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Abstract: Body core temperature (BCT) is an important characteristic for the vitality of pigs. Subopti-
mal BCT might indicate or lead to increased stress or diseases. Thermal imaging technologies offer
the opportunity to determine BCT in a non-invasive, stress-free way, potentially reducing the manual
effort. The current approaches often use multiple close-up images of different parts of the body to
estimate the rectal temperature, which is laborious under practical farming conditions. Additionally,
images need to be manually annotated for the regions of interest inside the manufacturer’s software.
Our approach only needs a single (top view) thermal image of a piglet to automatically estimate the
BCT. We first trained a convolutional neural network for the detection of the relevant areas, followed
by a background segmentation using the Otsu algorithm to generate precise mean, median, and max
temperatures of each detected area. The best fit of our method had an R2 = 0.774. The standardized
setup consists of a “FLIROnePro” attached to an Android tablet. To sum up, this approach could be
an appropriate tool for animal monitoring under commercial and research farming conditions.

Keywords: rectal temperature; thermal images; object detection; piglet vitality; non-invasive;
multiple linear regression

1. Introduction

In recent years, publications on the use of thermal imaging cameras in pig farming
have increased. There are various approaches that estimate rectal temperature, which is
considered the gold standard for body core temperature (BCT). See, for example, studies
on sows [1–3], fattening pigs [4–6], and piglets [7–9].

The major advantage of thermal images is that they are non-contact and quick to
acquire; thus, they can protect animals from unnecessary stress, or in the worst case, disease
cross-transmission, by measuring the temperature with a rectal thermometer [10]. However,
thermal cameras with good measurement accuracy are mostly very expensive, and thus
their advantages over traditional digital rectal thermometers within a practical farm’s daily
life are doubtful. In addition, approaches for the estimation of rectal temperature with
thermal images are often based on multiple, manually recorded close-up images from
different body parts, so called thermal windows [10,11], which can reduce the possible
stress and time-saving benefits because multiple recordings close to the animal have to be
taken by the personnel. Furthermore, unlike IR pyrometers (point measurement devices),
a thermal image does not immediately provide the desired surface temperature without
a manual effort. Several factors, such as the emissivity value of the object’s surface and
the ambient climate information, need to be manually adjusted, and the relevant parts of
the body have to be marked inside the manufacturer’s software to achieve accurate values
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of different body parts, e.g., maximum, minimum, and average, which are needed for the
regression of the rectal temperature.

The BCT can be used as a hint for several diseases or hormonal changes, such as
mastitis, metritis, and agalactia (MMA) [12], the onset of farrowing in sows [13], or, for
example, classical fever in fattening pigs [1]. Further, thermal images were used to de-
tect inflammation [14] and lesions [15], which are linked to isolated surface temperature
deviations.

For neonatal piglets, especially for small ones [16], the BCT is a very important
characteristic. Due to their lack of insulation [17], the temperature gradient between the
ambient temperature and the BCT during the first hours of life leads to a loss of the BCT.
This can result in reduced mobility and a decreased ability to compete for colostrum and,
therefore, a reduced colostrum intake, which then increases the likelihood of starvation,
diseases, and crushing [18]. For example, [19] and [20] found a decrease of 4–5 ◦C in the
piglet’s BCT when they failed to suckle during the first 30 min of life. After 24 h of life,
vital piglets should have reached their normal thermal homeostasis of about 38–39 ◦C
again [21,22].

Therefore, the surveillance of a neonatal piglet’s surface temperature could help to
detect individuals with lower survivability and enable early and targeted manual assistance
from animal care personnel. Since this and the manual, continuous surveillance of fattening
pigs for fever or lesions can be very time-consuming, a practicable time-saving solution is
needed.

This study has two goals. The first is to automatically combine the relevant information
of the thermal image and its acquisition, followed by the detection of the piglet’s body parts,
to generate features for the second goal, which is the regression of the rectal temperature
by only one top-view image.

To make the approach economically implementable on a practical farm, a compara-
tively cheap thermal camera (FlirOnePro for Android) was chosen. All computations of the
present approach are performed by the free statistical software “R” [23] (Version 4.2.2) and
implemented in the package “ThermalpigR” [24].

2. Materials and Methods

Based on our dataset of thermal images, the workflow of the study was organized
as follows: Firstly, the ambient climate information are measured by an external sensor,
the emissivity value adjustment, and the distance to the object and the readout of the
radiometric data of the images are accumulated and computed to pixel-wise temperature
values. Secondly, the machine learning methods of object detection (Yolov3-SPP) [25]
and background subtraction (Otsu algorithm) [26] are used to automatically extract the
regression features (e.g., mean and max of different body parts). Thirdly, a linear regression
approach, based on the extracted features and transformations of them, is comprehensively
tested to improve the estimation of the rectal temperature.

2.1. Data Acquisition

The thermal images of neonatal piglets were recorded at the experimental farm (Rel-
liehausen) of the University of Göttingen with interruptions (COVID-19) in three runs from
March 2020 to August 2020. The sows (11 in total) were housed in a common farrowing
crate, had genetics of German Landrace × Large White (Viktoria—Bundeshybridzuchtpro
gramm), and were all between the 2nd and 5th farrowing cycle. After 30 min of life, the
piglets were removed from the pen and examined. The examinations took place according
to a standardized setup (Figure 1). The piglets were examined as they were and not dry
rubbed. Directly after recording the animal’s individual top-view thermal image with a
“FLIROnePro” (Teledyne FLIR LLC) [27] connected to an Android tablet for data trans-
fer, the rectal temperature was measured with a rectal thermometer “SC 1080” (SCALA
Electronic) [28]. According to the manufacturer, the accuracy of the camera is ± 5% in
a temperature range of 15–35 ◦C for the camera and 5–120 ◦C for the image scene [27].
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Before an image was taken, the camera was calibrated by manually starting the automatic
calibration according to the description of the manufacturer [27]. When the neonatal piglets
were measured, the camera was connected to a power supply and the battery was loaded
until 100% or until a new piglet was born. In addition, the piglet’s bodies were measured
with a measuring tape for body length and chest girth (Figure 1b) and were weighted with
a digital table scale (readability of 5 g). After the examination, they were given an ear
tag for identification. During data acquisition, ambient temperature and humidity were
measured inside each pen using a “TGP-4500” climate data logger (Gemini Data Loggers)
(accuracy for ambient temperature is 0.45 ◦C and for humidity ± 3% at 25 ◦C [29]) every
15 min. In total, 160 images of 64 piglets could be used for further analysis.

Agriculture 2023, 13, x FOR PEER REVIEW 3 of 17

tablet for data transfer, the rectal temperature was measured with a rectal thermometer 
“SC 1080” (SCALA Electronic) [28]. According to the manufacturer, the accuracy of the
camera is ± 5% in a temperature range of 15–35°C for the camera and 5–120°C for the 
image scene [27]. Before an image was taken, the camera was calibrated by manually start-
ing the automatic calibration according to the description of the manufacturer [27]. When 
the neonatal piglets were measured, the camera was connected to a power supply and the 
battery was loaded until 100% or until a new piglet was born. In addition, the piglet’s
bodies were measured with a measuring tape for body length and chest girth (Figure 1b) 
and were weighted with a digital table scale (readability of 5g). After the examination,
they were given an ear tag for identification. During data acquisition, ambient tempera-
ture and humidity were measured inside each pen using a “TGP-4500” climate data logger 
(Gemini Data Loggers) (accuracy for ambient temperature is 0.45° C and for humidity ± 
3% at 25° C [29]) every 15 min. In total, 160 images of 64 piglets could be used for further 
analysis.

Figure 1. (a) Setup of thermal imaging, animal’s individual top-view thermal images were recorded 
in a standardized distance, and (b) manual measurement of body length (A to B) and chest girth 
(C). (c) Example of a thermal image, where dark-blue/purple indicates low temperature and yel-
low/white indicates high temperature. 

2.2. Temperature Determination 
The temperature 𝑇 of each pixel was calculated from the radiation through the for-

mulae of [30]. 𝑇 = 𝐵 ∕ ln 𝑅𝑅 (𝑊 + 𝑂) + 𝐹  (1)

Figure 1. (a) Setup of thermal imaging, animal’s individual top-view thermal images were recorded in
a standardized distance, and (b) manual measurement of body length (A to B) and chest girth (C). (c)
Example of a thermal image, where dark-blue/purple indicates low temperature and yellow/white
indicates high temperature.

2.2. Temperature Determination

The temperature T of each pixel was calculated from the radiation through the formu-
lae of [30].

T = B/ln
(

R1

R2(W + O) + F

)
(1)

where, B, R1, R2, O, and F are calibration constants [30]. The object´s radiation W = Wobj
is a function of the transmission value ( τ), the emissivity value (ε), the radiation of the
atmosphere (W atm), and the reflected radiation (W re f l

)
,

Wobj =
Wtotal

ετ
−

(1− ε)Wre f l

ε
− (1− τ)Watm

ετ
(2)



Agriculture 2023, 13, 812 4 of 17

The emissivity value (ε) of the piglet’s skin was set to 0.98 [31]. The transmission
value is calculated by the following formula:

τ = X exp
(
−
√

d
(

α1 + β1
√

H
))

+ (1− X) exp
(
−
√

d
(

α2 + β2
√

H
))

(3)

where X, α1, α2, β1, and β2 are constants from the camera calibration, which are saved to the
metadata of the image. The variable d is the distance to the image, which was standardized
to 50 cm in this study. Finally, the vapor content H is calculated from the environmental
temperature and the relative humidity:

H = Hrel exp
(

1.559 + 6.939× 10−2Tatm − 2.7816× 10−4T2
atm + 6.846× 10−7T3

atm

)
(4)

where Hrel ε (0,1) is the relative humidity, and Tatm is the environmental temperature. The
environmental temperatures and the relative humidity for the time, when a thermal image
was recorded, were interpolated linearly from the 15 min measurements of the climate data
logger.

2.3. Object Detection and Feature Extraction

For training the object detection of the four classes (piglet, head, back, and back
end), all 160 images were annotated in YOLO format by one expert using the Roboflow
annotation tool [32]. A description and examples of annotation of the body parts are given
in Table 1. If a body part is not completely inside an image, the body part is still annotated
for its visible part. On seven images, the head was not completely inside the image and on
one image the back end.

After splitting the data randomly into training, validation, and test sets (70/20/10-
ratio), data augmentation methods (random horizontal, vertical flip, or rotate 90◦, 180◦,
and 270◦) were used (up to three times per image) to enlarge the training set to 316 images
(validation and test set still containing 32 and 16 images, respectively). The convolutional
deep neural network YOLOv3 [33] with spatial pyramid pooling block (SPP) [25,34] was
trained via transfer learning from “Microsoft COCO” dataset’s [35] pretrained weights at a
learning rate of 0.001 for 300 epochs with default hyperparameters (only number of classes
was adapted and the batch size was set to 16) and evaluated afterwards, both via Google
Colab [36]. An SPP block prevents images that have a different input size than required
for the fully connected layers from being cropped or resized before the convolutional step.
This ensures that all input images, regardless of their size, are neither distorted nor cut in
such a way that all features are no longer visible. This enables multi-scale feature extraction,
which leads to an improvement in performance in most cases [34]. A control logic to check
if all four body parts are detected exactly once by YOLOv3-SPP was also implemented.
An image where a body part is not detected has not been considered for further analysis.
If a body part is detected several times, the detection with the highest confidence score
is chosen. To measure the performance of the detection model, the common metrices
precision (P), recall (R), and mean average precision (mAP), which is the arithmetic mean
of the average precision (AP), were used:

P =
TP

TP + FP
(5)

R =
TP

TP + FN
(6)

AP =
∫ 1

0
p(r)dr (7)

where TP denotes the number of true positives, FP is the number of false positives, and FN
is the number of false negatives for precision and recall. Furthermore, AP is calculated as the
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integral from 0 to 1 over the precision p of the recall r. These metrices were calculated with
a confidence score = 0.1 and a non-maximum suppression (NMS) = 0.6 on the validation
set. The best model was chosen using a fitness score f,

f = 0.01R
(

τcon f

)
+ 0.99mAP@0.5 (8)

where R (τcon f ) is the recall at the specific confidence threshold and mAP@0.5 is the mAP
with an interception over union of ≥0.5. The computation of the final model works with
and without a CUDA-compatible GPU for user-friendliness.

Table 1. Description and example images of body part annotation using bounding boxes with
Roboflow annotation tool [32].

Annotation Description Examples

Piglet
A rectangle bounding box

fitting the whole piglet with
legs, snout, and tail inside.
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intersections of the detected bounding box area and the segmented foreground area contain
the pixels that were used for further calculations.
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of YOLOv3-SPP; (b) is an image of the area “piglet” after gray value conversion (0–255); (c) shows a
binary image of the piglet, after thresholding with Otsu algorithm on image (b). Image (d) shows the
overlap of the white foreground area (c) and the detected “head bounding box area” from (a). The
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2.4. Implementation

The complete workflow (Figure 3) is implemented in the R package “ThermalPigR” [24]
using Python 3.8 besides R.
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Figure 3. Workflow chart of the R package “ThermalPigR”. On the left is the original data from data
acquisition. In the middle, the computation is performed by R and Python (object detection). After
feature calculation the rectal temperature of the piglets is estimated (right site).

The package has several integrated functions which perform the following functions:

• Combine the data from the ambient climate of each pen and match it with the thermal
images.

• Adjust the distance from the camera to the object and adjust the emissivity value of
the object´s surface (Formulas (1)–(3)).

• Perform body part detection (Yolov3-SPP) and control logic.
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• Perform background subtraction (Ostu).
• Generate the features for regression models.

The images were processed using the R package “thermimage” [37]. The metadata
of the radiometric JPEG images was imported using the function “flirsettings” and the
radiometric values of each pixel were imported using the function “readflirJPG”. The
regressions are performed with lsfit [23].

2.5. Data Anaysis

First, a rough outlier detection of the thermal images was performed by considering
the highest 10 % difference between max head surface temperature (highest correlation to
the rectal temperature (Figure 4)) and rectal temperature (15 outliers found). Additionally,
all piglets with a rectal temperature <34 ◦C were sorted out (one outlier found) (Figure 5).
The remaining 134 images were used to fit the linear regression models.
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A total of 62 features were examined, including the maximum, median, and mean
temperature values of the body parts (12 features), the square of maximum and mean
for each body part (8 features), the 99th, 95th, and 90th quantiles for each body part (12
features), as well as the consideration of all pairwise absolute temperature differences as
further features (e.g., |mb_mbe| for the difference between “max_back” and “max_be”)
(28 features). In cases where the algebraic sign of the differences does not change in the
dataset, the three features |Ta–Tb|, Ta, and Tb were collinear and the feature |Ta–Tb| was
excluded as a feature whenever Ta or Tb was included in the model. In a few cases, Ta–Tb
contains only a few changes in the algebraic sign (<10) for the whole dataset, which were
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considered measurement errors and the feature |Ta–Tb| was treated as if there was no
change.
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Figure 5. Outlier detection: blue cross indicates a rectal temperature <34 ◦C and red triangles indicate
10% of the biggest differences between rectal temperature and max surface temperature of the piglet’s
head.

Additionally, the interpolated environmental variables, relative humidity, and ambient
temperature were used (Table 2).

Table 2. Indexing of features. Where mb = max back, mbe = max back end, mh = max head, mp =
max piglet, ab =average/mean back, abe = average/mean back end, ah = average/mean head, and
ap = average/mean piglet.

Nr

Environment,
Max,

Median,
and Mean

(n = 14)

Nr

99th, 95th,
90th

Quantile
(n = 12)

Nr
Absolute

Temps.
(n = 14)

Nr
Absolute

Temps.
(n = 14)

Nr
Quadratic

Temps.
(n = 8)

1 Temperature 15 Q_back99 27 mb_mbe 41 mh_ab 55 Max_head2

2 Air
Humidity 16 Q_be99 28 mb_mh 42 mh_abe 56 Max_back2

3 Max_back 17 Q_head99 29 mb_mp 43 mh_ah 57 Max_be2

4 Max_be 18 Q_pig99 30 mb_ab 44 mh_ap 58 Max_pig2

5 Max_head 19 Q_back95 31 mb_abe 45 mp_ab 59 Mean_head2

6 Max_pig 20 Q_be95 32 mb_ah 46 mp_abe 60 Mean_back2

7 Median_back 21 Q_head95 33 mb_ap 47 mp_ah 61 Mean_be2

8 Median_be 22 Q_pig95 34 mbe_mh 48 mp_ap 62 Mean_pig2

9 Median_head 23 Q_back90 35 mbe_mp 49 ab_abe
10 Median_pig 24 Q_be90 36 mbe_ab 50 ab_ah
11 Mean_back 25 Q_head90 37 mbe_abe 51 ab_ap
12 Mean be 26 Q_pig90 38 mbe_ah 52 abe_ah
13 Mean_head 39 mbe_ap 53 abe_ap
14 Mean_pig 40 mh_mp 54 ah_ap
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To find the best combination, a Best Subset Selection (BSS) [38] for 1–9 variables plus
an intercept was performed using the AICc as stop criterion.

For testing potential improvements in the regression, the manually measured fea-
tures’ body length and girth were additionally applied. Since length and girth are not
automatically given, a simple linear regression of body length and girth with the Euclidean
distance in pixels from the thermal images as features was also attempted. All regression
models were checked for performance using the metrices root mean square error (RMSE),
the coefficient of determination (R2), and a variation of the Akaike information criterion for
small sample sizes (AICc) (9)–(11).

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(9)

Here, yi is the measured value and ŷi is the prediction of the model. Thus, the RMSE
has the same unit and scale as the variable being estimated. Additionally, the coefficient of
determination R2 was computed to show how well the rectal temperature is explained by a
model:

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1(yi − yi)

2 , (10)

where yi corresponds to the mean of the measured values yi. To address the substantial
risk of AIC selecting models that have too many variables, we chose the model by taking
the one with the lowest AICc (AIC for small sample sizes):

AICc = AIC +
2p(p + 1)
n− p− 1

(11)

where AIC is defined as AIC = −2ln(L) + 2p, L denotes the log-likelihood estimate, n
denotes the sample size, and p denotes the number of variables.

3. Results
3.1. Object Detection

The training progress of the YOLOv3-SPP model can be seen in Figure 6. The evalua-
tion of the model is performed after each of the 300 epochs on the validation set (32 images).
After 50 epochs, the model is already very good, with a precision of ~0.78, a recall of ~0.98,
and a mAP of ~0.95. After 300 epochs, the best model was chosen by taking the model with
the highest fitness score (8) for the validation set, which was the model after 238 epochs.
Finally, YOLOv3-SPP was able to detect the trained body parts with a precision of 0.78, a
recall of 0.98, and a mAP@0.5 of 0.97.

For final testing on the test set, the parameter’s confidence score and NMS were
adapted to conf = 0.3 and NMS = 0.1. In the 15 test set images, all the body parts were
detected at one time except for one image, where the back was not detected. These settings
are chosen for the final model. For 160 images, an 8GB ram storage laptop with Intel Core
i5-8265U CPU @ 1.6 GHz needed 103 s to run the model (~0.64 s/image).

3.2. Rectal Temperature Regression

As can be seen in Table 3 the simple linear regression of the max values of the areas
“head” and “piglet” show promising results. As mentioned before, the features “max
head” and “max piglet” have highest correlation (both 0.81) with the rectal temperature
(Figure 4). The best model, acording to AICc (436.7), was the model with eight features,
including “max_head”, “max_be”, “max_be2”, “air humidity”, “T_mb_mbe”, “Q_pig99”,
“Q_head95”, and “T_mp_ab”. This model has an R2 = 0.774 and an RMSE = 0.406. The
model with nine features had an AICc of 437.5. The best models for a fixed number of
features (1–8) plus an intercept can be found in Table 4. The regression results of the overall
best model (8 features) can be seen in Figure 7.
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Table 3. Results of simple linear regression of the max values of body features on rectal temperature.
R2 is the coefficient of determination, RMSE is the root mean square error, and AICc is a variation of
the Akaike information criterion for small sample sizes. y represents the rectal temperature and x the
max value of the feature.

MAX
Feature Equation R2 RMSE AICc

head y = +8.696 +
0.7982x 0.651 0.507 480.5

piglet y = +9.225 +
0.7796x 0.634 0.520 487.1

back y = +12.97 +
0.6817x 0.522 0.593 522.7

back end y = +14.4 +
0.6337x 0.496 0.610 530
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Table 4. The best multiple linear regression models of all features (62) on rectal temperature with
varying numbers of features (1–8) plus intercept. R2 is the coefficient of determination, RMSE is the
root mean square error, and AICc is a variation of the Akaike information criterion for small sample
sizes.

Feature
Names

1
Feature

2
Features

3
Features

4
Features

5
Features

6
Features

7
Features

8
Features

Intercept +8.696 +7.703 +116.2 +183.2 +206.2 +193 +203.2 +201.3
Max_head +0.7982 +1.406 −4.936 +1.237 +0.9523 +1.122 +0.9705
Q_head90 −0.5901 −0.5685 −0.5952 −0.3876

Max_head2 +0.09198
Max_be −10.21 −12.09 −10.72 −11.99 −11.96
Max_be2 +0.1536 +0.1733 +0.1627 +0.1718 +0.171
Max_pig +1.195

Air
Humidity −0.00976 −0.00843 * −0.00846 * −0.00712 *

T_mb_mbe −0.7739 −0.6724 −0.7446
T_mb_mh +0.4404
Q_pig99 +1.169 +1.291

Q_head95 −1.064 −0.9839
T_mp_ab +0.1257

R2 0.651 0.687 0.700 0.729 0.750 0.759 0.770 0.774
RMSE 0.507 0.480 0.470 0.447 0.430 0.421 0.412 0.406
AICc 480.5 468.2 464.7 453.2 444.9 441.8 438.1 436.7

* Rounded to the 5th decimal place.
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4. Discussion

In this study, an approach toward a practicable assessment of a neonatal piglet´s body
temperature using object detection on thermal images was presented. The advantages are
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that only one top-view image per piglet is needed and that the evaluation of the image is
automated. The standardized setup can provide images when the physical circumstances
during image acquisition (distance to the object, object emissivity, air humidity, and air
temperature) are stable and can be easily adapted, respectively, and measured automatically
by other sensors. The usage of object detection algorithms enables the automatic calculation
of features for the regression of the rectal temperature. This can save time and reduce
the manual effort for the practical or scientific surveillance and monitoring of pigs. All
computations are integrated in the R package “ThermalPigR” [24]. Nevertheless, this is
only one possible approach, and the presented solution will be discussed in detail in the
following sections.

4.1. Object Detection

In our opinion, the object detection results are sufficient to detect the piglet’s body
parts. They might be further improved by a larger dataset and better image quality (some
body parts were cut off by the edge of the image). Unfortunately, data acquisition was
terminated early by a fire at the experimental farm and could not be resumed. Originally,
the collection of data on at least 300 piglets was planned. A different Deep Convolutional
Neural Network (DCNN) could also provide improved results. YOLOv3 is now fairly old,
and there are more recent DCNNs. Some of them are able to generate better results on
typical competition datasets such as “Microsoft COCO” [35] or “ImageNet” [39], but some
of them are also larger (have more layers) and thus need more computing time. We chose
YOLOv3-SPP because it is well documented and has been published several times with
similar tasks. Images of insufficient quality and those causing errors during detections
were sorted out by the implemented control logic.

As described in Section 2.4 and shown in the examples in Table 1, bounding box
detection has the disadvantage that the body parts and the background are located within
a bounding box. This problem is solved by performing background segmentation using
the established Otsu algorithm [26]. Another approach could be via the use of polygonal
annotation, where the objects are completely segmented by the DCNN. However, polygonal
annotation has the disadvantage that it is much more time-consuming during the annotation
process.

4.2. Region of Interest

As mentioned, many approaches to estimating the rectal temperature of pigs use
so-called “thermal windows”. A thermal window is a skin area perfused by blood that can
be considered the “window” of body temperature [10]. By contrast, a non-thermal window
is a skin area that is covered with a thick layer of fat [2]. By deciding to make our approach
as practicable as possible and using only one image, no real “thermal window”, such as the
eye or the ear base, could be taken for the feature generation. However, [10] also stated that
neonatal piglets, on the contrary to older pigs, may be looked upon as one large thermal
window, where the skin temperature is almost uniform throughout the body surface due
to their lack of insulation. This fact and the suggestion that nearly all piglets should be in
a similar hormonal situation after 30 min of life because they have to overcome the same
physiological challenges [40] might explain why the correlation of the maximum surface
temperatures of the different body parts with the rectal temperature is very high in our
study.

Tabuaciri et al. measured the average surface temperature of a crown to rump line and
found a correlation of 0.75 with the rectal temperature of piglets (within 24 h of life), which
is confirmed by the correlations of the max back (0.72) and the max back end (0.73) with
the rectal temperature in our study. The highest correlations were found for the ear base
(0.85 average of left and right) by [41]. In our study, we had the highest correlations for the
max head and max piglet (both 0.81); however, the ear base was not specifically annotated.
This can be explained by the fact that the max temperature of the head or the whole piglet,
of course, may contain the ear base temperature if it is visible.
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For the other pigs, Ref. [10] stated the influence of physiological differences such
as age, the hormonal cycle, or stress on the surface temperature. Especially for piglets,
Ref. [42] found significant results for the highest surface temperature after vaccination (day
14) and a lower surface temperature for older piglets (24 days) than younger piglets (days
4–18).

4.3. Surface Temperature Influencing Factors

Besides physiological influencing factors, the environment also has an impact on the
surface temperature of the pigs. For example, the environmental temperature or wind
can reduce the surface temperature of areas that are not well supplied with blood through
convection [2]. The same is also true for, e.g., the resting areas of the animals. If there is high
thermal conductivity in the materials, it can lead to a large deviation of the animal´s surface
temperature in the areas that are in contact with the material due to heat conduction,
depending on the temperature difference [6]. Nevertheless, the influence of wind and
environmental surfaces can be ignored in our study. The experimental compartment was
ventilated by a perforated ceiling, which has the beneficial attribute of low wind speeds.
The heat conduction through the environmental surface is not relevant for the body parts
that were examined (back, back end, and head from a top view). Thus, for settings other
than ours, e.g., the outdoor climatic conditions in husbandry systems, these factors need to
be integrated into the evaluation.

4.4. Regression

The simple linear regressions for the “max_head” and the “max_piglet” already
provide good results (head: R2 = 0.651, RMSE = 0.507; piglet: R2 = 0.634, RMSE = 0.52). The
authors of [2] found similar results for simple regression attempts for different body parts of
sows where the RMSE was equal to 0.42 and 0.51 for the average ear base and max shoulder
temperature, respectively. The variable selection for multiple linear regression was guided
by the laborious but precise BSS method [38]. To keep computing times reasonable, we
performed the BSS up to seven features plus the intercept. For more than seven features we
always kept two features fixed. These two fixed variables are either “max_head” and its
square or “max_be” and its square, as either pair shows up in all top ten fits for 5–7 variables.
As assistance to the original features, we calculated absolute temperature differences that
were similar to [2]. These new features provide additional information about the body core
temperature, in cases where the temperature differences show different algebraic signs.
When the temperature difference of two fixed body parts of all the pigs always has the
same sign, the newly created feature might still be of interest as it is interpretable, but it
might reduce the number of features in the model. In the best model, the feature “max_be”
had the highest influence (−11.96), followed by features “Q_pig99” (+1.291), “Q_head95”
(−0.9839), “max_head” (+0.9705), and “T_mb_mbe” (−0.7446). The features “max_be2”
(+0.171), “T_mp_ab” (+0.1257), and “air humidity” (−0.00712) had the lowest influence.

Further approaches to improving the regression by supplying additional features
(manually measured piglet body length and chest girth), which describe the body constitu-
tion of the piglets, improved the fit to R2 = 0.778 and RMSE = 0.405 when only six features
were included. Indeed, both the body length (R2 = 0.29) and the chest girth (R2 = 0.47) are
positively correlated to the rectal temperature, and therefore, they are beneficial for the
regression model. However, these manually measured features are not given under practi-
cal conditions; thus, these two quantities were not considered in this study. Approaches
that estimated the body length and chest girth from the pixel distances measured from the
images with a simple linear regression did not work well (R2 = 0.11 (girth) and R2 = 0.05
(length)). This might be a result of the inconsistent position of the piglets during the image
acquisition. With a standardized body position, the regression of the body length and girth
should perform much better, as Ref. [43] described in their study, concerning the estimation
of the bodyweight of pigs from images. The model that includes the length and girth can
be found in the Appendix A (Table A1). To sum up, a rather sophisticated feature selection
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was performed, and an R2 = 0.774 was the best model found. The greatest limitation of a
model with higher accuracy is the occurrence of inadequacies during the acquisition of the
surface temperature. The measuring accuracy of the camera and the degree of moisture on
the surface of the piglets should be the main factors. More data of the same quality should
also not significantly improve the model anymore, since the overall performance seems to
be limited to the inadequacies during the acquisition of the surface temperature.

4.5. Future Research and Usage

Generally, our approach is well suited for other studies that include the evaluation of
thermal images. However, if a thermal camera from another manufacturer is included in
new studies, the Formulas (1)–(3) must be adapted.

Since the aim of this study was to create a practical measuring tool, we decided
to use the comparatively cheap thermal imaging camera “FLIR One Pro”. In addition
to the lower accuracy compared to the more expensive thermal imaging cameras, the
battery life and simultaneous charging and recording of the thermal images, or operation
without a battery, are not possible, which renders continuous automatic data recording
impossible. Furthermore, the camera is not suitable for permanent operation in a pig pen,
as no protection against moisture or dust is guaranteed. However, a protection case could
probably solve this problem.

In practical farming, for neonatal piglets, this approach might be used to detect piglets
that are suffering from deep hypothermia (32–34 ◦C [44]) without the need to measure
their rectal temperature, which can save additional stress on the fragile piglets. The ones
who are suffering from hypothermia could be assisted in achieving access to the colostrum
and placed under a heatlamp afterwards. Moreover, this approach might be used for
continuously monitoring the body core temperature of fattening pigs in group pens with
a sorting gate, individual feeding troughs, or drinking stations with an individual radio-
frequency identification (RFID). For such an application of the algorithm presented, the
following adaptations are necessary: As mentioned, the surface temperature of the pigs is
altered in correlation to the body core temperature when they age, due to more fat layers
and less peripheral blood flow. If the approach should remain a “one topview image”
solution, more research on the surface temperature of pigs with different body weights
and breeds is needed. Otherwise, an approach using “thermal windows” could also be a
solution. Therefore, the object detector needs to be trained to detect, for example, the eyes
of pigs. Whether a simple or multiple linear regression should be used depends on the
feature selection.

5. Conclusions

In conclusion, a practicable approach for an automatic evaluation of the thermal
images from neonatal piglets is presented. An R package has been developed and is
available online. Integrated functions accumulate data from climate sensors with the
original thermal images, while considering the specific emissivity values of the examined
object’s surfaces and the distances of the camera to the object to generate precise thermal
images. It uses a CDNN (YOLOv3-SPP) to automatically detect the regions of interest of
a single top-view image of piglets and separates the regions from the background using
the Otsu algorithm. Finally, regression features for multiple regressions are generated, and
regressions for the body core temperature can be computed. The whole approach can be
navigated and controlled with R, while object detection is performed by Python.
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Appendix A

Table A1. The best multiple linear regression model of all features including chest girth and body
length on rectal temperature with six features plus intercept. R2 is the coefficient of determination,
RMSE is the root mean square error, and AICc is a variation of the Akaike information criterion for
small sample sizes.

Feature
Name Coefficients

Intercept +187.26
Max_be −10.500
Max_be2 +0.1575

Girth +0.1556
Length −0.0632

Max_head +1.0482
Q_head90 −0.4490

R2 0.778
RMSE 0.405
AICc 431.1
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