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Abstract
The valuation of a real option is preferably done with the inclusion of uncertain-
ties in the model, since the value depends on future costs and revenues, which are
not perfectly known today. The usual value of the option is defined as the maximal
expected (discounted) profit one may achieve under optimal management of the oper-
ation. However, also this approach has its limitations, since quite often the models for
costs and revenues are subject to model error. Under a prudent valuation, the possible
model error should be incorporated into the calculation. In this paper, we consider
the valuation of a power plant under ambiguity of probability models for costs and
revenues. The valuation is done by stochastic dynamic programming and on top of
it, we use a dynamic ambiguity model for obtaining the prudent minimax valuation.
For the valuation of the power plant under model ambiguity we introduce a distance
based on the Wasserstein distance. Another highlight of this paper is the multiscale
approach, since decision stages are defined on a weekly basis, while the random costs
and revenues appear on a much finer scale. The idea of bridging stochastic processes
is used to link the weekly decision scale with the finer simulation scale. The applica-
bility of the introduced concepts is broad and not limited to the motivating valuation
problem.
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programming · Wasserstein distance · Nested distance

B Martin Glanzer
martin.glanzer@univie.ac.at

1 OSIRIS, EDF R&D, 7 Boulevard Gaspard Monge, 91120 Palaiseau, France

2 Department of Statistics and Operations Research, University of Vienna,
Oskar-Morgenstern-Platz 1, 1090 Wien, Austria

3 International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10287-019-00358-0&domain=pdf
http://orcid.org/0000-0002-9943-3572
http://orcid.org/0000-0003-3314-0512
http://orcid.org/0000-0001-8215-3550


358 W. van Ackooij et al.

1 Introduction

Since the deregulation of the energy market, the question of how to determine the
value of a power plant can be asked. The traditional approach of valuing it within
a given portfolio of other assets in a coordinated way against one’s customer load
is one possibility. A second approach is to adopt the ideas of real option pricing in
finance. In the first case one ends up with models resembling unit commitment (e.g.,
van Ackooij et al. 2018) but at a long time scale. Although the actual operation of
the power plant can be presented in great detail, it will be harder to incorporate other
features in the model. This will typically be the case for uncertainty, where one ends
up with multi-stage mixed-integer programs which are not easily solved. One can also
argue that it is unreasonable to model the system as fully coordinated. In contrast,
when modelling the power plant as a real option, thus operating it in the face of a
set of market signals, the setting becomes that of perfect competition. Uncertainty
is also naturally modelled, but it comes at the expense of modelling the plant as an
independent production unit and thus with less realism in that sense.

However, the price of the real option may well serve as a financial reference base
between two parties. For example between the power plant owner and a trading entity
actually operating on the market. Taking the option pricing perspective, it must be
emphasized that energy markets are by far not as “granular” as the equity markets. For
instance, on the electricitymarket one cannot buy a contract of delivery for a given hour
6months fromnow.The classical pricing-hedgingduality argument is thus not feasible.
Moreover, when operating a power plant, generation will be bound locally by a given
power output level. This can be either the result of ramping conditions or minimum
up/down times. It is therefore reasonable to try tomodel the power plant with sufficient
realism for the above discrepancies to beminimal. This is the stance that we have taken
in the current work. It will lead us to consider a multiscale stochastic program in the
sense of Glanzer and Pflug (2019), i.e., a multistage stochastic optimization problem
where each stage itself is subdivided into a given set of time instants.

To account for uncertainty, we start out with a set of typical stochastic models for
underlying prices, which are based on multi-factor models (e.g., Clelow and Strick-
land 2000) driven by Brownian motions. Clearly, such (commonly used) idealized
modelling assumptions are rather unrealistic. It is thus the aim and the core part of the
present paper to relax such strong assumptions by computing distributionally robust
solutions to the studied operational problem and to investigate how the resulting valua-
tion deviates when considering model ambiguity. Distributionally robust optimization
is a field which has recently gained a lot of popularity in the literature (see (Pflug
and Pichler 2014, pp. 232–233) for a review of different approaches). In particular,
ambiguity sets based on distance concepts between probability measures (such as the
Wasserstein distance) are well-supported by theory and frequently applied (e.g., Pflug
and Wozabal 2007; Esfahani and Kuhn 2018; Glanzer et al. 2019; Duan et al. 2018;
Gao and Kleywegt 2016). However, to the best of our knowledge, the effects of distri-
butional robustness in (especially multistage) real-world applications, have not been
investigated yet.

In order to solve the formulated problem numerically, the given uncertainty model
will be discretized on a scenario lattice. The multiscale structure could then simply
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DRO with multiple time scales 359

mean that uncertainty is lost within a given stage (cf., e.g., Moriggia et al. 2018).
More advanced approaches do consider some uncertainty [e.g., the so-called multi-
horizon approach originally suggested in Kaut et al. (2014) and subsequently studied
and applied in Seljom and Tomasgard (2017), Skar et al. (2016), Werner et al. (2013),
Zhonghua et al. (2015), Maggioni et al. (2019)], but the resulting paths do not nec-
essarily connect with subsequent elements in the scenario tree/lattice. Hence, the
multi-horizon approach is not appropriate for the present problem, as the key require-
ment of two time scales which may be assumed to run completely independent from
each other, is not given. Indeed, we deal with two different granularities associated
with one and the same stochastic process reflecting the evolution of the underlying
market prices. A framework for such situations, where sub-stage paths in the lattice
are carefully connected, has recently been proposed in Glanzer and Pflug (2019). We
test the multiscale stochastic programming approach suggested in Glanzer and Pflug
(2019) in the context of the present real-world application.

Although the resulting ideas will be illustrated through the power plant real option
framework, their potential usage is readily seen to be beyond this specific application.
In terms of contributions we can can state:

• For the application of real option pricing, we investigate more reasonable exer-
cise patterns. In order to keep computational burden low, this naturally leads to
multiscale stochastic programs. We also consider model ambiguity to mitigate
the fairly ideal models for market prices. From a high-level perspective, we thus
extend the literature on real-world applications of dealing with two fundamen-
tal problems in stochastic programming, namely the problem of time scales with
multiple granularities as well as the problem of model ambiguity.

• With respect to multistage model ambiguity, we propose a new concept based on
the Wasserstein distance. It is tailored with a computational intention, namely in
such a way that (on a discrete scenario tree/lattice) the applicability of a classical
backward dynamic programming recursion can be maintained. In particular, the
suggested framework leads to solutions that are robustw.r.t.modelmisspecification
in a ball around each conditional transition probability distribution. The size of
these balls may be controlled uniformly by a single input parameter. We also link
the concept to the nested distance in such away that it inherits a favourable stability
property of the latter.

• In the context of Wasserstein ambiguity sets, we propose a state-dependent metric
as a basis for the Wasserstein distance. Thereby we account for more realistic
worst-case scenarios. We discuss that the well-appreciated statistical motivation
for using Wasserstein balls is not invalidated by doing so.

The paper is organized as follows. Section 2 describes the valuation model and the
uncertaintymodel.As typical for real-world energy applications, a soundmathematical
framework reflecting all peculiarities of the problem requires carefulness in all details.
The underlying uncertainty factors are modelled by a continuous time stochastic pro-
cess. However, in the light of the nature of the decision problem, we will eventually
apply a stochastic dynamic programming algorithm which operates backwards in
(discrete) time. To prepare for the computational solution, we therefore discuss all
discretization steps required by the multiscale stochastic programming framework
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360 W. van Ackooij et al.

that we adopt. Section 3 is dedicated to model ambiguity. We introduce and discuss
a new concept which is tailor-made for incorporating model ambiguity into dynamic
stochastic optimization models on discrete structures. All numerical experiments and
aspects of the computational solution algorithm are given in Sect. 4. Section 5 con-
cludes. Some technical details and examples are deferred to the “Appendix”.

2 Themodel

Our valuation problem belongs to the class of discrete time sequential decision prob-
lems with finite horizon T , decisions ut , state variables zt , and a Markovian driving
process ξt :

max
{ut }T−1

t=0

E

[
T−1∑
t=0

βt ht (zt , ut , ξt )

]

ξt+1 ∀t = 0, . . . , T − 1

ut ∈ Ut (zt ) a.s. ∀t = 0, . . . , T − 1, ut = ut (zt , ξt ),

zt ∈ Zt a.s. ∀t = 0, . . . , T − 1

(1)

Here T is the number of decision stages and gt (zt , ut , ξt ) is the state transition function.
The driving stochastic process ξt is assumed to belong to L1(�t ,Ft ;Rm) and the
feasible decision variables at stage t are defined by the set Ut (zt ) ⊆ R

m . The set of
all reachable state variables is denoted by Zt ⊆ R

d1 . The stage-wise profit function
ht : Rd1 ×R

m ×R
d2 → R is continuous and satisfies the following growth condition:

|ht (z, u, x)| ≤ K · (1 + ‖z‖ + ‖u‖ + ‖x‖),

for all (z, u, x) ∈ R
d1+m+d2 and some constant K . We choose the discount factor

βt = β t for some constant β ∈ (0, 1] throughout the paper. Any decision ut to be
made at time t may only depend on the current state zt and the most recent observation
of exogenous information ξt−1. This is the non-anticipativity condition. The initial
conditions for the random process ξ and the state vector z are that ξ0 and z0 are
assumed to be constant.

In our application, the decisions ut represent the weekly electricity production
plan for a thermal power plant. The latter is characterized by many technical con-
straints, such asminimumup/down times or ramping constraints. Fine grain constraints
can be incorporated into the model by increasing the dimension of the state vec-
tor and accounting for the number of hours the plant has been offline/online. Such
state-representations of constraints on generation assets have received attention in the
literature (see, e.g., Martinéz et al. 2008; Frangioni and Gentile 2006; Frangioni et al.
2008 and the references therein). Finer granularity of the time dimension and/or the
state variable would result in a significant increase of time steps T (and reduction of
the time step size �t) as well as an increase in the dimension of zt . For this reason,
we introduce here the idea of a multiscale model: While the production decisions
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DRO with multiple time scales 361

ut are made on a weekly scale, the production costs and revenues are calculated on
a finer time scale. To make the dynamic optimization algorithm tractable, we make
the assumption that the decisions, i.e. the production profiles, must be chosen from a
pre-specified set with finite cardinality. The profiles are set up such that they reflect
realistic operating conditions and key choices, such as generating at minimal stable
generation (MSG) at off peak hours.

Just prior to presenting the specific instantiation of (1), let us emphasize once more
that the idea of subdividing a “stage” to mitigate (the curse of) dimensionality goes
largely beyond the presented application. Typical other energy problems with similar
mechanisms are cascaded reservoir management problems [e.g., see the extensive
discussion in van Ackooij et al. (2014) as well as Escudero et al. (1996, 1999), Zéphyr
et al. (2015), Cervellera et al. (2006), Aasgård et al. (2014), Séguin et al. (2017), Fleten
et al. (2011)].

2.1 Instantiation of the problem: the valuationmodel

In our instantiation of problem (1) the time horizon is spanned by T weeks. Each week
t = 1, ..., T is subdivided into S equally sized blocks of hours. With respect to our
earlier introduced notation, we now present the following specific versions:

• the price process ξt,s = (ξ et,s, ξ
f
t,s, ξ

c
t,s) ∈ R

3 represents the electricity price in
GBP per megawatt hour (£/MWh), the fuel price in USD per tonne ($/tonne(fuel))
and theCO2 allowances price inEURper tonne (e/tonne(carbon)), for each block s
withinweek t , for s = 0, . . . , S. The information up to stage t is the information up
to ξt,0. The values within the weeks are ξt,s for s = 1, . . . , S with the convention
that ξt,S = ξt+1,0 coincides with the initial prices of the next stage. With this
convention we ensure continuity of prices in between weeks. In this way, the
information up to stage t is to be understood as the information up to the value
ξt,0.

• the control ut = {ut,s}S−1
s=0 ∈ U ⊆ R

S+ represents the production profile vector
for week t , where ut,s is given in megawatt (MW) and denotes the production at
block s. Before the beginning of intermediate values of week t , we determine ut .
Then, ut is ξt,0− measurable.

• the state vector zt is two-dimensional, i.e., zt = (xt , yt ) with

– xt ∈ R+ representing the amount of CO2 allowances (measured in tonnes of
carbon), that are left for week t .

– yt ∈ Z+ representing the number of hours the power plant was offline before
the beginning of week t .

The objective function ht : R × Z+ × R
S+ × R+ → R is given by

ht
([xt , yt ], ut , ξt,0) = E

[
S−1∑
s=0

fs(xt , yt , ut , ξt,s)

∣∣∣∣ξt,0
]

. (2)
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Table 1 Description of the constants

Notation Unit Description

H1 (£/$)·(tonne(fuel)/MWh) H2 · H7

H2 £/$ Exchange rate

H3 £/e Exchange rate

H4 Tonne(carbon)/MWh H7 · J
H5 MWh/GJ

H6 Tonne(fuel)/GJ H5 · H7

H7 Tonne(fuel)/MWh Heat rate

J tonne(carbon)/tonne(fuel) Amount of CO2 emitted due to fuel burnt

The profit at each block s within week t is defined as follows:

fs(xt , yt , ut , ξt,s) =

⎧⎪⎨
⎪⎩
(
ξ et,0 − H1 ξ

f
t,0

)
ut,0 �s − f CO2

(
xt , ūt , ξ ct,0

)
− f start

(
0, yt , ut , ξ et,0, ξ

f
t,0

) − f tr(ut ) if s = 0(
ξ et,s − H1 ξ

f
t,s
)
ut,s �s − f start

(
s, yt , ut , ξ et,s, ξ

f
t,s
)
if s > 0,

where ūt := ∑S−1
s=0 ut,s . Costs incurred are based on the following component func-

tions:

• f CO2 : R × R+ × R+ → R+ gives the cost of buying more CO2 allowances at
the beginning of week t (before the values within week t are known);

• f start : Z2+ × R
S+ × R

2+ → R+ gives the start-up cost if the power plant has been
offline prior to (one of its arguments) block s;

• f tr : RS+ → R+ represents fuel transportation costs linked to a selected production
profile at the beginning of week t .

Table 1 summarizes constants used above or in the sequel.
The way in which each state variable is updated will be described now. First we will

focus on the variables regarding the CO2 allowances. Although in the past, a given set
of allowances was allocated for free, in principle, they are now obtained from a non
modelled auction process. Within our model, the variable It will represent the number
of additional CO2 allowances received from the regulator at the beginning of week t
(measured in tonnes of carbon). Note that this variable will typically be equal to zero
but sometimes it will take a relatively high value. The latter happens exactly at the
rare events when new allowances are obtained.

Now, H4 ūt �s is the amount of generated CO2 during stage t . Hence, together
with xt being the remaining stock level and It the “inflows”, the amount of allowances
one needs to buy at stage t is αt = [xt + It − H4 ūt �s]−.1 In the case where αt is
positive, we follow a procurement strategy based on a low/middle/high price range
partition resulting from some pre-market analysis. Prices in the interval [b, b], with
0 ≤ b < b, are considered middle range. This is formalized as follows:

1 We use here the definition [ f (x)]− := −min{ f (x), 0} for the negative part of a function.
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A(xt , ūt , ξ
c
t,0) = αt · (1 + Cα · min

{
max{b − ξ ct,0, 0}/(b − b), 1

}
), (3)

where Cα is a constant that determines the size of the extra amount to be bought.
Recall, our implicit assumption is that new allowances are always bought before

the prices within week t are known. The cost of buying more certificates for week t is
then given by

f CO2(xt , ūt , ξ
c
t,0) = A(xt , ūt , ξ

c
t,0) · H3 ξ ct,0 ,

The amount xt+1 of remaining allowances after the previous purchase, is updated as
follows:

g(1)(xt , ut , ξ
c
t,0) = A(xt , ūt , ξ

c
t,0) + xt + It − H4 ūt �s.

The second state variable accounts for start-ups and related costs. The latter depend
on the amount of time the power plant was offline. In our model this time frame will
be partitioned into C different intervals of hours denoted by (c j , c j+1], (cC ,∞), for
j = 1, . . . ,C − 1, c1 = 0, over which the start-up costs are assumed to be constant.
The associated costs are in terms of power, fuel burnt and extra costs. Depending on
yt and the chosen profile ut , one can readily figure out in which interval each start-up
of ut falls.

The induced start-up costs at block s within week t are given by:

f start(s, yt , ut , ξ
e
t,s, ξ

f
t,s) = Ws(yt , ut ) ξ et,s + Bs(yt , ut ) H2 H6 ξ

f
t,s + Es(yt , ut ),

(4)

where

• Ws(yt , ut ) is the amount of works power (MWh) for a start-up at s;
• Bs(yt , ut ) is the amount of solid fuel burnt (GJ) during a start-up at s;
• Es(yt , ut ) denotes engineering and imbalance costs (£) during a start-up at s.

The updated state yt+1 is given by:

g(2)(ut ) = (
S − max{s : ut,s 	= 0}) · �s,

where max{∅} = 0.
As a further cost factor, we account for the fuel transportation costs associated to

each profile:

f tr(ut ) = Ctr H7 ūt �s, (5)

where the unit transportation cost (in £ per tonne of fuel) is given by the constant
factor Ctr .
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2.2 Underlying price processes

To model the underlying uncertainties, i.e., the stochastic price-evolution of electric-
ity, fuel and CO2 allowances, we postulate a version of a classical two-factor model.
The latter are commonly used for the modeling of commodity markets (cf. Clelow and
Strickland 2000;Ewald et al. 2018;Ribeiro andHodges 2004; Farkas et al. 2017).More
specifically, in our model the electricity price behaviour is governed by a long term
and a short term factor, whereas fuel and CO2 allowances prices evolve according
to a one factor model. In summary, we get a three-dimensional geometric Brown-
ian motion model driven by four correlated one-dimensional Brownian components
Be,sh, Be,lo, B f , Bc. In particular, the dynamics of the underlying stochastic process
F are described by the SDE

⎛
⎜⎝
dFe

t,t/F
e
t,t

dF f
t,t/F

f
t,t

dFc
t,t/F

c
t,t

⎞
⎟⎠ =

⎛
⎝σ e,sh

t 0 0 σ e,lo
t

0 σ f
t 0 0

0 0 σ c
t 0

⎞
⎠
⎛
⎜⎜⎝
dBe,sh

t

d B f
t

d Bc
t

dBe,lo
t

⎞
⎟⎟⎠ , (6)

where the superscripts sh and lo refer to short-termand long-term, respectively.Volatil-
ity is allowed to be time-dependent but deterministic. The double-index notation Ft,t
expresses the fact that we model the spot price as a special case of the forward price.
In particular, the forward price F0,t (as observed in the market at time 0) will enter
the solution of (6) at time t . In this way, we account for the well-known seasonality
(peak-hours and off-peak-hours) inherent in electricity prices. Figure 1 visualizes this
typical effect. To avoid notational clutter, we henceforth write ξt with one index for
the spot price as a short hand for Ft,t . Note that we are dealing with a continuous time

0 5 10 15 20 25 30 35 40 45
40

50

60

70

80

90

100

110

Fig. 1 Typical structure of electricity forward prices. Each curve represents one week of EFA block power
prices (in £/MWh, observed every 4h), from Saturday, 3 am, until Friday, 11 pm. Five weeks of forward
price data from the beginning of February to the first week of March, 2017
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stochastic model here. The index notation should not be confused with the discrete-
time multiscale indexes used in the valuation model; the context will always make
clear what is meant.

Regarding the dependence structure between the underlying assets, we allow for a
time dependent correlation matrix

ρt =

⎛
⎜⎜⎜⎝
1 	

esh,f
t 	

esh ,c
t 	

esh ,elo

t

	
esh ,f
t 1 	

f,c
t 	

elo,f
t

	
esh ,c
t 	

f,c
t 1 	

elo,c
t

	
esh ,elo

t 	
elo,f
t 	

elo,c
t 1

⎞
⎟⎟⎟⎠ .

Using the (lower triangular) matrix Lt resulting from a Cholesky decomposition of
ρt , we may replace the Brownian factors [dBe,sh

t , dB f
t , dBc

t , dB
e,lo
t ]� by the matrix-

vector product Lt × [dW (1)
t , dW (2)

t , dW (3)
t , dW (4)

t ]�, such that the underlying prices
are driven by independentWiener processesW s

1,W2,W3,W l
1. Multiplying the volatil-

ity matrix in (6) with Lt , we can write the model in the form

⎛
⎝ dξ et /ξ et

dξ
f
t /ξ

f
t

dξ ct /ξ ct

⎞
⎠ =

⎛
⎜⎝
a11(t) a12(t) a13(t) a14(t)

a21(t) a22(t) 0 0

a31(t) a32(t) a33(t) 0

⎞
⎟⎠
⎛
⎜⎜⎜⎝
dW (1)

t

dW (2)
t

dW (3)
t

dW (4)
t

⎞
⎟⎟⎟⎠ . (7)

The non-zero components of the above coefficient matrix involve nasty terms with
combinations of the various correlations. The precise parameters can be found in the
“Appendix”.

The solution of SDEs of such a form as in (7) is well known to be of the geometric
Brownian motion type (e.g., see (Oksendal 2000, p. 62)). In particular, the random
vector ξt = [ξ et , ξ

f
t , ξ ct ] follows a three-dimensional log-normal distribution. The

corresponding parameters can again be found in the “Appendix”.

2.2.1 Discretization and the associated bridge process

For our numerical solution framework, which is discussed in detail in Sect. 4, the
process ξ will first be discretized in all decision stages. Then, an approximate solution
of the problem will be computed by stochastic dynamic programming with a back-
ward recursion. In each decision stage, the algorithm relies on the expected profit/loss
associated with any decision to be made for the upcoming observation blocks of the
following week. To compute such values, we will exploit the structure of the valuation
model, the uncertainty model and the backwards recursion. In particular, we are able
to compute the expected profits by an analytical formula.

Let us start with the discretization step. To account for the two different time scales
explained in Sect. 2.1 above, namely the weekly decision scale and the much finer
intra-week observation scale, we use the notation ξt,s , where t = 0, . . . , T runs in
weeks and s = 0, . . . , S in hour-blocks of equal size�s (such that t+ S ·�s = t+1).
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Considering the fact that intra-week data of fuel and CO2 allowances prices typically
show – if even available – a rather stable evolution with low fluctuations, we assume
those prices to be constant from Monday to Sunday. On the contrary, the electricity
price dimension is truly stochastic even on a fine time-scale. Looking at the expected
profit function (2) at some block s during a week t , it turns out that (on the basis of
our assumptions) the problem boils down to the expected value of the electricity price
ξ et,s given both the initial value ξ et,0 as well as the final value ξ et,S of week t . This is
due to the fact that the function ht (·) is linear in ξ et,s . Mathematically speaking, we
are left with the computation of the conditional expected value at time t + s · �s of
the stochastic bridge process linking the values ξ et,0 and ξ et,S , for all s = 1, . . . , S. All
other parts can be computed in a straightforward way.

The one-dimensional process ξ et,s follows a univariate lognormal distribution. Thus,
its transition density δ is available in analytical terms and the transition density of the
associated bridge process can be computed explicitly. Let an initial value η1 of the
process at the beginning of some week t and a final value η2 at the end of that week
be given (i.e., ξ et,0 = η1 and ξ et,S = η2). Then, the bridge process transition density, at
time s ∈ [0, S], is given by

δ (x, t + s · �s|η1, t, η2, t + 1) = δ (η2, t + 1|x, t + s · �s) · δ(x, t + s · �s|η1, t)
δ(η2, t + 1|η1, t)

= 1√
2πσ̂ 2

s|t x
exp

(
−
(
log(x) − log(η1) − μ̂s|t

)2
2σ̂ 2

s|t

)
,

where

μ̂s|t =
∫ t+s·�s
t σ 2(u) du∫ t+1
t σ 2(u) du

log

((
Fe
0,t

Fe
0,t+1

)
· η2

η1

)
,

σ̂s|t =
(∫ t+s·�s

t σ 2(u) du
) (∫ t+1

t+s·�s σ 2(u) du
)

∫ t+1
t σ 2(u) du

.

In particular, we get for the conditional expectation

E
[
ξ et,s

∣∣ξ et,0 = η1, ξ
e
t,S = η2

] = η1 ·
(
Fe
0,s·�s

Fe
0,t

)
· exp (μ̂s|t

)
. (8)

Let us emphasize that the above analytical tractability is not due to our restriction of the
intra-week stochasticity to one dimension (see Glanzer and Pflug 2019 for a treatment
of the more general multi-dimensional case). This restriction is purely motivated by
data.
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Fig. 2 Electricity forward price data (solid line) versus 5 simulated trajectories (dashed lines). Simulation
based on the bridge process dynamics

Figure 2 illustrates a set of sample paths from the bridge process, which starts and
ends in the forward prices corresponding to two consecutive weeks. The intermediate
forward prices are shown for comparison of the seasonal behaviour.

3 Ambiguity for dynamic stochastic optimizationmodels

It is an application of classical stochastic dynamic programming theory to solve (1)
backwards in time on the basis of the following recursion scheme:

Vt (zt , ξt ) = max
ut∈Ut (zt )

ht (zt , ut , ξt ) + β E[Vt+1(zt+1, ξt+1)|ξt ]
s.t. zt+1 = gt (zt , ut , ξt+1),

(9)

where VT (zT , ξT ) ≡ 0, z0 and ξ0 are given.
Let ξ be aMarkovian process defined on a finite state space0×· · ·×T , where on

each t there is a distance dt . Let the cardinality of t be Nt with N0 = 1 (typically
nondecreasing in t). Then the transition matrices Pt , t = 0, . . . , T − 1 are of the
form Nt × Nt+1, where the i−th row of the matrix Pt is denoted by pt (i) , for all
i = 1, . . . , Nt . Notice that each row pt (i) describes a probability measure on the
metric space (t+1, dt+1).

Let ξ it ∈ t be given. Then, the conditional probability to transition to ξ
j
t+1 ∈ t+1

is given by the j th element of the row vector pt (i), denoted as pt (i, j) for j =
1, . . . , Nt+1 and i = 1, . . . , Nt . In this discrete case, the objective of the recursion in
(9) can be written as
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Vt (zt , ξ
i
t ) = max

ut∈Ut (zt )
ht (zt , ut , ξ

i
t ) + β

Nt+1∑
j=1

pt (i, j) · Vt+1

(
gt (zt , ut , ξ

j
t+1), ξ

j
t

)
.

(10)

3.1 A new concept: uniformWasserstein distances

In order to consider model ambiguity, we look for alternative transition matrices Qt ,
which are close to a given matrix Pt . Let us first recall the general definition of the
Wasserstein distance for discrete models.

Definition 3.1 Let P = ∑n
i=1 Pi δξ i and Q = ∑ñ

j=1 Q j δξ̃ j be two discrete measures

sitting on the points {ξ1, . . . , ξn} ⊂  and {ξ̃1, . . . , ξ̃ ñ} ⊂ ̃, respectively. Then, the
Wasserstein distance between P and Q is defined as

W(P, Q) := min
πi j

∑
i, j

πi j · Di j ,

where π = ∑
i, j πi, j · δξ i ,ξ̃ j is a probability measure on × ̃ with marginals P and

Q, and where Di j is a distance between the resp. atoms.

We will now measure the closeness between (discrete) multistage models P and Q
by a uniform Wasserstein distance concept. The rows of alternative matrices Qt are
denoted by qt (i), i = 1, . . . , Nt . The measure qt (i) is sitting on at most Nt+1 points
in t+1 and is such that supp(qt (i)) ⊆ supp(pt (i)). Then, we define the distance

W∞(P,Q) = max
0≤t≤T−1

max
1≤i≤Nt

W(pt (i), qt (i)), (11)

which can be interpreted as a uniform version of scenariowise Wasserstein distances.
An ε ball around P is characterized by the fact that all members Q satisfy

W(pt (i), qt (i)) ≤ ε,

for all t = 0, . . . , T − 1 and all i = 1, . . . , Nt .
When introducing ambiguity into the model, we would like to solve problem (1)

wherein the objective function is replaced with:

max
{ut }T−1

t=0

min
Q :W∞(P,Q)≤ ε

EQ

[
T−1∑
t=0

βt ht (zt , ut , ξt )

]
,

where EQ denotes the expectation with respect to the measure Q.
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Our choice of the multistage distance makes it possible to keep the decomposed
structure of the backward recursion, which reads:

Vt (zt , ξ
i
t ) = max

ut
min

W(pt (i),qt (i))≤ ε
ht (zt , ut , ξ

i
t ) + β

Nt+1∑
j=1

qt (i, j) Vt+1(zt+1, ξ
j
t+1)

s.t. zt+1 = gt (zt , ut , ξt+1).

(12)

Hence, the ambiguity approach just extends the max model to a maximin model.
The ambiguous model can also be seen as a risk adverse model in contrast to the
basic risk neutral model. If the distance is not of the decomposable form, then the
backward recursion does not decompose scenariowise and one has to find all opti-
mal decisions in one very big stagewise but not scenariowise decomposed algorithm.
However, decomposability is the key feature of successful methods for dynamic
decision problems. Hence, our concept is strongly motivated by its favourable com-
putational properties. However, as we will discuss now, under a mild regularity
condition (in the sense that it will always hold for discrete models, which are the
basis of the whole computational framework) it can still be shown that optimal solu-
tions are close if the underlying models are close w.r.t. the uniform Wasserstein
distance.

The general distance concept for stochastic processes (including their discrete rep-
resentation in the form of scenario trees) is the nested distance introduced in Pflug
(2010), Pflug and Pichler (2012) as amultistage generalization of the classicalWasser-
stein distance.2 In our case we have a Markov process which can be seen as a lattice
process. Notice that a lattice can be interpreted as a compressed form of a tree. It can
always be “unfolded” to a tree representing the same filtration structure, by splitting
each node according to the number of incoming arcs. Thus, all results applying for
trees do hold for lattices as well. The uniform Wasserstein distance introduced above
is given by the maximum Wasserstein distance over all conditional transitions. The
subsequent stability result holds.

Proposition 3.1 Let P and P̃ be two discrete Markovian probability models defined on
the filtered space (�, σ (ξ)). Assume the following Lipschitz condition regarding P to
hold for all t = 0, . . . , T − 1 and all values ξ it , ξ

j
t , where i, j = 1, . . . , Nt :

W
(
Pt (·|ξ it ), Pt (·|ξ j

t )
)

≤ Kt · ‖ξ it − ξ
j
t ‖,

for Kt ∈ R. Consider the generic multistage stochastic optimization problem

v(Q) := inf EQ[c(x, ξ)],

2 The general definition of the nested distance can be found in the “Appendix”.
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where the (nonanticipative) decisions x lie in some convex set and where the function
c(·, ·) is convex in x and 1-Lipschitz w.r.t. ξ . Then the relation

∣∣∣v(P) − v(P̃)

∣∣∣ ≤ dI(P, P̃) ≤ K · W∞(P, P̃)

holds, where dI(·, ·) denotes the nested distance, and where the constant K is given
by

K :=
T−1∑
t=0

T∏
j=t+1

(1 + K j ).

Proof The first inequality is a well-known result from (Pflug and Pichler 2012, Th. 11).
The statement then follows readily from (Pflug and Pichler 2014, Lem. 4.27), by using
W∞(P, P̃) as a uniform bound forW(Pt (·|ξt ), P̃t (·|ξt )), over all t . ��

Remark Notice that for discrete Markov chain models the assumption in Proposi-
tion 3.1 always holds, as one can simply choose the ergodic coefficient

Kt = max
ξ it 	=ξ

j
t

W
(
Pt (·|ξ it ), Pt (·|ξ j

t )
)

‖ξ it − ξ
j
t ‖

.

Remark In the above construction, all models contained in the ambiguity set share
exactly the same tree structure and node values. Thus, one might conjecture at a first
glance that it would be possible to bound the nested distance by a simple sum of the
stagewise maximum of conditional Wasserstein distances, weighted by the number of
subtrees at the respective stage. A simple example in the “Appendix” shows that such
a construction does not work in general.

3.2 State-dependent distances

In practice, the worst-casemodel for an upcoming periodmay often depend on the cur-
rent state. In the model considered in the present paper (cf. Sect. 2.1), we decide only
at the beginning of each stage about the procurement of additional CO2 allowances.
In particular, we restrict ourselves not to buy any if the current stock is sufficient
for whatever we may do during the subsequent week; regardless of their market
price. If we neglect this consideration when searching for the optimal distributionally
robust production profile, the worst case may reflect a variation in the CO2 allowances
price dimension which in fact will not have an impact on our optimal decision. Thus,
we modify the distance on the underlying three-dimensional space by projecting to
the electricity price and the fuel price dimension only, given that our stock of CO2
allowances is sufficient. Otherwise, we keep the usual L1 norm. More formally, we
define
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D
(
[ξ et , ξ

f
t , ξ ct ], [ξ̃ et , ξ̃

f
t , ξ̃ ct ]

)

:=
{

we|ξ et − ξ̃ et | + w f |ξ f
t − ξ̃

f
t | if αt = 0

we|ξ et − ξ̃ et | + w f |ξ f
t − ξ̃

f
t | + wc|ξ f

t − ξ̃
f
t | if αt > 0,

(13)

withαt defined in Sect. 2.1 and positiveweightswe, w f , wc. Notice that D is not a dis-
tance, as it does not separate points. However, this fact does not entail any restrictions
for our considerations.

When basing the uncertainty model on historical observations, there is a strong
statistical argument for using balls w.r.t. the Wasserstein distance as ambiguity sets
(cf. Esfahani and Kuhn 2018). In particular, large deviations results are available (see
Bolley et al. 2007; Fournier and Guillin 2015 for the case of the Wasserstein distance
and Glanzer et al. (2019) for the case of the nested distance) which provide proba-
bilistic confidence bounds for the true model being contained in the ambiguity set
around the (smoothed) empirical measure. Observe that such results are not invali-
dated by the state-dependency that we introduce: it is evident that a given confidence
bound is directly inherited if one neglects some dimension. Notice however that a
general state-dependent weighting of the dimensions would require a more careful
treatment.

4 A case study

In the following, wewill test the framework elaborated in Sects. 2.1 and 3 for a specific
power plant. For the present application, each week t is subdivided in S = 42 blocks,
where each block has 4 h. We solve the problem for a quarter ahead, thus we take the
horizon to be T = 13 weeks.

In this case, the control variables are given vectors of dimension S = 42. The set
of production profiles we use for this case study consists of 10 different production
schedules. This set is denoted by U = {u(i)}10i=1 (see Fig. 3) and it will remain constant
for every stage.

The discrete evolution of prices is given as a lattice process (ξ) defined on0×· · ·×
T , where each space t has Nt elements correspondent to the number of nodes, i.e.,
t = {ξ1t , . . . , ξ

Nt
t } and each node ξ it = (ξ

e,i
t , ξ

f ,i
t , ξ

c,i
t ) ∈ R

3 for all i = 1, . . . , Nt

and all t = 0, . . . , T . As explained in Sect. 3, Pt will denote the probability transition
matrices from stage t to stage t + 1 of dimensions Nt × Nt+1. The description of the
lattice construction will be explained in Sect. 4.1.1.

The profit function ht at stage t is defined by the expected profit during the upcoming
week (see (2)). Profits at every block s in the week are quantified by the functions
fs , for s = 0, . . . , S − 1. Costs of buying additional allowances and transportation
costs are quantified only at the beginning of each week, while start-up costs need to be
assigned at each block s. We proceed to the description of the state variables. The costs
of buying new allowances depend on the strategy A defined in (3). For its computation
we consider [b, b] = [4.4, 9.6], where the latter values were obtained by applying a
simple quantile rule to the available data set. Moreover, we set Cα = 2.
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Fig. 3 All different profiles in U . Production is given in MW

Fig. 4 If we choose profile u(10), the strategy A to follow is illustrated for different prices ξct,0 and all
possible left allowances xt in the partition. The horizontal lines indicate the lower and upper bounds for the
prices b and b, respectively

For the partition of the amount of availableCO2 allowances xt , we consider different
possible values from 0 tonne(carbon) to 105 tonne(carbon), and we also take into
account the allowances needed for each profile. All in all, the partition of state xt has
16 different elements.

For every state in the partition, an example of the procurement strategy is shown in
Fig. 4 for different prices. Note that we illustrate this example when we choose full
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Table 2 Classification of offline hours and associated start-upcosts

Offline hours Solid fuel
burnt (B) in GJ

Works power
(W ) in MWh

Engineering
costs (EC)

Imbalance
costs (IC)

(0, 20] 412 14 10,000 1600

(20, 36] 454 20.5 10,800 1600

(36, 48] 596 30 11,800 1600

(48, 65] 596 40.5 12,800 1600

(65,∞) 629 60.9 13,800 1600

production, i.e., u(10). The strategy when choosing a different profile is similar, the
only change is that we do not need to buy as many allowances as with u(10).

The second state variable yt describes the hours the power plant was off since
the last time it was on. The costs associated with restarting the production depend
on yt and the chosen profile ut . The cost function is a step function given in
Table 2.

Once a profile is chosen for any week, the first time the profile is different than
zeros is where we consider initial start up costs. Then, for the initial start up costs we
consider the hours the power plant was offline before week t starts (i.e., yt ) in addition
to the hours the chosen profile is off before it starts producing. For the rest of the
blocks the costs will only depend on the profile. As for the notation of the elements
in f start, see (4), Es is the sum of the last two columns of Table 2. We illustrate the
initial start up costs for a profile that is on in the beginning of the week for all possible
values of yt (see Fig. 5) .

Given that we have a finite set of profiles, we can calculate the value of yt for each
profile. The partition of yt will have these values and the limit numbers of the classes
in Table 2.

Regarding the transportation cost function in (5), we assume Ctr = 40
(£/tonne(fuel)).

Finally, the values of the constants in Table 1 are H2 = 0.78 (£/$), H3 = 0.9
(£/e), H5 = 0.0975 (MWh/GJ), H7 = 0.45 (tonne(fuel)/MWh) and J = 2.31
(tonne(carbon)/tonne(fuel)).

4.1 The solution algorithm

We numerically solve the power plant valuation problem by a stochastic dynamic
programming algorithm. A lattice structure is used as a discrete representation of the
uncertainty model in all decision stages.

4.1.1 On the lattice construction

The state-of-the art approach for the construction of scenario lattices is based on opti-
mal quantization techniques (cf. Bally and Pagès 2003; Löhndorf andWozabal 2018).
For a given number of discretization points, such methods select the optimal locations
as well as the associated probabilities in such a way that the Wasserstein distance

123



374 W. van Ackooij et al.

Fig. 5 Initial start-up costs (£) for all possible initial states yt ∈ {0, 1, . . . 168}, when the profile is on in
the beginning of the week. The costs are calculated for a specific node with electricity price 40 e/MWh
and fuel price 90 $/tonne(fuel)

(or some other distance concept for probability measures) with respect to a (contin-
uous) target distribution is minimized. For the present study, we have implemented
a stochastic approximation algorithm for the quantization task, following (Pflug and
Pichler 2014, Algorithm 4.5). Referring to the latter algorithm, we first applied the
iteration step (ii) in order to find the atoms of all marginal distributions, separately for
each stage. We then formed a lattice out of these sets of points by fixing the structure
of allowed transitions and then applied step (iv) to determine all conditional transition
probabilities. Eventually, this also determines the absolute probabilities of each node
in the lattice. The Wasserstein distance of order two has been used as a target mea-
sure for the minimization. We use a ternary lattice, i.e., each node has (at most) three
successors with a positive transition probability.

As for the notation, recall thatwedistinguish between stages (weeks) and intra-week
blocks. Decisions are taken only at each stage but the profit will be calculated taking
into account the random evolution of the prices during the entire week. The discretized
process in each stage t and node i is denoted as ξ it = (ξ

e,i
t , ξ

f ,i
t , ξ

c,i
t ), and the values

of the process within week t starting in node i , are denoted by ξ it,s = (ξ
e,i
t,s , ξ

f ,i
t,s , ξ

c,i
t,s ),

for s = 0, . . . S. At s = 0, ξ it,0 = ξ it takes the value of node i ; and at s = S,

ξ it,S = ξ
j
t+1 takes the value of node j in the next stage with probability pt (i, j), for

j = 1, . . . , Nt+1. Note that if the lattice structure does not make a link between two
nodes in consecutive stages, then the probability of such a transition will be zero.
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4.2 Computing the expected profit between two decisions

The valuation of the power plant is obtained by solving (10) backwards in time from
t = T to t = 0. In this section, we specify how to solve (10) and its robust version (12)
at any stage t . We specifically concentrate on the calculation of the expected profit
within each week given the current node and a successor node.

As discussed in Sect. 2.2.1, electricity prices within weeks will be modeled by the
bridge process that we described. Fuel and CO2 allowances prices are assumed to
remain constant between stages.

We start now with the computation of the expected profit, as defined in (2). In
classical stochastic dynamic programming problems, ht exclusively depends on the
values observed at time t . In contrast, in Sect. 2.1 we instantiated (1) in such a way
that the function ht is defined as an expected value of the the random profits within
week t . Hence, given the values of node i at stage t (at block s = 0), as well as initial
states (xt , yt ); the weekly profit ht will be calculated as follows

ht
([xt , yt ], ut , ξ it,0)
= E

[
S−1∑
s=0

fs(xt , yt , ut , ξ
i
t,s)

∣∣∣∣ξ it = ξ it,0

]

=
Nt+1∑
j=1

(
S−1∑
s=0

E

[
fs(xt , yt , ut , ξ

i
t,s)

∣∣∣∣ξ it = ξ it,0, ξ
j
t+1 = ξ

j
t+1,0

])
· pt (i, j).

We define

h j
t (xt , yt , ut , ξ

i
t,0) =

S−1∑
s=0

E

[
fs(xt , yt , ut , ξ

i
t,s)

∣∣∣∣ξ it = ξ it,0, ξ
j
t+1 = ξ

j
t+1,0

]
,

for all j = 1, . . . , Nt+1. Then, ht ([xt , yt ], ut , ξ it,0) = ∑Nt+1
j=1 h j

t (xt , yt , ut , ξ
i
t,0) ·

pt (i, j). We compute now h j
t as follows

h j
t (xt , yt , ut , ξ

i
t,0) =

S−1∑
s=0

(ut,s �s − Ws(yt , ut )) · E[ξ e,it,s |ξ et = ξ
e,i
t,0 , ξ et+1 = ξ

e, j
t+1,0]

− ξ
f ,i
t,0

S−1∑
s=0

(H1ut,s�s + H2 H6 Bs(yt , ut ))

− A(xt , ūt , ξ
c,i
t,0 ) H3 ξ

c,i
t,0 −

S−1∑
s=0

Es(yt , ut ) − H7 C
tr ūt �s.

At stage T we set the terminal condition VT = 0. Given an initial state (x0, y0), going
backwards in time from t = T − 1 to t = 0, we obtain the power plant value at
t = 0. The latter is calculated with respect to the baseline multistage model P and will
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be denoted as ν0(P). The policy associated with ν0(P) is denoted with u∗
P
. It can be

represented as a probabilistic tree of profiles.
If we incorporate ambiguity in the lattice process using the uniform Wasserstein

distance, for all 0 ≤ t ≤ T − 1 we solve:

Vt ([xt , yt ], ξ it ) = max
ut

min
W(pt (i),qt (i))≤ε

⎧⎨
⎩

Nt+1∑
j=1

⎡
⎣h j

t (xt , yt , ut , ξ
i
t,0)

+ βVt+1([g(1)(xt , ut , ξ
c
t,1), g

(2)(ut )], ξ j
t+1)

⎤
⎦ qt (i, j)

⎫⎬
⎭ .

The optimal value is reached at t = 0 and it will be denoted as ν0(Qε), where Qε

denotes the ambiguity set defined as

Qε = {Q : W∞(P,Q) ≤ ε}.

A worst-case model Qε∗ is any multistage probability model contained in Qε such
that ν0(Qε) = ν0(Q

ε∗). More concrete, the optimal value is reached at a saddle point
(u∗

Qε∗ ,Qε∗) where u∗
Qε∗ is the policy associated with the worst-case model.

At each node i , the objective function of the minimization problem is linear in qt (i)
under linear constraints. Define

c j = h j
t (xt , yt , ut , ξ

i
t,0) + βVt+1([g(1)(xt , ut , ξ

c
t,1), g

(2)(ut )], ξ j
t+1)),

for j = 1, . . . , Nt+1. Then, the minimization problem can be written as

min
qt (i, j), πk, l

Nt+1∑
j=1

c j · qt (i, j)

s.t.
Nt+1∑
k=1

πk, l = qt (i, l) ∀l = 1, . . . , Nt+1

Nt+1∑
l=1

πk, l = pt (i, k) ∀k = 1, . . . , Nt+1

∑
k, l

Dk l πk, l ≤ ε

∑
k, l

πk, l = 1

πk, l ≥ 0, ∀k, l = 1, . . . , Nt+1,
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where Dk l = D
(
[ξ e,kt+1, ξ

f ,k
t+1, ξ

c,k
t+1], [ξ e,lt+1, ξ

f ,l
t+1, ξ

c,l
t+1]

)
is the distance between

nodes k and l at stage t +1, as defined in (13) with specific weightswe = 1,w f = H1
and wc = H3 · H4.

4.3 Impact of model ambiguity

4.3.1 The value of the power plant

We describe the optimal valuation of the power plant when we compute the iterative
system of backward equations in (10) and (12). We assume that the initial state x0
provides enough allowances to execute any of the profiles and the power plant was
not offline before we start, i.e., y0 = 0. Moreover, the terminal condition for both
problems is set to be VT = 0. With the baseline model we obtain an expected profit of
approximately ν0(P) = 2.3 · 106 (£). The optimal decision at t = 0 is to turn off the
power plant by choosing u(1). The valuation of the power plant including ambiguity
is obtained for different radii ε ∈ [0, 2]. The different optimal values ν0(Qε) are

Fig. 6 The impact of the ambiguity radius ε on the optimal profit over 13 weeks

Table 3 Percentage of change in electricity prices for every stage and different ambiguity radii

ε Stage-wise change in allowances prices

1 2 3 6 7 8 11 12 13

0.4 0.0072 0.0034 0.0094 0.0179 0.0121 0.0109 0.0387 0.0692 0.0442

1 0.0179 0.0183 0.0311 0.0437 0.0410 0.0179 0.0806 0.1633 0.0932

1.4 0.0274 0.0066 0.0316 0.0413 0.0532 0.0263 0.1287 0.2511 0.1121

2 0.0415 0.0173 0.0493 0.0678 0.0892 0.0359 0.1879 0.2991 0.1277
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illustrated in Fig. 6 with respect to the ambiguity level. We observe the valuation of
the power plant decreaseswhen the ambiguity radius is higher. For ε = 2, the valuation
of the power plant decreases to ν0(Qε) = 6.8 · 105.

In order to get an insight into the change of prices in the ambiguity model, we report
the changes of electricity prices for the worst case models Qε∗ in Table 3. Let B0 be
a vector containing the stagewise expectations of electricity prices with respect to the
baseline model and let Bε be the vector containing the expectations with respect to
each worst-case modelQε∗. The percentage of change at each stage t in the prices are
denoted with the parameter θt , such that Bε(t) = (1 − θt )B0(t). We observe that the
largest change in prices is given in stage 12, where electricity prices decrease up to
30% for ε = 2.

4.3.2 Forward in time

With the iterative solution of the backwards equations we eventually obtain an initial
optimal profile at t = 0, namely u∗

0 = u(1). With this initial decision we go forward
in time and create a probabilistic tree u∗

P
of the optimal decisions together with their

profits. Starting with the given states and the optimal profile at t = 0, the updated
states at stage t = 1 are completely determined by the knowledge of x0, y0 and u∗

0.
The choice of the optimal profile in t = 1, for each node i = 1, . . . , N1, will be
made by looking at the nearest location of the updated states in the grid and taking
the correspondent profile chosen in the backwards algorithm. We proceed in this
way until we obtain all the optimal profiles at stage T − 1. Eventually, we obtain a
probabilistic tree with 3T possible paths. Following the same procedure, we calculate

Fig. 7 Stagewise distribution of the optimal profiles u∗
P
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Fig. 8 Stage distribution of the optimal profile with respect the ambiguity radius. For each ε we plot the
distribution of u∗

Qε∗

the probabilistic tree of optimal profiles u∗
Qε∗ for each worst-case model Qε∗, and the

corresponding profits under the worst-case models for different radii ε.
Starting with u(1) is optimal for all models at t = 0. For the subsequent stages

the choices of optimal profiles change. Figure 7 shows the stagewise distribution of
the optimal profiles chosen with the baseline model P. Figure 8 shows the changes of
profile choices when we incorporate ambiguity in the model.

With no ambiguity there is a probability greater than 0 to choose full production
in stages 6, 7, 8, 10 and 12. When we start increasing the radius of ambiguity these
chances drop to 0. The larger the ambiguity radius is the more we choose to be offline
or not to produce in the weekends choosing profiles like u(2), u(4), u(6). A different
option, but with less probability is not to produce in peak hours, by choosing u(3) or
u(5).

Given the optimal profiles for the baseline model P and the alternative models
Q

ε∗ we can calculate the profits we make along the decision tree. To be precise, we
denote by iτ ∈ Nτ any node index at stage τ = 0, . . . , T . Since N0 = 1, a possible
path to follow forward in time up to stage t , will go through any sequence of nodes
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Fig. 9 On the left the profit tree by following the optimal profiles and on the right the distribution of the
final profits obtained following every path

Fig. 10 Stagewise accumulated profit distribution for each solution u∗
Qε∗
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(1, i1, . . . , it−1, it ). The profit from iτ to iτ+1 is the profit made in stage τ and is
written as hiτ ,iτ+1

τ . This profit is obtained with probability pτ (iτ , iτ+1). Therefore,
the accumulated profit until stage t − 1 is (h0,i10 + · · · + hit−1,it

t−1 ) with probability
p0(1, i1) · · · pt−1(it−1, it ), when we end in node it ∈ Nt . Figure 9 shows the accu-
mulated profits following the tree of optimal profiles u∗

P
as well as the distribution of

the final profits.
Ifwe include ambiguity, then the optimal profits change aswell as their probabilities.

Figure 10 shows the profit trees together with the final distribution with respect to the
correspondent alternative model. We observe that for larger ε the alternative models
put more weight at lower profits.

5 Conclusion

In this paper, we have shown how a realistic valuation of a power plant can be done
by solving a multistage Markovian decision problem. The value is defined as the
(discounted) expected net profit, that one can get from the operation of the plant,
if an optimal production plan is implemented. In this valuation process, all relevant
purchasing costs and selling prices are included in the model. The number of feasible
production plans is finite and thus a discrete multistage optimization problem has to be
solved. We use the classical backward algorithm for the Markovian control problem
and a forward algorithm for determining an estimate of the achievable profit and its
distribution. The novelty of the paper is twofold. First, we adopt amultiscale approach,
where decisions are made on a coarser scale than costs are calculated. This allows us to
keep the computational effort tractable. Second, we do not only consider the baseline
model for the random factors, but rather a set of models (the ambiguity set) which
are close to the baseline model. This allows to incorporate the fact that probability
distributions for future costs and revenues are not known precisely. The more models,
and especially the more unfavourable models are included in the ambiguity set, the
smaller is the robust value of the plant. We demonstrate how the final value under
model ambiguity depends on the degree of uncertainty about the correct price and
cost model. Our distance model for the ambiguity set depends on the state of the
system, taking into account that what is close for two price vectors depends also on
the fact whether these prices are relevant for the state at hand. We also noticed that
the optimal production strategy not only depends on the degree of ambiguity, but also
gets more diversified for larger ambiguity, in contrast to some bang-bang solutions in
unambiguous models.
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Appendix

Parameters for the model
The parameters corresponding to Eq. (7) in Sect. 2.2 are given by:
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The parameters of themultivariate lognormal distribution of the GBMprocess (7), i.e.,
the expectation vector μ(t) and the (components of the) variance-covariance matrix
�(t) of the associated multivariate normal distribution are given by:

μ(t) =
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⎜⎜⎝
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Fig. 11 Two versions of a scenario tree with different transition probabilities. The nested distance is 10.
The Wasserstein distance between the first stage subtrees is 4, that between each of the two pairs of second
stage subtrees is 2

A remark on the nested distance

Definition 5.1 The nested distance dI(P, P̃) between twoRm-valued filtered stochastic
processes (P,F) and (P̃, F̃) is defined as the optimal value of the following mass
transportation problem, which optimizes over the set of all joint distributions that
respect the given conditional marginals:

inf
π

∫∫
‖ω − ω̃‖ π(dω, dω̃)

s.t. π
(
A × R

m
∣∣Ft ⊗ F̃t
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[
A
∣∣∣Ft

]
A ∈ FT ; ∀ 0 ≤ t ≤ T

π
(
R
m × B

∣∣Ft ⊗ F̃t

)
= P

[
B
∣∣F̃t

]
B ∈ F̃T ; ∀ 0 ≤ t ≤ T .

Figure 11 illustrates that the nested distance (between two trees resulting from a
variation of the transition probabilities) cannot be bounded by only considering the
Wasserstein distance between the subtrees with matching node values. In the given
example, the maximum Wasserstein distance in the second stage is 2, the first case
Wassersein distance is 4. Thus, 4 + 2 · 2 = 8 would still be smaller than the nested
distance between the two trees, which is 10.
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