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Summary

The rapidly emerging trend of purchasing products online has not spared groceries.

Since groceries are fresh and partly refrigerated goods, delivery can only be successfully

completed when customers are at home to receive their deliveries. This complicates

the fulfillment of customer orders as e-grocers and customers have to agree on mutual

time windows for delivery. This dissertation is concerned with demand management

for e-grocers. Chapter 2 of this dissertation addresses an e-grocer’s time slot offering

problem from a customer choice perspective. To this end, the time slot offering prob-

lem is modeled as an online assortment optimization problem using a consider-then-

choose customer choice model. An estimation procedure for the consider-then-choose

customer choice model based on historical transaction data is proposed which incorpo-

rates a predefined cluster structure. We show that the estimation procedure can identify

the underlying customer choice behavior and that the underlying cluster structure can

be efficiently exploited in the online time slot offering problem. Chapter 3 focuses on

an acute crisis situation of an e-grocer in which demand outstrips delivery capacity by

a wide margin, such as during the COVID-19 pandemic. In this chapter, we examine

how the demand management lever of proactive customer contacting can be utilized

to manage the customer arrival process. We propose a contacting scheme for the ful-

fillment channels Click&Collect and Attended Home Delivery and show that proactive

customer contacting can be used to prioritize vulnerable customers at the expense of a

relatively small decline in overall revenue. Chapter 4 explores the lever of proactive cus-

tomer contacting in post-crisis situations to balance demand disparity over several days.

Here, proactive customer contacting is used as a contingency tool when it is anticipated

that not enough customers will emerge via the classical booking process. Compared to

Chapter 3, the customer arrival process not only consists of contacted customers but

also comprises non-contacted customers. This leads to a cannibalization effect that must

be managed. We demonstrate the merit of proactive customer contacting and compare

different contacting strategies in various settings. In particular, we reveal what drives

the success of proactive customer contacting.
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Chapter 1.

Introduction

October 29th, 1969, is a very important but yet relatively unknown date in recent history.

On this day, the first message was sent over a network now known as the Internet (Klein-

rock 2010). Since then, the development of this technology has fundamentally changed

the daily lives of many people, as the Internet has had a lasting impact on virtually every

sphere of life. With the advent of e-commerce, for instance, shopping behavior has expe-

rienced a radical transformation, with many products being purchased online (Statista

2022). This development has not spared groceries (see, e.g., REWE or Sainsbury’s).

Compared to other product classes, ordering groceries online involves several additional

challenges. Since most products are fresh and some groceries need to be refrigerated,

one issue is that customers need to be at home to receive the groceries when their or-

ders are delivered. These attended home deliveries complicate the fulfillment process as

e-grocers and customers must mutually agree on time windows to successfully complete

deliveries. To succeed in the online market, e-grocers must carefully govern their opera-

tions and fulfillment processes. One tool for guiding these processes is customer demand

management which is the central topic of this dissertation.

Chapter 2 of this dissertation investigates the time slot offering problem, i.e., the

question of which time slots to offer to arriving customers. This problem is of tremendous

importance because e-grocers operate in a particularly challenging market situation with

low profit margins, and the selected time windows have an immense impact on the

efficacy of the offered service. So far, the time slot offering problem has mostly been

studied with a focus on the routing aspect rather than the customer choice component

(Wassmuth et al. 2023). In this dissertation, we dedicate Chapter 2 to examine this

problem from a customer choice perspective. We model the time slot offering problem

as an online assortment optimization problem using a consider-then-choose customer
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Chapter 1. Introduction

choice model. We propose a method how to estimate the consider-then-choose choice

model from historical transaction data that incorporates a predefined cluster structure.

This cluster structure is then exploited in the online time slot offering problem. In a

numerical study, we evaluate the estimation procedure and the online time slot offering

problem. In particular, we show that the proposed estimation method of the consider-

then-choose choice model works and is able to identify the underlying customer choice

behavior for many time slots over multiple days. For the time slot offering problem, we

demonstrate that the chosen assortment optimization approach can efficiently exploit

the underlying cluster structure and leads to fast online computation times. This is

particularly important in the considered online context.

The increasing trend of purchasing products online was further amplified by the

COVID-19 crisis (Mintel 2021, McKinsey 2020). This rapid increase in demand exceeded

the existing capacities, leading to e-grocers no longer being able to serve all customer

requests and booking systems being unable to cope with the demand onslaught (CNA

2020, Telegraph 2020, Vox 2020). In this situation, some e-grocers began to proactively

reach out to customers with the aim of serving as many high-priority customers as pos-

sible. In Chapter 3, we focus on such a crisis situation and present approaches how

to coordinate proactive customer contacting for both fulfillment channels Click&Collect

(C&C) and Attended Home Delivery (AHD). In a realistic numerical study based on

the region of London, UK, we evaluate proactive customer contacting compared to the

traditional reactive order intake and derive several pioneering managerial insights. We

observe that proactive customer contacting is a valuable demand management tool to

prioritize vulnerable customer groups and show that especially high customer response

rates, as prevalent in crisis situations, benefit the contacting policy. Moreover, we demon-

strate that the benefit of adding an additional contacting possibility decreases quickly

and that the trade-off between prioritizing vulnerable customer groups and revenue is

relatively mild.

Based on the insights gained in crisis situations, naturally the question arises of how

proactive customer contacting can be leveraged in post-crisis times. Chapter 4 addresses

this issue and explores whether proactive customer contacting can be used as a contin-

gency tool to balance the demand disparity over multiple days. In this setting, proactive

customer contacting is activated if the e-grocer anticipates that not enough customer

inquiries will emerge via the normal booking process. Here, proactive customer contact-

ing serves as a demand management lever to shift future demand to an earlier point in

2



Chapter 1. Introduction

time. Compared to Chapter 3, the arrival process does not only consist of contacted

customers but now also comprises contacted and non-contacted customers. This leads

to a cannibalization effect that must be managed. In a numerical study, we compare

different contacting strategies and explore the value of proactive customer contacting in

post-crisis times. In particular, we observe that it is not always optimal to contact the

marginal best customers. Instead, the optimal contacting decision depends on the in-

terrelationship of customers available for contacting. In addition, we demonstrate that

the benefit of contacting depends to a great extent on the overall system utilization,

the utilization of the preliminary route, and the response probability of the contacted

customers.

3



Chapter 2.

Tractable Time Slot Assortment

Optimization in Attended Home

Delivery under Consider-Then-Choose

Customer Choice
1

with Moritz Fleischmann and Arne Strauss

1The research presented in this chapter is based on a paper entitled ”Tractable Time Slot Assort-
ment Optimization in Attended Home Delivery under Consider-Then-Choose Customer Choice”,
coauthered with Moritz Fleischmann and Arne Strauss (Schwamberger et al. 2023).
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Chapter 2. Time Slot Offering Problem: Estimation & Optimization

Abstract

In attended home delivery, the delivery time slot offering problem has a significant

impact on the efficiency of the retailer providing this service. Since the decision on

which time slots to offer is typically made online during the customer booking process,

this problem requires a real-time solution. However, solving this problem is complex

since most companies offer multiple time slots over multiple days and must account for

customer preferences. To adequately reflect customer choice, an appropriate customer

choice model must be adopted. We employ the consider-then-choose choice model, which

in the empirical literature has been shown to reflect the general underlying customer

choice behavior well. We address the time slot offering problem from a customer choice

perspective. In particular, we propose a time slot assortment optimization model that

exploits a customer cluster structure underlying the consider-then-choose choice model

to solve the time slot offering problem in real-time. In addition, we propose a method

for estimating the consider-then-choose choice model with such a cluster structure from

historical transaction data. We evaluate this estimation method and the proposed time

slot offering model in a numerical study and demonstrate that the estimation procedure

can extract the underlying choice behavior and that the time slot offering problem can

be solved in real-time for realistic problem sizes of an e-grocer.

5



Chapter 2. Time Slot Offering Problem: Estimation & Optimization

2.1. Introduction

In recent years, e-grocers have been experiencing strong growth in demand. In partic-

ular, the COVID-19 pandemic has contributed to the growing popularity of e-grocers’

attended home delivery service (Schwamberger et al. 2022b). In this service, customers

usually specify their delivery address and shopping basket before selecting one of the

offered time slots in which they prefer to obtain their delivery. E-grocers operate in a

particularly challenging market situation. Due to fierce competition, profit margins are

low, requiring efficient fulfillment of customer orders. Since customers’ time slot deci-

sions significantly affect the efficiency of the delivery tours and thus the efficiency of the

offered service, they have a major impact on the profitability of online grocery retailers.

The time slot offering problem, i.e., deciding which time slots to offer to an arriving

customer, consists of two core elements: the customer choice and the routing component.

The literature has mainly focused on the routing component of the problem, whereas

the customer choice element has received less attention and is typically represented us-

ing simple parametric choice models (Ehmke and Campbell 2014, Lang et al. 2021a,

Wassmuth et al. 2023). However, adequately mapping customer behavior over multiple

days is nearly impossible with these simple approaches and their underlying strong as-

sumptions. The time slot offering problem is further complicated by the fact that it is

usually solved in real-time since the profitability of offering a given time slot to an arriv-

ing customer depends on already accepted customers and customer-specific information

(such as location). Hence, the problem must be solved quickly because offered time slots

must be displayed to customers immediately. Especially given many time windows over

multiple days, solving this problem in real-time becomes a significant challenge.

In this paper, we focus on the time slot offering problem from a customer choice

perspective and contribute to the literature by addressing two interrelated problems.

First, we address the problem of determining the optimal time slot assortment, given

the customer preferences for the individual time slots. For this purpose, we interpret the

time slot offering problem as an online assortment optimization problem and propose a

tractable optimization formulation to solve this problem for a specific non-parametric

choice model. Second, we investigate how to estimate the customer preferences for the

different time slots from historical transaction data.

6



Chapter 2. Time Slot Offering Problem: Estimation & Optimization

To adequately reflect customer preferences and capture the resulting behavior, we

make use of the consider-then-choose customer choice model. Empirical literature from

the field of marketing and psychology (Hauser 2014, Liu and Arora 2011, Aouad et al.

2020) yields strong indications that the customer’s actual decision-making process com-

prises these two steps. In the first step, all available items are screened, and those that

are considered for purchase are identified. In the second step, the considered items are

ranked so that a purchase decision can be made. In our context of selecting delivery

time slots, it seems reasonable that customers choose in a similar manner. First, they

only consider those time slots for which they are at home such that a delivery can

successfully be completed (i.e., customers form their consideration set). Subsequently,

customers rank the time slots and choose the slot that seems most convenient to them.

In our analysis, we focus on this empirically established non-parametric customer choice

model.

Regarding the individual customers and their time window choice process, it appears

natural that different customers consider identical time windows in the first step. For

example, most customers will only consider time slots in the evening since that is the

only time they will be home to receive their deliveries. We exploit this underlying

market structure by clustering customers based on their time slot consideration set.

Even if customers consider identical time slots, they may still have different preferences

regarding the considered time slots.

Our contribution to the literature is a tractable model formulation for an e-grocer’s

online time slot offering problem over multiple days using a consider-then-choose cus-

tomer choice model with an underlying cluster structure. In addition, we propose a

procedure for estimating the consideration sets and preference lists of the consider-then-

choose model based on historical transaction data, while respecting the assumed cluster

structure.

This paper is organized as follows: In Section 2.2, we review and discuss the related

literature. In Section 2.3, we define the general problem setting. In Section 2.4 and

Section 2.5, we discuss the assortment optimization and customer choice estimation

process, respectively. Section 2.6 describes the results of our numerical study, and Section

2.7 presents our conclusions.

7



Chapter 2. Time Slot Offering Problem: Estimation & Optimization

2.2. Related Literature

The work presented in this paper lies at the intersection of two literature streams: (i)

demand management in the context of e-groceries and (ii) customer choice behavior and

assortment optimization.

2.2.1. Demand Management in the Context of E-Groceries

In recent years, demand management has gained increasing importance in logistics en-

vironments (Agatz et al. 2011, Yang et al. 2016, Yildiz and Savelsbergh 2020, Paul

et al. 2019), especially in the field of e-groceries. Agatz et al. (2013) identified time

slot allocation and time slot pricing as the two main levers of demand management for

AHD. These decisions are made on a strategic, tactical or operational level. A detailed

overview of recent work in the field of demand management for e-grocers can be found

in Wassmuth et al. (2023). Studies on operational time slot offering (Campbell and

Savelsbergh 2005, Ehmke and Campbell 2014, Mackert 2019) are closest to our work.

These papers mainly consider the problem from a routing perspective rather than from

a customer choice perspective. In most of the works, customer choice is modeled by

an independent demand model (Campbell and Savelsbergh 2005, Ehmke and Campbell

2014) or by a simple parametric customer choice model, such as the multinomial logit

(MNL) model (Lang et al. 2021a,b) or the generalized attraction model (GAM) (Mack-

ert 2019). None of these studies, however, include a non-parametric customer choice

model that does not require stringent assumptions, is capable of capturing customer

choice behavior over multiple days, and can be solved in real-time. We contribute an

estimation and optimization approach for a consider-then-choose customer choice model

for the time slot offering problem to this stream of literature. To the best of our knowl-

edge, we are the first to study the time slot offering problem from a customer choice

perspective by incorporating the consider-then-choose choice model in this setting. For

a further overview of managerial planning tasks, we recommend Agatz et al. (2008a).

Recent advantages of integrating demand management and vehicle routing can be found

in the review of Fleckenstein et al. (2023).

8
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2.2.2. Customer Choice Modeling and Assortment Optimization

The focus of modeling customer choice behavior in assortment optimization has evolved

from independent demand models to choice-based models that capture the effect of sub-

stitutions among different products. The literature on discrete customer choice models

can be classified into parametric and non-parametric models (for a more detailed classi-

fication, see Strauss et al. (2018)). Because our approach is based on a non-parametric

customer choice model, we only provide a brief overview of parametric models and then

describe non-parametric models in greater detail.

Parametric customer choice models are rooted in random utility theory and assume

that products are associated with certain utilities. The underlying concept is that the

customer choice behavior is a maximization mechanism (Strauss et al. 2018). Some

famous examples of parametric customer choice models are logit models, for instance

the MNL model, the nested logit (NL) model and the mixed-MNL (MMNL) model.

Although parametric customer choice models provide an initial attempt to represent

customer preferences, these models are based on the strong assumption that the customer

choice behavior can be captured in a certain functional form using the utilities associated

with the products. While capturing customer choice in a functional form facilitates the

application of the model, it limits the flexibility of choice modeling.

Most recently, non-parametric customer choice models have received more attention.

These models allow a more flexible representation of choice behavior. One example of

a non-parametric customer choice model is the rank-based choice model. This model

assumes that a consumer ranks all products and the no-purchase option in a certain

order and chooses the highest-ranked available option (Van Ryzin and Vulcano 2015,

Farias et al. 2013).

A more sophisticated non-parametric ranked-based customer choice model is the

consider-then-choose model, which is considered in this paper. According to Hauser

(2014) and Liu and Arora (2011), there are strong indications that this model provides

a good representation of a customer’s decision-making process. The general consider-

then-choose model for assortment planning has been investigated in several papers (e.g.,

Aouad et al. (2020), Bertsimas and Mǐsić (2019)). As in our study, some works have

focused on special cases of the consider-then-choose model. For instance, Paul et al.

(2016) investigate the consider-then-choose model with ”choosy” customers, i.e., a cus-

tomer considers purchasing one of two substitutable products. Feldman et al. (2019)

9
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similarly investigate the consider-then-choose choice model with a limited number of

products in the consideration set. Jagabathula and Rusmevichientong (2017) focus on

another special case of the consider-then-choose model with a particular policy for form-

ing the consideration sets. They assume that customers follow a two-stage choice process

in which they first consider all products with a price less than a certain threshold and

then choose the most preferred option. Another special case of the consider-then-choose

model is the random consideration set (RCS) model considered by Manzini and Mari-

otti (2014). This model assumes an underlying unique preference order of the products

and presumes that the products have certain attention probabilities that are used to

determine the consideration sets. Gallego and Li (2017) also investigate the RCS model.

As in the aforementioned papers, we focus on a special case of the consider-then-choose

customer choice model by assuming an underlying customer cluster structure.

As generally no structural properties are assumed in non-parametric customer choice

models, the estimation of these models becomes more challenging than parametric mod-

els. However, when assuming a special structure of the choice model, the estimation

procedure can be tailored to this. For example, Jagabathula et al. (2019) propose a

framework to effectively estimate the model with a unique preference order over products

and infer consideration sets based on machine learning techniques. We do not impose a

single preference order over all products but include a cluster structure in our estima-

tion procedure. Our estimation process uses ideas from Van Ryzin and Vulcano (2015)

and Van Ryzin and Vulcano (2017). In particular, Van Ryzin and Vulcano (2015) pro-

pose a general approach for estimating customer preferences for suitable products from

historical transaction data and assume an underlying rank-based discrete choice model

of preferences with a Bernoulli customer arrival process. In our work, we apply these

concepts to the consider-then-choose setting and incorporate an underlying customer

cluster structure.

In summary, the consider-then-choose customer choice estimation and the time slot

optimization approach presented in this paper draw inspiration from the different studies

outlined above. However, there is no previous research that has addressed the time slot

offering problem of an e-grocer under consider-then-choose customer choice behavior.

Our paper contributes to the literature by proposing a tractable online time slot offering

model and by introducing an estimation approach that is compatible with an underlying

cluster structure.
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2.3. Problem Setting

We consider an e-grocer’s online time slot offering problem. More precisely, the e-grocer

needs to decide which time slots to offer to an arriving customer with known location

and shopping basket. We consider this problem as a dynamic assortment optimization

problem. In our setting, the time slots represent the ”products” that can potentially

be offered. We assume that there are N ∈ N different products and the retailer must

decide which of these products to include in the assortment A ⊂ {1, . . . , N}. Each

time slot i ∈ N = {1, . . . , N} is associated with a profit margin ri. To be consistent

with the assortment optimization literature, we denote these margins as ”revenues”. We

assume that these profit margins are known for an arriving customer. For example,

these margins can be estimated using the obtained revenue (including delivery fee), the

cost of fulfilling the customer’s request, e.g., estimated routing costs, and the potential

opportunity cost. Here, the e-fulfillment literature focusing on the routing component of

the problem can be used. For instance, the procedures proposed in Yang et al. (2016) or

Klein et al. (2018) can be used to approximate these costs and thus the profit margins

ri. Calculating the profit margins is not the subject of this study. We rather focus

on determining which time slots to offer, given the different margins and the estimated

customer choice behavior.

As outlined above, we model the customer choice behavior in this assortment problem

by a consider-then-choose choice model. This model assumes L ∈ N customer segments.

Each customer segment l ∈ {1, . . . , L} is associated with a weight λl ∈ [0, 1]. These

weights can be interpreted as different arrival probabilities or different segment sizes.

A customer segment is characterized by a consideration set, i.e., the set of products

that is considered for purchase, and by a preference list, i.e., the sequence in which

the products are ranked. The consideration set of customer segment l is denoted by

∅ ≠ Cl ⊂ {1, . . . , N}. The preferences of the individual customer segments for products

are recorded in preference lists of the considered products. The ranking of products for

customer segment l is denoted by a permutation σl that describes the unique preference

order of the products in the consideration set. If there are several products a ∈ A ∩ Cl

under consideration contained in the offered assortment, customer segment l purchases

the product for which σl(a) is lowest, i.e., most preferred. The revenue Rl(A) of an

11
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offered assortment A obtained from customer segment l can then be calculated as

Rl(A) =

ra∗ a∗ = argmina∈A∩Cl
σl(a)

0 A = ∅ or A ∩ Cl = ∅
.

In our application context, it occurs naturally that different customer segments con-

sider similar time slots in the first step. For instance, most employees are home only

in the evening and thus consider evening time slots only. To model this, we assume

that the customer segments can be divided into clusters, based on their consideration

sets. We assume that we can assign a customer segment to a given cluster c ∈ C that

is represented by the set of products considered in the cluster, i.e., c ⊂ N . Hence, the

consideration set of segment l belonging to a customer cluster c is a subset of the time

slots considered by the cluster, i.e., Cl ⊂ c. We use this notation to formulate the online

time slot assortment problem in Section 2.4, describe the corresponding estimation pro-

cess in Section 2.5, and evaluate the estimation and optimization approach for different

underlying cluster structures in Section 2.6.
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2.4. Assortment Optimization

The goal of the general assortment optimization problem for a given set of products N
is to determine the subset of products A ⊂ N that maximizes the obtained revenues:

maxA⊂N R(A). There are several ways to model this optimization problem. Given

formulations differ in particular in their decision variables. For instance, some model

formulations decide on product-level which products to offer (Aouad et al. 2020), while

others decide on subset-level of the entire assortment (Meissner et al. 2013). Although

these model formulations are very intuitive and accessible, they do not exploit any prop-

erties of the underlying customer choice model and become very large (in terms of the

number of decision variables and number of constraints) and complex to solve. In our

real-time application of offering time slots over multiple days, these model formulations

do not work due to relatively long computation times (i.e., more than 1 second). In

contrast to these general model formulations, we seek to leverage the underlying struc-

ture of the consider-then-choose customer choice model. More precisely, our approach

to model the time slot offering problem is based on the idea of determining which sub-

sets of the consideration sets to offer to the various customer segments (Talluri 2010,

Meissner et al. 2013). This is captured by decision variables xl
Sl

∈ {0, 1} that indicate

whether subset Sl of consideration set Cl is offered to customer segment l. When using

these decision variables, it becomes necessary to ensure consistency of offered time slots

across customer segments. This can be achieved by appropriate constraints (see below).

Furthermore, note that the total offered assortment is only implicitly included in this

model formulation. It can be obtained by combining the activated decision variables of

the individual customer segments:

A =
⋃

l∈{1,...,L}, Sl⊂Cl :x
l
Sl
=1

Sl.

13
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The assortment optimization in terms of these decision variables can be formulated as

follows:

max
L∑
l=1

λl

∑
Sl⊂Cl

Rl(S
l)xl

Sl
(2.1)∑

Sl⊂Cl

xl
Sl
= 1 ∀ l ∈ {1, . . . , L}

(2.2)∑
Sl⊃Slm

xl
Sl
=

∑
Sm⊃Slm

xm
Sm

∀ ∅ ̸= Slm ⊂ Cl ∩ Cm, l,m ∈ {1, . . . , L} : Cl ∩ Cm ̸= ∅

(2.3)

xl
Sl
∈ {0, 1} ∀ l ∈ {1, . . . , L}, Sl ⊂ Cl.

(2.4)

The objective function (2.1) maximizes the weighted total sum of revenues received

from the various customer segments. The first set of constraints (2.2) ensures that every

customer segment l obtains exactly one subset of potential products as an individual

assortment. The next set of constraints (2.3), the so-called product cut constraints, were

first introduced and investigated in Meissner et al. (2013) and Strauss and Talluri (2017).

These constraints ensure consistency of the product offering across customer segments.

Specifically, if a set of products ∅ ≠ S ∈ Cl ∩ Cm is offered to customer segment Cl,

then it must also be offered to customer segment Cm since segment memberships are

unobservable. Constraints (2.4) define the domains of the decision variables.

Thus far, we have not imposed any structural requirements on the customer segments.

In our application context, we assume that some customers have similar consideration

sets and can be divided into clusters, based on their considered time slots (Section

2.3). Exploiting such a cluster structure C is the central idea of our approach. We

introduce decision variables xc
Sc

∈ {0, 1} that determine which subset of products Sc ⊂ c

to offer to customer cluster c ∈ C. The revenues obtained from cluster c when offering

product subset A can be calculated before starting the online optimization process as

the probability-weighted sum of all individual revenues from all contained customer

segments l, i.e.,

Rc(A) =
∑
l∈c

λlRl(A).
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Depending on the cluster structure, this aggregation of customer segments can improve

the efficiency of the real-time optimization problem since this data can be preprocessed.

For a given set of clusters, the model formulation (2.1)-(2.4) can thus be equivalently

formulated as

max
∑
c∈C

Rc(S
c)xc

Sc
(2.5)∑

Sc⊂c

xc
Sc

= 1 ∀ c ∈ C (2.6)∑
Sc⊃Scd

xc
Sc

=
∑

Sd⊃Scd

xd
Sd

∀ ∅ ̸= Scd ⊂ c ∩ d, c, d ∈ C : c ∩ d ̸= ∅ (2.7)

xc
Sc

∈ {0, 1} ∀ c ∈ C, Sc ⊂ c. (2.8)

This formulation is similar to that in (2.1)-(2.4) but considers decision variables for

customer clusters rather than for segments. The objective (2.5) maximizes the total

weights received by all clusters, constraints (2.6) ensure that each cluster obtains one

subset of potential products as an individual assortment, and constraints (2.7) guarantee

that products offered to one cluster have also to be offered to all other clusters if these

products are considered. The problem formulation based on customer clusters captures

only indirectly which customer segment chooses which product, namely in the achieved

revenues Rc(S
c) of the different subsets. Depending on the cluster structure, this simpli-

fies and accelerates the online optimization procedure because the revenues Rc(S
c) can

be precomputed. In particular, the model formulation (2.5) - (2.8) benefits from a low

number of clusters and from a small cluster size because fewer decision variables need

to be introduced and fewer coupling constraints need to be considered. We evaluate the

impact of the underlying cluster structure in a numerical study in Section 2.6.2.1.
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2.5. Estimation of the Customer Choice Model

To determine the online assortment, the consider-then-choose customer choice model

consisting of consideration sets, preference lists and the respective weights of the in-

dividual customer segments must be given. In this section, we propose an estimation

procedure to obtain the customer choice model from historical transaction data while

fitting it into a given customer cluster structure C. How to design an appropriate cluster

structure C is discussed in Section 2.6.2.2. The historical selling horizon consists of T

periods reflected in the sequence of tuples ((j1, S1), . . . , (jt, St), . . . , (jT , ST )) in which St

describes the offered assortment and jt the chosen product in period t ∈ {1, . . . , T}. For
our context of offering time slots, we assume that we can observe periods with arriv-

ing customers that do not select any of the time slots. To reflect this, we include the

no-purchase option as an artificial product ”0” in all offered assortments. To obtain a

customer choice model retaining the desired cluster structure that can be leveraged in

online assortment optimization, we embed the estimation into a given customer cluster

structure C. Based on this cluster structure, we generate potential customer segments in

a first step. To this end, we use all permutations σi ∈ P(c) of the products considered

in a cluster c ∈ C as individual preference lists for the customer segments. This ensures

that each customer segment belongs to a customer cluster and only considers a subset

of products that is considered by the respective cluster. These are the customer seg-

ments available for the following estimation procedure. We use the maximum likelihood

approach to determine the probability distribution λ over these customer segments. For

this purpose, we introduce a cluster-specific compatible set definition, which is based

on the idea introduced by Van Ryzin and Vulcano (2015) but is tailored to the specific

customer cluster structure. We define the compatible set of customer segments from

cluster c ∈ C for period t by

M(t, c) = {σi ∈ P(c) |σi(jt) < σi(k),∀ k ∈ St ∩ c, k ̸= jt},

where P(c) denotes the set of permutations of the products and thus all customer seg-

ments in cluster c. The set M(t, c) contains all customer segments within customer

cluster c that are compatible with the decision in period t, i.e., for which the selected

product jt in period t is the most preferred of the available products St. The goal is

to estimate a probability distribution λ composed of all likelihoods λc
i of all customer
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segments i ∈ P(c) for all customer clusters c ∈ C. To formulate the estimation model,

we must determine the probability that a random arriving customer chooses product jt

given offer set St. These probabilities can be calculated as

P(jt |St) =
∑
c∈C

∑
i∈M(t,c)

λc
i .

Using these probabilities, the likelihood function L(λ) for a distribution λ of the past

periods is given by

L(λ) =
T∏
t=1

P(jt |St) =
T∏
t=1

∑
c∈C

∑
i∈M(t,c)

λc
i

 .

This results in the log-likelihood function L

L(λ) =
T∑
t=1

log

∑
c∈C

∑
i∈M(t,c)

λc
i

 .

Using this notation, we formulate the estimation model for the probability distribution

λ as a concave nonlinear maximization problem:

max
T∑
t=1

log

∑
c∈C

∑
i∈M(t,c)

λc
i

 (2.9)

∑
c∈C

∑
i∈P(c)

λc
i = 1 (2.10)

0 ≤ λc
i ≤ 1 ∀ i ∈ P(c), c ∈ C. (2.11)

The objective function (2.9) maximizes the log-likelihood function. The constraint (2.10)

ensures that the probability distribution over all customer segments and all customer

clusters sums to 1, whereas constraints (2.11) guarantee the non-negativity of the dis-

tribution.
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2.6. Numerical Study

In this section, we present the numerical results of both our proposed estimation proce-

dure for the consider-then-choose customer choice model with a given cluster structure

and the performance of our optimization approach. The aim of this section is to show

that (i) our estimation approach can identify customer choice behavior for many time

slots over multiple days and (ii) our optimization procedure can solve the time slot of-

fering problem of an e-grocer in real-time. All computations were conducted using an

HP 440 G5 with a 2.5 GHz Intel Core i5 processor (two cores) using either GUROBI

(for linear problems, e.g., formulation (2.5)-(2.8)) or KNITRO (for nonlinear problems,

e.g., (2.9)-(2.11)).

2.6.1. Data and Parameters

Before presenting the results of the estimation and optimization procedure, we explain

the relevant parameters that we used in this numerical study if not indicated otherwise.

We focus on an e-grocer that operates its service from Monday through Saturday and

offers one-hour time slots between 6:00 and 20:00, resulting in 14 time slots per day

and a total of 84 time slots per week. We assume that the profit margins of the time

slots are given and can be calculated using approximation procedures (Yang et al. 2016,

Klein et al. 2018). In our experiments, we follow the common approach in the assort-

ment optimization literature and sample these values independently from a log-normal

distribution with mean 2 and standard deviation 1 (Aouad et al. 2019).

2.6.2. Estimation

In this subsection, we investigate how well our estimation procedure is able to identify the

underlying customer choice behavior over multiple days from historical transaction data.

For this purpose, we first evaluate the influence of the predefined cluster structure used

in the estimation process (Section 2.6.2.1) and discuss how to choose the predefined

cluster structure (Section 2.6.2.2). Subsequently, we modify the underlying customer

choice model and explore whether our non-parametric customer choice model can identify

accurate purchase probabilities when actual customer behavior is based on a different

choice model (Section 2.6.2.3).
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To estimate the consider-then-choose customer choice model from historical transac-

tion data and to evaluate how well it reflects the given customer behavior, we use the

following two-step process. First, we simulate historical transaction data using a ”ground

truth” customer choice model. This data serves as training data for the estimation of our

consider-then-choose customer choice model. Second, we generate random assortments

and compare the predicted purchase probabilities based on our estimated consider-then-

choose customer choice model to the underlying true purchase probabilities using the

ground truth customer choice model.

In the first step, we simulate historical transaction data using a consider-then-choose

ground truth customer choice model, if not indicated otherwise. In this model, we assume

that customers use simple screening rules (Gilbride and Allenby 2004, Jagabathula and

Rusmevichientong 2017) to obtain their consideration sets. In particular, we assume

that an arriving customer screens either a specific day’s time slots by time of day or

the upcoming delivery days by time slots. Considering one day, customers consider

either a time slot in the morning, i.e., between 6:00 and 11:00, a time slot around

lunch time, i.e., between 11:00 and 16:00, or a time slot in the late afternoon, i.e.,

between 16:00 and 20:00. For the selection rule screening the upcoming days by time

slots, we assume that customers consider a specific time slot either in the first half of

the week, i.e., from Monday-Wednesday, or in the second half of the week, i.e., from

Thursday-Saturday. Based on these screening rules, which are visually summarized in

Figure 2.1, the cluster structure of the ground truth model is constructed. To generate

preference lists based on the consideration sets obtained from these screening rules, we

use all possible permutations. As in Aouad et al. (2020), we assume equal weights for

all customer segments.

To train our consider-then-choose customer choice model, we use 2,000 historical trans-

action periods. To determine how well our consider-then-choose model reflects the real

underlying customer behavior, we simulate 500 test assortments and compare our re-

sults to the true purchase probabilities from the originally chosen choice model. To

obtain statistically stable results from our simulations, we indicate the two-sided 95%

confidence interval for all results.

19



Chapter 2. Time Slot Offering Problem: Estimation & Optimization

Figure 2.1.: Visualization: Ground Truth Cluster Structure

2.6.2.1. Impact of the Predefined Cluster Structure

In this subsection, we seek to investigate how the predefined cluster structure used in

the estimation process of our consider-then-choose customer choice model impacts esti-

mation quality. For this purpose, we vary the predefined cluster structure and compare

the quality of the corresponding estimated choice models. In particular, we report the

results from five cluster structures denoted as Small Intra-Day, True Cross-Day, Arbi-

trary, True Intra-Day, and Ground Truth. The clusters are visualized in Figure 2.2 and

outlined below.

• The cluster structure Small Intra-Day includes time slot clusters in the early morn-

ing, i.e., from 6:00 to 9:00, in the morning, i.e., from 9:00 to 11:00, around lunch

time, i.e., from 11:00 to 13:00, in the early afternoon, i.e., from 13:00 to 15:00, in

the late afternoon, i.e., from 15:00 to 17:00, and in the evening, i.e., from 17:00 to

20:00, for every day.

• The cluster structure True Cross-Day consists of a specific time slot in the first or

second half of the week, i.e., from Monday-Wednesday, or from Thursday-Sunday.

These clusters are identical to the ground truth model, except that no intra-day

preferences are included.

• The cluster structure Arbitrary does not follow any screening rule. It consists of

disjoint clusters with 4 random time slots each.
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Figure 2.2.: Visualization: Cluster Structures

(a) Small Intra-Day (b) True Cross-Day

(c) Arbitrary (d) True Intra-Day

(e) Ground Truth

21



Chapter 2. Time Slot Offering Problem: Estimation & Optimization

• Cluster structure True Intra-Day follows the screening rule of considering time

slots of one day and partitions the time slots into three blocks. In particular, it

includes time slots at the beginning of the day, i.e., from 6:00 to 11:00, the middle

of the day, i.e., 11:00 to 16:00, and the end of the day, i.e., from 16:00 to 20:00.

These clusters are identical to the ground truth model, except that no cross-day

preferences are considered.

• The cluster structure Ground Truth uses identical screening rules as the ground

truth model and forms its clusters accordingly.

Table 2.1 provides the root mean squared error (RMSE) and the mean absolute de-

viation (MAD) of the estimated choice probabilities for the different cluster structures,

compared to the ground truth choice probabilities.

Table 2.1.: Estimation Quality: Different Predefined Cluster Structures

Cluster Structure RMSE MAD Computation Time
Small Intra-Day 0.0682 (±0.0006) 0.0395 (±0.0003) 3.82 (±0.24)
True Cross-Day 0.0528 (±0.0009) 0.0310 (±0.0005) 4.01 (±0.38)

Arbitrary 0.0447 (±0.0012) 0.0282 (±0.0005) 104.74 (±5.31)
True Intra-Day 0.0243 (±0.0016) 0.0168 (±0.0010) 1639.31 (±150.10)
Ground Truth 0.0230 (±0.0012) 0.0160 (±0.0009) 2159.31 (±120.10)

To visualize the results of the estimation procedure, we include scatter plots, as in

Van Ryzin and Vulcano (2015), that depict the ground truth choice probabilities versus

the probabilities from the estimated consider-then-choose model, i.e., pairs

(PGroundTruth(jt, St), PEstimated(jt, St)), jt ∈ St

for the test assortments. The 45° line represents perfect fit. Figure 2.3 displays the

results for the considered cluster structures.

The results in Table 2.1 document how the assumed cluster structure impacts the es-

timation quality of the consider-then-choose choice model. We observe, unsurprisingly,

that the cluster structure Ground Truth yields the best estimates whereas the cluster

structure Small Intra-Day yields the poorest estimates, both in terms of RMSE and

MAD. We note that the performance of the cluster structure True Intra-Day is insignif-

icantly worse than the cluster structure Ground Truth, whereas the cluster structure
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Figure 2.3.: Estimation Results: Cluster Structures

(a) Small Intra-Day (b) True Cross-Day

(c) Arbitrary (d) True Intra-Day

(e) Ground Truth
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True Cross-Day provides poor results. Counter-intuitively, we note that the RMSE and

MAD of the cluster structure Arbitrary, which does not follow any pattern for creating

the clusters, are lower than those from the cluster structures Small Intra-Day and True

Cross-Day (Table 2.1, Figure 2.3). This indicates that, in the given setting, the number

of products considered in the clusters is particularly important, as it grants customers

a higher degree of product substitutability. In Figure 2.3, we observe a bias, especially

for cluster structures Small Intra-Day and True Cross-Day (Figure 2.3a, 2.3b), toward

underestimating low purchase probabilities and overestimating high purchase probabil-

ities. A potential reason is that the assumed cluster structures do not provide sufficient

flexibility for product substitution. Since customers within a cluster consider only the

products specified by the cluster, it is possible that none of the considered products is

offered in an assortment. This lack of substitutability of products in the cluster structure

leads to an underestimation of the purchase probabilities of the considered products (in

the range of 0%-10%) and in turn to an overestimation of the no-purchase option (in the

range of 30%-100%). In the extreme setting of an independent demand model, which

can be captured in our setting by clusters considering only a single product, this bias is

amplified and was investigated in Van Ryzin and Vulcano (2015). Note that the above

analysis addresses only the deviations in purchase probabilities. In Section 2.6.3.1, we

investigate the impact on the revenue achieved in assortment optimization.

2.6.2.2. Designing the Cluster Structure

Finding an appropriate cluster structure in which to embed the estimation process and

subsequently the assortment optimization is not trivial. One way to obtain a suitable

cluster structure is a two-step procedure that generates various plausible cluster struc-

tures in a first step and selects the ”best” cluster structure in a second step. A good

starting point for designing cluster structures is to use common screening rules (Gilbride

and Allenby 2004, Jagabathula and Rusmevichientong 2017). Depending on the con-

sidered screening rules, this approach leads to several candidate cluster structures. A

fitness measure (e.g., RMSE for estimation or revenue deviation for assortment opti-

mization) can be used to evaluate these cluster structures. Complex cluster structures

typically lead to better fitness measures. On the other hand, more complex cluster

structures increase the difficulty of the estimation procedure (Section 2.6.2.1) and the

online computation time of the optimization (Section 2.6.3.1). This trade-off between

fitness measure and cluster complexity should be carefully considered (Figure 2.4).
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Figure 2.4.: Efficient Frontier

2.6.2.3. Impact of the Ground Truth Choice Model

In this section, we explore the performance of our proposed estimation approach for

alternative underlying customer choice behavior. To this end, we use a parametric

customer choice model as the ground truth. To obtain realistic instances, we use the

cross-nested logit (CNL) choice model based on parameters estimated from real booking

data of a large e-grocer in the UK (Yang et al. 2016). As described in Farias et al.

(2013), in the CNL model, the products (except the no-purchase option) are partitioned

into B disjoint nests, denoted by N1, . . . ,NB, i.e., N =
B⋃
b=1

Nb with Na ∩ Nb = ∅ for

a ̸= b. In contrast to the ground truth customer choice model used hitherto, this model

does not involve any clusters, but rather prescribed nests. The probability that product

j is chosen from an assortment A is given by

P(j |A) = P(Nb |A) · P(j | Nb, A)

=
(w(b, A))ρ∑B
b=1(w(b, A))

ρ
· wj

w(b, A)

with a scale parameter ρ < 1 and

w(b, A) = αbw0 +
∑

i∈(Nb∩A)\{0}

wi.
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The parameters αb ≥ 0 are the level of membership of the no-purchase option in nest b,

and the following holds
B∑
b=1

αρ
b = 1.

To mimic realistic customer choice behavior, we use the weights wj from Yang et al.

(2016). To incorporate these values into the CNL choice model, we use a scale pa-

rameter ρ = 0.5, 6 nests representing each delivery day of the week, and allocate the

no-purchase option equally to each nest. Table 2.2 provides the RMSE and MAD of

our estimation approach assuming the Ground Truth but using the CNL for the actual

customer behavior. Figure 2.5 visualizes the findings.

Table 2.2.: Estimation Quality: CNL Ground Truth Customer Choice Model

Ground Truth RMSE MAD Computation Time
CNL 0.0578 (±0.0007) 0.0371 (±0.0005) 2597.22 (±271.95)

Figure 2.5.: Estimation Results: CNL Ground Truth

We observe that the RMSE and MAD are relatively high, especially when comparing

these figures to those obtained when using a consider-then-choose ground truth model

(Section 2.6.2.1). This is not surprising, as the estimation method is tailored to extract

the observed customer choice behavior for a non-parametric customer choice model.

Nevertheless, although the underlying customer choice model is structurally different,

the tuples (PGroundTruth, PEstimated) are still strongly correlated (Figure 2.5).
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Insights: Estimation

In summary, we observe that our estimation method is able to identify the underlying

customer choice behavior for many time slots over multiple days from historical transac-

tion data. The estimation of the customer choice model seems to work better for cluster

structures that provide a certain degree of product substitutability. For all different

predefined cluster structures with larger clusters in our numerical study, the estimated

consider-then-choose customer choice model captures the underlying choice behavior.

In the next subsection, we investigate the resulting performance of the corresponding

assortment optimization.

2.6.3. Assortment Optimization

To assess whether our proposed approach is applicable in the considered context of

offering time slots, we investigate two aspects, namely the computation time (Section

2.6.3.1) and the achieved revenues (Section 2.6.3.2). We use the model formulation (2.5)

- (2.8) with single-element intersection constraints (2.7) for all our numerical experiments

and solve all problems to optimality.

To evaluate the runtime of our model formulation, we benchmark our assortment

optimization formulation against the integer programming formulation used in Aouad

et al. (2020). In that formulation, two different classes of decision variables are intro-

duced. The first class are binary variables yi ∈ {0, 1} that decide whether a product

i ∈ {1, . . . , N} is included in the assortment. Compared to the model formulation pro-

posed in this paper, the model explicitly determines the total assortment on product level

for all customer segments at once. The second class of decision variables xl,i ∈ {0, 1}
indicate whether customer segment l chooses product i. The complete problem is for-

mulated as follows:
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max
N∑
i=1

L∑
l=1

λl · ri · xl,i (2.12)

xl,i ≤ yi ∀ l ∈ {1, . . . , L},∀ i ∈ Cl

(2.13)

xl,i + ym ≤ 1 ∀ l ∈ {1, . . . , L},m ∈ Cl and i ∈ {x ∈ Cl : σl(m) < σl(i)}
(2.14)∑

i∈Cl

xl,i ≤ 1 ∀ l ∈ {1, . . . , L}

(2.15)

xl,i ∈ {0, 1} ∀ l ∈ {1, . . . , L},∀ i ∈ Cl

(2.16)

yi ∈ {0, 1} ∀ i ∈ {1, . . . , N}.
(2.17)

The objective function (2.12) maximizes the weighted sum of revenues received from

the customer segments. The first class of constraints (2.13) ensures that a customer

segment l can only choose a product i if the product is included in the assortment. The

second class of constraints (2.14) guarantees that a customer segment always chooses

the most preferred product from the offered assortment. Inequalities (2.15) ensure that

each customer segment chooses at most one product. Therefore, the no-purchase option

is also implicitly included in this model.

2.6.3.1. Computational Efficiency

Random Customer Choice Model with Cluster Structure

In this subsection, we optimize the assortment under randomly generated consider-then-

choose customer choice models with an underlying cluster structure and compare the

computation times of our model formulation with those of the benchmark formulation.

We also investigate how the results depend on the underlying cluster structure and on

the size and the number of clusters. To generate these choice models, we assume that

each cluster contains multiple customer segments and that the preference lists of the

included customer segments are given as all permutations of the products. As in Aouad

et al. (2020), we assume equal weights for the different customer segments.
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Cluster Size

First, we evaluate the impact of the cluster sizes on the computation time of both

optimization formulations. We consider a simple underlying cluster structure with only

two customer clusters of similar size. Since the difference in computation times becomes

evident even for a small number of products, the clusters consider 5, 6, 7, and 8 products,

respectively, and have an intersection of three products. Table 2.3 shows the computation

times of our optimization approach and the benchmark.

Table 2.3.: Computation Times: Different Cluster Sizes

Cluster Size Preprocessing Runtime Benchmark
5 0.06 (±0.01) 0.04 (±0.01) 1.49 (±0.16)
6 0.84 (±0.02) 0.04 (±0.01) 10.42 (±2.79)
7 14.47 (±0.77) 0.04 (±0.01) 126.04 (±3.83)
8 252.08 (±7.61) 0.04 (±0.01) > 103

We observe that the total computation times of our proposed optimization formulation

are significantly lower than those for the benchmark formulation, for all considered

cluster sizes. For both optimization formulations, the computation times increase with

increasing cluster sizes. The same applies to the difference in computation time. It

is notable that the online runtime of our model formulation remains constant at 0.04

seconds. In all settings, most of the computation time of our proposed optimization

approach is not required for the final, online optimization but for preprocessing the

data, i.e., evaluating the cluster revenues. In the application context we consider, where

the assortment problem has to be solved quickly, this is a considerable advantage.

Number of Clusters

Second, we examine the impact of the number of clusters. To this end, we consider

an underlying cluster structure with up to eight customer clusters, each considering 6

products, and having an overlap of two products each. Table 2.4 reveals the computation

times of both approaches.

Again, it is apparent that the computation times of our approach are significantly

shorter than those of the benchmark for all considered numbers of clusters. As observed

previously, most of the computation time is used for preprocessing the data. The differ-

ence in computation times increases as the number of clusters increases, implying that

the computation time advantage of our approach compared to the benchmark increases

as the number of clusters increases.
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Table 2.4.: Computation Times: Different Number of Clusters

Number Clusters Preprocessing Runtime Benchmark
2 0.92 (±0.03) 0.04 (±0.01) 10.97 (±1.65)
4 1.68 (±0.06) 0.05 (±0.01) 21.32 (±2.63)
8 2.99 (±0.06) 0.08 (±0.01) 34.93 (±2.61)

Customer Choice Model with Cluster Structure from Estimation Procedure

In addition to randomly generated consider-then-choose customer choice models, we also

apply our optimization approach to our estimated choice models from Section 2.6.2.1.

We investigate the computation times of both optimization formulations for realistic

problem sizes of an e-grocer. Table 2.5 displays the computation times for different

predefined cluster structures.

Table 2.5.: Computation Times: Different Cluster Structures used in the Estimation

Cluster Structure Preprocessing Runtime Benchmark
Small Intra-Day 0.01 (±0.01) 0.07 (±0.01) 0.22 (±0.01)
True Cross-Day 0.01 (±0.01) 0.06 (±0.01) 0.27 (±0.01)

Arbitrary 0.05 (±0.01) 0.05 (±0.01) 1.09 (±0.03)
True Intra-Day 0.37 (±0.01) 0.07 (±0.01) 7.05 (±0.05)
Ground Truth 0.36 (±0.01) 0.20 (±0.01) 7.29 (±0.10)

The figures show that the computation times of our approach are consistently lower

than those of the benchmark for all predefined cluster structures. Regarding the ran-

domly generated customer choice models, the differences in computation times vary,

depending on the underlying cluster structure (different number of clusters, different

cluster size). For the three cluster structures Small Intra-Day, True Cross-Day, and

Arbitrary with the lower estimation quality, the difference in computation times is not

as high as for the cluster structures True Intra-Day and Ground Truth with higher es-

timation quality. In general, however, the differences between the computation times

are not as extreme as for randomly generated data. The reason is that not all customer

segments are activated (and obtain a positive weight) due to the estimation procedure,

whereas this was the case for randomly generated data. Nevertheless, the computation

times of the benchmark formulation are too high for practical implementation, whereas

an online time slot optimization would be possible with our model formulation.
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2.6.3.2. Revenue Impact of the Cluster Structure

In this subsection, we examine the impact of assuming different customer cluster struc-

tures in the estimation procedure on the achieved revenues in the assortment optimiza-

tion. We again use the estimated customer choice models from Section 2.6.2.1. We

simulate arriving customers and different products with different revenues and deter-

mine the optimal assortment for the estimated customer choice model. We then use the

ground truth model to determine the true optimal assortment and the true expected

revenues obtained from the calculated assortments. Table 2.6 displays the expected rev-

enue deviations in % between the assortments obtained from the estimated customer

choice models and the optimal assortment using the ground truth model.

Table 2.6.: Impact on Revenue: Different Cluster Structures used in the Estimation

Cluster Structure Revenue Deviation in %
Small Intra-Day 31.01 (±1.01)
True Cross-Day 28.72 (±1.57)

Arbitrary 29.43 (±1.58)
True Intra-Day 0.36 (±0.05)
Ground Truth 0.75 (±0.24)

The figures indicate strong performance differences between the assumed cluster struc-

tures. Essentially, we can divide the clusters into two main performance groups. The

greatest revenue deviations are in the range of approximately 30% and can be observed

if the cluster structure Small Intra-Day, True Cross-Day, or Arbitrary is used in the es-

timation procedure. It is not surprising that these cluster structures yield worse results

because we observed a lower customer choice estimation quality (Table 2.1, Figure 2.3),

which naturally leads to a larger deviation in revenue. The figures in Table 2.6 confirm

that the purchase probabilities of crucial products were estimated incorrectly, leading to

a poor assortment decision. In contrast, the estimated consider-then-choose customer

choice models using the predefined cluster structures True Intra-Day and Ground Truth,

which exhibit high estimation quality (Table 2.1, Figure 2.3), yield the lowest revenue

deviations of less than 1% (Table 2.6). This corresponds to the identification of the true

optimal assortment in almost all simulations and demonstrates that the purchase prob-

abilities were estimated sufficiently well to determine the optimal assortment decision.
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Insights: Optimization

To summarize, our numerical study indicates that our optimization formulation performs

favorably for instances with an underlying customer cluster structure. In all experiments,

the computation times for our proposed formulation are significantly shorter than those

of the benchmark. The computation time advantage increases with increasing cluster

size and an increasing number of clusters. Most important, only a fraction of the total

computation time is spent on the online optimization and most computational effort

can be performed as an offline pre-processing step. This is especially beneficial for

our application context. Using this method, an e-grocer can solve the online time slot

offering problem with many time slots over multiple days in real-time. We also confirmed

that expected revenues from the assortment optimization depend on the assumed cluster

structure. A more accurate estimation of the customer choice behavior generally results

in higher revenues. Nevertheless, there may be cluster structures other than the true

underlying cluster structure that perform well and lead to the optimal assortment in

almost all simulations.
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2.7. Conclusion

To conclude, we investigate an e-grocer’s online assortment problem of offering time slots

to an arriving customer from a customer choice perspective. We propose a tractable as-

sortment optimization approach for an underlying consider-then-choose customer choice

model that is based on aggregated product level and leverages an underlying customer

cluster structure. To obtain this customer choice model, we propose an estimation

procedure for determining a consider-then-choose customer choice model ensuring a pre-

defined customer cluster structure based on historical transaction data. The estimation

procedure and the assortment optimization approach are investigated in a numerical

study. We conclude that the estimation of the consider-then-choose choice model can

identify the underlying customer behavior from historical transaction data. In particu-

lar, we observe that the estimation works well if the predefined cluster structure allows

a certain degree of product substitutability. Our optimization formulation leads to sig-

nificantly shorter total computation times and, most important, online runtimes, which

is especially favorable in our application context.

This paper opens new avenues for future research. In our studies, we tested both the

estimation procedure and the assortment optimization approach on simulated realistic

data. Applying our approaches to real transaction data from e-groceries would be in-

teresting to validate our findings. Similarly, it would be interesting to test the different

predefined customer cluster structures with real data and investigate whether the degree

of substitutability of our predefined cluster structures is sufficient. Future research could

address the screening/preselection rules used to define and optimize the assumed cluster

structure, for example, by integrating them into the estimation process. This would

significantly complicate the estimation procedure but may be worth exploring. In our

study, we focused on the time slot offering problem from a customer choice perspective

and assumed all routing constraints to be given. Future research could integrate these

two problem components by combining our online time slot optimization approach for

an underlying consider-then-choose choice model with a sophisticated routing model.
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Chapter 3.

Feeding the Nation -

Dynamic Customer Contacting for

E-Fulfillment in Times of Crisis
1

with Moritz Fleischmann and Arne Strauss

1The research presented in this chapter is based on a paper entitled ”Feeding the Nation - Dynamic
Customer Contacting for E-Fulfillment in Times of Crisis”, coauthered with Moritz Fleischmann
and Arne Strauss (Schwamberger et al. 2022b).
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Abstract

The outbreak of the COVID-19 pandemic led demand for online grocery orders for both

C&C and AHD to outstrip delivery capacity by a wide margin. In the UK, the booking

systems of some e-retailers could not handle the flood of incoming requests, forcing the

retailers to proactively reach out to certain priority customer segments with the aim

of serving as many high-priority customers as possible. To determine when to contact

each customer segment in this extraordinary demand environment, we investigate the

new demand management concept of proactively contacting customers. We first develop

a decision policy for the C&C fulfillment method to address the problem of when to

contact customers. We then extend this approach to the AHD setting. To cope with

increased problem complexity, we propose a three-step procedure to solve this prob-

lem. First, we subdivide the delivery area into smaller subareas; second, we select the

most promising subareas; and third, we determine which customers to contact within

the chosen subareas. To gain managerial insights and to show the practical benefits

of our approaches, we apply both approaches to realistic data from the London area.

Our results show that proactive customer contacting allows for a tailored allocation of

scarce capacity in e-groceries. We conclude with a discussion on how these contacting

techniques can be valuable in post-crisis times.
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3.1. Introduction

With the outbreak of the COVID-19 pandemic, life has changed rapidly in most places

worldwide. With rising incidence rates and an increased infection risk, many govern-

ments have encouraged residents to limit their social contacts to a minimum. Companies

have reacted accordingly, and many employees have been given the opportunity to work

from home. As a result of this shutdown of public life by governments and corpora-

tions, many activities have shifted toward the digital world. Due to this shift, online

shopping has increased dramatically. This holds true especially for the proportion of

groceries purchased online, where sales grew by 75% in 2020 (Mintel 2021) and spiked

even much more dramatically (McKinsey 2020). Consequently, the demand for online

grocery orders far outstripped capacity in many markets worldwide, resulting in widely

sold-out time slots (CNA 2020, Telegraph 2020, Vox 2020), both for C&C and AHD

services (Figure 3.1, Figure 3.2).

Figure 3.1.: Sainsbury’s Time Slot Offering During COVID-19 Pandemic
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Figure 3.2.: Rewe’s Time Slot Offering During COVID-19 Pandemic

The extreme competition for online grocery ordering raises the question of which cus-

tomers to prioritize, given the scarce capacity. During the COVID-19 pandemic, many

retailers have chosen to not simply prioritize customers based on short-term profitability.

They instead emphasize their role as essential service providers that ”work to feed the

nation” (as Sainsbury’s claims on its website). In this vein, they seek to assure access

for particularly vulnerable customer groups. In the UK, for example, retailers have been

collaborating with the government to define who qualifies for priority access as elderly,

disabled & vulnerable (EDV) (Department of Finance, UK 2020). Some retailers likewise

treated medical staff as a priority group (Rewe 2020). In addition, retailers commonly

prioritized valuable existing customers (e.g., those who hold a premium pass for online

grocery orders).

One way to implement priority access for selected customer groups is to simply deny

orders from non-priority customers. However, this is inefficient as it may still overload the

booking system with many failed ordering attempts and cause frustration to customers

due to excessive waiting times during the ordering process. Therefore, retailers have

been considering an alternative approach, namely to proactively reach out to certain

priority customer segments (Yorkshire Post 2020). This approach is also explored by

our industry partner.
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The concept of proactively contacting customers raises several questions: Which cus-

tomers should be contacted and when? How does the customer contacting affect rel-

evant performance metrics? How should the contacting approach differ, dependent on

the design of the fulfillment process? How does customer contacting perform relative

to traditional reactive order intake? These are the questions that we address in this

paper. Specifically, we explore the new contacting concept, propose solutions for C&C

and AHD fulfillment channels, and evaluate their performance and compare them with

the status quo.

Our main contributions to the literature include the following: (1) the development of

a dynamic programming-based solution approach for C&C, (2) documenting the prac-

tical benefit of proactively contacting customers with realistic data, and (3) the devel-

opment of a corresponding procedure for the more challenging AHD channel. This pro-

cedure consists of three steps: first, subdividing the delivery area into smaller subareas;

second, selecting the most promising subareas; and third, determining which customers

to contact in the selected subareas. As in the C&C setting, we conduct a numerical

study on realistic data in the London area to gain managerial insights and evaluate the

merit of proactive customer contacting in this setting. Furthermore, we discuss how

these contacting techniques can be valuable in post-crisis times.

The paper is organized as follows: in Section 3.2, we review and discuss the related

literature. In Section 3.3, we discuss the underlying problem setting and Section 3.4

presents the solution approaches for proactively contacting customers in C&C and AHD.

In Section 3.5, we present the results of our numerical studies with realistic data from

the London area. In Section 3.6, we provide decision support as to when an e-grocer

should switch to proactive customer contacting and conclude with a discussion how

the proposed contacting techniques can be valuable in post-crisis times. Section 3.7

summarizes our results.
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3.2. Related Literature

The work presented in this paper interfaces with multiple research streams. In addition

to the recent stream on implications of the current COVID-19 pandemic, these include

demand management for e-grocery services, customer relationship management, revenue

management, routing literature on the selective traveling salesman problem (STSP), the

team orienteering problem (TOP), and inventory management with random yields. We

briefly review each of these streams and position our work relative to it.

The COVID-19 pandemic has brought substantial challenges for supply chain manage-

ment. Many new problems for which an established scientific understanding was lacking

had to be solved quickly. One and a half years later, researchers in various fields have

been addressing crisis-related problems and have made contributions to solving them in

more systematic ways (see, e.g., Pavlik et al. (2021) and Choi (2020)). However, to the

best of our knowledge, no work has yet addressed the impact of the COVID-19 crisis on

the distribution processes of e-groceries. With this paper, we contribute to this relevant

field.

In recent years, demand management has gained increasing importance in last-mile

distribution systems, e.g., Agatz et al. (2011), Yang et al. (2016), and Yildiz and Savels-

bergh (2020). Agatz et al. (2013) identified time slot allocation and time slot pricing as

the two main levers of demand management in the context of e-grocers offering AHD

and C&C services. These decisions are either made in a dynamic or a static fashion.

A good overview of recent work in the field of demand management for e-grocers with

an AHD service can be found in the literature section of Mackert (2019), resulting in

the four cases of differentiated slotting (Agatz et al. 2011, Cleophas and Ehmke 2014),

differentiated pricing (Klein et al. 2017), dynamic slotting (Ehmke and Campbell 2014,

Mackert 2019) and dynamic pricing (Yang and Strauss 2017, Klein et al. 2018). However,

none of these studies included the option of proactively contacting customers, which is

the key issue addressed in this paper. To the best of our knowledge, proactive customer

contacting has only been investigated in Keskin et al. (2023) and Yildiz and Savelsbergh

(2020). Keskin et al. (2023) considered proactive customer contacting in the context of

waste collection and investigated the trade-off between more efficient routes and smaller

collection volumes resulting from the increased frequency of visits generated by con-

tacting customers. We, in contrast, focus on the contacting problem in the context of

e-groceries and investigate how to incorporate the prioritization of certain customers in
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a scarce capacity situation. Yildiz and Savelsbergh (2020) considered customer contact-

ing in the context of e-groceries, but they assumed that the time slot pricing decision

is the main lever of demand management and examined the impact of contacting cus-

tomers by offering discounts in exchange for delivery flexibility. Although they suggested

actively contacting customers, their contacting setting is quite different from ours, as

customers were only contacted after they placed an order so as to move their order to a

different time slot. In our problem setting, the e-grocer starts with a base of potential

customers that can be contacted, thereby endogenizing the customer arrival process.

In addition, we focus on the time slot offering rather than the pricing decision. For

a more detailed overview of managerial planning tasks in this context, we recommend

Agatz et al. (2008b), who reviewed the e-fulfillment process and discussed corresponding

quantitative models. Recent advantages of integrating demand management and vehicle

routing can be found in the review of Fleckenstein et al. (2023). However, the proactive

contacting method that we propose in this paper has not yet been studied in this stream

of literature.

Since the e-grocer decides which customers have the opportunity to place an order in

the first place by proactively contacting customers, our research interfaces with customer

relationship management (Landrigan 2005). In particular, concepts such as customer

lifetime value should be considered in the contacting and prioritization decisions of the

e-retailers (Berger and Nasr 1998). In this regard, subscriptions and delivery passes

could be used to define the customer’s priority status. In addition, our study is re-

lated to research on direct marketing and its associated marketing issues, as the e-grocer

directly addresses customers and offers a certain assortment of time slots in our pro-

posed approach. However, we do not focus on the customer relationship and marketing

issues associated with this contacting and promoting process but rather address the

optimization issues underlying this process. For an overview of decision models for cus-

tomer relationship management and quantitative models for direct marketing, we refer

to Reinartz and Venkatesan (2008) and Bose and Chen (2009).

Our work is also related to the domain of revenue management. In particular, we en-

counter a version of the classic overbooking problem under the assumption of stochastic

customer responses such that we need to decide how many customers to contact beyond

our anticipated delivery capacity in anticipation of some customers not responding (yet

we experience an ill-will penalty if we reject customers who respond but cannot be served

due to insufficient capacity). In contrast to the classic overbooking problem, we do not
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know the exact delivery capacity under attended home delivery since this depends on the

location and order volumes of all responding customers. Klein et al. (2020) discussed the

general overbooking problem and presented revenue management techniques in online

grocery retailing.

As our study incorporates routing considerations in the AHD setting and it needs to

be determined which customers to optimally contact in a deterministic customer arrival

setting, it intersects with the literature on the STSP and the TOP. In particular, we

modify the TOP formulation of Tang and Miller-Hooks (2005) to obtain the optimal

set of customers to contact and serve in the deterministic arrival setting. For a more

detailed overview of orienteering problems, we refer to Vansteenwegen et al. (2011).

Slightly less obviously, our study also shows some aspects of inventory control models

with random yields. This analogy stems from the fact that it is uncertain whether a

customer contacted by an e-grocer actually accepts the invitation and places an order.

For detailed reviews on the random yield literature, we refer to Grosfeld-Nir and Gerchak

(2004) and Yano and Lee (1995).

In summary, the analysis presented in this paper draws inspiration from the different

research streams outlined above. However, no previous research has addressed the rel-

evant planning problem of an e-grocer seeking to manage demand in a surge situation

by proactively contacting potential customers. Introducing and analyzing this novel

planning problem is how our paper contributes to the literature.
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3.3. Problem Setting

In this section, we formalize the problem setting for C&C and AHD and highlight the

main differences between both fulfillment methods.

3.3.1. Click&Collect

We first focus on an e-grocer offering a C&C service. For this service, the system

capacity is largely determined by store operations. In non-crisis times, there is no need

to prioritize customers in the booking process, as capacity is sufficient to serve most

customers. Thus, customers arrive randomly throughout the booking horizon and are

simply served according to the first come first served (FCFS) principle (Figure 3.3).

Figure 3.3.: C&C Booking Process in Normal Demand Situations

During the COVID-19 crisis, demand has far exceeded capacity. While e-retailers

can increase handling capacity to some extent, they are unable to cover the enormous

demand surge. This has resulted in many dissatisfied customers who are not able to

select a time slot at all and thus cannot be served (Figure 3.4). From an e-retailer’s

point of view, the FCFS method is no longer satisfactory since in such an extreme

demand situation, customer-specific priority affiliations cannot be incorporated into the

booking process despite their increasing importance.

Figure 3.4.: C&C Booking Process in Extreme Demand Situations
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By proactively contacting customers, the e-retailer can manage the customer arrival

process in extraordinary demand situations to incorporate customer segment affiliations

(Figure 3.5). Each customer c is associated with a segment-specific weight αc that

denotes the importance of serving customer c.

Figure 3.5.: Contacting Procedure

Our proposed contacting procedure divides the time horizon into several contacting periods in which

the e-retailer can proactively contact customers.

While in our numerical study the weights reflect the vulnerability of certain customer

segments, akin to the current approach of several UK retailers, the definition is generic

and allows for other choices, such as profit-based priorities. In our proposed contacting

approach, customers can be contacted at a predefined contacting point t in one of the T

contacting points that cover the booking horizon. After a customer has been contacted,

an order can be placed and one of the still available time slots selected until the next

contacting point, which becomes the communicated deadline for placing an order. We

denote the response probability by λ ∈ [0, 1] and assume that this probability is identical

and independent across all customer groups. Consequently, we obtain a binomial process

for the number of arriving customers in which λ denotes the response probability (of a

contacted customer arriving). Since there is an ongoing crisis situation, it is reasonable

to assume that customers will accept all offered time slots. This should be considered

a mild assumption in the event that stay-at-home orders are issued by governments,

as happened during the coronavirus pandemic. If a customer does not place an order

and does not select one of the time slots by which time the next contact is made, the

opportunity to book a time slot expires. The sequence in which the contacted customers

arrive and place their orders between the contacting points is random. If customer

contacts exceed capacity, the arriving customers are served using the FCFS principle

until capacity is depleted. At the next contacting point, it becomes apparent how many

of the contacted customers have arrived and actually placed an order. The e-grocer

then has the possibility to contact further customers if the cut-off has not yet been
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reached. If too many of the contacted customers wish to place an order, a penalty will

be assessed for each arriving customer who cannot book a time slot, to limit the number

of contacted, unserved customers. The penalty for each rejected customer c is denoted

by βc. To reflect that rejecting customers with a high priority status, such as elderly and

most vulnerable customers, is more severe since these customers are exposed to a much

higher risk and rely on being able to place an order, we assume that the penalty term

for a customer depends on the associated weight of the customer and can be calculated

as βc = β · αc with a penalty factor β > 1. We further assume that a customer is

rejected upon arrival if and only if capacity is depleted. The overall objective of the

contacting approach is to maximize the sum of the weights of the customers served less

the total penalties. Let Ct denote the set of uncontacted customers and Kt ∈ N0 the

remaining free capacity at the beginning of period t. We can then formulate the problem

using dynamic programming (DP), using Ct and Kt as state variables. To this end, let

Vt(Ct, Kt) denote the maximum expected objective to go, given the remaining set of

customers Ct ̸= ∅ and remaining capacity Kt > 0 at the beginning of period t. Using

this notation, we obtain for Ct ̸= ∅ the Bellman equation

Vt(Ct, Kt) = max
Ct⊂Ct

Kt∑
n=0

P (Xt = n)

E
 ∑

i∈B,
B⊂Ct, |B|=n

αi

+ Vt−1(Ct \ Ct, (Kt − n))



+

|Ct|∑
n=Kt+1

P (Xt = n)

E
 ∑

i∈B,
B⊂Ct, |B|=Kt

αi

− E

 ∑
i∈B,

B⊂Ct, |B|=n−Kt

βαi


 ,
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which can be transformed to

Vt(Ct, Kt) = max
Ct⊂Ct

Kt∑
n=0

P (Xt = n)

E
 ∑

i∈B,
B⊂Ct, |B|=n

αi

+ Vt−1(Ct \ Ct, (Kt − n))



+

|Ct|∑
n=Kt+1

P (Xt = n)

E
 ∑

i∈B,
B⊂Ct, |B|=Kt

αi

− E

 ∑
i∈B,

B⊂Ct, |B|=n−Kt

βαi




= max
Ct⊂Ct

Kt∑
n=0

P (Xt = n) [n · α + Vt−1(Ct \ Ct, (Kt − n))]

+

|Ct|∑
n=Kt+1

P (Xt = n)(Kt · α− β · α · (n−Kt))

= max
Ct⊂Ct

|Ct|∑
n=0

P (Xt = n)[α
(
min{n,Kt} − β · (n−Kt)

+
)

+ Vt−1(Ct \ Ct, (Kt − n)+)]

= max
Ct⊂Ct

α

λ · |Ct| − (1 + β)

|Ct|∑
n=Kt+1

P (Xt = n)(n−Kt)


+

Kt−1∑
n=0

P (Xt = n)Vt−1(Ct \ Ct, (Kt − n))

where Xt ∼ B(|Ct|, λ) denotes the random number of customers that respond to

the invitation in period t and α =
∑

c∈Ct
αc

|Ct| represents the average objective weight of

the set of customers Ct. Note that it holds E
(∑

i∈B,B⊂Ct, |B|=n αi

)
= n · α since all

customers have the same arrival probability. If no customer is contacted, i.e., Ct = ∅,
the process simply moves to the next contacting period without any change in the state,

i.e., Vt(Ct, Kt) = Vt−1(Ct, Kt). The boundary conditions are V0(C, K) = 0 for all sets of

remaining customers C and all remaining capacities K. Likewise, if capacity is depleted,

we have Vt(Ct, 0) = 0 for all sets of remaining customers Ct and, if there are no further

customers to contact, Vt(∅, Kt) = 0 for all remaining capacities Kt and for all periods t,

respectively.
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3.3.2. Attended Home Delivery

In practice, we observe that the majority of online orders are not fulfilled via the C&C

but rather the AHD mode of service (L.E.K. 2019). Compared to the C&C fulfillment

method, the retailer delivers the products to the customer’s home in the AHD case, in

addition to picking and preparing all products in the shopping basket. In that regard,

the AHD fulfillment method can be interpreted as an extension of the C&C method, and

the general booking process from a customer’s perspective remains the same. Instead

of selecting a pick-up station in the first step of the booking process, the customer’s

address is entered. Similar to the C&C setting, we propose a new demand management

approach consisting of proactively contacting customers (Figure 3.5) in the AHD setting.

Although the contacting approach in the AHD setting is very similar to the C&C

setting, there is a key difference between these two fulfillment methods. Under the C&C

fulfillment method, only a finite physical capacity K needs to be considered. In the

AHD setting, in addition to the finite physical capacity imposed by handling operations

and vehicle capacities, there is also the constraint of the maximum vehicle tour length,

resulting from the shifts of the vehicle, which cannot be exceeded. This additional

restriction interconnects the independent customer orders and thus significantly increases

the problem’s complexity. Indeed, checking whether an arriving customer can be served

is already a complex routing problem. To be able to solve the problem for realistic

problem instances, preliminary routes for the already accepted customer orders and the

nearest insertion heuristic are used to check whether adding an arriving customer is

possible. Due to this additional routing component, the case may arise that an arriving

customer must be rejected whereas a future arriving customer can still be served. This

is not possible in the C&C setting since the resource consumption is identical across all

customers.

Before diving deeper into the details of how to solve the contacting problem, it is

necessary to define the general problem context of the AHD setting. We assume that

the e-retailer operates V vehicles and uses one depot from which all customers are served.

All vehicle tours start and end at this depot. As is common in the routing literature, we

assume that the travel times are proportional to the travel distances, i.e., the delivery

vehicles travel with a constant speed. Furthermore, we assume a fixed dwell time τ per

customer. Due to the predefined shifts of the vehicles and the working time restrictions of

the employees, the tour length (consisting of travel and dwell times) is also limited. The
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maximum tour length is denoted by MaxLength. Since the vehicles can only transport

a certain number of crates and each order is assumed to require the same number of

crates, the number of customers served on a vehicle tour is also limited. The maximum

number of customers that a vehicle can serve on one tour is denoted by MaxCap.
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3.4. Contacting Procedure

In this section, we introduce and discuss the contacting procedures for C&C and AHD.

The focus is on how to handle the complexities of the AHD setting.

3.4.1. Click&Collect

To further our understanding of the C&C contacting problem, we first consider the

optimal contacting policy for two special cases, namely (i) deterministic customer arrivals

and (ii) a very high number of contacting points. Subsequently, we address the more

realistic case of a small number of contacting points with stochastic customer arrivals.

First, consider the case in which each contacted customer places an order with cer-

tainty, i.e., λ = 1. One can view this case as an acute crisis setting during which

customers are desperate to order. In this setting, the e-grocer’s optimal contacting pol-

icy is very simple. Due to the deterministic customer response, the e-grocer can fill the

remaining capacity exactly without overbooking. In addition, all chosen customers can

be contacted simultaneously, i.e., a single contacting period suffices. In conclusion, given

a deterministic customer response, it is optimal for the e-grocer to rank the customers

by αc and to immediately contact the Kt highest ranked customers.

If a customer’s response to being contacted is stochastic, i.e., λ < 1, the number of

available contacting periods becomes relevant. Each additional contacting opportunity

allows the e-grocer to react to the observed response from the preceding contacting

round. If the number of contacting periods is large (specifically if T > ∥Ct∥) the con-

tacting problem is again simple. In fact, in this setting, it is optimal for the e-grocer to

apply the optimal policy from the above deterministic case repeatedly until the capacity

is depleted or all customers have been contacted. This policy again avoids overbooking.

What makes the C&C contacting problem nontrivial is the combination of a stochastic

customer response and a small number of contacting periods, yet these are the conditions

that hold in practice. While the probability that a contacted customer will place an

order is likely to be high in a crisis, some uncertainty remains: the customer may be

unavailable, may not receive the invitation, or may have already successfully used an

alternative shopping opportunity. At the same time, customers cannot be contacted

arbitrarily early, and need some time to respond. This limits the number of contacting

periods available to the e-grocer. Under these circumstances, it is harder for the e-
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grocer to match demand to the available capacity. The above DP formulation captures

the underlying trade-offs. For practical use in a stressful crisis situation, it is important

to solve the contacting problem quickly. We therefore use the insights gained from the

previously discussed special cases to simplify the problem. Specifically, we assume that

the customers are contacted in a weight-descending sequence. This drastically reduces

both the state and the action spaces of the DP: instead of the set of remaining customers

Ct, it is sufficient to track the number of remaining customers |Ct|. Similarly, instead of

deciding on the set of customers Ct to contact in period t, it is sufficient to determine

the number of customers to contact |Ct|. We use this reduced DP formulation in our

numerical experiments. The DP is solved by backward recursion, storing the optimal

number of customers to contact for all numbers of customers yet to be contacted and

all future contacting points.

3.4.2. Attended Home Delivery

In comparing the contacting setting in the AHD and C&C cases, we observe that the

routing component significantly complicates the problem. Even in the simpler settings

of deterministic customer arrivals or with a high number of contacting periods in the

AHD setting, it is no longer apparent which customers to contact due to routing in-

terdependence. To nevertheless solve this complex problem for realistic instances, we

propose a three-step procedure. In the first step, the total delivery area is decomposed

into subareas. In the second step, it is determined which of these subareas should be

served, and in the third step, the decisions regarding which customers to contact are

made. The following subsections discuss the individual steps in more detail.

3.4.2.1. Subdivision of Delivery Area into Subareas

Since the problem cannot be solved directly for the entire delivery area due to its high

complexity, the delivery area is first decomposed into smaller subareas under the as-

sumption that a single van serves a corresponding subarea by completing one cycle

within the area per delivery time slot. This approach to roughly estimating delivery

costs was proposed by Daganzo (1987) under a number of assumptions, such as uniform

distribution of customers over time slots and subareas. In our considered crisis scenario,

these normally fairly strong assumptions are in fact realistic due to the extremely high

demand.
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We follow a similar clustering procedure as in Yang and Strauss (2017) who likewise

built a geographic decomposition approach on Daganzo (1987). To accomplish the sub-

division, the total delivery region is first partitioned into bands (north to south) of equal

size. Since the heights of the rectangles are determined by the conveniently chosen num-

ber of horizontal bands, in a second step, only the horizontal widths (west to east) of the

rectangles need to be determined. Two requirements must be considered in the process

of determining the horizontal widths. First, there should not be too many customers in

the rectangles (due to the maximum physical capacity of the vehicles), and second, the

rectangles should not be geographically too large, depending on the distance from the

depot (due to the maximum length of the tour). To ensure that the rectangles contain

the right number of customers, we introduce a limit on the number of customers in the

rectangles. We set the limit so that in expectation as many customers arrive as can be

supported by physical capacity. This limit can be calculated as MaxCap
λ

. To ensure that

the maximum length of the tour is not exceeded, an upper bound on the geographical

size of the rectangle, depending on the distance to the depot, must be considered. We

make use of the ”cluster-first, route-second” approach that was introduced in Daganzo

(1987). Accordingly, the average distance traveled by the vehicle from the depot to the

rectangle, within the rectangle, and back to the depot can be calculated as

2ρ+ l +
wE

6
+ τE ≤ MaxLength,

where ρ describes the distance from the depot to the center of the rectangle, l and w

denote the length and width of the rectangle, E is the expected number of arriving

customers in the rectangle and τ is the dwell time at the customer location. For further

information on this formula, we refer to Daganzo (1987).

To allow a differentiation between customer segments, we develop this rectangular

structure for different combinations of customer segments. Here, we proceed hierar-

chically, starting with the highest-weighted customers. Thus, we start with customers

from Segment 1 only and determine corresponding rectangles. Subsequently, we add the

customers from Segment 2 and determine new rectangles with the pool of customers

from Segments 1 and 2. We follow this procedure until we finally consider the total set

of customers. In this way, we obtain as many different sets of rectangles as there are

customer segments. Combining all rectangles, we obtain the overall set of overlapping

rectangles R.
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3.4.2.2. Selection of Subareas

Once the total delivery area is decomposed into smaller subareas using the method

described in the previous subsection, in a second step, it must be determined which of

these overlapping areas are most favorable to be served. Consequently, a certain subset

of subareas needs to be selected that is served by the vehicles. To find the most promising

non-overlapping subareas, we need to solve the following selection model. The model

includes the binary decision variable xr ∈ {0, 1} for every rectangle r ∈ R, indicating

whether the rectangle r will be served:

max
∑
r∈R

mr · xr∑
r∈R

xr ≤ V

xs + xt ≤ 1 ∀ (s, t) ∈ O

xr ∈ {0, 1} ∀ r ∈ R.

Since we assume that all customers, regardless of their segment, arrive with the same

probability if contacted, we maximize the expected total mass of the rectangles. The

mass of a rectangle r ∈ R is denoted by mr =
∑

c∈C(r) αc as the sum of weights αc of

all customers c ∈ C(r) in rectangle r. The first constraint of the model ensures that

the total number of chosen rectangles does not exceed the number of vehicles. The

second class of constraints guarantees that the chosen rectangles do not overlap, i.e.,

no customer is contacted twice. Here, the set O consists of all pairs (s, t) of rectangles

s, t ∈ R with C(s) ∩ C(t) ̸= ∅.

3.4.2.3. Area-Based Contacting Approaches for Attended Home Delivery

After determining which of the rectangles to serve, the question arises of which cus-

tomers in the subareas must be contacted in which contacting period. In the following

paragraphs, we discuss several contacting approaches. First, we consider the simple

approach of contacting all customers in the selected rectangle. Then, we investigate

the case of deterministic customer arrivals. Last, we investigate a more sophisticated

contacting approach that is based on the contacting concept used in the C&C setting.
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Contacting All Customers of the Selected Subareas

A simple option for area-based customer contacting would be to contact all customers

from the selected rectangles at once. Since all customers are contacted and then served

according to the FCFS principle, the entire contacting problem reduces to a one-period

problem.

Contacting with Deterministic Customer Arrivals in the Selected Subareas

If we assume that contacted customers arrive with certainty, the problem, like the deter-

ministic case in the C&C setting, reduces to a one-period problem. Because of determin-

istic customer arrivals, no overbooking occurs, and only the question of which customers

to serve from the selected rectangles remains. This problem is similar to the problem

considered in Cleophas and Ehmke (2014) as there is no difference whether customers

are proactively contacted and arrive with certainty or whether (predicted) arriving cus-

tomers are accepted. However, since we want to use this special case as a benchmark

in our numerical study, we utilize the TOP to solve the problem instead of applying

an acceptance algorithm as in Cleophas and Ehmke (2014) or Ehmke and Campbell

(2014). In particular, we use the TOP formulation from Tang and Miller-Hooks (2005)

and adapt it to our specific problem setting. The formulation starts with a complete

graph G = (V,E), where V = {0, . . . , n} describes the vertex set, consisting of the

depot (vertex 0) and the potential customers to be served from the selected rectangles,

E = {(i, j) | i, j ∈ V } describes the edge set and αi denotes the weight collected by

visiting customer i for i ∈ V \ {0}. The idea is to find a set of m vehicle tours that start

and end at the depot and collect the maximum total weight by visiting the selected ver-

tices within a maximum tour length MaxLength and respecting the maximum physical

capacity MaxCap of the vehicles. The distance between i and j for i, j ∈ V is denoted

by dij, and we use the following decision variables:

• yik ∈ {0, 1}: vertex i ∈ V \ {0} is visited by vehicle k ∈ {1, . . . ,m},

• x0jk ∈ {0, 1, 2}: number of times edge (0, j) for j ∈ V \ {0} is traversed by vehicle

k ∈ {1, . . . ,m},

• xijk ∈ {0, 1}: number of times edge (i, j) for i < j, i, j ∈ V \ {0} is traversed by

vehicle k ∈ {1, . . . ,m}.

With this notation, we formulate the TOP as
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max
n∑

i=1

m∑
k=1

αiyik (3.1)

n∑
j=1

m∑
k=1

xojk = 2m (3.2)∑
i<j

xijk +
∑
i>j

xjik = 2yjk ∀ j ∈ {1, ..., n}, k ∈ {1, . . . ,m} (3.3)

n−1∑
i=0

∑
j>i

dijxijk +
n∑

i=1

τyik ≤ MaxLength ∀ k ∈ {1, . . . ,m} (3.4)

m∑
k=1

yik ≤ 1 ∀ i ∈ {1, . . . , n} (3.5)∑
i<j, i,j∈U

xijk ≤ |U | − 1 ∀U ⊂ V \ {0}, n− 1 ≥ |U | ≥ 2, k ∈ {1, . . . ,m} (3.6)

n∑
i=1

yik ≤ MaxCap ∀ k ∈ {1, . . . ,m} (3.7)

x0jk ∈ {0, 1, 2} ∀ j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} (3.8)

xijk ∈ {0, 1} ∀ 1 ≤ i < j, j ∈ {1, . . . , n}, k ∈ {1, . . . ,m} (3.9)

yik ∈ {0, 1} ∀i ∈ {1, . . . , n}, k ∈ {1, . . . ,m}. (3.10)

The objective is to maximize the overall sum of the collected weights of the customers

who are served. The first constraint initializes the tours of the m vehicles. The second

class of constraints guarantees the connectivity of the vehicle tours and links the variables

x and y. The next class of constraints restricts the maximum lengths of the vehicle tours.

Constraints (3.5) ensure that a customer can be served at most once, while constraints

(3.6) prohibit sub-tours. The last class of constraints ensures that the maximum physical

capacity of the vehicles is not exceeded. Using this model, the special case of proactive

customer contacting with deterministic customer arrivals in the selected subareas can

be solved.
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Targeted Customer Contacting

If we assume stochastic customer arrivals, a more sophisticated procedure of proactively

contacting customers can be derived from the insights of the contacting procedure in

the C&C setting. Since the rectangle formation already addresses and constrains the

geographical component of this problem, the underlying concept is to apply the DP

formulation of proactively contacting customers from the C&C setting (Section 3.4.1) in

the selected subareas. Thus, the overall AHD problem is interpreted as the combination

of multiple C&C problems. However, it should be noted that the customer location

information must also be included in the contacting process. In the C&C setting, we

observed that in certain instances only some customers of a given priority group are

contacted. In C&C, it is irrelevant which of the customers are selected from the priority

group because the customers are of equal value and lead to the same resource consump-

tion. Since the locations of the served customers influence the routing decision, in this

approach, we contact the customers in a weight-decreasing, distance-to-depot-increasing

sequence. This choice ensures that the routing procedure is as flexible as possible.
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3.5. Numerical Study

In this section, we explain the design of our numerical study, report our results, and

discuss ensuing managerial insights.

3.5.1. Click&Collect

To evaluate the benefits of demand management through proactive customer contacting

in the C&C setting in the event of a crisis, we test our proposed approach on a realistic

data set. With these experiments, we seek to answer the following questions: What is

the benefit of proactive customer contacting for an e-grocer offering the Click&Collect

fulfillment method in times of crisis? What parameters drive this benefit? What are the

costs incurred by the e-retailer to prioritize vulnerable customers in times of crisis?

As a benchmark for our proposed approach, we implement the FCFS approach, which

is currently used by our industry partner. In addition, we also calculate the asymptotic

results for our contacting approach with a large number of contacting periods. Our

numerical study thus includes the following tested policies:

• FCFS: no active demand management, customers arrive simply according to FCFS

until capacity is depleted.

• Contacting: proactive customer contacting approach with different response prob-

abilities λ of customers and different numbers T of contacting periods.

3.5.1.1. Data and Parameters

Before presenting the results of our study, we explain the relevant parameter settings

summarized in Table 3.1. The data used in this numerical study can also be accessed

online (Schwamberger et al. 2022a). The considered scenario reflects the setting in the

region of London, UK. All values are either provided by our industry partner, a well-

known supermarket chain that operates C&C and AHD services all over the UK, or, if

no information was provided, estimated based on publicly available data.

The capacity of customers that can be served by the C&C service per day per pick-up

store is limited by the store operations and was given by our industry partner asK = 100.

To achieve customer prioritization, we consider L = 3 customer segments: Segment 1,

which contains the most preferred customers, includes all customers from the EDV list;
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Table 3.1.: Parameters C&C

Parameter Meaning Values
K Capacity 100
L Number of customer segments 3
C Number of customers per segment [48; 54; 375]
α Weights of customer segments [10; 7; 5]
λ Response probability 0.9 / 0.75 / 0.6
T Contacting periods 1 / 2 / 3 / 4 / 5 / 6
β Penalty factor 3
r Retailer’s revenue per segment [43.5; 61; 61]

Segment 2 includes customers owning a premium pass for online grocery orders; Segment

3 consists of the remaining customers who do not receive special prioritization. To assess

the relative sizes of the segments, we estimate the total number of customers using

the C&C service. Using the total number of inhabitants of London, the percentage of

people who buy groceries online and the market share of our industry partner, we obtain

approximately 400,000 customers in the London area. With this number of customers,

as well as the information pertaining to their age distribution, the respective shares of

age groups that buy groceries online and the share of customers who own a premium

pass, we are able to determine the relative sizes of the segments. In total, we obtain

40,000 customers in Segment 1 (≈ 10%), 45,000 customers in Segment 2 (≈ 11.25%) and

315,000 customers in Segment 3 (≈ 78.75%). Since approximately one quarter of these

online customers use the C&C service, our industry partner operates 30 stores in the

London area, and assuming that our customers purchase groceries once per week, we

obtain a total number of 48 customers for Segment 1, 54 customers for Segment 2 and

375 customers for Segment 3 per store per day. The weights reflecting the prioritization

of these segments are set as α1 = 10, α2 = 7, and α3 = 5. We vary the response

probability λ = 0.9/0.75/0.6 of customers responding to the contacting, and the number

of contacting periods. Assuming that customers are given 12 hours in which to respond

after being contacted and that the contacting phase begins at most three days before

the cut-off time, the following numbers of contacting periods T = 1/2/3/4/5/6 seem

appropriate. If a customer is contacted and cannot be served, penalty costs of β · α
are incurred. We set β = 3, which corresponds to a reasonable Newsvendor fractile of

75%. To quantify the impact of this prioritization process on the retailer’s revenue, we

estimate the expected revenue per segment. Since the average weekly spending on food
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of a person aged 75 years or older is £43.5, significantly lower than the average weekly

expenses of £61 (Statista 2018), we assume realized revenues of £43.5 for a customer

from Segment 1 and £61 for customers from Segment 2 or Segment 3.

3.5.1.2. Results of the Numerical Study

We first address the relative benefits of contacting versus FCFS. Table 3.2 provides a

summary of the numerical results and is discussed in this section. The third column of

this table describes the overall expected score of each policy in the different settings. The

fourth column presents the score compared to the FCFS method in %. The fifth column

describes the score on a range of 0-100% relative to the gap between the FCFS method

and the contacting setting with an infinite number of contacting periods. The following

columns show the numbers of customers to contact in the first contacting period and

the expected numbers of served customers over the entire contacting horizon for each

customer segment. Then, following the expected capacity utilization in %, the expected

share of rejected customers out of the arriving contacted customers is given in %, and

the expected average revenue per served customer is given in £. All computations were

conducted using an HP ProBook 440 G5 with a 2.5 GHz Intel Core i5 processor (two

cores) with a run time of less than two hours per contacting period for these instances.

Note that the contacting problem can be solved offline before customers are contacted.

Results FCFS

Since the considered set of customers is several times larger than the available capacity,

the customers’ response probability has no influence on the results, as the demand

exceeds capacity for all response probabilities. Therefore, Table 3.2 includes only one

line for the FCFS approach. As the response probability is identical across all customer

segments and the customers are served until capacity is depleted (capacity utilization of

100%), all customer segments receive the same service level.

Results Contacting

The results for the proactive contacting approach with stochastic customer arrivals are

listed by decreasing response probabilities and increasing number of contacting periods.

Note that for every T at the beginning of each contacting process, it is assumed that

the entire capacity and finite number of customers are available.
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Chapter 3. Feeding the Nation

First, consider the results for the highest response probability (λ = 0.9). Even if only

one contacting point is available, the achieved score is already more than 37% higher

than that for the FCFS approach. This is the case even though capacity utilization is

slightly lower (96.93%) and a small fraction of customers must be rejected (0.29%). The

rationale is that the numbers of customers served from Segments 1 and 2 have increased

significantly. This is a direct result of the number of contacted customers. When the

number of contacting points increases, the achieved scores increase further. However, it

is notable that the score increases only marginally after approximately four contacting

points. At this point, the obtained score is close to the upper bound (i.e., T = ∞). At

this number of contacting points, no customers are rejected, and the capacity is almost

completely utilized. This is due to the increased number of customers being served from

Segment 3. In fact, fewer customers from Segment 3 are contacted in the first contacting

point. However, since the e-retailer has more opportunities to observe how many of the

contacted customers arrive, capacity utilization can be increased.

With decreasing response probabilities, an overall decreasing score can be observed,

resulting from deteriorating market potential. This can be seen in the increasing pro-

portion of customers served from Segment 3, although similar numbers of customers are

contacted from Segment 1 and 2. In general, however, similar effects for the score, ca-

pacity utilization and share of rejected customers to the response probability λ = 0.9 are

observable. It is noteworthy that even with these response probabilities, approximately

4 contacting points are sufficient, although the overall convergence to the asymptotic

score is not as rapid. Overall, it becomes apparent that the number of overbookings,

i.e., the aggressiveness of contacting, increases.

Table 3.2 also documents the cost of prioritizing vulnerable customers. Serving more

customers from Segments 1 and 2 decreases the average revenue per customer served,

albeit only slightly.

Managerial Insights: Click&Collect

Demand can be strongly controlled by proactively contacting customers, which answers

the first question. Comparing the numbers of the various response probabilities to the

initial situation, a significant increase in the number of served customers from Segments

1 and 2 can be observed at all response probabilities. Despite a minor drop in capacity

utilization, this has a positive effect on the total score, which improves significantly in all

cases compared to the status quo. In particular, we identify great improvement potential
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Chapter 3. Feeding the Nation

for high response probabilities. This shows that proactively contacting customers is an

effective demand management tool which allows the retailer to concentrate on satisfying

demand from the most preferred customer groups.

To answer the question of which parameters drive the benefits of proactive customer

contacting, it becomes apparent that the aggressiveness of the contacting is closely linked

to the response probability and the number of contacting periods available. As the

response probability decreases, the uncertainty of how many customers actually arrive

once contacted increases. If, in addition, only a few contacting periods are available, the

aggressiveness of the algorithm increases. This leads to increasing penalties and, with

decreased market potential, to a lower overall score.

Furthermore, it is remarkable how quickly the expected score and the retailer’s revenue

approach the values of the asymptotic contacting behavior, which becomes evident by

their relative comparison to the upper bound. Although the actual contacting behavior

observed in period T = 4 is still very different from the asymptotic results, there are

hardly any significant differences in the resulting key indicators, such as capacity utiliza-

tion, revenues and total score. The marginal benefit of adding an additional contacting

point diminishes quickly and it is sufficient to establish only a few contacting points.

Another managerial insight is that customer prioritization in the C&C setting hardly

affects the capacity utilization. In all tested instances, a capacity utilization of at least

99% is achieved with only three contacting points.

Retailers face a trade-off between prioritizing customers according to their vulnerabil-

ity and short-term revenues. This trade-off can be observed in the results and is much

milder than originally expected. In our setting, at least a tripling of customers served

from Segments 1 and 2 can be achieved by accepting a decrease in average revenue per

customer served by at most 10%. Note that this trade-off is problem inherent and is not

due to the customer contacting. If the retailer values revenues more highly, the segment

weights can be adjusted accordingly.

Summarizing, the gained managerial insights are:

• Proactive customer contacting is a valuable demand management tool.

• A high customer response rate benefits the contacting policy; thus, it is particularly

suitable in crisis situations.

• The marginal benefit of adding an additional contacting possibility decreases quickly.
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• The improvement in the expected customer mix is at the expense of only a minor

drop in capacity utilization.

• The trade-off between prioritizing vulnerable customer groups and revenue is rel-

atively mild.

3.5.2. Attended Home Delivery

In addition to the same research questions that we have formulated in Section 3.5.1

in the C&C context, we aim to explore structural differences in the results of proac-

tively contacting customers between the AHD and C&C fulfillment methods with this

numerical study.

To obtain a relevant benchmark against which to compare our proposed methods, we

use, similar to the C&C setting, the FCFS principle for the entire delivery area. Thereby,

the policies tested in this numerical study are as follows:

• FCFS: no active demand management; customers arrive simply according to FCFS

from the entire delivery area.

• ContactAll: proactively contacting all customers of the selected subareas.

• ContactTargeted: proactive customer contacting within the selected subareas based

on the C&C approach.

In addition, we report the results obtained by first sampling which customers of the

chosen subareas arrive, depending on the response probability, and then solving the

deterministic TOP on this subset of customers. For given customer arrivals, this pro-

vides an ex post upper bound for the contacting procedure which naturally avoids any

customer rejections. We label the results as Ex Post TOP.

Before we describe the specific parameters and results of the numerical study, we

should highlight a few differences with the numerical study of the C&C setting. Since

we assume a fixed capacity and there are no connections between arriving customers in

the C&C setting, we are able to calculate expected values directly. In the AHD setting,

in contrast, different routes are created depending on the actual arriving customers, thus

requiring simulations. Because the study can be parallelized very well after determining

the rectangles and selecting the most promising rectangles, the numerical study can be

implemented efficiently.
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3.5.2.1. Data and Parameters

All parameters that are described in the following are listed in Table 3.3. With the

same reasoning as in the previous numerical study for the C&C setting, we assume that

there are three customer segments (L = 3) with associated weights α = [10, 7, 5] and

revenues r = [43.5, 61, 61]. In this study, we again investigate three different response

probabilities of the customers, reflected by λ = 0.9, λ = 0.75 and λ = 0.6. Once again,

the penalty term is set to β = 3. In addition, we investigate the same numbers of

contacting possibilities T = 1, . . . , 6 as in the C&C setting.

Table 3.3.: Parameters AHD

Parameter Meaning Values
L Number of customer groups 3
α Weights of customer groups [10; 7; 5]
r Retailer’s revenue [43.5; 61; 61]
λ Response Probability 0.9 / 0.75 / 0.6
β Penalty term 3
T Number of periods 1 / 2 / 3 / 4 / 5 / 6
V Number of Vehicles 160
C Finite set of customers [1,071; 1,206; 8,437]

NumberofSimulations Number of Simulations 100
MaxCap Max. physical capacity of vehicle 14

MaxLength Max. Length of tour 200
τ Dwell Time at the customer location 10

DeliveryArea Delivery area 40 x 40
NumberHorizontalBands Number of horizontal bands 15

Compared to the numerical study of the C&C approach, the number of customers

C and the capacity alter since the distribution of customers using C&C and AHD is

different. As we have already described in the numerical study of C&C, we have ap-

proximately 400,000 customers buying groceries online in the London area. Since ap-

proximately three-quarters of these customers use the AHD service, there are 300,000

customers, of which 30,000 belong to Segment 1, 33,750 to Segment 2, and 236,250 to

Segment 3. We assume an equal distribution of these customers over the total delivery

area. Our industry partner operates one dedicated fulfillment center with 160 vehicles

that exclusively fulfills AHD orders. This center with its associated vehicles has a weekly

capacity to fulfill 25,000 online orders. Since a van usually operates two shifts per day

(7:00 - 15:00 and 15:00 - 23:00) 7 days per week, on average, 11 customers are served
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per tour. In addition to the dedicated fulfillment center, AHD orders are fulfilled by

30 additional stores. Since a store operates 5 vans on average, with each scheduled

to work two shifts 7 days per week, and on average 11 customers are served per tour,

we estimate that a store can fulfill approximately 770 orders per week. Combining the

capacity from the center and the stores, we conclude that there is the capacity to serve

approximately 50,000 orders per week in the London area. Since we want to focus on the

requests handled by the dedicated center in one shift, we obtain by assuming a uniform

distribution of customer requests between the stores and the dedicated center a total

number of 150,000 customer requests per week. Since the vehicles operate two shifts on

7 days, this corresponds to a total number of 10,714 customer requests per shift. With

the relative sizes of the customer segments, this results in approximately 1,071 customers

from Segment, 1,206 customers from Segment and 8,437 customers from Segment 3.

Since explicit routes need to be planned in the AHD setting, we performed simulations

for this numerical study. We fix the number of simulations at 100. Additionally, the

vans used to perform the routes have a certain physical capacity. Since a van can carry

70 crates (ambient crates, cooled crates and frozen crates) and an average customer

order consists of 5 crates, a maximum of 14 customers can be served per tour. Since a

delivery shift is 8 hours and the average delivery speed of a vehicle is assumed to be 25

km per hour, the overall tour length is limited to 200 km. In addition to the maximum

tour length, a dwell time of 10 minutes is incurred per customer. As the London area

contains approximately 1,600 km2, we assume an underlying delivery area of 40 km x

40 km. Since the depot of our industry partner is located in the vicinity of the city

center, we assume that the depot is located in the center of the delivery area. Because

we follow the clustering approach of Yang and Strauss (2017) to divide the London area

into subareas in our proposed method, we use the identical number of horizontal bands

(15) to subdivide the entire delivery area into subareas.

3.5.2.2. Results of the Numerical Study

The results we summarize in the following paragraphs are gathered in Tables 3.4 and

3.5. Table 3.4 provides the average values of the different tested contacting policies

with four contacting points for different response probabilities rounded to two decimals.

In contrast, Table 3.5 displays the data of the targeted contacting approach for differ-

ent customer response probabilities and numbers of contacting periods. Similar to the
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C&C setting, the third columns of the tables denote the average total score per vehicle.

The fourth columns show the average score compared to the FCFS method. The fifth

columns denote the score on a range of 0-100% compared to the FCFS method (0%)

and Ex Post TOP (100%). Subsequently, in the next columns of Table 3.4 follow the

respective average numbers of contacted customers in the first contacting period and

the average number of total served customers over the entire contacting horizon per

customer segment. Next, both Tables 3.4 and 3.5 provide the average physical capacity

and routing utilization in %, the average share of rejected customers from the arriving

customers in % and the average revenues per served customer in £. All results presented
in both tables are statistically stable and significant. Since a sufficient number of simu-

lations was performed, all scores obtained by the contacting methods are within a 95%

confidence interval of at most ±0.25. The run time to determine the targeted contacting

policy was less than 30 seconds for each subarea. As in the C&C setting, the contacting

problem can be solved in advance. The only online problem that needs to be solved is

whether an arriving customer can be added to the existing route. Using this heuristic,

this problem can be solved in a fraction of a second for each subarea.

Results FCFS

Before diving deeper into the results of our proposed contacting procedure, we first

consider the results of the FCFS method on the entire delivery area (Table 3.4). Since

we assume that demand is several times larger than the available capacity, the specific

response probabilities of the customers are irrelevant, resulting in only one line for the

FCFS approach in Table 3.4. As in the C&C setting, all customer segments obtain the

same service level, and only the relative sizes of the customer segments determine the

achieved score. When serving the customers in a FCFS sequence, the routes are not

planned very efficiently since the customers are simply inserted based on the nearest

insertion heuristic (Section 3.3.2). Both the average routing and the average physical

capacity utilization are high. However, compared to the C&C setting, the physical

capacity is not completely exploited at 95%.
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Results Contacting All Customers in the Selected Subareas

If all customers in the selected subareas are contacted (Table 3.4), we observe that rea-

sonable scores can be achieved for the high and moderate response probabilities. If the

response probability λ decreases, the variance of arriving customers increases. With

an underlying rectangular structure that depends on the response probabilities and the

concept of contacting all customers in each rectangle, this often leads to customers who

are contacted but cannot be served due to insufficient capacity (see share of rejected

customers). At high and moderate response probabilities, the score of this method, in-

cluding incurred penalties for contacted customers who cannot be served, exceeds the

score of the FCFS approach by at least 5%. For a low response probability, contacting

all customers in the selected rectangles leads to a slightly inferior overall score, compared

to the FCFS approach, because the share of rejected contacted customers - and thus the

arising penalties - are quite high. A thoroughly high physical capacity utilization indi-

cates that the first step of the overall procedure, the division of the entire delivery area

into smaller subareas, is an appropriate way to geographically decompose the problem.

In all settings, a capacity utilization of at least 95% is achieved (similar to the FCFS

method), meaning that every vehicle, on average, has less than one spare unit of capacity.

As the numbers of served customers indicate, the method of contacting all customers in

the selected subareas can already be used to steer the demand effectively. For example,

the number of customers served from Segments 1 and 2 is more than quadrupled for

λ = 0.9 compared to the FCFS approach. However, a direct comparison with Ex Post

TOP shows that there is still room for improvement.

Results Targeted Customer Contacting

Our more sophisticated contacting approach based on the C&C contacting procedure

uses the possibility of additional contacting periods and waits to observe how many of

the contacted customers actually arrive. This limits the number of overbookings and

yields better overall scores. For the sake of simplicity, only the values for four contacting

periods are displayed for the targeted contacting method in Table 3.4. As seen in the

table, a high score is obtained for a high response probability λ = 0.9 compared to

the FCFS principle. The lower the response probability is, the lower the score, both

compared to the results of the FCFS method and on the range between FCFS and

Ex Post TOP. This is consistent with the results from the C&C setting and confirms,

together with the indicated number of served customers per customer segment, that
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in the AHD setting, the lever of proactively contacting customers can also be used to

effectively manage demand, especially if the customers are desperate to place an order.

In contrast to the C&C setting, however, we observe that the overall capacity utilization

is slightly lower in the AHD setting. This is due to situations in which all customers

in the subareas are contacted (see the previous method), but too few customers appear

to exploit the complete capacity. This could easily be remedied with a further increase

in the size of the subareas. However, given the consistently high capacity utilization of

at least 94%, a further inflation of the rectangles provides only marginal improvement.

Furthermore, the significantly lower routing utilization of the contacting approaches

compared to the FCFS method indicates that the routes can be designed much more

efficiently for all response probabilities, given subareas of this size. The average revenues

per served customer show a similar pattern as in the C&C case. The lower the response

probability, the higher the average revenue per served customer, since on average, more

customers with higher revenues (i.e., from Segments 2 and 3) arrive. Since the targeted

contacting approaches consist of four contacting opportunities in this table, almost no

customers need to be rejected for all response probabilities.

Table 3.5 complements the results by displaying the influence of the number of con-

tacting periods for different response probabilities. We again observe similar patterns

as in the C&C setting. With decreasing response probabilities, an overall decreasing

score can be observed, that results from the deteriorating market potential. An increas-

ing number of contacting periods increases the performance of the contacting approach.

This can be detected by the increasing score and the increasing capacity utilization

with an increasing number of contacting periods. As in the C&C setting, the improve-

ment levels off quickly. This means that also in the AHD case, a moderate number of

contacting periods is sufficient to exploit proactive customer contacting.
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Managerial Insights: Attended Home Delivery

Summarizing, similar to the C&C setting, it holds for the AHD setting that the higher

the response probability is, the more the lever of proactively contacting customers can

be exploited. The same observation holds true for the number of contacting periods. By

increasing the number of contacting periods, further flexibility in terms of checking the

number of customers who actually arrive once contacted can be added to the contacting

process, and the contacting aggressiveness decreases. With a small number of contacting

periods, this contacting approach can be used effectively. Compared to the C&C setting,

it is notable that in the AHD context, physical capacity utilization is slightly lower due to

geographical subdivision into subareas. Overall, however, the capacity utilization is still

very high, and every vehicle has less than one spare unit of capacity. Another managerial

insight is that the routing component of the AHD setting is already reasonably captured

in the subdivision of the area into subareas since the maximum physical capacity, and

not the maximum routing length, appears to be the bottleneck. This supports the idea

of interpreting the AHD problem as a combination of multiple C&C problems in the

subareas. We observe, as in the C&C setting, a mild trade-off between prioritizing

vulnerable customers and generated revenue. By proactively contacting customers, the

number of customers served from Segments 1 and 2 can be approximately tripled, with

a maximum reduction in revenue of 10%.
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3.6. Post-Crisis Contacting

Our study is motivated by observations during the recent COVID crisis. In particular,

the proposed customer contacting procedure addresses a setting in which demand grossly

exceeds capacity. In this section, we explore the potential of this approach in non-crisis

times.

We start by analyzing how the benefit of proactive customer contacting changes if

demand decreases from the crisis-time highs to more regular levels. To this end, we

numerically evaluated both the contacting approach (for a single contacting period, i.e.,

T = 1) and the FCFS benchmark for varying levels of the demand-capacity ratio in

the C&C setting. Specifically, we varied λ to scale expected demand to given target

multiples of total capacity. Other parameter values are identical to Section 3.5.1.

Table 3.6 shows the results of these experiments. We observe that for very low demand-

capacity ratios, contacting coincides with the FCFS approach. Due to the low demand

level, it is optimal to contact all customers, and no responding customers are rejected.

For increasing demand volumes, proactive contacting initially becomes inferior to FCFS.

This is due to the risk of costly overbooking which leads the retailer to contact fewer

customers, thereby resulting in a lower capacity utilization. The relative performance of

contacting versus FCFS reaches its lowest level at a demand-capacity ratio of 100%. For

higher ratios, the relative performance of the contacting approach increases again, due to

the stronger prioritization of the most valued customer groups. For a demand-capacity

ratio of 175%, FCFS and contacting achieve the same scores, however by different means.

For higher ratios, the contacting approach is superior.

The described results have two implications. First, the benefit of proactive customer

contacting, as opposed to reactive FCFS customer acceptance, depends strongly on the

system load. The presented contacting approach addresses a situation of grossly over-

whelmed capacity. In our study, switching to ’crisis mode’ becomes beneficial roughly

at a demand-capacity ratio of 2:1. Naturally, the specific switching point depends on

the market composition.

Second, to be effective in non-crisis times, the contacting approach requires modi-

fications. In such a setting, the benefit of proactively contacting customers does not

rest on capacity rationing but rather on leveling short-term demand fluctuations. To

exploit this potential, contacting does not replace but rather complement the regular

order acceptance process. That is, the retailer can decide towards the end of a regular
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order intake period whether to try and stimulate additional demand to fill remaining

capacity. This appears particularly promising for AHD where customers could be con-

tacted that fit well into routes with already accepted customers. A similar idea was, for

example, considered by Keskin et al. (2023) in the context of waste collection. Stimu-

lating demand will likely require some price discounts to motivate contacted customers

to place an additional order or to place a planned order earlier. The contacting decision

thereby faces a new trade-off. While optimal contacting in crisis times balances weighted

accepted orders and overbooking penalties, the decision in non-crisis times also has to

account for the offered discounts.

Modeling this way of contacting in non-crisis times requires several modifications to

the procedure proposed in this paper. First, a single contacting moment per order intake

period appears sufficient. Second, the transition probabilities should reflect the arrival

of both regular and contacted customers. Third, expected profit becomes the relevant

objective function. It is the latter that complicates the analysis since the relevant profits

do not only include collected revenues, discounts, and, in the case of AHD, transporta-

tion costs but also opportunity costs for demand shifted away from future order intake

periods. We see a detailed analysis of proactive customer contacting in non-crisis times

as a promising and relevant avenue for future research. We believe that the analysis

presented in this paper provides valuable building blocks for this undertaking.
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3.7. Conclusion

To conclude, we investigate a new demand management approach for an e-grocer offer-

ing C&C and AHD services by proactively contacting customers. We develop a decision

policy for the C&C fulfillment method to address the problem of when to contact cus-

tomers and extend this approach to the AHD setting. To cope with increased problem

complexity, we propose a three-step procedure to solve this problem. First, we subdivide

the delivery area into smaller subareas; second, we select the most promising subareas;

and third, we determine which customers to contact in which contacting period in the

chosen subareas. To gain managerial insights and to show the practical benefits of our

approaches, we apply both approaches to realistic data from the London area. After de-

veloping and investigating our contacting approaches for the C&C and AHD fulfillment

methods in times of crisis, we provide decision support when an e-grocer should switch

to proactive customer contacting mode and discuss how this new demand management

approach can be used in post-crisis times.

As we are the first to investigate proactive customer contacting in the context of e-

groceries in times of crisis, not all questions have been ultimately clarified. For example,

further investigation could clarify how more complex customer choice behaviors affect

the results of this contacting approach. Since our approach assumes that the customers

accept all time slots, the rejection of the time windows is only implicitly modelled in the

response probability. A more sophisticated customer choice model could be integrated

into the contacting approach. This might be a good starting point for future research.
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Chapter 4.

Getting the Most out of Online

Deliveries - Proactive Customer

Contacting in E-Fulfillment
1

1The research presented in this chapter is based on a paper entitled ”Getting the Most out of Online
Deliveries: Proactive Customer Contacting in E-Fulfillment” (Schwamberger 2023).
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Abstract

During the COVID-19 pandemic, some e-grocers began to proactively reach out to cer-

tain customers, giving them priority access to online grocery ordering. In this paper, we

explore how this concept of proactively approaching customers can be implemented and

leveraged in post-crisis times. We propose to integrate proactive customer contacting at

the end of the classical booking process to generate additional, good-fitting demand if it

is anticipated that not enough inquiries will emerge via the normal booking process. In

this paper, we explore under which circumstances it is beneficial to proactively contact

customers, how much additional demand to generate and which customers to target. To

this end, we propose an optimization formulation to solve the contacting problem and

compare the results in a numerical study with simple contacting strategies and a sam-

pled ex post optimal solution to evaluate the merit of proactively contacting customers.

We demonstrate that proactive customer contacting can exploit available untapped re-

sources; show that contacting the marginal best customers is not always optimal, as

the optimal contacting decision depends on the customers available for contacting; and

reveal that none of the simple contacting strategies is universally superior.
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4.1. Introduction

For several years, e-grocers have been experiencing a strong growth in demand. In par-

ticular, the coronavirus pandemic and related government actions, such as stay-at-home

recommendations or imposed lockdowns, have contributed to the growing popularity of

ordering groceries online. The unanticipated surge in demand at the beginning of the

COVID-19 crisis resulted in the inability to serve all customers due to insufficient ca-

pacity. This led some e-grocers to proactively contact customers and give priority access

to certain customers (Schwamberger et al. 2022b). Since then, the peak in demand has

receded, the capacities have been adjusted, and the acute scarcity situation has been

resolved.

As a result, old familiar challenges have resurfaced. A particularly demanding chal-

lenge is the uncertainty of customer arrivals and the associated varying utilization of

fulfillment processes over several days (Mkansi et al. 2018, Forbes 2022). Many e-grocers

struggle with having underutilized delivery capacity on some days while lacking capacity

on other days to serve all customer requests. In this paper, we explore how the newly es-

tablished concept of proactive customer contacting can be leveraged in post-crisis times

to address the disparity in fulfillment utilization across multiple days. We propose ex-

ploiting this demand management tool in low-demand situations in which an e-grocer

anticipates that not enough inquiries will emerge via the normal booking process to en-

tice (future) customers to place an order, leading to higher system utilization and fewer

customers to reject on high-demand days. In this regard, we introduce the concept of

proactively contacting customers (e.g., via an application or a short text message) as

a contingency tool that can be used to shift customer demand in the event of demand

scarcity to balance the demand disparity over several days.

Integrating this proactive customer contacting opportunity into the classical booking

process (e.g., toward the end of the process, at a strategically determined point) poses

several obstacles that must be surmounted. Since the responses of contacted customers

are not instantaneous, a decision must be made at the time of contacting regarding

whether and which customers should be contacted based on the already accepted orders.

Although there is no limit or direct cost of contacting, it is undesirable to contact an

excessive number of customers only to reject them. Another obstacle is that the arrival

processes for non-contacted and contacted customers run in parallel. This leads to

a cannibalization effect, as contacted customers are no longer present in the normal
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booking process. These challenges lead to various questions that must be addressed

to successfully integrate proactive customer contacting in post-crisis times: How many

customers should be contacted? Which customers should be target? How does the

proactive customer contacting approach affect the achieved profit? What drives the

success of proactive customer contacting? We contribute by exploring these questions

in this paper. To solve the proactive customer contacting problem, we formulate an

optimization problem. We conduct an extensive numerical study in which we compare

the optimal contacting solution to simple contacting strategies and a sampled ex post

optimal solution to assess the merits of proactively contacting customers in post-crisis

times. In addition, we modify the considered contacting setting and evaluate which of

the parameters drive the impact of contacting.

The paper is organized as follows: in Section 4.2, we review and discuss the re-

lated literature. In Section 4.3, we describe the general problem setting, explain how

proactive customer contacting is integrated into the booking process, and formulate an

optimization model to solve the problem. Section 4.4 introduces different benchmark-

ing contacting strategies, presents a sampled ex post optimal solution, and provides a

numerical study of the contacting approach. Section 4.5 summarizes our results.
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4.2. Related Literature

The work presented in this paper interfaces with the research stream of demand manage-

ment for e-grocery services and the research stream of proactively contacting customers.

In recent years, demand management has gained increasing importance in last-mile dis-

tribution systems for e-grocery services, e.g., in Agatz et al. (2011), Yang et al. (2016),

Yildiz and Savelsbergh (2020), and Fleckenstein et al. (2023). Agatz et al. (2013) identi-

fied time slot allocation and time slot pricing as the two main levers of demand manage-

ment in the context of e-grocers. These decisions are either made on a strategic, tactical

or operational level (Wassmuth et al. 2023). Since we focus on a real-time demand man-

agement problem in which customers can be contacted to generate additional demand,

studies addressing operational time slot offering (Ehmke and Campbell 2014, Mackert

2019) and operational time slot pricing (Yang and Strauss 2017, Klein et al. 2017, 2018)

are closest to our work. Wassmuth et al. (2023) provide an in-depth comparison of the

individual works in these fields and differentiate the studies depending on the problem

setting, the decision-making process and the computational study. Although we like-

wise use the lever of offering time slots at discounted prices, unlike all these studies, we

include the option of proactively contact customers. This results in two parallel arrival

processes (of non-contacted and contacted customers), which structurally distinguishes

our problem setting from the one usually considered in this literature stream. Our con-

sidered setting extends the classical booking process, which gives rise to new research

opportunities that constitute the core issue addressed in this paper.

Proactive customer contacting has a solid foundation in direct marketing (Bose and

Chen 2009) and customer relationship management (Reinartz and Venkatesan 2008).

Typical questions answered in this literature stream include how to profile customers

and how to determine customer lifetime values. In our study, however, we do not fo-

cus on the customer relationship and marketing issues associated with this contacting

process but rather address the optimization issue of which customers to contact in a

routing environment. To the best of our knowledge, proactive customer contacting in

this regard has only been investigated in Yildiz and Savelsbergh (2020), Keskin et al.

(2023), Oetken et al. (2022), and Schwamberger et al. (2022b). Keskin et al. (2023)

consider proactive customer contacting in the context of waste collection and investigate

the trade-off between more efficient routes and smaller collection volumes resulting from

the increased frequency of visits generated by contacting customers. We, in contrast,
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integrate the proactive customer contacting approach in the context of e-groceries and

explore this tool for creating additional demand.

Yildiz and Savelsbergh (2020) consider customer contacting in the context of e-groceries

and assume that the time slot pricing decision is the main lever of demand management.

In this work, the impact of offering different discounts in exchange for delivery flexibility

by contacting customers is investigated. Regarding proactive customer contacting, there

are two structural differences compared to our approach. First, customers are proac-

tively approached after they have placed an order and offered discounts to reschedule

their order to a different time slot that is more convenient for the e-grocer. Second,

customers are assumed to respond immediately. In contrast to Yildiz and Savelsbergh

(2020), we do not focus on the pricing decision but rather on which customers to contact

in the first place, contact only customers who have not yet placed an order to create

additional demand, and do not assume instant customer responses.

Recently, Oetken et al. (2022) investigated a similar problem. Similar to Yildiz and

Savelsbergh (2020), they assume that the customer contacting process is executed after

the cut-off time of the normal customer arrival process and that it could even be con-

ducted during the execution of the tour. In contrast to Yildiz and Savelsbergh (2020),

it is assumed that the set of regular customers and the pool of target customers are

mutually exclusive. As a result of the late contacting decision, contacted customers

could only select products from a predefined list of groceries. This is a fundamental

difference compared to our approach. Since we assume that proactive customer contact-

ing is executed during the normal booking horizon, we ensure that contacted customers

can access all products from the entire assortment, avoiding any dichotomy of customer

groups.

The work closest to our manuscript is Schwamberger et al. (2022b), which intro-

duces the idea of proactively contacting customers in crisis situations. However, in that

manuscript, the booking process is exclusively reserved for contacted customers due to

the fulfillment scarcity situation, and there are multiple contacting opportunities. In

this paper, we utilize the idea of proactive customer contacting and integrate customer

contacting into the classical booking process in post-crisis times. Since the two arrival

processes of contacted and non-contacted customers run in parallel after the unique

contacting opportunity, leading to an intricate cannibalization effect, our considered

problem is structurally different. Compared to the approach described in Schwamberger

et al. (2022b), we also pursue a different objective and maximize the total expected

profit.
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In summary, the analysis presented in this paper draws inspiration from the different

studies outlined above. However, no previous research has addressed the problem of an e-

grocer seeking to create additional demand by integrating proactive customer contacting

into the booking process. Introducing and analyzing this novel planning problem is the

way in which our paper contributes to the literature.
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4.3. Problem Setting & Model Formulation

We consider an e-grocer with a booking horizon where customer orders arrive dynami-

cally over time. Because customer orders are uncertain over multiple days, the e-grocer

struggles with having underutilized delivery capacity on some days while lacking capac-

ity on other days to serve all customer requests. To counteract this disparity over several

days, the e-grocer enables proactive customer contacting. For this purpose, the e-grocer

establishes a single strategically determined contacting opportunity toward the end of

the booking process. To incentivize contacted customers to place an order, a financial

discount (e.g., in the form of free delivery) is offered to the contacted customers. Since

customers are encouraged to place an order, proactive customer contacting is employed

in low-demand situations in which the e-grocer anticipates that not enough inquiries will

emerge via the normal booking process.

The problem of deciding whether to proactively contact customers occurs toward the

end of an e-grocer’s classical booking process, for instance, two hours before the ordering

deadline is reached. We assume that this contacting point is strategically determined

by the e-grocer. On the one hand, customers should be given a certain time to respond

to contacting. On the other hand, the contacting point should not be set too early,

as contacting should not be conducted when the majority of orders are still pending

(which depends on the e-grocer’s previous experience). The e-grocer should consider

this trade-off when establishing the contacting point. Figure 4.1 illustrates the booking

process with contacting.

Figure 4.1.: Booking Process with Contacting
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At the moment of contacting, there already exist accepted customer orders that have

to be fulfilled. These customers ci for i ∈ {1, . . . , N} have known locations li = (xi, yi)

and have to be served in certain time windows ti = [ai, bi]. The service time required for

serving a customer is denoted by τ . We assume that the delivery area is partitioned into

several service regions and that a single vehicle is used to fulfill the customers’ orders

in each region. Based on the already accepted orders and time slots in a certain region,

a preliminary route R is determined. We assume that the associated routing costs can

be calculated using the travel distances and a multiplier γ representing the cost per

km. Based on this preliminary route, a decision must be made regarding which set of

customers C to contact from the set of available customers to contact C who have not

yet placed an order and can, individually, be feasibly inserted into the already existing

route. These customers c ∈ C, who are available for contacting or may arrive without

being contacted, are associated with revenues rc.

After this unique contacting point, the two arrival processes from contacted and non-

contacted customers run in parallel. This leads to a cannibalization effect, as contacted

customers might have arrived via the classical booking process without being contacted.

We denote the arrival probability of non-contacted customers by λ̃ and assume that a

contacted customer responds and places an order with a response probability λ. Since

the process of proactively approaching customers is performed toward the end of the

booking process, we assume that the contacting decision does not affect the timing of

placing an order. This ensures that after the contacting opportunity, it is not exclusively

the contacted customers who arrive first; rather, the arrival sequence of customers is

independent of the contacting status. We assume that customers arriving after the

contacting point (regardless of whether they were contacted or not) will be accepted

according to the FCFS principle.

Whether an arriving customer, either contacted or not, can be served depends on two

limiting factors:

1. The maximum number of customers MaxCap that can be served per tour, which

is determined by the physical capacity of the vehicle.

2. The time restrictions resulting from the time windows of the already accepted cus-

tomers and the maximum tour lengthMaxLength of the vehicle (due to predefined

shift lengths and working time restrictions of the employees).
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Since checking whether an arriving customer can be served and inserted into the ex-

isting route is already a complex routing problem, we use the nearest insertion heuristic

to evaluate whether an arriving customer can be added to the preliminary route based

on these restrictions. If a non-contacted customer arrives and can be included, a fixed

delivery fee δ is collected in addition to the associated revenue rc (which can be approxi-

mated based on a forecast of the customer’s order value). If a contacted customer places

an order, there is no delivery fee, and only the revenue is obtained. Since proactive

customer contacting can shift future demand forward to an earlier date, opportunity

costs oc (for details, see below) are incurred to account for the impact on future routes

and customers. In the event of insufficient capacity to serve a contacted customer c ∈ C,

this customer has to be rejected, and a penalty β is be incurred.

Considering this problem setting, the objective of the contacting decision is to maxi-

mize the expected profit based on the preliminary route at the moment of contacting for

the remaining booking horizon. This profit can be calculated as the expected revenue

(including the delivery fees of non-contacted customers) minus the additional routing

costs of served customers, potential penalties incurred by rejected contacted customers,

and opportunity costs of served contacted customers. We have

Profit = max
C⊂C

∑
B⊂C

P(B|C)
∑

σB∈Perm(B)

P(σB) · Profit(σB) (4.1)

= max
C⊂C

∑
B⊂C

λ|B∩C| · (1− λ)|C\B| · λ̃|B\C| · (1− λ̃)|C\(B∪C)| (4.2)

·
∑

σB∈Perm(B)

1

|B|!
· (revC(σB)− cost(σB)− penC(σB)− oppC(σB)) (4.3)

where P(B|C) denotes the probability that the set B ⊂ C of customers arrives given

that the set C ⊂ C of customers is contacted, P(σB) denotes the probability that the

arriving customers B appear in arrival sequence of permutation σB, and Profit(σB)

denotes the total profit obtained by arriving customers B in arrival sequence σB. Here,

revC(σB) denotes the revenue (including the delivery fees of non-contacted customers)

of all served customers in the arrival sequence of permutation σB, cost(σB) denotes the

cost of inserting all feasible customers into the already existing route, given the arrival

sequence of permutation σB, penC(σB) denotes the penalties of all contacted customers

that have to be rejected based on the arrival sequence of permutation σB, and oppC(σB)

denotes the opportunity costs of serving all inserted contacted customers based on the

arrival sequence of permutation σB.
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Decomposition of the Opportunity Costs oc

Since proactive customer contacting can shift future demand forward to an earlier date,

the effects on future routes and customers constitute an essential component of the

proactive customer contacting approach. We summarize all these future effects for a

contacted customer c ∈ C in the opportunity costs oc. Because the interdependencies over

multiple days are entirely reflected in these opportunity costs, the accurate depiction of

these costs is of importance, especially with regard to the performance of the contacting

approach. It should be noted that these opportunity costs do not only consist of a

pure negative component (i.e., displacement of a future customer) but also include a

positive effect (released future resources) that mitigates the magnitude of these costs.

In the following, we provide a more detailed decomposition of the two main components

reflected in the opportunity costs.

1. Displacement of a future customer:

As proactive customer contacting stimulates existing customers to place an order,

this approach leads to a shift in future customers. A customer who would have

placed an order in the future (e.g., tomorrow) with probability p is moved to an

earlier date. This probability might depend on how many days into the future

customers are considered. We assume that the e-grocer determines this future

time horizon (e.g., three days) based on historical booking frequencies and that

the probability p is identical for all future customers. The opportunity costs must

account for this displacement of future revenue rc and the loss of future delivery

charges δ. In particular, we assume that shifting the customer forward (e.g., from

tomorrow to today) does not affect his expected order (normal shopping basket)

and hence the obtained revenues. Accounting for the effect of shifting future

customers is essential, as one would otherwise assume that the revenue obtained

by arriving contacted customers is auxiliary revenue, which would not be justifiable

from a practical perspective. In the same vein, the effect on future routing costs

needs to be addressed. Since future customers and hence the future route are

still unknown, we denote the future routing cost estimation by c̄ (which can be

obtained by considering the marginal costs of serving an additional customer on

previous routes). The negative component (displacement of a future customers) of

the opportunity costs amounts to p · (rc + δ − c̄).
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2. Released future resources:

On the other hand, shifting a future customer to an earlier time releases future

resources that would have been consumed by this customer, both in terms of the

physical capacity of the vehicle and the tour length. The flexibility gained by

preponing the customer can be exploited in the future. Whether these available

resources can be utilized by serving another customer, however, depends on the

overall system utilization. We represent the system utilization by a parameter u,

which indicates the probability that the released resources created by rescheduling

a customer can be filled by another customer. Since this probability is difficult to

determine, we evaluate several system utilization settings in our numerical study

in Section 4.4.6. If the resources can be exploited, we assume an arriving customer

with average revenue r̄ and delivery fee δ. Because the future customers and

hence the future route are again unknown, we approximate the accompanying

future routing costs with c̄. Accordingly, the positive component (released future

resources) of the opportunity costs is aggregated as u · (r̄ + δ − c̄).

Combining the negative and positive effects of serving a contacted arriving customer

c ∈ C, the opportunity costs can be calculated as

oc = p · (rc + δ − c̄)− u · (r̄ + δ − c̄)

= prc − ur̄ + (p− u) · (δ − c̄).
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4.4. Numerical Study

In this section, we investigate the proactive customer contacting approach in a numerical

study and evaluate the merit of integrating proactive customer contacting under different

settings. To this end, we first introduce different benchmarks in Section 4.4.1 to assess

the results of the optimal contacting decision (resulting from (4.2) - (4.3)). In partic-

ular, we consider the different contacting strategies Contact No Customer, Contact All

Customers and Greedy Contacting. In addition, we propose a procedure for obtaining

a sampled ex post optimal solution. After clarifying the considered parameters and the

general setting used for the numerical study in Sections 4.4.2 and 4.4.3, we evaluate the

base scenario in Section 4.4.4 and compare the performance of the different contacting

strategies. To determine what drives the success of proactive customer contacting, we

then modify the considered contacting setting. In Section 4.4.5, we evaluate how the

benefit of the proactive customer contacting approach depends on the preliminary route

utilization by altering the number of customers that can be added to the preliminary

route. In Section 4.4.6, we examine whether proactive customer contacting is advisable

for e-grocers with a generally low utilization by modifying the overall system utilization.

In Section 4.4.7, we amend the efficacy of proactive customer contacting by varying the

response probability of contacted customers. Section 4.4.8 summarizes the results by

formulating the obtained managerial insights.

4.4.1. Benchmarks

4.4.1.1. Simple Contacting Strategies

To assess the performance of the optimal contacting solution, we provide simple con-

tacting schemes. These contacting strategies are Contact No Customer, Contact All

Customers, and Greedy Contacting, which we describe next.
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1. Contact No Customer:

The simplest contacting strategy is not to contact customers at all. In this extreme

case, no customer is cannibalized from the normal booking process. However, there

is a high probability that there will be spare capacity at the end of the booking

horizon. Using this strategy, the profit can be calculated as

Profit =
∑
B⊂C

λ̃|B| · (1− λ̃)|C\B|
∑

σB∈Perm(B)

1

|B|!
· (rev∅(σB)− cost(σB)).

2. Contact All Customers:

In the opposite extreme, the lever of proactive customer contacting is fully engaged,

all customers available for contacting are contacted, and offered free delivery. This

leads to a high utilization of the system. However, it also increases the risk of

having many dissatisfied contacted customers who cannot place an order because

the capacity is already exhausted. For this contacting strategy, the profit can be

determined as

Profit =
∑
B⊂C

λ|B| · (1− λ)|C\B|
∑

σB∈Perm(B)

1

|B|!

· (revC(σB)− cost(σB)− penC(σB)− oppC(σB)).

3. Greedy Contacting:

A simple contacting strategy that lies between these two extremes is to contact only

the ”best” customers. The idea of this contacting scheme is based on two steps:

first, ranking the customers, and second, determining the number of customers to

contact. In the first step, customers are ranked based on their marginal profit, i.e.,

the profit generated by the order minus the additional routing costs (based on the

preliminary route), which customers would contribute if added to the route. In

the second step, it is determined how many customers should be contacted. For

this step, the number of customers that can be added to the preliminary route is

used as a proxy. Using these two steps, the set of ”best” customers C∗ to contact

can be determined, and the profit can be calculated as

Profit =
∑
B⊂C

λ|B∩C∗| · (1− λ)|C
∗\B| · λ̃|B\C∗| · (1− λ̃)|C\(B∪C∗)|

·
∑

σB∈Perm(B)

1

|B|!
· (revC∗(σB)− cost(σB)− penC∗(σB)− oppC∗(σB)).
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4.4.1.2. Sampled Ex Post Optimal Solution

To better contrast the performance of the optimal contacting decision with the different

contacting strategies and to likewise determine the potential of contacting in light of what

would have been the best contacting decision under optimal contacting conditions in the

considered environment, we provide a sampled ex post optimal solution to the problem.

To this end, we report the results of first sampling which customers arrive (depending

on whether they were contacted or not) and then solving a team orienteering problem

with time windows (TOPTW) for these customers. For given customer arrivals, this

provides an ex post optimal solution for the contacting procedure that naturally avoids

contacted customer rejections. In particular, we use the TOPTW formulation from

Vansteenwegen et al. (2009) and adapt it to our specific problem setting. The detailed

model formulation and description can be found in the Appendix. The goal of this model

is to find a feasible tour (ensuring that all customers already accepted on the preliminary

route are served, and the maximum tour length and physical capacity of the vehicle are

not exceeded) that maximizes the additional profit, i.e., the revenue of the additionally

visited customers (including the delivery fees of the non-contacted customers) minus the

opportunity costs of the contacted customers and the additional routing costs compared

to the preliminary route. The results of the sampled ex post optimal solution may not

provide a tight upper bound on the optimal contacting decision for the following two

reasons:

1. No cannibalization effect:

Since the customers are sampled at the beginning of the process, it is assumed

that it is already known whether a customer will arrive depending on whether

he is contacted. This has a significant impact on the contacting decision, as an

arriving customer is never contacted (no cannibalization effect) and the delivery

fee is always obtained. In this sampled optimal ex post decision, overbooking and

the associated penalties never occur.

2. Optimal route and optimal customer arrival sequence:

Since the TOPTW model formulation determines the route when all customers are

present, an underlying optimal arrival sequence of customers is assumed. Com-

pared to the contacting optimization approach, which uses the nearest insertion

heuristic to determine the routing cost, this sampled ex post approach determines

the optimal route based on the knowledge of the entire arriving customer popula-

tion.
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Although the sampled ex post optimal solution may produce results that are signifi-

cantly superior to those of the optimal contacting decision because additional knowledge

is assumed, this solution is a useful indicator for evaluating the potential of proactive

customer contacting and the different contacting strategies under optimal conditions.

4.4.2. Data and Parameters

Before diving into the results of the numerical study, we explain the relevant parameter

settings, which are summarized in Table 4.1. Some parameters considered in this nu-

merical study are similar to those in Schwamberger et al. (2022b). As in Schwamberger

et al. (2022b), we focus on the area of London, assume an underlying delivery area of

40km x 40km, and locate the depot in the center of the delivery area. The vans that

deliver the groceries have a certain physical capacity. Since a van can carry 70 crates

(ambient crates, cooled crates and frozen crates) and an average customer order consists

of 5 crates, a maximum of 14 customers can be served per tour. Since a delivery shift

is 8 hours and the average delivery speed of a vehicle is assumed to be 25 km per hour,

the overall tour length is limited to 200 km. In addition to the maximum tour length, a

dwell time of 12 minutes is incurred per customer.

In contrast to Schwamberger et al. (2022b), we focus on the additional profit that can

be generated by proactive customer contacting in post-crisis times. Thus, we need to

include additional cost parameters. We assume that the delivery fee is set to £5 and

that the e-grocer incurs costs of £0.4 per km. The revenue of a customer is assumed

to be £61 (Statista 2018). Since rejecting contacted customers should be avoided, we

set the penalty for rejecting a contacted customer to half of the obtained revenue, i.e.,

£30.5. The probability that a contacted customer would have arrived in the future

is presumed to be 85%. Since we consider an e-grocer that does not have a structural

demand deficit, we assume that demand and delivery capacity are fundamentally aligned

and suppose that the overall system utilization leads to a probability of 80% that future

released resources can be utilized. Based on the average detour, the routing costs of

inserting a customer into a future route are set to £10. Furthermore, we presume a

response probability of contacted customers of λ = 0.9 and an arrival probability of

non-contacted customers of λ̃ = 0.2.
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4.4.3. Instance Generation & Sampling Process

To ensure that our numerical results are generalizable, we test a variety of predefined

routes and different available customers to contact. In total, we consider ten different

preliminary routes in each of our numerical studies, each randomly generated. For this

purpose, we create uniformly distributed arriving customers (before proactive customer

contacting takes place) and plan a route to serve these customers. The time windows

associated with these customers have a length of 2 hours. In all instances, unless indi-

cated otherwise, twelve customers are generated. These obtained routes are then used as

input for the preliminary route at the moment of contacting. Similar to the preliminary

route, we generate random customers that are available for contacting. Here, we gener-

ate four potential customers for each instance. This number of customers available for

contacting is sufficient, as we will see in the following sections by looking at the number

of customers that are contacted. Increasing the number of customers to contact would

further complicate the selection process and thus the determination of which customers

to optimally contact. We refrain from increasing the number of customers and implicitly

assume that these customers reflect the best set of customers available for contacting.

To determine the sampled ex post optimal solution, we again start with the previ-

ously described preliminary routes and generate 100 simulations regarding which of the

customers that are available for contacting would have arrived (with or without be-

ing contacted). Subsequently, in each of these simulations, the TOPTW is solved to

optimality, and the average achieved profit is calculated.

4.4.4. Base Case

Since we want to evaluate the benefit of proactive customer contacting, we first discuss

the results of the considered base case. To this end, we compare the results of the

optimal contacting decision (resulting from (4.2) - (4.3)) with the different contacting

strategies and the sampled ex post optimal solution. The results are summarized in

Table 4.2 and depict the average number of customers contacted and the average profit

achieved by the different contacting methods for all considered routes.

Comparing the results listed in Table 4.2, it becomes apparent that the different

contacting strategies perform considerably different. In our considered base case, the

worst results are obtained when no customer is contacted, followed by contacting all

customers. This is not surprising, as these are the two extreme options.
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Table 4.2.: Numerical Results: Base Case

Method # Cont. Cust. Profit
Optimization 2 103.77
All Customers 4 65.39
No Customer 0 50.07

Greedy 2 103.48
Ex Post 1.2 120.93

What is remarkable, however, is how well the contacting strategy Greedy Contacting

performs. Although the optimal solution does not always coincide with the set of cus-

tomers identified by this contacting strategy, as can be observed in Table 4.2, this simple

contacting strategy leads to very good results. The suboptimality of this approach (al-

beit not very salient) demonstrates that contacting the marginal best customers is not

always optimal. Rather, it can be advantageous to contact customers in bundles. For

example, it may be beneficial to contact a set of customers that can collectively be well

integrated into the current route. Thus, the optimal contacting decision and the success

of proactive customer contacting depends on the interaction of customers available for

contacting.

Table 4.2 also reports the results of the sampled ex post optimal solution. These results

can be regarded as the best possible outcome achieved by proactive customer contacting

under optimal conditions without any cannibalization effect and with an optimal cus-

tomer arrival sequence, which can be used to characterize the potential of contacting in

the base case. Comparing this figure with that obtained by the optimization approach,

it can be observed that these two effects (cannibalization & arrival sequence) have a

significant impact, as expected. Reviewing the figures of the optimal contacting ap-

proach, the other simple contacting strategies and the sampled ex post optimal solution,

it becomes obvious that proactive customer contacting provides the potential to exploit

available untapped resources.
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4.4.5. Impact of Preliminary Route Utilization

The success of proactive customer contacting inevitably depends on the utilization of

the preliminary route. In this section, we examine the impact of utilization by modifying

the number of customers that can be added to the already existing route. In particular,

Table 4.3 presents the results of the different contacting strategies and the sampled ex

post optimal solution when the preliminary route provides capacity for one, two and

three further customers. The base case is shown in bold.

Table 4.3.: Numerical Results: Different Numbers of Insertable Customers

# Insertable Cust. Method # Cont. Cust. Profit

1

Optimization 1 49.83
All Customers 4 -21.97
No Customer 0 38.46

Greedy 1 49.83
Ex Post 0.2 62.48

2

Optimization 2 103.77
All Customers 4 65.39
No Customer 0 50.07

Greedy 2 103.48
Ex Post 1.2 120.93

3

Optimization 3 154.59
All Customers 4 145.76
No Customer 0 51.89

Greedy 3 154.59
Ex Post 2.2 175.45

Considering the results in Table 4.3, it becomes apparent that if the preliminary

route has spare capacity for one, two or three further customers, one, two or three cus-

tomers are optimally contacted. Thus, in the considered setting, no overbooking occurs.

Comparing the profits, we observe that the different contacting strategies perform con-

siderably different, depending on the number of customers that can be added to the

preliminary route. What is particularly salient is that the contacting strategies Con-

tact All Customers and Contact No Customer yield very different results and depend

strongly on the overall problem setting, which determines the superiority of one of the

approaches. For example, in the case in which the vehicle can serve only one further

customer, the contacting strategy Contact All Customers leads to negative results, as
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too many customers are contacted and many of them have to be rejected, whereas the

results of the contacting strategy Contact No Customer are close to the results of the

optimal solution. The opposite occurs if three further customers can be inserted into

the preliminary route. Under these circumstances, the contacting strategy Contact All

Customers yields nearly optimal results, whereas Contact No Customer results in only

one-third of the optimal profit. Considering the solutions of the contacting strategy

Greedy Contacting, we observe that it leads to almost optimal results in all different

settings considered here.

In principle, the more customers can be integrated into the preliminary route, the

more customers will optimally be contacted and served, leading to a higher profit. Since

we observe a significantly increasing difference in profit achieved by optimal contacting

compared to contacting no customer as the number of customers that can be included

in the preliminary route increases, we infer that the utilization of the preliminary route

is a substantial driver of the benefit of proactive customer contacting.

4.4.6. Impact of Overall System Utilization

Because proactive customer contacting provides an incentive for potential future cus-

tomers to place their orders earlier, it is important to scrutinize the impact of the overall

system utilization on the optimal contacting decision. For this purpose, we modify the

probability u that reflects how likely it is that future released resources, resulting from

a displacement of a customer, can be filled by another customer. Table 4.4 displays the

results if u is set to 0.8, 0.5, 0.2, and 0.

We observe that if we assume a high or medium overall system utilization and set

u = 0.8 or u = 0.5, two customers are optimally contacted. If we lower the system

utilization and consider u = 0.2, one customer is optimally contacted. In the extreme

case of very low system utilization (u = 0), it is optimal to not contact any customer at

all. In this setting, it is not reasonable to offer free delivery to a customer if it is assumed

that the released future resources cannot be exploited. Based on the profits outlined

in Table 4.4, it becomes clear that the contacting strategy Greedy Contacting does not

inherently provide good contacting decisions. If, for example, the system utilization

is lowered, this contacting strategy is not competitive. In the setting of u = 0.2, not

contacting any customer yields better results.

94



Chapter 4. Getting the Most out of Online Deliveries

Table 4.4.: Numerical Results: Different System Utilization

u Method # Cont. Cust. Profit

0.8

Optimization 2 103.77
All Customers 4 65.39
No Customer 0 50.07

Greedy 2 103.48
Ex Post 1.2 120.93

0.5

Optimization 2 76.98
All Customers 4 31.87
No Customer 0 50.07

Greedy 2 76.68
Ex Post 1.2 100.74

0.2

Optimization 1 54.64
All Customers 4 -1.66
No Customer 0 50.07

Greedy 2 49.89
Ex Post 1.2 81.15

0

Optimization 0 50.07
All Customers 4 -24.01
No Customer 0 50.07

Greedy 2 32.02
Ex Post 1.2 65.65

Counterintuitively, the number of customers contacted by the sampled ex post opti-

mal solution is not zero in the extreme scenario of very low system utilization u = 0.

This is because this method first samples the customer arrival process and only con-

tacts customers if not enough customers materialize. This implies that this method has

complete knowledge of which customers will be included in the route. Because there

is no detrimental cannibalization effect in this setting, it makes sense to fill a gap in

the current route with a hole in a future route (and waive the delivery fee) if the cost

of adding this customer to today’s route is lower than the anticipated additional cost

of adding the customer to a future route minus the delivery fee. This, however, is in

strong contrast to the optimal contacting decision, since the knowledge of all arriving

customers is not available at the moment of contacting.
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Examining the profits achieved by the different contacting strategies in Table 4.4,

we can deduce that the benefit of contacting significantly depends on the overall sys-

tem utilization. In particular, we observe that as the system utilization decreases, the

achieved profit of the optimal contacting decision decreases. In the extreme case of very

low system utilization, it is optimal to not contact any customer at all, resulting in no

additional benefit of the demand management lever of proactive customer contacting.

4.4.7. Impact of the Response Probability of Contacted Customers

It is not certain that contacted customers will place orders. Thus, we investigate the

impact of the response probabilities of contacted customers on the results of the proac-

tive customer contacting approach by considering scenarios with high, medium and low

response likelihoods. The results are summarized in Table 4.5, displaying the figures for

the different response probabilities λ = 0.9, λ = 0.6, λ = 0.3, and λ = 0.2.

Table 4.5.: Numerical Results: Different Response Probabilities

λ Method # Cont. Cust. Profit

0.9

Optimization 2 103.77
All Customers 4 65.39
No Customer 0 50.07

Greedy 2 103.48
Ex Post 1.2 120.93

0.6

Optimization 3 87.36
All Customers 4 83.92
No Customer 0 50.07

Greedy 2 82.24
Ex Post 1.2 109.46

0.3

Optimization 3.9 60.38
All Customers 4 60.34
No Customer 0 50.07

Greedy 2 56.31
Ex Post 0.96 69.53

0.2

Optimization 0 50.07
All Customers 4 43.11
No Customer 0 50.07

Greedy 2 46.63
Ex Post 0 50.71
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We observe that as the response probability of contacted customers decreases, the

aggressiveness of contacting in terms of the number of customers contacted first increases.

This becomes apparent when considering the scenario in which customers are likely to

place an order after being contacted, i.e., λ = 0.9, and comparing it to the scenarios with

lower response probabilities, i.e., λ = 0.6 and λ = 0.3. In the setting where the response

probability is slightly higher than the arrival probability of non-contacted customers

(λ = 0.3), it is optimal to contact all customers in almost all cases. This is intuitive,

since more customers need to be contacted to obtain enough arriving customers to place

an order. However, when the response probability is no longer significantly different from

the arrival probability of non-contacted customers or even coincides with it (λ = 0.2),

the number of contacted customers decreases and it may even be optimal to contact no

customer. If it cannot be assumed that offering free deliveries provides an incentive for

customers to place an order, delivery should not be offered free of charge.

Considering the profits presented in Table 4.5, the lower the response probability

of the contacted customers is, the lower the expected profits from proactive customer

contacting, independent of the number of customers contacted. Similarly, the difference

from the contacting strategy Contact No Customer decreases as the response probability

decreases, meaning that the benefit of contacting decreases with a decreasing response

probability. In this regard, contacting is only beneficial if it can be assumed that cus-

tomers will respond to contacting and will be enticed to place an order by receiving free

delivery.

97



Chapter 4. Getting the Most out of Online Deliveries

4.4.8. Managerial Insights

We conclude the numerical study by formulating the obtained managerial insights. In

almost all our conducted experiments, we demonstrate that proactive customer contact-

ing can exploit available untapped resources. In particular, if an e-grocer has already

implemented the tool of contacting customers during the COVID-19 pandemic, it is a

valuable enhancement to the normal booking process that should be leveraged. How-

ever, if an e-grocer has not yet deployed proactive customer contacting, it is necessary to

carefully assess whether this is a profitable idea. Although we observed in the numerical

experiments that proactive contacting can increase the achieved profit in the magnitude

of approximately one additional customer per route in the base case, we likewise saw

that the benefit of contacting decreases quickly for various less favorable parameter set-

tings. Putting the additional benefit in relation to the effort required to implement and

execute proactive customer contacting, this demand management lever might not be the

desired game changer.

When contacting customers is reasonable, it is not always optimal to contact the

marginally best customers. Of course, if only one customer can be added to the tour,

this is the optimal decision. However, if multiple customers can be included, it might be

beneficial to deviate from this approach. For example, it may be beneficial to contact

a bundle of customers that can collectively be well integrated into the current route.

Therefore, the optimal contacting decision always depends on the interrelationship of

customers available for contacting. From the numerical results, it can also be deduced

that the different simple contacting strategies lead to completely different results, de-

pending on the individual problem setting. While for some instances the contacting

strategy Greedy Contacting is superior, for other instances the contacting strategies

Contact No Customer or Contact All Customers are dominant. Thus, none of the sim-

ple contacting strategies studied is universally superior to the others.

We also identified certain drivers that significantly impact the benefit of proactive

customer contacting. First, we observe that the more customers can be added to the

preliminary route, the more customers are optimally contacted and served. In particular,

the benefit of proactively contacting customers increases if the preliminary route can

serve further customers. This is reasonable, as the capacity and flexibility of the current

route can be further exploited, especially when the overall system utilization is high

and the generated future released resources can be filled with other customers. In all
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considered settings, it became obvious that the higher the overall system utilization is,

the higher the benefit of proactive customer contacting. We infer that contacting is not

always a reasonable opportunity but should only be exploited if e-grocers have overall

high system utilization, meaning that the released future resources can be utilized by

other customers. Otherwise, a gap in the current route is compensated by a gap in a

future route, and no delivery fees are charged. It was also found that the method of

contacting changes depending on the response probability of the contacted customers.

If the response probability is lowered, more customers are contacted initially to utilize

the available resources. However, if the response probability is reduced further and

approaches the arrival probability of non-contacted customers, fewer or no customers

are contacted, as it is pointless to offer free deliveries if contacting does not prompt

customers to place an order. In any case, as the response probability decreases, the

benefit of integrating proactive customer contacting diminishes.

In summary, the obtained managerial insights are as follows:

• Proactive customer contacting can exploit available untapped resources but might

not be the desired game changer.

• It is not always optimal to target the marginal best customers; instead, the optimal

contacting decision depends on the interrelationship of customers available for

contacting.

• None of the simple contacting strategies (Contact No Customer, Contact All Cus-

tomers, and Greedy Contacting) is universally superior to the others.

• The benefit of contacting increases if the preliminary route provides more flexibil-

ity.

• The higher the overall system utilization is, the higher the benefit of proactive

customer contacting.

• If the response probability of the contacted customer decreases, the number of

customers to contact first increases and then decreases. In any case, the lower

the response probability of the contacted customers is, the smaller the benefit of

proactive customer contacting.
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4.5. Conclusion

To conclude, we investigate how the concept of proactive customer contacting that was

developed during the COVID-19 pandemic can be leveraged for an e-grocer in post-crisis

times. In particular, we propose to integrate the customer contacting at the end of the

classical booking process and to use this demand management lever as an emergency

tool for situations in which it is anticipated that insufficient inquiries will emerge via the

normal booking process. We develop an optimization model to determine whether and

which customers to contact and compare the results of the optimal contacting decision

with those of several contacting strategies and a sampled ex post optimal solution in an

extensive numerical study.

We infer that integrating proactive customer contacting in post-crisis times can achieve

an increase in profit but might not be the desired game changer, as it has to be put in

perspective with the effort of implementing and executing customer contacting. We

observe that targeting the marginal best customers is generally not optimal, as the op-

timal contacting decision depends on the set of customers available for contacting. In

addition, we find that none of the simple contacting approaches is universally supe-

rior. Overall, we conclude that the benefit of integrating proactive customer contacting

strongly depends on the preliminary route utilization, the overall system utilization and

the response probabilities of the contacted customers.

Since the idea of using proactive customer contacting as a demand management lever

in the context of e-groceries is still young and this research field is relatively unexplored,

we see this work as an initial starting point that lays the foundation for further research.

For example, it might be interesting to investigate the problem of proactively contacting

customers in a multi-period setting. This would provide a better estimate of the oppor-

tunity costs of the inserted contacted customers but would also significantly complicate

the whole analysis, as the next day’s routing issues would need to be considered as well.

We leave this extension to future research. From a practical perspective, it would also be

helpful to observe whether this proactive contacting approach and the incentive of free

deliveries are likely to be accepted by customers. This could be validated with real data.

In this regard, future research could integrate more sophisticated customer behavior by

incorporating dependencies on the offered discounts into the model. In our numerical

study, we assumed that we can modify individual parameters to evaluate parameter-

specific effects. In reality, some of these modified parameters are inherently interrelated.
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Future research could investigate the correlations of the considered parameters in more

detail, allowing us to incorporate these implicit interdependencies into our numerical

study.
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Appendix A.

Sampled Ex Post Optimal Solution

The sampled ex post optimal solution is obtained by using the sampling process de-

scribed in Section 4.4.1.2 and solving a modified version of the TOPTW formulation

from Vansteenwegen et al. (2009). In this section, we elaborate on the model formula-

tion used. We denote the set of already accepted customers from the preliminary route

as Cpre, the sampled set of customers that arrive without being contacted as Cnocont and

the sampled set of arriving contacted customers as Ccont. The union of all of these sets

is denoted by Call = Cpre ∪ Cnocont ∪ Ccont. If the depot is added to this set, we use the

notation CDepot
all . By Lpre, we denote the length of the preliminary route, and dij denotes

the distance between locations i ∈ CDepot
all and j ∈ CDepot

all . All other parameters are the

same as in the problem definition (Section 4.3).

We use the following decision variables:

• xij ∈ {0, 1}: a visit to location i ∈ CDepot
all is followed by a visit to location

j ∈ CDepot
all

• yi ∈ {0, 1}: customer i ∈ Call is visited on the route

• si: start of service for customer i ∈ Call

With this notation, we formulate the TOPTW as
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max
∑

i∈Cnocont

(ri + δ) · yi +
∑

i∈Ccont

(ri − oi)yi − γ · (
∑

i∈CDepot
all

∑
j∈CDepot

all

dijxij − Lpre) (A.1)

∑
j∈Call

xDepotj = 1 (A.2)∑
i∈Call

xiDepot = 1 (A.3)∑
i∈Call

yi ≤ MaxCap (A.4)∑
i∈CDepot

all

xij = yj ∀ j ∈ Call (A.5)

∑
j∈CDepot

all

xij = yi ∀ i ∈ Call (A.6)

∑
i∈Call

τyi +
∑

i∈CDepot
all

∑
j∈CDepot

all

dijxij ≤ MaxLength (A.7)

yi = 1 ∀ i ∈ Cpre (A.8)

si + τ + dij − sj ≤ M(1− xij) ∀ i, j ∈ CDepot
all (A.9)

ai ≤ si ∀ i ∈ Call (A.10)

si ≤ bi ∀ i ∈ Call (A.11)

xij ∈ {0, 1} ∀ i, j ∈ CDepot
all (A.12)

yi ∈ {0, 1} ∀i ∈ Call. (A.13)

The objective is to maximize the additional profit consisting of the collected revenues

of the non-contacted customers (including delivery fees) and the revenues of the con-

tacted customers minus the opportunity costs of the served contacted customers and

minus the additional routing costs compared to those of the preliminary route. Note

that the term Lpre may be omitted for optimization purposes since it is constant and

determined by the preliminary route. Constraints (A.2) and (A.3) ensure that the tour

starts and ends at the depot. Constraint (A.4) guarantees that the maximum physical

capacity of the vehicle is not exceeded. Constraints (A.5) and (A.6) link the decision

variables x and y. Constraint (A.7) ensures that the maximum route length is not ex-

ceeded, whereas constraints (A.8) guarantee that all already accepted customers from
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the preliminary route are served. Constraints (A.9) link the variables x and s. Note

that these constraints require a sufficiently large M . Conditions (A.10) - (A.13) define

the domains of the decision variables.
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