r̄i
ri

(
λi(s)− Λi

)
dGi(s)

gi(ri)
= Λiri ≥ 0 (2.8.13)

The last inequality holds because Λi = E[λi(s)].
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2.8.4 Proof of Proposition 3

Part 1: Deriving and solving a relaxed problem

The full problem is the following: The optimal mechanism needs to solve:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(
ΛiUi(ri) +

∫
Πi(ri)xi(ri, r−i)dG(ri, r−i)

)
s.t.

∑
i

(
Ui(ri)−

∫
Ji(ri)xi(ri, r−i)dG(ri, r−i)

)
≤ 0 (Budget)

0 ≤ xi(ri, r−i) ≤ 1 (Prob)∑
i

xi(ri, r−i) ≤ m (Feas)

Xi(ri) non-decreasing (Mono)

Ui(ri) ≥ U i = 0 (IR)

Note that the budget constraint must bind in the solution to this problem. Suppose, for

a contradiction, that it is slack. Then, Ui(ri) could be increased for some agent i. This

would be in line with all constraints and would raise social welfare, implying that the

starting mechanism could not have been optimal.

Based on this, note that the IR constraints for all agents j /∈ argmaxi Λi must also

bind. Suppose, for a contradiction, that there is one such constraint that does not bind.

Then, Ui∗(ri∗) could be increased at the cost of a one-for-one decrease in Uj(rj). Because

Λ∗ > Λj by definition, this would raise welfare without violating any other constraints.

Taking these two results together implies that the budget constraint can be rewritten

as follows: ∑
i

(
Ui(ri)−

∫
Ji(ri)xi(ri, r−i)dG(ri, r−i)

)
= 0 ⇐⇒

∑
i

Ui(ri) = Ui∗(ri∗) =
∑
i

(∫
Ji(ri)xi(ri, r−i)dG(ri, r−i)

)
= 0 (2.8.14)

Plugging this into the objective function and ignoring the remaining IR constraints and

the monotonicity constraints implies that our optimization problem boils down to the
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following:

max
{xi(ri,r−i),Ui(ri)}Ni=1

∑
i

(∫ (
Πi(ri) + Λ∗Ji(ri)

)
xi(ri, r−i)dG(ri, r−i)

)
s.t. 0 ≤ xi(ri, r−i) ≤ 1 (Prob)∑

i

xi(ri, r−i) ≤ m (Feas)

Following the insights of Condorelli (2013), the solution to this relaxed problem assigns

the goods to the m agents with the highest φi, provided they are positive.

Part 2: Showing that the solution to the relaxed problem also solves the general opti-

mization problem

Finally, it remains to show that the monotonicity constraints and IR constraint of i∗

will hold in the solution of this relaxed problem.

Monotonicity requires that Xi(ri) is non-decreasing. Note our key assumption that φi(ri)

is increasing in ri. For values of ri where the inequality adjusted valuation is negative,

monotonicity holds. Now consider values of ri where φi(ri) > 0. Agent i will receive the

good if and only the agent’s inequality adjusted valuation is among the m highest. Since

φi(ri) is increasing in ri, this implies that the probability of allocation cannot be falling

in ri.

In the proof of the previous proposition, we have shown that the integrals
∫
Ji(ri)xi(ri, r−i)dG(ri, r−i)

must all be positive, given that Xi(ri) is monotone. This implies that the IR constraints

of all agents i∗ must also be satisfied in the solution to the relaxed problem outlined

above.

2.8.5 Proof of Remark 1

Part 1: Showing that φi(ri) is monotone under the stated assumptions.

Note first that the inequality adjusted valuation φi can be written as follows:

φi(ri) = Λ∗Ji(ri) +
1−Gi(ri)

gi(ri)
E
[
λi(s)|s ≥ ri

]
(2.8.15)

Taking the derivative of φi w.r.t ri yields:

∂φi
∂ri

= Λ∗∂Ji(ri)

∂ri
+

[
∂

∂ri

(
1−Gi(ri)

gi(ri)

)]
E
[
λi(s)|s ≥ ri

]
+
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[
1−Gi(ri)

gi(ri)

]
∂E
[
λi(s)|s ≥ ri

]
∂ri

(2.8.16)

The critical term is the third term. We evaluate this term in more detail. Note firstly

that:

E
[
λi(s)|s ≥ ri

]
=

∫ r̄i

ri

λi(s)gi(s)
[
1−Gi(ri)

]−1
d(s) (2.8.17)

The derivative of this w.r.t ri is:

∂E
[
λi(s)|s ≥ ri

]
∂ri

=

−λi(ri)gi(ri)
[
1−Gi(ri)

]−1
+

∫ r̄i

ri

λi(s)gi(s)
[
1−Gi(ri)

]−2
(−1)(−gi(ri))d(s) (2.8.18)

= −λi(ri)
[
1−Gi(ri)

gi(ri)

]−1

+

[
1−Gi(ri)

gi(ri)

]−1 ∫ r̄i

ri

λi(s)gi(s)
[
1−Gi(ri)

]−1
d(s) (2.8.19)

=

[
1−Gi(ri)

gi(ri)

]−1[
E
[
λi(s)|s ≥ ri

]
− λi(ri)

]
(2.8.20)

Plugging in then yields that:

∂φi
∂ri

=Λ∗∂Ji(ri)

∂ri
+

[
∂

∂ri

(
1−Gi(ri)

gi(ri)

)]
E
[
λi(s)|s ≥ ri

]
+

[
E
[
λi(s)|s ≥ ri

]
− λi(ri)

]
(2.8.21)

=Λ∗∂Ji(ri)

∂ri
+

[
∂

∂ri

(
1−Gi(ri)

gi(ri)

)
− 1

]
E
[
λi(s)|s ≥ ri

]
+

[
2E
[
λi(s)|s ≥ ri

]
− λi(ri)

]
(2.8.22)

=
∂Ji(ri)

∂ri

[
Λ∗ − E

[
λi(s)|s ≥ ri

]]
+

[
2E
[
λi(s)|s ≥ ri

]
− λi(ri)

]
(2.8.23)

The last equality holds because ∂Ji(ri)
∂ri

= 1 − ∂
∂ri

(
1−Gi(ri)
gi(ri)

)
. The derivative ∂φi

∂ri
is hence

weakly positive if and only if:

∂Ji(ri)

∂ri

[
Λ∗ − E

[
λi(s)|s ≥ ri

]]
≥ λi(ri)− 2E

[
λi(s)|s ≥ ri

]
(2.8.24)

Now we show that this inequality holds under the sufficient conditions outlined in the

remark.
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The assumption that λi(s) is weakly decreasing in s implies that E
[
λi(s)|s ≥ ri

]
≤ λi(ri)

and hence:

∂E
[
λi(s)|s ≥ ri

]
∂ri

=

[
1−Gi(ri)

gi(ri)

]−1[
E
[
λi(s)|s ≥ ri

]
− λi(ri)

]
≤ 0 (2.8.25)

In turn, this implies the following for any agent:

E
[
λi(s)|s ≥ ri

]
≤ E

[
λi(s)|s ≥ ri

]
= Λi ≤ Λ∗ (2.8.26)

Thus, the assumption that λi(s) is weakly decreasing in s, together with the assumption

that J ′
i(ri) ≥ 0, implies that:

∂Ji(ri)

∂ri

[
Λ∗ − E

[
λi(s)|s ≥ ri

]]
≥ 0 (2.8.27)

Finally, note that the support of vMi is [vMi , v̄
M
i ]. Then, it holds that λi(s) ∈ [vMi , v̄

M
i ] and

thus E[λi(s)|s ≥ ri] ∈ [vMi , v̄
M
i ]. The assumption that v̄Mi ≤ 2vMi thus implies that:

λi(ri)− 2E[λi(s)|s ≥ ri] ≤ v̄Mi − 2vMi ≤ 0 (2.8.28)

Summing up: The three stated conditions guarantee that the following holds for any agent

i:

∂Ji(ri)

∂ri

[
Λ∗ − E

[
λi(s)|s ≥ ri

]]
≥ 0 ≥ λi(ri)− 2E[λi(s)|s ≥ ri] (2.8.29)

Then, the inequality given in (2.8.24) is satisfied and the inequality adjusted valuation

φi is hence weakly increasing.

Part 2: If J ′
i(ri) ≥ 0, assumption 1 is satisfied.

If Ji(ri) is weakly monotonic, it will cross 0 at most once. Suppose there exists an r∗i

such that Ji(r
∗
i ) = 0. Because Ji is weakly increasing, setting r̂i = r∗i satisfies our require-

ments. If such a point does not exist, set r̂i = 1.

Part 3: Showing that γi(ri) is monotone under the stated assumptions.

The inequality adjusted valuation γi reads as follows:

γi = ΛiJi(ri) + Πi(ri) = Λi

(
ri −

1−Gi(ri)

gi(ri)

)
+

1−Gi(ri)

gi(ri)
E[λi(s)|s > ri] (2.8.30)
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Taking the derivative of γi w.r.t ri yields:

∂γi
∂ri

= Λi
∂Ji(ri)

∂ri
+

[
∂

∂ri

(
1−Gi(ri)

gi(ri)

)]
E
[
λi(s)|s ≥ ri

]
+

[
1−Gi(ri)

gi(ri)

]
∂E
[
λi(s)|s ≥ ri

]
∂ri

(2.8.31)

Plugging in our previous results yields that:

∂γi
∂ri

= Λi
∂Ji(ri)

∂ri
+

[
∂

∂ri

(
1−Gi(ri)

gi(ri)

)]
E
[
λi(s)|s ≥ ri

]
+

[
E
[
λi(s)|s ≥ ri

]
− λi(ri)

]
(2.8.32)

Thus:

∂γi
∂ri

≥ 0 ⇐⇒ ∂Ji(ri)

∂ri

[
Λi − E

[
λi(s)|s ≥ ri

]]
≥ λi(ri)− 2E

[
λi(s)|s ≥ ri

]
(2.8.33)

Thus, the assumption that λi(s) is weakly decreasing in s, together with the assumption

that J ′
i(ri) ≥ 0, implies that the LHS is strictly positive. The RHS is negative because

v̄Mi ≤ 2vMi . This prooves that γi is also monotone under the stated assumptions.

2.8.6 Proof of Corollary 3

Part 1: When λi(ri) = 1, γi(ri) = φi(ri) = ri for all ri.

When λi(ri) = 1 for all ri, we have Λi = Λ∗ = E
[
λi(s)|s ≥ ri

]
= 1, which implies

that γi(ri) = φi(ri) = ri for all agents i.

Part 2: When (vKi , v
M
i ) is i.i.d. for all agents i, the utilitarian optimal allocation rule

is the ex post efficient allocation rule.

When (vKi , v
M
i ) is i.i.d. for all agents i, we have φi(r) = φj(r) = φ(r) for all i, j. By

assumption, φi(ri) is strictly increasing. This implies that φ(r) is a strictly increasing

transformation of r and therefore ri ≥ rj if and only if φ(ri) ≥ φ(rj).

Moreover, the inequality adjusted valuations of all agents will be weakly positive for

any ri ≥ 0. To see this, note that the i.i.d assumption on (vKi , v
M
i ) implies that Λ∗ = Λi

holds for all i. Thus, γi(0) = φi(0) = 0 holds for all agents. Because the inequality ad-

justed valuations are monotone, they will be strictly positive for any ri > 0.

Thus, the utilitarian optimal allocation rule is the ex-post efficient rule. The goods will

be allocated to the agents with the highest willingnesses-to-pay.
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2.8.7 Proof of Proposition 4

Consider the inequality adjusted valuation φi(ri) at the lowest possible realization ri:

φi(ri) = Πi(ri) + Λ∗Ji(ri) (2.8.34)

=

∫ r̄i
ri
λ(s)dGi(s)

gi(ri)
+ Λ∗

(
ri −

1−Gi(ri)

gi(ri)

)
(2.8.35)

= Λ∗ri +
Λi − Λ∗

gi(ri)
(2.8.36)

We note that for agent i∗, this expression is weakly positive if and only if ri ≥ 0. Therefore,

the only reason to not allocate the good to agent i∗ would be that she has a negative

valuation for the good. For the other agents, the expression is weakly positive if and only

if

Λ∗ri +
Λi − Λ∗

gi(ri)
≥ 0 (2.8.37)

which will generally subject them to rationing unless ri is sufficiently large.

2.8.8 Proof of Proposition 5

For easier reference, we restate this proposition now:

Assume that the marginal utility of money of all agents is non stochastic. Then, it holds

that:

1. ∂Pr(φi(ri)<0)
∂Λ∗ ≥ 0 holds for all agents i ̸= i∗. Thus, when Λ∗ increases, the probability

with which rationing occurs weakly increases.

2. When ∂Pr(φi(ri)<0)
∂Λi

< 0, a decrease of Λi ̸= Λ∗ will imply an increase of the proba-

bility with which rationing will occur. Note that ∂Pr(φi(ri)<0)
∂Λi

< 0 holds true if the

virtual valuation is weakly increasing.

Part 1: An increase of Λ∗ weakly increases Pr(φi(ri) < 0) for all agents, which leads to

an increase in the probability with which rationing occurs.

Firstly, we need to show that:

∂Pr(φi(r) < 0)

∂Λ∗ ≥ 0 (2.8.38)

Consider any agent i and note the following:

∂φi(r)

∂Λ∗ = Ji(r) ∀r ∈ (ri, r̄i) (2.8.39)
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To understand the effect of an increase in Λ∗ on the probability with which agent i is

rationed, note firstly that the random variable is ri.

Firstly, consider realizations of ri where φi(ri) < 0 a priori. Because φi(ri) < 0, it must

hold that Ji(ri) < 0 at these realizations of ri. For these realizations, an increase in Λ∗

will thus reduce φi(ri), keeping this negative for all these realizations of ri.

Secondly, consider realizations of ri where φi(ri) ≥ 0 and Ji(ri) ≥ 0 holds true. For

these realizations of ri, the increase in Λ∗ will imply a weak increase of φi(ri), such that

φi(ri) ≥ 0 will still hold after the increase in Λ∗.

Thirdly and finally, consider realizations of ri where φi(ri) ≥ 0 and Ji(ri) < 0 holds

true. For these realizations of ri, the increase in Λ∗ will imply a (weak) decrease of φi,

which can potentially push those into the negative region, even though they were positive

ex ante. This working channel has a weakly positive effect on the probability that this

agent is rationed.

Thus, the above arguments imply that Pr(φi(ri) < 0) < 0 is weakly rising in Λ∗.

It remains to argue why the increase in Pr(φi < 0) implies an increase in the probabil-

ity with which rationing occurs. The probability that rationing occurs is the probability

that at least N −m+1 agents have negative inequality adjusted valuations. Because the

agents’ inequality adjusted valuations are independent, any increase of Pr(φi(ri) < 0)

must lead to an increase in the probability that rationing occurs.

Point 2:

It was previously argued that an increase of Pr(φi(r) < 0) will imply an increase in

the probability with which rationing occurs. This implies the first sentence of this point.

It remains to show the following:

∂Ji(ri)

∂Λi
≥ 0 =⇒ ∂Pr(φi(ri) < 0)

∂Λi
< 0 (2.8.40)

Because any agent’s marginal utility of money is non-stochastic, their inequality adjusted

valuations are:

φi(ri) = Λiri + (Λ∗ − Λi)Ji(ri) (2.8.41)
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The derivative of φi with respect to Λi is:

∂φi(ri)

∂Λi
=ri + (Λ∗ − Λi)

∂Ji(ri)

∂Λi
+ (−1)Ji(ri) (2.8.42)

=ri + (Λ∗ − Λi)
∂Ji(ri)

∂Λi
+ (−1)

[
ri −

1−Gi(ri)

gi(ri)

]
(2.8.43)

=(Λ∗ − Λi)
∂Ji(ri)

∂Λi
+

1−Gi(ri)

gi(ri)
(2.8.44)

When the virtual valuation is weakly increasing in Λi, the inequality adjusted valuation

will uniformly increase in Λi. A uniform increase in φi(ri) as a result of a change in in Λi

implies that Pr(φi(ri) < 0) will fall.

2.8.9 Proof of Proposition 6

We work with the following functions:

Γi(ri) := Pr{max
j ̸=i

{γj(rj)} ≤ γi(ri)} (2.8.45)

τi(ri) :=

ri − (1/Γi(ri))
[ ∫ ri

ri
Γi(s)ds

]
ri > 0

0 ri = 0
(2.8.46)

Moreover, note that:

τ̃i(bi) =

τ−1
i (bi) bi ≤ τi(r̄i)

r̄i bi > τi(r̄i)
(2.8.47)

τ̃N(bN) =

τ−1
N (bN) bN ≤ τN(r̃N)

r̃N bN > τN(r̃N)
(2.8.48)

Agent i wins the auction if and only if:

γi(τ̃(bi)) ≥ max
j∈{1,2,...,N}

{γj(τ̃i(bj))} (2.8.49)

Part 1a: Showing that τi(ri) is strictly increasing on [0, r̄i] for i ≤ N − 1 and on [0, r̃N ]

for agent N when γi(ri) is strictly increasing and continuous.
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Firstly, recall that the inequality adjusted valuations were defined as follows:

γi(ri) = Λiri +

∫ r̄i
ri

(
λi(s)− Λi

)
dGi(s)

gi(ri)
(2.8.50)

When ri = ri = 0, γi(ri) = 0. Because the function γi is continuous and strictly increas-

ing, the allocation probability Γi(ri) will be strictly positive for any ri > 0.

On ri ∈ (0, r̄i), the derivative of the function τi w.r.t. ri is:

∂τi(ri)

∂ri
= 1−

(
Γi(ri)

)(
Γi(ri)

)
−
( ∫ ri

ri
Γi(s)ds

)(
Γ′
i(ri)

)
(
Γi(ri)

)2 =

( ∫ ri
ri
Γi(s)ds

)(
Γ′
i(ri)

)
(
Γi(ri)

)2 (2.8.51)

This derivative is strictly positive under the stated specifications. For all agents i ∈
{1, ..., N − 1}, the function γi(ri) will be strictly increasing in ri, which implies that

Γi(ri) will also be strictly increasing in ri.

For agent N , the function γN(rN) is also strictly increasing - but this will only strictly

increase the allocation probability when γN(rN) < γ̄N−1, because the allocation proba-

bility ΓN(rN) is 1 for any type above this.

Part 1b: For agent N , the function τN(rN) equals τN(r̃N) (i.e. is flat) for any rN ≥ r̃N .

To see this, note that ΓN(rN) = 1 for any rN ≥ r̃N . Thus, the function τN(rN) becomes:

τN(rN) = rN −

∫ rN
rN

ΓN(s)ds

1
=

∫ rN

rN

sΓ′
N(s)ds =

∫ r̃N

rN

sΓ′
N(s)ds (2.8.52)

Part 1c: The function τi is continuous at ri = 0.

To see this, note that this function can be written as follows:

τi(ri) =

∫ ri
0
sΓ′

i(s)ds

Γi(ri)
(2.8.53)

Both terms converge to zero from the top. Applying L’Hopital’s rule yields that:

lim
ri↓0

τi(ri) = lim
ri↓0

∫ ri
0
sΓ′

i(s)ds

Γi(ri)
= lim

ri↓0

riΓ
′
i(ri)

Γ′
i(ri)

= 0

Part 2: Auction equilibrium - assuming that γ̄N−1 = γ̄N .

Under this assumption, the structure of the functions τ̃i is identical for all agents.
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We first show that the mechanism we have described induces a social choice function

c(ri, r−i) =
(
x(r), t(r)

)
that is incentive compatible.

When all agents bid according to the rule bi(ri) = τi(ri) ≤ τi(r̄i), it holds that τ̃i(τi(ri)) =

ri. Then, the interim allocation probabilities induced by this mechanism, namely Xi(ri),

will be equal to Γi(ri), which is monotone under our assumptions.

Moreover, the implied transfer rule will satisfy the integrability constraint. To see this,

note that any agent that bids bi makes the expected payment −biΓi(τ̃i(bi)) in equilibrium.

When bidding according to bi(ri) = τi(ri), it thus holds that:

τi(0) = 0 =⇒ Ui(ri) = Ui(0) = 0 (2.8.54)

Moreover, the interim expected transfers are given by Ti(ri) = −τi(ri)Γi(ri)

The integrability condition is thus satisfied for the implied social choice function because:

riXi(ri) + Ti(ri) = Ui(ri) +

∫ ri

ri

Xi(s)ds (2.8.55)

⇐⇒

riΓi(ri)− τi(ri)Γi(ri) =

∫ ri

ri

Γi(s)ds ⇐⇒ τi(ri) = ri −

∫ ri
ri
Γi(s)ds

Γi(ri)
(2.8.56)

This establishes that the social choice function induced when all agents bid according to

bi(ri) = τi(ri) is incentive compatible.

Thus, it is an equilibrium that all agents bid according to this rule. Consider an agent i

and suppose that all other agents −i bid according to b−i(r−i) = τ−i(r−i).

By the intermediate value theorem, we have the following: For any bid bi ∈ [0, τi(r̄i)],

there exists an ri ∈ [0, r̄i] such that τi(ri) = bi. Because the social choice function c(r) is

incentive compatible, there can be no profitable deviation in the range [0, τi(r̄i)].

This is because any such bid b̂i would be associated with an r̂i such that τi(r̂i) = b̂i.

Thus, this deviation would generate the outcome c(r̂i, r−i) as defined by the social choice

function, which cannot make agent i better off.

Now consider possible deviations into the range bi > τi(r̄i). The allocation probabil-
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ity would be the same as when bidding bi = τi(r̄i), but the payment would be higher

upon winning the auction - thus, this deviation can also not be strictly profitable.

Part 3: Auction equilibrium - assuming that γ̄N−1 < γ̄N .

Suppose that all agents bid according to τi(ri). Then, the interim allocation probabil-

ities Xi(ri) will be equal to Γi(ri) for any agents. To see this, consider an agent i ≤ N−1,

for which Xi(ri) becomes:

Xi(ri) = Pr
[
γi(ri) ≥ max

j∈{1,2,...,N}
{γj(τ̃i(bj))}

]
(2.8.57)

= Pr
[
γi(ri) ≥ max

j∈{1,2,...,N}
{γj(τ̃i(bj))} ∧ rN ≥ r̃N

]
+
[
γi(ri) ≥ max

j∈{1,2,...,N}
{γj(τ̃i(bj))} ∧ rN < r̃N

]
(2.8.58)

=
[
γi(ri) ≥ max

j∈{1,2,...,N}
{γj(rj)} ∧ rN < r̃N

]
:= Γi(ri) (2.8.59)

The arguments for the interim allocation probabilities of agent N are analogous. These

functions are weakly monotone for all agents.

Moreover, previous results establish that the transfer rule will satisfy integrability. Thus,

when all agents bid according to bi(ri) = τi(ri), the resulting social choice function will

be incentive compatible.

Consider any agent i. By incentive compatibility, there can be no profitable deviations

into the region [0, τi(r̄i)] and any deviation above this is dominated by deviating to τi(r̄i).

Now consider agent N . In general, any bid bN > τN(r̃N) is dominated by bidding

bN = τN(r̃N). At both these bids, the interim allocation probability is 1, but the in-

terim payment is rising in the bN .

If rN ≤ r̃N , incentive compatibility implies that no other bid in [0, τN(r̃N)] can yield

a better outcome than bidding according to bN(rN) = τN(rN).

If rN > r̃N , the best possible bid will be bN = τN(r̃N).

To see this, note the following: For an agent with rN = r̃N , the utility of bidding τN(r̃N)
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is:

UN(τN(r̃N); r̃N) =
(
r̃N − τN(r̃N)

)
ΓN(τN(r̃N)) (2.8.60)

This must be weakly greater than the utility of any other bid in [0, τN(r̃N)] by incentive

compatibility. For an agent with type rN > r̃N , the utility of bidding τN(r̃N) is:

UN(τN(r̃N); rN) =
(
rN − τN(r̃N)

)
ΓN(τN(r̃N)) (2.8.61)

The utility of making any other bid τN(r̂N) < τN(r̃N) is:

UN(τN(r̂N); rN) =
(
rN − τN(r̂N)

)
ΓN(τN(r̂N)) (2.8.62)

Note that rN−τN(r̂N) > 0 must hold for rN > r̃N , since the following chain of inequalities

must be satisfied:

rN − τN(r̂N) > rN − τN(r̃N) > r̃N − τN(r̃N) ≥ 0 (2.8.63)

Thus, agent N with type rN > r̃N will optimally bid bN = τN(r̃N) if and only if:

UN(τN(r̃N); rN) ≥ UN(τN(r̂N); rN) ⇐⇒ rN − τN(r̃N)

rN − τN(r̂N)
≥ ΓN(τN(r̂N))

ΓN(τN(r̃N))
(2.8.64)

These inequalities must be satisfied for agent N with type rN = r̃N . Thus, we can write:

r̃N − τN(r̃N)

r̃N − τN(r̂N)
≥ ΓN(τN(r̂N))

ΓN(τN(r̃N))
(2.8.65)

Consider the following function:

LHS(rN) :=
rN − τN(r̃N)

rN − τN(r̂N)
(2.8.66)

=⇒ ∂LHS(rN)

∂rN
=

(rN − τN(r̂N))(1)− (rN − τN(r̃N))(1)

(rN − τN(r̂N))2
=
τN(r̃N))− τN(r̂N))

(rN − τN(r̂N))2
> 0

(2.8.67)

=⇒ rN − τN(r̃N)

rN − τN(r̂N)
>
r̃N − τN(r̃N)

r̃N − τN(r̂N)
≥ ΓN(τN(r̂N))

ΓN(τN(r̃N))
∀rN > r̃N (2.8.68)

This implies that any agent with rN > r̃N would also prefer the bid τN(r̃N) over any

other bid τN(r̂N) < τN(r̃N). This completes the proof.
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2.8.10 Proof of Proposition 7

We work with the following functions:

Φi(ri) := Pr{max
j ̸=i

{φj(rj)} ≤ φi(ri)} (2.8.69)

βi(ri) =

ri −
∫ ri
ri

Φi(s)ds

Φi(ri)
ri > rmini

rmini ri ≤ rmini

(2.8.70)

We can show continuity of this function at rmini by applying L’Hopital’s rule.

We further define the following functions for all agents i ≤ N − 1:

β̃i(bi) =


rmini bi ≤ βi(r

min
i )

β−1
i (bi) bi ∈ (βi(r

min
i ), βi(r̄i))

r̄i bi ≥ βi(r̄i)

(2.8.71)

For agent N , this function is:

β̃N(bN) =


rminN bN ≤ βN(r

min
N )

β−1
N (bN) bN ∈ (βN(r

min
N ), βN(r̃N))

r̃N bN ≥ βN(r̃N)

(2.8.72)

We have defined r̃N such that φN(r̃N) = φN−1. The allocation rule is:

φi(β̃(bi)) ≥ max
j∈{1,2,...,N}

{φj(β̃(bj)} (2.8.73)

The implied auction has a Bayes-Nash equilibrium where all agents bid according to the

rule bi(ri) = βi(ri).

As before, one can show that the functions βi(bi) are strictly increasing on bi ∈ (βi(r
min
i ), βi(r̄i)),

which ensures that a well-defined inverse exists on this interval of bids.

Part 2: Auction equilibrium - assuming that φ̄N−1 = φ̄N .

Under this assumption, the structure of the functions β̃ is identical for all agents.

We first show that the mechanism we have described induces a social choice function

c(ri, r−i) =
(
x(r), t(r)

)
that is incentive compatible.



86

When all agents i bid according to the rule bi(ri) = βi(ri) ≤ βi(r̄i), it holds that

β̃i(βi(ri)) = β−1
i (βi(ri)) = ri for any ri ∈ [rmini , r̄i]. For any such agent with ri ≤ rmini ,

β̃(bi) = rmini , which implies that the agent will never receive the good.

Thus, the induced interim allocation probabilities Xi(ri) will be equal to Φi(ri), which is

monotone.

Moreover, the implied transfer rule will satisfy the integrability constraint. To see this,

note that any agent that bids bi makes the expected payment biΦi(β̃i(bi)). When bidding

according to bi(ri) = βi(ri), it thus holds that:

βi(0) = rmini =⇒ Ui(ri) = Ui(0) = 0 (2.8.74)

Since the interim expected transfers are given by Ti(ri) = −βi(ri)Φi(ri), the integrability

condition is satisfied for the implied social choice function because:

riXi(ri) + Ti(ri) = Ui(ri) +

∫ ri

ri

Xi(s)ds (2.8.75)

⇐⇒

riΦi(ri)− τi(ri)Φi(ri) =

∫ ri

ri

Φi(s)ds ⇐⇒ τi(ri) = ri −

∫ ri
ri
Φi(s)ds

Φi(ri)
(2.8.76)

This establishes that the social choice function induced when all agents bid according to

bi(ri) = τi(ri) is incentive compatible.

Having established this, we now show that it is an equilibrium when all agents bid ac-

cording to the rule βi(ri) defined above.

Consider any agent with ri ≤ r̄i. Any such agent would have no incentives to bid anything

else in the interval bi ∈ (βi(r
min
i ), βi(r̄i)), since the existence of a profitable deviation in

this region would violate incentive compatibility.

Bidding anything in the interval bi ∈ [0, βi(r
min
i )] yields zero chance of receiving the

good and hence 0 utility - thus, this deviation cannot be profitable either. Bidding any-

thing above βi(r̄i) is dominated by bidding βi(r̄i), which cannot be profitable by previous

arguments.

Part 3: Auction equilibrium - assuming that φ̄N−1 < φ̄N .
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First, note that the ex-interim allocation probabilities will also be equal to Φi(ri) for

any agents.

To see this, consider an agent i ≤ N − 1 and suppose that all agents bid according

to βi(ri). If ri ≤ rmini , the interim allocation probability is 0, as specified by Φi(ri). Now

suppose ri ∈ (rmini , r̄i], such that β̃(β(ri)) = ri. By the law of total probability, we can

write the interim allocation probability as follows:

Xi(ri) = Pr
[
φi(ri) ≥ max

j∈{1,2,...,N}
{φj(τ̃i(bj)}

]
=

Pr
[
φi(ri) ≥ max

j∈{1,2,...,N}
{φj(β̃i(bj))}∧rN ≥ r̃N

]
+
[
φi(ri) ≥ max

j∈{1,2,...,N}
{φj(β̃i(bj)}∧rN < r̃N

]
=

[
φi(ri) ≥ max

j∈{1,2,...,N}
{φj(rj)} ∧ rN < r̃N

]
:= Φi(ri) (2.8.77)

Analogous arguments guarantee that XN(rN) = ΦN(rN).

This allocation probability is monotone. Moreover, previous results establish that the

transfer rule will satisfy integrability. Thus, when all agents bid according to bi(ri) =

βi(ri), the resulting social choice function will be incentive compatible.

Consider an agent i ≤ N − 1. By incentive compatibility, there can be no deviations

into the region (βi(r
min
i ), βi(r̄i)]. Any deviation above this is dominated by deviating to

βi(r̄i). Any deviation to a bid below βi(r
min
i ) will yield 0 utility and thus cannot be prof-

itable either.

Now consider agent N . In general, any bid bN > βN(r̃N) is dominated by bidding

bN = βN(r̃N). Similarly, any bid bN ≤ βN(r
min
N ) cannot be a profitable deviation.

If rN ≤ r̃N , incentive compatibility implies that no other bid in (βN(r
min
N ), βN(r̃N)] can

yield a better outcome - thus, it must be optimal for such agents to bid according to

βN(rN).

If rN > r̃N , the best possible bid will be bN = r̃N .
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For an agent with rN = r̃N , the utility of bidding βN(r̃N) is:

UN(βN(r̃N); r̃N) =
(
r̃N − βN(r̃N)

)
ΦN(βN(r̃N)) (2.8.78)

This must be weakly greater than the utility of any other bid in [0, βN(r̃N)] by incentive

compatibility. For an agent with rN > r̃N , the utility of bidding βN(r̃N) is:

UN(βN(r̃N); rN) =
(
rN − βN(r̃N)

)
ΦN(βN(r̃N)) (2.8.79)

The utility of making any other bid βN(r̂N) < βN(r̃N) is:

UN(βN(r̃N); rN) =
(
rN − βN(r̂N)

)
ΦN(βN(r̂N)) (2.8.80)

For an agent with rN = r̃N , we have:

r̃N − βN(r̃N)

r̃N − βN(r̂N)
≥ ΦN(βN(r̂N))

ΦN(βN(r̃N))
(2.8.81)

Consider the following function:

LHS(rN) :=
rN − βN(r̃N)

rN − βN(r̂N)
(2.8.82)

=⇒ ∂LHS(rN)

∂rN
=

(rN − βN(r̂N))(1)− (rN − βN(r̃N))(1)

(rN − βN(r̂N))2
=
βN(r̃N)− βN(r̂N)

(rN − βN(r̂N))2
> 0

(2.8.83)

This implies that any agent with rN > r̃N would also prefer the bid βN(r̃N) over any

other bid βN(r̂N) < βN(r̃N). Thus, we are done.

2.8.11 Calculations of Bidding Subsidies for the Specific Exam-

ples

Part 1: No subsidy example:

Consider the simple two-agent case with deterministic marginal utilities of money. As-

sume vKi ∼ U [0, 1] for both agents and suppose that Λ1 > Λ2. The inequality adjusted

valuations become γ1 = Λ1r1 and γ2 = Λ2r2. Thus, we have γ̄i = 1 for both agents. Note

also that ri ∼ U [0, 1/Λi] holds for both agents.

To define the bidding subsidies, we first need to compute Γi(ri) = Pr
(
γi(ri) ≥ γj(rj)

)
.
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Noting that Pr(ri ≤ x) = Λix holds for both agents, we can write that:

Γi(s) = Pr
(
Λis ≥ Λjrj

)
= Pr

(
rj ≤ (Λi/Λj)s

)
= Λis (2.8.84)

Thus, we have that:

τi(ri) = ri −
∫ ri
0
Λisds

Λiri
= ri −

[
0.5s2

]ri
0

ri
= ri −

0.5(ri)
2

ri
= 0.5ri (2.8.85)

Moreover, note further that:

τ−1
i (y) = 2y (2.8.86)

Agent i receives the good under our allocation rule if and only if:

γi(τ
−1
i (bi)) ≥ γj(τ

−1
j (bj)) ⇐⇒ Λi(2bi) ≥ Λj(2bj) ⇐⇒ Λi

Λj
bi ≥ bj (2.8.87)

Part 2: Ex ante budget balance example:

Agent 1 has a valuation vK ∼ U [0, 1] and deterministic utility of money Λ1 = 1.

Thus, r1 ∼ U [0, 1], φ1(r1) = 3r1 − 1 and φ1(r1) ∼ [−1, 2]. Agent 2 has a valuation

vK ∼ U [0, 2] and deterministic utility of money Λ2 = 2. Thus r2 ∼ U [0, 1], φ2(r2) = 2r2

and φ2 ∼ U [0, 2]. Then, we calculate Φi(ri) = Pr{maxj ̸=i{φj(rj)} ≤ φi(ri)|ri}. We derive

Φ1(r1) = 0.5(3r1 − 1) and Φ2(r2) =
2r2+1

3
. Then plugging things in, we get:

β1(r1) = r1 −

∫ r1
1/3

0.5(3s− 1)ds

0.5(3r1 − 1)
= 0.5r1 +

1

6
(2.8.88)

β(r2) = r2 −
∫ r1
0

2s+1
3
ds

2r2+1
3

=
r22

2r2 + 1
(2.8.89)

Taking the inverse of β1(r1) for r1 ∈ [1/3, 1] yields:

y = 0.5β−1
1 (y) +

1

6
⇐⇒ β−1

1 (y) = 2y − 1

3
(2.8.90)

The inverse of β2(r2), which is defined for all r2, must solve the following:

y =
β−1
2 (y)2

2β−1
2 (y) + 1

⇐⇒ (β−1
2 (y))2 − 2yβ−1

2 (y)− y = 0 (2.8.91)

Applying the quadratic formula yields the following solutions for the inverse:

β−1
2 (y) =

2y + /−
√

4y2 + 4y

2
=

2y + /− 2
√
y2 + y

2
= y + /−

√
y2 + y (2.8.92)
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We know that this solution must be in the positive domain. Thus, this inverse must solve:

β−1
2 (y) = y +

√
y2 + y (2.8.93)

Thus, our allocation rule for b1 > 1/3 is:

φ1(β
−1
1 (b1)) > φ2(β

−1
2 (b2)) ⇐⇒ 3

(
2b1 −

1

3

)
− 1 > 2

(
b2 +

√
b22 + b2

)
(2.8.94)

⇐⇒

6b1 − 2 > 2b2 + 2
√
b22 + b2 ⇐⇒ b1 > (1/3)b2 + (1/3)

√
b22 + b2 + 1/3 (2.8.95)

2.8.12 Derivation of the Uniform vK, Pareto vM Example

Let vK ∼ U [0, 1] and vM ∼ Pareto(k, xmin) where v
K and vM are independent random

variables. For the ratio of two independent random variables, the density is given by:

g(r) =

∫ ∞

−∞
|vM |fK(rvM)fM(vM)dvM (2.8.96)

We note that vM ≥ 0 and adjust the integral boundaries to our setting. Then

g(r) =

∫ 1/r

xmin

vMkxkminv
M−(k+1)

dvM (2.8.97)

=
k

1− k
rk−1xkmin −

k

1− k
xmin (2.8.98)

In the next step we derive λ(r) = E[vM |r]. For this we start by deriving

Pr{vM ≤ u, vK/vM ≤ r} =

∫ u

xmin

∫ vMr

0

fM(vM)fK(vK)dvKdvM (2.8.99)

=
k

k − 1
xkminr(x

−k+1
min − u−k+1) (2.8.100)

for u ≤ 1/r. We restrict to u ≤ 1/r as this constitutes the relevant region in which the

joint density of vM and r is strictly positive. We determine this joint density through

differentiating twice and determine

f(vM , r) = kxkminv
M−k

(2.8.101)
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Based on this, we can check the marginal density of r, namely g(r). This is:

g(r) =

∫ 1/r

xmin

f(vM , r)dvM =

[
1

−k + 1
kxkminv

M−k+1
]1/r
xmin

=
k

1− k
xkmin

[
rk−1 − (xmin)

1−k]
(2.8.102)

We then derive the conditional density function

f(vM |r) =(1− k)xkminv
M−k

rk−1xkmin − xmin
(2.8.103)

Then we determine λ(r)

λ(r) =

∫ 1/r

xmin

vM
(1− k)xkminv

M−k

rk−1xkmin − xmin
dvM (2.8.104)

=
k − 1

k − 2

x2−kmin − rk−2

x1−kmin − rk−1
(2.8.105)

Integrating up the marginal density g(r) then yields G(r).

G(r) =

∫
g(r)dr =

k

1− k
xkmin

[
(1/k)rk − (xmin)

1−kr
]

(2.8.106)

We can check the marginal density of vM , which is:

fVM (y) =

∫ 1/y

0

f(y, r)dr =

∫ 1/y

0

[
kxkminy

−k]dr (2.8.107)

=

[
kxkminy

−kr

]1/y
0

= kxkminy
−k(y)−1 =

k(xmin)
k

yk+1
(2.8.108)

Based on this, we can compute Λi, namely:

Λ =

∫ ∞

xmin

yfvM (y)dy =

∫ ∞

xmin

k(xmin)
k(y)−kdy =

[
k(xmin)

k 1

−k + 1
(y)−k+1

]∞
xmin

(2.8.109)

= −k(xmin)k
1

−k + 1
(xmin)

−k+1 =
k

k − 1
xmin (2.8.110)

This would not have been necessary, given our knowledge of vM that we specify a priori,

but serves as a nice check of our previous calculations.

One can show that all inequality adjusted valuations satisfy the monotonicity assumptions

in this example:
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Figure 2.2: Utilitarian optimal allocation rule vs. ex post efficient allocation rule



Chapter 3

Revenue Maximization with

Partially Verifiable Information1

Abstract: I consider a seller selling a good to bidders with two-dimensional private

information: their valuation for a good and their characteristic. While valuations are

non-verifiable, characteristics are partially verifiable and convey information about the

distribution of a bidder’s valuation. I derive the revenue-maximizing mechanism and show

that it can be implemented by introducing a communication stage before an auction. I

show that granting bidders a right to remain anonymous, i.e., to refuse participation

in the communication stage, leaves the optimal mechanism unchanged and provides no

benefits for the bidders.

Keywords:Mechanism Design, Auctions, Partially Verifiable Types, Communication

JEL Classification: D44, D82, D83

3.1 Introduction

Suppose a seller wants to sell a good to a number of bidders. In his seminal paper, Myer-

son (1981) showed that the optimal auction employs reserve prices and bidding subsidies.

They explicitly depend on the distributions of the valuations of the bidders, which are

given exogenously. If the bidders anonymously participate in the auction, there is no

directly observable information to condition on, and thus no way to derive distinct distri-

butions of valuations. In this case, the optimal auction treats all bidders equally. Suppose

there is some additional, private information that correlates with the bidders’ valuations,

and that it is possible to (partially) verify this information once it has been volunteered

1I thank Vitali Gretschko, Volker Nocke and Thomas Tröger for their valuable insights. Further, I
thank seminar audiences at Mannheim and Toulouse for their feedback. This work was supported by the
University of Mannheim’s Graduate School of Economic and Social Sciences. Funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) through CRC TR 224 (Project B01) is
gratefully acknowledged.

93



94

by bidders. Can the seller benefit from eliciting this additional information from the bid-

ders, even if the information is not directly part of their utility function? Consider some

examples of such situations:

Procurement: Consider an auction for the procurement of a good. Typically, the bidders

submit their offers to produce the good, and the best offer wins. The bidding strategy

of the bidders will generally depend on their cost for the production of the good, which

is private information. Suppose the good can be produced with modern machines, at a

lower (marginal) cost or with old machines at a higher cost. Can the seller incentivize

the bidders to show her their machines? Can she use this information to receive a better

offer in the auction?2

Energy Auctions: In energy markets, there are frequent energy balancing auctions to

balance out energy supply and demand. Suppose there is an auction in which the bidders

offer to supply additional energy. The energy can be produced using gas, coal, solar power

or wind. Can the seller incentivize the bidders to offer detailed information about their

mode of production?

Wealth in Auctions: Consider an auction for a piece of art. Suppose richer bidders’,

through more disposable income, are, on average, willing to pay more money for the piece.

Additionally, the neighborhood in which they live is a good indicator of wealth. Can the

seller elicit the bidders’ addresses? Can she use the address information in the auction to

generate higher revenue?

All these examples have in common the existence of information which is informative

about the valuation of the bidder and is thus relevant to the seller. However, note that

this information is typically unobservable to the seller. In procurement, observing the

machines that a supplier will use to produce the good is not possible. It is impossible to

directly observe what kind of energy source is used to create electricity in energy auc-

tions. It is also not possible to directly observe a bidder’s wealth in an art auction. But

if a bidder volunteers this information, it may be possible to (partially) verify it. In a

procurement auction, the seller cannot verify the machines that are used in production

ex ante, but a bidder may invite the seller to show her the machines used to produce the

goods. Similarly, an energy provider can provide a detailed production overview of how

exactly the energy is produced, that is not publicly available. In the art auction, assume

that it is not possible for the seller to observe a bidder’s address ex ante. But when she

is provided an address by a bidder, she can confirm whether the given address is true or

false. For example, the seller could ask the bidder to show her a valid ID document to

verify the address. If the bidder lives in a particularly wealthy neighborhood, it is less

2In practice, the buyer often issues a Request for Quote (RfQ) or a Request for Proposal (RfP) to
the suppliers. The responses to such requests typically provide such additional information. My paper
shows how this information can be used in a procurement auction.
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likely that he is poor. If a bidder lives in a comparatively poor neighborhood, it is less

likely that he is rich.

Intuitively, this additional information is useful for the seller and can be used to

discriminate between the bidders in an optimal mechanism. My paper contributes to two

strains of the mechanism design literature: First, the literature of selling a good to buyers

in the presence of non-verifiable valuations, as considered in Myerson (1981). Second,

the literature of mechanism design with partially verifiable types, as first considered by

Green and Laffont (1986).

For the non-verifiable component of my model, I assume that the bidders’ preferences

are described by a quasi-linear utility function ui = θixi + ti where θi is the valuation of

each bidder for the good, xi denotes the probability with which each bidder receives the

good, and ti are the transfers each bidder receives or pays in the mechanism. I assume

that the valuation θi is private, non-verifiable information.

For the partially verifiable component of the model, I assume that every bidder has

a characteristic ci ∈ C. Characteristics have no direct impact on a bidder’s utility func-

tion, but they are informative about the distribution of a bidder’s valuation. There is

no one-to-one relationship between a certain characteristic and any given valuation. In-

stead, there is some statistical relationship between characteristics and valuations such

that characteristics are informative about the valuations. The characteristic ci is private,

partially verifiable information and C is a finite set containing all possible characteristics.

To provide tractable results, I assume that, conditional on the characteristics, it is possi-

ble to order the distributions of the valuations according to the hazard rate order. Partial

verifiability is in the sense of Green and Laffont (1986). For a bidder with characteristic c,

there exists a partition of the set C into two sets: first, a set containing the characteristics

that cannot be verified to be different from c and second, a set of those characteristics

that are verifiably different from c.

After restricting the search for an optimal mechanism to direct mechanisms through

an adjusted revelation principle, I show that incentive compatibility boils down to four

conditions. The first two are the well-known monotonicity and integrability condition

that follow from the application of Milgrom and Segal (2002). The third and fourth con-

ditions relate to the bidders’ characteristics. The third condition concerns the ex-interim

allocation probability of a bidder that truthfully reports his characteristic. The allocation

probability for this first bidder cannot be lower than that of another, second bidder, if

the first bidder can present the evidence requested from the second bidder. This condi-

tion intuitively follows, as the characteristics of a bidder are not directly relevant for the

utility. If this condition is violated, the former bidder can mimic the latter, which would

be a profitable deviation. Therefore, bidders can only be treated unequally if one bidder
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is asked to present some particular evidence that the other bidder is not able to produce.

The fourth condition simply states that a bidder can truthfully report his characteristic

and valuation without being asked to present evidence that the bidder is unable to come

up with.

Using the integrability condition, the expected revenue generated from the bidders

corresponds to their virtual valuation, conditional on their characteristic. However, in-

centive compatibility now demands the grouping of bidders according to their charac-

teristics. Therefore, the optimal mechanism has to find the optimal grouping structure.

Given that the CDFs associated with the characteristics can be ordered according to the

hazard rate order, the optimal mechanism groups bidders with characteristics close to

one another in terms of the hazard rate order. The exact grouping, however, depends on

the exact verifiability structure of the characteristics.

To argue how my mechanism can be integrated into existing auction formats, I

show that a two-stage communication plus auction mechanism implements the revenue-

maximizing social choice function. In a first stage, the bidders communicate with the

seller about their characteristics. The seller then explicitly conditions the auction rules of

the auction in the second stage on this communication. I show that the auction in the sec-

ond stage maximizes the expected revenue, given the equilibrium of the communication

stage. Therefore, it is not necessary for the seller to have commitment power regard-

ing the auction rules as a result of the communication stage. This is very desirable for

practical applications, as it rules out the temptation to change the rules during the pro-

cess. Furhter, in practice, the pre-auction communication can be implemented as easily as

asking the bidders to fill out a questionnaire about their characteristics before the auction.

In the baseline model of the two stage implementation, it is not possible for bidders to

refuse communication or engage in babbling with the seller. To alleviate concerns about

this restriction, I discuss an extension in which I introduce a right to remain anonymous

for the bidders. Every bidder can refuse to communicate in the pre-auction communication

stage. I show that no bidder benefits from such a right to remain anonymous. I provide

an intuitive unraveling result when bidders are granted a right to remain anonymous.

Bidders with particularly desirable characteristics intentionally choose to communicate

to separate themselves from bidders with less desirable characteristics. This incentive to

engage in communication causes an unraveling effect such that in equilibrium, only those

bidders with the least desirable characteristics are indifferent between actually remaining

anonymous and communicating about their characteristics.

Partially verifiable information presents some technical challenges. As pointed out in
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Green and Laffont (1986), the revelation principle does not generally apply to environ-

ments with partially verifiable private information. They show that truthful implemen-

tation using the revelation principle is only without loss of generality if the structure

of the partition of the set of characteristics C satisfies a nested range condition.3 If this

condition is violated, there are social choice functions that are implementable in a direct

mechanism but not truthfully implementable. Singh and Wittman (2001) argue that the

nested range condition in Green and Laffont (1986) is too restrictive and excludes many

interesting economic applications. In my model, the nested range condition is not neces-

sary and will generally be violated.

To restore the revelation principle for my framework, I follow a more recent approach

developed by Strausz (2016). In a methodological contribution, he argues that the failure

of the revelation principle in frameworks with partially verifiable types is caused by the

modelling approach of Green and Laffont (1986). Then, Strausz (2016) shows how to

restore the revelation principle through what he refers to as the extended environment :

Typically, the social choice function is defined as a mapping from the set of private infor-

mation into the set of outcomes. In his new approach, he extends social choice functions

to also map into the set of partially verifiable characteristics. This addition to the social

choice function can be understood as a requirement for the bidders to present evidence

within the mechanism. Evidence has also been considered by other authors: Kartik and

Tercieux (2012) study implementation when bidders can generate evidence for their types

at non-prohibitive costs. Ben-Porath and Lipman (2012) extend social choice functions

to not just depend on the bidders’ preferences, but allow them to submit evidence to

support their claims. What sets these papers apart from mine is the general research

question: while they consider the general question of implementability, I use their results

to characterize the set of implementable social choice functions in my environment. Then,

I determine the implementable social choice function that maximizes revenue.

There are other papers that focus on deriving revenue-maximizing mechanisms when

information is partially verifiable. Ball and Kattwinkel (2019) derive revenue-maximizing

mechanisms for a range of applications in a setting where the principal can use a prob-

abilistic test with binary outcomes to verify the bidders’ types. Tests with deterministic

outcomes correspond to how partial verifiability is modelled in Green and Laffont (1986),

as well as my paper. Generally, their framework allows for tests that are not restricted

to deterministic outcomes. However, the authentication rate characterization in Ball and

Kattwinkel (2019) reduces to the nested range condition if tests are deterministic. As

3They define the nested range condition as follows: Consider three distinct characteristics c1, c2, c3 ∈
C. Let ϕ denote the partition of C, such that c′ ∈ ϕ(c) denotes that a bidder of characteristic c can report
characteristic c′. Then the nested range condition is satisfied if: c2 ∈ ϕ(c1) and c3 ∈ ϕ(c2) ⇒ c3 ∈ ϕ(c1)
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my model generally violates the nested range condition, it cannot be nested in their

approach. Further, in the auction application within their paper, they consider one di-

mensional, partially verifiable, private information: the bidders’ valuations. My model

considers two-dimensional private information instead: non-verifiable valuations and par-

tially verifiable characteristics. This two-dimensional approach stems from a practical

concern. Partially verifiable valuations in the auction environment demand some test

that allows to verify that a bidder is willing to pay exactly some particular amount of

money, say $100, for a good. However, it seems incredibly difficult to verify a bidders’

exact valuation for a good. Verifying some informative characteristics fits a wide range

of applications, as pointed out in the examples at the beginning of this paper.

In environments without transfers, Ben-Porath et al. (2014) study the optimal mecha-

nism for a principal who allocates objects to bidders, whose valuation is private informa-

tion but can be verified at a cost. Li (2020) solves for the optimal mechanism in a setting

where the principal can inspect a bidder’s report at a cost and impose punishments on

false reports. Erlanson and Kleiner (2020) study how a principal should optimally choose

between implementing a new policy and maintaining the status quo when information

relevant for the decision is privately held by bidders, but can be verified at a cost. How-

ever, as all of these papers preclude monetary transfers, they cannot be applied to a

bidder-seller situation.

The remainder of the paper is organized as follows: Section 2 presents the model and

derives the optimal mechanism. Section 3 discusses the two-stage implementation and

the right to remain anonymous. Section 4 concludes.

3.2 Model

3.2.1 Description

Consider a seller (she) and N ≥ 1 bidders (he) with unit demand. The seller owns K ≥ 1

units of a homogeneous good. She does not gain utility from the consumption of the

goods and is purely interested in revenue maximization. A bidder’s utility function over

a particular allocation and payment is equal to θixi + ti, where θi ∈ [θ, θ] represents the

valuation of each bidder for the good, xi denotes the probability with which each bidder

receives a good and ti denotes the transfer each bidder receives or pays in the mechanism.

I assume that the valuation θi is private, non-verifiable information. As a novel feature

of my model, every bidder also has a privately known, partially verifiable characteristic

ci where ci ∈ C and C is a finite set containing all possible characteristics.
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A characteristic ci does not directly impact a bidder’s utility. However, it is informa-

tive about the distribution of the bidder’s valuation. In an application, characteristics

are meant to capture real-life characteristics of the bidders that allow drawing statistical

conclusions about the bidders’ valuations. For example, the type of machines used to pro-

duce a product in the procurement example or the wealth of a bidder in the art auction

example. Each characteristic ci ∈ C is associated with a CDF Fci ∈ F that governs the

distribution of the valuations θi. F denotes the set of all CDFs that are associated with

a characteristic in C. When ci and c
′
i are distinct characteristics, their associated CDFs

Fci and Fc′i differ from each other on a set of valuations with strictly positive measure. I

assume that all CDFs F ∈ F are continuously differentiable and admit strictly positive

densities f > 0.4 The virtual valuation J(θi) of a bidder is defined as J(θi) = θi− 1−F (θi)
f(θi)

as in Myerson (1981). For simplicity, I assume that all distribution functions are associ-

ated with non-decreasing virtual valuations. Conditional on the characteristics ci and cj

of two distinct bidders, the valuations θi and θj are distributed independently. There is

a common initial prior ∆ over the set of characteristics C and hence also over the set F .

The prior ∆ assigns a probability δ(ci) to each characteristic ci ∈ C.

For any distribution F ∈ F , the hazard rate is defined as f(θ)
1−F (θ)

. The hazard rate

order ≿hr relates distributions F and G (noted as F ≿hr G) if f(θ)
1−F (θ)

≤ g(θ)
1−G(θ)

. I make

the following assumption:

Assumption 1 The hazard rate order ≿hr establishes a linear order over F . In partic-

ular, for any F,G ∈ F it holds that F ≿hr G or G ≿hr F .

Without loss of generality, I label the characteristics from 1, 2, ..., |C| s.t. Fi ≿hr Fj

iff i ≥ j. To build some intuition for the hazard rate order, consider the likelihood ratio

order ≿lr. For any two CDFs F and G let F ≿lr G iff f(θi)
g(θi)

is increasing in θi. As an ex-

ample, any CDFs F and G with increasing density f and decreasing density g satisfy the

likelihood ratio order. Note that it is a well established result that F ≿lr G⇒ F ≿hr G.

Therefore, the likelihood ratio order is sufficient for the hazard rate order.5 The likelihood

ratio order can be interpreted as follows in the context of this paper. Let ci and c′i be

characteristics such that Fci ≿lr Fc′i . Then, bidders are more likely to be of character-

istic ci compared to c′i, the higher the valuation that is considered. There are a variety

of situations for which this assumption seems reasonable. Reconsider the examples from

the introduction: in the procurement example, it seems intuitive that cheaper (marginal)

production costs are more likely for a firm using more modern machines. In the energy

auction, marginal costs for energy production using wind or solar power are likely lower

4Environments with differing type spaces for the bidders can be approximated through distributions
with arbitrarily small densities on certain types in [θ, θ]

5For a detailed treatment of stochastic orders and further necessary and sufficient conditions for the
hazard rate and the likelihood ratio order see Shaked and Shanthikumar (2007)
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than using fossil fuels. In the art auction example, wealthier bidders are likely willing to

pay more through having more disposable income.

The characteristics are private information. It is not possible for the seller to gather

information about a bidder’s characteristic ex ante. However, once a bidder reports a par-

ticular characteristic, he can submit evidence to support his claim and only then can this

evidence be verified by the seller. To model this, I use a correspondence ϕ : C ↠ 2C . It

is a primitive of the model that captures the degree to which characteristics are partially

verifiable and whether evidence that is presented by a bidder can be rejected as objec-

tively false or not. Every characteristic ci is assigned a set of characteristics ϕ(ci) ⊆ C.

For every reported characteristic ĉi such that ĉi ∈ ϕ(ci), the bidder can produce evidence

that cannot be rejected as objectively false. For every reported characteristic ĉi ̸∈ ϕ(ci)

the bidder is unable to produce sufficient evidence to support his claim. I assume that

the procedure that is used to judge whether evidence is objectively false is commonly

known, hence ϕ is common knowledge. Further, there is no uncertainty in its outcome. I

assume that neither the generation of evidence, nor the verification procedure, is associ-

ated with any costs for neither the seller nor the bidders. This assumption can be justified

in situations where these costs are negligible compared to the value of the goods up for

auction. For example, the costs of generating reports are negligible in a multi-million

dollar procurement auction.

Note that the set ϕ(ci) explicitly depends on the true characteristic ci of the bidder.

Depending on his true characteristic, a bidder may find it more difficult to produce

evidence to back up certain claims ĉi. To illustrate this point, recall an example from the

introduction. Consider the procurement auction and bidder that produces using the most

modern machines available on the market. Naturally, he will have a harder time coming

up with evidence that he is producing using old machines than a bidder who is actually

using old machines. In general, if ϕ(ci) = C for all ci, the characteristics are completely

unverifiable. If ϕ(ci) = {ci}, the characteristics are perfectly verifiable, and if ϕ(ci) ⊂ C,

the characteristics are partially verifiable. To allow for some tractable results, I assume

the following structure regarding the partial verifiability of the characteristics:

Assumption 2 Truthful disclosure is possible. That is, for all c ∈ C it holds that c ∈ ϕ(c)

Assumption 3 For each characteristic c ∈ C there is a lower bound ϕ(c) and an upper

bound ϕ(c) such that ϕ(c) = {c′ ∈ C|ϕ(c) ≤ c′ ≤ ϕ(c)}

Assumption 4 The bounds are monotone. Let c < c′ be two characteristics, then it holds

that ϕ(c) ≤ ϕ(c′) and ϕ(c) ≤ ϕ(c′)
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Combining these assumptions highlights the idea that there is a meaningful order included

in the labels, such that labels that are further away from each other are more distinct. The

further away a particular characteristic is from the bidder’s true characteristic, the harder

it will be to generate credible evidence for that characteristic. However, if is possible

to generate evidence for a characteristic further away from the true characteristic, it

must also be possible to generate evidence for a characteristic closer to the truth. Thus,

disclosing any characteristic is possible as long as they remain in the bounds set by ϕ(c).

Remark: Assumptions 2-4 do not generally guarantee that Green & Laffont’s nested

range condition is satisfied. They define the nested range condition as follows: For any

three distinct elements c1, c2, c3 ∈ C, if c2 ∈ ϕ(c1) and c3 ∈ ϕ(c2) then c3 ∈ ϕ(c1). Consider

the following example ϕ(c1) = {c1, c2}, ϕ(c2) = {c2, c3}, ϕ(c3) = {c3}. It is easy to verify

that this example satisfies assumptions 2-4, but violates the nested range condition. If

we replace ϕ(c1) with ϕ
′(c1) = {c1, c2, c3}, it is easy to verify that the example satisfies

assumptions 2-4 and the nested range condition. This highlights that my model allows

for more general partial verifiability structures than those given by the nested range

condition.

3.2.2 Mechanisms and the Revelation Principle for Partially

Verifiable Types

The goods are allocated through a mechanism. An arbitrary mechanism is denoted by

g = (M,V, x, t). Its first component is a set of unverifiable cheap talk messages M . Sec-

ond, there is a set V ⊆ C of partially verifiable messages. Note that the mechanism does

not necessarily have to allow all partially verifiable messages to be sent. The seller may

benefit from excluding some messages from the mechanism, such that V may generally

be strictly smaller than C. The third component is an allocation rule x that maps all

possible combinations of messages into allocations of the goods. The fourth component is

a transfer rule t that maps all possible combinations of messages into transfers. A direct

mechanism is a mechanism in which M = Θ and V = C.

To establish the revelation principle for my model, I follow the approach laid out

by Strausz (2016). As the approach is relatively recent, I will briefly present the main

definition and result. Using the language of Strausz (2016), I will refer to the environment

as defined in Green and Laffont (1986) as the initial environment. The environment as

defined in Strausz (2016) is referred to as the extended environment. Loosely speaking,

the environments differ through the introduction of evidence.6 Denote by X the set of all

feasible physical allocations of the goods, and T describes the set of all feasible transfers to

6A more detailed explanation, including all the technical definitions, can be found in section 3.5.1 of
the appendix.
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each of the bidders. The definition of a Bayesian incentive-compatible, direct mechanism

is applied to the extended environment:

Definition 3 A Bayesian incentive compatible, direct mechanism in the extended envi-

ronment is a tuple ĝ = (x, t, ĉ) with an allocation rule x : ΘN ×CN → X , a transfer rule

t : ΘN × CN → T and an evidence rule ĉ : Θ× C → C such that

θiX(θi, ci) + T (θi, ci) ≥ θiX(θ′i, c
′
i) + T (θ′i, c

′
i)− P · 1{ĉ(θ′i, c′i) ̸∈ ϕ(ci)} (3.2.1)

for all (θ′i, c
′
i) ∈ Θ × C, where X(θi, ci) = E−i[xi(θi, ci, θ−i, c−i)] denotes the ex interim

allocation probability and T (θi, ci) = E−i[ti(θi, ci, θ−i, c−i)] denotes the ex interim expected

payment.

Where P denotes a punishment if an agent cannot produce the evidence demanded by the

mechanism. The revelation principle can be re-established in this extended environment

through standard arguments. Given that the revelation principle holds for this extended

environment, it is vital to establish a connection between the extended environment and

the initial environment.

Proposition 1 (Strausz (2016)) Consider the initial environment and its extension.

If there exists some mechanism g which implements the social choice function f : ΘN ×
CN → X × T in the initial environment, then there exists a function ĉ : Θ × C → C

such that the extended social choice function f̂(·) = (f(·), {ĉ(·)}Ni=1) is implementable in

an Bayesian incentive compatible, direct mechanism in the extended environment.

Proof. See appendix.

This proposition connects Green & Laffont’s initial environment with Strausz’ ex-

tended environment. It establishes that any social choice function that can be imple-

mented by some mechanism in the initial environment can be truthfully implemented by

a direct mechanism in the extended environment with a suitable evidence function. There-

fore, I can focus the derivation of the optimal mechanism on direct, incentive-compatible

mechanisms in the extended environment without loss of generality. Intuitively, the propo-

sition is made possible through the addition of the evidence function ĉ. Using this function,

it is possible to take the equilibrium disclosure behavior with respect to the partially ver-

ifiable characteristics in any mechanism in the initial environment and define it as the

required evidence rule for the extended environment.
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3.2.3 Incentive Compatibility and Expected Revenue

The previous section has established a revelation principle for this setup. To proceed, I

first offer a full formal description of the maximization problem.

max
{x(θ,c),t(θ,c),ĉ(θi,ci)}

E

[
N∑
i=1

−ti(θ, c)

]
(3.2.2)

s.t. (IC) θiX(θi, ci) + T (θi, ci) ≥ θiX(θ′i, c
′
i) + T (θ′i, c

′
i)− P · 1{ĉ(θ′i, c′i) ̸∈ ϕ(ci)}

(3.2.3)

(IR) θiX(θi, ci) + T (θi, ci) ≥ 0 (3.2.4)

The seller wants to maximize her expected revenue from the allocation of the goods.

However, she is restricted to Bayesian incentive-compatible, direct mechanisms that re-

spect individual rationality in the extended environment without loss of generality. As a

next step, I further characterize the incentive compatibility constraints.

Proposition 2 A direct mechanism ĝ = (x, t, ĉ) in the extended environment is Bayesian

incentive compatible if and only if the following conditions hold:

1. Integrability

Û(θi, ci) = Û(θ, ci) +

∫ θi

θ

X(s, ci)ds

2. Monotonicity, that is θi > θ′i implies X(θi, ci) ≥ X(θ′i, ci)

3. Optimality with respect to ci, that is X(θi, ci) ≥ X(θi, c
′
i) for all (θi, c

′
i) such that

ĉ(θi, c
′
i) ∈ ϕ(ci).

4. Feasible evidence for truthful disclosure: ĉ(θi, ci) ∈ ϕ(ci) for all θi ∈ [θ, θ] and ci ∈ C

Proof. See appendix.

Incentive compatibility boils down to four conditions—an integrability condition and

a monotonicity condition akin to the literature’s standard constraints. The third and

fourth conditions are novel and relate to the characteristics. The third condition requires

that the ex interim allocation probability of the good for a bidder i with valuation and

characteristic (θi, ci) may not be lower than that of a bidder with valuation and charac-

teristic (θi, c
′
i) if the required evidence ĉ(θi, c

′
i) can also be submitted by a bidder with

characteristic ci. The intuition for this constraint is that the utility function of the bidders

is independent of their characteristics. The utility derived from the consumption of the

good solely depends on their valuation for the good. Therefore, an incentive-compatible

mechanism cannot assign the good more often to a bidder of a certain characteristic c′i
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compared to a bidder of characteristic ci if the latter bidder can provide the evidence

demanded by the former bidder. The fourth condition states that it must be possible for

a bidder to disclose his valuation and characteristic truthfully without being asked to

submit evidence that the bidder cannot feasibly submit. It restricts the evidence rule for

bidders that are telling the truth, such that they may not be asked for evidence which

they cannot generate. By definition of the approach of Strausz (2016), a bidder who dis-

closes evidence that is verifiably false faces a severe punishment.7 Thus, a failure of this

condition will result in non-truthful disclosure.

Using standard arguments that make use of the integrability condition, the expected

transfer conditional on a specific characteristic ci is given by:

E[T (θi, ci)|ci] =
∫ θ

θ

X(θi, ci)J(θi, ci)f(θi|ci)dθi (3.2.5)

where J(θi, ci) = θi − 1−F (θi|ci)
f(θi|ci) . This expression for the expected revenue is very similar

to the usual condition in the literature, with the difference being that it is conditional

on a specific characteristic ci. In particular, the virtual valuation is calculated using the

conditional distribution and density functions. Recall that the probability with which a

characteristic ci occurs is denoted by δ(ci). Then I employ the law of iterated expectations

to determine the unconditional expected transfers of a bidder.

E[T (θi, ci)] =
∑
ci∈C

(
δ(ci)

∫ θ

θ

X(θi, ci)J(θi, ci)f(θi|ci)dθi

)
(3.2.6)

The expected total revenue of the seller then equals

E

[
N∑
i=1

T (θi, ci)

]
=

∫
[θ,θ]N

(∑
c∈CN

(
N∑
i=1

xi(θ, c)J(θi, ci)

)
δ(c1)f(θ1|c1) · · · δ(cN)f(θN |cN)

)
dθ

(3.2.7)

Now, in principle, it is possible to engage in point wise maximization. However, condition 3

of proposition 2 has to be respected.8 It is formulated in terms of the ex interim allocation

probabilities. Therefore, this introduces some interdependence that has to be addressed

first.

7For my paper, a sufficiently severe punishment is to exclude such bidders from participating in the
auction.

8Recall condition 3: Optimality with respect to ci, that is X(θi, ci) ≥ X(θi, c
′
i) for all (θi, c′i) such

that ĉ(θi, c′i) ∈ ϕ(ci).
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3.2.4 Deriving the Optimal Mechanism

In this section, I derive the revenue-maximizing mechanism. As argued above, point wise

maximization is not quite possible yet due to the interdependence introduced by condition

3 of proposition 2. In the following lemma, I show how to extend this condition onto a

point wise basis.

Lemma 1 Let g∗ = (x∗, t∗, ĉ∗) be a revenue-maximizing, incentive compatible mech-

anism. Fix a valuation θi and characteristics ci, c
′
i. Then x∗i (θi, ci, θ−i, c−i) = 1 and

ĉ∗(θi, ci) ∈ ϕ(c′i) ⇒ x∗i (θi, c
′
i, θ−i, c−i) = 1 without loss of generality.

Proof. See appendix.

Lemma 1 shows that the seller cannot gain any additional revenue by trying to sepa-

rate bidders of different characteristics if bidders of both characteristics can submit the

required evidence. This can be proven by examining the revenue of separating bidders of

these two characteristics and comparing it to the revenue in which these characteristics

are not separated. However, as the proof shows, the revenue of separating the bidders of

the different characteristics cannot exceed that of treating the bidders equally. To gain

some intuition for why this is true, recall that the characteristics of a bidder are not

part of his utility function. The only possibility to treat one bidder differently from the

other is through the required evidence. However, if both bidders can produce the required

evidence, a different treatment is simply not possible.

Using Lemma 1, a point wise approach to finding the optimal mechanism is possi-

ble. We can fix some profile of valuations and then design the optimal evidence rule for

the mechanism. The optimal evidence rule then depends on the grouping of different

characteristics that it achieves, and the optimal grouping will critically depend on as-

sumption 1.9 To see why, recall the definition of the virtual valuation Ji(θi, ci) of a bidder

i conditional on his characteristic ci:

J(θi, ci) = θi −
1− F (θi|ci)
f(θi|ci)︸ ︷︷ ︸

inverse hazard rate

(3.2.8)

Now consider two characteristics ci and cj such that F (θi|ci) ≿hr F (θj|cj). Then compar-

ing the virtual valuations we get:

F (θi|ci) ≿hr F (θj|cj) ⇒
f(θi|ci)

1− F (θi|ci)
≤ f(θj|cj)

1− F (θj|cj)
⇒ J(θi|ci) ≤ J(θj|cj) (3.2.9)

9Recall assumption 1: The hazard rate order ≿hr establishes a linear order over F . In particular, for
any F,G ∈ F it holds that F ≿hr G or G ≿hr F .
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Being able to order the CDFs F (θi|ci) and F (θj|cj) using the hazard ratio order, allows

a uniform ordering over the virtual valuations associated with those CDFs. Recall that

Myerson (1981) established that the virtual valuation of a bidder is the maximum revenue

that the seller can extract from a bidder through the allocation of the good. Thus, in

the benchmark of commonly known characteristics, the seller prefers the allocation of the

good to bidders with characteristics that have lower ranks in the hazard rate order, as

they have higher virtual valuations. In the setting of partially verifiable characteristics,

however, the seller has to elicit the characteristics of the bidders first. It turns out that

the intuition from the common knowledge case carries over to the partially verifiable case.

The seller will use the evidence rule to get close to what she would want to do were the

characteristics commonly known. This intuition is distilled into the following algorithm:

The optimal mechanism: Fix an arbitrary profile of valuations θ. Then proceed as

follows:

1. Set C̃ = C, ci = 1.

2. Group all bidders with characteristics c′i ∈ C̃ such that ci ∈ ϕ(c′i) into a group Gci .

Set C̃ = C \Gci , ci = ci + 1

3. Repeat step 2 until C̃ = ∅

4. Calculate the expected virtual valuation J(θi, Gci) for each bidder in each group as

J(θi, Gci) =
1∑

c′i∈Gci
δ(c′i)

∑
c′i∈Gci

δ(c′i)J(θi, c
′
i) (3.2.10)

5. Assign the good to bidder i if and only if J(θi, Gci) ≥ maxM :N−1 J(θj, Gcj) and

J(θi, Gci) ≥ 0. Where maxM :N−1 J(θj, Gcj) denotes the M ’th highest virtual valua-

tion of the other N − 1 bidders.

Proposition 3 Assigning the goods according to the algorithm constitutes the revenue-

maximizing, incentive-compatible mechanism.

Proof. See appendix.

The proposition claims two properties of the algorithm: Revenue maximization and

incentive compatibility. First, I will provide a discussion why the algorithm maximizes

revenue. Recall that the hazard rate order allows us to rank the virtual valuation of

the bidders conditional on their characteristic such that J(θi, ci = 1) ≥ J(θi, ci = 2) ≥
... ≥ J(θi, ci = |C|). Thus, if characteristics were observable, the seller would prioritize

assigning the good to bidders with lower characteristics ceteris paribus. Fix a bidder i
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and a profile or valuations and characteristics. Consider the most profitable way for the

seller to assign the good to any other bidder j ̸= i. Now define by c the characteristic

such that the seller prefers assigning the good to bidder i if ci ≤ c and prefers assign-

ing the good to bidder j if c ≤ ci. For now, suppose that c is interior, i.e. that 1 < c < |C|.

If characteristics are not observable, but merely partially verifiable, the seller needs

to distinguish the cases in which bidder i has characteristic ci < c from those in which

he has characteristic c′i with c < c′i. Note that lemma 1 established that it is only op-

timal to assign the good to bidder i with characteristic ci and not characteristic c′i if

ĉ(θi, ci) ̸∈ ϕ(c′i). Since the bounds of the evidence that can be generated are monotone by

assumption 4, the only way to distinguish the two characteristics is by requiring evidence

such that ĉ(θi, ci) < ϕ(c′i). The most efficient way to achieve this is to set ĉ(θi, ci) = ϕ(ci)

as it is done in the algorithm. Since this procedure generally creates groups of character-

istics, the allocation of the good to a bidder then generates revenue equal to the expected

virtual valuation of a bidder with valuation θi in that particular group. Then the optimal

allocation rule assigns the goods to the bidders that have the highest expected virtual

valuations depending on their group.

Second, I will discuss why the algorithm is incentive compatible. Recall that there are

4 conditions that characterize an incentive compatible mechanism.

Consider the two standard conditions for incentive compatibility: Integrability is satis-

fied, as it has been used in deriving the virtual valuation. Monotonicity is satisfied, as

the virtual valuations are non-decreasing by assumption and a higher virtual valuation

leads to a higher probability of being assigned a good.

Now consider the two conditions that relate to the truthful disclosure of the characteris-

tics. Note that the algorithm assigns the bidders to groups, such as to maximize their ex-

pected virtual valuations. Recall the third condition of incentive compatibility: Optimality

with respect to ci, that is X(θi, ci) ≥ X(θi, c
′
i) for all (θi, c

′
i) such that ĉ(θi, c

′
i) ∈ ϕ(ci).

Given that bidders are assigned to groups such as to maximize their expected virtual

valuation, and assignment is determined by virtual valuations, it is obvious that this

condition is satisfied. A bidder that would deviate to reporting a different characteristic

would lower his probability of receiving the good, and therefore deviation is not optimal.

The fourth condition is: Feasible evidence for truthful disclosure: ĉ(θi, ci) ∈ ϕ(ci) for all

θi ∈ [θ, θ] and ci ∈ C. Clearly, this condition is satisfied by construction.

Note that the proposition generates two interesting cases as corollaries:

Corollary 4 If characteristics are perfectly verifiable, each group contains exactly one

characteristic and the optimal mechanism is the Myerson auction with heterogeneous

priors.
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If characteristics are perfectly verifiable, it holds that ϕ(ci) = {ci} for all ci ∈ C. No

bidder can generate evidence for any other characteristic and participation in the auction

is individually rational. Therefore, the bidders reveal their true characteristics and the

optimal mechanism is equivalent to Myerson’s optimal auction. At the other extreme are

completely unverifiable characteristics:

Corollary 5 If characteristics are completely unverifiable, all characteristics are grouped

into a single group and the optimal mechanism is a Myerson auction with symmetric

priors.

If characteristics are completely unverifiable, it holds that ϕ(ci) = C for all ci ∈ C. Since

characteristics themselves are not part of the bidder’s utility functions, it is impossible to

try and discriminate between them in the mechanism. These corollaries link the assump-

tion of symmetric / heterogeneous priors to partially verifiable characteristics and allow a

practical interpretation: If there are observable differences between bidders or unobserv-

able, but partially verifiable characteristics, it is possible to discriminate between bidders

in an auction to increase revenue. If, on the other hand, there are no observable differ-

ences between bidders and any unobservable characteristics are completely unverifiable,

it is not feasible to discriminate between bidders in an auction to increase revenue.

3.3 Two-Stage Implementation & A Right to Remain

Anonymous

3.3.1 A Two-Stage Implementation

This section discusses the implementation of the optimal mechanism as a two-stage mech-

anism. It highlights that it is optimal to extend an existing auction format by including

pre-auction communication. In a first stage, the bidders and the seller communicate about

the bidders’ characteristics. In a second stage, the seller sells the goods in an auction,

with rules that explicitly depend on the communication of the first stage. Both stages will

be designed to implement the revenue maximizing social choice function implied by the

optimal mechanism of the preceding section. In practice, such pre-auction communication

could be implemented, for example, by asking the bidders to fill in a questionnaire that

inquires about their characteristics before the auction. In procurement, such communi-

cation is common place: Procurement projects frequently issue a Request for Proposal

(RfP) or a Request for Quote (RfQ). These requests describe the procurement project and

solicit responses by prospective suppliers. Within those replies, suppliers describe their

proposed solutions to the procurement problem in some detail, effectively communicating

about their characteristics in the sense of the model.
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Formally, the game consists of a communication stage in which the bidders commu-

nicate about their characteristics by disclosing some characteristic ĉi ∈ C. In the second

stage - the auction stage - the seller designs the auction rules to explicitly depend on

the communication stage. Conditional on some equilibrium beliefs of the communication

stage, it is optimal for the seller to use a Myerson auction that makes use of these beliefs

are priors.10 However, bidders anticipate this and take it into consideration when deciding

on their optimal communication strategy. Note that truthful disclosure of characteristics

does not necessarily constitute equilibrium behavior. Therefore, I introduce beliefs that

describe the distribution of the valuations θi conditional on some reported characteristic

ĉi. For any disclosure ĉi, denote the associated belief F̂ (θi|ĉi) with F̂ci .

In a Perfect Bayesian equilibrium, these beliefs have to be derived given the bidders’

strategies using Bayes rule whenever possible. As usual, off-equilibrium path beliefs in

Perfect Bayesian equilibria may be arbitrary. However, I will restrict off-path beliefs by

a concept called belief monotonicity. The beliefs satisfy belief monotonicity, if the beliefs

attached to particular characteristics can be ordered using the hazard rate order in the

same order as the priors. I show that all beliefs on the equilibrium path naturally satisfy

belief monotonicity, and extend this property to the off-equilibrium path beliefs by as-

sumption. This restriction of the off-equilibrium path beliefs corresponds to the seller’s

ability to choose her preferred equilibrium in the mechanism design framework.

Next, I investigate the incentives that the auction stage creates for the communication

stage. To derive these incentives, I will present several helpful results.

Lemma 2 Suppose the auction stage uses Myerson’s mechanism. Let F and G be two

CDFs such that F ≿hr G. Then any bidder weakly prefers to be assigned distribution G

over F .

Proof. See appendix.

Lemma 2 highlights that the hazard rate order is useful for determining the bidder’s

optimal behavior. It implies weakly dominant strategies for the bidders in the commu-

nication stage: disclose the characteristic with the largest hazard rate possible, i.e., the

characteristic with the smallest possible label attached to it. In equilibrium, it may hap-

pen that bidders of different true characteristics ci, c
′
i pool on the same characteristic

ĉi. Then the distribution of the valuation θi conditional on the report ĉi is a mixing

distribution. To deal with that, I present a useful lemma for mixing distributions:

10In a Myerson auction with K units of a homogeneous good, a bidder receives the good iff his virtual
valuation is positive and among the K highest virtual valuations of the N bidders.
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Lemma 3 Let α ∈ [0, 1] and F and G be such that F ≿hr G. Then for H = αF+(1−α)G
we have that F ≿hr H ≿hr G

Proof. See appendix.

The hazard rate order is preserved under mixing. Note that the result extends to a

mixture of more than two distributions. If there are more than two distributions, the haz-

ard rate order will rate the mixing distribution somewhere between the most and least

favorable distribution included in the mixture. The exact order depends on the exact

probability weights in the mixture.

The beliefs associated with reporting a certain characteristic are of central importance

for understanding the bidders’ behavior. Therefore, I investigate the belief structure on

and off the equilibrium path more closely. To achieve this, I introduce the notion of belief

monotonicity formally:

Definition 4 (Belief Monotonicity) Let F̂ci and F̂c′i be two beliefs that are associated

with the disclosure of any characteristics ci and c
′
i such that ci < c′i. The beliefs satisfy

belief monotonicity if F̂c′i ≿hr F̂ci

Beliefs that satisfy belief monotonicity preserve the initial order of the characteristics and

their associated distributions under the hazard ratio order. Note that belief monotonicity

has to be satisfied for characteristics disclosed on the equilibrium path in any equilibrium.

Lemma 4 Any beliefs that are on the equilibrium path satisfy belief monotonicity.

Proof. See appendix.

Intuitively, belief monotonicity on the equilibrium path is driven by the weakly dom-

inant strategies of the bidders to disclose the lowest characteristic possible. Bidders with

lower characteristics can report lower characteristics by the monotonicity assumption

on the bounds of the partially verifiable messages. Given that belief monotonicity must

hold on the equilibrium path, I extend the concept to the off-equilibrium path beliefs by

assumption.

Assumption 5 Belief monotonicity holds off the equilibrium path.

This assumption, together with lemma 4, establishes that the initial order of the char-

acteristics under the hazard rate order, i.e. F|C| ≿hr F|C|−1 ≿hr ... ≿hr F1 must carry

over to the beliefs in equilibrium, that is F̂|C| ≿hr F̂|C|−1 ≿hr ... ≿hr F̂1. This order on

the equilibrium beliefs is useful to determine the bidder’s behavior when disclosing their

characteristics. As lemma 2 established, such beliefs imply a (weakly) dominant disclosure
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strategy for each bidder: each bidder should disclose the lowest characteristic possible.

Given these preliminary results, it is straightforward to establish the equilibrium of

the two stage game in the following proposition:

Proposition 4 The communication stage of the optimal mechanism induces equilibrium

beliefs about characteristics as follows:

F̂c =
∑

c′∈D(c)

δ(c′)Fc′

where D(c) := {c′ ∈ C|c = ϕ(c′)}, F̂c = F|C| if D(c) = ∅ and δ(c) denotes the mass

allocated to c ∈ C under the initial belief ∆. In equilibrium, any bidder discloses the

minimum possible characteristic that he can generate evidence for, i.e. ĉ(c) = ϕ(c)

The Myerson auction uses virtual valuations J(θi, ĉi) that are determined by the dis-

closed valuations θi and characteristic ĉi as follows:

J(θi, ĉi) = θi −
1− F̂ĉi(θi)

f̂ĉi(θi)

Proof. See appendix.

Note that the disclosure behavior in this two-stage mechanism is the same as the ev-

idence rule of the revenue maximizing direct mechanism. Further, the virtual valuations

that are used for allocating the good are defined analogously. Therefore, the two-stage

mechanism implements the revenue maximizing social choice function.

As the seller uses the communication stage to increase her revenue, there may be

a practical concern: Bidders could refuse to communicate with the seller or attempt to

engage in babbling. The next section examines this case more closely.

3.3.2 A Right to Remain Anonymous

This section extends the model by giving each bidder a right to remain anonymous in

the communication stage. That is, each bidder is free to remain anonymous or to refuse

to communicate. In terms of the model, this equals an addition of a characteristic a to

the set of all characteristics C such that a ∈ ϕ(ci) for every bidder of every characteristic

ci ∈ C. The characteristic a is available to all bidders regardless of their true charac-

teristic, and when a bidder discloses this characteristic a, it is interpreted as remaining

anonymous.
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At first glance, it seems that such a right to remain anonymous should benefit the

bidders. In particular, those with characteristics ci that are undesirable in terms of the

hazard rate order. However, I will show that introducing the right to remain anony-

mous is inconsequential and provides no benefit to the bidders. While it seems appealing

for bidders with particularly undesirable characteristics to choose to remain anonymous,

it is not optimal for bidders with more desirable characteristics to pool with them in

anonymity. Bidders with more desirable characteristics make the strategic choice to take

part in communication to separate themselves from the others that find anonymity more

desirable.

This leads to an unraveling effect. Whenever bidders of some characteristic find it

optimal to leave anonymity, the beliefs over those that remain anonymous have to be

updated. Given the updated beliefs, there are now other bidders among the remaining

anonymous bidders that find it desirable to leave anonymity. This logic continues on-

ward, such that in the end, only bidders of the least desirable characteristics will remain.

If they cannot pool with other bidders on disclosing a specific characteristic, they will find

themselves indifferent in between the disclosure of some characteristic, which is disclosed

exclusively by bidders of those characteristics and remaining anonymous.

The presence of such an unraveling effect depends explicitly on the beliefs on and off

the equilibrium path. A bidder finds it desirable to separate from anonymity if a charac-

teristic with a more beneficial belief is available. However, consider a situation in which

all bidders pool on anonymity. Then, the beliefs attached to any other characteristics are

off-equilibrium path beliefs. So far, I restricted those beliefs to follow belief monotonicity.

But for the discussion of anonymity, I require some further restrictions for off-equilibrium

path beliefs. To see why, note that off-equilibrium path beliefs that attach the worst be-

lief to all characteristics, i.e., F̂c = F|C| for all c ∈ C also satisfy belief monotonicity.

However, given these off-equilibrium path beliefs, pooling in anonymity is an equilibrium

for all bidders.

To address this issue, I start with considering the worst on path equilibrium beliefs

that can be attached to a characteristic:

Lemma 5 The worst on path equilibrium belief F̂ci that can be sustained for the disclosure

of any characteristics ci such that ci = ϕ(c′i) for some c′i ∈ C is

F̂ci =
∑

{c′i|ci=ϕ(c′i)}

δ(c′i)Fc′i
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Proof. See appendix.

Now I extend this belief structure to the off-path beliefs by assumption.

Assumption 6 The off path beliefs F̂ci for any characteristics ci such that ci = ϕ(c′i) for

some c′i ∈ C are not worse than

F̂ci =
∑

{c′i|ci=ϕ(c′i)}

δ(c′i)Fc′i

In the sense of the hazard ratio order.

As the last step before establishing the proposition, I must consider the ex-ante belief

attached to anonymity. Recall the initial beliefs F|C| ≿hr F|C|−1 ≿hr ... ≿hr F1 and the

common initial prior ∆ that was associated with the set of possible characteristics C.

This common initial prior represents the initial belief about a bidder that is anonymous,

such that I assign Fa =
∑

ci∈C δ(ci)Fci .

Given these preliminaries, I present a proposition that formalizes the intuition of

unraveling and establishes that a right to anonymity is not beneficial for the bidders.

Proposition 5 Suppose that each bidder has the right to remain anonymous. No bidder

benefits from the right to remain anonymous.

Proof. See appendix.

The presence of a right to remain anonymous is inconsequential. Even though anonymity

may seem appealing at first glance, in equilibrium it is not. If true anonymity were to

occur in the equilibrium, it would imply pooling of the bidders on the choice of remaining

anonymous. However, such a pooling behavior is not optimal, as it requires bidders with

more favorable characteristics to pool with those of less favorable characteristics. But

then bidders with more favorable characteristics have an incentive to separate themselves

from the rest, which causes unraveling.

3.4 Conclusion

In this paper, I considered a seller who wishes to sell multiple units of a homogeneous

good to a group of bidders. Bidders have privately known, unverifiable valuations and

privately known, partially verifiable characteristics. I use Strausz (2016)’s methodological

contribution to recover the revelation principle for this framework. The structure of the

partially verifiable characteristics that I consider is richer than the nested range condition

of Green and Laffont (1986). I have shown that the revenue-maximizing mechanism is a
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Myerson auction that groups bidders according to their characteristics and the particular

verifiability structure. It can be implemented in two stages: First, a communication stage

about the bidders’ characteristics, according to which beliefs about the distribution of

the bidder’s valuations are formed. Second, an auction stage in which these beliefs are

used to play Myerson’s optimal auction mechanism.

Further, the paper highlighted that introducing a right to remain anonymous for the

bidders is inconsequential. If the bidders are allowed to refuse participation in the com-

munication stage, the optimal mechanism is unchanged, and in particular, no bidder

benefits from the right to remain anonymous. This is due to an unraveling effect: bidders

with beneficial characteristics find it optimal to take part in the communication to avoid

pooling with bidders that have less desirable characteristics.

3.5 Appendix for Revenue Maximization with Par-

tially Verifiable Information

3.5.1 Explanation of the Initial and Extended Environment

The initial environment describes the environment as explained in Green and Laffont

(1986). The extended environment describes the environment as explained in Strausz

(2016).

Outcomes: In the initial environment, the set of outcomes is defined by the combination

of physical outcomes and transfers: X × T . In the extended environment, the set of

outcomes is defined by X × T × CN . In addition to defining the physical allocation of

the good and the transfers, the outcome in the extended environment specifies a partially

verifiable message for each bidder: evidence.

Message Sets: In the initial environment, the set of partially verifiable messages that

can be sent in the mechanism depends on the true characteristic c of a bidder and is

equal to ϕ(c). In the extended environment, the set of partially verifiable messages that

can be sent is independent of the true characteristic of a bidder and is given by some set

V ⊆ C.11

Utility Functions: In the initial environment, the utility function of a bidder over the

11For technical reasons, it is important to extend the set of messages that can be sent by a bidder in
this way. By definition, in a Bayesian game, the set of possible actions of a bidder may not depend on
his type.
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set of outcomes in the initial environment is given by

ui = θixi + ti (3.5.1)

In the extended environment, the utility function of a bidder over the set of outcomes in

the extended environment is given by

ûi =

θixi + ti if ĉ ∈ ϕ(ci)

θixi + ti − P if ĉ ̸∈ ϕ(ci)
(3.5.2)

where ĉ is some evidence in the form of a partially verifiable message and P is a suffi-

ciently large punishment that ensures that a bidder will not try to submit evidence that

can be objectively rejected as false.12 Clearly, there is effectively no difference between a

bidder simply not being able to send a specific message, as in Green and Laffont (1986)

and not wanting to send a message that is strictly dominated as in Strausz (2016).

Social Choice Functions: In the initial environment, a social choice function is a map-

ping

f : ΘN × CN → X × T (3.5.3)

In the extended environment, a social choice function is a mapping

f̂ : ΘN × CN → X × T × CN (3.5.4)

The first two components of the social choice function are mappings from the private

information of the bidders into allocations and transfers. The third component is a de-

parture from the usual definition of a social choice function. It is a mapping from the

private information of the bidders into the set of verifiable messages. This third compo-

nent can be understood as an evidence rule. For each pair of valuations and characteristics

(θi, ci), it assign some partially verifiable evidence ci ∈ C, that the bidder has to submit.

3.5.2 Proof of Proposition 1

The proof follows the structure given in Strausz (2016), with some slight adaptations to

my framework.

Suppose some mechanism with allocation rule x, and transfer rule t implements f in the

initial environment. Consider some bidder i. Then for the tuple (θi, ci), given the equilib-

rium strategies of the bidders −i, some strategy leading to the outcome f(θ, c) is optimal

12In equilibrium, it is sufficient to punishment a bidder that submits objectively false evidence by
excluding him from the auction.
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and in particular some verifiable message ĉ(θi, ci) ∈ ϕ(ci) that bidder i sends when out-

come f(θ, c) is reached in equilibrium is optimal. Consider the direct mechanism ĝ = (f, ĉ)

with ĉ(θi, ci) being exactly the mapping that describes the part of the optimal strategy

with regards to the verifiable messages in the equilibrium of the initial environment given

mechanism g. Suppose all bidders −i truthfully reveal their valuations and characteristics

and follow the evidence rule ĉ. Fix some tuple (θi, ci). Bayesian incentive compatibility

holds for any c′i s.t. ĉ(θi, c
′
i) ̸∈ ϕ(ci). Moreover, the optimality of the strategy leading

to the implementation of f(θ, c) and sending the verifiable message ĉ(θi, ci) implies that

Bayesian incentive compatibility holds for any (θ′i, c
′
i) such that ĉ(θ′i, c

′
i) ∈ ϕ(c). Therefore,

we have incentive compatibility

3.5.3 Proof of Proposition 2

To make the proof more legible, I list conditions 1-4 of the proposition once again:

1. Integrability

Û(θi, ci) = Û(θ, ci) +

∫ θi

θ

X(s, ci)ds

2. Monotonicity, that is θi > θ′i implies X(θi, ci) ≥ X(θ′i, ci)

3. Optimality with respect to ci, that is X(θi, ci) ≥ X(θi, c
′
i) for all (θi, c

′
i) such that

ĉ(θi, c
′
i) ∈ ϕ(ci).

4. Feasible evidence for truthful disclosure: ĉ(θi, ci) ∈ ϕ(ci) for all θi ∈ [θ, θ] and ci ∈ C

First, I show that 1, 2, 3 and 4 imply incentive compatibility. Consider some bidder with

true valuation and characteristic (θi, ci) and some possible deviations θ′i with θ
′
i < θi and

c′i ∈ C. Note that condition 4 guarantees that incentive compatibility would trivially be

satisfied if ĉ(θ′i, c
′
i) ̸∈ ϕ(ci). Therefore, I can restrict to the case such that ĉ(θ′i, c

′
i) ∈ ϕ(ci).
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Now consider

X(θi, ci)θi + T (θi, ci)− (X(θ′i, c
′
i)θi + T (θ′i, c

′
i)) (3.5.5)

=X(θi, ci)θi + T (θi, ci)− (X(θ′i, c
′
i)θi + T (θ′i, c

′
i)) +X(θ′i, c

′
i)θ

′
i + T (θ′i, c

′
i)− (X(θ′i, c

′
i)θ

′
i + T (θ′i, c

′
i))

(3.5.6)

=U(θi, ci)− U(θ′i, c
′
i)− (θi − θ′i)X(θ′i, c

′
i) (3.5.7)

1
=

∫ θi

θ

X(s, ci)ds−
∫ θ′i

θ

X(s, c′i)ds− (θi − θ′i)X(θ′i, c
′
i) (3.5.8)

3,4

≥
∫ θi

θ′i

X(s, ci)ds− (θi − θ′i)X(θ′i, ci) (3.5.9)

2

≥0 (3.5.10)

Note that by condition 4 it holds that ĉ(θ′i, ci) ∈ ϕ(ci) as the set of verifiable messages

does not depend on θ′i but only on ci and it must be possible for a bidder with the

true value-characteristic pair (θ′i, ci) to report their valuation truthfully without punish-

ment. But then if both ĉ(θ′i, c
′
i) ∈ ϕ(ci) and ĉ(θ′i, ci) ∈ ϕ(ci), condition 3 implies that

X(θ′i, ci) ≥ X(θ′i, c
′
i).

A similar argument can be made for θ′i > θi. Consider some bidder with true valuation

θi and true characteristic ci and some possible deviations θ′i with θ
′
i > θi and c

′
i ∈ C. Note

that incentive compatibility would trivially be satisfied if ĉ(θ′i, c
′
i) ̸∈ ϕ(ci). Therefore, I

can restrict to the case such that ĉ(θ′i, c
′
i) ∈ ϕ(ci). Now consider

X(θi, ci)θi + T (θi, ci)− (X(θ′i, c
′
i)θi + T (θ′i, c

′
i)) (3.5.11)

=X(θi, ci)θi + T (θi, ci)− (X(θ′i, c
′
i)θi + T (θ′i, c

′
i)) +X(θ′i, c

′
i)θ

′
i + T (θ′i, c

′
i)− (X(θ′i, c

′
i)θ

′
i + T (θ′i, c

′
i))

(3.5.12)

=U(θi, ci)− U(θ′i, c
′
i)− (θi − θ′i)X(θ′i, c

′
i) (3.5.13)

1
=−

[∫ θ′i

θ

X(s, c′i)ds−
∫ θi

θ

X(s, ci)ds− (θ′i − θi)X(θ′i, c
′
i)

]
(3.5.14)

3,4

≥ −

[∫ θ′i

θi

X(s, c′i)ds− (θ′i − θi)X(θi, c
′
i)

]
(3.5.15)

2

≥0 (3.5.16)

Second, I show that IC implies 1, 2, 3, and 4. First, condition 4 obviously has to hold

to allow each bidder to report his valuation and type truthfully without being subjected

to punishment. If condition 4 failed, then either there would be some pair of misreports

(θ′i, c
′
i) that allows the bidder to avoid the punishment, or if one considers the fringe case
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where there would be no possible report that allows the bidder to avoid punishment, the

individual rationality constraints will end up being violated. Now, consider 2. Note that

incentive compatibility implies that

X(θi, ci)θi + T (θi, ci) ≥ X(θ′i, ci)θi + T (θ′i, ci) (3.5.17)

X(θ′i, ci)θ
′
i + T (θ′i, ci) ≥ X(θi, ci)θ

′
i + T (θi, ci) (3.5.18)

Rearrange

(θi − θ′i)(X(θi, ci)−X(θ′i, ci)) ≥ 0 (3.5.19)

Which yields monotonicity.

Next, the integrability condition, 1. follows from the fact that the utility itself is

independent of ci and the application of Milgrom and Segal (2002). To see condition

3, consider the following: Suppose there is a c′i such that ĉ(θi, c
′
i) ∈ ϕ(ci) and a set of

valuations Θ̃i with positive measure such that X(θi, ci) < X(θi, c
′
i). Consider a value θi

such that Θ̃i ⊆ [θ, θi]. I have already shown that IC implies 1, such that the expected

utility from truthful reporting equals∫ θi

θ

X(s, ci)ds <

∫
Θ̃

X(s, c′i)ds+

∫
[θ,θi]\Θ̃

X(s, ci)ds (3.5.20)

Which shows that truthful reporting of ci at values θi ∈ Θ̃ is not optimal and is a con-

tradiction.

3.5.4 Proof of Lemma 1

Proof by contradiction. Suppose the statement does not hold. Then there exists ci, c
′
i and

some θi such that x∗i (θi, ci, θ−i, c−i) = 1 and ĉ∗(θi, ci) ∈ ϕ(c′i) but x∗i (θi, c
′
i, θ−i, c−i) = 0.

Consider some ϵ > 0, small, and a ball with radius ϵ around θ−i. Note as all the virtual

valuations are continuous, for small enough ϵ the virtual valuations of all bidders −i can
be approximated as constant, subject to a bounded error that vanishes as ϵ→ 0. Since by

assumption the mechanism is revenue-maximizing, the allocation x∗i (θi, ci, θ−i, c−i) = 1

is optimal at that particular profile and, for small enough ϵ, in a neighborhood around

the valuations of the other bidders in the profile. However, then in the whole neigh-

borhood it holds that xi(θi, ci, θ−i, c−i) = 1 but xi(θi, c
′
i, θ−i, c−i) = 0. However, this

implies X(θi, ci) > X(θi, c
′
i) for that neighborhood. To not violate condition 3 of incen-

tive compatibility, there must be another neighborhood with radius η > 0, small, around
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the valuations of the other bidders for some profile (θi, ci, θ
′
−i, c

′
−i) in which bidder i is

awarded the good for the pair (θi, c
′
i) but not for (θi, ci).

Consider the profile (θi, ci, θ−i, c−i). Denote by J the maximum revenue that can be

achieved by incentive compatible assignment of the good to another bidder, or possibly

through keeping the good. Denote by J ′ the revenue associated with the best, alterna-

tive incentive compatible alternate assignment given the profile (θi, ci, θ
′
−i, c

′
−i). Then the

assignment rule xi(θi, ci, θ−i, c−i) = 1, xi(θi, c
′
i, θ−i, c−i) = 0, xi(θi, ci, θ

′
−i, c

′
−i) = 0 and

xi(θi, c
′
i, θ

′
−i, c

′
−i) = 1 yields more revenue than the assignment of the good to bidder i at

both (θi, ci) and (θi, c
′
i) given (θ′−i, c

′
−i) and assigning to the best alternative yielding J

at (θ−i, c−i) if

Pr(Bϵ(θ−i), c−i)[f(θi|ci)δ(ci)(J(θi, ci) + J ′) + f(θi|c′i)δ(c′i)(J + J(θi, c
′
i))] (3.5.21)

≥Pr(Bη(θ
′
−i), c

′
−i)[f(θi|ci)δ(ci)(J + J(θi, ci)) + f(θi|c′i)δ(c′i)(J + J(θi, c

′
i))] (3.5.22)

Note that for sufficiently small ϵ and η the approximation errors will be small enough

to be negligible. Further, through appropriate choice of ϵ and η it is possible to set

Pr(Bϵ(θ−i), c−i) = Pr(Bη(θ
′
−i), c

′
−i). There are some more subtle details to note. First,

for the bidders −i the changed allocation using the alternatives J and J ′ is incentive

compatible by assumption. Second, the changed allocation is incentive compatible for

bidder i as the interim allocation probability X(θi, ci) and X(θi, c
′
i) remains unchanged

through the appropriate choice of ϵ and η. Thus, the inequality implies

J ′ − J ≥ 0 (3.5.23)

Now consider an alternate assignment rule, which assigns the good to bidder i given the

profile (θi, ci, θ−i, c−i) and (θi, c
′
i, θ−i, c−i), but never assigns the good to bidder i under

alternative profile (θi, ci, θ
′
−i, c

′
−i) and (θi, c

′
i, θ

′
−i, c

′
−i). Then the following inequality must

hold

f(θi|ci)δ(ci)(J(θi, ci) + J ′) + f(θi|c′i)δ(c′i)(J + J(θi, c
′
i)) (3.5.24)

≥f(θi|ci)δ(ci)(J(θi, ci) + J ′) + f(θi|c′i)δ(c′i)(J(θi, c′i) + J ′) (3.5.25)

⇒J ′ − J ≤ 0 (3.5.26)

Note that the only way both of these inequalities can be true at the same time, is if they

hold with equality. However, this implies that the revenue of an incentive compatible

mechanism that sets xi(θi, ci, θ−i, c−i) = 1 while setting xi(θi, c
′
i, θ−i, c−i) = 0 is the same

as that of a mechanism that sets xi(θi, ci, θ−i, c−i) = 1 = xi(θi, c
′
i, θ−i, c−i) = 1. Therefore,

I can restrict mechanisms to follow the assertion in the lemma without loss of generality.
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3.5.5 Proof of Proposition 3

Fix some bidder i with valuation θi and characteristic ci. For now, suppose that char-

acteristics are observable. Note that for any valuation θi ∈ Θ the virtual valuations of

the bidder can be ranked according to the hazard rate order, i.e. it holds that J(θi, ci =

1) ≥ J(θi, ci = 2) ≥ ... ≥ J(θi, ci = |C|). Note that this virtual valuation is exactly

the revenue that the seller can extract through the allocation of the good to the bidder.

Now consider the choice of the seller: assign the good to bidder i or assign the good to

some other bidder j with some valuation and characteristic. It is clear that the larger the

characteristic ci, the smaller the virtual valuation of bidder i, and thus the seller may

favor allocation of the good to bidder j. There will be some characteristic c̄ such that if

ci ≤ c̄, the seller wants to allocate the good to bidder i, and if ci ≥ c̄ the seller wants

to allocate the good to bidder j. The larger the amount of revenue that the seller can

receive through the allocation of the good to bidder j, the smaller the value c̄.

Now consider what changes if characteristics are unobservable, but partially verifiable.

The seller has to find an evidence rule ĉ(·) such that she can distinguish the characteristics

ci ≤ c̄ from the characteristics c̄ ≤ ci if possible. Given assumption 4, namely that the

upper and lower bounds of the characteristics for which a bidder can produce evidence

are monotone in the true characteristics, it is clear that the optimal evidence rule asks

every bidder to produce evidence for the lowest possible characteristic that they feasibly

can. To see why, consider the two possible situations that may arise: let ci be the largest

characteristic such that ci ≤ c̄ and let c′i be the smallest characteristic such that c̄ ≤ c′i.

If the evidence rule ĉ(·) can distinguish ci from c′i, that is if ϕ(ci) < ϕ(c′i), then the seller

can implement the same allocation as she would if characteristics were observable. If the

evidence rule ĉ(·) is unable to distinguish ci from c′i, i.e. if ϕ(ci) = ϕ(c′i), the monotone

bounds assumption implies that ϕ(ci) ⊂ ϕ(c′i). However, then lemma 1 implies that if the

seller assign the good to the bidder with characteristic ci she must also assign it to the

bidder with characteristic c′i in a revenue maximizing mechanism.

Having established the optimal evidence rule ĉ(·), it is straightforward to calculate

the expected virtual valuation of bidders that have been grouped together into a group

Gci by the evidence rule through

J(θi, Gci) =
1∑

c′i∈Gci
δ(c′i)

∑
c′i∈Gci

δ(c′i)J(θi, c
′
i) (3.5.27)

Then a point wise maximization implies that is optimal to assign the goods to the buyers
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with the largest expected virtual valuations as defined above.

3.5.6 Proof of Lemma 2

Recall that the utility of every bidder at their lowest type in Myerson’s optimal auction

is set to 0. Then the integrability condition of the incentive compatibility constraints in

Myerson’s optimal auction reads as:

U(θi) =

∫ θi

θ

X(ĉi, s)ds (3.5.28)

Where X(ĉ, s) denotes the interim allocation probability of bidder i who reports charac-

teristic ĉ and valuation s. Recall that a bidder receives the good if and only if his virtual

valuation J(θi, F ), defined by

J(θi, F ) = θi −
1− F (θi)

f(θi)
(3.5.29)

is larger than 0 and any of the other bidders’ virtual valuations. Let F and G be such

that F ≿hr G. It is easily verified that J(θi, F ) ≤ J(θi, G) for every θi. This implies that

X(θi, F ) ≤ X(θi, G) for every θi. Therefore, if the bidder is given the choice between

choosing F or G, it is (weakly) dominant to choose G over F for every valuation θi.

3.5.7 Proof of Lemma 3

Note that a common alternative characterization of the hazard ratio order is F ≿hr G iff
1−G(θ)
1−F (θ)

is decreasing in θ. Let H = αF + (1 − α)G. First, show that F ≿hr H, i.e. that
1−H(θ)
1−F (θ)

is decreasing in θ.

∂

∂θ

(
1−H(θ)

1− F (θ)

)
=

−h(θ)(1− F (θ)) + f(θ)(1−H(θ))

(1− F (θ))2
(3.5.30)

=
−(αf(θ) + (1− α)g(θ))(1− F (θ)) + f(θ)(1− (αF (θ) + (1− α)G(θ))

(1− F (θ))2

(3.5.31)



122

This is negative if the numerator is negative, i.e., if

−(αf(θ) + (1− α)g(θ))(1− F (θ)) + f(θ)(1− (αF (θ) + (1− α)G(θ)) ≤ 0

(3.5.32)

⇐⇒ α(−f(θ))(1− F (θ)) + f(θ)(1− F (θ)) + (1− α)(−g(θ)(1− F (θ)) + f(θ)(1−G(θ)) ≤ 0

(3.5.33)

⇐⇒ (1− α)(−g(θ)(1− F (θ)) + f(θ)(1−G(θ)) ≤ 0

(3.5.34)

Note that the last inequality holds since F ≿hr G.

Second, show that H ≿hr G. Consider

∂

∂θ

(
1−G(θ)

1−H(θ)

)
=

−g(θ)(1−H(θ)) + h(θ)(1−G(θ))

(1−H(θ))2
(3.5.35)

Again, this is negative if the numerator is negative, that is if

−g(θ)(1−H(θ)) + h(θ)(1−G(θ)) ≤ 0

(3.5.36)

⇐⇒ −g(θ)(1− (αF (θ) + (1− α)G(θ))) + (αf(θ) + (1− α)g(θ))(1−G(θ)) ≤ 0

(3.5.37)

⇐⇒ α(−g(θ)(1− F (θ)) + f(θ)(1−G(θ))) ≤ 0

(3.5.38)

Where the inequality holds since F ≿hr G.

3.5.8 Proof of Lemma 4

By contradiction. Let ci and c
′
i be the two smallest characteristics that are disclosed on

the equilibrium path with ci < c′i such that there are two beliefs F̂ci and F̂c′i and a val-

uation θi, where
f̂ci (θi)

1−F̂ci (θi)
<

f̂c′
i
(θi)

1−F̂c′
i
(θi)

. Since the beliefs are on the equilibrium path, they

have to be formed according to Bayes’ rule. Fix this value of θi and denote the set of all

characteristics that disclose their characteristic as ci by D(ci) and the set of all charac-

teristics that disclose their characteristic as c′i as D(c′i). As both of the beliefs are on the

equilibrium path, neither D(ci) nor D(c′i) are empty. Note that by the same argument as

used in the proof of lemma 2, any bidder with valuation θi prefers to disclose character-

istic c′i over characteristic ci if possible. However, as the beliefs are equilibrium beliefs,

it must be impossible for any bidder to do so, that is for all characteristics a ∈ D(ci), it
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holds that c′i ̸∈M(a).

Now consider any bidder of characteristic c′′ with c′′i > c′i > ci. Suppose that c′′i ∈
D(ci). By assumption 3 we know that c′i ∈M(c′′i ). However, then bidders of characteristic

c′′i should disclose characteristic c′i by lemma 2. Therefore, for any bidder of characteristic

c′′i > c′i > ci we know that c′′i ̸∈ D(ci). Now consider any bidder of characteristic c′′i

with c′′i < ci < c′i. Since ci and c
′
i are the two smallest characteristics that violate belief

monotonicity, we know that F̂ci ≿hr F̂c′′i . Since truthful disclosure of the characteristic

is possible by assumption, i.e., c′′i ∈ M(c′′i ), any bidder of such a characteristic is bet-

ter off disclosing their characteristic truthfully rather than disclosing characteristic ci.

Therefore, for any bidder of characteristic c′′i with c′′i < ci < c′i it holds that c
′′
i ̸∈ D(ci).

Thus, the only bidder that will possibly disclose characteristic ci is the bidder that actu-

ally has characteristic ci and since it is disclosed on the equilibrium path we have that

D(ci) = {ci} and therefore F̂ci = Fci . Note that however, for
f̂ci (θi)

1−F̂ci (θi)
<

f̂c′
i
(θi)

1−F̂c′
i
(θi)

to hold

true on the equilibrium path, there must exist some characteristics c′′i < ci such that

c′′i ∈ D(c′i). However, if c
′
i ∈M(c′′i ) by assumption 3 and 4 it holds that c′i ∈ ϕ(ci), which

is a contradiction to c′i ̸∈ ϕ(ci).

3.5.9 Proof of Lemma 5

Denote by D(ci) the set of all characteristics that disclose ci in equilibrium. By belief

monotonicity and lemma 2, it holds that for any characteristic c′i ∈ C we have that

ci > ϕ(c′i) ⇒ c′i ̸∈ D(ci). Further, for any characteristic c′ such that ci < ϕ(c′i) it holds

that c′i ̸∈ D(ci) as it would be impossible to disclose this characteristic. Therefore, the

only characteristics c′i that can disclose ci in equilibrium are such that ci = ϕ(c′i). Note

that they will also do so, that is ci = ϕ(c′i) ⇒ c′i ∈ D(ci). This holds as belief monotonic-

ity and lemma 2 again imply that no bidder that can disclose ci would like to disclose

any characteristic larger than ci. Therefore, it holds that D(c) = {c′i|ci = ϕ(c′i)} and the

equilibrium belief must be equal to the one given in the lemma and, in particular, cannot

be worse than that.

3.5.10 Proof of Proposition 4

Note that lemma 4 established that belief monotonicity holds in the equilibrium of the

optimal mechanism. Further, assumption 5 establishes belief monotonicity for the off-

equilibrium path beliefs. Further, lemma 2 has established that given a choice between

two beliefs F and G with G ≿hr F , it is (weakly) optimal for a bidder to choose belief F .
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Given belief monotonicity on and off the equilibrium path, this is equivalent to choosing

the lower characteristic. Hence, disclosing larger characteristics cannot be a profitable de-

viation. Finally, note that it is easy to verify that all the beliefs chosen on the equilibrium

path, i.e., those where D(c) ̸= ∅ satisfy belief monotonicity through the application of

lemma3. This follows, as bidders always disclose the lowest possible characteristic, such

that for characteristics ci < c′i the set of bidders that disclose ci, i.e., D(ci) features lower

characteristics than the set D(c′i).

3.5.11 Proof of Proposition 5

Suppose that a right to remain anonymous is introduced to the two-stage mechanism,

that is, suppose there is a characteristic a such that a ∈ ϕ(ci) for all ci ∈ C. The goal is to

show that the equilibrium belief associated with anonymity, i.e., F̂a, in the optimal mech-

anism with the right to remain anonymous cannot be better than the worst equilibrium

belief on the equilibrium path in the mechanism without the right to remain anonymous.

I achieve this in two steps.

First, I show that the equilibrium belief of any characteristic that is disclosed on the

equilibrium path must not be worse than F̂a. Let ci ̸= a be any characteristic that is dis-

closed on the equilibrium path of the optimal mechanism, including the right to remain

anonymous, and let F̂ci be the associated belief. Note that the belief associated with a in

any optimal mechanism must fit somewhere in the hazard rate order. If a is disclosed on

the equilibrium path, this holds by lemma 4, and if it is not disclosed on the equilibrium

path, it holds by assumption. Now suppose that F̂ci ≿hr F̂a. By lemma 2, we know that

disclosing a is preferred by any bidder over ci. However, then ci will not be disclosed on

the equilibrium path, a contradiction. This implies that the belief attached to anonymity

has to be (weakly) worse than that of any characteristic ci ̸= a if such a characteristic is

disclosed on the equilibrium path

Second, I show that all characteristics ci such that there exists a characteristic c′i

with ci = ϕ(c′i) are disclosed on the equilibrium path. Note that doing this establishes

the claim. Those characteristics are the only ones disclosed on the equilibrium path in

the optimal mechanism without the right to remain anonymous. They cannot have worse

equilibrium beliefs than anonymity, as shown above. Start, by considering the set of those

characteristics {ci ∈ C|∃c′i ∈ C s.t. ci = ϕ(c′i)}. Note that the structure of the message

sets by assumptions 3 and 4 implies that this set is equal to {1, 2, ..., c̄} for some c̄ ∈ C. I

iterate through this set starting from the lowest characteristic and show that there is no

equilibrium such that the characteristic is not disclosed on the equilibrium path. Begin
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with c = 1. Assume c = 1 is not disclosed on the equilibrium path. Now I consider two

cases: First, suppose that no characteristic other than anonymity is disclosed on the equi-

librium path. Then the equilibrium belief of anonymity is F̂a =
∑

c∈C δ(c)Fc. Note that

by assumption, the off-path belief F̂1 for c = 1 is not worse than
∑

{c′|1=ϕ(c′)} δ(c
′)F (c′).

However, this implies that F̂a ≿ F̂1, as the characteristics in {c′|1 = ϕ(c′)} are a subset

of more beneficial characteristics than those in C itself.13 Therefore, there is a profitable

deviation and no equilibrium.

Second, suppose that some other characteristic ci ̸= 1 is disclosed on the equilibrium

path. By belief monotonicity, the equilibrium belief attached to this characteristic has

a worse position in the hazard rate order than the off-path belief attached to ci = 1.

As argued above, the equilibrium belief attached to anonymity must not be better than

that of any characteristic disclosed on the equilibrium path. Therefore, any bidder of a

characteristic ci such that 1 ∈ ϕ(ci) will deviate to the disclosure of ci = 1. Together,

both points cover all the cases, such that there is no equilibrium in which ci = 1 is not

disclosed on the equilibrium path.

Having established this, the next characteristic to iterate through is ci = 2. However,

given that ci = 1 must be disclosed on the equilibrium path, it is possible to remove those

characteristics ci ∈ C with 1 ∈ ϕ(ci) from the consideration and follow the same argu-

ments made for ci = 1. It is possible to follow this line of argumentation all the way up to c̄.

Therefore, in any equilibrium including the right to remain anonymous all characteristics

{ci ∈ C|∃c′i ∈ C s.t. ci = ϕ(c′i)} are disclosed on the equilibrium path. Note that these are

the only characteristics disclosed on the mechanism’s equilibrium path without a right to

remain anonymous and that the equilibrium beliefs have remained unchanged. However,

the equilibrium belief of remaining anonymous is not better than any of the beliefs on

the equilibrium path. Thus, no bidder has benefited from the right to remain anonymous.

3.5.12 Proof that Non-Decreasing Virtual Valuations are Pre-

served Under Mixing

Let F and G be such that the virtual valuations associated with them are non-decreasing.

Let α ∈ [0, 1] and H = αF + (1− α)G. Then show that

JH(θ) = θ − 1−H(θ)

h(θ)
(3.5.39)

13Technically the sets could be equal if characteristics are completely unverifiable, however, corollary
1 has shown that in this case no information is transmitted in equilibrium. In this sense, all bidders are
already anonymous. A right to remain anonymous would not yield any benefit in any case
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Is non-decreasing in θ. Note that McAfee and McMillan (1987) established that the virtual

valuation is non-decreasing if and only if 1/(1−H(θ)) is convex. Therefore, consider

∂2

∂θ2

(
1

1−H(θ)

)
= 2h(θ)2(1−H(θ))−3 + h′(θ)(1−H(θ))−2 (3.5.40)

This is positive if

2h(θ)2 + h′(θ)(1−H(θ)) ≥ 0

(3.5.41)

⇐⇒ α2(2f(θ)2 + f ′(θ)(1− F (θ))) + (1− α)2(2g(θ) + g′(θ)(1−G(θ))) + 4α(1− α)g(θ)f(θ) ≥ 0

(3.5.42)

This inequality holds since F , andG have non-decreasing virtual valuations by assumption

and g, f ≥ 0.
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Arruñada, Benito and Luis Garicano (2018) “Blockchain: The birth of decentralized gov-

ernance,” Pompeu Fabra University, Economics and Business Working Paper Series,

1608.

Atkinson, Anthony Barnes and Joseph E Stiglitz (1976) “The design of tax structure:

direct versus indirect taxation,” Journal of Public Economics, 6 (1-2), 55–75.

Azar, José and Xavier Vives (2021) “General Equilibrium Oligopoly and Ownership Struc-

ture,” Econometrica, 89 (3), 999–1048.

Bakos, Yannis and Hanna Halaburda (2018) “The role of cryptographic tokens and icos

in fostering platform adoption,” Available at SSRN 3207777.

Ball, Ian and Deniz Kattwinkel (2019) “Probabilistic verification in mechanism design,”

in Proceedings of the 2019 ACM Conference on Economics and Computation, 389–390.

127



128

Belleflamme, Paul and Martin Peitz (2021) The Economics of Platforms : Cambridge

University Press.

Ben-Porath, Elchanan, Eddie Dekel, and Barton L Lipman (2014) “Optimal allocation

with costly verification,” American Economic Review, 104 (12), 3779–3813.

Ben-Porath, Elchanan and Barton L Lipman (2012) “Implementation with partial prov-

ability,” Journal of Economic Theory, 147 (5), 1689–1724.

Besley, Timothy and Stephen Coate (1991) “Public provision of private goods and the

redistribution of income,” The American Economic Review, 81 (4), 979–984.

Biais, Bruno, Christophe Bisiere, Matthieu Bouvard, and Catherine Casamatta (2019)

“The blockchain folk theorem,” The Review of Financial Studies, 32 (5), 1662–1715.

Börgers, Tilman and Peter Norman (2009) “A note on budget balance under interim

participation constraints: the case of independent types,” Economic Theory, 39 (3),

477–489, 10.1007/s00199-008-0347-7.

Brzustowski, Thomas, A Georgiadis, and Balázs Szentes (2021) “Smart Contracts and

the Coase Conjecture,”Technical report, Working Paper.

Cabral, Luis (2011) “Dynamic price competition with network effects,” The Review of

Economic Studies, 78 (1), 83–111.

Catalini, Christian and Joshua S Gans (2018) “Initial coin offerings and the value of

crypto tokens,”Technical report, National Bureau of Economic Research.

Catalini, Christian, Ravi Jagadeesan, and Scott Duke Kominers (2020) “Markets for

crypto tokens, and security under proof of stake,” Available at SSRN 3740654.

Chen, Pei-Yu and Lorin M Hitt (2002) “Measuring switching costs and the determinants

of customer retention in Internet-enabled businesses: A study of the online brokerage

industry,” Information Systems Research, 13 (3), 255–274.

Chen, Yan, Igor Pereira, and Pankaj C Patel (2021) “Decentralized governance of digital

platforms,” Journal of Management, 47 (5), 1305–1337.

Choi, JP and DS Jeon (2022) “Platform design biases in ad-funded two-sided markets,”

The RAND Journal of Economics.

Condorelli, Daniele (2013) “Market and non-market mechanisms for the optimal allocation

of scarce resources,” Games and Economic Behavior, 82, 582–591, 10.1016/j.geb.2013

.08.008.

http://dx.doi.org/10.1007/s00199-008-0347-7
http://dx.doi.org/10.1016/j.geb.2013.08.008
http://dx.doi.org/10.1016/j.geb.2013.08.008


129

Cong, Lin William, Ye Li, and Neng Wang (2021) “Tokenomics: Dynamic adoption and

valuation,” The Review of Financial Studies, 34 (3), 1105–1155.

Cres, Herve, Mich Tvede et al. (2020) “Corporate self-regulation of imperfect competi-

tion,”Technical report, School of Economics, University of East Anglia, Norwich, UK.

Crippen, Dan L. (2000) “The Budget and Economic Outlook,” United States Congres-

sional Budget Office.

Diamond, Peter A and James A Mirrlees (1971) “Optimal taxation and public production

I: Production efficiency,” The American Economic Review, 61 (1), 8–27.

Donovan, Sarah and David Bradley (2019) “Real Wage Trends, 1979 to 2018,” Congres-

sional Research Service.

Dworczak, Piotr, Scott Duke Kominers, and Mohammad Akbarpour (2021) “Redistribu-

tion through markets,” Econometrica, 88 (7), 10.2139/ssrn.3143887.

Eisenhuth, Roland (2019) “Reference-dependent mechanism design,” Economic Theory

Bulletin, 7 (1), 77–103, 10.1007/s40505-018-0144-9.

Erlanson, Albin and Andreas Kleiner (2020) “Costly verification in collective decisions,”

Theoretical Economics, 15 (3), 923–954.

Esteban, Joan and Debraj Ray (2006) “Inequality, lobbying, and resource allocation,”

American Economic Review, 96 (1), 257–279, 10.1257/000282806776157533.

Farrell, Joseph and Paul Klemperer (2007) “Coordination and lock-in: Competition with

switching costs and network effects,” Handbook of Industrial Organization, 3, 1967–

2072.

Farrell, Joseph and Garth Saloner (1986) “Installed base and compatibility: Innovation,

product preannouncements, and predation,” The American Economic Review, 940–955.

Fritz, Dana (2021) “Der Kindergarten: Diese Unterschiede über die verschiedenen

Kindergarten-Konzeptionen sollten Sie kennen,” https://www.kita.de/wissen/kin

dergarten/#2_Die_Traegerschaft_eines_Kindergartens(11.01.2022).

Fudenberg, Drew and Eric Maskin (1990) “Nash and perfect equilibria of discounted

repeated games,” Journal of Economic Theory, 51 (1), 194–206.

Fudenberg, Drew and Jean Tirole (1991) Game theory : MIT press.

Gahvari, Firouz and Enlinson Mattos (2007) “Conditional cash transfers, public provision

of private goods, and income redistribution,” American Economic Review, 97 (1), 491–

502, 10.1257/aer.97.1.491.

http://dx.doi.org/10.2139/ssrn.3143887
http://dx.doi.org/10.1007/s40505-018-0144-9
http://dx.doi.org/10.1257/000282806776157533
http://dx.doi.org/https://www.kita.de/wissen/kindergarten/#2_Die_Traegerschaft_eines_Kindergartens (11.01.2022)
http://dx.doi.org/https://www.kita.de/wissen/kindergarten/#2_Die_Traegerschaft_eines_Kindergartens (11.01.2022)
http://dx.doi.org/10.1257/aer.97.1.491


130

Gershkov, Alex, Jacob Goeree, Alexey Kushnir, Benny Moldovanu, and Xianwen Shi

(2013) “On the Equivalence of Bayesian and Dominant Strategy Implementation,”

Econometrica, 81 (1), 197–220, 10.3982/ECTA10592.

Goldstein, Itay, Deeksha Gupta, and Ruslan Sverchkov (2019) “Utility Tokens as a Com-

mitment to Competition,” Available at SSRN 3484627.

Green, Jerry R and Jean-Jacques Laffont (1986) “Partially verifiable information and

mechanism design,” The Review of Economic Studies, 53 (3), 447–456.

Hart, Oliver and John Moore (1988) “Incomplete contracts and renegotiation,” Econo-

metrica, 755–785.

(1999) “Foundations of incomplete contracts,” The Review of Economic Studies,

66 (1), 115–138.

Hashimoto, Kazuhiko and Hiroki Saitoh (2010) “Domain expansion of the pivotal mech-

anism,” Social Choice and Welfare, 34 (3), 455–470, 10.1007/s00355-009-0411-7.

Howell, Sabrina T, Marina Niessner, and David Yermack (2020) “Initial coin offerings:

Financing growth with cryptocurrency token sales,” The Review of Financial Studies,

33 (9), 3925–3974.

Huberman, Gur, Jacob D Leshno, and Ciamac Moallemi (2021) “Monopoly without a

monopolist: An economic analysis of the bitcoin payment system,” The Review of Eco-

nomic Studies, 88 (6), 3011–3040.

Huesmann, Katharina (2017) “Public Assignment of Scarce Resources under Income Ef-

fects,” Working paper.

Jullien, Bruno and Alessandro Pavan (2019) “Information management and pricing in

platform markets,” The Review of Economic Studies, 86 (4), 1666–1703.

Kang, Mingshi and Charles Z Zheng (2019) “Necessity of Auctions for Redistributive

Optimality,”Technical report, Working Paper.

Kartik, Navin and Olivier Tercieux (2012) “Implementation with evidence,” Theoretical

Economics, 7 (2), 323–355.

Katz, Michael L and Carl Shapiro (1985) “Network externalities, competition, and com-

patibility,” The American Economic Review, 75 (3), 424–440.

Kazumura, Tomoya, Debasis Mishra, and Shigehiro Serizawa (2020) “Mechanism design

without quasilinearity,” Theoretical Economics, 15 (2), 511–544, 10.3982/TE2910.

http://dx.doi.org/10.3982/ECTA10592
http://dx.doi.org/10.1007/s00355-009-0411-7
http://dx.doi.org/10.3982/TE2910


131

Kotowski, Maciej H (2020) “First-price auctions with budget constraints,” Theoretical

Economics, 15 (1), 199–237, 10.3982/TE2982.

Lewis, A. (2021) The Basics of Bitcoins and Blockchains: An Introduction to Cryptocur-

rencies and the Technology That Powers Them (Cryptography, Derivatives Investments,

Futures Trading, Digital Assets, NFT): Mango Media.

LH-Mainz (2018) “Vergabeverfahren von Kita-Plätzen, Landeshauptstadt Mainz,” https:

//fragdenstaat.de/anfrage/vergabeverfahren-von-kita-platzen/(11.01.2022).

Li, Jiasun and William Mann (2018) “Initial coin offering and platform building,” SSRN

Electronic Journal, 1–56.

Li, Yunan (2020) “Mechanism design with costly verification and limited punishments,”

Journal of Economic Theory, 186, 105000.

Li, Zhuoxin and Ashish Agarwal (2017) “Platform integration and demand spillovers in

complementary markets: Evidence from Facebook’s integration of Instagram,” Man-

agement Science, 63 (10), 3438–3458.

Magill, Michael, Martine Quinzii, and Jean-Charles Rochet (2015) “A theory of the stake-

holder corporation,” Econometrica, 83 (5), 1685–1725.

Maskin, Eric and John Riley (1984) “Optimal auctions with risk averse buyers,” Econo-

metrica: Journal of the Econometric Society, 1473–1518.

McAfee, R Preston and John McMillan (1987) “Auctions and bidding,” Journal of Eco-

nomic Literature, 25 (2), 699–738.

Milgrom, Paul and Ilya Segal (2002) “Envelope theorems for arbitrary choice sets,” Econo-

metrica, 70 (2), 583–601.

Myerson, Roger B (1981) “Optimal auction design,” Mathematics of Operations Research,

6 (1), 58–73.

Pai, Mallesh M and Rakesh Vohra (2014) “Optimal auctions with financially constrained

buyers,” Journal of Economic Theory, 150, 383–425, 10.1016/j.jet.2013.09.015.

Peitz, Martin, Sven Rady, and Piers Trepper (2017) “Experimentation in two-sided mar-

kets,” Journal of the European Economic Association, 15 (1), 128–172.

Rochet, Jean-Charles and Jean Tirole (2003) “Platform competition in two-sided mar-

kets,” Journal of the European Economic Association, 1 (4), 990–1029.

Saitoh, Hiroki and Shigehiro Serizawa (2008) “Vickrey allocation rule with income effect,”

Economic Theory, 35 (2), 391–401, 10.1007/s00199-007-0235-6.

http://dx.doi.org/10.3982/TE2982
http://dx.doi.org/https://fragdenstaat.de/anfrage/vergabeverfahren-von-kita-platzen/ (11.01.2022)
http://dx.doi.org/https://fragdenstaat.de/anfrage/vergabeverfahren-von-kita-platzen/ (11.01.2022)
http://dx.doi.org/10.1016/j.jet.2013.09.015
http://dx.doi.org/10.1007/s00199-007-0235-6


132

Saleh, Fahad (2021) “Blockchain without waste: Proof-of-stake,” The Review of Financial

Studies, 34 (3), 1156–1190.

Shaked, Moshe and J George Shanthikumar (2007) Stochastic orders : Springer Science &

Business Media.

Shapiro, Carl and Hal R Varian (1998) Information rules: A strategic guide to the network

economy : Harvard Business Press.

Singh, Nirvikar and Donald Wittman (2001) “Implementation with partial verification,”

Review of Economic Design, 6 (1), 63–84.

Sockin, Michael and Wei Xiong (forthcoming) “Decentralization through tokenization,”

Journal of Finance.

Strausz, Roland (2016) “Mechanism design with partially verifiable information.”

Szabo, Nick (1997) “Formalizing and securing relationships on public networks,” First

Monday.

Teh, Tat-How (2022) “Platform governance,” American Economic Journal: Microeco-

nomics, 14 (3), 213–54.

TFEU (1957) “Treaty on the Functioning of the European Union.”

Weitzman, Martin L (1977) “Is the price system or rationing more effective in getting a

commodity to those who need it most?” The Bell Journal of Economics, 517–524.



Curriculum Vitae

Marco Reuter

2017 - 2023 University of Mannheim

Ph.D. in Economics

2014 - 2016 University of Bonn

Master of Science in Economics

2011 - 2014 University of Bonn

Bachelor of Science in Economics

133


	Preface
	Acknowledgements
	The Value of Decentralization Using the Blockchain
	Introduction
	Model
	Centralized Governance
	Decentralized Governance
	Optimal Governance
	Welfare

	Discussion
	Airdrops: Decentralizing at a Later Time
	Equilibrium Multiplicity

	Conclusion
	Appendix
	Explanation of Blockchain, Smart Contracts and the Creation of Commitment
	Myopic Revenue Maximization
	Sufficient conditions for  to be well-defined
	Proof of Proposition 1
	Proof of Lemma 2
	Proof of Proposition 2
	Proof of Lemma 3
	Proof of Proposition 3
	Proof of equilibrium of section 1.3.2 and proof of proposition 5
	Proof of Lemma 4
	Proof of proposition 4
	Extension: Pre-commitment to revenue sharing path in decentralized governance


	Mechanism Design for Unequal Societies
	Introduction
	Related Literature
	Framework
	Optimal mechanisms
	No-subsidy constraints
	Ex ante budget balance

	Implementation via auctions
	No subsidy constraints
	Ex ante budget balance

	Numerical illustrations
	Conclusion
	Appendix for Mechanism Design for Unequal Societies
	Proof of Proposition 1
	Proof of Lemma 1 
	Proof of Proposition 2
	Proof of Proposition 3 
	Proof of Remark 1
	Proof of Corollary 3
	Proof of Proposition 4 
	Proof of Proposition 5
	Proof of Proposition 6 
	Proof of Proposition 7 
	Calculations of Bidding Subsidies for the Specific Examples
	Derivation of the Uniform vK, Pareto vM Example


	Revenue Maximization with Partially Verifiable Information
	Introduction
	Model
	Description
	Mechanisms and the Revelation Principle for Partially Verifiable Types
	Incentive Compatibility and Expected Revenue
	Deriving the Optimal Mechanism

	Two-Stage Implementation & A Right to Remain Anonymous
	A Two-Stage Implementation
	A Right to Remain Anonymous

	Conclusion
	Appendix for Revenue Maximization with Partially Verifiable Information
	Explanation of the Initial and Extended Environment
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Lemma 1
	Proof of Proposition 3
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Proposition 4
	Proof of Proposition 5
	Proof that Non-Decreasing Virtual Valuations are Preserved Under Mixing



