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Chapter 1

General Introduction

Price discrimination refers to pricing policies according to which different consumers pay

different prices for the same good. The implementation of such pricing schemes is be-

coming increasingly viable in the digital economy, given that the granular consumer data

needed to effectively implement it is becoming available to firms. In fact, there is mount-

ing empirical evidence of price discrimination in online markets.1 As a result, antitrust

authorities around the world have become worried about these business practices. In

2016, the secretariat of the OECD’s competition committee has recognized that "there

are particular reasons to worry that price discrimination in digital markets will be harm-

ful."2 Recently, the European Union (EU) has implemented additional compliance rules

targeted at firms who engage in online price discrimination.3

This thesis studies price discrimination in search markets, i.e. markets in which con-

sumers cannot costlessly access the offers of all firms in the market. Understanding price

discrimination in the presence of search frictions is important, given that search costs

in online markets are known to be substantial.4 Moreover, this form of research also

establishes whether reductions of search frictions, which may be induced by price trans-

parency regulation or may result from new developments such as augmented reality, will

be pro-competitive in markets where prices are personalized.

This thesis consists of three self-contained chapters. In Chapter 2, titled Competitive

Price Discrimination, Imperfect Information, and Consumer Search, I set up a homoge-

nous goods model in which all firms have access to information about consumers’ valua-

tions: When being visited by a consumer, any firm receives a signal about the consumer’s

valuation. The competitive effects of the price discrimination enabled by the availability

of this information fundamentally depend on the level of search frictions. Consumers visit

multiple firms in equilibrium if and only if search costs are at intermediate levels. When

1See, for example, Hannak et al. (2014), Larson et al. (2015), and Escobari et al. (2019).
2For details, please see OECD Secretariat (2016).
3This is outlined in Directive 2019/2161 of the European Parliament and the Council. For details,

please see European Parliament (2019).
4See, for example, Koulayev (2014), De los Santos (2018), and Jolivet and Turon (2019).
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search costs are low, all consumers just visit one firm. Consumer welfare is highest when

search costs are negligible. However, reductions of search frictions can lead to higher

prices by increasing the amount of consumers who visit multiple firms in equilibrium.

In Chapter 3, titled Search, Data, and Market Power, I study the relationship between

data and market power in the presence of search frictions. I set up a duopoly model of

a final goods market in which one firm receives a noisy signal about the valuation of

any arriving consumer, while its rival receives no information. In contrast to the previ-

ous chapter, one firm thus has an informational advantage. The main message of this

chapter is that the search choices of consumers strongly amplify the transmission of data

advantages into competitive advantages through a selection effect: Because the firm with

data price discriminates, consumers with low valuations prefer to visit the firm with data,

while consumers with high valuations prefer to visit the firm without data. These search

patterns push up the price the firm without data optimally sets, which is to the benefit of

the firm with access to superior data. Perhaps surprisingly, reductions of search frictions

exacerbate the dominant position of the firm with data. The establishment of a right to

data portability can address the competitive imbalances caused by data advantages.

Chapter 4, titled Search Disclosure, is joint work with Marcel Preuss. We investigate

the possibility that sellers can inform their rivals that a given consumer has obtained

an offer from them. The provision of this information, which we call search disclosure,

is enabled by the use of online tracking technologies such as cookies and fingerprint-

ing. Formally, we integrate the possibility of search disclosure into the classic Wolinsky

(1986) model. We show that firms can only have incentives to conduct search disclosure

regarding consumers for whom they have not previously received disclosure from their

rival. This form of information exchange is anti-competitive and induces higher industry

profits. However, it will not necessarily occur in equilibrium. Firms only conduct search

disclosure if prices cannot be revised or if search costs are low. The insights we obtain

have implications for the optimal regulation of tracking in online markets.



Chapter 2

Competitive Price Discrimination,

Imperfect Information, and

Consumer Search

2.1 Introduction

The issue of online price discrimination has gained increased attention by legal authorities

around the world in the last years, reflecting the growing body of empirical evidence for

its prevalence.1 In 2016, the secretariat of the OECD’s competition committee recognized

that "there are particular reasons to worry that price discrimination in digital markets

will be harmful".2 In the European Union (EU), new compliance rules targeted at firms

engaging in online price discrimination have taken effect in 2022, complementing the

general privacy regulation established in the GDPR and the DMA.3

This chapter studies price discrimination based on information about consumers’ val-

uations in markets with search frictions. Understanding how the personalization of prices

interacts with consumers’ search choices is important, given that search frictions in online

markets are known to be substantial.4 Moreover, this analysis also establishes whether

price transparency regulation, which has always been a core area of competition policy,

can effectively mitigate potential negative effects of price discrimination.5

1Hannak et al. (2014) show that e-commerce platforms differentiate prices by whether a consumer
uses iOS or Android. Larson et al. (2015) demonstrate that prices for Princeton’s SAT packages depend
on the demographic characteristics of a consumer’s ZIP code. Escobari et al. (2019) document that airline
ticket prices are higher during business hours, when business travelers are more likely to buy.

2For details, please see OECD Secretariat (2016).
3This is outlined in Directive 2019/2161 of the European Parliament and the Council. For details,

please see European Parliament (2019).
4See, for example, Koulayev (2014), De los Santos (2018), and Jolivet and Turon (2019).
5Price transparency is addressed in several directives of the EU, such as the 1998 Unit Prices Directive

and the 2005 Unfair Commercial Practices Directive. For details, please see European Parliament (1998)
and European Parliament (2005).

3
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The main message of this chapter is that the competitive effects of price discrimination

depend on the level of search frictions in a market. The equilibrium prices are lowest

and consumer welfare is highest when search costs are low because low search costs

endow consumers with a strong threat of searching. However, the effects of search cost

reductions are non-monotonic. At intermediate levels of search costs, the presence of a

sufficiently informative signal enables the existence of an equilibrium in which consumers

visit multiple firms. In this equilibrium, reductions of search frictions lead to higher

equilibrium prices. This is because consumers who arrive at a firm after visiting its rival(s)

entail demand that is fully inelastic around the lowest equilibrium price, and reductions of

search frictions increase the amount of consumers who visit multiple firms in equilibrium.

I consider a final goods market with search frictions. There is a unit mass of consumers

who want to buy one unit of a homogeneous good, which is produced by a finite num-

ber of firms. Consumers have heterogeneous valuations for the good, which are private

information to each consumer. They acquire consumption opportunities via sequential

search and every consumer can costlessly visit one firm, but has to pay a search cost per

additional firm that is visited.

The firms have information about the valuations of consumers. When a firm is vis-

ited by a consumer, the firm receives a noisy private signal about the valuation of this

consumer. There are two possible signal realizations: low or high. The probability distri-

bution of the signal is a step-function: Consumers with a valuation in the higher half of

the interval of possible valuations are more likely to generate the high signal than the

low signal. By contrast, consumers with a valuation in the lower half of the valuation

spectrum are more likely to generate the low signal. The firms will use the available in-

formation to price discriminate: They will offer a relatively low price to all consumers

who generate the low signal and will quote higher prices to consumers who generate the

high signal.

The equilibrium price dispersion induced by the availability of said information en-

dows consumers with incentives to search: Consumers who receive a comparatively high

price at a firm may find it worthwhile to visit another firm in the hope of attaining a

lower price there. Importantly, the strength of a consumer’s incentives to search depend

on her valuation. Consumers with very low valuations (i.e. with a valuation below the

lowest equilibrium price) will never find it worthwhile to visit multiple firms. Moreover,

consumers with very high valuations will also not find it worthwhile to search in pursuit

of a lower price, because the probability of generating the favorable low signal is small

for them. Thus, consumers with intermediate valuations have the highest incentives to

search, which matches the empirical pattern documented by Byrne and Martin (2021).6

Different levels of search costs generate structurally different equilibria. In a nutshell,

this is based on the fact that consumers can constrain the firms’ prices with the threat of

6The authors show that there is an inverse U-shaped relationship between income and search intensity.
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searching. This is because any firm has incentives to deter consumers who visit them from

continuing to search. If search costs are sufficiently low, consumers are endowed with a

strong threat of searching. The firms will, in response, optimally set comparatively low

prices. Formally, the highest equilibrium price will be set in such a way that the consumers

with the highest search incentives are exactly indifferent between continuing to search or

not when receiving this price.

There is a non-monotonic relationship between the level of search costs and the number

of firms consumers visit in equilibrium. When search costs are high, any firm sets the

prices it would offer to consumers if it were a monopolist and consumers do not find it

optimal to continue searching, even when receiving the highest equilibrium price. Perhaps

surprisingly, all consumers also only visit one firm in equilibrium when search costs are

small. Intuitively, the mere threat of searching is sufficient to push down prices (and their

difference) so much that the actual act of visiting multiple firms is not optimal.

At intermediate levels of search costs, consumers will visit multiple firms in equilib-

rium. This holds by the following logic: When search costs are at intermediate levels,

consumers cannot effectively constrain the prices of firms with the threat of searching, so

firms set comparatively high prices. However, because search costs are not prohibitively

high, consumers with intermediate valuations, who have the highest incentives to search,

will find it optimal to continue searching if they receive an unfavorably high price.

Consumer welfare, which I measure by ex-ante consumer utility, is maximal when

search costs are zero. However, the effects of changes in search costs are also non-

monotonic. Reductions of search costs affect prices through two possible channels, namely

by (i) changing the search incentives of consumers and by (ii) potentially expanding the

set of consumers who search on the equilibrium path.7 Expansions of the set of consumers

who search on the equilibrium path will induce firms to raise the lowest equilibrium price.

This is because any consumer who arrives at a firm after visiting its rival(s) would directly

buy when offered the lowest equilibrium price.8

At low levels of search costs, only the first channel is active, because consumers do not

visit multiple firms in equilibrium. Thus, an increase of search costs will lead to higher

prices because the ability of consumers to restrict the firms’ prices by threatening to

search is reduced.

There is a threshold level of search costs at which a marginal increase of search costs

will trigger a switch of the equilibrium that is played. When this happens, both equilib-

rium prices (or their average levels) will jump up discontinuously and consumer welfare

is substantially reduced. This upward jump in prices is accompanied by a discontinuous

increase in the amount of consumers that visit multiple firms on the equilibrium path.

7I say that a consumer searches on the equilibrium path if and only if she would continue searching
when offered the highest equilibrium price.

8Otherwise, paying a search cost to visit an additional firm would not have been optimal.
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At this point of discontinuity, both aforementioned channels are active. Consumers lose

their ability to sustain low prices with the credible threat of searching, which induces

an upward jump in the prices the firms set when observing the high signal realization.

This, in turn, triggers search by a strictly positive measure of intermediate-valuation

consumers. Because these consumers generate locally price inelastic demand around the

lowest equilibrium price, the latter also jumps up discontinuously.

In any equilibrium in which consumers visit multiple firms, an increase of search costs

leads to a reduction of the lowest equilibrium price. This result is driven by the second

working channel: Less consumers arrive at any firm after visiting its rival(s), which reduces

the upward pressure this consumer group exerts on said price.

In section 2.5, I consider generalized signal distributions. I show that the structure

of any pure-strategy equilibrium mirrors its counterpart in the baseline model when re-

stricting attention to binary signal distributions that are (i) continuously differentiable,

(ii) strictly monotonic, and (iii) generate signal probabilities between zero and one for

any valuation.

The rest of this chapter proceeds as follows: I lay out the related literature in section

2. In section 3, I set up the theoretical model, which is solved in section 4. I study the

aforementioned extension in section 5 and conclude in section 6.

2.2 Related literature

My work is related to the developing strand of theoretical research which connects price

discrimination to endogenous consumer search choices.9 Fabra and Reguant (2020) study

a simultaneous search setting where firms observe a consumer’s desired quantity and price

discriminate based on this information. Armstrong and Zhou (2016) and Preuss (2022)

consider models where firms condition prices on a consumer’s search history.10 Mauring

(2022) and Atayev (2022) study a setting with shoppers and non-shoppers as defined in

Burdett and Judd (1983) and Stahl (1989). Mauring (2022) and Atayev (2022) assume

that firms receive imperfect information about the affiliation of a particular consumer

to the groups of shoppers and non-shoppers. Bergemann et al. (2021) consider a model

where competing firms receive imperfect information about a consumer’s search technol-

ogy and/or the number of price offers a consumer obtains or has previously obtained.11

In contrast to all these papers, I study a model in which firms receive information about

9My results are also related to the well-known Diamond paradox established in Diamond (1971).
I show that the presence of a sufficiently informative signal about consumer valuations is sufficient to
generate equilibria with on-path search when search costs are at intermediate levels.

10Armstrong and Vickers (2019) analyse a setting where firms face exogenously captive and non-
captive consumers and receive information about this status.

11Garrett et al. (2019) consider a model of second-degree price discrimination in which consumers differ
in their choice sets. Braghieri (2019) studies a model where firms condition prices on how a consumer
reaches a firm — through an intermediary or via a sequential search process.
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consumers’ valuations.

Marshall (2020) is the only other paper which studies price discrimination based on

information about valuations together with search. However, while Marshall (2020) sets

up and empirically calibrates a structural model, he provides no analytical equilibrium

characterization. Moreover, there are important differences in setup: In contrast to my

work, Marshall (2020) assumes that sellers have perfect information about all components

of a consumer’s preferences except for search costs and considers a different search setup.

In Marshall (2020), recall is impossible: When a consumer decides to search, she will

never return to purchase at the firm she interacted with. In my framework, recall is free.

Moreover, my work is related to a handful of papers which study price discrimination

based on noisy information about preferences in competitive settings.12 Esteves (2014)

analyses a Hotelling-style framework where firms receive noisy information about the

horizontal preference parameters of consumers. Peiseler et al. (2022) analyse collusion

within a model that is quite similar to the one analysed in Esteves (2014). Clavorà Braulin

(2021) studies a horizontal differentiation setting where consumer preferences vary in

two dimensions. In Clavorà Braulin (2021), firms have perfect information about the

realizations of one dimension of consumer preferences, but not both.13 Belleflamme et al.

(2020) study a homogeneous goods model where two competing firms have differential

access to an imperfect profiling technology. My work differs from all these papers in the

sense that I study a model with search frictions, which the preceding papers do not.14

2.3 Framework

There is a unit mass of consumers, who each want to buy one unit of an indivisible and

homogenous good. There are N active firms indexed j ∈ {1, 2, ..., N} who produce this

good at zero marginal cost. Consumers visit firms through sequential search. They can

costlessly visit one firm, but visiting any firm after the first incurs search costs c > 0 per

firm that is additionally visited. When a consumer visits a firm and decides to continue

searching, the consumer can still purchase the good from the initially visited firm at the

price that was previously offered to her without further cost.

Consumers are heterogeneous in their valuations for the good (v), which are private

12My work also has ties to the theoretical contributions which study price discrimination based on
imperfect information in monopoly settings, such as Belleflamme and Vergote (2016), de Cornière and
Montes (2017), and Valletti and Wu (2020).

13All the listed papers also assume that the market is fully covered, which I do not. Rhodes and Zhou
(2022) show that this assumption is not without loss of generality when studying the welfare effects of
price discrimination based on perfect information.

14Ali et al. (2023) study optimal information disclosure by consumers in a model of price discrimina-
tion. Guembel and Hege (2021) consider a model in which competing firms receive noisy signals about
the most favored products of consumers and use these signals to offer products designed to match the
individual consumers’ tastes.
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information to each consumer. The distribution of these valuations, namely the uniform

distribution on [0, 1], is common knowledge. When a consumer with valuation v buys the

good at price p, the utility of the consumer is:

u(v, p) = v − p (2.3.1)

The firms have access to information about consumers. When a firm j is visited by a

consumer, this firm receives a private binary signal ṽj ∈
{
ṽL, ṽH

}
about the valuation of

this consumer. The probability distribution of the signal is

Pr(ṽH |v) =

α if v ≥ 0.5

1− α if v < 0.5
(2.3.2)

I assume that α ∈ (0.5, 1). All firms know nothing about any consumer’s search his-

tory. Every firm can offer a different price to any arriving consumer. As in Diamond

(1971), firms thus cannot attract consumers through downward deviations from equilib-

rium prices.

The exact timing of the game is as follows: After discovering their valuation, any

consumer randomly visits some firm first (at zero cost). When the consumer visits this

firm, nature draws a signal according to the aforementioned distribution and privately

reveals the outcome to the firm that is visited first.15 Based on the signal it observes, this

firm offers the consumer a price. After observing this price offer, the consumer decides

whether or not she wants to visit an additional firm at cost c > 0.

If the consumer decides to visit an additional firm, nature draws another signal with

the aforementioned distribution and privately reveals the signal to the firm which is visited

second. Conditional on the consumer’s valuation, this signal is drawn independently of

the signal received by the firm which was visited first. Based on the signal it observes,

the firm that is visited second offers the consumer a price.

The consumer can sequentially visit all N firms. Any firm that is visited will observe

a signal with the aforementioned properties and will, based on this signal, offer the

consumer a price. The consumer always chooses which firm to visit next randomly.16

The game ends when all firms have been sampled or the consumer stops the search

process. Then, the consumer decides from which firm to buy the product, or not to buy

the good at all, in which case the consumer receives zero utility.

I study perfect Bayesian equilibria and restrict attention to symmetric equilibria. Any

firm can be called to act in two information sets: It can be visited by a consumer and

15Formally, the equilibrium strategy of nature is thus to reveal the signal ṽL with probability Pr(ṽL|v)
and the signal ṽH with probability Pr(ṽH |v) whenever prompted.

16This is without loss of generality because I restrict attention to symmetric equilibria and all firms
are ex-ante identical.
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observe the low signal or it may be visited by a consumer and observe the high signal.

Thus, a pure strategy of any firm is a price tuple (pL, pH): The firm offers the price pL

(pH) to any consumer who visits it and generates the low (high) signal. A consumer’s

search strategy must optimally define whether or not to continue search, conditional on

the search history. Because I restrict attention to symmetric equilibria and the optimal

search rule will thus be myopic, a consumer’s search strategy can be described by a cutoff

p̂(v): A consumer with valuation v will visit another firm if and only if the lowest price

she has in hand is above p̂(v).

Both information sets of the firms are on the equilibrium path, because all consumers

choose which firm to visit first randomly. The firms’ beliefs are thus pinned down by

Bayes’ rule. Firms form beliefs over (i) the valuation of the consumer, (ii) the consumer’s

search queue, and (iii) the prices the consumer has received from the other firms (if any).

Given the timing outlined above, the off-path beliefs consumers form do not affect

their decisions, implying that these beliefs do not need to be restricted throughout the

analysis. At any point during the game, the only part of the history a consumer does not

know is what signals were generated at previously visited firms. However, these do not

affect her incentives to search, conditional on the best price in hand. This is because her

utility of visiting the next firm only depends on the strategy of nature and the equilibrium

strategy of firms, both of which are taken as given under sequential rationality.

Even under slight perturbations of the timing, the off-path beliefs of consumers do

not play a central role. Suppose firstly that nature privately draws N signals for any

firm at the beginning of the game, but only reveals any firm’s signal to the firm when

it is visited by the consumer. Then, assuming that the consumer’s beliefs regarding the

choices of nature are passive will ensure that all results from the equilibrium analysis I

present continue to hold.17 The only timing under which consumers would have to form

beliefs about the choices of firms would be if firms, before being visited, privately set

their price strategies. In such a framework, imposing that consumers’ beliefs are passive

with respect to the strategy of other firms would imply that all results of my equilibrium

analysis extend.

In both alternative setups, the assumption of passive beliefs seems reasonable, given

the well-known idea that you cannot signal what you don’t know. Consider the first

alternative timing: Nature is not a strategic player and firms do not observe the signals

that nature draws for other firms. Hence, a given firm’s choices cannot be informative

about these signals. Now consider the second alternative timing. In this framework, firms

do not observe their rival’s strategies, so their pricing decisions cannot be informative

about the former.

17Formally, the consumers’ beliefs would have to be passive in the following sense: When receiving
an off-equilibrium price offer, the consumer continues to believe that nature followed its equilibrium
strategy, i.e. has drawn signals according to the aforementioned distribution for any firm.
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Before moving forward with the analysis of the competitive equilibria, I consider the

monopoly benchmark. To that end, I define ΠM(pj|ṽk) as the expected profit a monopolist

with access to the aforementioned signal stucture obtains when offering the price pj to a

consumer who generates the signal ṽk, with global maximizers {pk,M}k∈{L,H} given by:

pk,M = argmax
pj

∫ 1

pj

Pr(ṽk|v)dv︸ ︷︷ ︸
:=ΠM (pj |ṽk)

(2.3.3)

The monopoly profit functions are strictly concave piecewise and the implied optimal

monopoly prices are pL,M = 1/4α and pH,M = 0.5.18

Having defined the monopoly prices, we can also briefly consider the case with fric-

tionless search, i.e. when c = 0. Then, all firms will offer the same uniform price in

equilibrium. Any uniform price below pL,M can be supported as an equilibrium.

I define whether there is search on the equilibrium path in a given equilibrium using

the set of consumer valuations for which the probability of visiting multiple firms in

equilibrium is strictly positive. I say that there is search on the equilibrium path if and

only if this set has positive measure. Finally, I impose the following tie-breaking rule:

Assumption 1 Consumers continue searching if and only if it is strictly optimal for

them to do so.

2.4 Equilibrium analysis

2.4.1 Pure-strategy equilibria

In this section, I characterize the symmetric pure-strategy equilibria that exist in the

aforementioned framework. To begin with, I define the optimization calculus of the firms

and the consumers. Because the consumers’ optimal search rule is myopic, a consumer

with valuation v whose best price in hand is pj will visit another firm if and only if:∑
k∈{L,H}

Pr(ṽk|v)max{v − pk, 0} − c−max{v − pj, 0} > 0 (2.4.1)

Now consider the optimization problem of the firms, which optimally set their two prices

pL and pH , given the consumers’ search behaviour represented by the function p̂(v). In

an equilibrium without on-path search, a firm maximizes the following profit function

18The monopoly low signal price pL,M is falling in α because a more precise signal implies that the
average valuation of consumers that generate the low signal decreases.
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through choice of pk when observing the signal ṽk, with k ∈ {L,H}:

ΠC(pj; ṽ
k) = pj

[ ∫ 1

pj

1

N
1[pj ≤ p̂(v)]Pr(ṽk|v)dv

]
(2.4.2)

In a symmetric equilibrium with search on the equilibrium path, this profit function

becomes:

pj

[ ∫ 1

pj

1

N

[
1[pj ≤ p̂(v)] + 1[pj > p̂(v)]1[pj < pH ]

(
Pr(ṽH |v)

)N−1]
Pr(ṽk|v)dv +

N∑
j=2

∫ 1

pj

1[pH > p̂(v)]

N

[
1[pj ≤ p̂(v)]Pr(ṽH |v)j−1+1[pj > p̂(v)]1[pj < pH ]Pr(ṽH |v)N−1

]
Pr(ṽk|v)dv

]
(2.4.3)

Any symmetric equilibrium in pure strategies is characterized by the following propo-

sition:

Proposition 1 (Equilibrium structure)

In any symmetric pure-strategy equilibrium, pL < pH must hold. Moreover, the set of

consumers with v ≥ pH that (i) have a strictly positive probability of being offered pH and

(ii) search when the best price in hand is pH must have measure zero.

In a nutshell, the first result holds because the signal is strictly informative about the

consumers’ valuations (since α > 0.5 holds). Thus, firms would not be optimizing in a

hypothetical equilibrium in which pH ≤ pL. The second result must hold by the following

logic: Consider a symmetric pure strategy equilibrium and suppose, for a contradiction,

that there is a strictly positive measure of consumers with v > pH and p̂(v) < pH who

receive the price pH with strictly positive probability (at any firm). Any such consumer

who receives pH at the initial firm will continue searching until obtaining a lower price

or there are no more firms to sample. Thus, there would be a strictly positive measure

of consumers with v > pH who receive pH at all N firms. However, this would induce

some firm to slightly undercut pH , because this ensures that the sale is made to all these

consumers, which represents a contradiction.

The insights of this proposition imply that, if there is search on the equilibrium path,

only consumers with intermediate valuations will visit multiple firms.19 No consumer with

v ≤ pL will find it optimal to continue searching after receiving either price. Moreover,

any consumer with v ≥ pH must not find it optimal to continue searching after receiving

pH , since this would endow the firms with incentives to undercut this price. Hence, only

19Naturally, no consumer would find it optimal to continue searching after receiving pL, because search
costs are strictly positive.
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consumers with v ∈ [pL, pH ] can potentially search on the equilibrium path. This search

behaviour matches the empirical pattern established in Byrne and Martin (2021), who

document that there is an inverse U-shaped relationship between search intensity and

income.

Based on this, we can further characterize any symmetric pure-strategy equilibrium

with on-path search:

Lemma 1 (Equilibrium search patterns)

In a symmetric pure-strategy equilibrium with search on the equilibrium path, (i) pH = 0.5,

(ii) c
α
+ pL < 0.5 ≤ c

1−α
+ pL, and (iii) pL = pL,S must hold, where:

pL,S =
α + 2(1− α)

(
1− (1− α)N−1

)
(0.5α− c)

4α2 + 2α(1− α)
(
1− (1− α)N−1

) (2.4.4)

The equilibrium high signal price pH must be exactly equal to 0.5 if there is search on

the equilibrium path. Suppose, for a contradiction, that pH < 0.5 and there is search on

the equilibrium path. Then, there are two possibilities: (i) A consumer with v = pH < 0.5

strictly prefers to search when receiving pH or (ii) a consumer with v = pH weakly prefers

to not search when receiving pH . In the first case, all consumers with v ∈ [pH , 0.5) will

search when receiving pH , which is a contradiction by the insights of proposition 1. In

the second case, no consumer will find it optimal to search on the equilibrium path, since

the incentives to search are maximal for consumers with v ∈ [pH , 0.5), a contradiction.

By similar arguments, no equilibrium with pH > 0.5 and on-path search can exist either.

The chain of inequalities listed in the second point must hold by the following logic:

In an equilibrium with on-path search, high-valuation consumers (i.e. consumers with

v > 0.5) must not find it optimal to continue search when their best price in hand is

pH . Thus, their cutoff price must be above pH , which implies that search costs must be

high enough to ensure that 0.5 ≤ pL + c/(1 − α) holds. By contrast, some consumers

with intermediate valuations must find it optimal to search after receiving pH . This is

guaranteed if and only if pL + c/α < 0.5, because the cutoff price of consumers with

v ∈ (pL + c/α, 0.5) would then be equal to pL + c/α, i.e. below pH = 0.5.

To establish that pL = pL,S as defined in equation (2.4.4) must hold, we need to

characterize the equilibrium search behaviour of consumers. There are three different

valuation intervals to consider, namely (i) v ∈ [0, pL + c/α], (ii) v ∈ (pL + c/α, 0.5), and

(iii) v ∈ [0.5, 1]. Consumers with v ≤ pL + c/α will not visit multiple firms, because their

gains of search are strictly negative for any best price in hand. By contrast, consumers

with v ∈ (pL+ c/α, 0.5) will find it optimal to continue searching when their best price in

hand is pH . Consumers with v ∈ [0.5, 1] will find it optimal to refrain from searching in

equilibrium, because 0.5 ≤ pL+c/(1−α). For convenience, I now visualize the sequentially

rational cutoff price p̂(v) function for different consumer groups in this equilibrium:
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Figure 2.1: Price cutoffs in the search equilibrium

Having noted this, consider the optimization problem of a firm that receives the low

signal. When offering a price pj ∈ [0, pL + c/α], no consumer will continue searching

and all consumers who arrive at this firm after searching will buy. Consumers with v ∈
(pL + c/α, 0.5) who did not start their search process at this firm arrive after searching if

and only if they generate the high signal at all firms they have previously visited. Thus,

the low signal profit function is continuously differentiable when pj ∈ [0, pL + c/α] and is

given by:

ΠC(pj; ṽ
L) = pj

∫ 1

pj

(1/N)Pr(ṽL|v)dv︸ ︷︷ ︸
First arriver demand

+pj

N∑
j=2

[ ∫ 0.5

c/α+pL
(1/N)Pr(ṽL|v)Pr(ṽH |v)j−1dv

]
︸ ︷︷ ︸

Demand from consumers who have searched

(2.4.5)

Setting up the first-order condition that pL must solve and rearranging terms yields the

expression given in equation (2.4.4). Note that pL,S > pL,M must hold. This follows from

the fact that consumers who arrive at a firm after searching generate inelastic demand

around the equilibrium low signal price, which pushes up this price.

The characterization of possible equilibrium candidates without on-path search is more

straightforward. One such candidate is the monopoly outcome, which can be sustained as

a competitive equilibrium when search costs are high enough. Then, firms will optimally

set the prices pL,M and pH,M and no consumer will find it worthwhile to visit multiple

firms in equilibrium. I call this equilibrium candidate the monopoly price equilibrium.

There is another candidate for a symmetric equilibrium without search on the equi-

librium path. In this equilibrium, pL = pL,M must hold and the high signal price is equal

to pL + c/α, i.e. is set to make consumers with the highest incentives to search exactly

indifferent between continuing to search or not. I define this equilibrium candidate as the

search deterrence equilibrium and now visualize the cutoff price function p̂(v) for this

equilibrium:
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Figure 2.2: Price cutoffs in the search deterrence equilibrium

There are no other candidates for a symmetric pure-strategy equilibrium. The argu-

ments pertaining to lemma 1 imply that there is a unique candidate for a symmetric

equilibrium with on-path search. In an equilibrium without on-path search, pL = pL,M

must hold and pH must either be equal to pL + c/α or 0.5. The low signal price must

be equal to pL,M because no consumer continues searching when offered a price in an

open ball around the equilibrium pL. It would never be optimal to set a high signal price

above pH,M = 0.5, because a downward deviation to pH,M would guarantee higher profits.

Setting any price below 0.5 can only be optimal for a firm if marginal upward deviations

would trigger search by a large amount of consumers, which requires that pH = pL+ c/α.

These notions are formalized in the following proposition.

Proposition 2 (Pure-strategy equilibrium candidates)

There are three candidates for a symmetric pure-strategy equilibrium, namely:

• The monopoly price equilibrium, in which (pL, pH) = (pL,M , pH,M).

• The search deterrence equilibrium, in which (pL, pH) = (pL,M , pL,M + c/α).

• The search equilibrium, in which (pL, pH) = (pL,S, pH,M).

Thus, there potentially exist structurally different equilibria in this model. I now

establish when the aforementioned equilibrium candidates exist:

Proposition 3 (Existence regions: pure-strategy equilibria)

The existence regions for the symmetric pure-strategy equilibrium candidates are as fol-

lows:

• The monopoly price equilibrium exists if and only if c ≥ α(0.5− pL,M).

• The search equilibrium exists if and only if (i) c ∈
[
(1−α)(0.5−pL,S), α(0.5−pL,S)

)
and ΠC(pL,S + c/α; ṽH) ≤ ΠM(0.5, ṽH).

• The search deterrence equilibrium exists if and only if (i) c ∈
(
0, 0.5(0.5 − pL,M)

)
and ΠC(pL,M + 2c; ṽH) ≤ ΠM(pL,M + c/α; ṽH).
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Given that I have derived closed-form expressions for pL,M , pH,M , and pL,S, one can

analytically verify which equilibrium exists for any parameter combination.

Before visualizing the parameter regions for which these equilibrium candidates actu-

ally exist, it is useful to consider the ordering of the different equilibrium prices, holding

the parameters fixed. The low signal price in the search equilibrium (pL,S) must be strictly

above the monopoly low signal price pL,M . Moreover, the high signal price in the search de-

terrence equilibrium must be strictly below the monopoly high signal price (pH,M = 0.5),

because this equilibrium would not exist otherwise.

I now visualize the results of proposition 3 in the following figure, in which I plot

different values of signal precision (α) on the x-axis and different search costs (c) on the

y-axis. A given graph corresponds to a fixed level of firms (N ∈ {2, 3, 4}) The content can
be interpreted as follows: Blue dots indicate that the unique equilibrium in pure strategies

is the monopoly price equilibrium. Yellow dots indicate that the search equilibrium exists

and is unique (within the set of symmetric pure-strategy equilibria). Light green dots

indicate that both the search deterrence and the search equilibrium exist. Dark green

dots indicate that the search deterrence equilibrium exists and is unique (again, within

the set of symmetric pure-strategy equilibria).

Figure 2.3: Existence regions: pure-strategy equilibria

The key message of this graph is that there is a non-monotonic relationship between

the level of search frictions and how many firms consumers visit in equilibrium. When

search costs are low or high, all consumers will only visit one firm in equilibrium. However,

when search costs are at intermediate levels, there is search on the equilibrium path.

When search costs are sufficiently high, the monopoly outcome will emerge. At any

possible equilibrium price, consumers would never find it optimal to search. Thus, any

firm will just be visited by consumers who randomly arrive there first. Because con-

sumers cannot effectively constrain prices with a credible threat of searching, all firms

will optimally charge the monopoly prices.

The search equilibrium exists if and only if search costs are at an intermediate level. To
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see why this holds, recall the way in which consumers must search in an equilibrium with

on-path search (see proposition 1): High-valuation consumers must not find it optimal

to continue searching when receiving pH , while consumers with intermediate valuations

must find it optimal to continue searching if their best price in hand is pH . Because the

incentives to search are highest for consumers with v ∈ (pL,S + c/α, 0.5), intermediate

search costs are necessary and sufficient to sustain this search behaviour in equilibrium.

The search deterrence equilibrium exists if search costs are sufficiently low. This holds

by the following logic: In general, firms have a desire to deter consumers who visit them

from continuing to search, because consumers who visit a given firm’s rival will buy at

this firm with lower probability. Thus, consumers can constrain the prices of the firms

with the threat of searching. When search costs are low, this threat of searching is very

strong, which induces the firms to optimally set comparatively low prices. Because the

firms’ prices are small, consumers will not search on the equilibrium path. Intuitively, the

mere threat of searching is sufficient to push down prices (and their difference) so much

that the actual act of visiting multiple firms is not optimal.

Finally, there are small regions in which no symmetric pure-strategy equilibrium exists.

For such parameters, mixed-strategy equilibria will be played, which I characterize in the

next subsection.

2.4.2 Mixed-strategy equilibria

Now, I move on to characterize the set of symmetric mixed-strategy equilibria (MSE)

that can exist in the baseline model. First, note the results of the following lemma:

Lemma 2 (Mixed-strategy equilibria: structure)

In any symmetric MSE:

• The firms offer a deterministic price pL when observing the low signal. This price

is the lowest price that is offered in equilibrium.

• The probability that a firm offers a price above 0.5 after either signal is 0. Consumers

with v > 0.5 will not visit multiple firms in equilibrium.

The first result follows from the fact that the demand generated by consumers who

arrive at a firm after searching will be fully inelastic around the lowest equilibrium price.

This is because it can only be worthwhile for a consumer to search if she would directly

buy when offered the lowest equilibrium price. Thus, the firms’ profit functions will be

strictly concave around the lowest equilibrium price, which implies that this price must be

played with positive probability. Moreover, this lowest price must be offered after the low

signal and no other price can be offered to consumers who generate this signal, because

the low signal profit function has a unique maximum in any mixed-strategy equilibrium.
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Secondly, the highest equilibrium price (call this pmax) has to be weakly below 0.5.20

If pmax > 0.5, all consumers with v ≥ pmax have identical search incentives and there are

just two possible outcomes: Either all consumers with v ≥ pmax search upon receiving

pmax, or none of them search. If all of them search, there are either undercutting incentives

from pmax (if pmax is played with positive probability) or pmax yields zero profits (if pmax

is played with zero probability). If none of them search at this price pmax, they would

also not search when offered the price pj = 0.5, so firms would find it optimal to deviate

downwards from pmax to 0.5. In any case, we obtain a contradiction.

We now work towards constructing an equilibrium in mixed strategies with elements

(pL, pH , p̄H , FH(p)): When observing the low signal, firms set the price pL. When observ-

ing the high signal, firms draw prices from the distribution FH(p). I define the convex

hull of the support of this distribution as [pH , p̄H ].

First, one can show that pL+ c/α ≤ pH must hold in such an equilibrium. Otherwise,

there exists an interval of prices above pH for which no consumer would continue searching.

But then, the high signal profit function of a firm would be strictly increasing for prices

around pH , a contradiction. This result implies that all consumers with v ∈ (pL+c/α, 0.5)

will continue searching when receiving any any price pj ∈ (pL+ c/α, p̄H ]. By lemma 2, no

other consumers can search on-path.

When considering an equilibrium in mixed strategies, it is hence important to dis-

tinguish whether the price pL + c/α, which deters search by all consumers, is played

with positive probability or not. If it is played with zero probability, all consumers with

v ∈ (pL + c/α, 0.5) will continue searching after visiting some firm if and only if they

generate the high signal at this firm. Thus, the measure of consumers who arrive at any

firm after searching in such an MSE must be the same as in the search equilibrium. If

this price is played with positive probability (i.e. FH(pL + c/α) > 0), then the measure

of consumers who search on the equilibrium path would be smaller, ceteris paribus. This

is because consumers with v ∈ (pL + c/α, 0.5) will continue searching after visiting some

firm if and only if they generate the high signal and receive a price above pL + c/α.

This distinction also matters for the derivation of the equilibrium low signal price.

Formally, the low signal profit function is given by the following for all prices in an open

ball around the equilibrium pL:

pj

∫ 1

pj

1

N
Pr(ṽL|v)dv︸ ︷︷ ︸

First arriver demand

+pj

N∑
j=2

[ ∫ 0.5

c/α+pL

1

N
Pr(ṽL|v)

[
Pr(ṽH |v)(1− FH(pL + c/α))

]j−1
dv

]
︸ ︷︷ ︸

Demand from consumers who have searched

(2.4.6)

20Formally, I define the highest price as the supremum of the support of the price distribution from
which firms draw prices when they observe the high signal.
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As a result, the equilibrium low signal price must solve:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pL

+
N∑
j=2

∫ 0.5

c/α+pL

1

N
Pr(ṽL|v)

[
Pr(ṽH |v)(1− FH(pL + c/α))

]j−1
dv = 0

(2.4.7)

If FH(pL + c/α) = 0, the low signal profit function is equal to the function given

in equation (2.4.5) for all prices in an open ball around the equilibrium pL. Then, the

equilibrium pL must be equal to pL,S. If FH(pL + c/α) > 0, the upward pricing pressure

created by consumers who sample multiple firms is reduced, which means that pL ∈
[pL,M , pL,S] must hold in such a mixed-strategy equilibrium.

Now consider the optimization problem a firm faces when it is visited by a consumer

who generates the high signal. Suppose a firm offers a price pj ∈ [0, pL + c/α]. The

resulting high signal profits would be:

ΠC(pj; ṽ
H) = pj

∫ 1

pj

1

N
Pr(ṽH |v)dv+

pj

N∑
j=2

[ ∫ 0.5

c/α+pL

1

N
Pr(ṽH |v)

[
Pr(ṽH |v)(1− FH(pL + c/α))

]j−1
dv

]
(2.4.8)

By contrast, offering any price pj ∈ (pL + c/α, p̄H ] triggers search by all consumers with

v ∈ (pL + c/α, 0.5). Thus, the high signal profits from setting such a price are:

pj

∫ 1

0.5

1

N
Pr(ṽH |v)dv + pj

N∑
j=1

[ ∫ 0.5

pj

1

N
Pr(ṽH |v)

[
Pr(ṽH |v)(1− FH(pj))

]N−1
dv

]
(2.4.9)

By the results of lemma 2 and because the price distribution FH(p) cannot have

an atom at p̄H , the profits a firm makes when offering the price p̄H to consumers who

generate the high signal are equal to (1/2N)αp̄H . Any price pj in the the support of

FH(pj) needs to yield the same profits in order for the mixing indifference condition to

be satisfied. For any pj > pL + c/α, FH(pj) must thus solve:

FH(pj; p̄
H) = 1−

(
α

2N(1− α)N
p̄H − pj

pj(0.5− pj)

)1/(N−1)

(2.4.10)

I formalize the aforementioned discussion in the following proposition, recalling that I

have defined [pH , p̄H ] as the convex hull of the support of FH(pj):

Proposition 4 (Mixed-strategy equilibrium candidates)

Any symmetric MSE must have one of the following structures:

1. The price pL+c/α is offered with zero probability. The distribution FH(pj) is atom-
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less and gapless, with pL + c/α < pH and p̄H < 0.5.

2. The price pL+ c/α is offered with positive probability, i.e. FH(pL+ c/α) > 0. There

exists a p̃H > pL + c/α such that no price pj ∈ (pL + c/α, p̃H) will be offered. The

distribution FH(pj) is gapless on [p̃H , p̄H ], with p̄H ≤ 0.5.

I derive candidates for an equilibrium with either structure. I name the candidate

that satisfies the first structure the mixed search equilibrium, because the structure of

this equilibrium closely resembles the search equilibrium. In this equilibrium candidate,

pL = pL,S holds and pH solves equation (2.4.10), noting that FH(pH ; p̄H) = 0 must hold.

For any pj ∈ [pH , p̄H ], FH(pj; p̄
H) needs to satisfy equation (2.4.10). The price p̄H < 0.5

must make consumers with v > 0.5 exactly indifferent between continuing to search and

not.21 Thus, it must satisfy the following:

p̄H = (1− α)pL,S + α

∫ p̄H

pH
pdFH(p) + c (2.4.11)

A combination (pL,S, pH , p̄H , FH(p)) that satisfies these conditions constitutes an equi-

librium if pL,S + c/α < pH < p̄H < 0.5 and ΠC(pL,S + c/α; ṽH) ≤ ΠM(p̄H ; ṽH) jointly

hold.

When deriving a candidate for an equilibrium that follows the second structure, I

restrict attention to equilibria in which p̃H = p̄H = 0.5 holds for simplicity. Such an

equilibrium candidate is thus fully characterized by FH(pL + c/α), since this pins down

the equilibrium pL, which must solve equation (2.4.7). The probability FH(pL + c/α)

must be set such that ΠC(pL + c/α; ṽH) = ΠC(0.5; ṽH). I name the resulting equilibrium

candidate the partial search deterrence equilibrium because this equilibrium in mixed

strategies can be viewed as a hybrid of the search deterrence and the monopoly price

equilibrium.

More precisely, the partial search deterrence equilibrium takes the following form:

Consider a probability FH(pL + c/α) for which ΠC(pL + c/α; ṽH) = ΠC(0.5; ṽH) holds,

where pL solves equation (2.4.7) and the two profits were defined in equations (2.4.8) and

(2.4.9). Assume that firms offer the price pL when observing the low signal and, when

observing the high signal, offer the price pL + c/α with probability FH(pL + c/α) and

the price 0.5 with probability 1 − FH(pL + c/α). This pricing strategy constitutes an

equilibrium if pL + c/α < 0.5 and 0.5 < (1−α)pL +α((pL + c/α)FH(pL + c/α) + 0.5(1−
FH(pL + c/α))) + c jointly hold.

I numerically calculate these equilibrium candidates and verify when they constitute

equilibria. This analysis also suggests that, fixing the parameters, there is always a unique

21If consumers with v > 0.5 strictly prefer to search when receiving p̄H , setting this price yields zero
profits, a contradiction. If consumers with v < 0.5 strictly prefer to not search when being offered this
price, there is a profitable upward deviation.



20

candidate for an equilibrium in mixed strategies. The results are visualized in the following

figure, which can be interpreted as follows: At orange dots, the mixed search equilibrium

exists. At green dots, the partial search deterrence equilibrium exists.

Figure 2.4: Existence regions: mixed-strategy equilibria

2.4.3 Equilibrium predictions and comparative statics

A corollary of the previous results is that the equilibria of the aforementioned model

converge to the Diamond equilibrium when the signal becomes uninformative.

Corollary 1 (Uninformative signals)

As α → 0.5, the only equilibrium that exists is the monopoly equilibrium and limα→0.5 |pH,M−
pL,M | = 0.

The previous analysis has shown that there will be parameter regions for which mul-

tiple equilibria exist. To deal with this, I impose the following assumption:

Assumption 2 When multiple equilibria exist, an equilibrium in which industry profits

are maximal will be played.

To clarify the implications of this assumption, note the results of the following corol-

lary:

Corollary 2 (Ordering of profits)

When pL,M + c/α ≥ 0.5, the monopoly price equilibrium is unique. For any parameter

combination at which pL,M + c/α < 0.5, firm profits would be highest in the search equi-

librium. Firm profits in any mixed-strategy equilibrium would be higher than in the search

deterrence equilibrium.

This corollary establishes that equilibrium multiplicity can only be an issue when

pL,M + c/α < 0.5. For these parameters, four potential equilibria can exist: the search

equilibrium, the search deterrence equilibrium, the mixed search equilibrium, and the

partial search deterrence equilibrium. The numerical existence results pertaining to the
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analysis of the mixed-strategy equilibria have suggested that the two mixed-strategy

equilibria never jointly exist. Using the results of the above corollary, we can establish

the following under assumption 2: When the search equilibrium exists, it will be played.

If this equilibrium does not exist but an equilibrium in mixed strategies exists, the latter

will be played. Otherwise, the search deterrence equilibrium will be played.

I now visualize which equilibrium will be played for different parameter combinations

in the following graph, where I plot different values of signal precision (α) on the x-axis and

different search costs (c) on the y-axis. Yellow dots indicate that the search equilibrium

exists. Orange dots signify that the mixed search equilibrium will be played, while the

partial search deterrence equilibrium is played at pink points. Green dots indicate that

the search deterrence equilibrium is the only equilibrium that exists. Blue dots indicate

that the monopoly equilibrium exists. I visualize this content when there are two (N = 2),

three (N = 3) and four (N = 4) active firms, respectively:

Figure 2.5: Existence regions: all equilibria

Recall that there are parameter regions for which no symmetric pure-strategy equilibrium

exists, as shown in figure 2.3. In these regions, a mixed-strategy equilibrium will emerge.

Consider the space of parameters in between the parameter regions for which the search

and the search deterrence equilibrium exist, respectively. For these parameters (roughly,

c ∈ [0.01, 0.03] and α ∈ [0.75, 0.95]), the search incentives of consumers with v > 0.5 are

too weak to sustain the search deterrence equilibrium prices, but too strong to accommo-

date the existence of the search equilibrium. In the mixed search equilibrium, all prices

that are offered after the high signal are below the high signal price in the search equilib-

rium. In a nutshell, prices in the mixed search equilibrium are thus adjusted downwards

such that high-valuation consumers would not find it optimal to search on the equilibrium

path, thus enabling the existence of this equilibrium.

Now consider the space of parameters in between the parameter regions for which

the monopoly price and the search deterrence equilibrium exist, respectively. For these

parameters (roughly, c ∈ [0.03, 0.045] and α ∈ [0.55, 0.6]), the search incentives of con-

sumers are strong enough to avoid the monopoly outcome, but too weak to sustain the
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search deterrence equilibrium prices. When setting the latter, firms would always have

incentives to deviate upwards from pL,M + c/α, because the cutoff price of high valuation

consumers is too high. In the partial search deterrence equilibrium, this issue is avoided

by the following logic: The presence of consumers who visit multiple firms on the equilib-

rium path grants firms substantially higher profits from setting the price pL + c/α after

the high signal, thus enabling the existence of this equilibrium.

Now I investigate the comparative statics of prices in the different equilibria. I begin

by formally defining the comparative statics in the search equilibrium.

Corollary 3 (Comparative statics: search equilibrium)

In the search equilibrium, the high signal price is independent of c and N , and the low

signal price is falling in c and rising in N .

Standard intuition regarding the effect of changes in search costs on prices suggests the

following: An increase of search costs should, on average, reduce the number of firms a

consumer has in her choice set, thus reducing competitive pressure and raising prices. The

opposite holds true in the search equilibrium: The price pL,S falls in search costs. To see

why, recall that any consumer that arrives at a firm after searching generates fully inelastic

demand at prices pj ∈ (0, c/α + pL,S). By contrast, the demand created by consumers

that arrive at a firm first is price-sensitive. When search costs rise, less consumers search

on the equilibrium path, so their weight in the firm’s optimization problem falls. As a

consequence, the optimal low signal price pL,S falls. Similar logic underlies the result that

pL,S is increasing in the number of active firms. As N increases, consumers that arrive

after searching receive higher weight in the firm’s optimization problem, which creates

additional upward pressure on the price pL,S.22

Next, I study how the equilibrium prices respond to parameter changes when these

changes may switch the equilibrium that is being played. When parameter changes move

the market from one equilibrium into another, this can have a considerable effect on

prices. I will focus on the effects of changes in search costs on the equilibrium outcomes.

In visualizing these, I fix N = 2 and consider three levels of α ∈ {0.6, 0.7, 0.8}. The
corresponding effects are visualized in figure 2.6. Search costs are plotted on the x-axis.

The blue line represents pL, while the red line represents the average price set after the

high signal.

22These changes do not affect the equilibrium high signal price, because no consumer who arrives
after searching would buy at this price.
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Figure 2.6: Comparative statics — search costs

Changes in search costs affect prices through two channels in this model. Firstly,

increases of search costs reduce the search incentives of all consumers. Reductions of the

consumers’ search incentives lead to increases in the prices offered after the high signal

in any mixed-strategy equilibrium and in the search deterrence equilibrium. Secondly,

increases of search costs may reduce the measure of consumers that search on-path. This

channel underlies the negative effect of increases in c on pL,S, because consumers who

arrive at a firm after searching exert upward pressure on the low signal price.

Moreover, when the market reverts from the search deterrence equilibrium to any

equilibrium with on-path search, there is an upward jump of prices that is accompanied

by a discontinuous increase in the measure of consumers that search on the equilibrium

path. At this point of discontinuity, the following happens: Consumers lose the ability

to sustain the search deterrence equilibrium prices with the threat of searching, which

induces firms to set much higher prices when they observe the high signal. These higher

prices trigger search by consumers with intermediate valuations, which induces an upward

jump in pL.

2.5 Generalized signal distributions

In this section, I study a framework that retains all the specifications of the baseline

model, with the exception that firms now receive a binary signal with an arbitrary prob-

ability distribution Pr(ṽH |v). As before, I define pL and pH as the prices that firms offer

to consumers who generate the low and the high signal in a pure-strategy equilibrium,

respectively.

In a nutshell, I will show that the structure of potential pure-strategy equilibria in

these generalized settings is the same as in the baseline model under some regularity

conditions on Pr(ṽL|v).
First, I note that the fundamental structure of any symmetric pure-strategy equilib-

rium must be the same as in the baseline model:
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Proposition 5 (Generalized signals: equilibrium structure)

Consider any price pk that is offered in a symmetric pure-strategy equilibrium. The set of

consumers with v ≥ pk that (i) have a strictly positive probability of being offered pk in

equilibrium and (ii) search when receiving pk must have measure zero.

Suppose, for a contradiction, that there is a strictly positive measure of consumers with

ν ≥ pk who search upon receiving this price and receive this price with positive proba-

bility. Then, there will be a strictly positive measure of consumers who receive this price

at all firms, and some firm will have undercutting motives that break the equilibrium.

Going forward, I will impose the following assumptions on Pr(ṽH |v):

Assumption 3 The function Pr(ṽH |v) is continuously differentiable, strictly increasing,

and satisfies Pr(ṽH |v) ∈ (0, 1) for all v ∈ [0, 1].

I begin the equilibrium analysis by characterizing the consumer’s optimal search rule. A

consumer with valuation v whose best price in hand is pj will continue searching if and

only if:

γ(v; pj) =
∑

k∈{L,H}

Pr(ṽk|v)max{v − pk, 0} − c−max{v − pj, 0} > 0 (2.5.1)

One can show that pL < pH must hold in equilibrium, because the average valuation of

consumers who generate the low signal is comparatively low. As a result, consumers will

never continue searching if they receive a price close enough to pL or if their valuation is

sufficiently close to pL. On the equilibrium path, consumers would thus only potentially

continue searching after being offered the high signal price pH . When the consumer’s

best price in hand is pH , her gains of searching (i.e. the gain in utility that is attained by

visiting another firm rather than stopping the search process) are:

γ(v; pH) = Pr(ṽL|v)
[
max{v − pL, 0} −max{v − pH , 0}

]
− c (2.5.2)

A necessary condition for these to be positive is that Pr(ṽL|v)(v−pL)− c > 0. Thus, one

can define the set V̂ (pL), which captures what consumers can search on-path:

V̂ (pL) =

{
v ∈ [0, 1] : Pr(ṽL|v)(v − pL)− c > 0

}
(2.5.3)

One can use these insights when pinning down the potential equilibrium prices. Firstly,

note that the demand implied by searchers remains fully inelastic around the equilibrium

price pL. Thus, the structure of profits around pL is exactly the same as in the baseline

model. Formally, the competitive profit functions will take the following form for prices
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pj ∈ [0, inf V̂ (pL)]:

ΠC(pj; ṽ
k) = pj

∫ 1

pj

Pr(ṽk|v)
N

dv + pj

N∑
j=2

∫
v∈V̂ (pL)∩[pL,pH ]

(1/N)
[
Pr(ṽH |v)

]j−1
Pr(ṽk|v)︸ ︷︷ ︸

:=Sk(pL,pH)

dv

(2.5.4)

Because pL < inf V̂ (pL) must hold by the definition of V̂ (pL) and ΠC(pj; ṽ
L) is differen-

tiable around pL, the equilibrium pL in these generalized settings is pinned down by a

first-order condition that is analogous to its counterpart in the baseline setting.

Similar notions hold true for the equilibrium high signal price. Recall that, in the base-

line model, a consumer could only visit multiple firms in equilibrium if her valuation was

in the set (c/α+ pL, 0.5), where inf V̂ (pL) = c/α+ pL. The high signal price in the search

deterrence equilibrium, namely inf V̂ (pL,M), satisfied Pr(ṽL| inf V̂ (pL,M))(inf V̂ (pL,M) −
pL,M)−c = 0. In all other equilibria, the high signal price was a maximizer of ΠM(pj; ṽ

H).

The following proposition formalizes that this dichotomy is retained under the listed as-

sumptions on Pr(ṽH |v):

Proposition 6 (Generalized signals: equilibrium characterization)

Suppose that assumption 3 holds. In a symmetric pure-strategy equilibrium, the low signal

price pL must satisfy:
∂ΠM(pj; ṽ

L)

∂pj

∣∣∣∣
pj=pL

+ SL(pL, pH) = 0 (2.5.5)

The high signal price pH must either be a local maximizer of ΠM(pj; ṽ
H) or satisfy:

Pr(ṽL|pH)(pH − pL)− c = 0 (2.5.6)

The equilibrium pL must satisfy expression (2.5.5) by previous arguments. Now con-

sider the equilibrium pH . Given that competitive profits are equal to ΠM(pH ; ṽH) at pH ,

a natural candidate for the equilibrium high signal price is a maximizer of the monopoly

high signal profit function.

Now consider an equilibrium candidate in which pH is not a local maximizer of

ΠM(pj; ṽ
H). Suppose that Pr(ṽL|pH)(pH − pL)− c > 0. By continuity of Pr(ṽL|v), there

would exist an open interval of valuations above pH for which the gains of searching when

receiving pH are strictly positive. This consumer group would create undercutting incen-

tives that break the equilibrium. Suppose alternatively that Pr(ṽL|pH)(pH − pL)− c < 0.

Then, there exists an ϵ > 0 such that consumers with valuations v ∈ [pH − ϵ, 1] would not

continue searching if their best price in hand is in an open ball around pH . As a result,

the competitive high signal profit function is equal to ΠM(pj, ṽ
H) in an open ball around

pH . But because pH does not maximize ΠM(pj, ṽ
H), there is a profitable deviation, a con-

tradiction. Hence, a high signal price that does not satisfy the corresponding first-order



26

condition must satisfy equation (2.5.6).

2.6 Conclusion

I have studied price discrimination based on imperfect information about consumer’s

valuations in a homogeneous goods model with search frictions. Whenever a consumer

visits a firm, this firm receives a binary and informative signal about the consumer’s

valuation. I have highlighted that different search costs give rise to fundamentally different

equilibria. My results refute the notion that a high volume of equilibrium search generally

reflects high levels of competitive pressure or low search costs. It crucially matters which

consumers choose to search in equilibrium. When the only consumers who search on-path

have intermediate valuations, a feature matching the empirical phenomenon documented

by Byrne and Martin (2021), equilibrium search is indicative of intermediate search costs

and allows firms to sustain high prices.

My work sheds light on the effects of potential regulatory interventions in markets

where firms can price discriminate. Pushing search costs down to negligible levels is a very

effective way of regulating these markets. This maximizes consumer welfare and renders

firms unable to price discriminate, which may be desirable in itself. However, the effects

of search cost reductions on prices and consumer welfare are non-monotonic. When search

cost reductions trigger increases in the amount of consumers who visit multiple firms in

equilibrium, this tends to increase prices, because consumers who arrive at a firm after

searching generate inelastic demand around the lowest equilibrium price.



Chapter 3

Search, Data, and Market Power

3.1 Introduction

This paper studies the relationship between data and market power. Data is becoming

increasingly relevant in the digital age and is accumulating unevenly — some firms are

building up significant advantages in terms of the scope and precision of the data they

possess.1 In order to ensure the proper functioning of digital markets, it is hence impera-

tive to understand how such data advantages will translate into competitive advantages

and foster market dominance. This question has gathered significant attention by poli-

cymakers (European Commission, 2020) and researchers (Kirpalani & Philippon, 2021;

Bergemann & Bonatti, 2022; Eeckhout & Veldkamp, 2022) alike. I study said relationship

in a theoretical model of price discrimination with search frictions, in which individual-

level consumer data is used to personalize prices and consumers optimally choose which

firms to visit.2

I show that consumers’ search choices substantially amplify the transmission of data

advantages into competitive advantages. Even arbitrarily small data advantages can make

it optimal for nearly all consumers to only visit the firm with a data advantage, thus

granting this firm market shares close to one. Such extreme forms of market dominance

will reduce consumer welfare, for example by deterring entry or by reducing the incentives

of firms to innovate. To guide policy, I study the optimal regulation in such contexts.

Whereas reductions of search frictions will exacerbate the dominant position of a firm

with superior data, the establishment of a right to data portability (as defined in the EU

GDPR and the DMA) is an effective way of correcting the competitive imbalances caused

by data advantages.3

1See, for example, Statista (2021) and Statista (2022).
2There is mounting empirical evidence for price discrimination in online markets — see Hannak et al.

(2014), Larson et al. (2015), and Escobari et al. (2019). Regulatory bodies around the world are becoming
concerned about this business practice — see OECD Secretariat (2016) and European Parliament (2019).

3For details, see article 20 of the European Union General Data Protection Regulation (GDPR) and
article 6 of the EU Digital Markets Act (DMA).

27
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I consider a duopoly model of a final goods market with search frictions. Every con-

sumer can costlessly visit one firm, but has to pay a search cost to visit another firm after

the first. Some consumers are searchers : They have equal valuation for the good of either

firm and want to buy the good at the lowest possible price. The remaining consumers

are captive consumers, who can only buy the good at the firm they are captive to. The

valuation of any consumer is private information to the consumer.

The two firms have different degrees of information about consumers’ valuations. One

firm in the market, referred to as the firm with data, exogenously receives a private

signal about the valuation of every consumer who visits it. This signal can take on two

realizations: low or high. The high signal realization becomes more likely to occur when

a consumer’s valuation rises. Using this signal, the firm with data will price discriminate:

It will offer a relatively low price (the low signal price) to all consumers who arrive and

generate the low signal and a higher price (the high signal price) to all other arriving

consumers. The other firm, referred to as the firm without data, receives no information

about any consumer and will thus offer the same price to all arriving consumers.4

As a benchmark, I solve a variant of the above model in which every consumer can

only visit one firm in Section 4.1. Then, the decision problem of any searcher boils down to

choosing which firm to visit. Given that the firm with data price discriminates, searchers

with low valuations prefer to visit the firm with data, while searchers with high valuations

visit the firm without data. This is because consumers with low (high) valuations are likely

to be identified as such and receive a comparatively low (high) price at the firm with data.

This search behaviour affects prices through a selection effect. Because searchers with

low valuations visit the firm with data and vice versa, the average valuation of consumers

who visit the firm without data is larger than the average valuation of consumers who visit

the firm with data. Thus, these search patterns entail upward pressure on the uniform

price of the firm without data and downward pressure on the prices of the firm with data.

A key message of this paper is that this selection effect amplifies the transmission of

data advantages into competitive advantages. Simply put, this effect imposes a competi-

tive externality on the firm without data: It pushes up the uniform price the firm without

data would optimally set, which is to the benefit of the firm with data because it incen-

tivizes searchers to visit and buy at this firm. In fact, a large majority of searchers will

just visit the firm with data in equilibrium — only searchers with very high valuations

will optimally visit the firm without data. Moreover, the market share of the firm with

data converges to one as the share of searchers approaches one, regardless of the signal

structure.

Why does the market only equilibrate when the firm without data is just visited by

its captive consumers and searchers with very high valuations? Intuitively, the selection

4I focus on equilibria in which firms play pure strategies. In addition, I show that firms play pure
strategies in any equilibrium in which prices are drawn from distributions with connected support.
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effect becomes weak enough to enable equilibrium existence: When the mass of searchers

who visit the firm without data is small, the distribution of consumer valuations is very

similar at the two firms.5 As a consequence, the optimal uniform price of the firm without

data will be between the prices set by the firm with data. However, the selection effect is

still active, which means that the optimal uniform price of the firm without data will lie

just below the highest price of the firm with data (the high signal price), but significantly

above the lowest price of the firm with data (the low signal price). These prices sustain

the aforementioned search behaviour as an equilibrium: It is optimal for all searchers,

except those with very high valuations, to visit the firm with data, because the potential

benefit of receiving the low signal price at this firm is comparatively large.

In Section 4.2, I show that all previous insights go through when consumers can visit

both firms, albeit under slightly stronger restrictions on the share of searchers. Formally,

I solve the aforementioned model when the costs of visiting a second firm are arbitrary,

while the analysis in Section 4.1 only considers the case in which these search costs are

prohibitive.

To begin with, I show that no consumer will visit both firms in equilibrium if the share

of searchers is not too low.6 This result is based on two separate arguments: Firstly, any

searcher who initially visits the firm without data in equilibrium would never continue

searching, because the price this firm offers is non-stochastic.7 Secondly, there exists no

equilibrium in which some searchers continue searching after visiting the firm with data

if there are enough searchers in the market. This is because searchers who arrive at the

firm without data after visiting its rival exert upward pressure on the uniform price of

this firm.8 When the share of searchers is large enough, the price the firm without data

would set in such a hypothetical equilibrium is thus so high that it is not worthwhile for

any consumer to pay a search cost in pursuit of this price.

In equilibrium, all consumers thus only visit one firm and all results that were derived

within the baseline model extend verbatim. The firm with data price discriminates and

hence, the selection effect is active. As before, a large majority of searchers will thus only

visit the firm with data. Moreover, the market share of the firm with data approaches

one as the share of searchers goes to one, regardless of the signal structure.

Reductions of search frictions can only exacerbate the dominant position of the firm

with data. When search costs are above a certain threshold, the possibility of searching

5This is because the distribution of valuations is the same for searchers and captive consumers.
6I define ρ as the share of searchers in the market. Assuming that ρ ≥ 0.2 is sufficient for this result

when the consumers’ valuations are uniformly distributed and when restricting attention to linear signal
distributions, independent of the exact level of search costs.

7Any searcher who finds it optimal to continue searching after visiting the firm without data would
not initially visit this firm in equilibrium. She would be strictly better off by visiting the firm with data
first and searching thereafter if and only if a high price is obtained, since this endows her with an option
value.

8Note that the firm without data offers a uniform price and there are search costs. Thus, any searcher
would only continue searching after visiting the firm with data if she would buy at the firm without data.
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plays no role and changes in search costs do not affect the equilibrium outcomes. At

sufficiently low search costs, reductions of search costs induce even more searchers to

visit the firm with data. Intuitively, searchers constrain the prices of the firm with data

with the threat of searching when search costs are sufficiently small. By strengthening

this threat, reductions of search costs will induce the firm with data to lower its prices.9

The reduced prices at the firm with data raise the incentives of searchers to visit this

firm, thus granting it even higher market shares. Given that search costs online will likely

decrease further in the future (think of augmented reality), access to superior data may

thus become even more consequential.

In Section 5, I argue that the market dominance which arises from data advantages

within my framework creates a need for regulatory interventions. In short, this is because

the accompanying distortions can raise the average price level and will impede innovation

and entry. By previous arguments, policies that decrease search frictions or merely reduce

the informational advantage of a firm with superior data will not solve these issues.

Thus, I study the effects of two policies designed to curb data advantages on an

individual level: the establishment of a right to anonymity and a right to data portability.

A right to anonymity allows consumers to ensure that the firm with data receives no

signal about them. Conversely, a right to data portability enables consumers to transfer

the information the firm with data has about them to the firm without data. Whereas

the former is inconsequential, the establishment of a right to data portability can be very

effective. No consumer would exercise their right to anonymity, because this would be

indicative of having a high valuation. By contrast, the incentives to exercise one’s right to

data portability are highest for low-valuation consumers. Through an unraveling effect,

the establishment of a costless right to data portability can thus induce all searchers to

visit the firm without data in equilibrium.

In Section 6, I present the results of various extensions of the baseline model. All

results from the baseline model extend even if the firm with data receives a signal with

an arbitrary finite number of realizations or a continuous signal, as long as the signal

remains noisy. Moreover, the previous insights also apply when both firms receive signals

about the valuations of visiting consumers, but the signal of one firm is less precise, or

when consumers’ preferences admit quality differentiation as in Mussa and Rosen (1978).

The rest of the paper proceeds as follows: I offer a detailed literature review in Section

2. In Section 3, I set up the theoretical framework, which is solved in Section 4. Sections

5 and 6 contain the analysis of the aforementioned policy proposals and extensions. I

conclude and argue why my insights apply more generally, for example in insurance

markets, in Section 7.

9There is no equivalent effect which influences the price of the firm without data. This is because
searchers who visit this firm in equilibrium strictly prefer to refrain from searching when receiving its
equilibrium price. Thus, searchers cannot effectively constrain the decisions of the firm without data
using the threat of search.
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3.2 Related literature

The findings I establish are novel because all previous work on the competitive effects

of data advantages does not focus on the role of consumers’ search choices. In preceding

papers, there are either no search frictions (e.g. Eeckhout & Veldkamp, 2022; Rhodes &

Zhou, 2022), search is random (Freedman and Sagredo, 2022), or there is no consumer

heterogeneity that affects whether consumers visit an entity with better data or not

(Kirpalani & Philippon, 2021; Bergemann & Bonatti, 2022). Thus, the selection effect

that drives the relationship between data access and competitive advantages in my model

is absent in previous work.

Several recent papers study the competitive effects of data advantages. In Belleflamme

et al. (2020), a firm probabilistically either knows a consumer’s valuation or knows nothing

about the consumer. Bounie et al. (2021), Gu et al. (2019), Garcia (2022), and Delbono

et al. (2022) study models where firms receive non-stochastic information about consumer

preferences and some firms receive more informative data (e.g. a finer partition of the

Hotelling line).10 Rhodes and Zhou (2022) consider a setting in which some firms conduct

first-degree price discrimination, whereas their rivals can only offer uniform prices.11 He

et al. (2023) consider a model of credit market competition in which some lenders have

access to superior data about the creditworthiness of borrowers. Eeckhout and Veldkamp

(2022) study a model in which better data reduces demand risk, thus inducing firms

with data advantages to invest more into reducing marginal costs and attaining scale. In

contrast to my work, there are no search frictions in all the aforementioned contributions.

The papers that are closest to mine within this area are Kirpalani and Philippon

(2021), Freedman and Sagredo (2022), and Bergemann and Bonatti (2022), because these

papers consider frameworks with search frictions.

Freedman and Sagredo (2022) examine a model of quality differentiation in which

a unit mass of sellers offer quality-price menus to consumers. The firms observe signals

about consumers’ tastes for quality and different firms have access to signals with varying

precision levels. Consumers are randomly matched with either one or two sellers. The key

distinction to my work thus lies in the fact that consumers’ choice sets are unrelated to

their preferences in Freedman and Sagredo (2022) — in their model, consumers neither

choose how many firms nor which kind of firms to visit. The heterogeneous search patterns

that are central in my model are thus absent in Freedman and Sagredo (2022).

In Kirpalani and Philippon (2021), consumers choose whether to search for a good on

a platform or an outside market. The platform has access to better data, which allows

firms on the platform to generate a match with a higher probability. In contrast to my

10Clavorà Braulin (2021) considers a framework in which consumer preferences vary in two dimensions
and firms may acquire different information about the components of a consumer’s preferences.

11Guembel and Hege (2021) and Osório (2023) consider settings in which firms have different abilities
to target their products to the individual preferences of consumers, but there is no price discrimination.
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work, there is no consumer heterogeneity in Kirpalani and Philippon (2021) that affects

the relative utility of search on the platform vs. searching on the outside market. In

equilibrium, all consumers must hence be indifferent between searching on the platform or

on the outside market. Thus, the aforementioned separating search behavior of consumers

in my model is also absent in Kirpalani and Philippon (2021). In addition, the prices that

consumers pay on the platform and on the outside market are the same in Kirpalani and

Philippon (2021), i.e. no seller can conduct finer price discrimination in this model.

Bergemann and Bonatti (2022) study a model in which a platform has data about

consumer preferences and uses this to match consumers and firms. Firms can sell through

the platform in exchange for a fee, but do not acquire the platform’s data. In contrast

to my work, all firms have access to the same information in Bergemann and Bonatti

(2022) and make symmetric offers in equilibrium. Moreover, while consumers can decide

how many firms to visit outside of the platform, they cannot choose whether to access

the platform or not.

My work also relates to the growing literature that studies price discrimination in

search markets. Armstrong and Zhou (2016) and Preuss (2022) consider models where

firms condition prices on a consumer’s search history.12 Fabra and Reguant (2020) study

a simultaneous search setting where firms observe a consumer’s desired quantity and

price discriminate based on this information. Mauring (2022) and Atayev (2022) study

a setting with shoppers and non-shoppers as defined in Burdett and Judd (1983) and

Stahl (1989). Mauring (2022) and Atayev (2022) assume that firms receive imperfect

information about the affiliation of a particular consumer to the groups of shoppers and

non-shoppers. Marshall (2020) is the only other paper which considers a model of price

discrimination based on information about valuations together with search, as this paper

does. In all the listed contributions, consumers do not engage in directed search and no

firm has a data advantage.13

Bergemann et al. (2021) study a homogenous goods model with search frictions in

which competing firms receive information about the number of price offers a consumer

obtains. In Bergemann et al. (2021), different firms may observe signals with varying

levels of informativeness. In contrast to my work, all consumers have the same valuation

in Bergemann et al. (2021) and consumers do not engage in directed search.

Ke et al. (2022) study the information design problem of an intermediary that connects

sellers with consumers. In this model, every consumer just has a match at one seller. Ex

ante, both the consumer and the sellers do not know with which seller the consumer has

a match. By contrast, the intermediary perfectly knows said information and designs a

12Garrett et al. (2019) consider a model of second-degree price discrimination in which consumers
differ in their choice sets, but firms do not have information about consumers. Braghieri (2019) studies a
search model in which consumers decide whether or not to reveal their horizontal characteristic to firms.

13My work is also related to Esteves (2014) and Peiseler et al. (2022), who study price discrimination
based on imperfect information about preferences in competitive settings without search frictions.
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public information structure about this. Consumers engage in directed search by visiting

firms according to the intermediary’s recommendations. However, all firms are ex ante

symmetric in Ke et al. (2022) and the intermediary’s signals are public, so no firm has

an informational advantage and all firms obtain the same expected outcomes.

3.3 Framework

There is a unit mass of consumers, who each want to buy at most one unit of an indivisible

good that is produced by two firms at zero marginal cost. Consumers can costlessly visit

one firm, but visiting a second firm after the first incurs search costs c > 0. There

are two different groups of consumers, namely captive consumers and searchers. Captive

consumers can only buy at the firm they are captive to and have zero valuation for the

good of the other firm. By contrast, searchers have equal valuation for the good of either

firm. The distribution of a consumer’s valuation (v), which I denote by G(v), is once

continuously differentiable, has support [0, 1], and is identical for searchers and captive

consumers. Searchers make up a share ρ ∈ (0, 1) of the total mass of consumers, while

a share 0.5(1− ρ) of consumers is captive to either firm. If a consumer with valuation v

buys the good at price p, the utility of the consumer is:

u(v, p) = v − p (3.3.1)

The two firms have differential access to information about consumers. One firm, which

I call the firm with data, exogenously receives a binary private signal ṽ ∈
{
ṽL, ṽH

}
about the valuation of any consumer who visits it. I define the probability distribution

of this signal, which only depends on the consumer’s valuation v, as Pr(ṽH |v), where
Pr(ṽL|v) := 1 − Pr(ṽH |v). As I will formalize later, I restrict attention to probability

distributions that are monotonic in v. I define the signal ṽH , which becomes more likely

to occur when a consumer’s valuation increases, as the high signal. The other firm, which

I name the firm without data, receives no signal about the valuations of consumers.

Both firms can offer a different price to any consumer who visits. Thus, the game’s

timing is as follows: At the beginning, every consumer observes her valuation (and whether

she is a searcher or captive to some firm) and optimally decides which firm to visit first.

The firm that is visited first offers a price to the consumer. Based on her valuation and

this price offer, the consumer then decides whether to visit the other firm at cost c > 0.

If the consumer visits a second firm, this firm offers the consumer a price upon arrival.

Crucially, both firms receive no information about any consumer’s search history (i.e.

they do not know whether an arriving consumer visits them first or second) and do not

know whether a consumer is captive or a searcher. This setup implies that, as in Diamond

(1971), firms cannot induce more consumers to visit them via downward deviations from
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equilibrium prices.

I study perfect Bayesian equilibria. Throughout the analysis, I mainly focus on equi-

libria in which firms play pure strategies. A pure strategy of the firm without data is a

uniform price, which I call pnd. A pure strategy of the firm with data is a price tuple

(pL, pH). This firm offers the price pL (pH) to all consumers that visit it and generate the

low (high) signal.14 The strategy of a searcher must define which firm to visit first, based

on her valuation. This decision is captured by a measurable function s : [0, 1] → [0, 1],

where s(v) is the probability that a searcher with valuation v visits the firm with data

first. Moreover, the strategy of a searcher must also codify after which initial price of-

fers they would continue searching, conditional on the firm that is visited first. Captive

consumers always visit the firm they are captive to and do not search thereafter.

In the model, consumers know which firm has a data advantage. This assumption can

be motivated along two dimensions. Firstly, knowledge of this fact can arise through learn-

ing. Over time, consumers can communicate with their peers and learn which firm sets

stochastic prices and which firm sets a uniform price, allowing them to infer which firm

uses data to personalize prices. Secondly, such awareness might result from regulation.

The European Union, for example, has recently implemented regulation that mandates

firms which engage in personalized pricing to inform any visiting consumer about this

fact.15 The benefits of measures that increase consumer awareness of personalized pricing

have also been stressed by the OECD’s competition committee.16

Before moving forward with the analysis, I consider the monopoly benchmark. I de-

fine Πk,M(pj) as the profit a monopolist with access to the aforementioned information

structure makes when offering the price pj to consumers who generate the signal ṽk, with

global maximizers {pk,M}k∈{L,H} given by:

pk,M = argmax
pj

pj

∫ 1

pj

Pr(ṽk|v)g(v)dv︸ ︷︷ ︸
:=Πk,M (pj)

, k ∈ {L,H} (3.3.2)

Similarly, I define Πnd,M(pj) as the profit a monopolist without access to a signal would

make when offering the price pj, with a global maximizer pnd,M given by:

pnd,M = argmax
pj

pj

∫ 1

pj

g(v)dv︸ ︷︷ ︸
:=Πnd,M (pj)

(3.3.3)

In the analysis that follows, I impose the following assumptions on Pr(ṽH |v) and G(v):

14The assumption that ρ < 1, i.e. that every firm has captive consumers, ensures that all information
sets of both firms are on the equilibrium path, which rules out the existence of perfect Bayesian equilibria
that are sustained by implausible off-path punishments.

15For details, please examine Directive 2019/2161 of the European Parliament.
16See article 5 in OECD Secretariat (2016).
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Assumption 4 The function Pr(ṽH |v) is strictly increasing, continuously differentiable,

and satisfies Pr(ṽH |v) ∈ (0, 1) for all v ∈ [0, 1]. Moreover, ΠL,M(pj), ΠH,M(pj) and

Πnd,M(pj) are strictly concave in pj.

Under this assumption, pL,M < pnd,M < pH,M holds: When observing the low (high)

signal, a monopolist will set a lower (higher) price than when he has no information about

a consumer. This holds because the average valuation of consumers who generate the low

(high) signal is relatively low (high).

I place no functional form restrictions on Pr(ṽH |v). Thus, my analysis also covers

cases in which the signal ṽ is almost uninformative. Moreover, it is also possible that the

firm with data receives a signal which induces it to set higher average prices than in the

absence of information about consumers’ valuations. To illustrate the connection between

assumptions and primitives, I will consider examples in which v ∼ U [0, 1] and the signal’s

probability distribution is linear during the analysis. When v ∼ U [0, 1] and Pr(ṽH |v) is
linear, assumption 4 is satisfied. A linear Pr(ṽH |v) with precision α ∈ (0, 1) is given by:

Pr(ṽH |v) = 0.5 + α(v − 0.5) (3.3.4)

In addition, I impose a tie-breaking rule on the behaviour of searchers.

Assumption 5 Suppose that p is the lowest price offered by either firm. Any searcher

with v ≥ p who obtains equal expected utility by visiting either firm first visits both firms

first with equal probability.

In section 4.1, I solve the specified model under the restriction that c → ∞. In section

4.2, I solve this model for arbitrary c > 0. I call the former framework the baseline model

and the latter the sequential search framework.

3.4 Equilibrium analysis

3.4.1 Baseline model

Consider first the baseline model, in which it is prohibitively costly for searchers to visit

a second firm (c → ∞). In this framework, the only relevant choice that searchers have

to make is which firm to visit. If firms play pure strategies, a searcher with valuation v

prefers to visit the firm with data if and only if:

Pr(ṽL|v)max{v − pL, 0}+ Pr(ṽH |v)max{v − pH , 0} ≥ max{v − pnd, 0} (3.4.1)

The strategy of searchers is represented by a function s(v), where s(v) is the probability

that a searcher with valuation v visits the firm with data. Given the searchers’ behaviour,
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the firm with data maximizes the following profit function through choice of the price pj

when observing the signal ṽk, with k ∈ {L,H}:

Πk(pj; s(v)) = pj

[
ρ

∫ 1

pj

s(v)Pr(ṽk|v)g(v)dv︸ ︷︷ ︸
searcher demand

+0.5(1− ρ)

∫ 1

pj

Pr(ṽk|v)g(v)dv︸ ︷︷ ︸
captive consumer demand

]
(3.4.2)

Analogously, the firm without data maximizes the following profit function:

Πnd(pj; s(v)) = pj

[
ρ

∫ 1

pj

(1− s(v))g(v)dv︸ ︷︷ ︸
searcher demand

+0.5(1− ρ)

∫ 1

pj

g(v)dv︸ ︷︷ ︸
captive consumer demand

]
(3.4.3)

I begin by characterizing equilibria in which firms play pure strategies. In such equilibria,

the uniform price of the firm without data must lie between the prices of the firm with

data. Moreover, the strategy of searchers is described by a cutoff rule:

Lemma 3 (Equilibrium search patterns)

Consider the baseline model. In an equilibrium in which firms play pure strategies:

• The ordering pL < pnd < pH must hold.

• There exists a v̄ > pL such that all searchers with v ∈ (pL, v̄) visit the firm with

data and all searchers with v ∈ (v̄, 1] visit the firm without data.

Simply put, the first result holds because the optimal prices of the firms satisfy the

ordering pL < pnd < pH if the valuations of consumers who visit either firm follow the

same distribution. This holds, for example, if all searchers visit a given firm.

In equilibrium, pL < pH must hold. To see this, note first that it is never optimal

for the firm with data to set a price pH that is strictly below pL.17 Thus, we can re-

strict attention to equilibrium candidates in which pL ≤ pH . The only candidate for an

equilibrium in which pL = pH holds is an equilibrium in which all firms set the same uni-

form price. i.e. in which pL = pH = pnd. But then, searchers with a valuation above the

lowest equilibrium price visit both firms with equal probability (by the tie-breaking rule

described in assumption 5), and the optimal prices of the firms would satisfy pnd < pH

or pL < pH , a contradiction.

Similar arguments establish that pnd ∈ (pL, pH)must hold in equilibrium. For example,

suppose that pnd ≤ pL. Then, all searchers with v > pnd visit the firm without data,

implying that pnd ≥ pnd,M must hold. But then, the firm with data has a profitable

downward deviation from pL, since it only sells to captive consumers at pL and pL ≥
pnd,M > pL,M .

17If pH < pL, there would either be a downward deviation from pL to pH when observing ṽL or vice
versa.
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When deciding which firm to visit, any searcher thus faces a tradeoff: By visiting the

firm with data, she will attain the lowest price pL with probability Pr(ṽL|v), but she may

also obtain an unfavorable outcome if she generates the high signal and is thus offered

pH . Because the probability of receiving pL is strictly falling in v, the optimal behaviour

of searchers is characterized by a cutoff v̄ > pL.

The equilibrium search behaviour established above will affect the optimal prices (and

their ordering) through a selection effect : Searchers visit the firm without data if their

valuation is comparatively high and vice versa. Thus, the average valuation of consumers

who visit the firm without data is higher than the average valuation of consumers who

visit the firm with data. This effect entails upward pressure on the uniform price of the

firm without data and downward pressure on the prices of the firm with data.

An equilibrium in which firms play pure strategies is described by a vector (pL, pH , pnd, v̄).

Before characterizing such equilibria, it is instructive to consider the best response func-

tions of firms. Firms optimally set prices, given the search behaviour represented by v̄. To

fix ideas, suppose that all searchers with v < v̄ visit the firm with data and that searchers

with valuation v > v̄ visit the firm without data, where v̄ ∈ [0, 1]. Then, the firm with

data maximizes the following objective through choice of pj when observing the signal

ṽk, with k ∈ {L,H}:

Πk(pj; v̄) = pj

[
ρ1[pj ≤ v̄]

∫ v̄

pj

Pr(ṽk|v)g(v)dv︸ ︷︷ ︸
searcher demand

+ 0.5(1− ρ)

∫ 1

pj

Pr(ṽk|v)g(v)dv︸ ︷︷ ︸
captive consumer demand

]
(3.4.4)

The firm without data maximizes the following objective function:

Πnd(pj; v̄) = pj

[
ρ

∫ 1

v̄

1[pj ≤ v]g(v)dv︸ ︷︷ ︸
searcher demand

+ 0.5(1− ρ)

∫ 1

0

1[pj ≤ v]g(v)dv︸ ︷︷ ︸
captive consumer demand

]
(3.4.5)

I define the optimal prices of the firm with data as pL,∗(v̄) = argmaxpj∈[0,1] Π
L(pj; v̄) and

pH,∗(v̄) = argmaxpj∈[0,1]Π
H(pj; v̄). Similarly, I define pnd,∗(v̄) = argmaxpj∈[0,1]Π

nd(pj; v̄).

In the following two graphs, I visualize these best response functions for a given

parametric example in which ρ = 0.5, v ∼ U [0, 1], and Pr(ṽH |v) = 0.5+0.7(v−0.5). The

functions pL,∗(v̄), pH,∗(v̄), and pnd,∗(v̄) are plotted in blue, red, and yellow, respectively:
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Figure 3.1: Best response functions

Consider first the optimal prices of the firm with data and recall that this firm is

visited by searchers with valuation in [0, v̄]. For low values of v̄, this firm can only sell

to searchers by setting very low prices, which yields low total profits. When v̄ is low,

it is hence optimal to forego these consumers entirely and to set prices that maximize

the profits that accrue from captive consumers, namely pL,M and pH,M , respectively. As

v̄ increases, it becomes optimal to set a price strictly below v̄, thereby making the sale

to some searchers. For such v̄, the optimal prices of the firm with data are rising in v̄,

because the average valuation of consumers who visit the firm with data is rising in v̄.

Now consider the optimal uniform price of the firm without data. Recall that this firm

is visited by searchers with valuations in the interval [v̄, 1]. The profits this firm attains

from its searchers would be maximized by setting a price weakly above v̄. By contrast,

the profits this firm attains from its captive consumers are maximized by setting the

price pnd,M , which equals 0.5 in this example. When v̄ ≤ 0.5, setting the price 0.5 also

maximizes the profits that accrue from searchers. Thus, the optimal price pnd,∗(v̄) is equal

to 0.5 when v̄ < 0.5.

When v̄ ∈ [0.5, 1], the optimal price of the firm without data depends on the mass of

searchers who arrive at this firm and the corresponding strength of the selection effect.

Given that these consumers entail upward pressure on the uniform price of this firm,

this price will be comparatively low (high) when the mass of arriving searchers is small

(large). When v̄ ∈ [0.5, 0.5(1 + ρ)], the mass of searchers who arrive at the firm without

data is large, which implies that pnd,∗(v̄) will be equal to v̄. For v̄ ∈ (0.5(1 + ρ), 1], the

mass of searchers who arrive at the firm without data becomes small, which means that

the optimal price pnd,∗(v̄) will be strictly below v̄. Moreover, pnd,∗(v̄) is now falling in v̄,

because the average valuation of consumers who visit the firm without data is falling in

v̄ in this interval.18

18In general, the average valuation of searchers who arrive at the firm without data is rising in v̄,
while their mass is falling in v̄. Thus, increases in v̄ entail opposing effects on the average valuation
of all consumers who visit the firm without data. When v ∼ U [0, 1], the latter effect dominates for
v̄ ∈ [0.5(1 + ρ), 1].
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For general valuation distributions, the following insight can be taken away: When

the mass of searchers who arrive at the firm without data is large (relative to the mass

of its captive consumers), this firm will find it optimal to set a price above v̄. The firm

without data will only find it optimal to set a price below v̄ if the mass of searchers who

arrive at this firm is small (i.e. v̄ is large). For an arbitrary valuation distribution, the

optimal price pnd,∗(v̄) would thus only be below v̄ if v̄ ≥ v̄nd, which is defined as follows:

ρ
[
1−G(v̄nd)

]
+ 0.5(1− ρ)

[
1−G(v̄nd)− (v̄nd)g(v̄nd)

]
= 0 (3.4.6)

When v ∼ U [0, 1] as in the previous example, v̄nd = 0.5(1 + ρ), which is the point

at which the function pnd,∗(v̄) has its second kink. These considerations imply that a

majority of searchers visit the firm with data in equilibrium:

Proposition 7 (Competitive advantages)

Consider the baseline model. In an equilibrium in which firms play pure strategies, the

cutoff v̄ must satisfy v̄ ≥ v̄nd.

Intuitively, any hypothetical equilibrium in which v̄ < v̄nd holds is ruled out by an

incompatibility between optimal search behavior and optimal pricing by the firm without

data. To see this, note firstly that optimality of the searchers’ choices requires that pnd < v̄

must hold in equilibrium. This is because any searcher with valuation just above pnd would

strictly prefer to visit the firm with data (since pL < pnd must be true in an equilibrium

by lemma 3). Thus, the ordering pL < pnd < v̄ must be satisfied in an equilibrium in

which firms play pure strategies.

However, previous results have established that setting a price pnd ∈ (pL, v̄) cannot

be optimal for the firm without data when v̄ < v̄nd. For any v̄ and any pL, the profits of

this firm will be equal to Πnd(pj; v̄) when pj ∈ (pL, v̄). If v̄ < v̄nd, the profits of this firm

are thus strictly increasing in the price at any possible equilibrium pnd ∈ (pL, v̄), because

the upward pricing pressure created by the large mass of arriving searchers is too strong,

a contradiction.

Having defined the key properties of any equilibrium in which firms play pure strate-

gies, I now establish the existence of such an equilibrium.

Proposition 8 (Equilibrium existence)

In the baseline model, there always exists an equilibrium in which firms play pure strate-

gies.

The proof of proposition 8 is by construction. I show that there always exists a v̄∗ ∈
[v̄nd, 1] that induces optimal prices (given by pL,∗(v̄∗), pH,∗(v̄∗), and pnd,∗(v̄∗)) which, in

turn, make it optimal for searchers to visit the firm without data if and only if their

valuation is above v̄∗. I will find such a v̄∗ using a fixed point approach.
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Continuity of the firms’ best response functions plays an important role in the proof of

proposition 8. Without further assumptions, the functions pL,∗(v̄) and pnd,∗(v̄) will both

be continuous on the interval v̄ ∈ [v̄nd, 1]. However, the function pH,∗(v̄) is not necessarily

continuous for these v̄ if ΠH(pnd,M ; v̄nd) ≤ 0.5(1 − ρ)ΠH,M(pH,M) i.e. when the share

of searchers (ρ) is too small. This entails the main technical challenge in proving this

proposition. I relegate the formal arguments which show existence of an equilibrium in

these constellations to the appendix and focus on the case in which ΠH(pnd,M ; v̄nd) >

0.5(1 − ρ)ΠH,M(pH,M) holds in the following discussion.19 Under this assumption, the

optimal pH,∗(v̄) will lie strictly below v̄ for any v̄ ∈ [v̄nd, 1].20 Thus, the optimal price

must satisfy a first-order condition, which guarantees continuity of the function pH,∗(v̄)

on [v̄nd, 1].

To characterize the optimal search behavior of consumers, I define the following func-

tion:

v̂(pL, pH , pnd) := sup
{
v ∈ [0, 1] : Pr(ṽL|v)pL + Pr(ṽH |v)pH︸ ︷︷ ︸

exp. price at firm with data

< pnd
}

(3.4.7)

Conditional on (pL, pH , pnd), all searchers will obtain a lower expected price at the firm

with data if and only if their valuation is below v̂(pL, pH , pnd). Plugging in the best-

response price functions into v̂(pL, pH , pnd) yields:

v̂B(v̄) := v̂
(
pL,∗(v̄), pH,∗(v̄), pnd,∗(v̄)

)
(3.4.8)

A value v̄∗ ≥ v̄nd at which v̄B(v̄∗) = v̄∗, together with the implied optimal prices, con-

stitutes an equilibrium. To see this, suppose that searchers visit the firm without data

if v > v̄∗ and the firm with data if v < v̄∗, where v̂B(v̄∗) = v̄∗. Given this search be-

haviour, the firm without data optimally sets the price pnd,∗(v̄∗). The optimal prices of

the firm with data are pL,∗(v̄∗) and pH,∗(v̄∗). Searchers optimally visit the firm where they

receive the lower expected price (conditional on their valuation v). Thus, it is optimal for

searchers to visit firms according to the cutoff rule implied by v̄∗, because v̄∗ = v̂B(v̄∗),

which implies that the combination (pL,∗(v̄∗), pH,∗(v̄∗), pnd,∗(v̄∗), v̄∗) constitutes an equi-

librium.

Thus, proving that an equilibrium in pure strategies exists amounts to establishing

the existence of a solution to the equation v̂B(v̄) − v̄ = 0 in the interval [v̄nd, 1]. The

existence of an appropriate fixed point can be verified by applying the intermediate value

theorem to this equation, together with the boundary conditions (i) v̂B(v̄nd) > v̄nd and

19When v ∼ U [0, 1], this property holds for any linear signal distribution if ρ ≥ 0.13.
20Consider any v̄ ≥ v̄nd. The high signal profits from any price pj ≥ v̄ are bounded from above by

0.5(1 − ρ)ΠH,M (pH,M ). By setting a price pj < v̄ (e.g. pj = pnd,M ) when observing ṽH , the firm can
attain higher profits, because ΠH(pnd,M ; v̄) ≥ ΠH(pnd,M ; v̄nd) > 0.5(1 − ρ)ΠH,M (pH,M ) holds for any
v̄ ≥ v̄nd.



41

(ii) v̂B(1) ≤ 1. At v̄ = v̄nd, pnd,∗(v̄nd) = v̄nd holds, while both optimal prices of the firm

with data are strictly below v̄. This establishes that v̂B(v̄nd) = 1. The second boundary

condition, namely v̂B(1) ≤ 1, holds because v̂B(v̄) is the supremum of a set with elements

that cannot be larger than 1. Moreover, v̂B(v̄) is continuous on v̄ ∈ [v̄nd, 1] because all

price functions are continuous in v̄. Thus, a solution to v̂B(v̄)− v̄ = 0 exists in the interval

[v̄nd, 1].

To build further intuition, I present a numerical example. Suppose that v ∼ U [0, 1],

ρ = 0.5, and that Pr(ṽH |v) = 0.5 + 0.7(v − 0.5). For all possible equilibrium values of v̄

on the x-axis21, I have plotted the resulting pL,∗(v̄) in blue, pH,∗(v̄) in red, and pnd,∗(v̄) in

yellow, respectively, in the following graph. The function v̂B(v̄) is plotted in green:

Figure 3.2: Visualization — equilibrium existence

The point v̄ at which v̂B(v̄) crosses the 45-degree line constitutes an equilibrium.

When v̄ ≤ v̄nd (the term v̄nd is equal to 0.5(1 + ρ) = 0.75 in this example), the selection

effect is too strong to sustain an equilibrium. This manifests in the fact that the optimal

uniform price of the firm without data lies above both prices the firm with data would

set, so all searchers would prefer to visit the firm with data (i.e. v̂B(v̄) = 1).

As v̄ moves closer to 1, the selection effect becomes progressively weaker, i.e. the

average valuations of consumers who visit either firm converge to each other.22 This is

accompanied by increases in the optimal prices of the firm with data and decreases in

the optimal uniform price of the firm without data. These price changes will induce more

searchers to visit the firm without data, which is represented by a falling v̂B(v̄). When

v̄ ≈ 1, the optimal pnd will lie just below the optimal pH , while the optimal pL lies

substantially below these two prices. These prices, in turn, make the search behaviour

represented by such high levels of v̄ optimal. Only consumers with very high valuations,

who are very likely to receive the high price at the firm with data, will optimally visit

the firm without data.

21As argued previously, we can directly exclude equilibrium candidates in which v̄ < 0.5.
22To see this, consider the case where v̄ = 1. Then, the valuation distribution of consumers who visit

either firm is exactly equal.
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Note that there may potentially exist multiple equilibria in which firms play pure

strategies. This multiplicity can arise from two sources: Firstly, v̂B(v̄) can jump upwards

when the function pH,∗(v̄) is discontinuous on [v̄nd, 1]. Secondly, the search behaviour of

searchers with v < pL is not pinned down in equilibrium, which means that Π(pj; ṽ
L)

may have a kink at the equilibrium pL.

However, this multiplicity is largely inconsequential for the analysis of market concen-

tration, because v̄ ≥ v̄nd holds true in any equilibrium in which firms play pure strategies.

Moreover, the issue of multiplicity is easily solved by imposing two assumptions, namely

that (i) ΠH(pnd,M ; v̄nd) > 0.5(1−ρ)ΠH,M(pH,M) holds (i.e. that there are enough searchers

in the market), and (ii) that searchers with a valuation in an open interval below the low-

est equilibrium price visit the firm that offers this price. This is formalized in proposition

12.

This completes the characterization of equilibria in which firms play pure strategies.

Now, I consider equilibria in which at least one firm plays a mixed strategy. I restrict

attention to equilibria in which firms draw prices from distributions with connected sup-

port.23 As defined in Burdett and Judd (1983), a distribution H(p) has connected (i.e.

convex) support if H(p1) ̸= H(p2) holds for any distinct prices p1, p2 in the convex hull

of its support. There exists no such equilibrium in which firms mix.

Proposition 9 (No mixing)

Consider the baseline model and restrict attention to equilibria in which firms draw prices

from distributions with connected support. In any such equilibrium, firms play pure strate-

gies.

This result is based on the following logic: I define the lowest price set by the firm

without data and the firm with data as pnd and pd, respectively. In an equilibrium in

which firms mix, pd = pnd must hold. Under our tie-breaking rule, there exists an interval

of prices above this lowest price for which the profit functions of both firms are strictly

concave. Thus, this lowest price pnd must be offered with probability 1 by the firm without

data. If the firm with data mixes, it only sells to its captive consumers for any price above

pnd. This would imply that its profits are equal to Πk,M(pj) for any price pj it offers, which

is a strictly concave function for either signal ṽk, a contradiction to the mixing indifference

condition.

Thus, we can restrict attention to equilibria in which firms play pure strategies, which

I have characterized. In such equilibria, the firm with data has significant competitive

advantages, as reiterated by the following corollary:

23This restriction applies to any information set separately. To clarify this restriction, note that an
equilibrium in which the firm with data draws prices from the interval [0.3, 0.4] when observing ṽL and
draws prices from [0.5, 0.6] when observing ṽH is admissible. However, an equilibrium in which this firm
draws prices from a distribution with support [0.3, 0.4] ∪ [0.5, 0.6] when observing ṽL is inadmissible.
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Corollary 4 (Market dominance)

Consider the baseline model. The equilibrium market share of the firm with data ap-

proaches 1 as ρ → 1.

Recall that ρ is the share of searchers in the market. As ρ → 1, the share of captive

consumers approaches 0. In equilibrium, the measure of searchers who buy at the firm

without data also approaches 0, because v̄ ≥ v̄nd and this lower bound converges to 1

as ρ → 1. This is true even when there are multiple equilibria in which firms play pure

strategies, because v̄ ≥ v̄nd holds in such any equilibrium. Thus, the equilibrium demand

received by the firm without data approaches 0 as ρ → 1, which implies that the market

share of the firm with data approaches 1.

To build further intuition for this result, I now visualize the equilibrium prices and

search cutoffs for different values of ρ. I assume that v ∼ U [0, 1]. A given graph cor-

responds to a fixed linear signal distribution, with α ∈ {0.25, 0.6, 0.95}, while different

levels of ρ are plotted on the x-axis of each graph. The color scheme of prices is as before,

and the equilibrium levels of v̄ are plotted in lilac.

Figure 3.3: Baseline model — comparative statics (ρ)

When ρ → 1, corollary 4 has established that v̄ → 1. In conjunction, the uniform price

of the firm without data approaches Pr(ṽL|1)pL,M +Pr(ṽH |1)pH,M , which is the expected

price a searcher with valuation 1 would receive at a monopolist with access to data. To

see why this must hold, note that the optimal low and high signal prices of the firm with

data converge to pL,M and pH,M as v̄ approaches 1, respectively. In order for the search

behaviour represented by such a high level of v̄ to be optimal, the uniform price of the

firm without data has to be above the expected price at the firm with data (conditional

on the valuation) for almost all searchers. This is guaranteed when the uniform price of

this firm approaches Pr(ṽL|1)pL,M + Pr(ṽH |1)pH,M . Such a price is optimal for the firm

without data because the slope of pnd,∗(v̄) on v̄ ∈ [v̄nd, 1] becomes very large as ρ → 1.

I have established that arbitrarily small data advantages translate into substantial

competitive advantages through directed consumer search. This result is underscored by
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considering what happens when no firm receives an informative signal. In this benchmark,

both firms set the same uniform price in equilibrium and will thus receive exactly half of

the market under the tie-breaking rule defined in assumption 5.

3.4.2 Sequential search framework

In this section, I show that all the results from the baseline model go through even if

searchers can visit a second firm, albeit under slightly stronger restrictions on ρ. Formally,

I no longer assume that c is prohibitively high, but consider an arbitrary c > 0. In terms

of policy, the results I establish within this section also highlight that reductions of search

frictions tend to further benefit the firm with a data advantage.

I begin the analysis by characterizing equilibria in which firms play pure strategies. As

before, such an equilibrium needs to define the low signal and high signal price (pL and

pH , respectively) of the firm with data, as well as the uniform price of the firm without

data (pnd). The strategy of searchers now specifies, for a given v, (i) which firm to visit

first (captured by a function s(v), as in the baseline model), (ii) after what price offers

to continue searching after visiting the firm with data first, and (iii) after what price

offers to continue searching after visiting the firm without data first.24 Because searchers

are forward-looking, they take into account under what conditions they would continue

searching after sampling the first firm when deciding which firm to initially visit.

To express whether there is search on the equilibrium path, I define the probability

with which a searcher with valuation v visits both firms in an equilibrium as b(v). Consider

the set
{
v ∈ [0, 1] : b(v) > 0

}
. I say that there is search on the equilibrium path

if and only if this set has strictly positive measure. When the share of searchers (ρ) is

sufficiently large, there will be no search on the equilibrium path, independent of the exact

value of search costs c. This is formalized by the following assumption and accompanying

proposition:

Assumption 6 Suppose that pnd,s + c > pH,M , where pnd,s solves the following:[
ρ

∫ 1

pnd,s+c

Pr(ṽH |v)g(v)dv + 0.5(1− ρ)

∫ 1

pnd,s

g(v)dv

]
= 0.5(1− ρ)pnd,sg(pnd,s) (3.4.9)

Proposition 10 (No search beyond the first firm)

Suppose that assumption 6 holds. There exists no equilibrium in which firms play pure

strategies and there is search on the equilibrium path.

24Off-path beliefs play no role in the analysis. All information sets of the firms are on the equilibrium
path. Any searcher is only uncertain which node the game has reached when visiting the firm with
data — then, she does not know which signal was generated. However, this does affect her incentives to
continue searching, since these are fully pinned down by the initial price offer and the equilibrium price
pnd.
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Assumption 6 requires that enough consumers engage in directed search, i.e. that ρ is

high enough, as is underscored by the following remark:

Remark 1 If v ∼ U [0, 1] and Pr(ṽH |v) is linear, assumption 6 is satisfied if ρ ≥ 0.2.

The proof of proposition 10 consists of three steps: Firstly, pL < pH must hold in

any equilibrium in which firms play pure strategies and there is search on the equilibrium

path. If pL = pH , any searcher would directly visit the firm which offers the lower uniform

price and there would be no reason to search thereafter. If pH < pL, the firm with data

would not be optimizing. Thus, the following arguments consider equilibria with pL < pH

and establish that (i) no searcher who initially visits the firm without data in equilibrium

would continue searching and (ii) that, under assumption 6, there exists no equilibrium

in which searchers would continue searching after initially visiting the firm with data.

Result (i) follows from a contrapositive argument and requires no assumptions — any

searcher who finds it weakly optimal to continue searching after visiting the firm without

data (and receiving pnd) would never optimally visit this firm first. This holds by the

following logic: By visiting the firm without data first and searching thereafter, the best

price this consumer will have in hand after search is pL with probability Pr(ṽL|v) and

pnd with probability Pr(ṽH |v), while the search cost c > 0 is surely paid. Alternatively,

the consumer could visit the firm with data first and continue searching if and only if

pH is received. The latter approach would achieve strictly higher expected utility than

visiting the firm without data first and searching thereafter, because it yields the same

distribution of prices, but saves search costs. By contraposition, any consumer who visits

the firm without data first in equilibrium would not search thereafter.

Now consider point (ii). Equilibria in which consumers search after visiting the firm

with data cannot exist when ρ is high enough. Intuitively, this is based on the following

logic: Searchers who arrive at the firm without data second put upward pressure on pnd.

This is because visiting this firm second (i.e. paying the search cost c > 0) is only optimal

for consumers who would buy at pnd. When the share of searchers (ρ) is high, the upward

pressure these consumers exert on pnd is strong. Then, pnd would be very high in such

a hypothetical equilibrium — so high, in fact, that no searcher would find it optimal to

pay a search cost in pursuit of this price.

Now, I turn my attention to equilibria without on-path search. Under an assumption

on ρ, all the results established for the baseline model go through verbatim for these

equilibria:

Assumption 7 Assume that ΠH(pnd,M ; v̄nd) > 0.5(1− ρ)ΠH,M(pH,M).

Proposition 11 (Sequential search framework: equilibrium characterization)

In an equilibrium in which firms play pure strategies and there is no search on the equi-

librium path:
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• There exists a v̄ > pL such that all searchers with v ∈ (pL, v̄) visit the firm with

data first and all searchers with v ∈ (v̄, 1] visit the firm without data first.

• The cutoff v̄ must satisfy v̄ ≥ v̄nd.

Under assumption 7, such an equilibrium exists.

Remark 2 If v ∼ U [0, 1] and Pr(ṽH |v) is linear, assumption 7 is satisfied if ρ ≥ 0.13.

Consider an equilibrium in which firms play pure strategies and there is no search on

the equilibrium path. As before, the equilibrium prices must satisfy the ordering pL <

pnd < pH . Thus, the strategy of searchers will be a cutoff rule, because the distribution

of prices at the firm with data becomes strictly less favorable as a consumer’s valuation

rises. Moreover, there exists no such equilibrium in which v̄ < v̄nd holds, because the firm

without data would never optimally set pnd below v̄ in such a hypothetical equilibrium.

However, optimal search by consumers implies that pnd < v̄ must hold in equilibrium,

because searchers with valuation just above pnd strictly prefer to visit the firm with data.

The proof that an equilibrium without on-path search exists for any c > 0 under

assumption 7 is by construction. First, consider the equilibrium derived for the baseline

model (in which c was prohibitively high). I define the components of this equilibrium

as (pL,1, pH,1, pnd,1, v̄1), where v̄1 = v̂B(v̄1), pL,1 = pL,∗(v̄1), pH,1 = pH,∗(v̄1), and pnd,1 =

pnd,∗(v̄1). The arguments pertaining to proposition 8 establish that such a combination

exists.

If search costs are so high that pH,1 ≤ pnd,1+c, this combination of prices and v̄ remains

an equilibrium. Then, searchers would never find it optimal to search after visiting the

first firm, which implies that it is optimal to visit firms according to the search rule

implied by v̄1. Given this search behaviour, firms will find it optimal to set the prices

pL,1, pH,1 and pnd,1, respectively, establishing that this vector of prices and v̄1 constitutes

an equilibrium.

Thus, it only remains to establish that an equilibrium of the desired form exists

when pH,1 > pnd,1 + c. Consider an equilibrium candidate (pL,2, pH,2, pnd,2, v̄2), in which

pL,2 = pL,∗(v̄2), pnd,2 = pnd,∗(v̄2), pH,2 = pnd,2 + c, and v̄2 is a solution to the following

equation:

v̄2 − v̂
(
pL,∗(v̄2), pnd,∗(v̄2) + c, pnd,∗(v̄2)

)︸ ︷︷ ︸
:=v̂S(v̄2)

= 0 (3.4.10)

There exists a v̄2 ∈ [v̄nd, 1] that solves this equation. This holds because (i) v̂S(v̄1) ≥ v̄1,

(ii) v̂S(1) ≤ 1, and (iii) v̂S(v̄) is continuous on [v̄1, 1] under assumption 7. The first result

holds because v̂S(v̄1) ≥ v̂B(v̄1) = v̄1. This reflects the following notion: When the firm

with data sets a high signal price equal to pnd,1 + c instead of the higher pH,1, more
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searchers will prefer to visit the firm with data, i.e. v̂S(v̄1) ≥ v̂B(v̄1). The latter two

results hold by the arguments made in the discussion of proposition 8.

To see why such a v̄2 constitutes an equilibrium, consider the implied search behaviour

of searchers: As before, searchers will maximize their expected utility by initially visiting

the firm that offers them (based on their valuation) the lower expected price. Because

pH,2 = pnd,2+ c, it is weakly optimal to refrain from searching after visiting the firm with

data. Moreover, one can show that searchers with v > v̄2 would not search after visiting

the firm without data. Thus, it is optimal for searchers to visit the firm with data if and

only if their valuation is below v̄2 and to refrain from searching thereafter.

It remains to show that the prices (pL,2, pH,2, pnd,2) are optimal for firms if searchers

visit firms according to the rule implied by v̄2. There will be no profitable deviations

from pL,2 and pnd,2, because these prices are global maximizers of the respective profit

functions when no consumer would ever leave to search, which are weakly above true

profits for any price.

There will be no profitable deviations from pH,2 under assumption 7 by the following

logic: Because search costs are so low that pH,1 > pnd,1 + c, the ordering pH,2 < pH,∗(v̄2)

will hold. Intuitively, this represents the notion that searchers push down the high signal

price of the firm with data below the unconstrained optimal price using the threat of

searching. By strict concavity of the respective profit function, there are thus no prof-

itable downward deviations from pH,2. Moreover, assumption 7 guarantees that there will

not be any profitable upward deviations (for which the firm with data would only sell

to captive consumers). This is because equilibrium profits are bounded from below by

ΠH(pnd,M , v̄nd), while the profits from any deviation above pH,2 are bounded from above

by 0.5(1− ρ)ΠH,M(pH,M).

Equilibrium uniqueness (both within the baseline and the sequential search frame-

work) requires a tie-breaking rule restricting the behaviour of searchers who have a val-

uation just below the lowest price that is offered by either firm, which I call p:

Assumption 8 There exists an ϵ > 0 s.t., regardless of the exact value of the lowest

price offered by either firm (p), all searchers with v ∈ [p− ϵ, p) initially visit a firm which

offers the price p with weakly higher probability.

Proposition 12 (Equilibrium uniqueness)

Under assumptions 6, 7, and 8, there exists a unique equilibrium in which firms play pure

strategies.

The tie-breaking rule guarantees that the low signal profit function is differentiable

around the lowest equilibrium price pL, which must thus be equal to pL,∗(v̄). This elim-

inates one potential source of equilibrium multiplicity. Moreover, assumption 7 ensures

that all functions pL,∗(v̄), pH,∗(v̄), and pnd,∗(v̄) are continuous on [v̄nd, 1], which implies
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that v̂S(v̄) and v̂B(v̄) can never jump up on the interval [v̄nd, 1], eliminating the other

possible source of equilibrium multiplicity.

As before, one can rule out the existence of equilibria in which firms mix (within the

set of equilibria in which firms draw prices from distributions with connected support):

Proposition 13 (Sequential search framework: no mixing)

In any equilibrium in which firms draw prices from distributions with connected support,

all firms play pure strategies.

Summing up, the key results from the baseline model are retained. In equilibrium, a

large majority of searchers only visit the firm with data. Moreover, the market share of

the firm with data approaches 1, independent of the signal distribution, as ρ → 1.

Corollary 5 (Sequential search framework: market dominance)

The equilibrium market share of the firm with data approaches 1 as ρ → 1.

When ρ (the share of searchers) approaches 1, both assumptions 6 and 7 will hold,

independent of the signal distribution. Thus, an equilibrium will exist. All consumers just

visit one firm and v̄ ≥ v̄nd must hold, which implies the result because v̄nd → ρ as ρ → 1.

It remains to study how changes in search costs (c) affect the equilibrium outcomes.

Within the equilibrium established for the baseline model, search cost reductions play no

role. When c becomes small, reductions of search costs exacerbate market dominance:

Corollary 6 (Comparative statics: search costs)

The equilibrium v̄ is unaffected by changes in c if c > pH,1−pnd,1 and is weakly decreasing

in c if c ≤ pH,1 − pnd,1. If v ∼ U [0, 1] and Pr(ṽH |v) is linear, the market share (sales

based) of the firm with data is thus falling in c when c ≤ pH,1 − pnd,1 and independent of

c otherwise.

I visualize these effects in the following graph, in which I plot the equilibrium quan-

tities for different levels of search costs (on the x-axis) and α-ρ combinations.

Figure 3.4: Comparative statics — search costs
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When search costs are sufficiently high (i.e., c ≥ 0.03), the equilibrium (pL,1, pH,1, pnd,1, v̄1)

from the baseline model is played, in which the possibility of searching is not relevant.

When c becomes sufficiently small, the equilibrium quantities are given by (pL,2, pH,2, pnd,2, v̄2).

Then, search cost reductions lead to lower price levels, but exacerbate the problem of mar-

ket dominance. Intuitively, searchers are now able to constrain the high signal price of the

firm with data with the threat of searching, which implies that this price will approach

pnd as search costs fall. This increases the incentives of searchers to visit the firm with

data. In particular, all searchers will prefer to only visit the firm with data (i.e. v̄ = 1)

when c becomes sufficiently small, because pL always remains substantially below pnd and

pH .

Finally, I consider the effects of changes in information precision (α). I visualize the

equilibrium quantities for different levels of α (on the x-axis) and c-ρ combinations.

Figure 3.5: Comparative statics — information precision

As the signal of the firm with data becomes more informative (i.e. when this firm’s

data advantage becomes larger), the degree of market dominance enjoyed by this firm

falls.25 This holds by the following logic: When the precision of the signal (α) rises,

searchers with high valuations are more likely to be recognized by the firm with data, in

which case they receive an unfavorably high price. This reduces their incentives to visit

the firm with data, which, in equilibrium, induces more searchers to visit the firm without

data.

25There are two kinks in the evolution of the equilibrium objects when c = 0.03. This is because
the difference between pH,1 and pnd,1 is maximal (and thus, can be above a given level of c) when α is
at intermediate levels. Thus, the equilibrium of category 1 is played whenever information precision is
relatively low or high, while the equilibrium of category 2 is played for intermediate levels of information
precision.
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3.5 Welfare and policy recommendations

3.5.1 Data and consumer welfare

The effects of data advantages imply a need for regulatory interventions for two reasons.

Firstly, personalized pricing by the firm with data may lead to higher average prices,

thereby reducing consumer welfare. More importantly, the market dominance resulting

from data advantages (no matter how small these data advantages are) can reduce con-

sumer welfare by discouraging entry, distorting competition, and by reducing the incen-

tives to innovate.

The personalized pricing that the firm with data implements can lower consumer

welfare as such. For example, suppose that the firm with data receives a binary signal

that is effective at identifying high-valuation consumers, where Pr(ṽH |v) = 0.5 if v < 0.6

and Pr(ṽH |v) = 1 if v ≥ 0.6. If all searchers visit the firm with data, a searcher’s ex ante

expected utility is 0.1025, while it equals 0.125 when no firm has data. When ρ is high

and v̄ is thus close to 1, consumer welfare in the competitive equilibrium with data will

hence be lower than when no firm has data. The equilibrium dynamics induce consumers

to flock to the firm with data, even though it effectively charges higher prices than its

rival in the monopoly benchmark.

The market dominance enabled by data advantages can deter entry. This is best

conceptualized by augmenting my model with an initial entry stage. There are two firms:

the incumbent and the potential entrant, who has no data about consumers. Initially,

the entrant has to decide whether or not to pay a fixed cost to enter the market, while

the incumbent has to pay no such cost. After the entry decision, the product market

competition game from the baseline model is played. If the incumbent has no data,

both firms receive half of the market if the entrant enters. If the incumbent has a data

advantage, the entrant is visited by a much lower mass of consumers, which makes entry

less profitable. Thus, data advantages may discourage entry, which is to the detriment

of consumers who have a strong preference for the entrant’s product (e.g. the captive

consumers in my model).

The presence of data can significantly distort competition. To see this, consider a

duopoly with a high-quality and a low-quality firm. The valuations that searchers (and

the corresponding captive consumers) have for the product of the high-quality firm, call

these v, are uniformly distributed on [0, 1]. The valuation that any searcher has for the

product of the low-quality firm is given by v − µ. In accordance, the valuations that

captive consumers have for the product of the low-quality firm are uniformly drawn from

[−µ, 1− µ], where µ ≥ 0 captures the extent of the quality difference.

Suppose that no firm has data, but that µ > 0. In a monopoly benchmark, the low-

quality firm would set the price 0.5(1−µ), while the high-quality firm sets the price 0.5. In
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the competitive equilibrium, searchers thus only visit the high-quality firm.26 Endowing

the low-quality firm with data changes this prediction. To see this, define pL,µ and pH,µ as

the prices this firm would set in the monopoly benchmark when receiving the low and high

signal, respectively. If pL,µ + µ < 0.5 < pH,µ + µ holds, the equilibrium predictions from

the baseline model are retained — a large majority of searchers only visit the low-quality

firm, because it has data. This represents a significant distortion of competition.

Empirical evidence by Li et al. (2021) shows that shielding firms from competitive

pressures reduces their incentives to innovate. The competitive distortions caused by data

advantages have similar effects. To see this, reconsider the aforementioned example with

a high-quality and a low-quality firm and consider the incentives of the low-quality firm

to reduce µ, e.g. by conducting product innovation. When this firm has no data, reducing

µ to 0 will increase the market share of this firm from 0.5(1−ρ) to 0.5, while the benefits

of innovation are much smaller for this firm if it has a data advantage. This is to the

detriment of consumers, who would benefit from innovation.

3.5.2 Policy implications

The preceding analysis has established the need for policy interventions when firms have

unequal access to information about consumer preferences in markets with search fric-

tions. However, the comparative statics results I have derived show that reduced market

concentration cannot be attained by policy measures which reduce search frictions or

which merely reduce the informational advantage of a firm with superior data.

Another way of depriving the firm with data of its advantage is to endow consumers

with a right to anonymity. I study the effects of such a policy by integrating this possibility

into the baseline framework — now, any searcher can pay a cost e ≥ 0 before obtaining a

price quote at the firm with data to ensure that this firm receives no signal about them,

i.e. to become anonymous. Everything else is as in the baseline model. Any searcher thus

has three possible choices: (i) visit the firm without data, (ii) visit the firm with data and

choose to become anonymous, or (iii) visit the firm with data and refrain from becoming

anonymous.

The analysis requires a tie-breaking rule. I assume that whenever two of the approaches

listed above entail the offering of an identical uniform price, both these choices will be

selected by searchers with equal probability.

An equilibrium in this extension consists of a price pa that the firm with data offers to

all consumers who become anonymous, in addition to the prices (pL, pH , pnd) introduced

previously. The establishment of a right to anonymity will be inconsequential:

26This is because any searcher will obtain the utility max{v − 0.5, 0} at the high-quality firm, which
is strictly larger than the utility she would obtain at the low-quality firm, namely max{v−0.5(1+µ), 0}.
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Proposition 14 (Ineffective anonymity)

Consider the baseline model, augmented with the right to anonymity. For any e ≥ 0, the

set of consumers who exercise this right has measure zero.

The intuition behind this result mirrors the insights of Belleflamme and Vergote

(2016), who derive a similar result in a monopoly setting. Only consumers with compara-

tively high valuations would ever want to exercise their right to anonymity. Low-valuation

consumers, by contrast, benefit from the possibility that a firm profiles them. In equilib-

rium, firms will thus offer high prices to consumers who choose to become anonymous,

which makes it detrimental for consumers to exercise this right.

By contrast, the establishment of a right to data portability (as expressed in the EU

GDPR and the DMA) can be very effective. I show this by integrating a right to data

portability into the baseline framework. Suppose that any searcher can, before obtaining

a price quote, costlessly copy all the information the firm with data has about her and

transfer this to the firm without data. A searcher now has three choices: As before, she

can (i) visit the firm with data or (ii) obtain a price offer at the firm without data without

porting her data. In addition, she can now (iii) obtain a price offer at the firm without

data after porting her data. Formally, porting the data implies that the firm without data

will, upon being visited, receive a signal about the consumer’s valuation. The distribution

of this signal is Pr(ṽH |v), just as for the firm with data.

A pure strategy of the firm with data remains a price tuple (pL, pH), while a pure

strategy of the firm without data is now a vector (pL,nd, pH,nd, pnd). This firm offers the

price pnd to all consumers who visit it but do not port their data and the prices pL,nd

and pH,nd to all consumers who port their data and generate the low and high signal,

respectively.

Endowing searchers with the ability to costlessly exercise their right to data portability

can eliminate the advantage of the firm with data:

Proposition 15 (Data portability)

Consider the baseline model, augmented with a right to data portability. There exists an

equilibrium in which all searchers visit the firm without data.

This equilibrium has the following form: All searchers visit the firm without data. The

firm with data is only visited by its captive consumers and will thus optimally set the

monopoly prices, namely pL,M and pH,M . Searchers exercise their right to data portability

if and only if their valuation is below a cutoff vt. If their valuation is above vt, they visit

the firm without data but don’t port their data. This cutoff vt solves:

vt = sup
{
v ∈ [0, 1] : Pr(ṽH |v)pH,nd + Pr(ṽL|v)pL,nd − pnd ≤ 0

}
(3.5.1)
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Because vt ≤ 1, the prices that the firm without data would offer to consumers who port

their data are lower than their monopoly counterparts, i.e. pL,nd ≤ pL,M and pH,nd ≤ pH,M .

Since pL,nd ≤ pL,M and pH,nd ≤ pH,M , visiting the firm without data and porting one’s

data yields higher expected utility than visiting the firm with data. Thus, it is optimal

for all searchers to visit the firm without data.

Calculating the equilibrium values of vt shows that vt is generally below 1. This is

crucial, because it implies that the equilibrium prices satisfy pL,nd < pL and pH,nd <

pH , making it strictly optimal for searchers to visit the firm without data. This insight

establishes that a right to data portability can effectively counteract the competitive

effects of data advantages even when exercising this right is costly or generates a less

informative signal.

Naturally, there also exists an equilibrium in which no searchers exercise their right

to data portability, the respective information sets of the firm without data are off the

equilibrium path, and the firm’s beliefs are such that it is optimal for searchers to not

exercise this right. Then, the equilibrium outcomes will be the same as in the baseline

model.

3.6 Extensions

In this section, I discuss the results of various extensions. Because the analysis of the se-

quential search framework indicates that restricting attention to prohibitively high search

costs is without loss of generality when the share of searchers is high enough, I assume

that searchers can only visit one firm in all the extensions I study. I provide a detailed

documentation and proofs in sections B.3 and B.4.

In section B.3.1, I consider the equilibrium outcomes when the firm with data receives

a finite signal with K ≥ 2 possible realizations. The previous results extend under two

assumptions: (i) First, I assume that the probability distribution of the signal is such that

the implied hazard rates of the conditional valuation distributions are always ordered (and

in the same way), regardless of the way in which searchers visit firms. Moreover, (ii) I

assume that the signals invoke price discrimination in the sense that the effective price a

consumer pays will be rising in her valuation. Under these assumptions, the equilibrium

strategy of searchers remains a cutoff rule. Because the pricing calculus of the firm without

data is the same as in the baseline model, v̄ ≥ v̄nd must hold in equilibrium. Moreover,

an equilibrium in which firms play pure strategies exists.

In section B.3.2, I assume that the firm with data receives a continuous signal ṽ = v+ϵ

about the valuation of any arriving consumer (v), where the noise term ϵ is uniformly

distributed on the interval [−ϵ̄, ϵ̄]. For simplicity, I assume that ϵ̄ ∈ (0, 1/8) and that

v ∼ U [0, 1]. All other specifications from the baseline model are retained. Because the

signal is not perfect, any searcher can attain positive utility by visiting the firm with data.
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However, the fact that the firm with data price discriminates implies that the strategy

of searchers will once again be a cutoff rule, and the results of propositions 7 and 8 are

retained. Thus, the insights from the main analysis are retained, so long as the firm with

data receives an imperfect signal. Interestingly, calculating the equilibrium quantities

shows that v̄ → v̄nd as ϵ̄ → 0.

In section B.3.3, I extend the baseline model by integrating quality differentiation into

the analysis. I assume that consumers have preferences as in Mussa and Rosen (1978):

When buying a good with quality q at the price p, a consumer’s utility is u(q, p) = θq−p,

where θ ∼ U [0, 1] and is private information to the consumer. The firm with data offers

two different price-quality menus in equilibrium, depending on the observed signal. I

restrict attention to equilibria in which the strategy of searchers is a cutoff rule (i.e. there

exists a θ̄ such that all searchers with θ < θ̄ visit a given firm and vice versa) or all

searchers randomize, which I call simple equilibria. When the share of searchers is high

enough (ρ ≥ 0.34 is sufficient when considering linear signal distributions), all previous

results are retained.

In section B.3.4, I consider situations in which both firms receive a signal about the

valuations of visiting consumers, but the signal of one firm (the firm with better data) is

more precise. For simplicity, I assume that v ∼ U [0, 1] and once again restrict attention

to simple equilibria. In any simple equilibrium, searchers with a valuation below the

cutoff will visit the firm with better data and vice versa. This cutoff will be bounded

from below. I analytically characterize equilibria in which firms play pure strategies and

provide a condition that guarantees uniqueness (if such an equilibrium exists). Numerical

analysis reveals that such an equilibrium always exists whenever the signal distribution

is linear and that the market share of the firm with better data converges to 1 as ρ → 1.

3.7 Conclusion

I have analyzed the relationship between data and market power in a duopoly model

of directed search and personalized pricing. One of the firms in the market has a data

advantage — in the baseline model, this firm receives a signal about the valuation of

any consumer who visits it, while its rival receives no such information. Consumers can

costlessly visit one firm but have to pay a search cost to visit a second firm after the first.

There are two groups of consumers, namely captive consumers and searchers. Searchers

have equal valuation for the good of both firms and, based on their valuation, optimally

choose which firms to visit.

Directed consumer search strongly facilitates the transmission of data advantages into

competitive advantages. In equilibrium, a large majority of searchers only visit the firm

with data. The firm without data is just visited by searchers with very high valuations.

As the share of searchers goes to 1, so does the market share of the firm with data.
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While I have considered a framework in which data is only used to price discriminate,

the insights apply more generally. Consider, for instance, an insurance market: Consumers

with low risk benefit if a firm has information about their traits, because this would

translate into more favorable contract terms. Thus, these consumers would all prefer to

visit a firm with a data advantage, which improves the overall risk profile of consumers

who visit this firm. The generally better contract terms this firm offers as a result will,

in turn, attract even more consumers, mirroring the unraveling channels present in my

model.

More generally speaking, the selection effect and the resulting competitive benefits

manifest whenever low-valuation consumers systematically prefer a firm with better data.

This feature can also emerge through privacy concerns. Empirical evidence by Lin (2022)

establishes that consumers with higher wealth tend to value privacy more (i.e. have a

larger disutility when firms attain access to their data). In markets where the wealth

of consumers is positively correlated with their valuations, the familiar search patterns

would thus also emerge in the absence of price discrimination, giving rise to the selection

effect and its competitive implications.



Chapter 4

Search Disclosure

4.1 Introduction

We investigate the exchange of user data between firms in search markets.1 Advances in

tracking technologies have made it ever easier for online sellers to collect and share data

about consumers. In fact, almost every website on the internet relies on such technologies

to recognize the same user over time (Englehardt and Narayanan, 2016). By exchanging

consumer identifiers with rivals, firms have a means to inform their rivals that a certain

buyer has obtained an offer from them.2 This form of information sharing may be collusive

and harm consumers if it enables firms to coordinate prices. In addition, it provides firms

with accurate information about a consumer’s shopping history and thereby facilitates

price discrimination, which regulatory bodies around the world are increasingly worried

about.3

In this article, we analyze the effects of such information sharing, which we call search

disclosure. Specifically, we ask when search disclosure occurs in equilibrium and whether

search disclosure is anti-competitive and harms consumers. We show that search disclosure

prevails in equilibrium only if search costs are sufficiently small or if firms cannot adjust

a price offer made to a given consumer. Otherwise, firms do not share said information

even though industry profits are higher if firms use search disclosure. Evidence of search

history-based price discrimination is indeed limited despite its technical feasibility.4 Our

analysis, which shows that firms share the necessary information only under limited

circumstances, thus provides an explanation for this phenomenon.

Formally, we consider the possibility of search disclosure within the sequential search

1This chapter is joint work with Marcel Preuss.
2These identifiers can be obtained via cookies, tracking pixels, digital fingerprinting and consumer

sign-in.
3In 2016, the OECD’s competition committee recognized that "there are particular reasons to worry

that price discrimination in digital markets will be harmful" (OECD Secretariat, 2016). The EU has
recently adopted new compliance rules for firms engaging in online price discrimination (European Par-
liament, 2019).

4See, for example, Mikians et al. (2012).
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framework by Wolinsky (1986), in which consumers engage in costly sequential search

to discover the prices of goods and how much they value them. Specifically, consumers

randomly pick which firm to visit first and, based on the firm’s price offer and their

willingness-to-pay for that firm’s good, decide whether to visit a second firm or not. In

the model, firms can disclose a consumer’s visit to their rival — this is possible when they

have received search disclosure regarding the same consumer before as well as when they

have not. Search disclosure thus endogenizes the sellers’ beliefs about the search history

of consumers and can give rise to rich forms of search history-dependent pricing, which

we allow for. This includes the possible revision of prices for consumers who continue to

search after getting an initial price quote.

In equilibrium, firms never disclose a consumer’s visit to their rival after having re-

ceived disclosure for the consumer. This is because any such consumer must have visited

the rival first and continued to search. By conducting search disclosure in this situation,

a firm would inform its rival about this fact. Since consumers only continue searching if

they have a low willingness-to-pay for the initially inspected product, this induces the

rival to revise its price downward. Such downward price revisions harm the disclosing

seller, which is why there exists no equilibrium in which firms use search disclosure after

having received it before.

Consequently, firms would only ever disclose a buyer’s visit if they have not received

search disclosure regarding the same buyer before – we call this information sharing

strategy partial disclosure. If firms use partial disclosure in equilibrium, they do not know

when a consumer continues to search after visiting them. However, a firm that encounters

a buyer without having received disclosure about this buyer before will believe to be

visited first. In addition, a firm that encounters a buyer after having received disclosure

about this buyer knows that it is visited second. That is, partial disclosure enables sellers

to price discriminate based on the consumer’s search order, which leads to higher industry

profits but lower consumer welfare.

However, even though industry profits are higher under partial disclosure, the latter

does not arise in equilibrium unless search costs are small. If a firm uses partial disclosure,

its rival will quote a higher price to a consumer when being visited second, which benefits

the disclosing firm.5 However, deviating by withholding search disclosure has a surprising

benefit as well. Without receiving search disclosure, the rival will always believe that

it is visited first and, thus, use search disclosure even if it is actually visited second.

Consequently, by withholding search disclosure, a firm will be informed (by its rival) if

the buyer continues to search. This allows the deviating seller to screen its buyers and to

set a lower price for buyers who continue to search. Since buyers do not expect any price

revisions, there are no Coasian dynamics as in Gul et al. (1986). The ability to screen

5If the rival knows that it is visited second, it understands that the consumer had a low valuation for
the disclosing firm’s product. This puts the rival in a favorable position, inducing it to set a high price.
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buyers in said way will thus grant a firm strictly higher profits, creating strong incentives

to withhold search disclosure.

If search costs are sufficiently large, partial disclosure is not an equilibrium outcome

because being able to screen buyers is more valuable than inducing the rival to charge

a higher price. If search costs are high, buyers only continue to search if the net utility

from buying the first product they sampled is close to or less than zero. Thus, almost no

consumer who continues to search would eventually buy the first product at the initially

offered price, regardless of the other firm’s price. The cost of deviating to not disclosing,

which is that a firm’s rival will charge a lower price when being visited second, is therefore

negligible when search costs are high. By contrast, being able to screen buyers is very

profitable in this case because setting a lower price for consumers who continue searching

is the only way to earn any profits from them.

If an equilibrium with partial disclosure does not exist, we find that firms use no

disclosure in equilibrium, which implies they cannot price discriminate. Firms do not

use search disclosure because of the risk of triggering a downward price revision by their

rival, which will happen if the consumer has sampled the rival first. In particular, this

detrimental effect of deviating to disclosure dominates the beneficial effect of inducing

the rival to set a higher price when it is visited second.

The interaction of search costs and search disclosure has major implications for wel-

fare and consumer surplus because both are lower with partial disclosure than without

any search disclosure. Thus, a reduction in search costs can lower both total welfare and

consumer surplus if it induces sellers to conduct search disclosure in equilibrium. Future

advances in technology will likely lower search costs (think of augmented reality) while

also enhancing the feasibility of search disclosure. Our research shows that the combi-

nation of both can have adverse surplus effects by facilitating a collusive information

exchange.

Interestingly, the equilibrium without disclosure is not the best possible outcome from

a consumer surplus and welfare perspective. We numerically show that total and consumer

surplus is highest if firms always disclose. The intuition for this result is that firms

will revise prices downward for any buyer who searches. This encourages search, which

additionally raises buyer welfare by improving the average match quality. Because this

outcome is never reached if the decision to conduct search disclosure is left in the hands

of the firms, regulation that mandates the full provision of search history information

might improve outcomes.

Another important result is that the feasibility of price revisions weakly raises total

and consumer surplus. This is because what discourages search disclosure is the possi-

bility that the rival might revise its price downward. We show that if price revisions are

impossible, firms always conduct search disclosure in equilibrium, leading to price dis-

crimination that reduces consumer surplus and total welfare. In practice, making revised
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offers to consumers often requires re-targeting. Our analysis thus implies that privacy

regulation which limits the ability of firms to conduct re-targeting can potentially lead

to more data sharing, with adverse effects on consumer surplus and welfare.

The rest of the paper proceeds as follows: Section 2 reviews the related literature.

Section 3 presents the model and Section 4 contains the equilibrium analysis and the

comparative statics. In Section 5, we discuss the policy implications of our work. Section

6 concludes.

4.2 Related literature

We make two main contributions to the literature. First, we are the first who analyze

the possibility that firms can inform their rivals about the visit of a given buyer. Second,

the information that sellers may obtain in our framework gives rise to rich forms of price

discrimination, some of which have not been studied before.

We thus contribute to the consumer search literature, in particular to the work on

sequential consumer search for differentiated products, which builds on the workhorse

model by Wolinsky (1986) and Anderson and Renault (1999). Since information sharing

can inform rival sellers about an arriving buyer’s search path, our analysis is related

to Armstrong et al. (2009) and Zhou (2011), who study prominence and ordered search,

respectively. We add to this literature by showing when an outcome comparable to ordered

search can emerge endogenously as a result of sellers’ information sharing choices.6

In addition, search disclosure in our model may enable sellers to revise prices for con-

sumers who continue to search other sellers before making a purchase decision. The idea

of discriminating against such consumers is reminiscent of Armstrong and Zhou (2016).

The authors explore the phenomenon of search deterrence, i.e., when sellers commit to

higher prices for returning consumers.7 The key differences to that paper are that we 1)

allow for discrimination not only against returning consumers but also against consumers

who visit the rival first, 2) study discrimination that is based on endogenously provided

information, and 3) do not allow firms to commit to future prices.

Search disclosure allows individual firms to price discriminate based on the inferred

search history of the buyer. A handful of other recent papers study price discrimination

in search markets. Fabra and Reguant (2020) study a simultaneous search model in which

firms price discriminate based on perfect information about the quantity that consumers

demand. Preuss (2022) studies price discrimination based on the search behavior of con-

sumers, like this paper. Mauring (2022) considers firms which can discriminate against

6Ordered search or, similarly, search with prominence, are also studied by Armstrong (2017), Moraga-
González and Petrikaitė (2013), and Haan and Moraga-González (2011).

7Pan and Zhao (2022) experimentally investigate the role of commitment power for search deterrence.
Other related work is by Zhu (2012), who studies a sequential bargaining framework with repeat contacts
in a market for over-the-counter financial securities.
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consumers using information about whether a given consumer is a shopper or a non-

shopper.8 In Bergemann et al. (2021), competing firms receive noisy signals about the

size of the consumers’ choice sets and the consumers’ search costs.9 None of these papers

consider the endogenous exchange of information about consumers’ search histories.

This paper also contributes to the literature on information exchange between com-

petitors. The question when rivals benefit from sharing their information with one another

was first addressed by Novshek and Sonnenschein (1982), Clarke (1983), Vives (1984),

and Gal-Or (1985), who studied the effects of agreements to exchange private information

about demand conditions, as well as by Shapiro (1986) and Gal-Or (1986), who consider

firms that can share information about private costs. Focusing on information about

individual consumers, Chen et al. (2001) study settings where firms receive imperfect

information about buyers’ consideration sets that they can share. More recent work on

the strategic sharing of consumer data includes Kim and Choi (2010), Zhao (2012), and

Choe et al. (2023). These papers, however, neither consider the exchange of endogenously

collected information like this article, nor do they study environments in which buyers

sample offers sequentially.

The first work on the topic of sharing endogenously collected consumer information is

by Taylor (2004), who studies a multi-period model in which sellers can sell their customer

lists to one another.10 Relatedly, Liu and Serfes (2006) study a two-period Hotelling model

in which firms can share preference information they have acquired for all buyers that

initially purchase at their firm.11 In an online advertising context, Johnson et al. (2022)

study the conditions under which online sellers agree to share unique identifiers of their

websites’ visitors with ad exchanges to facilitate re-targeting. In contrast to the above

papers, we focus on the sharing of search-related information in a sequential search model.

4.3 Framework

In this section, we introduce a model of sequential search and information sharing, which

is based on Wolinsky (1986). Two firms indexed j ∈ {A,B} each produce a horizontally

differentiated and indivisible good at constant marginal cost, which is normalized to zero.

A representative consumer wants to buy at most one unit of the good.12 The consumption

8While not directly addressing price discrimination, De Corniere (2016) studies a model in which
consumers differ based on their search query, providing sellers information they use when setting prices.
Similarly, consumers in Yang (2013) differ ex ante and thus search within different pools of firms, again
giving firms information relevant to their pricing decision.

9Garrett et al. (2019) consider a model of second-degree price discrimination in which consumers
differ in their choice sets, but firms do not have information about consumers.

10De Nijs (2017) considers a related model of a three-firm oligopoly.
11Extensions are studied by Choe et al. (2022) and Lin et al. (2021), among others.
12Our results continue to hold for a unit mass of consumers because we allow sellers to price discrim-

inate. Laying out the model for a representative consumer is merely for conciseness.
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utility this consumer attains when buying firm j’s good is given by the match value uj,

which is uniformly and independently drawn from the unit interval. This distribution of

match values, which we denote by F , is common knowledge.

The consumer does not know the realizations
{
uj

}
j=A,B

at the beginning of the game

and has to discover these match values as well as prices via sequential search. When

visiting any firm for the first time, she incurs a search cost s > 0 to inspect the firm’s

product, which means to discover the product’s match value and price. The consumer

has free recall, i.e., she can costlessly return to purchase at a firm that she has previ-

ously visited. Without loss of generality, the order in which the consumer visits firms is

random.13 We impose the tie-breaking rule that consumers stop searching when they are

indifferent.

In addition to this relatively standard set-up, a firm can, upon being visited by the

consumer, disclose to its rival that the consumer has inspected its product. We call the

sharing of this information, which enables discriminatory pricing, search disclosure. We

assume that search disclosure must be truthful so that firms cannot misreport a buyer’s

visit.14 Firms do not observe the prices set by the rival firm, nor any match values. In

the absence of search disclosure, firms do not know anything about the consumer’s search

path. For example, they do not know whether a consumer who inspects their product

has visited the rival before. Consumers do not observe the firms’ disclosure choices. The

exact timing is explained below.

The game begins whenever the consumer starts searching. Without loss of generality,

let firm A be the first seller the consumer samples. Upon sampling firm A, firm A sets

its price pA and the consumer observes pA together with her match value uA. At this

stage, firm A also decides whether to disclose the buyer’s visit to its rival or to withhold

this information. This choice is captured by the variable dA ∈ {D,ND}, where dA = D

indicates that firm A has disclosed and dA = ND that it has not. The effect of disclosure is

that, if the consumer continues to sample firm B, then firm B knows that the consumer

visited firm A before.15 Without observing firm A’s disclosure decision, the consumer

decides whether to buy (and receive net utility uA−pA), to continue searching, or to stop

searching without a purchase.

If she continues and samples firm B, firm B quotes a price pB, which the consumer

then observes together with her match value uB. At the same time, firm B decides whether

to use search disclosure itself or not (dB ∈ {D,ND}). Notably, firm A knows for sure

that the consumer continued to sample firm B if and only if dB = D.

Next, the consumer can, without incurring additional cost, again check firm A, and

13This holds because firms are ex-ante identical and we restrict attention to symmetric equilibria.
14This is a plausible assumption in our context since search disclosure is about sharing some unique

identifiers, which a firm would have to guess correctly if it wanted to fake search disclosure.
15For example, firm A might install a cookie on the consumer’s browser that is readable to firm B.

Or, it collects identifiable information and shares these with firm B.
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firm A can make a new price quote p′A, which may differ from the original price pA.

Whether firm A wants to revise its price depends on whether or not it has learned new

information about the consumer. If firm A is visited by the consumer again without

having received disclosure, it has learned nothing. Thus, it will not change its price. By

contrast, if firm A has received disclosure for the consumer, it will optimally revise its

price. Afterwards, the consumer makes her decision immediately. Specifically, she chooses

firm A if ua − p′A > max{0, uB − pB}, firm B if uB − pB > max{0, uA − p′A} and makes

no purchase otherwise.16

Given this description of the game, we can formalize the information sets in which a

firm can be called to act using the following notation:

• H(j) = R if firm j has received disclosure and has not met the buyer before.

• H(j) = NR if firm j has not received disclosure and has not met the buyer before.

• H(j) = D × pj × R if firm j has received disclosure and has met the buyer before,

at which point firm j disclosed the visit to its rival (D) and offered the price pj.

• H(j) = ND×pj ×R if firm j has received disclosure and has met the buyer before,

at which point firm j did not disclose the visit to its rival (ND) and offered the

price pj.

A firm’s strategy thus has to define (i) what prices to offer if in the information sets

H(j) = NR and H(j) = R, (ii) whether or not to disclose if in the information sets

H(j) = NR and H(j) = R, and (iii) what revision price to set in any information set

H(j) = D × pj ×R and H(j) = ND × pj ×R.

Characterizing all relevant information sets as above makes clear that we abstract from

the passing of time. This reflects the notion that making inferences about the consumer’s

preferences based on the passage of time alone is challenging for sellers because consumers

differ greatly in how long it takes them before they continue their search. As Ursu et al.

(2021) document, consumers often take (quite long) breaks in the search process. As a

result, merely observing that a buyer has not bought after some time has passed since

she received the offer is not very informative about whether she has indeed continued to

search. By contrast, receiving search disclosure resolves any uncertainty about whether

the consumer has continued to search and is thus more informative than the passing of

time could be. Consequently, neglecting the possibility of learning from the passage of

16That is, we implicitly rule out the possibility that the second visited firm, firm B in this example,
can revise its price as well. The rationale for this assumption is that the consumer has perfect information
about all match values at this point and thus makes a decision relatively quickly (she does not even need
to leave B’s website in order to see updated prices from A). In addition, the analysis would be equivalent
if we assumed that firm A never discloses to firm B if the consumer returns. The intuition we build
throughout the forthcoming analysis strongly suggests that firm A would indeed never disclose to firm
B in this case.
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time does not affect the predictions of our model qualitatively, but greatly simplifies the

analysis.

Moreover, we note that returning to a previously visited firm before making a purchase

decision weakly dominates not returning. This is because free recall implies that returning

either has no value (if the consumer does not buy) or a positive value (if the consumer

buys). Moreover, there are information sets in which the revised price may be lower than

the original price, making returning a weakly dominant strategy even for consumers who

would not buy at the original price. We therefore specify that the buyer will always return

to any previously visited firm before making a purchase here and throughout the main

analysis.17 We also study a model in which some consumers incur a cost to return to a

previously visited firm (and thus do not always return) in Appendix Section C.3.

As a solution concept, we use perfect Bayesian equilibrium (PBE). In a PBE, the

buyer’s and firms’ beliefs must be consistent with Bayes’ rule. In information sets that

are off the equilibrium path, however, Bayes’ rule does not apply. To discipline beliefs, we

impose the following standard assumptions on off-equilibrium beliefs: Firstly, the buyer’s

beliefs are passive — whenever the buyer is offered an off-equilibrium price, she believes

that firms have not otherwise deviated from their equilibrium strategies. Secondly, we

assume that firms hold passive beliefs about their rivals’ prices as well. That is, a firm

that unexpectedly receives disclosure or has charged an off-equilibrium price continues to

believe that the other firm has followed the equilibrium pricing strategy.

Thirdly, we need to make an assumption regarding the beliefs that a firm forms about

the possible match values of the buyer in any off-path information set. We specify that

these beliefs must be consistent as well. Consistency requires that (1) the firm believes

that the buyer it faces has searched according to her equilibrium search strategy and (2)

that the firm takes into account what it believes (or knows) about the prices the consumer

has received along the search path.

4.4 Equilibrium analysis

There are three candidates for a symmetric pure-strategy PBE, namely (1) an equi-

librium in which firms never disclose to their rivals, (2) an equilibrium in which firms

disclose to their competitors if and only if they have not previously received disclosure,

and (3) an equilibrium in which firms always disclose to their competitors.18 We refer to

17When searching for products online, it takes just one click to return to a previously visited seller
to check their offer again. Returning to a previously visited seller is thus different from sampling a new
one, which requires finding the seller and inspecting the good. Compared to the search cost associated
with the latter two actions, a click is essentially free. Moreover, in online markets free recall is facilitated
by re-targeting, which provides consumers with the opportunity to easily return to a previously visited
website.

18An equilibrium in which firms only disclose after having received disclosure, but not when receiving
no previous disclosure would be outcome-equivalent to the no disclosure equilibrium.
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these equilibrium candidates as (1) the no disclosure equilibria, (2) the partial disclosure

equilibria, and (3) the full disclosure equilibria, respectively. We distinguish novel equi-

librium objects in these different equilibrium candidates via superscripts, namely “n” (no

disclosure), “d” (partial disclosure), and “f” (full disclosure). In the analysis that follows,

we will characterize these three equilibrium candidates and determine when they exist.

Throughout the analysis, we restrict attention to equilibria with active search, which

requires that search costs be not too large. Specifically, we restrict attention to search

costs for which the buyer would participate in the market if there is no search disclosure,

i.e., we assume that s ≤ 1/8.

At the end of the section, we also briefly consider possible equilibria in which firms

randomize over their disclosure choices. We argue that such equilibria will not exist unless

search costs are small and that, even when they exist, the insights we establish when

restricting attention to pure-strategy equilibria extend.

4.4.1 No disclosure equilibria

In a no disclosure equilibrium, only one information set is on the equilibrium path, namely

H(j) = NR, implying that firms never receive disclosure before meeting a buyer. Con-

sequently, firms charge a uniform price p∗ in any symmetric equilibrium. In particular,

firms do not discriminate against consumers who continue to search since they cannot

observe search behavior.

Consumers anticipate that firms do not price discriminate in equilibrium. Thus, their

optimal search rule is given by a simple cutoff strategy: continue searching if and only if

uj < wn(pj) (if j is the first seller sampled). Note that consumers do not stop searching

without a purchase after sampling the first seller because our assumption of active search

(s ≤ 1/8) implies that wn(pj) ≥ pj in equilibrium. To derive wn(pj), suppose a consumer

enjoys utility r if she stops searching. In this case, she is indifferent between receiving

the incremental utility from sampling another seller −j at cost s > 0 and consuming r if

r satisfies

Eu−j
[max{u−j − pe−j − r, 0}] = s, (4.4.1)

where pe−j denotes the anticipated price at seller −j. Solving for r yields r = w∗ − pe−j,

where w∗ = 1 −
√
2s, because match values are drawn from a uniform distribution on

[0, 1]. To obtain the cutoff wn(pj), note that the consumer buys from firm j if uj − pj ≥
r = w∗ − p∗, where we used that pe−j = p∗ in equilibrium. Thus, the critical match value

satisfies

wn(pj) = w∗ − p∗ + pj. (4.4.2)
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The ensuing pricing game is, of course, equivalent to the problem sellers face in the

original Wolinsky (1986) model. The unique equilibrium price p∗ thus solves

p∗ =
1− (p∗)2

1 + w∗ . (4.4.3)

To support this equilibrium, firms must not have an incentive to disclose when being

visited by a buyer. The effect of deviating to disclosure depends on whether a buyer

visits the deviating firm, say firm A, first or second. If the buyer visits firm A first and

continues to search, then firm A’s deviation to disclosure makes firm B reach the off-path

information set H(B) = R (it receives disclosure for an unknown buyer). Consequently,

disclosure informs firm B that it is visited second. Thus, B learns that the buyer’s match

at the rival firm, given by uA, lies below wn(pA), as she would not have searched otherwise.

The profit function firm B maximizes in this case, which we denote by Π2(pB), is therefore

given by

Π2(pB) = pB

[
1

2
F (w∗)

[
1−F (wn(pB))

]
+

1

2

∫ wn(pB)

pB

F (p∗ + uB − pB)duB

]
, (4.4.4)

where we account for firm B’s passive beliefs that the consumer received the price p∗

at firm A, which implies that wn(pA) = w∗, i.e., the search cutoff consumers use in

equilibrium.

By contrast, if the buyer visits firm A second, then firm B reaches the off-path in-

formation set H(B) = ND × p∗ × R (it has received disclosure for a buyer to whom it

offered the equilibrium price p∗ before and whose visit it did not disclose to A). That is,

disclosure by firm A informs firm B that the buyer has continued to search after sampling

B, allowing firm B to infer that the buyer’s match value uB satisfies uB < wn(p∗) = w∗.

Firm B’s expected profit function in this information set, which we denote by Π3(pB), is

therefore given by

Π3(pB) =
1

2
pB

∫ w∗

pB

F (uB − pB + p∗)duB. (4.4.5)

Search disclosure by A thus endows firm B with valuable information to price dis-

criminate against buyers with low match values for B. As it turns out, the ensuring

price discrimination is detrimental to A’s profits. We learn this from Lemma 4 which

characterizes the prices pn2 and pn3 that maximize Π2 and Π3, respectively.

Lemma 4 The optimal prices pn2 and pn3 following a rival’s deviation to disclosure are

pn2 =
1

2

(
1−

(
w∗ − p∗

))
+

1

4

(
(w∗)− (p∗)2

w∗

)
(4.4.6)
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pn3 =
2

3
(w∗ + p∗)− 1

3

√
(w∗)2 + 2w∗p∗ + 4(p∗)2 (4.4.7)

These prices are uniquely determined and satisfy the ordering pn3 < p∗ < pn2 .

The price pn2 is strictly above p∗ because receiving disclosure for a previously unknown

buyer lets firm B know that this buyer has visited A first. Thus, if the buyer shows up

at firm B, this indicates that she did not obtain a good match at firm A (formally, that

uA < w∗). This puts firm B in a competitively favorable position in which it can charge

a higher price. The effect is reminiscent of environments in which consumers search firms

in a certain and known order as in Zhou (2011).19

By contrast, the price pn3 is below p∗. This is because A’s search disclosure informs B

that the buyer has continued to search, which B would otherwise not be able to observe.

More precisely, B originally sets a uniform price p∗ to maximize the joint profits from

(i) buyers who arrive at B first and buy immediately, (ii) buyers who arrive at B first

and return later, and (iii) buyers who sample A first. Upon receiving (unexpected) search

disclosure about a buyer it met before, however, B knows that it faces a buyer from group

(ii). Buyers in this group must have a low match value at firm B as they would not have

continued to search otherwise. This induces firm B to revise its price downward. Notably,

the ordering of the revised and the equilibrium price is different from the one found

in Armstrong and Zhou (2016). This is because Armstrong and Zhou (2016) consider

a setting in which firms can commit to future prices prices for buyers who continue to

search.20

Thus, a deviation to search disclosure is beneficial for the deviating firm if the buyer

visits this firm first and detrimental if the buyer visits the deviating firm second.21 To

evaluate this trade-off, consider the profit function of firm A if it deviates. Because the

buyer neither anticipates nor observes any disclosure, she expects firm B to charge p∗ so

that her search rule after arriving at firm A is still characterized by the function wn(pA).

Thus, the profit function of firm A if it deviates to disclosure, which we denote by Π1, is

given by:

Π1(pA) =
1

2
pA

[[
1− F (wn(pA))

]
+

∫ wn(pA)

pA

F (pn2 + uA − pA)duA

]
︸ ︷︷ ︸

expected profits from a consumer who samples A first

+

19Nonetheless, there is a difference between the derivation of pn2 in our analysis and the derivation
of the price the firm visited second would charge in Zhou (2011). This is because there is no price
discrimination in equilibrium here, implying that firms’ and consumers’ expectations, which determine
pn2 , differ.

20In their analysis of the monopoly case, the authors include an example without commitment. In this
example, the return price is actually higher than the initial price as well. Their result obtains because of
the strong asymmetry between the monopolist’s offer and the outside option. Specifically, the distribution
of the outside option is significantly more attractive than the distribution of the seller’s net utility.

21Note also that firm B does not disclose “back” to firm A in the event that A was visited first because
this would induce A to revise its price downward. We show this formally in the proof of Proposition 16.
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1

2
pA

[
F (w∗)

(
1− F (w∗ − pn3 + pA)

)
+

∫ w∗−pn3+pA

pA

F (pn3 + uA − pA)duA

]
︸ ︷︷ ︸

expected profits from a consumer who samples B first

(4.4.8)

To understand the expected profits from a consumer who starts at firm B, notice

that uB < w∗ must hold if the buyer shows up at firm A. Thus, such a buyer will surely

consume at firm A if uA − pA > w∗ − pn3 , as reflected in the first term. If the buyer’s net

surplus at firm A is below w∗− pn3 , she still consumes at firm A if uA− pA is greater than

zero and greater than uB−pn3 , which holds with probability F (pn3 +uA−pA). If this event

holds for a buyer with uA < w∗−pn3 +pA, the buyer will sample firm A after visiting firm

B.22 We find that the adverse effect of disclosure strictly dominates for any s > 0.

Proposition 16 There always exists a unique no disclosure equilibrium in which sellers

charge p∗. In this equilibrium, deviating by non-disclosure is strictly unprofitable.

There are two reasons why an equilibrium with no disclosure can be sustained for any

level of search costs. The first is that the rival’s price reduction (p∗ − pn3 ) for buyers that

sampled the rival first exceeds the rival’s price increase (pn2 − p∗) for buyers who sampled

the disclosing seller first. Figure 4.1 visualizes this fact, which holds by the following logic:

When firm B receives search disclosure about a buyer it has not seen before, the only

inference this firm can make when the buyer arrives is that uA < w∗, which concerns the

rival’s product. By contrast, when B receives search disclosure about a buyer it has seen

before, it learns that uB < w∗, which concerns its own product. Because search disclosure

is more informative about the buyer’s demand for the own product in the latter case, the

subsequent price reduction is greater in magnitude than the price increase in the former.

Figure 4.1: Equilibrium (Wolinsky) price and off-path prices

22This is because uB < pn3 +uA−pA < pn3 +(w∗−pn3 +pA)−pA = w∗, where the latter equals wn(p∗).
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The second effect underlying Proposition 16 is that disclosure by firm A will reduce

demand from a consumer who sampled B first more than it increases demand from a

consumer who samples A first, even if the changes in pn2 and pn3 were equal in magnitude.

This holds by the following logic: Suppose pn2 = p∗+ δ and pn3 = p∗− δ. If the buyer starts

at firm B (the non-deviating firm), B’s revised price of p∗−δ instead of p∗ means that the

buyer will be 1/2δ less likely to choose firm A for sure. By contrast, if the buyer starts at

firm A, a price of p∗+ δ instead of p∗ at firm B has no comparable effect. This is because

the probability that such a buyer surely buys at firm A, namely 1 − F (w∗ − p∗ + pA),

is unaffected by search disclosure, given that buyers continue to expect the price p∗ at

firm B. Thus, buyers are more likely (by a difference of 1/2δ) to fall into the category in

which their demand decreases.

4.4.2 Partial disclosure equilibria

We now consider equilibria in which firms disclose to their competitors if and only if they

have not received disclosure beforehand. This disclosure strategy implies that firms are

certain about whether they are visited first or second in the two information sets that are

on path in such an equilibrium. If a firm faces an unknown buyer for whom no disclosure

was received (i.e. H(j) = NR), this firm knows that it is being visited first. If a firm faces

an unknown buyer for whom disclosure was received (i.e. H(j) = R), this firm knows that

it is being visited second.

Consequently, the symmetric pure strategy equilibrium features two on-path prices

p∗1 (set by the seller sampled first) and p∗2 (set by the seller sampled second). Consumers

anticipate that sellers do not know whether they continue to search or not and, thus, do

not expect prices to be revised in equilibrium. The optimal search rule thus still uses a

simple cutoff value. Using previous notation, this cutoff value is given by

wd(pj) = w∗ − p∗2 + pj (4.4.9)

so that a consumer buys from firm j (when j is visited first) and without sampling −j if

and only if uj ≥ wd(pj).

This set-up is, of course, comparable to a model of ordered search. We can therefore

invoke existing results from Armstrong et al. (2009) to characterize the partial disclosure

equilibrium prices p∗1 and p∗2. Importantly, Armstrong et al. (2009) show that p∗2 > p∗1.

Moreover, the cutoff for an active search market to exist is still s ≤ 1/8.23

There are two information sets in which each seller j ∈ {A,B} can deviate from

the partial disclosure equilibrium strategy. Without loss of generality, suppose the buyer

samples firm A first. That is, firm A will be in the information set H(A) = NR when the

23The reason is that as s → 1/8, p∗1 and p∗2 converge to p∗ so that the buyer expects the same prices
(and thus the same surplus from search) with and without disclosure.
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game begins as the buyer samples firm A. In this information set, firm A must not want

to deviate to non-disclosure, or there is no partial disclosure equilibrium. In addition, if

the consumer continues to sample firm B and firm A sticks to its equilibrium strategy,

then B is in the information set H(B) = R as it will have received search disclosure

from A. In this information set, the partial disclosure strategy dictates that firm B must

not disclose back to firm A when the buyer arrives. Notably, if H(B) = R, deviating to

disclosure informs A that the buyer has continued to search. As argued before, this will

lead seller A to revise its price downward, making such a deviation generally unprofitable.

The effects of a deviation to non-disclosure when no disclosure was received previously

are more complex. Suppose that firm A does not disclose a buyer’s visit when H(A) =

NR. If the buyer continues to search, then firm B faces a buyer for whom it has not

received disclosure before (B’s information set is thusH(B) = NR instead ofH(B) = R).

Firm B will thus incorrectly believe that it is the first firm the buyer visits and offer p∗1

instead of p∗2. In addition, firm A’s deviation has a second effect on A’s profits via the

influence on B’s subsequent disclosure decisions. Because firm B erroneously believes to

be visited first, this firm will, following the equilibrium play, use search disclosure itself

upon being visited by the buyer. This, in turn, will let firm A know if a consumer has

continued to search. Since only buyers with match values below wd(pA) continue to search,

deviating to non-disclosure practically allows A to sequentially screen its buyers.

In sum, deviating to not disclosing when a consumer arrives at firm A first (firm A

knows this in the partial disclosure equilibrium) has two opposing effects. On the one

hand, it makes firm B charge a lower price, which lowers firm A’s profits. On the other

hand, it allows A to sequentially screen its buyers and to revise the price for buyers

that continued to search. Notice that buyers do not expect any price revisions in a partial

disclosure equilibrium and, thus, would never sample the other seller (firm B) only to get a

lower price at firm A. Thus, even though the buyer’s optimal search rule leads to negative

selection, there are no Coasian dynamics as in Gul, Sonnenschein, and Wilson (1986).

Revising the price for consumers who continue searching is therefore strictly profitable.

To evaluate which effect dominates, we first characterize how firms revise their initial

prices when deviating to non-disclosure. To that end, we must derive the price a firm

offers in each information set H(j) = ND × p1 × R, which depends on the firm’s initial

price p1. If firm A charges an initial price p1 when deviating to non-disclosure, the buyer

continues to search firm B if and only if uA < wd(p1) = w∗ − p∗2 + p1. Additionally, firm

A knows that firm B sets the equilibrium price p∗1 after the deviation to non-disclosure

(if the buyer continues to search). Thus, the revised price p3 maximizes Π3,d(p3|p1):

Π3,d(p3|p1) = p3

∫ wd(p1)

p3

1

2
F (uA − p3 + p∗1)duA. (4.4.10)
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The optimal price in H(j) = ND × p1 × R, which we denote by pd3(p1), is a function of

p1. Next, we analyze the profit function that A maximizes when choosing an initial price

p1 if it deviates to non-disclosure, knowing that it will be able to screen buyers based on

whether they continue to search or not. This profit function, which we call Π1,d(p1), is

given by:

Π1,d(p1) = p1
1

2

[
1− F (wd(p1))

]
+ pd3(p1)

∫ wd(p1)

pd3(p1)

1

2
F (p∗1 + uA − pd3(p1))duA (4.4.11)

Let pd1 maximize Π1,d(p1). By analyzing the first-order conditions that pd3(p1) and pd1 must

satisfy in the subgame following a deviation to non-disclosure, we obtain the following

result.

Lemma 5 Suppose firm j deviates at H(j) = NR to dj = ND. Then, the optimal initial

price pd1 and the optimal revision price function pd3(p1) satisfy

pd3(p1) =(2/3)(wd(p1) + p∗1)− (1/3)
√

(wd(p1))2 + 2wd(p1)p∗1 + 4(p∗1)
2 (4.4.12)

pd1 =1− wd(pd1)−
(
p3(p

d
1)
)2

+ p3(p
d
1)
(
wd(pd1) + p∗1

)
. (4.4.13)

Both pd1 and pd3(p1) are uniquely determined.

The uniqueness of pd1 and pd3(p1) is important because it implies that the partial

disclosure equilibrium exists if and only if the deviation profits given pd1 and pd3(p
d
1) do not

exceed the equilibrium profits given p∗1 and p∗2. We plot the four prices (p∗1, p
∗
2, p

d
1, p

d
3(p

d
1))

for different values of search costs in Figure 4.2.

Figure 4.2: Equilibrium and deviation prices



71

With the system of equations for pd1 and pd3(p1) as well as for p∗1 and p∗2, we can

characterize analytically when the partial disclosure equilibrium exists.

Proposition 17 There exists a threshold s̄ > 0 such that the partial disclosure equilib-

rium exists if s ≤ s̄. In this equilibrium, prices are uniquely determined. There also exists

a s̄′ ≥ s̄ such that a partial disclosure equilibrium does not exist if s ≥ s̄′.

Our numerical analysis complements the proposition by showing that s̄ = s̄′. That is,

the partial disclosure equilibrium exists up to a unique cutoff value s̄ ≈ 0.01.

To understand why the partial disclosure equilibrium cannot be sustained if search

costs are high, consider the case in which search is very costly. In particular, suppose

it is so costly that a buyer would search after sampling the first firm, say firm A, only

if uA is approximately equal to or smaller than pA. Then, any buyer who continues to

search is very unlikely to buy from firm A after sampling firm B, at least at A’s original

price. This mitigates the detrimental effect of deviating to non-disclosure because buyers

who search further will most likely not buy from firm A regardless of whether B charges

p∗1 or p∗2. By contrast, learning that a buyer continued to search is very profitable for

A if search costs are high. This is because a revised price of pd3 can lead to significant

demand from a buyer who continued to search, which is almost zero if A does not revise

its price. Consequently, the beneficial effect of a deviation by non-disclosure dominates

when search costs are high.

To understand why the partial disclosure equilibrium does exist if search costs are

small, however, examine Figure 4.2 and note how the prices compare to each other. The

gap between p∗2 and p∗1 increases the fastest in s when s is small. As argued before,

the larger this difference, the greater is the cost of deviating from partial disclosure.

Intuitively, the ratio of the p∗2 − p∗1 gap and the pd1 − pd3(p
d
1) gap is largest when search

costs are small, which means that the detrimental effect of a deviation by non-disclosure

dominates when search costs are small.

4.4.3 Full disclosure equilibria

Consider the third possible equilibrium candidate, in which firms disclose to their com-

petitors regardless of whether they have received disclosure before or not, i.e. dj = D if

H(j) = NR or H(j) = R. If both firms stick to this disclosure strategy, a firm can reach

any of the following information sets: {NR}, {R}, and {D × p1 × R}, where p1 is the

firm’s arbitrary initial price. If H(j) = NR, firm j believes it is visited first. We denote

the equilibrium price firm j would set in this information set by pf1 , where the superscript

f refers to “full” disclosure. If H(j) = R, firm j believes it is visited second and sets the

price pf2 in equilibrium. Lastly, firm j knows that it was visited first but that the buyer

has also sampled firm −j if H(j) = D × p1 ×R, in which case firm j will offer a revised

price given by pf3(p1).
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To characterize the equilibrium prices, we must first solve for the consumers’ opti-

mal search rule. If firms follow the full disclosure strategy, prices will be revised on the

equilibrium path. As a result, a consumer who has sampled one firm already anticipates

that if she samples the other firm as well, then the price at the initially visited firm will

change from p1 to pf3(p1). The optimal search rule in this case is thus non-standard and

must first be derived.

Lemma 6 For any initial price p1, there exists a wf (p1) such that consumers will con-

tinue searching if and only if their initial match value is below wf (p1). In equilibrium,

pf3(p1) < wf (p1). If this cutoff is interior (strictly below 1), it solves:

wf (p1)− p1 =

∫ wf (p1)−pf3 (p1)+pf2

0

(wf (p1)− pf3(p1))du+

∫ 1

wf (p1)−pf3 (p1)+pf2

(u− pf2)du− s︸ ︷︷ ︸
Expected utility conditional on searching

(4.4.14)

Suppose that the consumer visits firm A first. The first integral on the right-hand side of

(4.4.14) captures the expected value of being able to buy from firm A at the anticipated

revised price pf3(p1) while the second integral captures the expected value of being able

to buy from firm B at the anticipated price pf2 . Given a value wf (p1) as determined by

(4.4.14), the consumer will, in equilibrium, continue to search if and only if her match

value at the first firm is below wf (p1).
24 For future reference, we define the equilibrium

value of this cutoff as wf := wf (pf1).

Taking note of the consumer’s optimal search rule, we are ready to derive the equilib-

rium prices. If firm A receives disclosure for a buyer whom it quoted the price p1 before,

A knows that uA < wf (p1) because the buyer continued to search. In the information set

H(A) = D× p1×R, firm A maximizes the following profit function through choice of p3:

Π3,f (p3|p1) =
1

2
p3

∫ wf (p1)

p3

F (uA − p3 + pf2)duA. (4.4.15)

We have already defined the solution to this as pf3(p1). Now consider the situation of

a firm, say B, which receives disclosure for a previously unknown buyer (H(B) = R).

When this consumer shows up at firm B, the firm believes that the match value of the

consumer at firm A satisfies uA < wf . Additionally, firm B expects that by following the

equilibrium strategy of disclosing back to firm A, the price at which the consumer can

buy from firm A is the revised equilibrium price pf3 , where pf3 := pf3(p
f
1). Thus, firm B

24We show in the appendix that the search cutoff must be interior in an equilibrium.
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sets p2 to maximize:

Π2,f (p2) =
1

2
p2F (wf )

[
1− F (wf − pf3 + p2)

]
+

1

2
p2

∫ wf−pf3+p2

p2

F (pf3 + uB − p2)duB,

(4.4.16)

the solution to which we have already defined as pf2 .
25

Finally, consider a firm, say A, which is visited by a buyer about whom no disclosure

was received yet so that A’s information set is H(A) = NR. In a full disclosure equilib-

rium, this information set is only reached if the buyer did not visit another firm before.

Thus, firm A knows that it is the first firm this buyer visits. When setting its price p1,

firm A takes into account how p1 affects the consumer’s search decision (captured by the

function wf (p1)) as well as the price pf3(p1), which A will revise its original price to if

it subsequently receives disclosure from B. Formally, firm A’s optimal price in this case

(given by pf1) maximizes:

Π1,f (p1) =
1

2

[
1− F (wf (p1))

]
p1 +

1

2
pf3(p1)

∫ wf (p1)

pf3 (p1)

F (pf2 + uA − pf3(p1))duA︸ ︷︷ ︸
=Π3,f (p3|p1)

(4.4.17)

Pinning down the prices that maximize (4.4.15) – (4.4.17) allows us to describe nec-

essary conditions that the prices in a full disclosure equilibrium must satisfy.

Lemma 7 Consider a full disclosure equilibrium. Given wf , the equilibrium prices (pf1 , p
f
2 , p

f
3)

must jointly solve the following system of equations:

pf3 =
2

3
(wf + pf2)−

1

3

√(
wf + pf2

)2
+ 3

(
pf2

)2
(4.4.18)

pf2 =
1

2

(
1− wf + pf3

)
+

1

4
wf − 1

4
wf
(
pf3

)2
(4.4.19)

pf1 =(1− wf )

(
∂wf (pf1)

∂p1

)−1

+ pf3

(
pf2 + wf − pf3

)
(4.4.20)

We show that, for any potential equilibrium search cutoff wf ∈ [0, 1], there exists a

unique vector of prices that jointly solves these three equations. This allows us to establish

that full disclosure cannot constitute an equilibrium.

Proposition 18 A full disclosure equilibrium does not exist.

25The function Π2,f (p2) correctly depicts the profits of firm B in the information set H(B) = R if
wf − pf3 + p2 ≤ 1. We verify that this condition must hold true for prices p2 in an open ball around pf2 .
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Intuitively, a full disclosure equilibrium requires that pf1 ≤ pf3 . To see this, consider

the decision situation of a firm who faces a buyer it has already received disclosure about

so that this firm knows that it is visited second. In a full disclosure equilibrium, this firm

is supposed to disclose the buyer’s visit to its competitor. However, doing so is strictly

unprofitable if the price revision induced by this disclosure decision is downward, i.e., it is

unprofitable if pf3 < pf1 . This is because a lower price at the rival firm entails a reduction

in the demand of the disclosing firm. However, the negative selection effect implies that

the optimal prices satisfy pf3 < pf1 .

Formally, we show that, for any for any wf < 1, the unique joint solution to the

equations (4.4.18) - (4.4.20) has the property pf3 < pf1 , which thus cannot support a full

disclosure equilibrium. In addition, if wf = 1, all prices would be exactly equal because a

search cutoff of wf = 1 means that buyers sample both sellers before making a purchase

decision regardless of their match values, rendering any information obtained from search

disclosure irrelevant. However, if all prices are the same, then consumers with sufficiently

high match values at the first firm they visit must not find it profitable to continue to

search since there are strictly positive search costs. In other words, consumers with initial

match values below 1 would buy immediately, contradicting the specification that wf = 1.

4.4.4 Comparative statics

We here seek to understand the relationship between the incidence of search disclosure

and search costs. To deal with equilibrium multiplicity, we make the following assumption.

Assumption 9 If multiple equilibria exist, we remove any equilibrium which is strictly

Pareto dominated by another equilibrium, in terms of the payoffs of the firms.

Assumption 9 seems justified in our context because tracking a consumer is a game

that is usually repeated several thousand times per day. As a result, coordinating on

their preferred equilibrium should be feasible for sellers. Moreover, our model describes

an environment in which consumers do not arrive all at once but over time. While we do

not model this explicitly, we imagine that if firms play the equilibrium strategy of their

preferred equilibrium, consumers will quickly notice and adjust equilibrium beliefs accord-

ingly. Since each consumers’ individual mass is zero, ignoring the beliefs of a few initial

consumers and simply playing the equilibrium strategy of their preferred equilibrium is

essentially costless for firms.

The previous analysis has shown that we can restrict attention to the partial and the

no disclosure equilibrium. Using Assumption 9 requires knowing which equilibrium firms

prefer if both exist. To this end, recall that profits in the no disclosure equilibrium equal

profits if search is random while profits in the partial disclosure equilibrium equal average

profits if search is ordered. Thus, we know from Armstrong et al. (2009) that the partial
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disclosure equilibrium is preferred from the firms’ perspective if s ≤ 0.021. Because the

partial disclosure equilibrium exists when search costs are sufficiently small by Proposition

17, while the no disclosure equilibrium exists for all search costs by Proposition 16 (and

full disclosure never prevails), the next result follows immediately from the preceding

discussion.

Proposition 19 There is search disclosure in equilibrium if s is sufficiently small and

no search disclosure if s is sufficiently high.

Based on previous calculations that show that the partial disclosure equilibrium exists

when search costs are below s̄ ≈ 0.01, we can in fact conclude that there is a unique cutoff

value s̄ ≈ 0.01 which determines whether there is search disclosure in equilibrium or not.

Recall that the partial disclosure equilibrium achieves the same welfare and consumer

surplus as the equilibrium of an ordered search model whereas the no disclosure equi-

librium is outcome-equivalent to the standard random search equilibrium. We can thus

leverage results from Armstrong et al. (2009) once more, who show that prominence (or-

dered search) lowers total surplus and consumer surplus compared to random search.

Thus, the next result is an immediate corollary to Proposition 19.

Corollary 7 A marginal reduction in search costs that triggers a shift to the partial

disclosure equilibrium will lower consumer surplus and total welfare.

4.4.5 Mixed-strategy equilibria

In this subsection, we consider equilibria in which firms mix over their disclosure choices.

We argue that, even within such equilibria, search disclosure can only prevail when search

costs are low enough.

Recall that there are two different information sets in which a firm has to decide

whether to disclose or not: (i) when it faces an unknown buyer for whom no disclosure was

received (H(j) = NR) and (ii) when it faces an unknown buyer for whom disclosure was

received (H(j) = R). In the second information set, a firm has no incentives to disclose.

It knows that it is visited second, which means that disclosure will merely induce the

rival to revise its price. Even if firms mix over their disclosure decisions, the negative

selection implied by consumers’ search decisions will still be present. This implies that

price revisions would be downward, which makes disclosing in H(j) = R suboptimal.

Thus, there will be no equilibrium in which firms mix over their disclosure decision in the

information set H(j) = R.

Now consider the incentives of firms to mix over their disclosure decision in the in-

formation set H(j) = NR. In this information set, a firm does not know whether the
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consumer has visited the firm first or second.26 When the consumer visits the firm first,

disclosure may have a positive or a negative effect on the disclosing firm’s profits. As

in the partial disclosure equilibrium, disclosure in this situation raises the rival’s price,

but denies the firm the opportunity to revise its price for consumers who continue to

search. Which effect dominates depends on the level of search costs. As before, disclosure

will have a negative effect on the disclosing firm’s profits if the consumer visits this firm

second, because it induces a downward price revision by the rival.

When search costs are high, we thus conjecture that it will be strictly suboptimal for

any firm to disclose in H(j) = NR. This follows from the logic established during the

analysis of the partial disclosure equilibrium: Even when facing a consumer who visits

the firm first, disclosure is disadvantageous when search costs are high. This is because

the value of attaining a chance to revise one’s price is high, while the benefits of reducing

the price offered by the rival are minimal.

Thus, it is strictly optimal to withhold disclosure in H(j) = NR when search costs are

high. This implies that there is no equilibrium in which firms mix over their disclosure

decisions when search costs are sufficiently high. When search costs are low, there poten-

tially exists an equilibrium in which firms mix over these choices when H(j) = NR. Such

an equilibrium would be a hybrid between the partial and the no disclosure equilibrium.

Then, all our comparative statics results would be retained even if this equilibrium were

to be played when search costs are low.

4.5 Policy implications

In this section, we study the equilibrium outcomes that emerge when modifying the

framework we outlined and solved previously. We consider the equilibrium outcomes when

firms cannot revise prices (Section 4.5.1) and when firms exogenously receive full search

history information (Section 4.5.2). This analysis shows that a policymaker interested in

maximizing consumer welfare should ensure that price revisions by firms are feasible and

consumers can easily observe revised prices. In addition, the sharing of search history

related information should not be left up to firms. This is because consumer welfare is

maximal when firms exogenously receive full search history information (in the model

with price revisions), an outcome which is impossible under voluntary search disclosure

by the preceding analysis.

26Because the rival mixes over its disclosure decision, it could be that the consumer visited the rival
first, but said rival did not disclose as part of its equilibrium strategy.
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4.5.1 Banning price revisions

In this section, we solve the aforementioned model when firms cannot revise prices. Under

this specification, there are just two relevant candidates for a symmetric pure-strategy

PBE, namely (1) the no disclosure equilibrium and (2) the partial disclosure equilibrium.

The full disclosure and the partial disclosure equilibrium are outcome-equivalent because

a firm that receives disclosure for a known buyer has no more choices to make.

In a nutshell, the benefits of non-disclosure in the main analysis emerged from the

possibility of price revisions, either by the rival firm or by the firm itself. When this

possibility is eliminated, disclosing becomes strictly profitable regardless of search costs.

Thus, when price revisions are impossible, the equilibrium result from the previous section

basically flips.

Proposition 20 If firms cannot revise prices, the no disclosure equilibrium does not

exist, while the partial disclosure equilibrium always exists.

To see why the no disclosure equilibrium never exists when price revisions are im-

possible, recall the trade-off firms face in the no disclosure equilibrium of the baseline

model. If a firm discloses and that firm is the first firm the consumer visits, its rival will

set a higher price (compared to the price the rival sets if the firm does not disclose).

If a firm discloses and that firm is the second firm the consumer visits, the rival learns

that it should revise its price downward. In the baseline model, the detrimental effect of

potentially triggering a downward price revision dominates the benefit that accrues if a

consumer visits the disclosing firm first. If price revisions are impossible, however, the

second channel is shut down, and only the beneficial effect of disclosure remains. This

implies that firms would always deviate from the no disclosure strategy.

By contrast, the partial disclosure equilibrium always exists when price revisions are

impossible. The two equilibrium prices, namely p∗1 and p∗2, are equal to the equilibrium

prices from Armstrong et al. (2009). As before, a firm that deviates by non-disclosure

when being visited first will make its rival wrongly believe to be visited first. The non-

disclosure deviation thus reduces the rival’s price from p∗2 to p
∗
1. In the baseline model, such

a deviation also offered the benefit of being notified by the rival if a consumer continued

to search, which allowed the deviating firm to screen consumers. When price revisions

are impossible, however, screening buyer types with different prices is not feasible. Thus,

only the detrimental effect of the deviation to non-disclosure remains, rendering partial

disclosure an equilibrium strategy for any level of search costs.

Consequently, if price revisions are impossible, there is search history-based price dis-

crimination in equilibrium. Consumers will be charged different prices at either firm,

depending on whether they visit this firm first or second. By previous arguments, con-

sumer welfare in such an equilibrium is lower than in the no disclosure uniform price

equilibrium.
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The policy implications of this section are thus twofold: Firstly, the feasibility of price

revisions weakly raises consumer welfare. Secondly, note that we modeled the effects of

price revisions if firms have no commitment power. Thus, from a policy perspective,

ensuring the feasibility of price revisions has to go hand in hand with provisions ensuring

that firms cannot discourage search by committing to high prices for consumers who

continue to search as in Armstrong and Zhou (2016).

4.5.2 Exogenous search disclosure

In this section, we suppose that a third party guarantees that each firm is informed about

a buyer’s entire search history, i.e., about all search decisions. This could be achieved,

for example, by regulation that mandates search disclosure at all times. Alternatively, an

online platform on which firms sell their products and consumers search, or more generally

any large data intermediary, could make such search history information available to

sellers.

As in Section 4.4.3, there are three prices a consumer can be offered on the equilibrium

path, which we call pf,∗1 , pf,∗2 , and pf,∗3 . The prices pf,∗1 and pf,∗2 will be offered by a firm

when a consumer visits this firm first and second, respectively. The price pf,∗3 is offered

by the first visited firm after the consumer samples the second firm as well. By Lemma

6, the consumers’ optimal search behavior can be characterized by a cutoff rule wf (p1) as

defined in (4.4.14), where p1 is an arbitrary initial price offered by the first visited seller.

It remains to derive the equilibrium objects for different levels of search costs. In

equilibrium, there must be a search cutoff wf,∗ such that consumers find it optimal to

continue searching if and only if the first seller’s match value is below wf,∗, as well as

a vector of prices (pf,∗1 , pf,∗2 , pf,∗3 ) that jointly solve (4.4.18), (4.4.19), and (4.4.20), given

wf,∗ = wf (pf,∗1 ). Using numerical methods, we are able to compute the joint solution

for any s ∈ [0, 1/8]. Moreover, we verify that this combination of prices, together with

the search cutoff wf (p1) as defined in equation (4.4.14) and the optimal revision price

function pf3(p1) for an arbitrary initial price p1, satisfy the sufficient conditions for an

equilibrium. We visualize the on-path objects (pf,∗1 , pf,∗2 , pf,∗3 , w∗
f ) for any s ∈ [0, 1/8] in

Figure 4.3.

The figure shows that pf,∗2 > pf,∗1 > pf,∗3 for all s > 0, which aligns with the intuition

we have developed in the previous sections. Contrary to some of the previous results,

however, the prices pf,∗2 and pf,∗1 do not approach the monopoly price of 1/2 as search

frictions grow large. This is because consumers now anticipate that continuing to search

leads the initially visited firm to lower its price to pf,∗3 , which creates additional incentives

to search and, thus, more competition. This notion is also reflected by the fact that the

search cutoff w∗
f lies firmly above pf,∗1 even if search costs are large. That is, while in

the baseline model consumers would always buy immediately from the first visited firm
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Figure 4.3: Equilibrium with exogenous information

(without continuing to search) at any price below their match value if s → 1/8, they only

buy immediately in this extension if the offered price is sufficiently smaller than their

match value.

With all these results in hand, we now discuss how consumer surplus and total welfare

are affected by the exogenous provision of search history information. Specifically, we are

interested in how the outcome with exogenous search history information compares with

the outcome of the game with endogenous search disclosure.

The exogenous provision of search history information increases consumer surplus.

We visualize this in Figure 4.4, in which we compare the surplus in the no disclosure

equilibrium to the consumer surplus under exogenous provision of search history infor-

mation. In the no disclosure equilibrium, firms set the uniform price p∗, which means

that consumer surplus in this equilibrium is equal to consumer surplus in the Wolinsky

(1986) equilibrium.
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Figure 4.4: Welfare under exogenous information

Consumer surplus is higher under the exogenous provision of search history infor-

mation than in the Wolinsky (1986) equilibrium. This is because the revision prices are

comparatively low, which is favorable for consumers in general and also implies that

even consumers with low match values make a purchase eventually. Moreover, low revi-

sion prices encourage search, which improves the average match quality of the purchased

good. Both of these effects raise consumer surplus. In addition, these effects also im-

ply that total welfare is higher when firms have exogenous access to full search history

information.

Finally, recall that the no disclosure equilibrium, in which consumer welfare is the

same as in the Wolinsky (1986) equilibrium, exists for all search costs under endogenous

search disclosure (if price revisions are feasible). However, if search costs are sufficiently

small or price revisions are impossible, the partial disclosure equilibrium exists and will

be selected because it is preferred by firms. Notably, previous arguments have established

that buyer surplus in the partial disclosure equilibrium is even lower than in the Wolinsky

(1986) equilibrium. Thus, exogenous information provision makes buyers weakly better

off compared to the outcome under endogenous search disclosure, regardless of our equi-

librium selection criterion.

4.6 Conclusion

We have studied the incentives of firms to exchange information about consumers in a

sequential search framework. When being visited by the buyer, a firm can notify its rival

— we refer to this as search disclosure. Search disclosure benefits the disclosing firm if

it is visited first by the buyer, but is detrimental if the buyer visits the disclosing firm
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second and firms are able to adjust the price they offer to a given consumer.

The possibility of price revisions is thus of central importance for the incidence of

search disclosure. If revising prices is not feasible, firms will always disclose to their

competitors in equilibrium. This prediction is reversed if revising prices is feasible. Then,

we show that an equilibrium without disclosure is the unique pure-strategy equilibrium for

a large range of search costs. Firms will only conduct search disclosure in equilibrium when

search costs are sufficiently small, even though industry profits can be raised by sharing

said information. Thus, the possibility of price revisions prevents price discrimination and

thus weakly raises consumer welfare, even though prices are never revised in equilibrium.

An important implication of our work is that policymakers should codify an explicit

right for price revisions in the markets we study and make the possibility of them common

knowledge. The importance of price revisions highlights a critical benefit of firms being

able to re-target visitors because re-targeting is a means to inform consumers about re-

vised prices. Moreover, firms must not be able to commit to future prices as in Armstrong

and Zhou (2016). Arguably, ensuring and announcing such a right may be easier than

prohibiting communication between firms.

Another obstacle to firms being able to offer revised prices might arise if some con-

sumers can only see the revised price at a cost. We therefore study a scenario in which a

positive (and possibly large) fraction of consumers face recall costs in Appendix Section

C.3. We find that the no disclosure equilibrium continues to exist for a wide range of

search costs, except if search costs are small. The reason it does not exist for small search

costs is that the downside of disclosing, which is the potential downward price revision

by a rival, weighs less when some consumers do not see revised offers due to costly recall.

By the same token, we argue that the partial disclosure equilibrium continues to exist for

small search costs (with a widening range as more consumers face costly recall).27

Finally, we note that third parties in the search models we study could ensure access

to detailed search history information for the participating firms, offering a substitute for

voluntary search disclosure by firms. We show that buyers would benefit from the exoge-

nous availability of this information if prices are revisable, and are indifferent otherwise.

27We limit ourselves to offering a verbal discussion and conjectures regarding the partial and full
disclosure equilibrium because the analysis is not very tractable.
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Chapter 2: Proofs

A.1 Proofs — Section 2.4.

Throughout the appendix, I use the terminology PrH(v) := Pr(ṽH |v) and PrL(v) :=

Pr(ṽL|v) for ease of exposition.

Proof of Proposition 1:

Part 1: Consider any equilibrium price pk (which is offered after a signal ṽk). The set{
v ≥ pk : p̂(v) > pk, P r(ṽk|v) > 0

}
must have zero measure.

Consider a symmetric pure strategy equilibrium (pL, pH). Suppose, for a contradiction,

that the set
{
v ≥ pk : p̂(v) > pk, P r(pk|v) > 0

}
has strictly positive measure for some

price pk ∈ {pL, pH}. Thus, there is a strictly positive measure of consumers with v ≥ pk

who receive the price pk from all firms (since receiving pk always triggers search because

search is myopic), which is given by:∫{
v≥pk:p̂(v)<pK ,P r(pk|v)>0

} [Pr(pk|v)
]N

dv > 0 (A.1.1)

When setting the price pk, some firm will only make the sale to these consumers with

probability below 1, no matter of how ties are broken. When marginally undercutting

this price, this firm will sell to all these consumers, representing an upward jump in

this component of demand. All other components of demand can only weakly increase

after a decrease in price: Any such decrease in price will (i) reduce the search incentives

of consumers and (ii) allow more consumers to buy. Thus, marginally undercutting pk

will imply a discontinuous upward jump of total demand, entailing a profitable deviation.

Part 2: In equilibrium, pL < pH must hold.

82
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Suppose that pL = pH := p∗ holds in equilibrium. No consumer will search on the

equilibrium path, i.e. the equilibrium profits are given by ΠM(p∗; ṽL) and ΠM(p∗; ṽH),

respectively. Because c > 0. no consumer will leave to search for prices in an open ball

above p∗. Thus, p∗ ≥ pH must hold. But then, there is a profitable downward deviation

after the low signal, a contradiction.

Suppose that pH < pL holds in equilibrium. If there is no search on the equilibrium

path, it is evident that it is either profitable to deviate from pL to pH when observing

ṽL or vice versa. Suppose there is search on the equilibrium path. Then, no consumer

would find it optimal to search in an open ball around pH . Searchers who arrive at a firm

after searching and generate ṽH put upward pressure on this price. Hence, pH ≥ pH,M

must hold. By the result of part 1, any firm will make profits equal to ΠM(pL; ṽL) when

observing ṽL. No consumer would leave to search when this firm deviates to pL,M < pH ,

which means that this deviation would yield low signal profits equal to ΠM(pL,M ; ṽL).

Hence, the deviation is strictly profitable, a contradiction.

■

Proof of Lemma 1:

Part 1: In any symmetric pure-strategy equilibrium, pH = pL + c/α or pH = 0.5 must

hold.

Recall that α < 1. We have to consider two different subcases, namely possible equi-

libria in which pL + c/α < 0.5 and possible equilibria in which pL + c/α ≥ 0.5. Before

moving forward, note that c/α + pL < c/(1− α) + pL holds because α > 0.5.

Subcase 1: Suppose that c/α + pL ≤ 0.5. There are two possible equilibrium high

signal prices, namely pH = pL + c/α and pH = 0.5. No other pH can be supported in

equilibrium.

Suppose pH < c/α + pL. No consumer will search at pH and the cutoff price of

consumers with v < 0.5 is p̂(v) = αpL + (1 − α)pH + c > pH . Thus, profits are equal to

monopoly profits in the price interval pj ∈ [pH , αpL+(1−α)pH+c]. An upward deviation

from pH is profitable.

Suppose pH ∈ (c/α + pL, 0.5). Then, consumers with v ∈ (pH , 0.5) search at pH , a

contradiction.

Suppose pH > 0.5. All consumers with v ≥ pH have identical incentives to search.

Thus, there are just two possibilities. If consumers with v > pH find it optimal to search

after pH , there is a contradiction to proposition 1. Thus, consumers with v > pH must

find it optimal to refrain from search when being offered pH . Then, there is a profitable

downward deviation to pH,M , because consumers with v ∈ [0.5, pH ] have lower incentives
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to search than consumers with v > pH .

Subcase 2: Suppose that c/α + pL > 0.5. In equilibrium, pH = 0.5 must hold.

Suppose pH < 0.5. The cutoff price of all consumers will be above pL + c/α > pH .

Thus, you would have a profitable marginal upward deviation after the high signal.

Suppose alternatively that pH ∈ (0.5, 1]. This cannot be an equilibrium. Either, con-

sumers with v > pH search on-path (a contradiction to proposition 1) or there is a

profitable downward deviation to pH,M , because consumers with v ∈ [0.5, pH ] have lower

incentives to search than consumers with v > pH .

Part 2: If there is search on the equilibrium path, pH = 0.5 must hold.

If pH = pL + c/α, there will be no on-path search. To see this, consider an equilib-

rium with an arbitrary pL and pH = pL + c/α. Note that pH = pL + c/α < 0.5 must

hold by previous results. Consumers with v < pH will strictly prefer to not search at

pH = c/α + pL < 0.5. Consumers with v ≥ pH must not search on the equilibrium path

by previous logic.

Part 3: In an equilibrium with on-path search, the ordering pL+c/α < 0.5 ≤ pL+c/(1−α)

must hold.

If pH = 0.5 ≤ c/α + pL, no consumer will search on path. If 0.5 > c/(1 − α) + pL,

consumers with v > 0.5 would prefer to continue search when offered pH , which breaks

the equilibrium.

Part 4: Calculating the sequentially rational search strategy of consumers:

We consider different intervals of consumer valuations.

(i) v ≤ pL: These consumers would never search, i.e. p̂(v) = ∞ holds for them.

(ii): v ∈ (pL, 0.5): Search is strictly optimal for prices pj ∈ [pL, pH ] if and only if:

α(v−pL)+(1−α)max{v−pj, 0}−c > max{v−pj, 0} ⇐⇒ α(v−pL)−c > αmax{v−pj, 0}

Since the RHS is positive, a necessary condition for search to occur at these prices is

α[v − pL]− c > 0. If this is true, the indifference price is pinned down by:

α(v − pL)− c = α(v − pj) ⇐⇒ p̂(v) = pL + c/α < pH (A.1.2)
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Our assumption implies that there exist v ∈ [pL + c/α, 0.5] for which this necessary con-

dition is fulfilled and the cutoff price is hence p̂(v) = pL + c/α. For all consumers with

v ≤ pL + c/α, search is never optimal (not even for pj ≥ pH) since their gains of search

are α(v − pL)− c.

(iii) v > pH = 0.5: Such a consumer will find it strictly optimal to search for prices

pj ∈ [pL, pH ] if and only if:

(1− α)(v − pL) + α(v − pj)− c > (v − pj)

Supposing that the price cutoff is below pH , it will be: p̂(v) = c/(1 − α) + pL. Our as-

sumption was that 0.5 = pH < c
1−α

+ pL, which means that this cannot be the correct

search cutoff, i.e. these consumers will never search at pj ≤ pH .

Part 5: Closed-form solution for pL.

Consider an equilibrium (pL, pH) with search, in which pL + c/α < 0.5 ≤ c/(1− α) + pL

must hold. For prices pj ∈ (0, c/α+ pL], the low signal objective function is:

ΠC(pj; ṽ
L) = pj

∫ 1

pj

(1/N)Pr(ṽL|v)dv + pj

N∑
j=2

[ ∫ 0.5

c/α+pL
(1/N)Pr(ṽL|v)Pr(ṽH |v)j−1dv

]
︸ ︷︷ ︸

SL(α,c;pL)

(A.1.3)

To evaluate this, note that:

SL(α, c; pL) =

(
(1− α)

(
1− (1− α)N−1

)
1− (1− α)

)
(1/N)

[
(0.5− pL)α− c

]
(A.1.4)

An equilibrium pL must thus satisfy the following:

∂ΠC(pj; ṽ
L)

∂pj

∣∣∣∣
pL

= 0 ⇐⇒

0.5(1/N)− 2α(1/N)pL + S(α, c; pL) = 0 ⇐⇒ pL =
1

4α
+

S(α, c; pL)

(2/N)α
(A.1.5)

Note strict concavity of the objective function for pj ∈ [0, pL+ c/α]. Solving for pL yields:

pL =
α + 2(1− α)

(
1− (1− α)N−1

)
(0.5α− c)

4α2 + 2α(1− α)
(
1− (1− α)N−1

) (A.1.6)
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Note that ∂pL

∂c
> −1, because α > 1− α and

(
1− (1− α)N−1

)
< 1.

■

Proof of Proposition 2:

Previous arguments have established that there just exists a single candidate for an equi-

librium with search on the equilibrium path. In this equilibrium, pH = 0.5 and pL = pL,S

must hold. The latter is uniquely determined because ΠM(pj; ṽ
L) is strictly concave for

any pj < 0.5. I refer to this equilibrium as the search equilibrium.

Now consider possible equilibria without on-path search. In any such equilibrium,

pL = pL,M must hold, because competitive low signal profits are equal to ΠM(pj; ṽ
L)

for prices in an open ball around the equilibrium pL. By previous arguments, pH must

either be equal to pL+ c/α or 0.5 in a symmetric pure-strategy equilibrium. I refer to the

equilibrium candidate (pL, pH) = (pL,M , pL,M +c/α) as the search deterrence equilibrium.

I label the equilibrium candidate (pL, pH) = (pL,M , pH,M) the monopoly price equilibrium.

■

Proof of Proposition 3:

Part 1: Establishing existence conditions for the monopoly price equilibrium:

The monopoly price equilibrium exists if and only if 0.5 ≤ pL,M + c/α. Under this con-

dition, the cutoff prices of all consumers are above pH,M = 0.5 when the firms’ prices

are (pL,M , pH,M). Then, there are no deviations from the equilibrium prices, as compet-

itive profits are below monopoly profits everywhere (because there is no search on the

equilibrum path). If said condition is violated, there exists a positive measure of agents

with v ∈ (pL+ c/α, 0.5) that search when receiving pH,M = 0.5 when the firms’ prices are

(pL,M , pH,M), which makes it suboptimal for firms to set pL,M after ṽL, implying that the

monopoly price equilibrium does not exist.

Part 2: Establishing existence conditions for the search deterrence equilibrium:

In this equilibrium, there is no search on-path, which implies that the competitive profit

functions are bounded from above by ΠM(pj; ṽ
k). Since pL,M maximizes ΠM(pj; ṽ

L), there

are no deviations from the equilibrium pL = pL,M .

Consider deviations from pH < 0.5. There will not be any profitable deviations to

pj < pH , since profits are equal to ΠM(pj; ṽ
H) when pj ∈ [0, pH ] and ΠM(pj; ṽ

H) is

strictly increasing in this interval. Now consider a deviation to pj = 0.5. To ensure that

this is not profitable, consumers with v ≥ 0.5 will move on to search when offered the
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out-of-equilibrium price pj = 0.5. This requires:

(1− α)(v − pL) + α(v − pH)− c > (v − 0.5) ⇐⇒ 0.5 > (1− α)pL + αpH + c

Thus, c < 0.5(0.5 − pL,M) must hold. Otherwise, a deviation to pj = 0.5 would yield

ΠM(0.5, ṽH) and would be profitable since ΠM(pj, ṽ
H) is strictly increasing in [0, 0.5].

The cutoff price of consumers with v ∈ [0.5, 1] is p̂(v) = (1−α)pL+αpH+c ∈ (pH , 0.5).

Thus, no deviations to prices pj ∈ ((1−α)pL+αpH + c, 1) will be profitable, since profits

will be zero as all consumers move on to search and never return.

Now consider price deviations in the interval pj ∈ (pH , (1− α)pL + αpH + c).1 In this

interval of prices, all consumers with v ≤ 0.5 that can search (i.e. v ∈ (pL + c/α, 0.5))

will search and will not return. All consumers with v ≥ 0.5 do not search at these prices

and buy directly because their cutoff price is below 0.5 by assumption. Thus, profits

ΠC(pj; ṽ
H) in the price interval pj ∈ (pH , (1−α)pL +αpH + c) are increasing and satisfy:

ΠC(pj; ṽ
H) = pj

∫ 1

0.5

(1/N)Pr(ṽH |v)dv (A.1.7)

Thus, the most profitable deviation is to pj = (1− α)pL + αpH + c < 0.5, at which:

ΠC((1− α)pL + αpH + c; ṽH) =
(
(1− α)pL + αpH + c

)
(0.5/N)α (A.1.8)

Note that (1 − α)pL + αpH + c = (1 − α)pL + α
(
pL + c/α

)
+ c = pL + 2c. Equilibrium

profits are:

ΠC(c/α + pL; ṽH) =
(
c/α + pL

)[
(1/N)(1− α)

(
0.5− c/α− pL

)
+ (0.5/N)α

]︸ ︷︷ ︸
=ΠM (c/α+pL;ṽH)

(A.1.9)

Thus, a necessary condition for equilibrium existence (which is also sufficient given that

said cutoff price is below 0.5) is ΠM(c/α + pL; ṽH) ≥ ΠC((1− α)pL + αpH + c; ṽH), i.e.:

(
c/α + pL

)[
(1− α)

(
0.5− c/α− pL

)
+ 0.5α

]
≥ 0.5α

(
(1− α)pL + αpH + c

)
(A.1.10)

Part 3: Existence conditions for the search equilibrium

Part 3a: The search equilibrium exists if and only if pL,S + c/α < 0.5 ≤ pL,S + c/(1− α)

and ΠC(pL,S + c/α; ṽH) ≥ ΠM(0.5; ṽH)

If the ordering or the no-deviation condition fail, the equilibrium cannot exist by previous

arguments.

1This interval is non-degenerate since pH = αpL + (1− α)pH + c by construction and pL < pH .
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Suppose both conditions are true. If firms set the prices (pL,S, pH,M), the sequentially

rational search strategy of consumers is:

p̂(v) =



∞, if v < pL,S + c/α

pL,S + c/α, if v ∈ [pL,S + c/α, 0.5)

∞, if v ∈ [0.5, αpH + (1− α)pL + c)

αpH + (1− α)pL + c, if v ∈ [αpH + (1− α)pL + c, 1]

(A.1.11)

I will show two results in the following: Given this search strategy, firms will have no

profitable deviations from pL. The most profitable deviation from pH is to pL + c/α,

which is not profitable by assumption. Thus, we have an equilibrium.

Part 3b: There are no profitable deviations from pL

Consider first prices pj ∈ [0, c/α+pL]. Note that the objective function is strictly concave

in this price range. Thus, there will be no deviations in this interval.

Secondly, consider pj ∈ (c/α + pL, 0.5]. For all these prices, ΠC(pj; ṽ
k) < ΠM(pj; ṽ

k)

holds for both ṽk because:

pj

[ ∫ 1

0.5

1

N
Pr(ṽk|v)dv+

∫ 0.5

pj

1

N
Pr(ṽH |v)N−1Pr(ṽk|v)dv+

N∑
f=2

∫ 0.5

pj

1

N
Pr(ṽk|v)Pr(ṽH |v)N−1dv

]
<

pj

∫ 0.5

pj

(1/N)Pr(ṽk|v)dv + pj

∫ 1

0.5

(1/N)Pr(ṽk|v)dv ⇐⇒ N
(
1− α

)N−1
< 1 (A.1.12)

This inequality holds for all relevant N since 1− α < 0.5.

For pj ≥ 0.5, ΠC(pj; ṽ
k) ≤ ΠM(pj; ṽ

k) holds since the sale will not be made to any

searchers.

Thus, ΠC(pj; ṽ
k) ≤ ΠM(pj; ṽ

k) holds for any pj ∈ (c/α+pL, 1] and any ṽk. By contrast,

note that ΠC(pj; ṽ
L) > ΠM(pj; ṽ

L) holds for all prices pj ≤ c/α+ pL. Moreover, note that

pL,S > pL,M because:

pL,S =
1

4α
+

M(α, pL,S)

(2/N)α
>

1

4α
= pL,M (A.1.13)

Thus, pL,M < pL,S < pL,S + c/α holds. This and the fact that pL,S maximizes ΠC(pj; ṽ
L)

on pj ∈ (0, c/α + pL,S] yields ΠC(pL,S; ṽL) ≥ ΠC(pL,M ; ṽL) > ΠM(pL,M ; ṽL). Since pL,M

maximizes ΠM(pj; ṽ
L) over the entire domain, we have the following for all prices pj ∈



89

(c/α + pL,S, 1):

ΠC(pL,S; ṽL) > ΠM(pL,M ; ṽL) ≥ ΠM(pj; ṽ
L) ≥ ΠC(pj; ṽ

L) (A.1.14)

This shows there are no profitable deviations from pL,S.

Part 3c: The most profitable deviation from the equilibrium pH is to pL + c/α.

As argued before, ΠC(pj|ṽH) ≤ ΠM(pj|ṽH) holds in the price interval pj ∈ (c/α + pL, 1).

Since pH = pH,M maximizes ΠM(pj; ṽ
H), there are no profitable deviations in this region.

Thus, consider a deviation in pj ∈ (0, c/α+ pL], where ΠC(pj; ṽ
H) is given by:

ΠC(pj; ṽ
H) = ΠM(pj; ṽ

H) + pjS
H(c, α; pL) (A.1.15)

Recall that ΠM(pj; ṽ
H) is strictly rising for all prices pj ≤ 0.5. Thus, pj = c/α +

pL,S is the most profitable deviation. Equilibrium profits (which have to be higher) are

ΠM(0.5; ṽH) = (1/4N)α.

■

Proof of Lemma 2:

Part 1: The probability that a firm plays a price strictly above 0.5 is 0:

Define [pmin, pmax] as the convex hull of the support of prices firms draw after either

signal. If pmax is weakly below 0.5, we are done.

Suppose instead that pmax > 0.5. Label the two signals as ṽmax and ṽmin. There must

exist a signal ṽmax such that the supremum of the support of the price distribution offered

after this signal lies above 0.5. Call the associated equilibrium price distributions Fmax

and Fmin. The infima (suprema) of the support of the two distributions are pmax (p̄max)

and pmin (p̄min) respectively, where p̄max > 0.5. I explicitly allow these distributions to

have gaps and atoms. Upon receiving p̄max, all consumers with v ≥ p̄max have the same

gains of search, namely:

p̄max − Pr(ṽmin|v)
∫ p̄min

pmin

pdFmin(p)− Pr(ṽmax|v)
∫ p̄max

pmax

pdFmax(p)− c (A.1.16)

To see this, note that both Pr(ṽmin|v) and Pr(ṽmax|v) will be constant, given that these

consumers all have v ≥ p̄max > 0.5.

Suppose that consumers with v ≥ p̄max all strictly prefer to search when offered p̄max.

If p̄max is played with zero probability after both signals, they never return when being



90

offered p̄max, thus implying that profits from setting this price are zero, a contradiction. If

p̄max is played with positive probability after some signal, there are undercutting motives

from this price, breaking the equilibrium.

Thus, consumers with v ≥ p̄max must weakly prefer to not search for any pj ≤ p̄max.

Consumers with v ∈ [0.5, p̄max) have lower search incentives and would also not search

for prices pj ≤ p̄max, since their gains of search at p̄max are:

Pr(ṽmin|v)
∫ min{v,p̄min}

pmin

(v−p)dFmin(p)+Pr(ṽmax|v)
∫ min{v,p̄max}

pmax

(v−p)dFmax(p)− c < 0

As a result, no consumers with v ∈ [0.5, 1] would arrive at any firm after searching and

no such consumers would leave a firm to search at the prices pj ∈ [0.5, p̄max]. Thus, the

profits a firm would make when setting any price pj ∈ [0.5, p̄max] would be equal to

ΠM(pj|ṽmax), which are strictly decreasing on pj ∈ [0.5, p̄max]. This holds true, no matter

whether ṽmax = ṽL or ṽmax = ṽH .

If there are two or more different prices pj ∈ [0.5, p̄max] in the support of Fmax, it

would violate the mixing indifference condition. Thus, suppose that it is just p̄max that is

in the support of Fmax, which means that this price would have to be played with positive

probability. But then, there there is a profitable deviation towards 0.5, a contradiction.

By analogous arguments, p̄min ≤ 0.5 must also hold. This implies the desired result.

Part 2: The lowest equilibrium price pmin must be played after the low signal and must

be played with probability 1.

I label a signal for which the infimum of the support of prices is equal to pmin as

ṽmin, with associated price distribution Fmin. Suppose pmin is played with probability

below 1 after this signal. For prices in [pmin, pmin + c), no consumer will search. To see

this, note that the gains of search at any initial price pj are bounded from above by[
max{v − pmin} −max{v − pj, 0}

]
− s.

Similarly, no consumer with v ∈ [pmin, pmin + c) would ever search on the equilibrium

path. Thus, all consumers that arrive after search must have a valuation v ≥ pmin+c and

must have received prices pj ≥ pmin + c previously. When setting a price in the interval

[pmin, pmin + c], the sale will thus be made to all consumers who arrive after searching

and no consumer leaves to search.

Define the mass of consumers who arrive at a firm after searching and generate the

signal ṽmin in equilibrium as Smin(Fmin, Fmax). Thus, the profit function for prices in

pj ∈ [0, pmin + c] is ΠC(pj; ṽ
min) = ΠM(pj; ṽ

min) + pjS
min(Fmin, Fmax).

This implies that pmin must be played after ṽL. Suppose, for a contradiction, that

ṽmin = ṽH . We know, from part 1, that pmin < 0.5, and that prices in any open ball
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around this lowest price must be played with positive probability (else, our support

would have been incorrectly defined). However, profits in a small enough open ball will

be strictly increasing, which implies a contradiction.

Thus, pmin is played after the low signal. The low signal profits for prices around this

are equal to ΠC(pj; ṽ
L) = ΠM(pj; ṽ

L) + pjS
L(FL, FH). By previous logic, prices in an

open ball around pmin need to be played with positive probability after the low signal.

Since the associated profits are strictly concave, the price pmin needs to be played

with positive probability after the low signal. It must hence satisfy a first-order condition
∂ΠM (pj ;ṽ

L)

∂pj

∣∣
pL

+ SL(FL, FH). Note that ΠM(pj; ṽ
L) + pjS

L(FL, FH) is strictly concave on

[0, 0.5]. Thus, we have ΠM(pL; ṽL)+pLSL(FL, FH) > ΠM(pj; ṽ
L)+pjS

L(FL, FH) for any

pj ∈ [0, 0.5] \ pL. This means that no other price below 0.5 can be in the support of FL.

The probability that a price above 0.5 is played must be zero. Hence, pL must be played

with probability 1 after the corresponding signal.

Part 3: Consumers with v > 0.5 cannot search on the equilibrium path:

We know that p̄H = pmax ≤ 0.5. Suppose, for a contradiction, that consumers with

v ≥ 0.5 search on the equilibrium path. Then, they must search at p̄H . Since they have a

higher probability of generating ṽL, consumers with v ∈ [p̄H , 0.5) would thus also search

at p̄H . Thus, all consumers with v > p̄H would search at p̄H . If p̄H is played with zero

probability, all consumers that leave to search never return. Thus, profits are zero, a con-

tradiction. If p̄H is played with positive probability, there will be undercutting motives,

a contradiction.

■

Proof of Proposition 4:

Define the convex hull of the support of the high signal price distribution as [pH , p̄H ].

Part 1: In a MSE, pL + c/α ≤ pH must hold.

Previous arguments imply that p̄H ≤ 0.5 must hold. Suppose, for a contradiction, that

pH < pL+ c/α. For prices in an open ball above pH , no consumer will leave to search. All

consumers who arrive after searching buy. Recall that high signal monopoly profits are

strictly rising on pj < 0.5. Thus, high signal profits will be strictly increasing in the open

ball around pH , which is a contradiction because prices in this open ball must be offered

with positive probability.

Note that any price strictly above pL + c/α will trigger search by all consumers with

v ∈ (pL + c/α, 0.5). The price pLc/α will not trigger search (consumers are indifferent).
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Part 2: Suppose FH(pL + c/α) = 0. Then, pL + c/α < pH must hold.

In general, pL + c/α ≤ pH < 0.5 must hold in any MSE.

To understand the result, further note that the competitive profit function in any

MSE will jump downwards at pL + c/α. To see this, note that the high signal profit

function is the following for any pj ≤ pL + c/α:

ΠC(pj; ṽ
H) = pj

[ ∫ 0.5

pj

1

N
Pr(ṽH |v)dv +

∫ 1

0.5

1

N
Pr(ṽH |v)dv

]
+

pj

N∑
j=2

[ ∫ 0.5

c/α+pL

1

N
Pr(ṽH |v)

[
Pr(ṽH |v)(1− FH(pL + c/α))

]j−1
dv

]
(A.1.17)

By contrast, high signal profits are the following for any pj ∈ (pL + c/α, p̄H ]:

ΠC(pj; ṽ
H) = pj

[ ∫ 0.5

pj

1

N
Pr(ṽH |v)

[
Pr(ṽH |v)(1− FH(pj))

]N−1
dv +

∫ 1

0.5

1

N
Pr(ṽH |v)dv

]
+

pj

N∑
j=2

[ ∫ 0.5

pj

1

N
Pr(ṽH |v)

[
Pr(ṽH |v)(1− FH(pj))

]N−1
dv

]
(A.1.18)

To see why this holds true, note that all consumers with v ∈ (pL + c/α, 0.5) will search

when offered any high signal price except pL + c/α. All signal probabilities are interior.

Thus, we have limpj↑pL+c/αΠ
C(pj; ṽ

H) > limpj↓pL+c/α Π
C(pj; ṽ

H)

Now suppose, for a contradiction, that pH = pL + c/α, but said price is played with

zero probability. Then, for any open ball above pH , the probability that a price in this

open ball is played must be strictly positive. But when setting the open ball small enough,

a deviation to pL + c/α would yield profits that are strictly higher than those for any

price in the open ball, a contradiction.

Part 3: Suppose FH(pL + c/α) = 0. Then, p̄H < 0.5 must hold.

Suppose p̄H = 0.5. In order to have an MSE, we need to have pH < p̄H . The price

pH must satisfy the following mixing indifference condition:

pH
[
(0.5− pH)[1− α]N + 0.5(1/N)α

]
= 0.5(1/N)αp̄H (A.1.19)

But if p̄H = 0.5, the only price pH that can satisfy this requirement is pH = 0.5, a con-

tradiction.
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Part 4: Suppose FH(pL+c/α) = 0. Then, the distribution FH(pj) must be atomless and

gapless on [pH , p̄H ].

It was established that pL + c/α < pH . This means that any price pj in the support

of FH triggers search by all consumers with v ∈ [pj, 0.5].

Suppose, for a contradiction, that some price p∗ ∈ [pH , p̄H ] is played with positive

probability. Because p̄H < 0.5 must hold, there is a positive measure of consumers with

v ∈ [p∗, 0.5] who receive this price at all firms. This creates undercutting motives, a

contradiction.

Suppose, for a contradiction, that there is a gap between p1 and p2 for p1, p2 ∈ [pH , p̄H ].

Formally, this means that p1 < p2 and FH(p1) = FH(p2). At both prices, the probability

of beating your rival is hence (1 − FH(p2)) when generating the high signal. Thus, the

profits of setting any price pj ∈ [p1, p2] are:

ΠH(pj; ṽ
H) = pj

[ N∑
j=1

∫ 0.5

pj

(1/N)[Pr(ṽH |v)]N(1− F (p2))
N−1dv +

∫ 1

0.5

(1/N)Pr(ṽH |v)dv
]

(A.1.20)

The derivatives of this w.r.t the price are:

∂ΠH(pj; ṽ
H)

∂pj
=

[ ∫ 0.5

pj

[Pr(ṽH |v)]N(1− F (p2))
N−1dv +

∫ 1

0.5

(1/N)PrH(v)dv

]
−

pj[Pr(ṽH |pj)]N(1− F (p2))
N−1 (A.1.21)

∂2ΠH(pj; ṽ
H)

∂p2j
= −2[Pr(ṽH |pj)]N(1− F (p2))

N−1 − pj
∂PrH(pj)

∂pj
N [(1− F (p2))Pr(ṽH |pj)]N−1

(A.1.22)

Thus, profits are strictly concave and differentiable on this interval. However, we know

that a mixing indifference condition must hold at p1 and p2. If profits are weakly decreas-

ing at p1, they will be strictly lower at p2, a contradiction. If they are strictly increasing,

there would be a profitable deviation into the interval, a contradiction. Hence, there can-

not be a gap in the distribution of prices.

Part 5: Suppose FH(pL + c/α) > 0. There must exist a p̃H > pL + c/α s.t. no price

in (pL + c/α, p̃H) will be offered. The distribution FH must be gapless on [p̃H , p̄H ].
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This holds by the same logic as established in part 2. It must hold that pH = pL + c/α <

p̄H ≤ 0.5. At pj = pL + c/α, the profit function jumps downward. Hence, prices just

above this price must be played with zero probability. Else, there would be a profitable

deviation to pL + c/α.

The result w.r.t to the gaplessness holds by logic analogous to the one presented in part

4, because all prices in [p̃H , p̄H ] trigger search by all consumers with v ∈ (pL + c/α, 0.5].

■

Existence conditions and further details: Mixed-strategy equilibria

Part 1: The mixed search equilibrium.

Firms set the price pL,S when observing ṽL and draw prices from FH(pj) when observing

the high signal, with pL + c/α < pH < p̄H < 0.5.

Previous arguments have established that all consumers with v ∈ [pL + c/α, 0.5] will

find it optimal to search for any price that is offered after the high signal. Consumers

with v < pL + c/α will never find it optimal to search. Consumers with v > 0.5 are

indifferent between searching and not searching at p̄H , so will optimally also not search

on the equilibrium path.

The price pL,S maximizes low signal profits on [0, 0.5]. It yields profits above ΠM(pL,M

; ṽL). For prices pj ≥ 0.5, profits are below monopoly profits. Thus, there are no prof-

itable deviations from pL,S. The most profitable deviation from the high signal prices is

to pj = pL,S + c/α. To see this, consider the following regions of possible price deviations:

(i) [0, pL + c/α], (ii) [pL + c/α, pH ], (iii) [p̄H , 1]. I go through them now:

(i) pj ∈ [0, pL + c/α]:

No consumer will search for these prices and the sale is made to all consumers that

arrive after search. Thus, the most profitable deviation in this interval would be to

pj = pL + c/α < 0.5. The profits ΠC(pL + c/α; ṽH) at this deviation are:

0.5(1/N)(pL + c/α)− (1/N)(1− α)(pL + c/α)2+

(pL + c/α)
(
0.5− (pL + c/α)

)
(1/N)

(
(1− α)2

(
1− (1− α)N−1

)
1− (1− α)

)
(A.1.23)

In order for the equilibrium to exist, these need to be below the equilibrium high signal

profits, namely 0.5(1/N)αp̄H .
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(ii) pj ∈ [pL + c/α, pH ]:

For these prices, all consumers with v ∈ (pL + c/α, 0.5] that arrive at firm j will search.

Thus, all such consumers will buy at firm j if and only if they generate the high signal

at all N firms. Thus profits for these prices pj ∈ [pL + c/α, pH ] are:

pj

∫ 1

0.5

(1/N)αdv + pj

[ N∑
j=1

∫ 0.5

pj

(1/N)(1− α)Ndv

]
= 0.5(1/N)αpj + [0.5pj − (pj)

2](1− α)N

(A.1.24)

The derivative of this w.r.t. pj will be strictly positive because 1 > N(1− α)N−1. Thus,

profits in this interval are strictly lower than profits at pH , which are the equilibrium

high signal profits. Thus, there will be no profitable deviations in this price interval.

(iii) pj ∈ (p̄H , 1]:

All consumers search and never return for these prices, since p̄H was the cutoff price

for consumers with v > 0.5. Thus, deviation profits are zero.

Part 2: The partial search deterrence equilibrium.

If this equilibrium, FH(pL + c/α) is set to satisfy ΠC(pL + c/α; ṽH) = ΠM(0.5; ṽH).

The price pL solves (2.5.4). We assume that pL + c/α < 0.5 ≤ (1 − α)pL + αFH(pL +

c/α)(pL + c/α) + α(1− FH(pL + c/α))(0.5) + c hold.

Given these prices and the associated conditions, all consumers with v ∈ (pL+c/α, 0.5)

will search when receiving a price pj > pL + c/α. All consumers with v > 0.5 will not

search on the equilibrium path. At p̄H = 0.5, they weakly prefer to refrain from searching,

because:

(1−α)(v−pL)+αFH(pL+c/α)(v−pL−c/α)+α(1−FH(pL+c/α))(v−0.5)−c ≤ (v−0.5) ⇐⇒

0.5 ≤ (1− α)pL + αFH(pL + c/α)(pL + c/α) + α(1− FH(pL + c/α))0.5 (A.1.25)

The price pL maximizes low signal profits on [0, 0.5]. It yields profits aboveΠM(pL,M ; ṽL).

For prices pj ≥ 0.5, profits are weakly below monopoly profits. Thus, there are no prof-

itable deviations.

Now consider the high signal prices, which all yield ΠH(0.5; ṽH). For prices pj > 0.5,

profits are below monopoly profits, so there can’t be a deviation into this region. By

construction, ΠH(0.5; ṽH) = ΠH(pL + c/α; ṽH). Profits are rising in pj for pj < pL + c/α,
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so there cannot be any deviations into this region. Now consider pj ∈ [pL + c/α, 0.5). For

these prices, profits are below monopoly profits, because:

ΠH(pj; ṽ
H) = pj

[ ∫ 0.5

pj

[Pr(ṽH |v)]
[
Pr(ṽH |v)(1−F (pH))

]N−1
dv+

∫ 1

0.5

(1/N)Pr(ṽH |v)dv
]
<

pj

[ ∫ 0.5

pj

(1/N)[Pr(ṽH |v)]dv +
∫ 1

0.5

(1/N)Pr(ṽH |v)dv
]

(A.1.26)

⇐⇒

N(1− α)N−1[1− F (pH)]N−1 < 1

This holds by the result that N(1 − α)N−1 < 1. Thus, there cannot be any profitable

deviations into this region either. These deviations would yield profits below ΠM(pj; ṽ
H),

which are below the equilibrium high signal profits.

Also note, for future reference, that pL must solve:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pL

+
N∑
j=2

∫ 0.5

c/α+pL

1

N
α
[
(1− α)(1− FH(pL + c/α))︸ ︷︷ ︸

:=y

]j−1
dv = 0 (A.1.27)

⇐⇒

(0.5)(1/N)− 2α(1/N)pL +
[
(0.5− pL)α− c

]
(1/N)

(
[y][1− yN−1]

1− y

)
= 0 (A.1.28)

Moreover, the mixing indifference condition that pL + c/α must satisfy is:

(pL + c/α)

[ ∫ 1

0.5

1

N
Pr(ṽH |v)dv

]
+

(pL + c/α)
N∑
j=1

[ ∫ 0.5

c/α+pL

1

N
Pr(ṽH |v)

[
Pr(ṽH |v)(1− FH(pL + c/α))

]j−1
dv

]
= 0.25(1/N)α

(A.1.29)

⇐⇒

(pL + c/α)

[
0.5(1/N)α + (0.5− pL − c/α)(1/N)(1− α)

(
1− yN

1− y

)]
= 0.25(1/N)α

(A.1.30)
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Proof of Corollary 1:

Consider any s > 0 and suppose that α → 0.5. Then, pL,M → 0.5 = pH,M , which

means that limα→0.5[p
L,M +c/α] = 0.5+2s > 0.5. Thus, the monopoly equilibrium exists.

This implies that the search deterrence equilibrium cannot exist, because this requires

that pL,M + c/α < 0.5. In the search equilibrium, we have pL,S > pL,M (for any fixed α

and s), which means that limα→0.5[p
L,S + c/α] ≥ 0.5+ 2c > 0.5 must also hold true. This

rules out the existence of the search equilibrium. Similarly, recall that any MSE must

satisfy the following properties: The highest price p̄H must be weakly below 0.5 and the

equilibrium low signal price (which is between pL,M and pL,S) must satisfy pL+c/α ≤ pH .

When pL,M + c/α > 0.5, these two conditions cannot be jointly satisfied, implying that

there exists no equilibrium in mixed strategies.

■

Proof of Corollary 2:

Part 1: If pL,M + c/α ≥ 0.5, the monopoly equilibrium is the unique equilibrium that

exists.

This equilibrium exists by previous logic. The search deterrence equilibrium cannot exist.

In the search equilibrium or any equilibrium in which firms mix, the equilibrium price

pL will be above pL,M . Thus, we have pL + c/α > 0.5. However, the highest equilibrium

must be weakly below 0.5, which yields a contradiction by previous arguments.

Part 2: Profits in any mixed-strategy equilibrium would be below the profits in the

search equilibrium and above profits in the search deterrence equilibrium.

Consider the mixed search equilibrium, in which pL = pL,S and pL+c/α < pH < p̄H < 0.5

must hold. The measure of consumers who arrive at any firm after searching is the same

as in the search equilibrium. Thus, equilibrium low signal profits are the same as in

the search equilibrium, and thus above the low signal profits in the search deterrence

equilibrium.

Moreover, the equilibrium high signal profits are equal to ΠM(p̄H ; ṽH), which are

below ΠM(pH,M ; ṽH), i.e. high signal profits in the search equilibrium. Now consider the

equilibrium high signal profits in the search deterrence equilibrium, which are ΠM(pL,M +

c/α; ṽH). Because pL,M+c/α < pL,S+c/α < p̄H and because monopoly high signal profits

are rising for any pj < 0.5, high signal profits in the mixed search equilibrium are above

those in the search deterrence equilibrium. This establishes the desired result for the

mixed search equilibrium.
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Now consider the partial search deterrence equilibrium, in which pH = pL + c/α and

this price is played with positive probability after the high signal. This means that the

measure of consumers who arrive at any firm after searching is below the corresponding

measure in the search equilibrium (ceteris paribus). As a result, the low signal price

in this equilibrium satisfies pL ∈ [pL,M , pL,S]. Because this price is available to set in

the search equilibrium and low signal profits are higher for any relevant price, we know

that low signal profits in the search equilibrium must be above those in the partial

search deterrence equilibrium. However, low signal profits in the partial search deterrence

equilibrium are still strictly above the monopoly low signal profits, i.e. they are higher

than low signal profits in the search deterrence equilibrium.

High signal profits in the partial search deterrence equilibrium are weakly below those

in the search equilibrium, because p̄H ≤ 0.5. However, high signal profits are still above

those in the search deterrence equilibrium. This is because p̄H > pL + c/α ≥ pL,M + c/α.

This implies the desired result.

■

Proof of Corollary 3:

The high signal price in the search equilibrium is 0.5, so independent of c and N . To

see how pL,S is affected by N and c, note that pL,S has to satisfy:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pj=pL,S

+

(
α(1− α)

(
1− (1− α)N−1

)
1− (1− α)

)
(1/N)

[
(0.5− pL,S)− c/α

]
︸ ︷︷ ︸

=SL(c,N,α;pL,S)

= 0

(A.1.31)

The fact that ∂SL(.)
∂c

< 0 implies that a rise of c will lead to a fall in pL,S (because pL,S < 0.5

must always hold and ΠM(pj; ṽ
L) is strictly concave in this interval).

To consider the effect of a rise in N , recall that pL,S must also solve:

T (pL,S, α) = pL,S − 1

4α
− SL(c,N, α; pL,S)

(2/N)α
= 0 (A.1.32)

One can show that ∂T
∂pL,S > 0. Because 1− α < 1 =⇒ log(1− α) < 0, we have that:

∂T

∂N
= −(1− α)

2α

(
−
(
log(1− α)

)
(1− α)N−1

)[
(0.5− pL,S)− c/α

]
< 0 (A.1.33)

Application of the implicit function theorem then implies that pL,S is rising in N . ■
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A.2 Proofs — Section 2.5.

Proof of Proposition 5:

The proof of this result follows arguments that are analogous to those made in the proof

of proposition 1.

■

Proof of Proposition 6:

Part 1: In equilibrium, pL < pH must hold.

Because Pr(ṽH |v) is strictly increasing in v, pL,M < pH,M must hold.

Suppose that pL = pH = p∗. There is no search on the equilibrium path. In an open

ball of prices around p∗, no consumer will move on to search. Thus, profits in an open

ball around p∗ are equal to monopoly profits. As a result, pH = pL cannot hold. There

would be a profitable deviation from one of these prices, because at least one of them

could not be a local maximizer of the corresponding monopoly profit function.

By analogous arguments, there cannot exist an equilibrium in which pH < pL.

Part 2: In an equilibrium with on-path search, the set of consumer valuations that

search on the equilibrium path is V̂ (pL)∩ [pL, pH ] (ignoring measure zero sets). Any con-

sumer who arrives after searching will buy when offered a price in an open ball around pL.

To see the first part, note that V̂ (pL) must be non-empty in an equilibrium with search.

Continuity of the function Pr(ṽH |v) implies that Pr(ṽL|v)(v − pL)− c = 0 must hold at

v = inf V̂ (pL), which implies that inf V̂ (pL) > pL. Any consumer with v ∈ V̂ (pL) and

v ∈ [pL, pH ] will have strictly positive gains from search when offered pH . Proposition 1

implies that consumers with v > pH cannot search on path. Consumers with v /∈ V̂ (pL)

cannot search on-path.

To see the second part, consider first an equilibrium with search, in which v := inf V̂ (pL) <

pH must hold. Any consumer with v ∈ V̂ (pL) has a price cutoff p̂(v) = pL+ s
Pr(ṽL|v) . Since

Pr(ṽL|v)(v − pL) − c = 0 holds, p̂(v) = v must hold. This, together with the fact that

p̂′(v) > 0, implies that p̂(v) > v holds for any v ∈ V̂ (pL). Thus, no consumers with

v ∈ V̂ (pL) search when receiving pj ≤ v. No consumer with v /∈ V̂ (pL) can search after v,

since v < pH holds in an equilibrium with search. Moreover, any consumer who arrives

after search has v > v and must have received pH > v, implying that any such consumer

would buy when offered pj ≤ v, which lies strictly above pL. If we consider an equilibrium



100

without on-path search, no such consumer exists.

Part 3: Arguing why pL must satisfy the first-order condition.

Given that the signal probability functions are continuous, the monopoly low signal profit

function is continuously differentiable. Since competitive low signal profits are given by

the function in equation (2.5.4) in the price interval pj ∈ [0, v], we know that this FOC

must hold.

Part 4: Proving that Pr(ṽL|pH)(pH − pL) − c = 0 must hold when pH is not a local

maximizer of ΠM(pj; ṽ
H):

(i) Pr(ṽL|pH)(pH − pL) − c > 0 cannot be true in a symmetric pure-strategy equilib-

rium.

Suppose, for a contradiction, that Pr(ṽL|pH)(pH −pL)−c > 0. By continuity of the gains

of search, there exists an interval (pH , pH +δ) such that a consumer with v ∈ (pH , pH +δ)

would search when receiving pH . Together with the assumption that Pr(ṽH |v) ∈ (0, 1),

this yields a contradiction to proposition 1.

(ii) If Pr(ṽL|pH)(pH − pL)− c < 0, the equilibrium pH must satisfy
∂ΠM (pj ;ṽ

H)

∂pj

∣∣∣∣
pH

= 0.

Any consumer with v ∈ [pH , 1] searches when offered a price pj ≥ pH if and only if:

Pr(ṽL|v)(v − pL) + Pr(ṽH |v)(v − pH)− c > max{v − pj, 0} (A.2.1)

In order for a consumer with v ≥ pH to search at a price pj ≥ pH , the LHS of this

expression needs to be positive. Define the following set which contains all v that satisfy

this condition:

V̂ H(p) =
{
v ∈ [0, 1] : v − pH + Pr(ṽL|v)(pH − pL)− c > 0

}
(A.2.2)

The cutoff price (if it is weakly above pH) of agents with a valuation in the above set is

p̂H(v) = Pr(ṽL|v)
(
pL − pH

)
+ pH + c.

By continuity of Pr(ṽL|v), it holds that limv→pH Pr(ṽL|v) = Pr(ṽL|pH). This implies

that limv→pH

[
v− pH +Pr(ṽL|v)(pH − pL)− c

]
< 0, since Pr(ṽL|pH)(pH − pL) < c holds.

Continuity implies that you can find an open interval [pH − δ, pH + δ] such that any

v ∈ [pH − δ, pH + δ] will satisfy v /∈ V̂ H(p) and v /∈ V̂ L(p) and thus p̂(v) = ∞.
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Find the first valuation v′ ≤ 1 above pH that solves v′−pH+Pr(ṽL|v′)(pH−pL)−c = 0.

If this does not exist, p̂(v) = ∞ holds for all v > pH . If such a v′ exists, continuity

arguments imply that p̂(v) = ∞ holds for all v ∈ [pH , v′). Now consider valuations v ≥ v′.

Note that p̂(v′) = v′ > pH . All consumers with v > v′ will have a cutoff price above p̂(v′),

since p̂′(v) ≥ 0.

Summing up, consumers with v ∈ [pH , v′) have p̂(v) = ∞ and consumers with v ∈
[v′, 1] have p̂(v) ≥ v′ > pH . Thus, all consumers with v > pH will not search for prices

pj ∈ [pH , v′] and hence not for prices below this either. This means that competitive

profits are equal to monopoly profits for any price in the interval [pH , v′].

Consider prices just below pH . Consumers with v ∈ [pH − δ, pH ] have v /∈ V̂ (pL), i.e.

they won’t search for pj ≤ pH . We have shown that no consumer with v ≥ pH will search

at pj ≤ pH . In the price interval [pH − δ, pH ], profits will thus also be monopoly profits.

Thus, competitive profits equal monopoly profits in an open ball around pH . Differ-

entiability of this function implies that the high signal price must satisfy said FOC.

■



Appendix B

Chapter 3: Proofs and further

material

B.1 Proofs — Section 3.4.

Proof of Lemma 3:

Part 1: pL,M < pnd,M < pH,M must hold.

By definition, pnd,M solves
∫ 1

pnd,M

g(v)
g(pnd,M )

dv − pnd,M = 0. At pj = pnd,M , we have:

∫ 1

pnd,M

PrL(v)g(v)dv − pnd,M
(
PrL(pnd,M)g(pnd,M)

)
< 0 ⇐⇒

∫ 1

pnd,M

PrL(v)

PrL(pnd,M)︸ ︷︷ ︸
<1

g(v)

g(pnd,M)
dv < pnd,M (B.1.1)

The inequality PrL(v) < PrL(pnd,M) holds for all v > pnd,M by the assumption that

PrH(v) is strictly increasing in v. By strict concavity of the monopoly profit functions,

pL,M < pnd,M must hold. Analogous arguments imply that pH,M > pnd,M must hold.

Part 2: In an equilibrium in which firms play pure strategies, pH < pL cannot hold.

Consider an arbitrary equilibrium, in which the searcher’s strategy is given by s(v). I

first define ϕ(v) := ρs(v)g(v) + 0.5(1− ρ)g(v), which is measurable. Moreover, note that

102
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the conditional cumulative density functions for either signal k ∈ {L,H} are:

F k(x) = Pr(v ≤ x|ṽk) = 1

Pr(ṽk)

∫ 1

0

Pr(v ≤ x ∧ ṽk|v)ϕ(v)dv =
1

Pr(ṽk)

∫ x

0

Pr(ṽk|v)ϕ(v)dv

(B.1.2)

We can define a probability density function fk(x) = (1/Pr(ṽk))Pr(ṽk|x)ϕ(x) corre-

sponding to F k(x). The hazard rates for these distributions are hk(x) = fk(x)
1−Fk(x)

. Thus,

hH(x) < hL(x) ∀x ∈ (0, 1), i.e. FH(x) strictly hazard ratio dominates FL(x), since:

hH(x) < hL(x) ⇐⇒
∫ 1

x

(Pr(ṽL|v)/Pr(ṽl|x))︸ ︷︷ ︸
<1

ϕ(v)dv <

∫ 1

x

(Pr(ṽH |v)/Pr(ṽH |x))︸ ︷︷ ︸
>1

ϕ(v)dv

(B.1.3)

Suppose, for a contradiction, that pH < pL. Since pL and pH are available to set after any

signal, there must be no profitable deviation from pL to pH after ṽL and no profitable

deviation from pH to pL after ṽH . But given the hazard ratio ordering established above,

it will either be profitable to deviate from pL to pH when observing ṽL or vice versa, a

contradiction.

Part 3: In an equilibrium in which firms play pure strategies, pL = pH cannot hold.

Suppose pnd < pL = pH . Then, all searchers with v ≥ pnd visit the firm without data. In

equilibrium, the firm with data thus only sells to its captive consumers. Thus, pL = pL,M

and pH = pH,M must hold, which contradicts pL < pH .

Suppose pL = pH < pnd. Then, all searchers with v > pH visit the firm with data.

Thus, pH ≥ pH,M must hold (else, there is an upward deviation because for prices above

pH , high signal profits are 0.5(1 + ρ)ΠH,M(pj))). Also, p
nd = pnd,M must hold since the

firm without data only sells to captive consumers in equilibrium. Thus, pnd < pH,M ≤ pH ,

a contradiction.

Thus, suppose that pL = pH = pnd. Then, all searchers with a valuation above the

equilibrium price (call this p∗ := pL = pH = pnd) visit either firm with probability 0.5.

This implies that p∗ ≥ pH,M must hold, since high signal profits for the prices pj ≥ p∗

are 0.5ΠH,M(pj). For prices below the equilibrium price, this is not generally true, as the

search strategy of consumers with v ≤ p∗ is not pinned down and can be given by any

measurable s(v).

It must be optimal for the firm with data to set p∗ after ṽL and for the firm without

data to set p∗ (even though, under random search, there would be profitable downward

deviations to pnd,M < p∗ for both). I show that these two conditions cannot jointly hold,

a contradiction. Define φ(v) := ρs(v)+0.5(1−ρ), with 1−φ(v) = ρ(1−s(v))+0.5(1−ρ).
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Firstly, the following no-deviation condition needs to hold for the firm without data:

pnd,M
∫ p∗

pnd,M

(1− φ(v))g(v)dv ≤ (p∗ − pnd,M)

∫ 1

p∗
(0.5)g(v)dv (B.1.4)

Moreover, another no-deviation condition w.r.t. the optimal low signal action must hold:

pnd,M
[ ∫ p∗

pnd,M

φ(v)PrL(v)g(v)dv +

∫ 1

p∗
PrL(v)(0.5)g(v)dv

]
≤ p∗

∫ 1

p∗
PrL(v)(0.5)g(v)dv

(B.1.5)

Because PrL(v) is strictly falling in v, the validity of condition (B.1.5) requires that the

following condition must hold:

pnd,M
∫ p∗

pnd,M

φ(v)g(v)dv < (p∗ − pnd,M)

∫ 1

p∗
g(v)(0.5)dv (B.1.6)

Adding up the two conditions yields pnd,M
∫ 1

pnd,M g(v)dv < p∗
∫ 1

p∗
g(v)dv. This is a contra-

diction to the fact that pnd,M is a unique maximizer of the monopoly profit function of

the firm without data, which holds under assumption 4.

Part 4: In an equilibrium in which firms play pure strategies, pL < pnd < pH must

hold.

By previous arguments, pL < pH must hold. Suppose, for a contradiction, that pnd ≤ pL.

Then, all searchers with v > pnd visit the firm without data. For all prices pj ≥ pnd,

the profit function of the firm without data is thus 0.5(1 + ρ)Πnd,M(pj), which means

that pnd ≥ pnd,M must hold (else, there is a profitable upward deviation). By implication,

pnd,M ≤ pnd < pL holds, which implies that pL > pL,M . Because the firm with data only

sells to captive consumers in equilibrium, there is a profitable downward deviation from

pL, a contradiction.

By analogous arguments, pH ≤ pnd cannot hold. Then, pH = pH,M , which implies

pnd > pnd,M . Thus, the firm without data would deviate, a contradiction.

Part 5: Existence of the cutoff v̄.

In equilibrium, we must have pL < pnd < pH . All consumers with v ∈ (pL, pnd] visit

the firm with data, since their utility at the firm without data is 0. Consider con-

sumers with v ∈ (pnd, pH ], for whom the preference for the firm with data is PD(v) =[
PrL(v)(v − pL)

]
− (v − pnd). This is strictly falling in v. Now consider consumers with

v ∈ [pH , 1]. For them, the preference for the firm with data is PD(v) =
[
PrL(v)(v−pL)+
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PrH(v)(v − pH)
]
− (v − pnd), which is continuous at pH . For consumers with v ∈ [pH , 1],

the preference for the firm with data is strictly falling in v.

Thus, there must be a unique v̄, because all searchers with v ∈ (pL, pnd] strictly prefer

the firm with data and the preference for this firm is strictly decreasing in v thereafter.

■

Proof of Proposition 7:

Consider first the monopoly profit function of the firm without data, which is Πnd,M(pj) =

pj[1 − G(pj)]. The second derivative, which is strictly negative for all pj ∈ [0, 1] by as-

sumption, is:
∂2Πnd,M (pj)

∂p2j
= −2g(pj)− pjg

′(pj).

In equilibrium, pnd < v̄ must hold. Suppose, for a contradiction, that pnd ≥ v̄ holds.

Because pL < pnd must hold by lemma 3, consumers with v ∈ (pL, pnd] strictly prefer to

visit the firm with data. Since the expected utilities at the two firms are continuous in

v, consumers with v just above pnd will also strictly prefer to visit the firm with data.

However, v̄ ≤ pnd holds by assumption, which means that these consumers visit the firm

without data, a contradiction.

Setting a price pnd < v̄ will only be optimal for the firm without data if v̄ ≥ v̄nd.

Suppose, for a contradiction, that we have an equilibrium in which v̄ < v̄nd, where:

ρ
[
1−G(v̄nd)

]
+ 0.5(1− ρ)

[
1−G(v̄nd)− (v̄nd)g(v̄nd)

]
= 0 (B.1.7)

Recall that Πnd,M(pj) is strictly concave, which implies that the function ρ
[
1−G(v̄)

]
+

0.5(1− ρ)
[
1−G(v̄)− (v̄)g(v̄)

]
is strictly falling in v̄.

In equilibrium, the objective function of the firm with data for prices pj ∈ (pL, v̄) is:

Πnd(pj; v̄) = pj

[
ρ

∫ 1

v̄

g(v)dν +
1− ρ

2

∫ 1

pj

g(v)dν

]
(B.1.8)

We consider any pnd ∈ (pL, v̄) and any v̄ < v̄nd. The derivative of Πnd(pj) at p
nd satisfies:

∂Πnd(pj)

∂pj

∣∣∣∣
pnd

= ρ
[
1−G(v̄)

]
+ 0.5(1− ρ)

[
1−G(pnd)− pndg(pnd)

]
>

ρ
[
1−G(v̄nd)

]
+ 0.5(1− ρ)

[
1−G(v̄nd)− (v̄nd)g(v̄nd)

]
= 0 (B.1.9)

This is a contradiction. There would exist a profitable upward deviation.

■

Proof of Proposition 8:
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Part 1: Preliminaries - definition and properties of v̄HC .

I define a cutoff v̄HC that solves: maxpj≤v̄HC ΠH(pj; v̄
HC) = 0.5(1 − ρ)ΠH,M(pH,M). This

cutoff captures whether the optimal price high signal price is below or above v̄. If v̄ ≤ v̄nd,

then pH,∗(v̄) = pH,M . If v̄ > v̄nd, pH,∗(v̄) < v̄ and solves an appropriate FOC.

Note that maxpj≤v̄ Π
H(pj; v̄) is strictly rising in v̄. Also, we can establish that (i)

v̄HC < pH,M and (ii) that, if v̄ > v̄HC , argmaxpj≤v̄ Π
H(pj; v̄) < v̄. To establish this, recall

that:

ΠH(pj; v̄) = pj
[
ρ1[pj ≤ v̄]

∫ v̄

pj

Pr(ṽH |v)g(v)dv + 0.5(1− ρ)

∫ 1

pj

Pr(ṽH |v)g(v)dv
]

(B.1.10)

(i) v̄HC < pH,M .

Suppose v̄HC = pH,M . Then, the left derivative of ΠH(pj; v̄
HC) at pj = v̄HC = pH,M

would be strictly negative. Thus, profits could be strictly increased by a downward

movement from pj = v̄HC , a contradiction to the equality maxpj≤v̄HC ΠH(pj; v̄
HC) =

0.5(1− ρ)ΠH,M(pH,M).

Suppose v̄HC > pH,M . Then, setting pj = pH,M < v̄HC is available within [0, v̄HC ].

This would yield strictly higher profits than 0.5(1 − ρ)ΠH,M(pH,M), since the sale will

also be made to searchers, a contradiction to the equality maxpj≤v̄HC ΠH(pj; v̄
HC) =

0.5(1− ρ)ΠH,M(pH,M).

(ii) If v̄ ≥ v̄HC , i.e. maxpj≤v̄ Π
H(pj; v̄) ≥ 0.5(1− ρ)ΠH,M(pH,M), the locally optimal price

pj ≤ v̄ must be strictly below v̄ and thus solve an appropriate FOC.

Suppose v̄ ≥ v̄HC , but the optimal price is exactly equal to v̄. Because v̄ ≥ v̄HC > pH,M ,

the left derivative of ΠH(pj; v̄) at pj = v̄ would be strictly negative, a contradiction.

Part 2: The functions pL,∗(v̄) and pnd,∗(v̄) are continuous on [v̄nd, 1], while the func-

tion pH,∗(v̄) is continuous on [v̄HC , 1] and equal to pH,M for v̄ < v̄HC .

For any v̄ ≥ v̄nd, we have pL,M < v̄, because pnd,M < v̄nd. This means that pL,∗(v̄) < v̄

and must solve an appropriate first-order condition. Thus, it is continuous in v̄.

Now consider pnd,∗(v̄) and any v̄ ≥ v̄nd. For prices pj > v̄, the derivative of profits is

strictly negative, which implies that pnd,∗(v̄) ≤ v̄ must hold. At pj = v̄, the left derivative

of profits is given by:

ρ
[
1−G(v̄)

]
+ 0.5(1− ρ)

[
1−G(v̄)− (v̄)g(v̄)

]
(B.1.11)
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By strict concavity of Πnd,M(pj), this term is falling in v̄. It is hence strictly negative for

any v̄ > v̄nd and just zero for v̄ = v̄nd (by the concavity assumption, we have pnd,∗(v̄nd) =

v̄nd). For any v̄ ≥ v̄nd, the optimal price must thus solve:

ρ
[
1−G(v̄)

]
+ 0.5(1− ρ)

[
1−G(pnd,∗)− (pnd,∗)g(pnd,∗)

]
= 0 (B.1.12)

The solution function will be continuous in v̄. Moreover, it is falling in v̄ because the LHS

is falling in v̄ and pnd,∗.

The fact that pH,∗(v̄) is continuous on v̄ ∈ [v̄HC , 1] follows from previous arguments.

It must lie strictly below v̄ and satisfy a first-order condition, making pH,∗(v̄) continuous.

Part 3: If the firms’ prices are given by pL,∗(v̄), pnd,∗(v̄), and pH,∗(v̄), searchers opti-

mally visit the firm with data iff v < v̂G(v̄), where:

v̂G(v̄) = sup

{
v ∈ [0, 1] :

∑
k∈{L,H}

Pr(ṽk|v)max{v − pk,∗(v̄), 0} − (v − pnd,∗(v̄)) > 0

}
(B.1.13)

To see this, note that the preference for the firm with data, namely PD(v) =
∑

k∈{L,H} Pr(ṽk|v)
max{v− pk,∗(v̄), 0}− (v− pnd,∗(v̄)) is strictly falling in v. This holds because Pr(ṽH |v) is
strictly increasing in v and pL,∗(v̄) < pH,∗(v̄) holds for any v̄.

To see that pL,∗(v̄) < pH,∗(v̄), recall that it was previously established that pL,∗(v̄) ≤
pH,∗(v̄). Suppose, for a contradiction, that pL,∗(v̄) = pH,∗(v̄). If pL,∗(v̄) = pH,∗(v̄) > v̄, the

prices must equal their monopoly counterparts, a contradiction.

If pL,∗(v̄) = pH,∗(v̄) < v̄, the prices pk,∗(v̄) must satisfy corresponding first-order

conditions. But since PrH(v) is strictly increasing in v, pL,∗(v̄) < pH,∗(v̄) will hold, a

contradiction.

Thus, suppose that pL,∗(v̄) = pH,∗(v̄) = v̄. If v̄ ≥ v̄HC , the optimal high signal price

must lie strictly below v̄ (see the arguments in part 1), a contradiction. If v̄ < v̄HC < pH,M ,

the optimal high signal price is pH,M , which lies above v̄, a contradiction.

Part 4: An equilibrium in which firms play pure strategies exists.

I proove this result by showing that there exists a v̄ ∈ [v̄nd, 1] such that v̂G(v̄) = v̄.

Suppose such a fixed point exists and consumers search according to the implied cutoff

rule. The prices pL,∗(v̄), pH,∗(v̄), and pnd,∗(v̄) are optimal by construction. The postulated

search behaviour will be optimal, given these prices. Thus, we have an equilibrium.

For any v̄ ≥ v̄nd, both price functions pL,∗(v̄) and pnd,∗(v̄) will be continuous in v̄.

To see this, note that pL,M < pnd,M < v̄nd. This implies that both optimal prices will be

below v̄ and solve appropriate first-order conditions.
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We will establish the existence of a fixed point of vG(v̄). To begin, note that the

following two boundary conditions will be satisfied: (i) vG(v̄nd) > v̄nd and (ii) vG(1) ≤ 1.

The first condition holds because, at v̄ = v̄nd, the optimal price of the firm without

data will be equal to v̄nd. Because pL,∗(v̄nd) < v̄nd, pL,∗(v̄nd) < pnd,∗(v̄nd) would hold. As

a result, a consumer with v = v̄nd would strictly prefer to visit the firm with data, and

thus vG(v̄nd) > v̄nd. The second condition, namely vG(1) ≤ 1, holds because all elements

of
{
v ∈ [0, 1] :

∑
k∈{L,H} Pr(ṽk|v)max{v − pk,∗(v̄), 0} − (v − pnd,∗(v̄)) > 0

}
are below 1.

Suppose v̄HC < v̄nd. Then, all functions pL,∗(v̄nd), pnd,∗(v̄nd), and pH,∗(v̄nd) are con-

tinuous on [v̄nd, 1], which means that vG(v̄) is continuous on this interval. With our two

boundary conditions, the intermediate value theorem guarantees the existence of a fixed

point.

Now consider a situation in which v̄HC ≥ v̄nd. Suppose, for a contradiction, that there

exists no fixed point of v̂G(v̄) on [v̄nd, 1]. This implies that v̂G(v̄) > v̄ must hold for any

v ∈ [v̄nd, v̄HC ]. At v̄HC , the optimal high signal price of the firm with data jumps down,

which implies that limv̄↓v̄HC v̂G(v̄) > v̂G(v̄HC). As a result, v̂G(v̄) > v̄ holds for v̄ in an

open ball above v̄HC . Since all functions pL,∗(v̄nd), pnd,∗(v̄nd), and pH,∗(v̄nd) are continuous

on [v̄HC , 1], so is v̂G(v̄). Because limv̄↓v̄HC v̂G(v̄) > v̄HC , the intermediate value theorem

guarantees the existence of a fixed point.

■

Proof of Proposition 9:

A proof of a more general statement may be found in the proof of proposition 13. ■

Proof of Corollary 4:

I work with the equilibrium v̄ for a given signal distribution as a function of ρ and call this

v̄∗(ρ). An equilibrium with pL < pH always exists. First, note that limρ→1 v̄
∗(ρ) = 1 holds

by the squeeze theorem because, for any ρ ∈ (0, 1), we have that v̄nd(ρ) ≤ v̄∗(ρ) ≤ 1 and

limρ→1 v̄
nd(ρ) = 1. To see that limρ→1 v̄

nd(ρ) = 1, recall that, for any ρ ∈ (0, 1), v̄nd(ρ)

solves:

ρ
[
1−G(v̄nd(ρ))

]︸ ︷︷ ︸
LHS(ρ)

= −0.5(1− ρ)
[
1−G(v̄nd(ρ))− (v̄nd(ρ))g(v̄nd(ρ))

]︸ ︷︷ ︸
RHS(ρ)

(B.1.14)

This equality continues to hold as ρ → 1. As ρ → 1, the RHS goes to 0, no matter the

limit of v̄nd(ρ). This is because the distribution of valuations, namely G(v), is continuous

and has finite density. Thus, the LHS must also go to 0 as ρ → 1. This implies that

limρ→1 v̄
nd(ρ) = 1, since G(v) is continuous, G(v) = 1 only if v ≥ 1, and v̄nd(ρ) ≤ 1 for
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any ρ ∈ (0, 1).

The total demand that the firm without data receives in equilibrium is Dnd∗(ρ) =

ρ[1− G(v̄∗(ρ))] + 0.5(1− ρ)
∫ 1

pnd(ρ)
g(v)dv. I have defined pnd(ρ) as the equilibrium price

of the firm without data. Now consider the limit of Dnd∗(ρ) as ρ → 1, noting that all

components of demand are continuous in ρ and that
∫ 1

pnd g(v)dv ∈ [0, 1]. Thus, we have

limρ→1D
nd∗(ρ) = (1)(0) + (0)

∫ 1

limρ→1 pnd(ρ)
dv = 0. Since the demand of the firm without

data approaches 0 when ρ → 1, the market share of the firm with data approaches 1 by

any definition of the market share (sales or profit).

■

Statement and proof of lemma 8:

Lemma 8 Consider the sequential search framework. In any equilibrium in which firms

play pure strategies, the ordering pL < pnd < pH must hold and:

• There exists an ϵ > 0 such that any searcher who visits the firm without data first

in equilibrium will not search when offered a price pj ∈ [0, pnd + ϵ] at this firm.

• There exists a v̄ > pL such that all searchers with v ∈ (pL, v̄) visit the firm with

data first and all searchers with v ∈ (v̄, 1] visit the firm without data first.

• The ordering v̄ ≥ v̄nd holds.

Proof of Lemma 8:

Part 1: In equilibrium, pL < pH must hold.

Suppose, for a contradiction, that pH < pL in equilibrium. Previous arguments have

established that pnd ∈ (pH , pL) would have to hold in such an equilibrium.

Suppose pL ≤ pnd + c, i.e. no searcher will leave the firm with data to search at the

equilibrium prices. Thus, for pj ∈ [pH , pL], all consumers who arrive at the firm with data

buy there iff the price is below their v. Then, the structure of equilibrium profits equal

the one defined in the proof of lemma 3 and there is either a deviation from pL to pH or

vice versa.

Suppose instead that pL > pnd + c. Then, the firm with data only sells to its captive

consumers at pL and thus pL = pL,M . All searchers who arrive at the firm without data

buy in an open ball around pnd (first arrivers must have v ≥ pnd and would never search

thereafter by an option value logic, second arrivers would entail inelastic demand around

pnd). Hence, pnd ≥ pnd,M holds, and pnd ≥ pnd,M > pL, a contradiction.

Suppose, for a contradiction, that there exists an equilibrium in which pL = pH .

The only possible equilibrium candidate is pL = pH = pnd (otherwise, all searchers
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with valuation above the lowest equilibrium price visit the same firm, which yields a

contradiction).

Thus, consider an equilibrium in which pL = pH = pnd := p∗. By our tie-breaking rule

and because no consumer will leave to search for prices pj ≤ p∗ + c, the equilibrium price

must satisfy p∗ ≤ pH,M (else, there is a profitable upward deviation when observing ṽH).

Thus, the arguments made in the proof of lemma (3) imply that either the firm without

data or the firm with data (when observing ṽL) will have a profitable downward deviation

to pnd,M .

Part 2: In equilibrium, pnd ∈ (pL, pH) must hold.

This follows from the arguments made in the proof of lemma 3. If pnd /∈ (pL, pH), all

searchers with a valuation below the lowest equilibrium price visit the same firm, which

implies that the postulated ordering of prices would not be optimal.

Part 3: Any searcher who optimally visits the firm without data first must find it strictly

optimal to not search when receiving pnd.

To see this, define Und,s(v) and Und,ns(v) as the expected utilities of visiting the firm

without data first and searching or not searching, respectively. Define Ud,s(v) as the ex-

pected utility of visiting the firm with data and searching if and only if pH is received

there.

Consider a consumer that optimally visits the firm without data first, who must have

ν > pnd. Suppose, for a contradiction, that PrL(v)(pnd − pL) − s ≥ 0 ⇐⇒ Und,s(v) ≥
Und,ns(v) holds for such a consumer. Crucially, Ud,s(v) > Und,s(v) will hold generally,

because:

PrL(v)(v − pL) + PrH(v)(v − pnd − s)︸ ︷︷ ︸
Ud,s(v)

> PrL(v)(v − pL) + PrH(v)(v − pnd)− s︸ ︷︷ ︸
Und,s(v)

(B.1.15)

The utility of visiting the firm without data first is Und,s(v), while the utility of visiting

the firm with data first is at least Ud,s(v). It would thus be strictly optimal for this con-

sumer to visit the firm with data first, a contradiction. Hence, PrL(v)(pnd − pL)− s < 0

must hold for any consumer that visits the firm without data first in equilibrium, which

implies that there exists an ϵ > 0 such that these consumers would also not search for

prices pj ≤ pnd + ϵ.

Part 4: Uniqueness of cutoff v̄ for equilibria with pnd + s ≥ pH
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We consider an equilibrium candidate and define a ṽI that solves PrL(ṽI)(pnd−pL)−s = 0.

All consumers with v ∈ (pL, ṽI) will surely visit the firm with data, because search would

be optimal for them after visiting the firm without data (if v > pnd). Similarly, consumers

with v ≤ pnd will visit the firm with data.

Thus, consider consumers with v ∈ (max{|pnd, ṽI}, 1) and recall that pH ≤ pnd + s

holds by assumption. If v < pH , their preference for the firm with data is PD(v) =

PrL(v)(v−pL)+PrH(v)(0)− (v−pnd). If v ≥ pH , their preference for the firm with data

is PD(v) = PrL(v)(v−pL)+PrH(v)(v−pH)− (v−pnd). The preference for the firm with

data is continuous at pH and strictly falling in v for v ∈ (max{|pnd, ṽI}, 1). This implies

the result.

Part 5: Uniqueness of cutoff v̄ in equilibria with pnd + c < pH

Searchers leave the firm with data to search when receiving pH if and only if v > pnd + c.

As before, ṽI solves PrL(ṽI)(pnd − pL) − s = 0. Calculating the relative preferences for

the firm with data for two separate cases, namely (i) pnd + c < ṽI and (ii) ṽI ≤ pnd + c

yields the desired result based on steps that mirror those taken in the previous part.

Part 6: Establishing that v̄ ≥ v̄nd holds true.

First, note that pnd < v̄ must hold. A searcher with v just above pnd will not visit

the firm without data first. If such a consumer would search thereafter, she would not

visit the firm without data first (by the arguments of part 3). If she would not search

therafter, her utility at the firm without data is v−pnd, which converges to 0 as v → pnd.

By contrast, their utility at the firm with data is at least PrL(v)(v− pL), which remains

strictly positive for any such v. Since expected utilities are continuous in v, searchers with

a valuation in an open ball above pnd visit the firm with data, which implies the result.

Hence, pnd < v̄ must hold in an equilibrium (by the choices of searchers). However,

if v̄ < v̄nd, such a price is not optimal for the firm without data. I establish this for two

different kinds of equilibria, with (i) pH ≤ pnd + c and with (ii) pH > pnd + c.

(i) Case 1: Suppose we have an equilibrium in which pH ≤ pnd + c.

To constitute an equilibrium, pnd must lie strictly below v̄. No arriving searcher will

leave the firm without data for prices in an open ball around pnd. A zero measure of

searchers arrives at the firm without data after visiting its rival, because pH ≤ pnd + c (if

pH = pnd + c, there would else be undercutting by the firm with data). Thus, for prices
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in an open ball around pnd < v̄, the profits of the firm without data are:

Πnd(pj; v̄) = pj

[
ρ

∫ 1

v̄

g(v)dv + 0.5(1− ρ)

∫ 1

pj

g(v)dv

]
(B.1.16)

But for v̄ < v̄nd and any pnd < v̄, the derivative at pnd is strictly positive by the arguments

made in the proof of proposition 7, a contradiction.

(ii) Case 2: pH > pnd + c.

If v̄ ≤ pnd + c, previous arguments directly imply the result, because the set of searchers

who visit the firm with data first and search thereafter has measure zero (any such con-

sumer must have v > pnd + c and v < v̄, which cannot hold jointly).

If v̄ > pnd + c, searchers with v ∈ (pnd + c, v̄) visit the firm with data first and then

search iff they generate ṽH . Since pH > pnd+c holds by assumption, these consumers buy

in an open ball around pnd. In an open ball around pnd, the profits at the firm without

data are:

Πnd(pj; v̄) = pjρ

∫ v̄

pnd+c

PrH(v)g(v)dv + pjρ

∫ 1

v̄

g(v)dv + pj0.5(1− ρ)

∫ 1

pj

g(v)dv

(B.1.17)

For any v̄ < v̄nd, the derivative of the second component is strictly positive for any pj < v̄.

The derivative of the first component is positive. If v̄ < v̄nd, there would always be an

upward deviation from any possible equilibrium pnd. Hence, v̄ ≥ v̄nd must hold.

■

Proof of Proposition 10:

Any searcher who visits two firms with positive probability must either (i) visit the firm

with data first with positive probability and search thereafter with positive probability

or (ii) visit the firm without data first and search thereafter with positive probability.

Part 1: The set of consumers who visit the firm without data first (with positive prob-

ability) and search with positive probability thereafter must have measure zero.

This follows from the arguments made in the proof of lemma 8, part 3. Any searcher

who visits the firm without data first in equilibrium would find it strictly optimal to not

search thereafter.
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Part 2: Under assumption 2, there exists no equilibrium in which a strictly positive

measure of searchers visit the firm with data first and search thereafter with positive

probability.

In such an equilibrium, pH > pnd + c must hold. If pH < pnd + c, any searcher would

find it strictly optimal to not search after any price the firm with data would offer to her

in equilibrium, which implies the result. Suppose pH = pnd + c holds in equilibrium and

suppose, for a contradiction, that the set of searchers who visit the firm without data

first and search thereafter has strictly positive measure. By lemma 8, it must hold that

pL < pnd. Thus, pL does not induce search. Any searcher who searches after visiting the

firm with data must do so when receiving pH . In a hypothetical equilibrium like this, the

firm with data would prefer to undercut pH , since this deters search by all searchers who

visit both firms and hence do not buy at pH (since pnd < pH), a contradiction.

Thus, suppose pnd + c < pH holds in equilibrium and that the set of searchers who

visit the firm without data first and search thereafter has strictly positive measure.

In such an equilibrium, the ordering v̄ > pnd + c must hold. To see this, suppose that

v̄ ≤ pnd+ c. By lemma 8, searchers who visit the firm with data first must have v ∈ [0, v̄].

Moreover, searching after visiting the firm with data is only optimal if v ≥ pnd+ c. Thus,

the set of searchers who visit the firm with data first & search thereafter with positive

probability is a subset of [0, v̄]∩ [pnd + c, 1], which has zero measure because v̄ ≤ pnd + c,

a contradiction.

Now let’s consider the optimal pricing of the firm with data. We have proven that

pnd + c < v̄ must hold. All searchers with v ∈ [pnd + c, v̄] will visit the firm with data

first and search when being offered pH , which occurs with probability PrH(v). Thus, the

firm without data makes the sale to all these searchers at the price pnd with probability

PrH(v). Since pnd + c < v̄, the firm without data will also make the sale to all searchers

who initially visit it. For pj in an open ball around pnd, the profit function of the firm

without data is hence:

pj

[
ρ

∫ v̄

pnd+s

PrH(v)g(v)dv + ρ

∫ 1

v̄

g(v)dv + 0.5(1− ρ)

∫ 1

pj

g(v)dv

]
(B.1.18)

Thus, an equilibrium pnd must equal pnd,3(v̄), which solves:[
ρ

∫ v̄

pnd,3+c

PrH(v)g(v)dv + ρ

∫ 1

v̄

g(v)dv + 0.5(1− ρ)

∫ 1

pnd,3

g(v)dv

]
= 0.5(1− ρ)pnd,3g(pnd,3)

(B.1.19)

Finally, I make the following argument: Because pnd,3(1) + s > pHM (which holds by

assumption 3), such an equilibrium cannot exist.
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In this equilibrium, pH = pH,M > pnd + c must be satisfied, where pnd = pnd,3(v̄)

must hold for the equilibrium level of v̄, whatever this may be. Note that the function

pnd,3(v̄) is falling in v̄ (by concavity of the monopoly profit function of the firm without

data). Thus, we have pnd,3(1) + c ≤ pnd,3(v̄) + c for any possible v̄. Moreover, note that

pH = pH,M must hold because the firm with data will only sell to captive consumers for

prices in an open ball around the equilibrium pH .

We have assumed that pnd,3(1) + c > pHM , noting that pnd,3(1) = pnd,s a´s defined in

assumption 6. Since pH = pH,M < pnd,3(v̄) + c = pnd + c, this equilibrium cannot exist,

because there exists no v̄ at which the necessary conditions its existence are satisfied.

■

Proof of Proposition 11:

Part 1: The first two bullet points hold by lemma 5.

Part 2: When ΠH(pnd,M ; v̄nd) > 0.5(1 − ρ)ΠH,M(pH,M) (assumption 7), the optimal

pH,∗(v̄) lies strictly below v̄ for any v̄ ≥ v̄nd and will be strictly increasing in v̄.

This follows from the definition of v̄HC in the proof of proposition 8 and the accom-

panying discussion.

Part 3: Consider an equilibrium candidate in which pL < pnd < pH , pH ≤ pnd + c,

pH < v̄, and v̂(pL, pH , pnd) = v̄. It is optimal for searchers to visit the firm with data if

and only if v > v̄ and never search thereafter.

Part 3a: In such an equilibrium candidate, the cutoff ṽI(pL, pH , pnd) will lie strictly below

v̂I(pL, pH , pnd), where these cutoffs are defined as follows:

PrL(ṽI(.))
(
pnd − pL

)
− s = 0 ; PrL(v̂I(.))pL + PrH(v̂I(.))pH − pnd = 0 (B.1.20)

Any consumer with v < ṽI(.) would find it optimal to search after visiting the firm

without data, provided that v ≥ pnd. Thus, all these consumers will prefer to visit the

firm with data.

Note first that PrL(v)pL + PrH(v)pH = pnd ⇐⇒ PrL(v)
(
pnd − pL

)
+ PrH(v)

(
pnd −

pH
)
= 0. Now note that pnd + c ≥ pH by assumption, i.e. pnd − pH ≥ −s. Thus:

0 = PrL(ṽI)
(
pnd − pL

)
− s < PrL(ṽI)

(
pnd − pL

)
+ PrH(ṽI)(pnd − pH) (B.1.21)

Since ∂
∂v

[
PrL(v)

(
pnd−pL

)
+PrH(v)

(
pnd−pH

)]
< 0, we have ṽI(pL, pH , pnd) < v̂I(pL, pH , pnd).
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Part 3b: The postulated search behaviour is optimal.

Because v̂(pL, pH , pnd) = v̄, v̄ is either equal to v̂I(pL, pH , pnd) or 1 (the latter being true

if v̂I(pL, pH , pnd) ≥ 1 ). Define p = (pL, pH , pnd). It was established that v̂I(p) > ṽI(p).

Suppose ṽI(p) ≥ 1 in equilibrium, which then implies that v̂I(p) > 1, and thus

v̂(p) = 1 = v̄. For all consumers with v < 1 ≤ ṽI(p), it is strictly optimal to visit

the firm with data in equilibrium, i.e. to visit according to the rule represented by v̄ = 1.

No searcher will search after visiting the firm with data since pH ≤ pnd + s. No searcher

who visits the firm without data first finds it optimal to search afterwards (since no such

consumer exists).

Suppose ṽI(p) < 1. Because ṽI(p) < v̂I(p) will also hold, v̂(p) is either 1 when v̂I(p) ≥
1 or v̂(p) = v̂I(p). In either case, ṽI(p) < v̄. Thus, any consumer with v ≥ v̄ finds it strictly

optimal to not search after visiting the firm without data first. Because pH ≤ pnd+ c and

v̂(p) = v̄, she will visit the firm without data first and not search thereafter.

Any searcher with v < ṽI(p) visits the firm with data first and does not search there-

after. Any searchers with v ∈ [ṽI(p), v̄] would not search after visiting either firm. Because

v̄ = v̂(p), they hence optimally visit the firm with data.

Part 4: If pH,1 ≤ pnd,1 + c, the vector (pL,1, pnd,1, pH,1, v̄1) is an equilibrium

Search: It is optimal for searchers to visit the firm with data if and only if v > v̄1

and never search thereafter.

The ordering pL,1 < pnd,1 < pH,1 holds by construction, since v̂B(v̄1) = v̄1. The latter holds

because assumption 7 guarantees that a solution to v̂G(v̄) = v̄ on v̄ ∈ [v̄nd, 1] also solves

v̂B(v̄) = v̄. By assumption 7, we also have pH,1 < v̄1. By specification, pH,1 ≤ pnd,1 + c.

Thus, the insights of part 3 apply and the result follows.

Pricing: There are no profitable deviations from the equilibrium prices, given that searchers

split according to v̄1 and do not search thereafter (for equilibrium prices).

Consider first the firm without data. True competitive profits are bounded from above

Πnd(pj; v̄
1). This is because no consumers arrive after search. For prices pj ∈ [0, pnd + ϵ],

true profits equal this function. For prices sufficiently high, searchers leave this firm to

search, implying that true profits are below Πnd(pj; v̄
1). By construction, pnd,1 maximizes

Πnd(pj; v̄
1), and so there will be no profitable deviations.

Analogous arguments show that the firm with data has no profitable deviations, be-

cause competitive profits are bounded from above by Πk(pj; v̄
1), conditional on the signal
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ṽk.

Part 5: If pH,1 > pnd,1 + c, there exists a v̄2 ∈ [v̄nd, 1] s.t. v̂S(v̄2) = v̄2.

Recall that pL,1 = pL,∗(v̄1), pnd,1 = pnd,∗(v̄1), and pH,1 = pH,∗(v̄1). In an equilibrium

of category 2, pL = pL,∗(v̄), pnd = pnd,∗(v̄), pH = pnd,∗(v̄) + c. We are looking for a v̄ that

solves:

v̄ = v̂S(v̄) := sup
{
v ∈ [0, 1] : PrL(v)pL,∗(v̄) + PrH(v)(pnd,∗(v̄) + c)− pnd,∗(v̄)︸ ︷︷ ︸

DS(v;v̄):=PrL(v)(pL,∗(v̄)−pnd,∗(v̄))+PrH(v)s

< 0
}

(B.1.22)

For any level of v̄ ≥ v̄nd, we have pL,∗(v̄) < v̄ and pnd,∗(v̄) ≤ v̄. As a result, these price

functions will be continuous in v̄. Since pL,∗(v̄) ≤ pL,M < pnd,M and pnd,∗(v̄) ≥ pnd,M , we

have pL,∗(v̄) < pnd,∗(v̄) for any v̄ ≥ v̄nd. Since pH,1 > pnd,1 + s, we have:

v̂(pL,∗(v̄1), pnd,∗(v̄1) + c, pnd,∗(v̄1))︸ ︷︷ ︸
=v̂S(v̄1)

≥ v̂(pL,∗(v̄1), pH,∗(v̄1), pnd,∗(v̄1))︸ ︷︷ ︸
=v̂B(v̄1)

(B.1.23)

In words, this inequality means the following: When the firm with data sets the high

signal price pnd,∗(v̄1) + c instead of the higher pH,∗(v̄1), more searchers arrive at the firm

with data first (i.e. the LHS is greater), since the prices there are more attractive.

To see that there exists a desired fixed point, note that (i) v̂S(1) ≤ 1 and (ii)

v̂S(v̄1) ≥ v̄1. The first point holds by construction. The second point holds because

v̂S(v̄1) ≥ v̂B(v̄1) and v̂B(v̄1) = v̄1. Moreover, the function v̂S(v̄) can be shown to be con-

tinuous on [v̄nd, 1], because pL,∗(v̄) and pnd,∗(v̄) are continuous. Thus, the intermediate

value theorem implies the result.

Part 6: Suppose pH,1 > pnd,1 + c. At v̄2, the following two conditions are satisfied:

(i) pH,2 < v̄2 and (ii) pH,2 < argmaxpj Π
H(pj; v̄

2) := pH,∗(v̄2).

Part 6a: If pH,∗(v̄1) > pnd,∗(v̄1) + s holds, previous results imply that v̄2 ≥ v̄1.

Suppose v̄1 = 1. Then, v̄2 = v̄1 must be true, by previous arguments. Suppose in-

stead that v̄1 < 1. Then PrL(v)pL,∗(v̄1) + PrH(v)pL,∗(v̄1) = pnd,∗(v̄1) must hold. Because

pH,∗(v̄1) > pnd,∗(v̄1) + s, we have:

v̂(pL,∗(v̄1), pnd,∗(v̄1) + c, pnd,∗(v̄1))− v̄1 > v̂(pL,∗(v̄1), pH,∗(v̄1), pnd,∗(v̄1))− v̄1 = 0

(B.1.24)
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Note that v̂(pL,∗(v̄), pnd,∗(v̄)+c, pnd,∗(v̄)) is weakly decreasing in v̄ because pL,∗(v̄) is rising

in v̄ and pnd,∗(v̄) is falling in v̄. Thus, the function v̂S(pL,∗(v̄), pnd,∗(v̄) + c, pnd,∗(v̄))− v̄ is

strictly decreasing in v̄ and is strictly positive at v̄1. Hence, v̄2 ≥ v̄1 must hold.

Part 6b: Since v̄2 ≥ v̄1, pH,2 < argmaxpj Π
H(pj; v̄

2) = pH,∗(v̄2) and pH,2 < v̄2 holds.

Note that v̄1 ∈ [v̄nd, 1]. Because v̄2 ≥ v̄1 ≥ v̄nd, argmaxpj Π
H(pj; v̄

2) = pH,∗(v̄2) will

be strictly below v̄2 and solve a FOC. Because v̄2 ≥ v̄1, we know that the prices satisfy:

(i) pk,∗(v̄2) ≥ pk,∗(v̄1) and (ii) pnd,∗(v̄2) ≤ pnd,∗(v̄1). Thus:

pH,2 = pnd,∗(v̄2) + s ≤ pnd,∗(v̄1) + c < pH,∗(v̄1) ≤ pH,∗(v̄2) < v̄2 (B.1.25)

Part 7: If pH,1 > pnd,1 + c, the vector (pL,2, pnd,2, pH,2, v̄2) is an equilibrium

Part 7a: At v̄2, ΠH(p2,H ; v̄2) ≥ 0.5(1− ρ)ΠH,M(pH,M) holds by assumption 7.

Note that pH,2 = pnd,∗(v̄2) + c > pnd,M , since pnd,∗(v̄2) > pnd,M . High signal profits

for pj < v̄2, which includes pH,2 since pH,2 < pH,∗(v̄2) < v̄2 are:

ΠH(pj; v̄
2) = pjρ

∫ v̄2

pj

PrH(v)g(v)dv + pj0.5(1− ρ)

∫ 1

pH
PrH(v)g(v)dv (B.1.26)

We know that this function is strictly concave on pj ∈ [0, v̄2] and that pnd,M < pH,2 <

pH,∗(v̄2) < v̄2. Thus, profits from setting pnd,M , namely ΠH(pnd,M ; v̄2), will be below

equilibrium profits, namely ΠH(pH,2; v̄2). Moreover, we have v̄2 > v̄nd, which also im-

plies that ΠH(pnd,M ; v̄2) ≥ ΠH(pnd,M ; v̄nd). By assumption, the final component is above

ΠH,M(pH,M).

Part 7b: The search behavior represented by the cutoff v̄2 will be optimal by the ar-

guments in part 3.

This is because pL,2 < pnd,2 < pH,2 and pH,2 = pnd,2 + c hold by construction, pH,2 < v̄2

by part 6, and v̂(pL,2, pnd,2, pH,2) = v̄2 holds by definition.

Part 7c: The prices (pL,2, pnd,2, pH,2) are optimal for firms.

Since no consumer leaves to search on the equilibrium path, Πnd(pj; v̄) and ΠL(pj; v̄)

are upper bounds for the true respective objective functions. Since the former are both

globally maximized by our prices for the given v̄2 > v̄nd, we know there can be no prof-

itable deviations from them pnd or pL.
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Now consider the optimal pricing calculus of the firm with data when observing ṽH .

Part 6 established that pH,2 < argmaxpj Π
H(pj; v̄

2) and pH,2 < v̄2. Because ΠH(pj; v̄
2)

is strictly concave on pj ∈ [0, v̄2], there cannot be any profitable downward deviations

pj < pH,2, because these would just yield profits of ΠH(pj; v̄
2). Any upward deviation

would, at best, yield profits equal to 0.5(1−ρ)ΠH,M(pH,M). This deviation is not profitable

by the result in part 7a. No other possible deviations remain. Thus, it is optimal for firms

to set said prices.

■

Proof of Proposition 12:

Part 1: In equilibrium, the low signal price of the firm with data must be given by

pL,∗(v̄) and the price of the firm without data must be given by pnd,∗(v̄).

Under assumptions 6 and 7, the search strategy of searchers must be a cutoff rule. More-

over, v̄ ≥ v̄nd must hold, which implies that pnd,∗(v̄) < v̄ must hold and must solve
∂Πnd(pnd,∗(v̄);v̄)

∂pj
= 0. Similarly, the equilibrium price pnd must be between pL and v̄, for

which the profits of the firm without data are given by Πnd(pj; v̄). Thus, the optimal

price of the firm without data must solve the same first-order condition, to which there

is a unique solution because Πnd,M(pj) is strictly concave. Thus, pnd must be equal to

pnd,∗(v̄).

For any v̄ ≥ v̄nd that we consider, the optimal low signal price must be below v̄,

because v̄nd > pnd,M > pL,M . Moreover, note that pL < pnd < pH must hold in an equilib-

rium in which firms play pure strategies. Thus, searchers with v ∈ [pL−ϵ, v̄] visit the firm

with data, so this firm’s profits in an open ball around pL must be given by ΠL(pj; v̄).

Thus, the optimal price pL must satisfy a corresponding first-order condition, to which

there will be a unique solution, namely pL,∗(v̄).

Part 2: For any v̄ ≥ v̄nd, both v̂B(v̄) and v̂S(v̄) are weakly falling in v̄.

Our assumptions guarantee that, for any v̄ ≥ v̄nd, the functions pL,∗(v̄), pH,∗(v̄), and

pnd,∗(v̄) are continuous in v̄. Moreover, pL,∗(v̄) and pH,∗(v̄) are rising in v̄, while pnd,∗(v̄)

is falling in v̄. Now consider v̂B(v̄), which is given by:

v̂B(v̄) = sup
{
v ∈ [0, 1] : Pr(ṽL|v)pL,∗(v̄) + Pr(ṽH |v)pH,∗(v̄)− pnd,∗(v̄) < 0

}
(B.1.27)

Consider two v̄′, v̄′′, with v̄′ < v̄′′. The function in Pr(ṽL|v)pL,∗(v̄) + Pr(ṽH |v)pH,∗(v̄) −
pnd,∗(v̄) is rising in v̄. Thus, any valuation v ∈

{
v ∈ [0, 1] : Pr(ṽL|v)pL,∗(v̄′′)+Pr(ṽH |v)pH,∗(v̄′′)−

pnd,∗(v̄′′) < 0
}
will also be in

{
v ∈ [0, 1] : Pr(ṽL|v)pL,∗(v̄′)+Pr(ṽH |v)pH,∗(v̄′)−pnd,∗(v̄′) <
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0
}
. This implies that v̂B(v̄′′) ≤ v̂B(v̄′) since v̄′ < v̄′′.

Now consider v̂S(v̄). Because the function Pr(ṽL|v)
[
pL,∗(v̄) − pnd,∗(v̄)

]
+ Pr(ṽH |v)s

is increasing in v and increasing in v̄, analogous arguments imply that v̂S(v̄) is falling in v̄.

Part 3: When pH,1 ≤ pnd,1 + c, v̄ = v̄1 must hold in equilibrium and the equilibrium

prices are uniquely determined.

Consider any v̄ < v̄1. At v̄1, high signal profits are equal toΠH(pj; v̄
1) for [pL,∗(v̄1), pnd,∗(v̄1)+

c]. Recall that pnd,∗(v̄) is falling in v̄ while pH,∗(v̄) is rising in v̄ as long as v̄ ∈ [v̄nd, 1],

which must hold in equilibrium. For any v̄ ∈ [v̄nd, v̄1], we thus have: pH,∗(v̄) < pnd,∗(v̄)+c.

Thus, pH,∗(v̄) ∈ [pL,∗(v̄), pnd,∗(v̄) + c] holds for any v̄ ∈ [v̄nd, v̄1]. This means that

pH,∗(v̄) is the unique optimal price to set, because it strictly maximizes ΠH(pj; v̄). Since

v̂B(v̄) is weakly decreasing (by part 2), v̂B(v̄) > v̄ for any v̄ under consideration, so we

cannot have an equilibrium at these values v̄ < v̄1.

Consider any v̄ > v̄1. When pnd,∗(v̄) + c < pH,∗(v̄), the high signal price must be

equal to pnd,∗(v̄) + c to constitute an equilibrium. If the price is above pnd,∗(v̄) + c, it

must optimally be pH,M , since the sale would only be made to captive consumers. This

cannot constitute an equilibrium, because pH,M ≥ pH,∗(v̄) > pnd,∗(v̄) + c, i.e. there would

be search on the equilibrium path, a contradiction. A price below pnd,∗(v̄) + c < pH,∗(v̄)

cannot be optimal, since profits would be equal to ΠH(pj; v̄), which are strictly increasing

for any pj < pH,∗(v̄).

Find that v̄′ for which pnd,∗(v̄′) + c = pH,∗(v̄′). All v̄ ∈ [v̄1, v̄′) could not have been

equilibria, because the optimal high signal price is pH,∗(v̄) and v̂B(v̄) < v̄ . Now consider

any v̄ ≥ v̄′. Because v̄′ ≥ v̄1 , we have v̂S(v̄′) = v̂B(v̄′) ≤ v̄′. We know that v̂S(v̄) is

weakly falling in v̄, which implies that we cannot have a fixed point of v̂S(v̄), and thus

no equilibrium, in the interval (v̄′, 1]. It only remains to consider v̄′. If this equals v̄1, it

is an equilibrium. If v̄′ > v̄1, v̂S(v̄′) = v̂B(v̄′) < v̄′, and we cannot have an equilibrium.

Thus, v̄ = v̄1 holds in equilibrium. The low signal price and the uniform price of

the firm with data must be pL,∗(v̄) and pnd,∗(v̄) by previous logic. The high signal price

must be pH,∗(v̄). Any other price yields strictly lower profits. All these prices are uniquely

determined.

Part 4: When pH,1 > pnd,1 + c, v̄ = v̄2 must hold in equilibrium. The equilibrium

prices are uniquely determined.

Note that pnd,∗(v̄) + c is falling in v̄ and pH,∗(v̄) is rising for v̄ ∈ [v̄nd, 1]. Thus, find

the v̄′ such that: pH,∗(v̄′) = pnd,∗(v̄′) + c. Because pH,1 > pnd,1 + c, we know v̄1 > v̄′. For

any v̄ < v̄′, pH,∗(v̄) < pnd,∗(v̄) + c, i.e. the optimal price is pH,∗(v̄). Thus, no value v̄ < v̄′

can be an equilibrium, because v̂B(v̄) > v̄ holds there.
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Consider any v̄ ∈ [v̄′, 1]. The high signal price must be equal to pnd,∗(v̄)+ c in equilib-

rium, i.e. v̂S(v̄) = v̄ would have to hold to constitute an equilibrium. The function v̂S(v̄)

is weakly falling, so there is at most one candidate for an equilibrium.

By previous arguments, the prices must be pL,∗(v̄2), pnd,∗(v̄2), and pH,∗(v̄2).

■

Proof of Proposition 13:

Define [pj, p̄j] as the convex hull of the support of the price distribution offered by either

firm j ∈ nd, d. The search strategy of searchers is s(v) and searchers continue searching

after visiting firm j if and only if the price is above p̂j(v) . I show that there exists no

equilibrium in which firms mix by considering all possible cases: (i) pnd < pd, (ii) pnd > pd,

and (iii) pnd = pd.

Part 1: There exists no equilibrium in which firms mix and pnd < pd.

Suppose pnd < pd. The price pnd is played with probability 1. Suppose, for a contra-

diction, that it is part of a mixed strategy. By the restriction of connected support, there

exists multiple prices below pd that are played by the firm without data.

All searchers with v < pd will surely visit the firm without data first. For any pj < pd,

no searcher who arrives at the firm without data first will search. Consumers who arrive

at the firm without data second has v ≥ pd and must have received a price strictly

above pd. Thus, they entail inelastic demand when the firm without data offers a price

pj ∈ [pnd, pd]. Thus, the firm with data makes the following profits when setting any price

pj ∈ [pnd, pd]:

Πnd(pj) = pj

[
ρ

∫ pd

pj

g(v)dv + ρ

∫ 1

pd

[
s(v)Pr(pd > p̂s(v)) + (1− s(v))

]
g(v)dv+

0.5(1− ρ)

∫ 1

pj

g(v)dv

]
(B.1.28)

This function is strictly concave (since Πnd(pj) is strictly concave), which implies that

the firm without data cannot make the same profits for the different prices in [pnd, pd] it

offers, a contradiction to mixing indifference. Thus, pnd is played with probability 1.

Now consider the prices of the firm with data. Because pnd is played with probability 1

and pnd < pd, all searchers with v ≥ pd never arrive at the firm with data. Thus, the firm

with data just makes the sale to its captive consumers for any price pj > pd and makes

scaled monopoly profits. This implies that the firm with data would not mix, since its

monopoly profit functions are strictly concave. Thus, firms do not mix in an equilibrium
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of category (i).

Part 2: There exists no equilibrium in which firms mix and pd < pnd.

Suppose pd < pnd. As before, pd must be played with probability 1 by the firm with

data in the corresponding information set (no matter whether this price is played after

seeing ṽL or ṽH). This is because all searchers with valuation below pnd visit the firm

with data. All searchers with valuation above pnd will generate inelastic demand for the

firm with data around pd, because no such consumer would search when receiving a price

below pnd.

Now consider the optimal pricing of the firm without data. No consumer who visits

the firm without data first in equilibrium would search after receiving pnd. Suppose, for

a contradiction, that a searcher with valuation v visits the firm without data first and

finds it weakly optimal to search when receiving the price pnd, which means that she will

search for any price she can receive at this firm. Because pd < pnd, it would be better for

any such searcher to initially visit the firm with data. This is because this endows the

consumer with an option value of saving search costs, which she can do when receiving

pd, the best equilibrium price.

Thus, any searcher who visits the firm without data first must find it strictly optimal to

not search at pnd. Because search preferences are continuous in the initial price, searchers

will also not search if offered a price just above pnd (by the dominated convergence

theorem).

There exist ϵ > 0 and δ > 0 such that: (i) Searchers with v ∈ [pd, pnd+ϵ] visit the firm

with data first. Setting ϵ small enough also implies that these consumers would never

search thereafter, and (ii) searchers who visit the firm without data first don’t search if

offered pj ∈ [pnd, pnd+δ]. Moreover, searchers who arrive at the firm without data second

buy if offered pj ∈ [pnd, pnd + c] (else, it would not be optimal to pay the search cost to

visit this firm).

This establishes that pnd will be played with probability 1. To see this, set τ =

min{ϵ, δ, c}. For all pj ∈ [pnd, pnd + τ ], the profits of the firm without data are:

Πnd(pj) = pj

[
ρ

∫ 1

pnd+ϵ

[
s(v)Pr(p̂s(v) > pd) + (1− s(v))(1)

]
g(v)dv + 0.5(1− ρ)

∫ 1

pj

g(v)dv

]
(B.1.29)

The demand implied by searchers is fully inelastic for these prices. This means that the

profits of the firm without data are strictly concave for all pj ∈ [pnd, pnd + τ ]. If this

firm mixes, it must offer multiple prices in this interval by the restriction of connected

support. This violates the mixing indifference condition, a contradiction.
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We have established that pd and pnd both have to be played with probability 1. Thus,

the only possibility of mixing is that the firm with data mixes after one of the two signals.

Define that the firm with data mixes after ṽm and that the convex hull of the support

of the associated price distribution is [pm, p̄m]. No consumer who visits the firm without

data first will search thereafter (by an option value logic, as above). Moreover, searchers

who visit the firm with data first will search if v > pnd + c and the price they receive is

above this cutoff.

It cannot hold that pnd + c < p̄m. Then, all searchers will surely not consume at

the firm with data for pj ∈ [pnd + c, p̄m], which means profits only accrue from captive

consumers. Since these are strictly concave, there is a contradiction (by the restriction of

connected support).

Finally, suppose that p̄m ≤ pnd + c, i.e. that none of the prices played after ṽm trigger

search. Then, we can show that pd, which is strictly lower than p̄m by the assumption

that the firm with data is mixing, must be played after the low signal. If pd were played

after ṽH , there would be a contradiction by hazard ratio ordering arguments (since no

price triggers search).

Since pd < p̄m and pd is played after ṽL, the strategy of searchers (s(v)) will be a cutoff

rule, because the price distribution at the firm with data becomes strictly less favorable as

a consumer’s valuation increases. Searchers will visit the firm with data only if their valu-

ation is below v̄. Because p̄m ≤ v̄ must hold (else the firm only sells to captive consumers

for a subinterval of prices), profits from any price pj ∈ [pm, p̄m] are ΠH(pj; v̄) as defined

in equation (3.4.4). But this is strictly concave, so the firm with data would also never mix.

Part 3: There exists no equilibrium in which pd = pnd

Suppose pd = pnd. For prices in an open ball above the lowest price, no consumer that

arrives at any firm will leave to search (any consumers who arrive after searching directly

buy). Consider such an interval of prices, and call it [pd, pd + ϵ], s.t. pd + ϵ < p̄d.

Even if some individual prices in this interval are played with positive probability,

the preferences that consumers with v ∈ [pd, pd + ϵ] have over which firm to visit will be

continuous in v. This can be shown by applying the dominated convergence theorem.

Suppose that there exists a v′ ∈ [pd, pd + ϵ] such that a searcher with valuation v′

strictly prefers to visit the firm with data. Then, consumers with valuation in an open

ball with radius δ around v′ will also strictly prefer to visit the firm with data first. As a

result, setting any price pj ∈ [v′, pd + ϵ] will yield the following profits for the firm with

data:

pj

[
ρ

∫ v′+δ

pj

Prk(v)g(v)dv + ρ

∫ 1

v′+δ

[
s(v) + (1− s(v))Pr(p̂nd(v) < pnd)

]
Prk(v)g(v)dv+
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0.5(1− ρ)

∫ 1

pj

Prk(v)g(v)dv

]
(B.1.30)

This profit function is strictly concave in this domain, a contradiction to mixing indiffer-

ence.

Similar arguments rule out that some searchers with v ∈ [pd, pd + ϵ] strictly prefer

to visit the firm without data. Thus, they must all be indifferent and randomize by our

tie-breaking rule. But then, the firm without data would make the following profits for

any price pj ∈ [pd, pd + ϵ]:

pj

[
ρ

∫ pd+ϵ

pj

(0.5)g(v)dv + ρ

∫ 1

pd+ϵ

[
(1− s(v)) + s(v)Pr(p̂d(v) < pd)

]
g(v)dv+

0.5(1− ρ)

∫ 1

pj

g(v)dv

]
(B.1.31)

But this profit function is strictly concave once more. Thus, the firm without data would

have to set this lowest price with probability 1. If the firm with data sets this price with

probability 1 as well, we have no MSE. Alternatively, it sets it with probability below 1.

Then, all searchers with v > pnd visit the firm without data and don’t search. Thus, the

firm with data would not mix, because it sells only to captive consumers for any of its

prices.

■

Proof of Corollary 5:

As ρ → 1, assumptions 6 and 7 both hold. First, note that pnd,s(ρ) as defined in equation

(3.4.9) satisfies pnd,s(ρ) → max{pnd,M , 1− c} as ρ → 1. Thus, limρ→1[p
nd,s(ρ) + c] ≥ 1 >

pH,M , i.e. assumption 6 is satisfied. Now consider assumption 7, namely ΠH(pnd,M , v̄nd) >

0.5(1− ρ)ΠH,M(pH,M). As ρ → 1, the LHS goes to something strictly positive, while the

RHS goes to 0. Thus, the assumption is satisfied as well.

As ρ → 1, there is no search on the equilibrium path and v̄ ≥ v̄nd holds in equilibrium

by the previous results. Thus, v̄ → 1 as ρ → 1, which implies the result.

■

Proof of Corollary 6:

Part 1: The equilibrium v̄ weakly decreases in c.

First, consider c > pH,1 − pnd,1. Then, the equilibrium (pL,1, pH,1, pnd,1, v̄1) is played,

in which v̄ is unaffected by c. Second, consider c ≤ pH,1 − pnd,1. Then, the equilibrium
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(pL,2, pH,2, pnd,2, v̄2) is played, in which v̂(pL,∗(v̄2), pnd,∗(v̄2) + s, pnd,∗(v̄2))− v̄2 = 0.

Consider two values of c for which c ≤ pH,1 − pnd,1 and call them c′ and c′′, with

c′′ > c′. Define the resulting equilibrium levels of v̄ as v̄2(c′′) := v̄2,′′ and v̄2(c′) := v̄2,′. I

show that v̄2(c′′) ≤ v̄2(c′). If v̄2,′ = 1, the result is immediate.

Thus, suppose that v̄2,′ < 1. Then, v̄2,′ must set the expected prices exactly equal. For

c′′ > c′, we thus have: PrL(v̄2,′)(pL,∗(v̄2,′)−pnd,∗(v̄2,′))+PrH(v̄2,′)c′′ > 0. This implies that

v̂S(v̄2,′)−v̄2,′ < 0 at c′′. Because said expression is falling in v̄, it must hold that v̄2,′′ < v̄2,′.

Part 2: Market shares

When c > pH,1 − pnd,1, changes of c do not affect the equilibrium outcomes.

Suppose v ∼ U [0, 1] and that PrL(v) is linear. Then, g(p)p = p is rising in p. Moreover,

the function g(p)pPrL(p) is rising in p for any p < 0.5 (note that pL,M < 0.5 in our

example).

As c rises, v̄ falls. This reduces the high signal demand of the firm with data and

increases the high signal price because pnd,∗(v̄) is falling in v̄. The high signal price further

rises because c rises. Thus, the high signal demand of the firm with data falls. Moreover,

the low signal demand of the firm with data falls for any relevant p. This reduction of

demand will, by strict concavity of the low signal profit function, lead to a decrease in

pL. Note that pL ≤ pL,M < 0.5 must hold. Because g(p)pPrL(p) is rising in p when

p ∈ [0, 0.5], and this equals demand by the FOC that pL must satisfy, the equilibrium

low signal demand falls.

Now consider the firm without data. Because v̄ falls, the demand of the firm without

data rises for any relevant price. This will trigger an increase of the price, which leads to

higher equilibrium demand for the firm without data because g(p)p is rising in p.

Thus, total demand of the firm with data is falling in c and the demand of the firm

without data is rising. Thus, the sales based market share of the firm with data falls in c.

■

B.2 Proofs — Section 3.5.

Proof of Proposition 14:

If e > 0, it is optimal to exercise this right only if v ≥ pa + e. Suppose the right to

anonymity is exercised by a positive measure of consumers. Thus, the corresponding in-

formation set for the firm with data is on-path and this firm must believe that a consumer

who has anonymized is a searcher and has v ≥ pa + e. Thus, there is a profitable upward

deviation from pa.
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Now consider e = 0 and suppose that a strictly positive measure of consumers exercises

the right to anonymity.

Suppose pnd < pa. Then, any searcher with v > pnd would not visit the firm with data

and utilize their right to anonymity. If a consumer exercises this right, she must have

v < pnd. But then, setting the price pa would be suboptimal, a contradiction.

Suppose pa ≤ pnd. Then, all searchers weakly prefer to visit the firm with data.

Suppose pL ̸= pH . Then, pL < pa < pH must hold. But then, consumers with v ∈ (pL, pa]

will not exercise the right to anonymity. Thus, there is a profitable upward deviation from

pa, as the firm with data knows that any searcher who anonymizes (and has v > pL) has

a valuation strictly above pa.

Thus, pL = pH must hold. If pa is not equal to pL, either no consumer will anonymize (a

contradiction to the premise) or all searchers anonymize (then there is a contradiction to

the postulated ordering of prices). The final case is hence pL = pH = pa. By assumption,

consumers then randomize between anonymizing and not anonymizing. Then, we obtain

several contradictions. For instance, pL = pH would not be optimal.

■

Proof of Proposition 15:

There are five equilibrium prices: the prices of the firm with data (pL, pH), the uni-

form price of the firm without data (pnd) and the signal prices at this firm (pL,nd, pH,nd). I

will construct an equilibrium in which (i) searchers with v ∈ [0, vt) visit the firm without

data and port their data, and (ii) searchers with v ∈ (vt, 1] visit the firm without data

but do not port their data.

Setting up the equilibrium candidate:

The prices pL,nd and pH,nd must, given vt, solve pk,nd(vt) = argmaxpj
[
pj
∫ vt

pj
ρPrk(v)g(v)dv

]
.

Thus, these optimal prices will be strictly below vt. The price pnd must maximize:

Πnd(pj; v
t) = pj

[
ρ

∫ 1

vt
1[pj ≤ v]g(v)dv + 0.5(1− ρ)

∫ 1

0

1[pj ≤ v]g(v)dv

]
(B.2.1)

In order for the search behavior we posited to be optimal, we need to have pnd < vt.

This, in turn, implies that vt ≥ v̄nd must hold. For any vt ≥ v̄nd, the price pnd will equal

pnd,∗(vt). Because all prices must be below vt in equilibrium, vt must solve:

vt = sup
{
v ∈ [0, 1] : PrH(v)pH,nd(vt) + PrL(v)pL,nd(vt)− pnd(vt) < 0

}︸ ︷︷ ︸
:=v̂T (vt)

(B.2.2)
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Previous arguments show that the function in this supremum is rising in v, which means

we have a well-defined supremum. The function v̂T (vt) is continuous because all price

functions are continuous in vt. At vt = v̄nd, we have v̂T (v̄nd) = 1 > v̄nd. At vt = 1,

we have v̂T (1) ≤ 1 by definition. Thus, the intermediate value theorem guarantees that

vt = v̂T (vt) holds at some vt ≥ v̄nd.

Based on this, I construct the following candidate for an equilibrium: The firm with

data sets the prices (pL,M , pH,M). The firm without data sets the prices (pL,nd(vt), pH,nd(vt),

pnd(vt)), where vt = v̂T (vt). Searchers with v ∈ [0, vt) visit the firm without data and

port their data, and (ii) searchers with v ∈ (vt, 1] visit the firm without data but do not

port their data.

Equilibrium verification:

The search behaviour in the posited equilibrium is optimal, given the prices: For all

searchers with v < vt, porting the data is strictly better than remaining anonymous at

the firm without data. This is because the expected price when porting the data lies be-

low pnd for a consumer with v = pH,nd (because pH,nd < vt must hold). For any consumer

with v > pH,nd, the preference for porting is strictly falling in v and switches sign at vt.

For searchers with v > vt, it is better to remain anonymous at the firm without data

than to port the data.

For any searcher, it is better to port the data to the firm without data than to visit the

firm with data. To see this, recall that the firm with data sets pL = pL,M and pH = pH,M .

Since vt ≤ 1, we know that pL,nd ≤ pL = pL,M and pH,nd ≤ pH = pH,M . Thus, any searcher

prefers porting the data over visiting the firm with data.

Thus, all searchers with v < vt port the data. All searchers with v > vt prefer to visit

the firm without data anonymously over porting the data, which they in turn prefer to

visiting the firm with data. Hence, the postulated search behavior is optimal.

The postulated prices of the firms are optimal, given the equilibrium search behaviour.

This holds by construction. Thus, said equilibrium candidate constitutes an equilibrium.

■

B.3 Extensions

B.3.1 Non-binary finite signals

Suppose that the firm with data receives a signal that can take K ≥ 2 possible realiza-

tions, where the probability that a consumer with valuation v generates a signal ṽk is

Pr(ṽk|v) and
∑K

k=1 Pr(ṽk|v) = 1. Conditional on the search strategy of searchers, namely
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s(v), one can define the cumulative distribution function of a consumer’s valuation, con-

ditional on the consumer having generated the signal ṽk, as F k(v; s(v)):

F k(x; s(v)) =
1

Pr(ṽk)

∫ x

0

Pr(ṽk|v)[ρs(v) + 0.5(1− ρ)]g(v)dv (B.3.1)

The hazard ratios are hk(v; s(v)) = fk(v;s(v))
1−Fk(v;s(v))

, where fk(v; s(v)) are the corresponding

densities. I define Πk,M(pj) as the profit a monopolist with access to said information

structure makes when offering the price pj to consumers who generate ṽk. The monopoly

profit function of a firm without data is Πnd,M(pj), as defined in equation (3). The optimal

monopoly prices are pnd,M := argmaxpj Π
nd,M(pj) and pk,M := argmaxpj Π

k,M(pj).

Everything else is as in the baseline model. An equilibrium consists of the search

strategy of consumers, the uniform price set by the firm without data (pnd), and the

prices set by the firm with data after any signal, namely {pk}k∈{1,...,K}. I impose the

tie-breaking rule laid out in assumption 2 and the following new assumptions:

Assumption 10 Assume that Pr(ṽk|v) are all once continuously differentiable, satisfy

Pr(ṽk|v) ∈ (0, 1) ∀v and that:

• For any measurable s(v), the signals are hazard ratio ordered, i.e. h1(v; s(v)) >

h2(v; s(v)) > ... > hK(v; s(v)) holds for all v∈ [0, 1].

• The monopoly profit functions ΠM(pj|ṽ1),...,ΠM(pj|ṽK), and Πnd,M(pj) are all strictly

concave in the price and pnd,M ∈ (p1,M , pK,M).

Moreover, for any vector of prices (p1, ..., pK) s.t. p1 ≤ p2 ≤ ... ≤ pK and p1 ̸= pK:

∂

∂v

[ K∑
k=1

Pr(ṽk|v)max{v − pk, 0}
]
< 1 (B.3.2)

I label this framework the extended data framework. These assumptions imply that, in any

competitive equilibrium, there will be price discrimination in the sense that consumers

with higher valuations pay greater effective prices. Under these conditions, the equilibrium

strategy of searchers will remain a cutoff rule when firms play pure strategies, which means

that all results derived within the baseline model go through verbatim:

Proposition 21 (Non-binary finite signals: equilibrium)

Consider the extended data framework. In any equilibrium in which firms play pure strate-

gies:

• The ordering pnd ∈ (p1, pK) will hold.

• There exists a v̄ > p1 such that all searchers with v ∈ (p1, v̄) visit the firm with data

and all searchers with v ∈ (v̄, 1] visit the firm without data.

• The ordering v̄ ≥ v̄nd must hold.

There exists an equilibrium in which firms play pure strategies.
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B.3.2 Continuous signals

The previous insights all go through even when the firm with data receives continuous

signals about consumer valuations, so long as the information is not perfect. I show this in

a model which retains all the specifications from the baseline model, with two exceptions:

First, the firm with data receives a continuous signal ṽ = v + ϵ about the valuation of

any arriving consumer (v), where the noise term ϵ is uniformly distributed on the interval

[−ϵ̄, ϵ̄]. I assume that ϵ̄ ∈ (0, 1/8). Second, I now assume that v ∼ U [0, 1]. I name this

framework the continuous signals framework.

An equilibrium in which firms play pure strategies thus consists of (i) a uniform price

(pnd) of the firm without data, (ii) a function pd(ṽ) that defines what price the firm with

data would offer after observing the signal ṽ, and (iii) the search strategy of searchers,

namely s(v). In equilibrium, searchers separate exactly as before:

Lemma 9 (Continuous signals: search)

Consider the continuous signals framework. In equilibrium:

• Any consumer with v > 0 obtains strictly positive expected utility at the firm with

data.

• There exists a v̄ such that all searchers with v ∈ (0, v̄) visit the firm with data and

all searchers with v ∈ (v̄, 1] visit the firm without data.

Because ϵ̄ > 0, the firm with data cannot perfectly price discriminate and any con-

sumer with positive valuation can gain some utility (in expectation) by visiting this firm.

Thus, all searchers with v < pnd will optimally visit the firm with data. However, the

price distribution at the firm with data becomes strictly less favorable as a consumer’s

valuation increases. This implies that, as before, searchers with low valuations visit the

firm with data and vice versa.

As before, this separating behavior will give rise to a selection effect. In equilibrium,

a majority of searchers will thus visit the firm with data:

Proposition 22 (Continuous signals: equilibrium)

Consider the continuous signals framework. In equilibrium, v̄ ≥ 0.5(1+ ρ) must hold and

an equilibrium exists.

Recall that, when v ∼ U [0, 1], the cutoff v̄nd as defined in equation (10) equals 0.5(1+

ρ). As before, any equilibrium candidate in which v̄ < 0.5(1+ ρ) holds is ruled out by an

incompatibility of optimal search and optimal pricing by the firm without data. Optimal

behavior by searchers implies that pnd < v̄ must hold in equilibrium, since any consumer

with positive valuation can attain strictly positive expected utility by visiting the firm

with data. A searcher who is indifferent between both firms (i.e. a searcher with valuation

v̄) must hence receive strictly positive utility at the firm without data. However, the firm
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without data would optimally set a uniform price pnd weakly above v̄ when v̄ < 0.5(1+ρ),

which rules out any such equilibria.

The optimization calculus of the firm without data is the same as in the baseline

model. Thus, the uniform price it will set is given by pnd,∗(v̄). The assumption that

ϵ̄ < 1/8 implies that the firm with data will price according to the following function for

any v̄ ≥ 0.5(1 + ρ):

pd,∗(ṽ) =

0.5(ṽ + ϵ̄) ṽ ∈ [−ϵ̄, 3ϵ̄]

(ṽ − ϵ̄) ṽ ∈ [3ϵ̄, 1 + ϵ̄]
(B.3.3)

The prices set by the firms respond continuously to changes in v̄, which is sufficient to

ensure equilibrium existence. It remains to study the properties of these equilibria in

some more detail. To that end, I fix ρ = 0.4 and visualize the equilibrium values of v̄ and

pnd for different levels of ϵ̄ (which are plotted on the x-axis) in the following graph:

Figure B.1: Equilibria under continuous signals

As ϵ̄ → 0, the cutoff v̄ and the price pnd both converge to 0.5(1+ρ). To see why, suppose

that ϵ̄ ≈ 0 and that searchers visit firms according to a cutoff rule with v̄ ≈ 0.5(1 + ρ).

The firm without data will optimally set the price pnd,∗(v̄), which is approximately equal

to 0.5(1 + ρ) for this search rule. Because the firm with data is able to almost perfectly

price discriminate, every consumer will attain close to zero expected utility by visiting

this firm. While consumers with v < pnd ≈ 0.5(1 + ρ) would still prefer to visit the firm

with data, almost all consumers with valuation above pnd would prefer to visit the firm

without data, because the utility they attain there is linearly rising in v. Thus, the search

behavior represented by the cutoff v̄ ≈ 0.5(1 + ρ) is optimal, because pnd ≈ 0.5(1 + ρ).
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B.3.3 Quality differentiation

In this section, I integrate quality differentiation into the analysis by combining the

previous search setup with the model of Mussa & Rosen (1978). The consumer’s type is

now denoted by θ ∼ U [0, 1]. The firms can offer different quality levels q ∈ [0, 1]. When

paying the price p for a good with quality q, a consumer’s net utility is:

u(q, p; θ) = θq − p (B.3.4)

There are two active firms, namely the firm with data and the firm without data.

For any consumer who arrives, the firm with data receives a signal θ̃ ∈ {θ̃L, θ̃H} about

the consumer’s type. The probability distribution of this signal is denoted by Pr(θ̃ =

θ̃H |θ) := PrH(θ), where PrL(θ) := 1 − PrH(θ). The firm without data receives no

information about any consumer. The provision of any quality level is costless. As in the

baseline analysis, there are searchers and captive consumers, with shares ρ ∈ (0, 1) and

(1−ρ). Any consumer can only visit one firm. I label this model the quality differentiation

framework.

By the revelation principle, it is without loss to restrict the strategy space of the firms

to direct mechanisms. Thus, an equilibrium in this game consists of the following objects:

(i) the search strategy of searchers, (ii) a quality-price menu (qnd(θ), tnd(θ)) offered by

the firm without data, and two quality price menus (qL(θ), tL(θ)) and (qH(θ), tH(θ)) that

the firm with data offers to consumers who generate the low signal and the high signal,

respectively. I restrict the strategy space of the firms to menus in which the mapping

from messages into qualities is a measurable function. I further restrict attention to

simple equilibria:

Definition 1 An equilibrium in the quality differentiation framework is simple if and

only if (i) all searchers visit either firm with probability 0.5 or (ii) there exists a cutoff θ̄

such that all searchers with θ < θ̄ visit a given firm and all searchers with θ > θ̄ visit the

other firm.

Moreover, I impose some tie-breaking rules. I define the infimum of types that receive

quality at the firm with data and at the firm without data as θd and θnd, respectively.

Assumption 11 If firms offer identical quality-price menus, searchers visit either firm

with equal probability. For any other combination of menus, searchers with θ ≤ min{θd, θnd}
visit the firm j with the lower θj. If θnd = θd, searchers with θ ≤ min{θd, θnd} visit the

same firm.

The main technical challenge in the following analysis stems from the fact that the

density of types that arrive at either firm is not continuous — it has a jump discontinuity
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at θ̄. However, because this stark difference in the consumers’ search choices can only

occur at precisely one level of θ in a simple equilibrium, the types of consumers that

arrive at the firms are still absolutely continuous random variables and admit a well-

defined density.

To express these densities, I define the probability that a consumer arrives at the firm

without data in equilibrium as Pr(Ind) and the probability that a consumer arrives at

the firm with data and generates the signal θ̃k as Pr(Ik). Because each firm has captive

consumers, these probabilities are all strictly positive, i.e. all information sets of both

firms are on the equilibrium path. To characterize the search behavior of consumers in a

simple equilibrium, I define gH ∈ {0, 0.5, 1} and gL ∈ {0, 0.5, 1} as the probabilities with

which a searcher with type θ > θ̄ and θ < θ̄ visits the firm with data, respectively. If all

searchers visit either firm with equal probability, this is captured by setting gL = gH = 0.5

and choosing any θ̄. Defining g := (gL, gH), the type of a consumer who visits the firm

without data has the following probability density:

fnd(θ; θ̄, g) =

(1/Pr(Ind))(ρ(1− gL) + 0.5(1− ρ)) θ < θ̄

(1/Pr(Ind))(ρ(1− gH) + 0.5(1− ρ)) θ > θ̄
(B.3.5)

The type of a consumer who visits the firm with data and generates the signal θ̃k has an

analogously defined probability density, which I call fk(θ; θ̄, g).

Given these densities, we can construct the virtual valuation functions. The virtual

valuation function of consumers who visit the firm without data, which I call Jnd(θ; θ̄, g),

is Jnd(θ; θ̄, g) = θ − (1 − F nd(θ; θ̄, g))/fnd(θ; θ̄, g). The virtual valuation function of

consumers who visit the firm with data and generate the signal θ̃k is Jk(θ; θ̄, g) =

θ − (1 − F k(θ; θ̄, g))/fk(θ; θ̄, g). Note that F nd(θ; θ̄, g) and F k(θ; θ̄, g) are the cumula-

tive density functions that accompany fnd(θ; θ̄, g) and fk(θ; θ̄, g), respectively. Moving

forward, I impose the following assumptions:

Assumption 12 The signal distribution PrH(θ) is continuous, strictly increasing, and

maps into (0, 1) for any θ ∈ [0, 1].

Under these assumptions, the insights of Milgrom & Segal (2002) apply and the ex-

pected utility a consumer with type θ attains in an implementable mechanism can be

expressed using the integrability condition. Thus, the expected revenue the firm without

data obtains in an implementable mechanism is:

Rnd(qnd(θ); θ̄, g) = −Und(0) +

∫ 1

0

qnd(θ)Jnd(θ; θ̄, g)fnd(θ; θ̄, g)dθ (B.3.6)

The expected revenue the firm with data obtains from a consumer that generates θ̃k has

an analogous form. I have defined Und(0) as the utility the lowest type would attain in a
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mechanism set by the firm without data. The set of consumer types for which the virtual

valuations are positive are partially characterized by the cutoffs θ̂nd, θ̂L, and θ̂H , which

are defined as follows:

θ̂k = inf
{
θ : Jk(θ; θ̄, g) > 0

}
; θ̂nd = inf

{
θ : Jnd(θ; θ̄, g) > 0

}
(B.3.7)

Note that the virtual valuation functions can jump down at θ̄, which means that the vir-

tual valuations are not necessarily positive for all θ above said cutoffs. In addition, while

the functions Jnd(θ; θ̄, g) and JH(θ; θ̄, g) are both piecewise strictly increasing in θ by

construction, the low signal virtual valuation function JL(θ; θ̄, g) may be non-monotonic.

To deal with the former problem in the equilibrium analysis, I set up the following as-

sumption:

Assumption 13 Fix gL = 0 and gH = 1. For any θ̄ ≤ 0.5, JL(θ; θ̄, g) < 0 ∀θ ≤ θ̄.

Remark 3 For any linear PrH(v), assumption 13 is satisfied if ρ ≥ 0.34.

This assumption rules out equilibria in which searchers separate in a different way

than previously, i.e. equilibria in which searchers with low θ visit the firm without data.

Such equilibria could only be sustained if the firm without data implements an ironing

mechanism, in which it starts providing quality at lower types than the firm with data

(formally, θ̂nd < θ̂L). This assumption rules out such equilibria, given that any such equi-

librium must feature θ̂L < θ̄ and θ̄ ≤ 0.5, which is made impossible under said assumption.

Moreover, there generally exists no equilibrium in which all searchers randomize between

the firms. These notions are formalized in the following lemma:

Lemma 10 (Quality differentiation: search)

Consider the quality differentiation framework:

• When all searchers visit firms randomly, the cutoffs satisfy θ̂L < θ̂nd < θ̂H .

• Suppose assumption 13 holds as well. In a simple equilibrium, there exists a θ̄ such

that searchers visit the firm with data if θ < θ̄ and the firm without data if θ > θ̄.

The first result follows from the fact that consumers who generate the low signal

have a distribution of types θ with less mass at high types and vice versa. This shifts up

the distribution of virtual valuations. Intuitively, a firm would be more willing to offer

positive quality to a consumer with a given θ when observing the low signal (rather than

the high signal or no signal), because the mass of consumers with higher types for whom

this decision would incur a revenue loss becomes smaller. The second result holds because

the firm without data cannot attract low type consumers with an ironing mechanism in

equilibrium.

The main result from the baseline analysis is retained in any simple equilibrium. This

is formalized in the following proposition, together with the accompanying assumptions:
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Assumption 14 Fix gL = 1 and gH = 0.

• The function JL(θ; θ̄, g) is piecewise strictly increasing in θ for θ ∈ [0, θ̄) and θ ∈
(θ̄, 1].

• For any θ̄ ≥ 0.5(1 + ρ), limθ↓θ̄ J
k(θ; θ̄, g) > 0 holds for both k ∈ {L,H}.

Remark 4 Assumption 14 is satisfied for any linear signal distribution.

This assumption guarantees that, in equilibrium, all functions Jx(θ; θ̄, g) (with x ∈
{nd, L,H}) will be strictly negative if θ < θ̂x and strictly positive if θ > θ̂x. Thus, the

optimal qx(θ) assigns quality 1 to all types above θ̂x and quality 0 to all types below

this threshold. Such an equilibrium exists and retains the key property from the baseline

analysis:

Proposition 23 (Quality differentiation: equilibrium)

Consider the quality differentiation framework. Under assumptions 13 and 14, θ̄ ≥ 0.5(1+

ρ) must hold in any simple equilibrium, and a simple equilibrium always exists.

Any value θ̄ < 0.5(1 + ρ) cannot constitute an equilibrium, since θ̄ ≤ θ̂nd would

hold for any such θ̄ < 0.5(1 + ρ). This is not consistent with optimal consumer search

behavior — because θ̂L < θ̂nd, searchers with θ just above θ̂nd would strictly prefer to visit

the firm with data, but visit the firm without data in the supposed equilibrium. Thus,

θ̄ ≥ 0.5(1 + ρ) must hold in a simple equilibrium, which exactly replicates the result

from the baseline analysis. Such a simple equilibrium always exists under the stated

assumptions. Thus, the main equilibrium result from the baseline model is retained in

this extension, albeit under slightly stronger restrictions on ρ, as expressed in remark 3.

B.3.4 Endowing both firms with data

In this section, I study a framework in which both firms receive binary signals about the

valuation of any consumer who visits. I specify that there is one firm that has access

to better data than the other. I define the two firms as the firm with better data and

the firm with worse data. The consumers’ valuations are drawn uniformly from the unit

interval. Everything else is as in the baseline model and all consumers can only visit one

firm. I label the resulting framework the dispersed data framework.

The probability that a consumer with valuation v generates the high signal at the firm

with better data is PrHB(v) and PrHW (v) at the firm with worse data. In the dispersed

data framework, an equilibrium consists of a quadruple of prices (pLB, pHB, pLW , pHW )

and the search strategy of searchers. The prices that the firm with better data offers to

consumers that generate the low and high signal, respectively, are (pLB, pHB). The prices

the firm with worse data offers in the respective information sets are (pLW , pHW ).
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To illustrate differences in signal precision, consider a monopolist with access to a

signal with distribution PrHB(v). I define the prices this firm would set after the low and

high signal as pLB,M and pHB,M , respectively. Analogously, the prices set by a monopolist

who receives a signal with distribution PrHW (v) in the respective information sets are

defined as pLW,M and pHW,M . In the analysis, I assume that the signal distributions are

well behaved and that the firm with better data receives a more precise signal in the

following sense:

Assumption 15 Both functions PrHB(v) and PrHW (v) are strictly increasing in v, con-

tinuous, and map into (0, 1) for any v. The signal probability functions are such that:

• For any v < 0.5, PrHB(v) < PrHW (v). For any v > 0.5, PrHB(v) > PrHW (v).

• The prices that firms would set when all consumers randomize between firms satisfy

the ordering pLB,M < pLW,M < pHW,M < pHB,M .

In words, the signal which the firm with better data receives implies a higher chance of

correctly recognizing whether a consumer’s valuation is in the upper or lower half of the

valuation interval. Moreover, the signal of the firm with better data is more informative

in the sense that, when consumers randomly arrive at firms, this firm sets a lower price

to consumers who generate the low signal and vice versa.

Moreover, I impose a tie-breaking rule concerning searchers with valuation below the

lowest equilibrium price, which I call pmin := min{pLW , pHW , pLB, pHB}.

Assumption 16 Searchers with v ≤ pmin visit a firm that offers pmin with higher prob-

ability.

The richness of the pricing possibilities enables the potential existence of equilibria

with intractable search behaviour. To facilitate the analysis, I restrict attention to the

following "simple" category of equilibria.

Definition 2 An equilibrium is simple if and only if (i) all searchers visit each firm with

probability 0.5 or (ii) there exists some v̄ s.t. all searchers with valuation above v̄ visit a

particular firm and all searchers with valuation below v̄ visit the other firm.

The definition of a simple equilibrium does not impose restrictions on which firm

consumers on either side of a cutoff v̄ visit in an equilibrium where their strategy is a

cutoff rule. Instead, I show that any simple equilibrium retains the structure of previous

equilibria.1 Moreover, the equilibrium v̄ is bounded from below, as before.

Lemma 11 (Dispersed data: equilibrium characterization)

Consider the dispersed data framework. In a simple equilibrium:
1If both firms receive a signal with the same probability distribution, there is a unique simple equi-

librium in which both firms follow the same pricing strategy and all searchers randomize between both
firms.
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• The ordering pLB ≤ pLW holds. There exists a v̄ such that searchers visit the firm

with worse data if v > v̄ and the firm with better data if v < v̄.

• v̄ ≥ v̄LW must hold, where v̄kW ∈ (0, 1) solves the following for either k ∈ {L,H}:

ρ

∫ 1

v̄kW
PrkW (v)dv + 0.5(1− ρ)

[ ∫ 1

v̄kW
PrkW (v)dv − v̄kWPrkW (v̄kW )

]
= 0 (B.3.8)

Low-valuation consumers prefer to visit the firm with better data, because they are

more likely to generate the low signal, i.e. to be correctly identified, at this firm. As a

result, consumers with low (high) valuations can expect a more favorable price distribu-

tion at the firm with better data (firm with worse data). The interpretation of v̄LW is

the same as in the baseline model:2 For any v̄ < v̄LW , the firm with worse data would

optimally set a low signal price (pLW ) that is weakly above v̄. However, searchers with

valuation just above pLW would never visit the firm with worse data in a simple equi-

librium, because the firm with better data will always offer the lowest equilibrium price.

This means that v̄ ≤ pLW cannot hold in a simple equilibrium, which rules out equilibria

in which v̄ < v̄LW .

It remains to establish the existence of a simple equilibrium. For a given v̄, the prices

of the firm with better data need to maximize the following objective functions for the

corresponding signal ṽk ∈ {ṽL, ṽH} in any such equilibrium:

ΠkB(pj; v̄) := pj

[
ρ

∫ v̄

0

PrkB(v)1[pj ≤ v]dv︸ ︷︷ ︸
searcher demand

+0.5(1− ρ)

∫ 1

0

PrkB(v)1[pj ≤ v]dv︸ ︷︷ ︸
captive consumer demand

]

(B.3.9)

The firm with worse data maximizes the following objective, given the signal ṽk ∈
{ṽL, ṽH}:

ΠkW (pj; v̄) := pj

[
ρ

∫ 1

v̄

PrkW (v)1[pj ≤ v]dv︸ ︷︷ ︸
searcher demand

+0.5(1− ρ)

∫ 1

0

PrkW (v)1[pj ≤ v]dv︸ ︷︷ ︸
captive consumer demand

]

(B.3.10)

I define the optimal prices of the firm with better data for a given v̄ as pLB,∗(v̄) :=

argmaxpj∈[0,1] Π
LB(pj; v̄) and pHB,∗(v̄) := argmaxpj∈[0,1]Π

HB(pj; v̄). Analogously, I define

the optimal prices of the firm with worse data as pLW,∗(v̄) := argmaxpj∈[0,1]Π
LW (pj; v̄)

and pHW,∗(v̄) := argmaxpj∈[0,1]Π
HW (pj; v̄). In equilibrium, the search behavior of searchers

will, as before, be determined by the expected prices they can anticipate at the two firms.

2In fact, this cutoff becomes v̄LW = 0.5 + 0.5ρ when PrLW (v) = PrHW (v), i.e. when the firm with
worse data receives no informative signal, as in the baseline model.
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For firm j ∈ {W,B} and a fixed v̄, these expected prices (conditional on v) are given by:

EP j(v; v̄) = PrLj(v)pLj,∗(v̄) + PrHj(v)pHj,∗(v̄) (B.3.11)

For which searchers the expected price is lower at the firm with better data (given the

equilibrium level of v̄) is tracked by the following object:

v̂X(v̄) = sup
{
v ∈ [0, 1] : EPB(v; v̄)− EPW (v; v̄) < 0

}
(B.3.12)

Now, I define an assumption that ensures the existence of a viable candidate for a simple

equilibrium. Afterwards, I establish when this candidate constitutes an equilibrium.

Assumption 17 Define v̄D = max{v̄LW , pHB,M}. Suppose that EPB(v̄D; v̄D) < EPW (v̄D; v̄D).

Remark 4 Assumption 17 is satisfied for any linear signal distribution.

Proposition 24 (Dispersed data: equilibrium existence)

Consider the dispersed data framework. Under assumption 17, the following equation has

a solution v̄∗ ∈ [v̄LW , 1]:

v̄∗ = v̂X(v̄∗) (B.3.13)

The combination (pLB(v̄∗), pHB(v̄∗), pLW (v̄∗), pHW (v̄∗), v̄∗) is an equilibrium if, given (pLB(v̄∗),

pHB(v̄∗), pLW (v̄∗), pHW (v̄∗)), it is weakly optimal for searchers to visit the firm with better

data if and only if v ≤ v̄∗.

In a hypothetical equilibrium of the above form, all prices of the firms are optimal by

construction. Imposing optimality of the postulated search behavior is required, because

the fact that v̄ = v̂X(v̄) holds does not rule out the possibility that some consumers with

v < v̄ optimally visit the firm with worse data. This is because the search preferences of

searchers have kinks at the equilibrium prices, which means that it may not necessarily

be optimal for them to visit the firm where they receive the lower expected price.

However, numerical analysis shows that it is indeed optimal for searchers to visit the

firm where they receive the lower expected price in equilibrium candidates of the above

form, establishing that these combinations constitute equilibria. I study linear signal

distributions as defined in equation (4), where the precision of the signal the firm with

better data receives is αb and the precision of the signal that its rival receives is αw, with

αw < αb. I consider ρ ∈ {0.05, 0.35, 0.65, 0.95}, αw ∈ [0, 0.49] and αb ∈ [0.5, 0.99] (with

25 grid points each). For different combinations of ρ, αw, and αb, I calculate the solution

to equation (B.3.13). Given the implied prices, I then check whether it is optimal for all

searchers with v < v̄∗ to visit the firm with better data and vice versa for searchers with



137

v > v̄∗. I show that this requirement is met, i.e. that said combination of prices and v̄

constitutes an equilibrium, for any of the parameter combinations listed above.

Every graph corresponds to a fixed level of ρ. Different levels of αb are plotted on the

x-axis and different levels of αw on the y-axis. For a given parameter combination, a green

dot indicates that the price - search combination from equation (B.3.13) constitutes a

perfect Bayesian equilibrium.

Figure B.2: Visualization — existence of a simple equilibrium

Finally, I visualize the comparative statics results of increases in αw for different

parameter combinations in the following figures:

Figure B.3: Equilibrium objects in the dispersed data framework

Summing up, the key prediction from the baseline model also holds true in the dis-

persed data framework when restricting attention to simple equilibria. Any simple equi-

librium retains the property that v̄ is bounded from below. The numerical simulations

indicate that a simple equilibrium always exists and that v̄ → 1 as ρ → 1.
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B.4 Proofs — extensions

Proof of Proposition 21:

Part 1: In an equilibrium in which firms play pure strategies, pnd ∈ (p1, pK) holds.

The monopoly prices satisfy p1,M < p2,M < ... < pK,M . In general, our assumption on the

ordering of the hazard ratios implies that p1 ≤ p2 ≤ ... ≤ pK holds in any equilibrium in

which firms play pure strategies.

There exists no equilibrium in which the firm with data sets a uniform price, i.e.

p1 = p2 = ... = pK . The only possible such equilibrum is p1 = p2 = ... = pK = pnd := p∗.

But then, the tie-breaking rule defined in assumption 2 applies, so all searchers with

v ≥ p∗ randomize between firms. Thus, p∗ ≥ pK,M holds. But because pnd,M < p∗ and

p1,M < p∗, there is either a downward deviation from p∗ to pnd,M for the firm without data

or a deviation from p∗ to p1,M for the firm with data when it observes ṽ1, a contradiction.

Thus, p1 < pK must hold in equilibrium.

Suppose that pnd ≤ p1. There will exist a price above p1 that any consumer will

receive with strictly positive probability. Thus, any consumer with v ≥ pnd will visit

the firm without data, which implies that pnd ≥ pnd,M must hold. This implies that

p1 ≥ pnd > p1,M . The firm with data only sells to its captive consumers at p1, which

means there is a profitable downward deviation for this firm, because monopoly profits

are strictly maximized at p1,M , a contradiction.

Suppose that pK ≤ pnd. Because there will exist a price below pK (we have ruled out

uniform price equilibria), all searchers with a valuation above pK will visit the firm with

data. Thus, pK ≥ pK,M > pnd,M must hold, which implies that there will be a downward

deviation from pnd, since the firm without data only sells to captive consumers at this

price.

This establishes the desired ordering of prices: pnd ∈ (p1, pK) must hold.

Part 2: The strategy of searchers will be a cutoff rule.

In equilibrium, p1 < pnd must hold. All consumers with v ≤ pnd will strictly prefer

to visit the firm with data. For all consumers with v > pnd, the preference for the firm

without data is as follows:

P nd(v) = (v − pnd)−
[ K∑

k=1

Pr(ṽk|v)max{v − pk, 0}
]

=⇒ ∂P nd(v)

∂v
> 0 (B.4.1)

By assumption, the derivative of this object will be above 0, i.e. the preference for the

firm without data will be strictly rising in v. This establishes the existence of a unique



139

cutoff.

Part 3: In equilibrium, v̄ ≥ v̄nd must hold.

This holds by previous logic. Because p1 < pnd and Pr(ṽ1|v) > 0 for any v, pnd < v̄

must hold in equilibrium, since a consumer with valuation v = pnd would find it strictly

optimal to visit the firm with data. The firm without data must find it optimal to set

pnd < v̄, which will only be true if v̄ ≥ v̄nd. This is because, for pj ∈ (p1, v̄), the profits of

the firm without data are given by Πnd(pj; v̄).

Part 4 An equilibrium in which firms play pure strategies exists.

For any possible cutoff search strategy, one can show that p1 ≤ p2 ≤ ... ≤ pK and

p1 ̸= pK will hold. As a result, a consumer’s preference for the firm without data is

strictly rising as v ≥ pnd and we can describe the search behaviour of consumers using a

cutoff that solves:

v̂(p1, ..., pK , pnd) = sup

{
v ∈ [0, 1] :

K∑
k=1

Pr(ṽk|v)max{v − pk, 0} − (v − pnd) > 0

}
(B.4.2)

Similary, we can define:

vF (v̄) = sup

{
v ∈ [0, 1] :

K∑
k=1

Pr(ṽk|v)max{v − pk,∗(v̄), 0} − (v − pnd,∗(v̄)) > 0

}
(B.4.3)

Note that pk,∗(v̄) are the optimal prices set by the firm with data, if searchers visit firms

according to said cutoff rule. The optimal price of the firm without data is given by

pnd,∗(v̄).

We work towards showing the existence of a fixed point of vF (v̄). To begin, note

that the following two boundary conditions will be satisfied: (i) vF (v̄nd) > v̄nd and (ii)

vF (1) ≤ 1.

The first condition holds because, at v̄ = v̄nd, the optimal price of the firm without

data will be equal to v̄nd, which lies above pnd,M . Thus, we have p1,M < pnd,M < v̄nd,

so the lowest signal price of the firm without data would optimally lie below v̄nd. As a

result, a consumer with v = v̄nd would strictly prefer to visit the firm with data, and thus

vF (v̄nd) > v̄nd. The second condition holds by construction.

There may be multiple points of discontinuity in this function, because the optimal
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price functions may jump, namely at the cutoffs v̄k,C , which are defined as follows:

max
pj≤v̄k,C

Πk(pj; v̄
k,C) = 0.5(1− ρ)Πk,M(pk,M) (B.4.4)

As before, we can argue that v̄k,C < pk,M . It cannot be exactly equal, because then the

left derivative at v̄k,C = pk,M would be strictly negative, implying a contradiction. By

analogous arguments, pk,M cannot be below v̄k,C .

For all v̄ ≤ v̄k,C , the optimal price will be equal to the monopoly price (since

maxpj≤v̄ Π
k(pj; v̄) is strictly falling in v̄). For any v̄ ∈ (v̄k,C , 1), the optimal price will

be strictly below pk,M , while it becomes exactly equal to the monopoly price when v̄ = 1.

Since v̄k,C < 1, we know that the optimal price pk,∗(v̄) jumps from pk,M to something

below this. This downward jump in prices raises the incentives of searchers to visit the

firm with data, i.e. will induce an upward jump in v̂F (v̄).

Thus, there will be up to K potential points of discontinuity on the relevant interval

[v̄nd, 1]. At any such point of discontinuity, v̂F (v̄) jumps upwards.

Suppose, for a contradiction, that there exists no fixed point of v̂F (v̄) on [v̄nd, 1]. This

implies that v̄F (v̄) > v̄ for any interval on which said function is continuous (this proof

can be done by induction). Thus, you can find the largest point of discontinuity, which will

still be strictly below 1. At that point, you will have v̄F (v̄) > v̄. The function is continuous

up to 1, where said inequality flips. Thus, a fixed point must exist, a contradiction.

And thus, an equilibrium exists. The prices are optimal by the construction of v̂F (v̄).

The search choices are optimal by definition.

■

Proof of Lemma 9:

For a given valuation v, the random variable ṽ is uniformly distributed with mean v

and support [v− ϵ̄, v+ ϵ̄]. Hence, the conditional density is fṽ|v = 1/2ϵ̄ for ṽ ∈ [v− ϵ̄, v+ ϵ̄]

and 0 otherwise.

Part 1: The price the firm with data will set is weakly rising in ṽ.

I consider the cumulative density function of v, conditional on ṽ. The density of ar-

riving consumers valuations is g(v), which is strictly positive and bounded throughout.

The probability that the consumer’s v is below x, conditional on this consumer generating

ṽr, is:

Pr(v ≤ x|ṽr) =
∫ x

0

fv|ṽ(v|ṽr)dv =

∫ x

0

1[v ∈ [ṽr − ϵ̄, ṽr + ϵ̄]](1/2ϵ̄)g(v)

fṽ(ṽr)
dv (B.4.5)
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Call the corresponding cdf B(x|ṽ). The corresponding density is: b(x|ṽ) = (1/fṽ(ṽ))1[x ∈
[ṽ − ϵ̄, ṽ + ϵ̄]](1/2ϵ̄)g(x). We can define the hazard ratio:

h(x|ṽ) = 1[x ∈ [ṽ − ϵ̄, ṽ + ϵ̄]](1/2ϵ̄)g(x)∫ 1

x
1[v ∈ [ṽ − ϵ̄, ṽ + ϵ̄]](1/2ϵ̄)g(v)dv

(B.4.6)

Consider two signal realizations ṽ1, ṽ2 with ṽ1 < ṽ2. Suppose that there is an overlap

between the supports. If there is no overlap, i.e. ṽ1 + ϵ̄ ≤ ṽ2 − ϵ̄, then p(ṽ1) < p(ṽ2) must

hold, because each price must be in the support of valuations corresponding to a signal.

The interval of valuations where the two signals overlap is [ṽ2 − ϵ̄, ṽ1 + ϵ̄].

Suppose, for a contradiction, that pd(ṽ2) := p2 < pd(ṽ1) := p1. The price p2 must

satisfy p2 ≥ ṽ2 − ϵ̄ - else, there is a profitable upward deviation. Similarly, p1 < ṽ1 + ϵ̄

must hold. Thus, both prices must lie in [ṽ2 − ϵ̄, ṽ1 + ϵ̄]. For any x ∈ [ṽ2 − ϵ̄, ṽ1 + ϵ̄], the

hazard ratios satisfy h(x|ṽ1) > h(x|ṽ2), because ṽ2 > ṽ1. But then, pd(ṽ) must be weakly

rising in the signal ṽ - else, there is a profitable deviation from one of these prices.

Part 2: Consider any v > 0. There exists a ṽ′ > ṽlb(v) := v − ϵ̄ such that pd(ṽ′) < v.

Suppose there exists no such ṽ′ > ṽlb(v). By implication, pd(ṽ′) ≥ v must hold for any

ṽ′ > ṽlb(v). Consider the profits the firm with data would make after any ṽ′ for some

pj ∈ [max{ṽ′ − ϵ̄, 0}, ṽ′ + ϵ̄], which are:

Π(pj; ṽ
′) = pj

1

fṽ(ṽ′)

∫ ṽ′+ϵ̄

pj

(1/2ϵ̄)g(v)dv (B.4.7)

We can take the following limit of the postulated equilibrium profits:

lim
ṽ′→ṽlb(v)

Π(pd(ṽ′); ṽ′) =
(

lim
ṽ′→ṽlb(v)

pd(ṽ′)
) 1

fṽ(ṽ′)

∫ ṽlb(v)+ϵ̄

lim
ṽ′→ṽlb(v)

pd(ṽ′)

(1/2ϵ̄)g(v)dv = 0 (B.4.8)

The latter condition holds because ṽlb(v)+ϵ̄ = v and limṽ′→ṽlb(v) p
d(ṽ′) ≥ v by assumption.

Thus, profits converge to zero in this case as ṽ → ṽlb(v).

Alternatively, the firm with data could set the price 0.5
(
ṽ′ + ϵ̄

)
, at which it would be

guaranteed to make positive profits. For any ṽ, the profits from this approach are:

Π(0.5
(
ṽ′ + ϵ̄

)
; ṽ′) = 0.5

(
ṽ′ + ϵ̄

)[ 1

fṽ(ṽ′)

∫ ṽ′+ϵ̄

max{ṽ′−ϵ̄,0}
(1/2ϵ̄)g(v)1[v > 0.5(ṽ′ + ϵ̄)]dv

]
(B.4.9)

This remains strictly positive even in the limit at ṽ′ → ṽlb(v) because v > 0. Thus, we

would have a profitable deviation for some signal close enough to ṽlb(v), and thus a con-

tradiction.
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Part 3: For any v > 0, the expected utility of visiting the firm with data is strictly

positive.

On the interval ṽ ∈ [ṽlb(v), ṽ′], we will have pd(ṽ) < v (by monotonicity of pd(ṽ)). Thus,

the expected utility of the consumer, namely
∫ v+ϵ̄

v−ϵ̄
max{v− ps(v), 0}(1/2ϵ̄)dv, is positive.

Part 4: The expected utility of visiting the firm with data is Lipschitz continuous.

The utility of visiting the firm with data is U s(v) =
∫ v+ϵ̄

v−ϵ̄
max{v − pd(ṽ), 0}(1/2ϵ̄)dṽ.

There exists K =
(

2
2ϵ̄
+ 1
)
∈ R+ such that |Ud(v1)− Ud(v2)| ≤ K|v1 − v2| for any v1, v2.

Part 5: By the previous results, the search rule of consumers is a cutoff rule.

Consider consumers with v ≤ pnd receive 0 utility at the firm with data, but strictly

positive utility at the firm with data (by previous arguments), so they all prefer the

firm without data. If v > pnd, the expected utility of visiting the firm without data is

Und(v) = v − pnd. It was shown that U s(v) is Lipschitz continuous, hence differentiable

almost everywhere. The derivative of U s(v) is strictly below 1, since the price distribution

at the firm with data changes in v. Thus, the preference for the firm with data, namely

U s(v)− Und(v), is strictly falling in v. This establishes the result.

■

Proof of Proposition 22:

Part 1: If searchers search according to a cutoff rule, the optimal price function at

the firm with data is:

pd(ṽ) =

0.5(ṽ + ϵ̄) ṽ ∈ [−ϵ̄, 3ϵ̄]

(ṽ − ϵ̄) ṽ ∈ [3ϵ̄, 1 + ϵ̄]
(B.4.10)

Part 1a: Monopoly pricing

The maximization problem of a monopolist with data upon observing ṽ1 ∈ [ϵ̄, 1 − ϵ̄]

is to maximize the following through choice of pj ∈ [ṽ1 − ϵ̄, ṽ1 + ϵ̄]:

Π(pj; ṽ
1) = pj

∫ ṽ1+ϵ̄

pj

(1/2ϵ̄)dv = pj
[
ṽ1 + ϵ̄− pj

]
(B.4.11)

The first-order condition of this expression is equal to 0 at p(ṽ1) = 0.5(ṽ1 + ϵ̄). Whether
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this constitutes an interior price depends on ϵ̄. The lower bound is ṽ1 − ϵ̄. At ṽ1 = 3ϵ̄, we

have that p(3ϵ̄) = 2ϵ̄, which is exactly equal to the lower bound. Thus, we can compute

the following pricing schedule on [ϵ̄, 1− ϵ̄] because 3ϵ̄ < 1− ϵ̄ by the fact that ϵ̄ < 0.25:

p∗(ṽ1) =

0.5(ṽ1 + ϵ̄) ṽ1 ∈ [ϵ̄, 3ϵ̄]

(ṽ1 − ϵ̄) ṽ1 ∈ [3ϵ̄, 1− ϵ̄]
(B.4.12)

Analogous arguments establish the optimal prices for ṽ1 < ϵ̄ and ṽ1 > 1 − ϵ̄. Summing

up, the optimal prices of a monopolist are given by the schedule listed at the beginning.

Part 1b: In the competitive equilibrium, the optimal price function remains unchanged.

In equilibrium, searchers will visit the firm with data if v < v̄ and vice versa. Because

they can all obtain strictly positive utility at the firm with data, pnd < v̄ must hold.

Thus, searchers will push up pnd, and thus v̄ > pnd ≥ 0.5 must hold in an equilibrium.

Consider a signal ṽ1 < 3ϵ̄, where ṽ1 + ϵ̄ < 4ϵ̄ < 0.5 < v̄. Thus, all searchers with

v ∈ [ṽ1− ϵ̄, ṽ1+ ϵ̄] arrive at the firm with data. The optimal price thus remains 0.5(ṽ1+ ϵ̄).

Thus, consider a signal ṽ1 > 3ϵ̄, for which the upper bound of valuations may lie

above v̄. If ṽ1 + ϵ̄ ≤ v̄, as before, then nothing changes - the optimal price is ṽ1 − ϵ̄.

Suppose instead that v̄ < ṽ1 + ϵ̄. Then, there are two further possibilities:

(i) v̄ ≤ ṽ1− ϵ̄: Then, no searchers would be arriving at this firm and generate ṽ1. This

means that the optimal price is ṽ1 − ϵ̄ (the sale is only made to captive consumers).

(ii) v̄ ∈ (ṽ1 − ϵ̄, ṽ1 + ϵ̄): Some arriving searchers will generate ṽ1.

Suppose we have a price at which the sale is only made to captive consumers, which

implies that pj ≥ v̄ > ṽ1 − ϵ̄. But because ṽ1 > 3ϵ̄, there is a downward deviation (since

this raises the profits from captive consumers). Thus, consider a price pj < v̄, at which:

Π(pj; ṽ
1) = pj

[
ρ

∫ v̄

pj

(1/2ϵ̄)dv + 0.5(1− ρ)

∫ min{ṽ1+ϵ̄,1}

pj

(1/2ϵ̄)dv

]
(B.4.13)

Thus, the derivative at any pj will be weakly below the monopoly case, which means that

the optimal price must also be directly at the lower bound here.

Part 2: In equilibrium, v̄ ≥ 0.5(1 + ρ) must hold.

For v̄ < 0.5(1 + ρ), we have pnd,∗(v̄) ≥ v̄. However, this is not consistent with opti-

mal search behaviour. Any searcher with v > 0 receives strictly positive utility at the

firm with data. Thus, pnd < v̄ must hold in an equilibrium. But such a price would never

be optimally set if v̄ < 0.5(1 + ρ).
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Part 3: Establishing equilibrium existence.

For any v̄ ≥ 0.5(1 + ρ), the firm with data will price according p∗(ṽ). The strategy

s(v) is a cutoff rule. The price pnd depends on v̄. I work with the following object:

v̂C(v̄) = sup

{
v ∈ [0, 1] :

∫ v+ϵ̄

v−ϵ̄

max{v − pd(ṽ), 0}(1/2ϵ̄)dṽ −max{v − pnd(v̄), 0} ≥ 0

}
(B.4.14)

Since the function in this supremum is strictly falling in v, the supremum separates the

groups of searchers who visit the firm with data from those who visit the firm without

data.

As before, we work with boundary conditions and the intermediate value theorem. At

v̄ = 0.5(1 + ρ), it holds that pnd = 0.5(1 + ρ), which means that v̂C(v̄) > v̄ will hold at

v̄ = 0.5(1 + ρ). At v̄ = 1, v̂C(1) ≤ 1 holds by construction. Finally, the utility of visiting

the firm with data will not be affected by changes in v̄, but only pnd responds to changes

in v̄. This establishes continuity of v̂C(v̄), which confirms the existence of an equilibrium.

■

Proof of Lemma 10:

Part 1: Density of valuations at the firms

Note that the type θ ∼ U [0, 1] of any consumer is a random variable with density

f(θ) = 1. Moreover, the event "ds" denotes that a consumer is a searcher, while the

event "lc" denotes the probability that a consumer is captive.

Consider any interval I. We can write the probability that θnd ∈ I as follows:

Pr(θnd ∈ I) = Pr(θ ∈ I|Ind) = Pr(θ ∈ I ∧ Ind)

Pr(Ind)
=

1

Pr(Ind)

∫ 1

0

Pr(θ ∈ I ∧ Ind|θ)dθ

(B.4.15)

Note that:

Pr(θ ∈ I∧Ind|θ∧ds)Pr(ds|θ) = ρ1
[
θ ∈ I

][
1[θ > θ̄](1−gH)+1[θ = θ̄](1−ḡ)+1[θ < θ̄](1−gL)

]
Similarly, we have that Pr(θ ∈ I ∧ Ind|θ ∧ lc)Pr(l|θ) = 0.5(1− ρ)1

[
θ ∈ I

]
. Thus:

Pr(θnd ∈ I) =

∫
I

(
ρ
[
1[θ > θ̄](1− gH) + 1[θ = θ̄](1− ḡ) + 1[θ < θ̄](1− gL)

]
+ 0.5(1− ρ)

Pr(Ind)︸ ︷︷ ︸
:=fnd(θ)

)
dθ
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Now consider the firm with data. The valuations of consumers that visit the firm with data

and generate the signal ṽk is a random variable - call this θk. This is also an absolutely

continuous random variable - the following holds for any interval I:

Pr(θk ∈ I) = Pr(θ ∈ I|Ik) = Pr(θ ∈ I ∧ Ik)

Pr(Ik)
=

1

Pr(Ik)

∫ 1

0

Pr(θ ∈ I ∧ Ik|θ)dθ

(B.4.16)

Note that:

Pr(θ ∈ I ∧ Ik|θ ∧ ds)Pr(ds|θ) = ρ1
[
θ ∈ I

]
Prk(θ)

[
1[θ > θ̄]gH + 1[θ = θ̄]ḡ + 1[θ < θ̄]gL

]
(B.4.17)

Note further that Pr(θ ∈ I ∧ Ik|θ ∧ lc)Pr(lc|θ) = 1[θ ∈ I]Prk(θ)0.5(1 − ρ). Thus,

Pr(θk ∈ I) is:∫
I

1

Pr(Ik)

(
ρPrk(θ)

[
1[θ > θ̄]gH + 1[θ = θ̄]ḡ + 1[θ < θ̄]gL

]
+ Prk(θ)0.5(1− ρ)

)
︸ ︷︷ ︸

:=fk(θ)

dθ

(B.4.18)

All densities are bounded from above and measurable, i.e. integrable, and thus well-

defined.

Part 2: Calculating the virtual valuation functions

I omit the conditioning on (θ̄, g) in the following arguments for ease of exposition.

Consider first the firm without data. For any θ < θ̄, we can note that:

1−F nd(θ) =
1

Pr(Ind)

∫ θ̄

θ

(
ρ(1−gL)+0.5(1−ρ)

)
dx+

1

Pr(Ind)

∫ 1

θ̄

(
ρ(1−gH)+0.5(1−ρ)

)
dx

=⇒ Jnd(θ) = θ −
∫ θ̄

θ

(
ρ(1− gL) + 0.5(1− ρ)

)
dx+

∫ 1

θ̄

(
ρ(1− gH) + 0.5(1− ρ)

)
dx

ρ(1− gL) + 0.5(1− ρ)

(B.4.19)

For θ > θ̄, the virtual valuation at the firm without data can be calculated as follows:

Jnd(θ) = θ −
∫ 1

θ

(
ρ(1− gH) + 0.5(1− ρ)

)
dx

ρ(1− gH) + 0.5(1− ρ)
(B.4.20)

One can show that Jnd(θ) is always piecewise strictly increasing.

Now let’s calculate the virtual valuations at the firm with data. The virtual valuation
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takes the following form when θ < θ̄:

Jk(θ) = θ −
∫ θ̄

θ

(
ρgL + 0.5(1− ρ)

)
Prk(x)dx+

∫ 1

θ̄

(
ρgH + 0.5(1− ρ)

)
Prk(x)dx(

ρgL + 0.5(1− ρ)
)
Prk(θ)

(B.4.21)

The virtual valuation takes the following form when θ > θ̄:

Jk(θ) = θ − 1− F k(θ)

fk(θ)
= θ −

∫ 1

θ

(
ρgH + 0.5(1− ρ)

)
Prk(x)dx(

ρgH + 0.5(1− ρ)
)
Prk(θ)

(B.4.22)

One can show that JH(θ) is always piecewise strictly increasing.

Part 3: Setting up the expected revenues of the firms

Any mechanism is incentive compatible if and only of it satisfies both the integrabil-

ity and the monotonicity condition. This follows because one can apply the envelope

theorem from Milgrom & Segal (2002). Using standard arguments, the expected revenue

becomes:

−E[t(θ)] = −U(0) +

∫ 1

0

q(θ)

(
θ − 1− F nd(θ)

fnd(θ)

)
fnd(θ)dθ (B.4.23)

Similar arguments prove that the firm with data, when observing a given signal, would

also face an expected revenue function that is equal to:

−E[tk(θ)] = −Uk(0) +

∫ 1

0

qk(θ)

(
θ − 1− F k(θ)

fk(θ)

)
fk(θ)dθ (B.4.24)

Part 4: Ordering of cutoffs when consumers visit randomly:

The virtual valuations at the firm with data and without data are:

Jk(θ) = θ −
∫ 1

θ

(
Prk(x)/Prk(θ)

)
dx : Jnd(θ) = θ −

∫ 1

θ

(1)dx (B.4.25)

Because PrH(θ) is strictly increasing, PrL(x)/PrL(θ) < 1 < PrH(x)/PrH(θ) holds ∀x >

θ: This implies that, for any θ ∈ (0, 1), the ordering JH(θ) < Jnd(θ) < JL(θ) holds.

To see this, note that the functions Jnd(θ) and JH(θ) are monotonically increasing

and continuous. Because JH(1) > 0, we know that there must exist a θ̂H < 1 such that

JH(θ̂H) = 0 and that the virtual valuation is strictly positive for all θ ≥ θ̂H . At θ > θ̂H ,

both other virtual valuations will be strictly positive, which implies that the associated

cutoffs must both lie strictly below θ̂H . That θ̂L < θ̂nd must hold follows by analogous

arguments.



147

Part 5: In any simple equilibrium, there must exist a θ̄ such that all consumers with

θ < θ̄ visit the firm with data and vice versa.

Part 5a: There exists no simple equilibrium in which all searchers randomize between

firms.

In that setting, θ̂L < θ̂nd. The firm without data will offer quality 1 to all consumers

with θ > θ̂nd by monotonicity of Jnd(θ). Then, the firm with data must offer 0 quality to

all consumers with θ ≤ θ̂nd - else, these consumers would not randomize. But then, we

obtain a contradiction, as the utility of consumers with θ ≥ θ̂nd at the firm without data

is θ − θ̂nd, but strictly below (θ − θ̂nd) at the firm with data since θ̂nd < θ̂H . Thus, they

would not randomize, a contradiction.

Part 5b: Initial steps:

Suppose we are in a simple equilibrium where there exists no θ̄ such that all consumers

with type above it visit the firm without data and vice versa. Thus, there must exist

a θ̄ such that searchers with θ < θ̄ visit the firm without data and all consumers with

θ > θ̄ visit the firm with data, i.e. gL = 0, gH = 1. In that case, we know that the virtual

valuations of the firm with data jump up at θ̄, because:

lim
θ↑θ̄

Jk(θ) < lim
θ↓θ̄

Jk(θ) ⇐⇒ 0.5(1− ρ) < ρ+ 0.5(1− ρ) (B.4.26)

Part 5c: θ̂L < θ̂nd must hold in such a simple equilibrium with gL = 0, gH = 1.

Assume, for a contradiction, that θ̂L ≥ θ̂nd in the supposed equilibrium with gL = 0,

gH = 1.

First, note that θ̂L ≤ θ̂H holds once more. Suppose, for a contradiction, that θ̂H < θ̂L

holds in such an equilbrium. When θ̂H ̸= θ̄, we know that continuity of the virtual

valuation function implies that θ̂L < θ̂H must hold, a contradiction.

Thus, suppose that θ̂H = θ̄. Suppose that θ̂H < θ̂L holds. This is impossible, as any

θ > θ̂H = θ̄ must satisfy JH(θ) ≥ 0 by monotonicity of JH(θ) - else, we would have a

contradiction. But this implies that JL(θ) > 0 holds for any θ > θ̄, which implies that

θ̂L ≤ θ̄ = θ̂H must hold in this case, a contradiction.

Thus, we know that θ̂L ≤ θ̂H must hold in any equilibrium of this type. Moreover,

recall that we have assumed (for a contradiction) that θ̂nd ≤ θ̂L holds.

Note that θ̂nd ̸= θ̄ must hold, since the virtual valuation at the firm with data jumps

down in this subcase. There are thus two subcases: (i) θ̂nd > θ̄ and (ii) θ̂nd < θ̄.
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(i) Subcase 1: θ̄ < θ̂nd

Suppose that θ̂nd < θ̂L and that θ̄ < θ̂nd holds. Because θ̄ < θ̂nd , the firm without

data assigns quality qnd(θ) = 1 to all θ > θ̂nd and 0 to all other types - because the

virtual valuation at the firm without data is always monotonic. Then, all consumers with

θ ∈ (θ̂nd, θ̂L) would get strictly positive utility only at the firm without data and would

prefer this firm but visit the firm with data in equilibrium, a contradiction.

Suppose that θ̂nd = θ̂L and that θ̄ < θ̂nd holds. Suppose further that θ̂L = θ̂H . But

then, we have θ̄ < θ̂nd = θ̂L = θ̂H , which cannot be true. Hence, θ̂L < θ̂H must hold true.

Thus, we have the ordering θ̄ < θ̂nd = θ̂L < θ̂H . Consumers with θ ∈ (θ̂nd, θ̂H) get the

utility θ− θ̂nd at the firm without data and at most the utility PrL(θ)(θ− θ̂L) at the firm

with data. Because θ̂nd = θ̂L, they all strictly prefer the firm without data, but visit the

firm with data in equilibrium (since θ̂nd > θ̄), a contradiction.

(ii) Subcase 2: θ̂nd < θ̄ and there exist no θ > θ̄ for which Jnd(θ) < 0.

For all types θ > θ̄, the virtual value Jnd(θ) must then be strictly positive (the converse

creates a contradiction by monotonicity of Jnd(θ)). In that case, the optimal mechanism

of the firm without data sets qnd(θ) = 1 for all θ > θ̂nd - once again, because the virtual

valuation function at the firm without data is always monotonic.

Suppose θ̂nd < θ̂L. Then, consumers with θ > θ̄ get the utility θ − θ̂nd > 0 at the

firm without data. The utility they get at the firm with data is weakly smaller than

θ− θ̂L < θ− θ̂nd. Thus, all consumers with θ > θ̄ strictly prefer the firm without data, a

contradiction.

Suppose θ̂nd = θ̂L. Then, we must have θ̂nd = θ̂L < θ̄ and hence θ̂L < θ̂H must hold.

Once again, consumers with θ > θ̄ get the utility θ − θ̂nd > 0 at the firm without data.

The utility they get at the firm with data is strictly smaller than θ− θ̂L, because θ̂L < θ̂H .

Thus, all consumers with θ > θ̄ prefer the firm without data, a contradiction.

(iii) Subcase 3: θ̂nd < θ̄ and there exist some θ > θ̄ for which Jnd(θ) < 0.

In order for such θ > θ̄ for which Jnd(θ) < 0 to exist, the right limit of the virtual valuation

at the firm without data must be weakly negative - by monotonicity of Jnd(θ). For any

θ̄ > 0.5, this right limit will be strictly positive, because it is limθ↓θ̄ J
nd(θ) = 2θ̄ − 1 > 0.

Thus, θ̄ ≤ 0.5 must hold in such an equilibrium. We are still assuming, for a con-

tradiction, that θ̂L ≥ θ̂nd, and that gH = 1 (high valuation searchers visit firm with

data).

Assume, within this subcase, that θ̄ < θ̂L, which also implies that θ̂L < θ̂H . Then,
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the provided quality schedule of the firm without data must satisfy qnd(θ) = 0 for any

θ ∈ [0, θ̂L). If this (expected) quality is strictly positive for any such type, then the cutoff

θ̄ would not be below θ̂L - this follows from the search behaviour of consumers, since a

consumer with θ = θ̂L would attain strictly positive utility only at the firm without data.

Thus, the lowest type that gets quality in equilibrium is θ̂L. By our equilibrium re-

finement, θ̄ < θ̂L thus cannot hold - all consumers with θ < θ̂L visit the same firm, a

contradiction.

Suppose instead that θ̄ = θ̂L, which implies the ordering θ̂nd < θ̄ = θ̂L. Once again,

any type θ ∈ [0, θ̂L) = [0, θ̄) must receive qnd(θ) = 0 - else, the cutoff must lie strictly

above θ̂L = θ̄ by monotonicity of qnd(θ) in an equilibrium and the optimal search behavior

of consumers.

Thus, all types θ ≥ θ̄ = θ̂L for which Jnd(θ) < 0 must also get zero quality - if they

get positive quality, there would be a profitable deviation by monotonicity of Jnd(θ).

Thus, θnd > θ̄ would hold. Then, either θd ≤ θ̄ or θd > θ̄ must hold. If θd ≤ θ̄, we have

θd ≤ θ̄ < θnd, and thus all consumers with θ < θ̄ visit the firm with data by our first

tie-breaking rule, a contradiction. If θd > θ̄, our tie-breaking rules imply a contradiction

as well.

Thus, we must have θ̂L < θ̄ in this sort of problematic equilibrium. It was previously

also established that the equilibrium under consideration must satisfy θ̄ ≤ 0.5. For any

such θ̄, our assumption implies that θ̂L ≥ θ̄, which means that no such equilibrium can

exist.

Thus, we are done. We have shown that θ̂L < θ̂nd must hold.

Part 5d: There exists no simple equilibrium in which gL = 0 and gH = 1 (all types

above θ̄ go to the firm with data).

We have established that θ̂L < θ̂nd holds in a simple equilibrium in which there ex-

ists no θ̄ such that consumers with type above it go to the firm without data and vice

versa. In this sort of equilibrium, it must also hold that θ̂nd ̸= θ̄. If all consumers visit

the firm with data in equilibrium, we can write θ̄ = 1 and all consumers with type below

this visit the firm with data, a contradiction.

Suppose that θ̄ < θ̂nd, which means that θnd = θ̂nd. Recall that all consumers with

θ < θ̄ supposedly visit the firm without data. Then, θd must be weakly above θ̂nd -

else, all consumers with θ < θ̄ must visit the firm with data by our refinement. But

this implies that all consumers with θ < θ̂nd either all visit the firm without data (if

θnd < θd) or θd = θnd - in either case, they all visit the same firm by our tie-breaking

rule, a contradiction.

Finally, suppose that θ̂nd < θ̄ and hence θ̂L < θ̄. No type θ ∈ (0, θ̂nd) can receive

positive quality at the firm with data. Else, all types θ < θ̂nd would visit the firm with
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data by our refinement but visit the firm without data in the supposed equilibrium, a

contradiction. Thus, we must have θ̂nd ≤ θd.

Moreover, the fact that θ̂L < θ̄ implies that θ̄ ≥ 0.5 must hold. Previous results

imply that the virtual valuation of the firm without data thus stays weakly positive for

all θ > θ̂nd. Thus, the firm without data will offer quality 1 to all θ > θ̂nd. Because

θ̂nd = θnd ≤ θdall consumers weakly prefer the firm without data.

Suppose (within the subcase θ̂nd < θ̄) that θ̂nd < θd. Then, all consumers visit the firm

without data and we could express the search behavior by θ̄ = 0, where all consumers

with type above θ̄ visit the firm without data, a contradiction.

Thus, suppose (within the subcase θ̂nd < θ̄) that θ̂nd = θd. Unless both firms offer

exactly the same menu, all consumers with θ > θ̂nd will strictly prefer the firm without

data. If the preference is strict, all consumers will visit the firm without data, since θ̄ > 0

holds in the supposed equilibrium and all consumers with θ > θ̂nd strictly prefer the firm

without data. But then, we could have expressed the strategy with a cutoff θ̄ = 0 s.t. all

consumers with θ < θ̄ visit the firm with data and vice versa, a contradiction.

If the menus are the same, all searchers randomize, which cannot be a simple equilib-

rium.

■

Proof of Proposition 23:

Part 1: In a simple equilibrium, θ̂L < θ̂nd holds

Suppose we are in a simple equilibrium, in which searchers with θ < θ̄ visit the firm

with data. Suppose, for the contradiction we seek, that θ̂nd ≤ θ̂L. In the equilibrium

we study, the virtual valuation functions at the firm with data jump down at θ̄, i.e.

limθ↑θ̄ J
k(θ) > limθ↓θ̄ J

k(θ).

Note first that θ̂L < θ̂H must hold. This is because neither cutoff θ̂k can be exactly

at θ̄ - then, limθ↓θ̄ J
k(θ) ≥ 0 would have to hold and hence the virtual corresponding

valuation would also be strictly positive for values just below θ̄. Thus, θ̂L and θ̂H must be

at points where the virtual valuation is continuous, i.e. they must set the corresponding

virtual valuations to zero. A θ̂H , we would thus have JH(θ̂H) = 0 and hence JL(θ̂H) > 0.

Because JL(θ̂H) > 0 would hold there, thus would also hold for values just below θ̂H .

Hence, we know that θ̂L < θ̂H must hold in an equilibrium where consumers seperate in

this way.

The virtual valuation Jnd(θ) jumps up at θ̄, i.e. the utility any consumer attains at

the firm with data is max{θ − θ̂nd, 0}. Thus, all searchers with θ > θ̂nd prefer the firm

without data, since θ̂nd ≤ θ̂L < θ̂H . Thus, θ̄ ≤ θ̂nd must hold, Because θ̂nd ≤ θ̂L by

assumption, we obtain a contradiction, since Jnd(θ; θ̄) < JL(θ; θ̄) for all θ ≥ θ̄ and thus,
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θ̂L < θ̂nd would hold.

Part 2: There exists no simple equilibrium in which θ̄ ∈ [0.5, 0.5(1 + ρ)].

Consider first θ̄ ∈ [0.5, 0.5(1 + ρ)]. We know that θ̂nd ≥ θ̄ holds for these values of θ̄,

since limθ↑θ̄ J
nd(θ; θ̄) < 0 for θ̄ < 0.5(1 + ρ).

The virtual valuation JL(θ) will be strictly positive for any θ > θ̂L. If θ̂L > θ̄, this is

true by monotonicity. The case θ̂L = θ̄ cannot be true, because, in a simple equilibrium,

the virtual valuations at the firm with data jump down.

Thus, consider the third case where θ̂L < θ̄. While the virtual valuation will be strictly

positive for any θ ∈ (θ̂L, θ̄), it may drop into the negative at θ̄. To discuss this, consider

the right limit of JL(θ) at θ̄. Recall that JL(θ) = θ −
∫ 1

θ

(
PrL(x)/PrL(θ)

)
dx for any

θ > θ̄: We know that PrL(x)/PrL(θ) < 1 holds for all x > θ at any θ. Thus, we have:

lim
θ↓θ̄

JL(θ) = θ̄ −
∫ 1

θ̄

(
PrL(x)/PrL(θ̄)

)
dx > θ̄ −

∫ 1

θ̄

(
1
)
dx = θ̄ − (1− θ̄) = 2θ̄ − 1

(B.4.27)

Because θ̄ ≥ 0.5, it follows that limθ↓θ̄ J
L(θ) > 0. Thus, the low signal optimal mechanism

is uniquely pinned down - all types above θ̂L will be assigned the quality level qL(θ) = 1.

Recall that θ̂L < θ̂nd must hold in such an equilibrium - but this contradicts the

statement θ̂nd ≥ θ̄. All consumers with type below θ̂nd surely prefer the firm with data.

Moreover, consumers with θ = θ̂nd attain utility 0 at the firm with data, but strictly

positive utility at the firm without data - so they visit the firm with data, and so will

consumers with a type just above θ̂nd. In equilibrium, they visit the firm without data, a

contradiction.

Part 3: There exists no simple equilibrium in which θ̄ ∈ [0, 0.5).

First, note that θ̂nd = 0.5 holds for any such θ̄ < 0.5. The virtual valuation at the

firm without data jumps up at θ̄. Thus, we consider the right limit of Jnd(θ) at θ̄. Recall

that this virtual valuation equals Jnd(θ) = θ −
∫ 1

θ
(1)dx for any θ > θ̄. Thus, we have

limθ↓θ̄ J
nd(θ) = θ̄ − (1− θ̄) = 2θ̄ − 1 < 0. Moreover, we have that:

lim
θ↓θ̄

Jnd(θ) = θ̄ −
∫ 1

θ̄

(1)dx > θ̄ −
∫ 1

θ̄

(
ρ+ 0.5(1− ρ)

0.5(1− ρ)

)
dx = lim

θ↑θ̄
Jnd(θ) (B.4.28)

This proves that θ̂nd > θ̄ holds for such θ̄ < 0.5. Moreover, θ̂nd = 0.5 will hold exactly.

For any θ > θ̄, the virtual valuation JL(θ) is strictly greater than Jnd(θ). Thus, we

have some θ̃L > θ̄ with: (i) θ̃L < θ̂nd and (ii) JL(θ) > 0 for any θ > θ̃L.
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Suppose we have a simple equilibrium in which θ̄ < 0.5. In equilibrium, the firm

with data must optimally assign strictly positive quality to a strictly positive measure of

consumers with θ ∈ (θ̃L, θ̂nd).

Suppose, for a contradiction, that all consumers with θ ∈ (θ̃L, θ̂nd) receive the quality

level 0 according to the mechanism qL(θ). By monotonicity, all consumers with θ ≤ θ̃L

must also receive the quality level 0. But this is a contradiction - all consumers with θ > θ̃L

have strictly positive virtual valuations. Thus, the firm is guaranteed to make more higher

revenue by setting qL(θ) = 1 to all θ ∈ (θ̃L, 1). This also satisfies monotonicity, so it is

feasible, and we cannot have an equilibrium.

Thus, there must exist a type θ ∈ (θ̃L, θ̂nd) that receives a strictly positive quality

level qL(θ) at the firm with data. By monotonicity, all types above this must also re-

ceive a strictly positive qL(θ). Thus, the utility of a consumer with θ = θ̂nd > θ̄ at the

firm with data will be strictly positive. The utility this consumer would receive at the

firm without data would be zero - this is a contradiction, as consumers with θ just above

θ̄ would similarly prefer the firm with data, but visit the firm without data in equilibrium.

Part 4: Under said assumptions, there exists a simple equilibrium with θ̄ ≥ [0.5(1+ρ), 1].

Properties of the virtual valuations under the assumptions:

The virtual valuation of the firm without data always satisfies monotonicity. Moreover,

this virtual valuation Jnd(θ) jumps up around θ̄ in the equilibrium we study.

When θ < θ̄, we have:
∂Jk

∂θ
= 2+(∫ θ̄

θ

(
ρgL + 0.5(1− ρ)

)
Prk(x)dx+

∫ 1

θ̄

(
ρgH + 0.5(1− ρ)

)
Prk(x)dx(

ρgL + 0.5(1− ρ)
)
Prk(θ)

)[(
Prk(θ)

)−1∂Prk(θ)

∂θ

]
(B.4.29)

For θ > θ̄, this derivative is:

∂Jk

∂θ
= 2−

∫ 1

θ

(
Prk(x)/Prk(θ)

)
dx

[
−
(
Prk(θ)

)−1∂Prk(θ)

∂θ

]
(B.4.30)

Thus, the high signal virtual valuation is generally piecewise increasing, while the low

signal virtual valuation is rising under our assumptions for θ̄ ∈ [0.5(1 + ρ), 1] and (gL =

1, gH = 0).

It was further assumed that both virtual valuations do not jump into the negative

region at θ̄ for θ̄ ≥ 0.5(1+ρ). Formally, it was stated that limθ↓θ̄ J
k(θ; θ̄) > 0. Recall that
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limθ↑θ̄ J
k(θ; θ̄) > limθ↓θ̄ J

k(θ; θ̄) holds, which implies that θ̂k < θ̄ must hold.

Summing it all up, these assumptions imply that the virtual valuation functions will

be strictly positive for all types above the respective cutoffs θ̂nd and θ̂k, which implies

that the optimal mechanism just assigns quality 1 to all consumers with a positive virtual

valuation.

General notions:

I describe the consumer’s search behavior by:

θ∗(θ̄) = sup
{
θ ∈ [0, 1] : PrL(θ)θ̂L(θ̄) + PrH(θ)θ̂H(θ̄) < θ̂nd(θ̄)

}
(B.4.31)

We have defined θ̂k(θ̄) = inf
{
θ : Jk(θ, θ̄) > 0

}
and θ̂nd(θ̄) = inf

{
θ : Jnd(θ, θ̄) > 0

}
.

Suppose we have found an θ̄ ≥ 0.5(1 + ρ).

To establish that this is an equilibrium, we make use of some ancillary results. By

assumption, we have that θ̂H < θ̄ holds for any θ̄ ≥ 0.5(1+ρ). Previous arguments imply

that θ̂nd ≤ θ̄ for any such θ̄ ≥ 0.5(1 + ρ). θ̂nd has to solve the following:

Jnd(θ̂, θ̄) = θ̂ −
∫ θ̄

θ̂
0.5(1− ρ)dx+

∫ 1

θ̄
0.5(1 + ρ)dx

0.5(1− ρ)
= 0 (B.4.32)

Thus, θ̂nd is falling in θ̄. Now consider θ̂k, which has to solve the following since θ̂k < θ̄:

θ̂k −
∫ θ̄

θ̂k

(
Prk(x)/Prk(θ̂k)

)
dx−

∫ 1

θ̄

(
(1− ρ)/(1 + ρ))

(
Prk(x)/Prk(θ̂k)

)
dx = 0 (B.4.33)

Thus, we have ∂θ̂k

∂θ̄
= − ∂J/∂θ̄

∂J/∂θ̂k
> 0. Summing up, our assumptions imply that ∂θ̂k

∂θ̄
> 0 and

that ∂θ̂nd

∂θ̄
< 0. Because θ̂L(1) < θ̂nd(1), the following holds for any θ̄ ∈ [0.5(1 + ρ), 1]:

θ̂L(θ̄) ≤ θ̂L(1) < θ̂nd(1) ≤ θ̂nd(θ̄) (B.4.34)

Thus, we must have θ̂L < θ̂nd in the equilibrium candidate we have found.

Optimal menus:

Consider first the firm without data, for which Jnd(θ) is monotonic and jumps upward

at θ̄. The virtual valuation Jnd(θ) is thus strictly positive if and only if θ > θ̂nd. Thus,

their optimal menu is to offer qnd(θ) = 1 to all θ > θ̂nd and quality 0 to all other types.

Now consider the firm with data. The virtual valuations are piecewise monotonic by

assumption and don’t jump into the negative region at θ̄, again by assumption. Thus,

the virtual valuation Jk(θ) will be strictly positive iff θ > θ̂k, which means their optimal
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mechanism will also assign qk(θ) = 1 to all θ > θ̂k and quality 0 to all other types.

Search:

Because θ̂L < θ̂nd, all searchers with θ < θ̂nd visit the firm with data. The preference for

the firm with data of consumers with θ ∈ [θ̂nd, θ̂H ] is P d(θ) = PrL(θ)(θ− θ̂L)− (θ− θ̂nd).

This is falling in θ. Because θ̂H lies strictly below θ∗(θ̄) = θ̄ by assumption and the

fact that the LHS in this sup-expression is strictly rising in θ, we have:

PrL(θ̂H)θ̂L + PrH(θ̂H)θ̂H < θ̂nd ⇐⇒ PrL(θ)
(
θ̂H − θ̂L

)
−
(
θ̂H − θ̂nd

)
> 0 (B.4.35)

Thus, the consumer with θ = θ̂H prefers the firm with data, and so will all θ ∈ [θ̂nd, θ̂H ].

Now consider θ ∈ [θ̂H , θ̄). We know that qH(θ) = 1 for any θ ∈ (θ̂H , θ̄) and qL(θ) = 1

for any θ ∈ (θ̂L, θ̄). Thus, the utility that this consumer attains at the firm with data is

Ud(θ) = PrL(θ)(θ − θ̂L) + PrH(θ)(θ − θ̂H). Similarly, qnd(θ) = 1 for any θ ∈ (θ̂nd, θ̄), i.e.

their utility at the firm without data is θ− θ̂nd. Thus, any such searchers prefer the firm

with data because θ̂nd > PrL(θ)θ̂L+PrH(θ)θ̂H . Consumers with θ > θ̄ prefer to visit the

firm without data by analogous arguments.

Thus: When θ̄ = θ∗(θ̂) and θ̄ > 0.5(1 + ρ), we have an equilibrium.

Existence of a solution to θ̄ = θ∗(θ̂) on θ̄ > 0.5(1 + ρ)

It remains to show that such a value exists. To see this, recall first that θ̂k are both

strictly rising in θ̄, while θ̂nd is strictly falling in θ̄. We work with the object θ̄′. At θ̄ = θ̄′,

we have:

PrL(1)θ̂L(θ̄′) + PrH(1)θ̂H(θ̄′)− θ̂nd(θ̄′) = 0 (B.4.36)

Note that this function is strictly rising in θ, which implies that θ∗(θ̄) = 1 for any such

θ̄ ∈ [0.5(1 + ρ), θ̄′]. Further note that θ̄′ must be strictly above θ̄ = 0.5(1 + ρ), since:

θ̂L(0.5(1 + ρ)) < θ̂H(0.5(1 + ρ)) < 0.5(1 + ρ) = θ̂nd(0.5(1 + ρ)) (B.4.37)

For any θ̄ ∈ [θ̄′, 1], we have PrL(1)θ̂L(θ̄′) +PrH(1)θ̂H(θ̄′)− θ̂nd(θ̄′) ≥ 0. This implies that

θ∗(θ̄) must solve:

PrL(θ∗)θ̂L(θ̄′) + PrH(θ∗)θ̂H(θ̄′)− θ̂nd(θ̄′) = 0 (B.4.38)

Thus: (i) At θ̄ = θ̄′, we have θ∗(θ̄) ≥ θ̄. (ii) At θ̄ = 1, θ∗(θ̄) ≤ θ̄. By assumption and

our result, all cutoffs are strictly below θ̄ for θ̄ ≥ 0.5(1 + ρ), Thus, their solutions are
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continuous in θ̄, and so is θ∗(θ̄). Application of the intermediate value theorem to the

equation θ∗(θ̄) − θ̄ = 0 just laid out, together with the border conditions, guarantee

existence of such a θ̄.

■

Proof of Lemma 11:

Because there is no search after visiting the first firm by assumption, previous arguments

show that any equilibrium must satisfy the ordering pLW ≤ pHW and pLB ≤ pHB.

Moreover, there exists no simple equilibrium in which all consumers randomize under

assumption 4. If all consumers randomize, pLB = pLB,M < pLW,M = pLW would be opti-

mally set - but then, searchers with v ∈ (pLB, pLW ) would not randomize.

Part 1: In a simple equilibrium, pLB ≤ pLW must hold.

Suppose, for a contradiction, that pLW < pLB. We know that all consumers with v < pLB

will surely visit the firm with worse data.

Suppose that pHW ≤ pLB holds as well. Given that pLW ≤ pHW and pLB ≤ pHB must

hold as well, pLW ≤ pHW ≤ pLB ≤ pHB holds. Then, all searchers will visit the firm with

worse data (since pLW < pLB), which would then imply a contradiction, since pLB < pLW

holds true when the valuations of consumers are uniformly distributed by assumption 15.

Thus, the only possible equilibria with pLW < pLB must satisfy pLB < pHW . Then,

there are two possibilities now (i) pLW < pLB < pHW ≤ pHB, and (ii) pLW < pLB ≤
pHB < pHW . Neither of these can constitute an equilibrium, as I will show now.

(i) Ruling out pLW < pLB < pHW ≤ pHB.

Note first that all consumers with v ≤ pLB will surely visit the firm with worse data. The

expected utilities of consumers with v ∈ [pHB, 1] are:

UB(v) = v −
(
PrHB(v)pHB + PrLB(v)pLB

)
(B.4.39)

UW (v) = v −
(
PrHW (v)pHW + PrLW (v)pLW

)
(B.4.40)

For a consumer with v > 0.5, the expected price at the firm with better data is higher:

PrHB(v)pHB + PrLB(v)pLB > PrHW (v)pHW + PrLW (v)pLW (B.4.41)

But this yields a contradiction. Consumers with v > max{pHB, 0.5} will prefer visiting the
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firm with worse data, because the expected price there is lower for them. In any equilib-

rium, pHB < 1 must hold. Thus, both consumers with valuations v ∈ (max{pHB, 0.5}, 1]
and low-valuation consumers prefer the firm with worse data. Either the definition of

the simple equilibrium fails or all consumers prefer the firm with worse data - in which

case our results on the resulting optimal prices under uniform valuations imply that

pLB < pLW , a contradiction.

(ii) Ruling out pLW < pLB ≤ pHB < pHW .

Once again, all searchers with valuations v ≤ pLB surely visit the firm with worse data.

Thus, the cutoff v̄ in a simple equilibrium must be such that all consumers with v > v̄

visit the firm with better data.

Suppose, for a contradiction, that v̄ < pHB. Then, no searchers will buy at the firm

with worse data (since searchers only visit the firm with worse data if v ≤ v̄), i.e. pHW =

pHW,M . The price of the firm with better data is strictly above v̄, i.e. has to satisfy

pHB = pHB,M . However, we know that pHW,M < pHB,M , which implies that pHW < pHB,

a contradiction.

Suppose, instead, that v̄ ∈ [pHB, pHW ). Then, searchers put upward pressure on pHB

and vice versa. Thus, the two prices will optimally satisfy pHW < pHB, a contradiction.

Thus, we have ruled out any candidate for an equilibrium in which pLW < pLB.

Part 2: In a simple equilibrium (where pLB ≤ pLW by part 1), the cutoff v̄ must be

such that all consumers with v > v̄ visit the firm with worse data.

In such an equilibrium, all consumers with v ≤ pLW surely visit the firm with better

data. If all consumers weakly prefer the firm with better data, then their strategy can be

described by cutoff rule v̄ = 1, where they visit the firm with better data if and only if

v ≤ v̄.

Suppose there exists some consumer who strictly prefers the firm with worse data.

Then, any cutoff v̄ must be interior, i.e. v̄ ∈ (0, 1]. Because all consumers with v ≤ pLW

surely visit the firm with better data, there exists no v̄ such that all consumers with v < v̄

visit the firm with worse data and vice versa.

Part 3: If v̄ < v̄LW , pLW (v̄) ≥ v̄ will be optimally set by the firm with worse data.

Consider the function H(v̄) := ρ
∫ 1

v̄
PrLW (v)dv+0.5(1−ρ)

[ ∫ 1

v̄
PrLW (v)dv− v̄P rLW (v̄)

]
.

Our assumption on concavity of the low signal monopoly profit function implies that this

function is strictly decreasing in v̄. An appropriate v̄LW that sets the above equation to

zero exists by the intermediate value theorem.
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Now consider a v̄ < v̄LW , at which H(v̄) > 0. Consider the optimal pricing problem

of the firm with worse data when observing the low signal. For prices pj < v̄, the profits

are:

ΠLW (pj) = ρpj

∫ 1

v̄

PrLW (v)dv + 0.5(1− ρ)pj

∫ 1

pj

PrLW (v)dv (B.4.42)

The derivative
∂ΠLW (pj)

∂pj
is strictly decreasing in pj by previous arguments. At pj = v̄, we

know that the (left) derivative is strictly positive because v̄ < v̄LW . Thus, this derivative

must be strictly positive for all pj < v̄. Thus, pLW (v̄) ≥ v̄ must hold.

Part 4: In a simple equilibrium, v̄LW ≤ v̄ must hold.

Suppose, for a contradiction, that v̄ < v̄LW . Then, we have established that pLW (v̄) ≥ v̄

will hold. Note that pHW (v̄) ≥ pLW (v̄) will generally hold. Also recall that pLB ≤ pLW

must hold in a simple equilibrium.

If pLB < pLW , a consumer with v = pLW will strictly prefer to visit the firm with

better data - and by continuity arguments, so will consumers with valuation v just above

pLW . This represents a contradiction to the properties of v̄. This is because v̄ ≤ pLW , but

consumers with a valuation in an open ball above pLW , i.e. with v > v̄, would strictly

prefer to visit the firm with better data but visit the firm with worse data in equilibrium.

Suppose that pLB = pLW . There exists no simple equilibrium in which a firm sets a

uniform price. Thus, pLB < pHB and pLW < pHW must hold in such an equilibrium.

Suppose that pLB = pLW < 0.5. Then, all consumers with valuation in an open ball

above pLW will strictly prefer to visit the firm with better data, because they receive the

low signal price there with a higher probability, a contradiction because v̄ ≤ pLW .

Suppose alternatively that pLB = pLW ≥ 0.5. Then, consumers with v < 0.5 will

visit the firm with better data (since they offer lowest the equilibrium price with higher

probability to them) and consumers with v just above 0.5 will visit the firm with worse

data, since they receive the low signal price with higher probability at the firm with worse

data. Thus, this cutoff must then be exactly equal to v̄ = 0.5 in a simple equilibrium.

Searchers visit the firm with better data if and only if v < v̄ = 0.5. But then, the optimal

price of the firm with better data is strictly below 0.5, a contradiction.

■

Proof of Proposition 24:

Part 1: For any v̄ ≥ max{pHB, v̄LW}, the function v̂X(v̄) will be continuous.

The prices of the firm with better data are both strictly below v̄ because pHB ≤ v̄,
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which implies that pL,∗(v̄) and pH,∗(v̄) must solve the FOCs and be continuous.

We can also generally prove continuity of the prices of the firm with worse data. The

low signal price has to be weakly below v̄ and always solve a FOC that is continuous

for any v̄ ≥ v̄LW - this establishes this part of the result. The high signal price is also

continuous. It solves a FOC for all v̄ ≥ v̄HW . For any v̄ ∈ [pHW,M , v̄HW ), the optimal

price is v̄. For any v̄ < pHW,M , the optimal price is pHW,M .

Part 2: Suppose pHB ≤ v̄LW . A solution v̄ ∈ [v̄LW , 1] to v̂X(v̄) = v̄ exists.

Then, our assumption tells us that the expected price functions at v̄ = v̄LW are such

that v̂X(v̄LW ) > v̄LW . For the prices at v̄ = v̄LW , we know that EPB(v̄LW ; v̄LW ) <

EPW (v̄LW ; v̄LW ) by assumption, which implies that consumers with v in an open ball

around v = v̄LW would have a strictly lower expected price at the firm with better data,

which establishes that the supremum of the corresponding set must lie above v̄LW . At

v̄ = 1, we know that v̂X(1) ≤ 1. Because pHB ≤ v̄LW , we are guaranteed continuity of

this function in the interval [v̄LW , 1] and hence existence of a solution.

Part 3: Suppose v̄LW < pHB,M . A solution v̄ ∈ [pHB,M , 1] to v̂X(v̄) = v̄ exists.

Our assumption guarantees that v̂X(pHB,M) > pHB,M by previous arguments. Thus, the

supremum of the corresponding set must lie above pHB,M . Continuity of the function

proves existence of an appropriate solution, together with the fact thatv̂X(1) > 1.

Part 4: Consider the v̄ ∈ [v̄LW , 1] with v̂X(v̄) = v̄. By construction, the prices at this v̄

are optimal. By assumption, the search behavior is optimal, i.e. we have an equilibrium.

■

B.5 Omitted results

B.5.1 Baseline model — no data advantages

Suppose no firm receives an informative signal in the baseline model, i.e. PrH(v) =

0.5 ∀v. In the monopoly benchmark, all firms would set the price pnd,M .

(i) Ruling out equilibria in which pL = pH ̸= pnd.

If pL < pnd, all searchers with v > pL visit the firm with data. Thus, pnd = pnd,M ,

since the firm without data is only visited by captive consumers. But then, there exists
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a profitable upward deviation from pL. If pnd < pL, all searchers with v > pnd visit the

firm without data. Thus, pL = pnd,M , and there is a profitable upward deviation from pnd.

(ii) Ruling out equilibria with pL < pH (analogous arguments rule out equilibria with

pH < pL, since the signal is not informative):

Previous arguments establish that pL < pnd < pH must hold. As a result, there ex-

ists an ϵ > 0 such that any searcher with v ∈ (pL, pnd + ϵ] will visit the firm with data.

Thus, searchers put upward pressure on pnd, and hence pnd ≥ pnd,M must hold. One can

show that the average price at the two firms must be equal. Then, all searchers with

v ∈ (pL, pH) strictly prefer the firm with data, while those with v ≥ pH are indiffer-

ent. Searchers put upward pressure on pnd, which implies that pnd ≥ pnd,M and hence

pH > pnd,M . But this is a contradiction, as searchers put downward pressure on this

price, i.e. pH ≤ pnd,M .

B.5.2 Dispersed data framework — no data advantages

First, one can show that pLB ≤ pLW must hold and that the reverse, namely pLB ≥ pLW ,

must also hold true. This is based on arguments analogous to those made in the proof of

lemma 11, part 1. Thus, pLW = pLB. Based on this, one can show that pHB = pHW must

hold.

Suppose that pHB < pHW , noting that both low signal prices must be the same. Then,

all consumers with v ≥ pHB will strictly prefer to visit the firm with better data. In order

to constitute a simple equilibrium, the cutoff must be set in such a way that all searchers

with v > v̄ (where v̄ ≤ pHB) visit the firm with better data.

But by this logic, the firm with worse data will only make the sale to captive consumers

in an open ball around pHW , which implies that pHW = pHW,M . Moreover, because all

searchers with v ≥ pHB visit the firm with better data, we have pHB ≥ pHB,M , as

there would be an upward deviation otherwise. Hence, we have pHB ≥ pHB,M = pHW , a

contradiction. Similar logic rules out the other case - hence, all prices have to be equal

and all searchers randomize.



Appendix C

Chapter 4: Proofs and further

material

C.1 Proofs — Section 4.4.

Proof of Lemma 4:

This proof consists of four parts. In the first part, we derive pn2 and in the second part,

we show that pn2 > p∗. In part three, we derive pn3 and part four verifies that pn3 < p∗.

Part 1: Deriving pn2 .

In H(B) = R, the perceived profit function of firm B is:

Π2(pB) = pB

{
1

2
F (w∗)

[
1− F (wn(pB))

]
+

1

2

∫ wn(pB)

pB

F (uB + p∗ − pB)duB

}
︸ ︷︷ ︸

:=D2(pB)

,

where wn(pB) = w∗ − p∗ + pB as defined in the main text. The derivative of D2(pB) with

respect to pB reads:

∂D2(pB)

∂pB
= −1

2
F (w∗)f(wn(pB)) +

1

2

[
F (w∗)− F (p∗)−

∫ wn(pB)

pB

f(uB + p∗ − pB)duB

]
= −1

2
w∗

Similarly, demand simplifies to:

D2(pB) =
1

2
w∗[1− (w∗ − p∗ + pB

)]
+

1

2

[
1

2
(w∗)2 − 1

2
(p∗)2

]
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The price pn2 must solve the first-order condition pB
∂D2(pB)

∂pB
+ D2(pB) = 0. Plugging in the

above results yields:

pn2 =
1

2
(1− (w∗ − p∗)) +

1

4

(
w∗ − (p∗)2

w∗

)
(C.1.1)

Part 2: Showing that pn2 − p∗ > 0.

Using (C.1.1), pn2 − p∗ > 0 if and only if

2 > w∗ + 2p∗ +
p∗2

w∗ ⇔
√
2w∗ > w∗ + p∗ (C.1.2)

Substituting the equilibrium expression for p∗ given by

p∗ = −1

2
(1 + w∗)

(
1−

√
1 +

4

(1 + w∗)2

)
(C.1.3)

which can be obtained from solving equation (4.4.3) explicitly, allows us to rewrite (C.1.2) as

√
2w∗ > −1

2
(1− w∗)+

1

2
(1 + w∗)

√
1 +

4

(1 + w∗)2
(C.1.4)

⇔
√
2w∗ +

1

2
(1− w∗) >

√
1

4
(1 + w∗)2 + 1 (C.1.5)

⇔ 1

4
(1− w∗)2 + (1− w∗)

√
2w∗ + 2w∗ >

1

4
(1 + w∗)2 + 1 (C.1.6)

⇔ (1− w∗)
√
2w∗ >1− w∗ (C.1.7)

The last inequality holds if 1 > w∗ > 1/2. Since w∗ = 1−
√
2s (which follows from the standard

Wolinsky analysis), w∗ < 1 holds for any positive search costs. Moreover, w∗ > 1/2 for all

s < 1/8, which is exactly the threshold above no equilibrium with active search exists (w∗ ≥ p∗

if and only if s ≤ 1/8). This proves that pn2 − p∗ > 0 if w∗ ≥ p∗.

Part 3: Derivation of pn3 .

If the consumer visited firm B before, disclosure by firm A leads to H(B) = ND × p∗ × R.

Accordingly, B’s profits are given by

Π3(pB) = pB

∫ w∗

pB

1

2
F (uB − pB + p∗)duB (C.1.8)

as already derived in the main text (see equation (4.4.5)). Whenever pB is such that w∗ − pB +

p∗ < 1, this profit function is:

Π3(pB) = pB

∫ w∗

pB

1

2
(uB − pB + p∗)duB (C.1.9)
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We conjecture that the optimal pB falls in this interval (which we verify later). Then, pB must

solve the following first-order condition:∫ w∗

pB

1

2
(uB − pB + p∗)duB + pB

[
− 1

2
F (p∗) +

∫ w∗

pB

1

2
(−1)duB

]
= 0

⇐⇒

1.5(pB)
2 + pB

[
− w∗ − 2p∗ − w∗]+ [1

2
(w∗)2 + w∗p∗

]
= 0

⇐⇒

3(pB)
2 − pB

[
(4)(w∗ + p∗)

]
+
[
(w∗)(w∗ + 2p∗)

]
Denote the solution to this first order condition by pn3 . Then,

pn3 = (2/3)(w∗ + p∗)− (1/3)
√
(w∗)2 + 2w∗p∗ + 4(p∗)2 (C.1.10)

where we have ignored the positive root because calculations show that the negative one is the

only appropriate one. Note that this price is the global maximizer of Π3(pB) as defined in (C.1.9).

Moreover, one can show that this price will always be in the region that we have restricted

our attention to, namely pB > w∗+p∗−1. For prices pB at which pB ≤ w∗+p∗−1, true profits

as defined in (C.1.8) are below the profit function defined in (C.1.9). Because pn3 is the global

maximizer of the latter and pn3 > w∗ + p∗ − 1, the optimal price must equal pn3 .

Part 4: Verifying the ordering pn3 < p∗.

Using (C.1.10), p∗ − pn3 > 0 holds if and only if

1

3

√
w∗2 + 2w∗p∗ + 4p∗2 >

2

3
w∗ − 1

3
p∗ ⇔

√
w∗2 + 2w∗p∗ + 4p∗2 > 2w∗ − p∗ (C.1.11)

⇔ w∗2 + 2w∗p∗ + 4p∗2 >4w∗2 − 4w∗p∗ + p∗2 (C.1.12)

⇔ p∗2 + 2w∗p∗ >w∗2 (C.1.13)

The equilibrium condition pinning down p∗ (from Wolinsky, 1986) tells us that

p∗ =
1− p∗2

1 + w∗ ⇔ w∗ =
1− p∗ − p∗2

p∗
.

Substituting the expression for w∗ into inequality (C.1.13) above yields

2− 2p∗ − p∗2 >

(
1− p∗ − p∗2

p∗

)2

⇔ 2p∗ − 2p∗4 + 3p∗2 − 4p∗3 > 1. (C.1.14)

We know that p∗ ∈ (
√
2 − 1, 1/2] in any equilibrium with active search. This follows from the

necessary condition that w∗ ≥ p∗ and w∗ = 1−
√
2s. It can be verified that 2p∗ − 2p∗4 +3p∗2 −
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4p∗3 = 1 for p∗ =
√
2− 1. Thus, inequality (C.1.14) holds if

∂p∗
(
2p∗ − 2p∗4 + 3p∗2 − 4p∗3

)
>0 for all p∗ ∈ [

√
2− 1, 1/2] (C.1.15)

⇔ (2− 8p∗3) + (6p∗ − 12p∗2) >0 for all p∗ ∈ [
√
2− 1, 1/2] (C.1.16)

⇔ (1− 4p∗3) + 3p∗(1− 2p∗) >0 for all p∗ ∈ [
√
2− 1, 1/2] (C.1.17)

Since p∗ ≤ 1/2, it is easy to verify that 1 − 4p∗3 > 0 and 3p∗(1 − 2p∗) ≥ 0, implying that the

above inequality always holds. This completes the proof. ■

Proof of Proposition 16:

The proof has two parts. We first show that the profit function depicted in (4.4.8) is the

correct one. This follows from the discussion in the main text subject to one additional

observation: Firm B, after reaching H(B) = R due to firm A’s deviation, must not use

search disclosure itself. Search disclosure by firm B would inform firm A that the buyer

continued to search. Then, firm A would reach the information set H(A) = D × p1 × R,

in which it can revise its price for return consumers, which expression (4.4.8) does not

allow for.

After establishing that H(A) = D × p1 ×R will not be reached, we show that disclo-

sure in H(A) = NR, through its effect on (4.4.8) via p2 and p3, is not profitable.

Part 1: H(A) = D × p1 ×R will not be reached (even) if dA = D, because B would not

find it profitable to disclose in H(B) = R.

Recall that firm B believes that firm A offered the consumer the price p∗. Thus, it

believes that dB = D (disclosing back) leads to H(A) = D × p∗ ×R. In this information

set, B anticipates that A expects B’s price to equal pn2 , since this is part of B’s equi-

librium strategy. Consequently, firm B believes that firm A would revise its price pA to

maximize the following profit function:

Π3,dd(pA) = pA

∫ w∗

pA

1

2
F (uA − pA + pn2 )duA, (C.1.18)

where we have accounted for the fact that, in the information set H(A) = D × p∗ × R,

firm A must believe that the consumers initial match value satisfied uj ∈ [0, w∗]. The

optimal price in this information set, which we denote by pdd3 to account for the “double”

deviation, is given by:

pdd3 = (2/3)(w∗ + p2)− (1/3)
√

(w∗)2 + 2w∗p2 + 4(p2)2, (C.1.19)
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where we have again ignored the positive root because calculations show that the negative

root is the appropriate one. If pdd3 < p∗, firm B would expect firm A to revise its price

downward and firm B has no incentive to disclose “back” if H(B) = R. At w∗ = 1 or,

equivalently, at s = 0, pdd3 = p∗. To show that pdd3 < p∗, it is thus sufficient to show that

the derivatives with respect to w∗ have opposite signs. We begin with p∗. By taking the

derivative of p∗ given in (C.1.3), we obtain

∂p∗

∂w∗ =
1−

√
1 + 4

(1+w∗)2

2
√

1 + 4
(1+w∗)2

, (C.1.20)

which makes it easy to verify that ∂p∗/∂w∗ ∈ (−1/2, 0). The derivative of pdd3 is

∂pdd3
∂w∗ =

2

3
− w∗ + p2

3
√

(w∗ + p2)2 + 3p22
+

(
2

3
− w∗ + 4p2

3
√

(w∗ + p2)2 + 3p22

)
∂p2
∂w∗ (C.1.21)

=

(
2

3
− w∗ + p2

3
√

(w∗ + p2)2 + 3p22

)(
1 +

∂p2
∂w∗

)
− p2√

(w∗ + p2)2 + 3p22

∂p2
∂w∗ . (C.1.22)

It can be verified that the first term above is greater than 1/3. Thus, ∂pdd3 /∂w∗ > 0 follows

if ∂p2/∂w
∗ ∈ (−1, 0). Taking the derivative of p2 (see Lemma 4 for the expression) w.r.t

p∗ yields:

∂p2
∂w∗ =

1

2

(
1− p∗

w∗

)
∂p∗

∂w∗ − 1

4

(
1−

(
p∗

w∗

)2
)

=
1

2

(
1− p∗

w∗

)(
∂p∗

∂w∗ − 1

2

(
1 +

p∗

w∗

))
.

(C.1.23)

Since ∂p∗/∂w∗ < 0 as shown above, ∂pn2/∂w
∗ < 0 holds because p∗ < w∗. To bound

∂pn2/∂w
∗ from below, observe that ∂p∗/∂w∗ > −1/2 implies that

∂pn2
∂w∗ >

1

2

(
1− p∗

w∗

)(
−1

2
− 1

2

(
1 +

p∗

w∗

))
= −1

2

(
1−

(
p∗

w∗

)2
)

> −1

2
, (C.1.24)

which is sufficient to prove that ∂pn2/∂w
∗ ∈ (−1, 0). Thus, ∂pdd3 /∂w∗ > 0 whereas

∂p∗/∂w∗ < 0, which proves pdd3 < p∗. The firm that receives disclosure will thus not

disclose back, and the deviating firm has no chance to revise its price later. Expression

(4.4.8) thus correctly represents the deviating firm’s profits.

Part 2: A deviation to disclosure is strictly unprofitable at H(A) = NR.

Knowing that (4.4.8) correctly represents the profits of the deviating firm, we next focus

on analyzing the average effect of changing the rival’s price from p∗ to either pn3 or pn2 .
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Let D(pA, p
∗) represent firm A’s demand if it does not disclose and charges a price pA.

Also, let Dd(pA, p
∗, pn2 , p

n
3 ) denote firm A’s demand after disclosure (deviation), where pn2

is the price firm B sets if H(B) = R and pn3 the revised price if H(B) = ND × p∗ × R.

Because firm B will not disclose back to firm A, disclosure by firm A never leads to

H(A) = D×pA×R so that firm A will never revise its price. The demandDd(pA, p
∗, pn2 , p

n
3 )

is expressed in equation (4.4.8) and is given by:

Dd(pA, p
∗, pn2 , p

n
3 ) =

1

2

[[
1− wn(pA)

]
+

∫ wn(pA)

pA

(pn2 + uA − pA)duA

]
+

1

2

[
(w∗)

(
1− (w∗ − pn3 + pA)

)
+

∫ w∗−pn3+pA

pA

(pn3 + uA − pA)duA

]
(C.1.25)

One can show that the optimal revision price will lie in the range of prices for which

w∗−pn3 +pA < 1 and w∗−p∗+pn2 < 1, which implies that it is without loss to consider the

demand function given in (C.1.25). Total profits are equal to maxpA pAD
d(pA, p

∗, pn2 , p
n
3 )

if A deviates, while they are equal to maxpA pAD(pA, p
∗) in the no disclosure equilibrium.

Thus, a deviation is strictly unprofitable if

D(pA, p
∗) < Dd(pA, p

∗, pn2 , p
n
3 ) for all pA. (C.1.26)

Let pn2 = p∗+δ and pn3 = p∗−δ−ε. By Lemma 4, δ > 0 holds but the sign of ε is unknown.

Then, Dd(pA, p
∗, pn2 , p

n
3 ) = Dd(pA, p

∗, p∗+ δ, p∗− δ− ε). It is easy to verify that ∂εD
d < 0.

Thus, (C.1.26) holds if (i) ε ≥ 0 and (ii) ∂δD
d < 0 because D(pA, p

∗) = Dd(pA, p
∗, p∗, p∗).

To see that (i) is true, notice that:

ε =(p∗ − pn3 )− δ = (p∗ − pn3 )− (pn2 − p∗) (C.1.27)

=
10

12
p∗ − 5

12
w∗ − 6

12
+

3

12

(p∗)2

w∗ +
4

12

√
(w∗)2 + 2w∗p∗ + 4(p∗)2 (C.1.28)

Substituting w∗ = (1−p∗−p∗)/p∗, which follows from equation (4.4.3), into the expression

above yields that ε ≥ 0 if and only if

1

12

(
−1− 5

p∗
+ 15p∗ − 3(p∗)3

−1 + p∗ + (p∗)2
+ 4

√
1 +

1

(p∗)2
− 2

p∗
+ 3(p∗)2

)
≥ 0 (C.1.29)

⇔

(
4

√
1 +

1

(p∗)2
− 2

p∗
+ 3(p∗)2

)2

≥
(
1 +

5

p∗
− 15p∗ +

3(p∗)3

−1 + p∗ + (p∗)2

)2

(C.1.30)

⇔ 16

(
1 +

1

(p∗)2
− 2

p∗
+ 3(p∗)2

)
≥ (5− 4p∗ − 21(p∗)2 + 14(p∗)3 + 12(p∗)4)2

(p∗)2(−1 + p∗ + (p∗)2)2
(C.1.31)
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Additional steps show that inequality (C.1.31) holds if and only if

16− 64p∗ + 64(p∗)2 + 32(p∗)3 − 16(p∗)4 − 96(p∗)5 − 32(p∗)6 + 96(p∗)7 + 48(p∗)8 ≥

25− 40p∗ − 194(p∗)2 + 308(p∗)3 + 449(p∗)4 − 684(p∗)5 − 308(p∗)6 + 336(p∗)7 + 144(p∗)8

⇔ −3(3 + 8p∗ − 86(p∗)2 + 92(p∗)3 + 155(p∗)4 − 196(p∗)5 − 92(p∗)6 + 80(p∗)7 + 32(p∗)8) ≥ 0

One can easily verify that the left-hand side equals 0 if p∗ =
√
2− 1 and 3/8 if p∗ = 1/2.

Thus, showing that the left-hand side of this expression is concave over [
√
2 − 1, 1/2] is

sufficient to show that inequality (C.1.31) is true (by concavity, the boundary conditions

imply that the derivative of the left-hand side is positive on this interval). The second

derivative of the left-hand side is given by

−12
(
− 43 + 138p∗ + 465(p∗)2 − 980(p∗)3 − 690(p∗)4 + 840(p∗)5 + 448(p∗)6

)
(C.1.32)

To show that (C.1.32) is negative, we show separately that (1) 465(p∗)2 − 980(p∗)3 +

448(p∗)6 and (2) −43 + 138p∗ − 690(p∗)4 + 840(p∗)5 are both non-negative for all p∗ ∈
[
√
2− 1, 1/2]. Consider term (1) first, which we show satisfies:

465(p∗)2 − 980(p∗)3 + 448(p∗)6 ≥ 0 ⇔ 465 ≥ 980p∗ − 448(p∗)4 (C.1.33)

It can be verified that inequality (C.1.33) holds at p∗ = 1/2. Moreover, 980p∗ − 448(p∗)4

increases in p∗ for all p∗ ≤ (35/64)1/3 (note (35/64)1/3 > 1/2), implying that (C.1.33)

holds for all p∗ ∈ [
√
2− 1, 1/2]. Consider term (2) next, which we show satisfies:

−43 + 138p∗ − 690(p∗)4 + 840(p∗)5 ≥ 0 (C.1.34)

Again, it can be verified that inequality (C.1.34) holds (strictly) at p∗ =
√
2 − 1. Thus,

it is sufficient to show that the left-hand side of (C.1.34) increases in p∗. By taking the

derivative, we see that this conditions holds if and only if

6(23− 460(p∗)3 + 700(p∗)4) ≥ 0 ⇔ 23 ≥ 460(p∗)3 − 700(p∗)4 (C.1.35)

One can check that the function 460(p∗)3 − 700(p∗)4 obtains its maximum at p∗ =

69/140. Since 23 > 460(69/140)3 − 700(69/140)4, we know that (C.1.35) holds for all

p∗ ∈ [
√
2− 1, 1/2]. This completes the proof of subpart (i).
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We next prove (ii): ∂δD
d < 0. Evaluating Dd(pA, p

∗, p∗ + δ, p∗ − δ − ε), we obtain

1

2

(
w∗(1− w∗ + p∗ − δ − ε− pA) +

∫ w∗−p∗+δ+ε+pA

pA

(p∗ − δ − ε+ uA − pA)duA︸ ︷︷ ︸
Modified searcher profits

)

+
1

2

(
(1− w∗ + p∗ − pA) +

∫ w∗−p∗+pA

pA

(p∗ + δ + uA − pA)duA︸ ︷︷ ︸
Modified first arriver profits

)
.

The derivative of this demand function with respect to δ satisfies

1

2

(
(−1)w∗ + (1)w∗ +

∫ w∗−p∗+δ+ε+pA

pA

(−1)duA

)
+

1

2

∫ w∗−p∗+pA

pA

(1)duA = −δ + ε

2
< 0,

which shows that demand falls in δ for any δ > 0.

Part 3: Establishing uniqueness of the candidate equilibrium.

On the equilibrium path, the uniform price p∗ will be set, which is uniquely determined.

All off-path prices, namely pn2 , p
n
3 and the revision price functions, are also uniquely de-

termined by Lemma 4, implying the desired result. ■

Proof of Lemma 5:

We derive pd3(p1) first. As shown in the main text, the profit function of the deviating

firm A in the information set H(A) = ND × p1 ×R is given by (4.4.10):

Π3,d(p3|p1) = p3

∫ wd(p1)

p3

1

2
F (uA − p3 + p∗1)duA = p3

∫ wd(p1)

p3

1

2
(uA − p3 + p∗1)duA

Consider a generic initial price p1. We restrict attention to prices p3 which satisfy wd(p1)−
p3 + p∗1 < 1 (and we have verified that the optimal revision price will satisfy this). This

allows us to rewrite the above profit function with the second equality. The optimal price

pd3(p1) needs to solve the following first-order condition:

∫ wd(p1)

pd3

1

2
(uA − pd3 + p∗1)duj − pd3

1

2

(
p∗1
)
+ pd3

∫ wd(p1)

pd3

1

2
(−1)duA = 0

⇐⇒

1

2
(wd(p1)− pd3 + p∗1)

2 − 1

2
(p∗1)

2 − pd3p
∗
1 − pd3

(
wd(p1)− pd3

)
= 0 (C.1.36)
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The unique solution to this equation that satisfies pd3(p1) ∈ [0, 1] is given by

pd3(p1) =(2/3)(wd(p1) + p∗1)− (1/3)
√

(wd(p1))2 + 2wd(p1)p∗1 + 4(p∗1)
2. (C.1.37)

We derive pd1 next. Firm A’s profit function if it does not disclose when H(A) = NR

is shown in (4.4.11), which we repeat here for convenience.

Π1,d(p1) = p1
1

2

[
1− F (wd(p1))

]
+ pd3(p1)

∫ wd(p1)

pd3(pj)

1

2
F (p∗1 + uj − pd3(p1))duA

This expression is valid only if pd3(p1) < wd(p1), which must hold in a PBE (else, no

profits are made when setting pd3(p1)). The derivative of Π1,d(p1) with respect to p1 if

wd(p1) < 1 is:

∂Π1,d(p1)

∂p1
= p1

1

2
[−1] +

1

2

[
1− (wd(p1))

]
+ pd3(p1)

[
1

2
(p∗1 + wd(p1)− pd3(p1))

−1

2
(p∗1)

∂pd3(p1)

∂p1
−
∫ wd(p1)

pd3(p1)

1

2

∂pd3(p1)

∂p1
duA

]
+

∂pd3(p1)

∂p1

[ ∫ wd(p1)

pd3(p1)

1

2
(p∗1 + uA − pd3(p1))duA

]
,

Note that the left derivative of profits is strictly negative if wd(p1) = 1 (since p1 > pd3(p1)

holds in that case), which implies that wd(pd1) < 1 must hold at the optimal pd1. Thus, we

obtain the following first-order condition for the optimal deviation price pd1 :

[
1− pd1 − wd(pd1)

]
+ pd3(p

d
1)(p

∗
1 + wd(pd1)− pd3(p

d
1)) +

∂Π3,d(pd3|p1)
∂p3

∂pd3(p
d
1)

∂p1
= 0 (C.1.38)

By the Envelope theorem, ∂Π3,d(pd3|p1)/∂p3 = 0 so that (C.1.38) simplifies to

pd1 = 1− wd(pd1)−
(
pd3(p

d
1)
)2

+ pd3(p
d
1)
(
wd(pd1) + p∗1

)
, (C.1.39)

which equals the expression provided in the lemma. The solution to (C.1.39) is unique if

the right-hand side of (C.1.39) decreases in pd1 everywhere. Its derivative shows that this

is true if and only if

1 >
∂pd3(p

d
1)

∂p1

(
wd(pd1) + p∗1

)
+ pd3(p

d
1)

(
1− 2

∂pd3(p
d
1)

∂p1

)
. (C.1.40)

We first show that this inequality holds if ∂pd3/∂p1 ∈ (1
3
, 1
2
). Second, we verify that

∂pd3/∂p1 ∈ (1
3
, 1
2
).

If ∂pd3/∂p1 ∈ (1
3
, 1
2
), the right-hand side of (C.1.40) satisfies

∂pd3(p
d
1)

∂p1

(
wd(pd1) + p∗1

)
+ pd3(p

d
1)

(
1− 2

∂pd3(p
d
1)

∂p1

)
<

1

2

(
wd(pd1) + p∗1

)
+

1

3
pd3(p

d
1). (C.1.41)
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Additionally, we know that wd(pd1) < 1, p∗1 < 1/2 as well as pd3(p1) < 1/2. The latter

follows from Remark 5 (presented at the end of this proof) upon substituting wd(pd1) with

w and p∗1 with p. Thus, 1
2

(
wd(pd1) + p∗1

)
+ 1

3
pd3(p

d
1) <

3
4
+ 1

6
< 1 if ∂pd3/∂p1 ∈ (1

3
, 1
2
), which

proves the first claim.

To verify that ∂pd3/∂p1 ∈ (1
3
, 1
2
), we first calculate the derivative of pd3 and find that

∂pd3(p
d
1)

∂p1
=

1

3

2− wd(pd1) + p∗1√(
wd(pd1) + p∗1

)2
+ 3 (p∗1)

2

 >
1

3

2− wd(pd1) + p∗1√(
wd(pd1) + p∗1

)2
 =

1

3
.

(C.1.42)

Additionally, ∂pd3/∂p1 < 1/2 if and only if

wd(pd1) + p∗1√(
wd(pd1) + p∗1

)2
+ 3 (p∗1)

2
>

1

2
⇐⇒

(
wd(pd1) + p∗1

)2
>

1

4

(
wd(pd1) + p∗1

)2
+

3

4
(p∗1)

2

(C.1.43)

⇐⇒
(
wd(pd1) + p∗1

)2
> (p∗1)

2 (C.1.44)

where the last inequality holds always. This proves the second claim that ∂pd3/∂p1 <

1/2 ∈ (1
3
, 1
2
) and, thus, guarantees uniqueness of the optimal deviation price pd1. ■

Remark 5 Let

p3(w, p) =
2

3
(w + p)− 1

3

√
(w + p)2 + 3p2, (C.1.45)

w ≤ 1 and p ≤ 1/2. Then p3(w, p) ≤ 1−
√
3

3
< 1/2.

Proof of Remark 5:

Taking the partial derivatives, it is easy to see that p3 increases in w and in p for all

w ≤ 1 and all p ≤ 1/2:

p3(w, p)

∂w
=

2

3
− p+ w

3
√

(w + p)2 + 3p2
>

2

3
− p+ w

3
√
(w + p)2

=
1

3
> 0. (C.1.46)

In addition,

p3(w, p)

∂p
=

2

3
− 4p+ w

3
√
3p2 + (w + p)2

>0 (C.1.47)

⇔ 2
√

3p2 + (w + p)2 > 4p+ w ⇔ 3w2 >0, (C.1.48)
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which holds always if w > 0. Thus, p3 is bounded from above by p3(1, 1/2) = 2/3(3/2)−
1/3

√
3, which proves the claim. ■

Proof of Proposition 17:

The Proposition has two parts. First, we show that there exists a threshold s̄ such that the

partial disclosure equilibrium exists for all search costs below this threshold. Thereafter,

we show that there exists another threshold s̄′ such that the partial disclosure equilibrium

does not exist for search costs above this threshold.

Part 1: There is a value s̄ such that partial disclosure is an equilibrium if s ≤ s̄.

In a partial disclosure equilibrium, dj = D if H(j) = NR and dj = ND if H(j) = R. To

prove that the partial disclosure equilibrium exists, we show that deviating from these

disclosure strategies is not profitable if s is sufficiently small.

Claim 1: Deviating to non-disclosure in the information set H(j) = NR is not profitable

if s < ŝ (ŝ > 0).

If firm j encounters a buyer while H(j) = NR, then the buyer must have started her

search at j, given that firm j’s rival plays its equilibrium strategy. To evaluate the effect

of deviating to dj = ND when H(j) = NR, we can thus restrict attention to buyers who

search in this order. In equilibrium, total profits from such buyers are given by

ΠEQ =
1

2
p∗1
[
1− F (wd(p∗1))

]
+

1

2
p∗1

∫ wd(p∗1)

p∗1

F (p∗2 + uj − p∗1)duj, (C.1.49)

where wd(p∗1) = w∗ − p∗2 + p∗1 is the equilibrium search cutoff. As argued in the main

text, the equilibrium prices p∗1 and p∗2 can be obtained from Armstrong et al. (2009), who

provide the following implicit equations for these prices when there are two firms:

p∗1 =
1

2

(
1− (w∗ − p∗2)

)
+

1

4
(w∗)2 − 1

4
(p∗2)

2 (C.1.50)

p∗2 =
1

2

(
1− (w∗ − p∗2)

)
+

1

4
(w∗ − p∗2 + p∗1)−

1

4

(p∗1)
2

w∗ − p∗2 + p∗1
. (C.1.51)

Armstrong et al. (2009) show that these prices are unique and satisfy p∗2 ≥ p∗1. In com-

parison, profits after deviating to non-disclosure are given by:

ΠDEV (p1) =
1

2
p1
[
1− F (wd(p1))

]
+

1

2
pd3(p1)

∫ wd(p1)

pd3(p1)

F (p∗1 + uj − pd3(p1))duj, (C.1.52)

Lemma 5 provides implicit equations for the optimal prices pd3(p1) and pd1 and guarantees

that pd1 and pd3(p
d
1) are uniquely determined.
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One can verify that pd1 = pd3(p1) = p∗1 = p∗2 =
√
2− 1 if w∗ = 1 or, equivalently, s = 0.

That is, ΠDEV = ΠEQ if s = 0, where we define ΠDEV as the deviation profits for the

optimal deviation price, i.e., ΠDEV := ΠDEV (pd1). To show that a threshold ŝ > 0 exists

such that ΠDEV ≤ ΠEQ for all s ≤ ŝ, it is thus sufficient to show that

∂ΠEQ

∂s

∣∣∣∣
s=0

>
∂ΠDEV

∂s

∣∣∣∣
s=0

⇐⇒ ∂ΠEQ

∂w∗

∣∣∣∣
w∗=1

<
∂ΠDEV

∂w∗

∣∣∣∣
w∗=1

. (C.1.53)

To prove the validity of the second inequality in (C.1.53), take the derivative of ΠEQ:

∂ΠEQ

∂w∗ =

(
p∗1
2

− p∗1w
∗

2
+

p∗1(w
∗ − p∗2)

2

)
∂p∗2
∂w∗ +

(
−p∗1

2
+

p∗1w
∗

2

)
, (C.1.54)

where we have already used that ∂ΠEQ

∂p∗1

∂p∗1
∂w∗ = 0 due to the Envelope Theorem. Since

p∗1 = p∗2 =
√
2− 1 at w∗ = 1, the derivative further simplifies to

∂ΠEQ

∂w∗

∣∣∣∣
w∗=1

=

√
2− 1

2

(
2−

√
2
) ∂p∗2
∂w∗ (C.1.55)

The derivative of ΠDEV is given by

∂ΠDEV

∂w∗ =

(
pd1
2

− p3(w
∗ + p∗1 − p∗2 + pd1 − pd3(p

d
1))

2

)
∂p∗2
∂w∗ (C.1.56)

+

(
pd3(p

d
1)(w

∗ − p∗2 + pd1 − pd3(p
d
1))

2

)
∂p∗1
∂w∗ +

(
−pd1

2
+

pd3(p
d
1)(w

∗ + p∗1 − p∗2 + pd1 − pd3(p
d
1))

2

)
where we have again used the Envelope Theorem, which implies ∂ΠDEV

∂p1
= 0 at pd1. At

w∗ = 1, the solution is again pd1 = p∗1 = p∗2 = pd3(p
d
1) =

√
2 − 1. Thus, the derivative

further simplifies to

∂ΠDEV

∂w∗

∣∣∣∣
w∗=1

=

√
2− 1

2

(
2−

√
2
) ∂p∗1
∂w∗ . (C.1.57)

Consequently, (C.1.53) holds if and only if ∂p∗2/∂w
∗ < ∂p∗1/∂w

∗. We prove this in-

equality using the equations determining p∗1 and p∗2 given by (C.1.50) and (C.1.51) and the

multi-variate version of the Implicit Function Theorem. Rewriting (C.1.50) and (C.1.51)

implies the following system of implicit equations:

0 =− p∗1 +
1

2
(1− w∗ + p∗2) +

1

4
(w∗)2 − 1

4
(p2)

∗ (C.1.58)

0 =
1

2
+

1

4
(p∗1 − w∗)− 3

4
p∗2 +

1

4

(p∗1)
2

p∗2 − p∗1 − w∗ (C.1.59)
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By differentiating everything with respect to w∗ and collecting terms, we get

(−1)
∂p∗1
∂w∗ +

1

2
(1− p∗2)

∂p∗2
∂w∗ =

1

2
(1− w∗) as well as (C.1.60)

1

4

(
1 +

2p∗1(p
∗
2 − p∗1 − w∗) + (p∗1)

2

(p∗2 − p∗1 − w∗)2

)
∂p∗1
∂w∗ −

(
3

4
+

1

4

(p∗1)
2

(p∗2 − p∗1 − w∗)2

)
∂p∗2
∂w∗

(C.1.61)

=
1

4

(
1− (p∗1)

2

(p∗2 − p∗1 − w∗)2

)
.

At (p∗1, p
∗
2, w

∗) = (
√
2− 1,

√
2− 1, 1), this reduces to(

−1 1
2
(2−

√
2)

1
2
(3− 2

√
2) −1

2
(3−

√
2)

)(
∂p∗1
∂w∗
∂p∗2
∂w∗

)
=

(
0

−1
2
(1−

√
2)

)
(C.1.62)

It can also be verified that the derivatives exist by checking that the determinant of the

first matrix above is non-zero. Solving the system of linear equations yields(
∂p∗1
∂w∗
∂p∗2
∂w∗

)
=

(
1
17
(4
√
2− 7)

1
17
(
√
2− 6)

)
≈

(
−0.08

−0.27

)
, (C.1.63)

which shows that ∂p∗2/∂w
∗ < ∂p∗1/∂w

∗ at w∗ = 1, completing the proof of (C.1.53) and

Claim 1.

Claim 2: deviating to disclosure when in the information set {R} is not profitable.

Consider a firm −j that is at the information set H(−j) = R. Since H(−j) = R is

on-path, firm −j believes that firm j, which must have been visited before, set the price

p∗1 and that the buyer continued to search if uj < wd(p∗1) = w∗−p∗2+p∗1. If firm −j follows

the equilibrium strategy and does not disclose, firm j’s price remains at p∗1. But if firm

−j deviates to d−j = D, then H(j) = D × p∗1 × R, which leads firm j to revise its price

to maximize the following profit function:

pj

∫ wd(p∗1)

pj

1

2
F (uj − pj + p∗2)duj (C.1.64)

Let pdr3 denote the price that maximizes (C.1.64), where the superscripts reflect that

this stage is preceded by j both using and receiving search disclosure itself (i.e., H(j) =

D×p∗1×R). Clearly, d−j = D is not a profitable deviation for firm −j in the information

set H(−j) = R if pdr3 ≤ p∗1.
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We seek to show that there is a value s̃ > 0 such that pdr3 ≤ p∗1 if s ≤ s̃.1 By taking

the derivative of (C.1.64) with respect to pj, we obtain the first-order condition that pdr3

needs to satisfy. Similarly to pd3(p1) that we derived before, solving for pd3 yields:

pdr3 =
2

3
(wd(p∗1) + p∗2)−

1

3

√
(wd(p∗1))

2 + 2wd(p∗1)p
∗
2 + 4(p∗2)

2 (C.1.65)

=
2

3
(w∗ + p∗1)−

1

3

√
(w∗ + p∗1)

2 + 3 (p∗2)
2 (C.1.66)

To show that pdr3 < p∗1 when s is sufficiently small, observe that pdr3 = p∗1 = p∗2 =
√
2−1

at s = 0 or equivalently, at w∗ = 1. Thus, the claim is true if

∂p∗1
∂w∗

∣∣∣∣
w∗=1

<
∂pdr3
∂w∗

∣∣∣∣
w∗=1

. (C.1.67)

Since ∂p∗1/∂w
∗ at w∗ = 1 is already known from before, it only remains to calculate

∂pdr3 /∂w∗. Taking the derivative of (C.1.66) with respect to w∗ while taking into account

that p∗1 and p∗2 are functions of w∗ as well yields:

∂pdr3
∂w∗ =

2

3
− 1

3

w∗ + p∗1√
(w∗ + p∗1)

2 + 3 (p∗2)
2

(1 + ∂p∗1
∂w∗

)
− p∗2√

(w∗ + p∗1)
2 + 3 (p∗2)

2

∂p∗2
∂w∗ .

(C.1.68)

To evaluate this expression at w∗ = 1, recall that p∗1 = p∗2 =
√
2 − 1 and ∂p∗1/∂w

∗ =

−1/17(4
√
2− 7) and ∂p∗2/∂w

∗ = −1/17(
√
2− 6) (see (C.1.63) above) at w∗ = 1. Thus

∂pdr3
∂w∗ = 1/119(22 + 19

√
2) > ∂p∗1/∂w

∗,

which completes the proof that there is a value s̃ > 0 such that pdr3 ≤ p∗1 if s ≤ s̃.

Consequently, deviating to d−j = D is not profitable when H(−j) = R.

In sum, let s̄ = min(s̃, ŝ). Then, s ≤ s̄ implies that deviating from the equilibrium

disclosure strategy in either information set is not profitable. This establishes the exis-

tence of a partial disclosure equilibrium for all s ≤ s̄ and completes the proof of the first

part.

Part 2: There is a value s̄′ > 0 such that partial disclosure is not an equilibrium if s > s̄′.

In the partial disclosure equilibrium, we know that p∗1 ≤ p∗ ≤ p∗2, with p∗1 → p∗ and

p∗2 → p∗ as s → 1/8. The latter follows from the fact that the prices p∗1 and p∗2 are con-

tinuous in s and p∗1 = p∗2 = p∗ when s = 1/8. Recall also that the search cutoff wd(p1)

1Calculations show that pdr3 < p∗1 for all s > 0 but restricting attention to small s suffices here.
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satisfies: wd(p1) = w∗−p∗2+p1. Because p
∗
2 → p∗ as s → 1/8, it holds that wd(p1)−p1 → 0

as s → 1/8.

Consider the equilibrium profits of firm j when it sets the price p∗1 and discloses in

H(j) = NR:

Π1,∗(p∗1) = p∗1
1

2

[
1− F (wd(p∗1))

]
+ p∗1

∫ wd(p∗1)

p∗1

1

2
F (p∗2 + uj − p∗1)duj

By continuity of the expression above and because wd(p1) → p1 as s → 1/8, it follows

that:

lim
s→1/8

Π1,∗(p∗1) =
1

2
p∗1[1− p∗1] (C.1.69)

Suppose that firm j deviates to non-disclosure when H(j) = NR, in which case it

gets a chance to screen its buyers and receives profits as defined in equation (4.4.11). To

establish that deviating to non-disclosure is profitable if s → 1/8, it is sufficient to show

that the deviation is profitable if firm j charges p∗1. For p1 = p∗1, the profits a firm makes

as s → 1/8 (for which wd(p∗1) → p∗1) converge to

lim
s→1/8

Π1,d(p∗1) = p∗1
1

2

[
1− p∗1

]
+ pd3(p

∗
1)

∫ p∗1

pd3(p
∗
1)

1

2
F (p∗1 + uj − pd3(p

∗
1))duj, (C.1.70)

where we have simplified notation by neglecting the limit of p∗1 as s → 1/8. It is easy to

see that (C.1.70) is strictly greater than (C.1.69) as s → 1/8 if p∗1 > pd3(p
∗
1) in the limit

since this implies that the second term in (C.1.70) is strictly positive. To calculate the

limit of p∗1 − pd3(p
∗
1), note that:

lim
s→1/8

(
pd3(p

∗
1)
)
=

4

3
lim

s→1/8
(p∗1)−

1

3

√
7

(
lim

s→1/8
(p∗1)

)2

=
4−

√
7

3
lim

s→1/8
(p∗1)

where we again used that wd(p∗1) → p∗1 as s → 1/8. It thus follows that

lim
s→1/8

(
pd3(p

∗
1)− p∗1

)
=

1−
√
7

3
lim

s→1/8
(p∗1) < 0,

which shows that deviating to non-disclosure is strictly profitable as s lim 1/8. This com-

pletes the proof. ■

Proof of Lemma 6:

Consider the search decision of a consumer who has visited firm j first. Note that con-

sumers have passive beliefs. When receiving the (potentially off-equilibrium) price p1, a
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consumer with match value uj will thus search if and only if:

∫ uj−pf3 (p1)+pf2

0

max{uj−pf3(p1), 0}f(u−j)du−j+

∫ 1

uj−pf3 (p1)+pf2

max{u−j−pf2 , 0}f(u−j)du−j−s >

max{uj − p1, 0}, (C.1.71)

where the left-hand side depicts the value of continuing to search and the right-hand side

the value of not doing so. The optimal search strategy is a cutoff rule with cutoff wf (p1).

This holds by the following logic: Because we restrict attention to search costs which

admit on-path search, a consumer always strictly prefers to continue search (and does

not buy immediately) if uj ≤ p1. Moreover, if uj > p1, a consumer’s gains from search

(the difference between the left-hand side and the right-hand side of equation (C.1.71) is

strictly falling in uj. To see this, note that the derivative of the gains of search for uj ≥ p1

is bounded from above by

F
(
uj − pf3(p1) + pf2

)
− 1. (C.1.72)

Thus, there must be a unique cutoff wf (p1) so that consumers continue searching if

and only if their initial match value is below wf (p1).
2

To show that wf (p1) is given by the expression presented in the lemma, observe that

the maximum functions on both sides of (C.1.71) vanish if uj = wf (p1). This follows from

the fact that (i) wf (p1) > p1 and (ii) wf (p1) > pf3(p1) must hold.

While (i) holds by previous arguments, (ii) is due to the following logic: In a PBE,

wf (p1) > pf3(p1) must hold for any initial price p1. To see this, suppose toward a contra-

diction that wf (p1) ≤ pf3(p1). Since firms must have consistent beliefs in any PBE, firm j

in the information set H(j) = D × p1 ×R will believe that all returning consumers have

uj ≤ wf (p1). When setting a price pf3(p1) above wf (p1), the firm’s profits in this infor-

mation set would be zero. By contrast, it is easy to see that j could earn strictly positive

profits in the information set H(j) = D× p1 ×R by charging a price of pf3(p1) < wf (p1),

contradicting that wf (p1) ≤ pf3(p1) holds in equilibrium.

Point (ii) also implies that, for any u−j > wf (p1)−pf3(p1)+pf2 , we have thatmax{u−j−
pf2 , 0} = u−j − pf2 . Thus, regardless of whether p1 < pf3(p1) or not, the cutoff wf (p1), if it

lies strictly below 1, sets the following equation equal to 0:

T (wf , p1) := (wf − pf3(p1) + pf2)(w
f − pf3(p1)) +

∫ 1

wf−pf3 (p1)+pf2

(u−j − pf2)du−j − s− (wf − p1)

(C.1.73)

2To ensure that a cutoff is always unique, we impose the tie-breaking rule that consumers do not
continue to search if they are indifferent.
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which completes the proof of the lemma.

For future reference, we use T (wf , p1) to find the derivative of wf (p1) w.r.t. p1:

∂T

∂p1
= 1− (wf (p1)− pf3(p1) + pf2)

∂pf3(p1)

∂p1
;

∂T

∂wf
= (wf (p1)− pf3(p1) + pf2)− 1

(C.1.74)

This establishes that, so long as wf (p1) is interior:

∂wf (p1)

∂p1
=

1− (wf (p1)− pf3(p1) + pf2)
∂pf3 (p1)

∂p1

1− (wf (p1)− pf3(p1) + pf2)
. (C.1.75)

■

Proof of Lemma 7:

There are two cases, namely pf1 > pf3 and pf1 ≤ pf3 . The first case cannot be an equi-

librium because no firm j would disclose in the information set H(j) = R if pf1 > pf3 .

This is because dj = D when H(j) = R reduces the competitor’s price (since pf1 > pf3)

and intensifies competition. It is therefore sufficient to study the case that pf1 ≤ pf3 .

Part 1: Derivation of pf3 and pf2 .

To derive the optimal price pf3(p1) firm j offers in the information set H(j) = D×p1×R,

we compute the derivative of Π3,f (p3|p1) as defined in equation (4.4.15). One can show

that wf (pf1)− pf3 + pf2 < 1 must hold. Thus, the equilibrium price pf3(p1) < wf (p1) must

satisfy the following first-order condition for p1 in an open ball around pf1 :∫ wf (p1)

p3

1

2

(
uj − p3 + pf2

)
duj −

1

2
p3

(
wf (p1)− p3 + pf2

)
= 0 (C.1.76)

Thus, the price pf3(p1) is given by:

pf3(p1) =
2

3
(wf (p1) + pf2)−

1

3

√(
wf (p1) + pf2

)2
+ 3

(
pf2

)2
(C.1.77)

Consider pf2 next. We showed in the main text that the profit function of firm B in the

information set H(B) = R for prices in an open ball around the equilibrium pf2 is

Π2,f (p2) = p2
1

2
F (wf )

[
1− F (wf − pf3 + p2)

]
+ p2

∫ wf−pf3+p2

p2

1

2
F (pf3 + uB − p2)duB

(C.1.78)
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The corresponding first-order condition is:

wf
[
1− (wf − pf3 + p2)

]
− wfp2 +

∫ wf−pf3+p2

p2
(pf3 + uB − p2)duB = 0 (C.1.79)

Thus, for a fixed wf , the equilibrium price pf2 must solve:

pf2 = (1/2)
[
1− wf + pf3

]
+

1

4
(wf )− 1

4

(pf3)
2

(wf )
(C.1.80)

Part 2: For any wf , the equilibrium prices pf2 and pf3 := pf3(p
f
1) are uniquely determined.

Using (C.1.77), the on-path revision price pf3 for a fixed search cutoff wf (where wf =

wf (pf1) must hold in equilibrium) is given by

pf3 =
2

3

(
wf + pf2

)
− 1

3

√(
wf + pf2

)2
+ 3

(
pf2

)2
(C.1.81)

For a fixed search cutoff wf , the derivative of pf3 with respect to pf2 is:

∂pf3

∂pf2
= (2/3)− (1/3)(1/2)

2
(
wf + pf2

)
+ 6pf2√(

wf + pf2
)2

+ 3
(
pf2
)2 < 2/3 (C.1.82)

Moreover, for a fixed wf , we have:

∂pf2

∂pf3
= (1/2)− (1/2) (pf3/w

f )︸ ︷︷ ︸
<1

∈ (0, 1/2) (C.1.83)

We can define the solution price pf2 using a fixed-point expression:

T 2(pf2) := pf2 − p2
(
p3(p

f
2)
)
= 0 =⇒ ∂T 2

∂pf2
= 1− ∂p2

∂p3

∂p3
∂p2

(C.1.84)

Note that ∂p3
∂p2

< 2/3 and ∂p2
∂p3

∈
(
0, 1/2

)
, which implies that ∂p2

∂p3

∂p3
∂p2

< (1/3). Thus, T 2 is

strictly rising in p2. Consequently, there is a unique solution for pf2 , and by extension, for

pf3 , for any given wf .

Part 3: Initial equilibrium characterization: wf < 1 must hold.

Suppose toward a contradiction that wf = 1 for some level of search costs s > 0 and

recall that pf1 ≤ pf3 must hold in a full disclosure equilibrium. If wf = 1, it is easy to

verify that the unique solutions for pf2 and pf3 are given by pf2 = pf3 = 0.4142. In addition,
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pf2 = pf3 combined with pf1 ≤ pf3 and s > 0 implies that consumers with a match value

close to 1 at the first firm would not continue to search, contradicting that wf = 1. To

see this, note that the gains of search are continuous in the initial match value and that

a consumer with initial match value of 1 would strictly prefer to not continue searching.

Part 4: Derivation of pf1 .

pf1 must maximize Π1,f (p1) as defined in equation (4.4.17). Using the Envelope theo-

rem, which implies that ∂Π3,f (p3|p1)/∂p3 = 0, the first-order condition that pf1 must

solve can be written as:

1

2
(1− wf (p1))−

1

2

∂wf (p1)

∂p1
p1+

1

2
p3(p2(w

f ), wf (p1))
∂wf (p1)

∂p1

(
p2(w

f ) + wf (p1)− p3(p2(w
f ), wf (p1)

)
= 0 (C.1.85)

In an equilibrium, wf (pf1) = wf by definition, which implies that pf1 must solve:

pf1 = (1− wf )

(
∂wf (pf1)

∂p1

)−1

+ pf3
(
pf2 + wf − pf3

)
(C.1.86)

■

Proof of Proposition 18:

We seek to show that pf3 < pf1 in any full disclosure equilibrium, implying a profitable

deviation when H(j) = R. We prove this in three parts.

Part 1: A solution for ∂wf (p1)
∂p1

at p1 = pf1 .

By optimal consumer search, it was established that the derivative of wf (p1) w.r.t p1

depended on
∂pf3 (p

f
1 )

∂p1
. To pin down

∂wf (pf1 )

∂p1
, recall that the deviation pf3(p1) solves, for p1

around pf1 , the following function:

pf3(p1) =
2

3

(
wf (p1) + pf2

)
− 1

3

√(
wf (p1) + pf2

)2
+ 3

(
pf2

)2
(C.1.87)
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At p1 = pf1 , we have wf (pf1) = wf , which implies that:

∂pf3(p
f
1)

∂p1
=

∂wf (p1)

∂p1

[
2

3
− 1

3

1

2

2
(
wf + pf2

)√(
wf + pf2

)2
+ 3
(
pf2
)2
]

(C.1.88)

Plugging this back into the expression for ∂wf (p1)
∂p1

given in equation (C.1.75), which was

derived from consumers’ optimal search behaviour, implies that, at p1 = pf1 , expression

(C.1.88) becomes:

∂wf (pf1)

∂p1

[
1− (wf − pf3 + pf2) + (wf − pf3 + pf2)

(
2

3
− 1

3

(
wf + pf2

)√(
wf + pf2

)2
+ 3
(
pf2
)2
)]

= 1

(C.1.89)

The term in brackets is strictly positive, because (wf − pf3 + pf2) < 1 must hold in equi-

librium. Thus, the derivative of wf
1 (p1) w.r.t. p1 (evaluated at the equilibrium value pf1)

is independent of the exact value of pf1 . Moreover, it is strictly positive.

Part 2: Uniqueness of pf1 .

The results from Part 1 imply that
∂wf (pf1 )

∂p1
will be strictly positive and independent

of the exact value of pf1 . This establishes that, for any wf , pf1 is uniquely pinned down

and given by:

pf1 = (1− wf )

(
∂wf (pf1)

∂p1

)−1

+ pf3
(
pf2 + wf − pf3

)
(C.1.90)

Part 3: There exists no full disclosure equilibrium.

Previous arguments have established that wf < 1 must hold in equilibrium. However,

examining the unique joint solutions (pf1 , p
f
2 , p

f
3) establishes that, for any wf < 1, the

ordering pf3 < pf1 will hold. This, however, is a contradiction. Under this ordering of equi-

librium prices, firms would prefer to deviate and not disclose after receiving disclosure.

■

Proof of Proposition 19:

We know from Armstrong et al. (2009) that industry profits are higher under ordered

search than under random search if s ≤ 0.021. Now, we show that industry profits un-

der random search are the same as industry profits in the partial disclosure equilibrium,

which implies the result, together with the discussion surrounding the statement of this



180

proposition.

Under ordered search, the firm which is visited first sets the price p∗1, while the firm

that is visited second sets the price p∗2. Thus, total industry profits are:

p∗1

[(
1− F (wd(p∗1))

)
+

∫ wd(p∗1)

p∗1

F (p∗2 + uj − p∗1)duj

]
+

p∗2

[
F (wd(p∗1))

(
1− F (w∗)

)]
+

∫ w∗

p∗2

F (u−j − p∗2 + p∗1)du−j (C.1.91)

This is just twice the profits that any firm attains in the partial disclosure equilibrium,

which implies the result.

■

Proof of Corollary 7:

This result follows from the insights of Armstrong et al. (2009). Consumer surplus in

the partial disclosure equilibrium is equal to the consumer surplus in the ordered search

equilibrium defined in Armstrong et al. (2009). To see this, note that the ex ante expected

utility of the buyer under ordered search and in the partial disclosure equilibrium is:∫ wd(p∗1)

0

∫ 1

0

(
max{uj − p∗1, u−j − p∗2, 0} − s

)
du−jduj +

∫ 1

wd(p∗1)

(uj − p∗1)duj − s (C.1.92)

Because industry profits are also the same (see the proof of the previous proposition),

this implies that total surplus is also the same in the partial disclosure equilibrium and un-

der ordered search. Armstrong et al. (2009) show that total welfare and consumer surplus

under ordered search are below their counterparts in the Wolinsky (1986) equilibrium,

which implies the result.

■

C.2 Proofs — Section 4.5.

Proof of Proposition 20:

The result directly follows from the discussion in the two paragraphs after the state-

ment of the Proposition. ■

Consumer surplus calculations: We define consumer surplus as the ex-ante expected

utility of the buyer that we rely on throughout the paper, in particular in Section 4.5.2. To
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calculate consumer surplus, define us(uj) and uns(uj) as the expected utilities of search-

ing and not searching, respectively, for a buyer that draws an initial match value uj.

Consider the following general formulation where we define pf1 as the price the buyer

would receive at the initial firm she visits and pf2 and pf3 as the other prices she could re-

ceive second (or when returning to the initially visited firm) on the search path. Note that

this formulation nests all our equilibria. Recall further that there was always a unique

search cutoff wf such that buyers search (in equilibrium) if and only if their initial match

value is below this cutoff. Noting this, the ex-ante utility (BS) of the buyer is:

BS =

∫ wf

0

us(uj)duj +

∫ 1

wf

uns(uj)duj, (C.2.1)

where uns(uj) = max{uj − pf1 , 0} − s and us(uj) is given by

us(uj) =

∫ min{max{uj−pf3 ,0}+pf2 ,1}

0

max{uj−pf3 , 0}du−j+

∫ 1

min{max{uj−pf3 ,0}+pf2 ,1}
(u−j−pf2)du−j−2s.

We use (C.2.1) to calculate buyer surplus for different search costs in Figure 4.4.

C.3 Extension: Search with costly recall

A key comparative static result of our analysis is that sellers do not use search disclosure

in equilibrium if search costs are too large. This prediction hinges on the result that the no

disclosure equilibrium exists when the partial disclosure equilibrium does not (the former

always exists in the base model). The reason why no disclosure is an equilibrium in the

baseline model regardless of search costs was that deviating to disclosure can induce the

rival to revise its price downward, the negative effect of which outweighed any benefits

from disclosing. The dominance of this negative effect on the deviating firm’s profits is

directly related to the free recall assumption. This is because free recall guarantees that

every consumer learns about the revised price of the firm they visited first before they

make a purchase decision, which is to the detriment of the disclosing firm.

In this extension, we therefore study the case in which a positive mass of consumers

face strictly positive recall costs. While positive recall costs mitigate the negative effects

of deviating to search disclosure, we document that our results are robust in the sense

that no disclosure remains an equilibrium for a large share of parameter combinations,

and in particular when search costs are not too low. This is exactly what was to be

expected, given that the costs of triggering a price revision by one’s rival are smallest for

low search costs. This is because price revisions are small in magnitude when search costs

are small, given that the decision to search is not very informative about a consumer’s
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match value. We also argue why partial disclosure does not emerge as an equilibrium if

search costs are too large.

To model costly recall, we extend the framework of Janssen and Parakhonyak (2014),

who consider costly recall for all consumers. In our analysis, we assume that a share

1 − ρ < 1 of all consumers face recall costs. Precisely, 1 − ρ consumers must incur the

cost b > 0 if they want to return to the seller they visited first after having continued to

search. The remaining ρ > 0 share of consumers have free recall as in the baseline model.

Everything else is identical to the baseline model as well.

We require one further amendment to the consistency requirement on off-path beliefs.

We specify that a firm in an information set in which it can revise its price, following

some deviation, believes that consumers who have returned must have found it optimal

to return.

We focus on the no disclosure equilibrium in this framework with costly recall. In

this equilibrium, there is just one equilibrium price, which we call pc, given that firms

know nothing about the consumers’ search histories in equilibrium. That is, consumers

expect to receive the equilibrium price pc at any firm and expect no revisions of prices.

Thus, consumers with free recall will search if their match value is below w0(pj; p
c) =(

1−
√
2s
)
−pc+pj, as in the baseline model. The optimal cutoff for consumers with recall

costs, however, is different. Consumers with costly recall search if their match value is

below

wb(pj; p
c) =

(
1 + b−

√
2s+ 2b

)
− pc + pj. (C.3.1)

As before, we restrict attention to equilibria with active search. As in Janssen and

Parakhonyak (2014), we also restrict attention to search costs under which there also

is positive return demand by consumers with recall costs in equilibrium, i.e. wb(pc; pc) >

pc + b3.

In equilibrium, the firms obtain profits from both consumers with free recall and

consumers with costly recall. The demand from the former group, which we denote by

D0(pj) here, has the same structure as defined in equation (4.4.8). Equilibrium demand

from consumers with recall costs, which we here denote by Db(pj), is novel and given by:

Db(pj) =

∫ 1

wb(pj ;pc)

(1/2)duj +

∫ wb(pj ;p
c)

pj+b

(1/2)F (u− pj − b+ pc)duj︸ ︷︷ ︸
first arriver demand

+

3The equivalent condition on b and s when there are no consumers with free recall can be found in
proposition 6 in Janssen and Parakhonyak (2014).
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wb(pc; pc)

∫ 1

wb(pj ;pc)−b

(1/2)duj +

∫ wb(pj ;p
c)−b

pj

(1/2)F (uj − pj + b+ pc)duj︸ ︷︷ ︸
searcher demand

(C.3.2)

To understand this expression, consider first the demand from consumers who arrive

at firm j first. Because wb(pj; p
c) > pj since we restrict attention equilibria with active

search, any consumer who arrives at firm j first and obtains a match value above wb(pj; p
c)

will directly buy. Any consumer with uj < wb(pj; p
c) will search and ultimately buy at

firm j if and only if it is worthwhile to return at all (i.e. uj > pj + b) and it is better to

return than to purchase at the other firm (i.e. uj − pj − b > u−j − pc).

Next, consider consumers who visit firm −j first. These consumers are expected to

sample firm j only if u−j < wb(pc; pc), given firm j believes that they have received the

price pc at firm −j. If their match at firm j is above wb(pj; p
c) − b, any such consumer

will surely buy at firm j. If their match value uj is below this cutoff, they will buy at

firm j if this match value exceeds pj and it is better to purchase at firm j than to return

to firm −j, i.e., uj − pj > u−j − pc − b.

We define the equilibrium profit function of the firm as Π(pj; p
c), which is given by:

Π(pj; p
c) = pj

[
ρD0(pj) + (1− ρ)Db(pj)

]
(C.3.3)

The equilibrium price pc in the no disclosure equilibrium must thus solve:

pc = argmax
pj

Π(pj; p
c) (C.3.4)

The no disclosure equilibrium exists if it is not worthwhile for a firm to deviate from the

equilibrium by disclosing when an unknown buyer arrives at the firm. As in the baseline

framework, such a deviation by firm j will have different effects, depending on whether

the buyer has visited firm −j before or not. If a buyer who arrives at firm j first (without

firm j knowing) and firm j discloses, then firm −j will offer a price pc2 to the consumer.

As before, this price pc2 is above the equilibrium price pc.

By contrast, if a buyer arrives at firm j after having visited firm −j before, then

search disclosure leads the rival firm −j to revise its price. We define the price that a

firm would choose in this information set as pc3. Recall that the revised price was always

below the equilibrium price in the baseline framework. Due to presence of consumers

with costly recall, this is no longer true in general. This is because consumers with recall

costs who return to the firm they initially visited generate inelastic demand around the

original price.4

4Note that we still assume passive beliefs here. This implies that a firm who receives disclosure
still believes that its rival set the equilibrium price pc, and that consumers searched according to the
equilibrium search rules.
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The profit function of a firm that receives disclosure for a known buyer is non-

differentiable at the price pc+b. This holds because, given the firm’s beliefs, it anticipates

that all consumers with recall costs who return to the firm surely buy when offered a

return price below pc + b, which is not true when the return price is above pc + b.

For any price pj ≤ pc + b, a firm j who receives disclosure for a known buyer believes

it will make obtain the following profits:

ΠR(pj; p
c) = pj

[
(1− ρ)

∫ wb(pc;pc)

pc+b

(uj − b)duj︸ ︷︷ ︸
Consumers with recall costs

+ ρ

∫ w0(pc;pc)

pj

(uj − pj + pc)duj︸ ︷︷ ︸
Consumers with free recall

]
(C.3.5)

To understand this expression, note the following. From firm j’s points of view, all

consumers with recall costs who return to firm j must (i) have a match value above pc+b

and (ii) must have a difference in match values, namely uj − u−j, that is greater than b.

Result (ii) holds because firm j believes that the consumer received the price pc at its

rival. In that situation, it would only be worthwhile for a consumer with recall costs to

return to firm j instead of buying at the rival if uj − b− pc > u−j − pc, i.e. if and only if

uj − u−j > b.

These results imply that the demand from returning consumers with costly recall is

fully inelastic for pj ≤ pc + b. When offering a price pj ≤ pc + b, the match value of

any any such consumer who returns will exceed the price, by result (i). Moreover, firm

j would also expect any such consumer to buy at firm j rather than at firm −j. This is

because, by result (ii), the consumption utility at firm j (namely uj − pj) remains above

the consumption utility at firm −j (namely uj − pc) for any pj ≤ pc + b.

At any price pj > pc + b, by contrast, the demand generated by returning consumers

with recall costs is elastic. Then, the objective function ΠR(pj; p
c) is:

ΠR(pj; p
c) = pj

[
(1− ρ)

∫ wb(pc;pc)

pj

(uj − pj + pc)duj︸ ︷︷ ︸
Consumers with recall costs

+ ρ

∫ w0(pc;pc)

pj

(uj − pj + pc)duj︸ ︷︷ ︸
Consumers with free recall

]

(C.3.6)

The two different consumer groups hence affect the optimal return price in different ways:

Consumers with recall costs push up the optimal revision price pc3, while consumers with

free recall exert downward pressure on this price. As a result, the relationship between pc3

and s is non-monotonic. Using numerical methods, we compute pc3 (and all other relevant

equilibrium objects) for different parameter combinations. The results are visualized by

the following graphs, which plot the relationship between pc3 and s for different levels of

ρ and b:
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Figure C.1: Costly recall — return prices

For low levels of s, the price pc3 equals pc + b and thus lies strictly above pc. To see

why this is optimal, recall that consumers with recall costs generate inelastic demand for

prices pj ≤ pc + b. These consumers thus push the optimal revision price of the firm up

towards pc + b, but no further than that, because the associated profits have a kink at

this price. When search costs are low, the measure of consumers with costly recall who

arrive at a firm is relatively high, which implies that the optimal revision price equals

pc + b. The optimal revision price pc3 will fall below pc only for sufficiently high search

costs, at which the weight of returning consumers with free recall, which push the price

below pc, becomes high enough.

For low values of s, there is hence no detrimental effect of disclosure because disclosure

always leads to upward changes in the rival’s price. Thus, the no disclosure equilibrium

does not exist for low search costs in this setup. Only when pc3 falls sufficiently far below

pc and the detrimental effect of disclosure is sufficiently strong, no disclosure becomes

an equilibrium. This is visualized by the following figure. In each graph, we compare the

equilibrium profits Π(pc; pc) (dotted line) to the profits that are attainable via a deviation

to disclosure (solid line) for different combinations of ρ and b. If the equilibrium profits

are above the deviation profits, no disclosure is an equilibrium.5

5The validity of this claim hinges on one additional observation. No firm must find it optimal to
deviate by disclosing after having received disclosure. We numerically verified that this is the case if
search costs are low enough such that Π(pc; pc) is greater than the depicted deviation profits.
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Figure C.2: Costly recall — deviation incentives

There are three main takeaways: First, the no disclosure equilibrium continues to exist

for a wide range of search costs even when 50% of consumers have substantial return costs

(b = 0.03).

Second, the presence of return costs does strongly counteract the existence of this

equilibrium if search costs are too small, which has implications for the optimal regulation

of the markets we describe. For instance, enabling price retargeting of consumer through

tracking (i.e. raising ρ) may be quite beneficial, because it counteracts the incidence of

search history based price discrimination.

Third, the analysis has reaffirmed that the incentives to conduct search disclosure

are reduced when search costs increase. Intuitively, this notion would also carry over

when analyzing the partial disclosure equilibrium in the extension with costly recall.

We conjecture that the partial disclosure equilibrium will only exist when search costs

are sufficiently small. When they are high, consumers who leave a firm to search will

never return (this effect is only reinforced by recall costs). Thus, the benefits of search

disclosure (i.e. increasing the price the rival would set upon being visited second) will

be negligible even under costly recall. By contrast, the benefits of withholding disclosure

(via receiving the ability to revise one’s price) are still large even if search costs are high,

because the resulting selection will be particularly pronounced. By similar arguments, the

full disclosure equilibrium may exist if recall is costly, but only if search costs are very

small.

C.3.1 Mathematical analysis: costly recall

Part 1: Equilibrium characterization

Janssen and Parakhonyak (2014) show that the reservation utility of a consumer with
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recall costs in a uniform price equilibrium (with equilibrium price pc) is:

wb(pj) =
(
1 + b−

√
2b+ 2s

)
− pc + pj (C.3.7)

In equilibrium, consumers with free and costly recall will search if and only if their initial

valuation is below w∗,0 and w∗,b, which are respectively defined as follows:

w∗,0 = w0(pc) := 1−
√
2s ; w∗,b = wb(pc) := 1 + b−

√
2b+ 2s (C.3.8)

Consider consumers for whom recall is free and who arrive at firm j:

• First arrivers with uj > w0(pj) will buy at firm j.

• First arrivers with uj ∈ [pj, w
0(pj)] buy at firm j iff u−j < uj − pj + pc.

• Second arrivers with uj > w0(pj) buy at firm j if and only if u−j < w∗,0.

• Second arrivers with uj ∈ [pj, w
0(pj)] buy at firm j if and only if u−j < uj −pj +pc.

Now consider consumers for whom recall is costly.

• First arrivers with uj > wb(pj) will buy at firm j.

• First arrivers with uj ∈ [pj, w
b(pj)] buy at firm j iff u−j < uj − pj − b + pc and

uj − pj − b > 0.

• Second arrivers with uj > wb(pj) buy at firm j if and only if u−j < wb,∗.

• Second arrivers with uj ∈ [pj, w
b(pj)] buy at firm j iff u−j < wb,∗, and u−j <

uj − pj + b+ pc.

Firstly, consider the components of demand from consumers with strictly positive return

costs b > 0. Consider first arrivers with uj > wb(pj). Demand from these consumers is:

D1(pj) =

∫ 1

wb(pj)

(1/2)duj (C.3.9)

Consider second arrivers with uj ∈ [pj, w
b(pj)−b]. The condition that u−j < uj−pj+b+pc

implies that they have searched (i.e. u−j < wb,∗), because:

u−j < wb(pj)− b− pj + b+ pc = wb,∗

Now consider second arrivers with uj ∈ [wb(pj) − b, 1]. For these consumers, search

guarantees consumption. Search requires that u−j < wb,∗. Consumption occurs at j if

uj − pj > u−j − pc− b ⇐⇒ uj − pj + b > u−j − pc. If these consumers searched, we have:

u−j − pc < wb,∗ − pc = wb(pj)− pj ≤ uj − pj + b
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Thus, demand implied by second arrivers is:

DS(pj) = wb,∗
∫ 1

wb(pj)−b

(1/2)duj +

∫ wb(pj)−b

pj

(1/2)(uj − pj + b+ pc)duj (C.3.10)

Thirdly, consider the demand that comes from agents with return costs that visit firm j

first, search, and then return. This demand is:

DR(pj) =

∫ wb(pj)

pj+b

(1/2)(uj − pj − b+ pc)duj (C.3.11)

One can show that demand from consumers with return cost b is thus:

D(pj; b) = (1/2)
(
2pc − 2pj + 1− (pc)2 − pjb− pc

√
2b+ 2s+ pj

√
2b+ 2s

)
(C.3.12)

Thus, the equilibrium price will need to solve:

pj
∂D(pj)

∂pj
+D(pj) = 0 ⇐⇒

(
2pc−2pj+1−(pc)2−pj(1−ρ)b

)
−pc

(
ρ
√
2s+(1−ρ)

√
2b+ 2s

)
+pj

(
ρ
√
2s+(1−ρ)

√
2b+ 2s

)
+pj

(
− 2− (1− ρ)b+

(
ρ
√
2s+ (1− ρ)

√
2b+ 2s

))
= 0 (C.3.13)

The equilibrium price is thus:

p∗ =
−d∗ −

√
(d∗)2 − 4(a∗)(c∗)

2a∗
(C.3.14)

We have defined a∗ = −1, c∗ = 1, and:

d∗ = −2− 2(1− ρ)b+ ρ
√
2s+ (1− ρ)

√
2b+ 2s

Naturally, this is only the correct equilibrium price as long as pc + b < wb,∗ := wb(pc).

Part 2: Optimal second arriver pricing:

Suppose a firm j receives search disclosure for a previously unknown buyer, which implies

that this consumer must have arrived second and must have u−j < w∗,b or u−j < w∗,0,

respectively. For second arrivers with return costs b, demand is:

DS(pj; b) = wb,∗
∫ 1

wb(pj)−b

(1/2)duj +

∫ wb(pj)−b

pj

(1/2)(uj − pj + b+ pc)duj (C.3.15)
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For second arrivers with free recall (share ρ), demand is:

DS(pj; 0) = w0,∗
∫ 1

w0(pj)

(1/2)duj +

∫ w0(pj)

pj

(1/2)(uj − pj + pc)duj (C.3.16)

Thus, a firm who receives disclosure for a previously unknown buyer will maximize the

following through choice of p2:

p2
[
ρDS(pj; 0) + (1− ρ)DS(pj; b)

]
(C.3.17)

Part 3: Optimal revision of prices

Now consider the optimal price that a firm j would set when receiving disclosure for

a consumer it has seen before. Any such consumer with return costs must have uj < w∗,b

and must find it optimal to return (expecting to receive pc at the initial firm they visit).

This requires that (i) uj > pc + b and (ii) uj − pc − b > u−j − pc ⇐⇒ u−j < uj − b.

Consider prices pj ∈ [pc, pc + b]. For any such price, a consumer who returns can buy

(by condition (i)) and will buy, given that they still prefer to buy at firm j (by condition

(ii)). Thus, demand (from consumers with return costs) for prices pj ∈ [pc, pc + b] is:

DR(pj, b) =

∫ w∗,b

pc+b

∫ uj−b

0

(1/2)du−jduj (C.3.18)

Moreover, demand (from consumers with return costs) for prices pj ∈ [pc + b, 1] is:

DR(pj, b) =

∫ w∗,b

pj

∫ uj−pj+p∗

0

(1/2)du−jduj =

∫ w∗,b

pj

(1/2)(uj − pj + pc)duj (C.3.19)

Both these probabilities will be strictly interior.

Recalling that a share ρ of agents have no recall costs, total demand from returning

consumers for prices pj ≤ pc + b is:

DR(pj) = ρ

∫ w∗,0

pj

(1/2)(uj − pj + p∗)duj + (1− ρ)

∫ w∗,b

p∗+b

(1/2)(uj − b)duj (C.3.20)

Return demand can be similarly computed for pj > p∗ + b, noting that the component

derived from consumers without return costs stays the same.

Part 4: The effects of a deviation by disclosure
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Now suppose that firm j, who initially receives no disclosure, deviates by disclosing.

Consider any second arriver with return costs and uj ∈ [wb(pj) − b, 1]. By previous

arguments, any such consumer will arrive at firm j and not return to firm −j, because

she does not anticipate a revision of the original price at firm −j. Thus, conducting search

disclosure will not harm the disclosing firm when facing such a consumer.

Now consider any second arriver with return costs and uj ∈ [pj, w
b(pj) − b] and u−j ∈

[0, uj − pj + b + pc]. In the perception of any such consumer, it is not optimal to return

to firm −j. Thus, conducting search disclosure will not harm the disclosing firm when

facing such a consumer.

Any consumer with uj ∈ [pj, w
b(pj) − b] and u−j ∈ [uj − pj + b + pc, 1] would in fact

return to firm −j (anticipating to receive the price pc there). Any such consumer would

thus buy at firm j iff and only if uj − pj > u−j − p3. When p3 < pc, no such consumer

would ever buy at firm j. However, if p3 ≥ pc, there is a chance that any such consumer

buys at firm j. This occurs if uj − pj > u−j − p3. Thus, any such consumer will buy at

firm j if u−j ∈ [uj − pj + pc + b, uj − pj + p3].

Thus, demand from second arrivers with return costs is:

DS(pj) = (1/2)wb,∗[1− (wb(pj)− b)] +

∫ wb(pj)−b

pj

(1/2)(uj − pj + b+ pc)duj+

∫ wb(pj)−b

pj

∫ uj−pj+p3

uj−pj+pc+b

(1/2)du−jduj (C.3.21)

Now consider first arrivers with return costs. Consumers with uj > wb(pj) will never

search, so demand from them is still given by:

D1(pj) =

∫ 1

wb(pj)

(1/2)duj (C.3.22)

This is because wb(pj) > pj. Thirdly, consider consumers with return costs b > 0 who

arrive at firm j first, search, and return. Given the timing of search disclosure, they have

received the price p2,d. Because the rival firm will not engage in search disclosure, the

demand implied by these consumers is:

DR(pj) =

∫ wb(pj)

pj+b

(1/2)(uj − pj − b+ p2)duj (C.3.23)
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Deviation demands from consumers without return costs have been derived previously

— this is given in equation (4.4.11). We can use all these notions to compute the total

demand (and thus the optimal price) set by a firm after deviating by non-disclosure. This

profit is:

Π1,b(pj) = pj(1− ρ)
1

2

[ ∫ 1

wb(pj)

(1)duj +

∫ wb(pj)

pj+b

(uj − pj − b+ p2)duj+

wb,∗[1− (wb(pj)− b)]+

∫ wb(pj)−b

pj

(uj −pj + b+pc)duj +

∫ wb(pj)−b

pj

∫ uj−pj+p3

uj−pj+pc+b

(1)du−jduj

]
+

pj
ρ

2

[[
1− w0(pj)

]
+

∫ w0(pj)

pj

(p2 + uj − pj)duj + w∗,0(1− (w∗,0 − p3 + pj)
)
+

∫ w∗,0−p3+pj

pj

(p3 + uj − pj)duj

]
(C.3.24)

Part 5: Deviations to disclosure after receiving disclosure.

Suppose a firm j receives disclosure for a buyer that it has not seen before. By the

passive beliefs assumption, it believes that its rival −j offered the price p∗ and that con-

sumers who visited the rival first continued searching if and only if their match there

was below w,0 and w∗,b, respectively. By not disclosing, the rival’s price would remain

unchanged. By disclosing, firm j gives its rival the chance to revise its price. From firm

j’s point of view, the rival will then maximize the following profit function:

Πdd(p−j) = ρ

∫ w∗,0

0

(u−j − p−j + p2)1[p−j ≤ u−j]du−j+

(1− ρ)

∫ w∗,b

p∗+b

∫ u−j−p∗−b+p2

0

1[u−j − p−j ≥ 0]1[u−j − p−j ≥ uj − p2]dujdu−j (C.3.25)

The rival’s (−j) beliefs are passive and the rival knows that it initially disclosed. Re-

ceiving disclosure lets the rival know that it was visited first. The rival thus knows that

firm j was in the information set H(j) = R after receiving disclosure by −j. By the as-

sumption of passive beliefs, the rival firm −j must believe that firm j offered the price p2.
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Upon offering a price p−j ≤ pc + b, profits are thus:

ρ

∫ w∗,0

0

(u−j − p−j + p2)1[p−j ≤ u−j]du−j + (1− ρ)

∫ w∗,b

p∗+b

(u−j − p∗ − b+ p2)du−j

(C.3.26)

This is because:

u−j − pc − b+ p2 ≤ u−j − p−j + p2

By contrast, if p−j > pc + b, profits are:

ρ

∫ w∗,0

0

(u−j − p−j + p2)1[p−j ≤ u−j]du−j + (1− ρ)

∫ w∗,b

p−j

(u−j − p−j + p2)du−j (C.3.27)
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Moraga-González, J. L. and V. Petrikaitė (2013). Search costs, demand-side economies,

and the incentives to merge under bertrand competition. The RAND Journal of

Economics 44(3), 391–424.

Mussa, M. and S. Rosen (1978). Monopoly and product quality. Journal of Economic

Theory 18(2), 301–317.

Novshek, W. and H. Sonnenschein (1982). Fulfilled expectations cournot duopoly with

information acquisition and release. The Bell Journal of Economics 13(1), 214–218.

OECD Secretariat (2016). Executive summary of the roundtable on price discrimination.

Osório, A. (2023). Data and competitive markets: Some notes on competition, concen-

tration and welfare. The BE Journal of Theoretical Economics 23(1), 487–517.

Pan, S. and X. Zhao (2022). Commitment and cheap talk in search deterrence. RAND

Journal of Economics, Forthcoming.

Peiseler, F., A. Rasch, and S. Shekhar (2022). Imperfect information, algorithmic price

discrimination, and collusion. The Scandinavian Journal of Economics 124(2), 516–549.

Preuss, M. (2022). Search, learning and tracking.

Rhodes, A. and J. Zhou (2022). Personalized pricing and competition. Available at SSRN

4103763.

Shapiro, C. (1986). Exchange of cost information in oligopoly. The Review of Economic

Studies 53(3), 433–446.

Stahl, D. O. (1989). Oligopolistic pricing with sequential consumer search. American

Economic Review 79(4), 700–712.

Statista (2021). Leading e-commerce websites in the united states as of june 2021, based

on number of monthly visits.



200

Statista (2022). Worldwide desktop market share of leading search engines from january

2010 to july 2022.

Taylor, C. R. (2004). Consumer privacy and the market for customer information. RAND

Journal of Economics 35(4), 631–650.

Ursu, R., Q. P. Zhang, and E. Honka (2021). Search gaps. Available at SSRN 3757724.

Valletti, T. and J. Wu (2020). Consumer profiling with data requirements: Structure and

policy implications. Production and Operations Management 29(2), 309–329.

Vives, X. (1984). Duopoly information equilibrium: Cournot and bertrand. Journal of

Economic Theory 34(1), 71–94.

Wolinsky, A. (1986). True monopolistic competition as a result of imperfect information.

The Quarterly Journal of Economics 101(3), 493–512.

Yang, H. (2013). Targeted search and the long tail effect. The RAND Journal of

Economics 44(4), 733–756.

Zhao, X. (2012). Service design of consumer data intermediary for competitive individual

targeting. Decision Support Systems 54(1), 699–718.

Zhou, J. (2011). Ordered search in differentiated markets. International Journal of

Industrial Organization 29(2), 253–262.

Zhu, H. (2012). Finding a good price in opaque over-the-counter markets. The Review

of Financial Studies 25(4), 1255–1285.


	General Introduction
	Competitive Price Discrimination, Imperfect Information, and Consumer Search
	Introduction
	Related literature
	Framework
	Equilibrium analysis
	Pure-strategy equilibria
	Mixed-strategy equilibria
	Equilibrium predictions and comparative statics

	Generalized signal distributions
	Conclusion

	Search, Data, and Market Power
	Introduction
	Related literature
	Framework
	Equilibrium analysis
	Baseline model
	Sequential search framework

	Welfare and policy recommendations
	Data and consumer welfare
	Policy implications

	Extensions
	Conclusion

	Search Disclosure
	Introduction
	Related literature
	Framework
	Equilibrium analysis
	No disclosure equilibria
	Partial disclosure equilibria
	Full disclosure equilibria
	Comparative statics
	Mixed-strategy equilibria

	Policy implications
	Banning price revisions
	Exogenous search disclosure

	Conclusion

	Chapter 2: Proofs
	Proofs — Section 2.4.
	Proofs — Section 2.5.

	Chapter 3: Proofs and further material
	Proofs — Section 3.4.
	Proofs — Section 3.5.
	Extensions
	Non-binary finite signals
	Continuous signals
	Quality differentiation
	Endowing both firms with data

	Proofs — extensions
	Omitted results
	Baseline model — no data advantages
	Dispersed data framework — no data advantages


	Chapter 4: Proofs and further material
	Proofs — Section 4.4.
	Proofs — Section 4.5.
	Extension: Search with costly recall
	Mathematical analysis: costly recall


	Statement/Erklärung
	Curriculum Vitae

