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Abstract

Sleep not only benefits health and well-being but is also considered a prerequisite for
proper episodic memory functioning. Even though almost a century of research has
documented a positive effect of sleep in episodic memory, our knowledge about the
underlying mechanisms is still limited. The overall goal of the present thesis is to im-
prove our understanding of the mechanisms underlying the sleep benefit by introducing
an integrative framework that incorporates prominent theories from neuroscience and
psychology.

Because a quantification of the sleep benefit and a systematic investigation of poten-
tial moderator variables has been missing, I addressed these points in a comprehensive,
up-to-date meta-analysis. The results revealed a robust effect of moderate size. Fur-
thermore, sleep benefits in episodic memory are significantly moderated by retrieval
procedures, the definition of the dependent variable, and sleep study designs. On the
basis of the meta-analytic results, I developed an integrative framework that provides a
broader and more comprehensive explanation of the sleep benefit than earlier theories.
Essentially, it combines active systems consolidation, opportunistic consolidation, and
interference accounts (see Article 1; Berres & Erdfelder, 2021).

Using multinomial processing tree (MPT) models, the two additional original research
articles of this thesis focus on testing core assumptions of the theories incorporated
in the integrative framework. This methodological approach allows a more thorough
investigation of hypothesized underlying mechanisms by providing uncontaminated
measures and disentangling the mechanisms’ joint contribution to the sleep benefit.

According to the active systems consolidation account, information salience induced
by encoding strength and test expectation should moderate sleep benefits in episodic
memory storage. However, previous research of Howe (1970) and McGeoch (1929) sug-
gests that encoding strength also affects interference-based sleep benefits in memory
retrieval. In line with the integrative framework, the results showed that sleep improves
both episodic memory storage and retrieval. Moreover, whereas encoding strength mod-
erates sleep benefits in retrieval rather than in storage, test expectation appears to have
no effect on neither storage nor retrieval (see Article 2; Berres & Erdfelder, 2023).

The active systems consolidation account also predicts that sleep improves source
memory for retention intervals of up to 12 hr (Inostroza & Born, 2013; Klinzing et al.,
2019). However, previous empirical evidence for sleep benefits in source memory is
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quite mixed. One of the possible reasons for the conflicting results is that the source
memory measures used likely confound item memory, source memory, and guessing.
Therefore, I reexamined the sleep-strengthens-source-memory hypothesis with a multi-
nomial modeling approach. Whereas findings for sleep benefits in item memory were
mixed, results for source memory were in line with the active systems consolidation
account. Specifically, sleep within a 12-hr retention interval improved source memory
for spatial positions (see Article 3; Berres et al., 2023).

Hence, the three articles included in this thesis indicate that both active systems con-
solidation and interference accounts are required to fully explain the pattern of re-
sults. Moreover, the meta-analytical results provide guidance to increase the replicabil-
ity of sleep-induced episodic memory benefits. Finally, I also demonstrated the power
of multinomial modeling in investigating underlying mechanisms of the sleep bene-
fit. In sum, this thesis improves our understanding of the underlying mechanisms and
contributes to the theoretical progress in sleep and memory research.
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Articles

This cumulative thesis is based on one published article and two articles submitted for
publication. The articles will be discussed in the chronological order of development.
In the main text, I provide an overview of the articles, relate them to each other,
and discuss them in terms of the integrative framework. Note that details regarding
theories, methods, and results are not reiterated here and can be found in the articles
appended to this thesis.

Article 1

Berres, S., & Erdfelder, E. (2021). The sleep benefit in episodic memory: An inte-
grative review and a meta-analysis. Psychological Bulletin, 147(12), 1309–1353.
https://doi.org/10.1037/bul0000350.

Article 2

Berres, S., & Erdfelder, E. (2023). Is it all about storage? Effects of encoding strength and
test expectation on the sleep benefit in episodic memory [Manuscript submitted for
publication]. Department of Psychology, University of Mannheim.

Article 3

Berres, S., Erdfelder, E., & Kuhlmann, B. G. (2023). Does sleep benefit source memory? In-
vestigating 12-hr retention intervals with a multinomial modeling approach [Manuscript
submitted for publication]. Department of Psychology, University of Mannheim.

https://doi.org/10.1037/bul0000350
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During my dissertation, I have also worked on another article investigating underlying
mechanisms of the sleep benefit in episodic memory. As I am not the main contributor
to this article, it is not included in the present thesis. Nevertheless, I will refer to this
article in the main text, because it introduces the multinomial processing tree model
applied in Article 2 and contains relevant empirical evidence. Please refer to Appendix
A of Article 2 (Berres & Erdfelder, 2023) for a detailed description of the model.

Erdfelder, E., Berres, S., Quevedo Pütter, J., & Küpper-Tetzel, C. E. (2022). Why does sleep
improve episodic memory? An encoding-maintenance-retrieval analysis [Manuscript
under revision]. Department of Psychology, University of Mannheim.



“There is nothing so practical as a good theory.”
– Kurt Lewin (1952, p. 169)
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1 Introduction

In its long history, research on the sleep benefit in episodic memory has produced
not only a considerable amount of literature and empirical findings but also a variety
of theories about the underlying mechanisms that are still vigorously debated (e.g.,
Antony & Schapiro, 2019; Ellenbogen et al., 2006; Yaroush et al., 1971; Yonelinas et
al., 2019). As such, episodic memory is the memory for past events, experiences, or
information and their respective context, such as location and time (Tulving, 2002). It
comprises the ability to encode, store, and retrieve episodic information.

The surge of sleep and memory research started with Ebbinghaus (1885) who ob-
served better memory performance for approximately 9 hr and for 1 day after learning
than predicted by his logarithmic forgetting function. He interpreted this finding as an
unsystematic error in his observations (see pp. 85–109). Since Ebbinghaus’ interpreta-
tion, the explanation for the irregularity in forgetting rates he observed evolved into
detailed theories about sleep-induced memory benefits, which even motivate memory-
enhancing sleep intervention techniques today (Feld & Diekelmann, 2020). Most of these
theories can be assigned to one of the following four theoretical accounts:

Active Systems Consolidation Account

According to the active systems consolidation account, recently encoded and therefore
labile memories are converted into more stable long-term memory representations dur-
ing sleep, thereby improving episodic memory storage (e.g., Diekelmann & Born, 2010;
Dudai, 2004, 2012; Dudai et al., 2015; Klinzing et al., 2019; Rasch & Born, 2013). There
are various theories that explain sleep benefits in episodic memory by memory consoli-
dation. One of these theories is the sequential hypothesis which predicts that memories
are consolidated in two consecutive steps during slow-wave sleep (SWS) and rapid eye
movement (REM) sleep (Ambrosini & Giuditta, 2001; Giuditta, 2014; Giuditta et al.,
1995). Another theory is the synaptic homeostasis hypothesis according to which sleep
restores cellular homeostasis by renormalizing synaptic connections that were strength-
ened during wakefulness (Cirelli & Tononi, 2015; Tononi & Cirelli, 2003, 2006, 2014,
2020).

The present thesis, however, focuses on the active systems consolidation hypothe-
sis, because it incorporates aspects of various consolidation theories—including the se-



2 1 Introduction

quential and synaptic homeostasis hypothesis. As such, this theory predicts that during
wakefulness components of a memory representation are formed, distributed across
various neocortical brain areas, and bound together into a unique episodic memory
representation by the hippocampus. During subsequent sleep, especially during SWS,
the hippocampal memory representation is replayed by the reactivation of specific neu-
ronal firing patterns (Klinzing et al., 2019; Lewis & Durrant, 2011; O’Neill et al., 2010;
Pfeiffer, 2020; Wilson & McNaughton, 1994). In parallel, the separate components of the
memory representation are also reactivated in the various neocortical brain areas. These
local synaptic upscaling processes which strengthen synaptic connections and stabilize
memory representations are embedded in global synaptic downscaling which renor-
malizes the strength of synaptic connections across all cortical and subcortical areas by
diminishing neuronal firing rates (Feld & Born, 2017; Klinzing et al., 2019).

Finally, the combination of local synaptic upscaling and global synaptic downscaling
in the hippocampus and neocortex should eventually result in a net strengthening of
episodic context-bound hippocampal memory representations for retention intervals of
up to 12 hr and more gist-like decontextualized neocortical memory representations
for longer retention intervals (e.g., 3 days; Klinzing et al., 2019). Taken together, the
consolidation account in general, and the active systems consolidation hypothesis in
particular, propose an active role of sleep such that sleep strengthens episodic memory
storage for 12-hr retention intervals (Born & Wilhelm, 2012; Diekelmann & Born, 2010;
Feld & Born, 2017; Inostroza & Born, 2013; Klinzing et al., 2019; Rasch & Born, 2013).

Opportunistic Consolidation Account

In contrast to the active systems consolidation account, the opportunistic consolidation
account predicts that memory consolidation is not sleep specific. Rather, any other state
that provides a beneficial environment for memory consolidation by reducing retroac-
tive interference (e.g., quiet wake, alcohol, benzodiazepines) should improve episodic
memory storage (e.g., Ellenbogen et al., 2006; Mednick et al., 2011; Wixted, 2004, 2005).
Specifically, it is assumed that memory consolidation can be disturbed by new learning,
because both consolidation and learning processes rely on the same limited hippocam-
pal resources (Wixted, 2004, 2005). Hippocampal memory consolidation should occur
whenever the opportunity is provided, that is, whenever interference from subsequent
learning (retroactive interference) is reduced. During sleep, for example, new learning
is virtually absent. As a consequence, more hippocampal resources are available for
memory consolidation of information learned before sleep (Wixted, 2004, 2005). Hence,
the opportunistic consolidation account proposes a passive role of sleep in episodic
memory storage.
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Interference Account

Like the opportunistic consolidation account, the interference account proposes a pas-
sive role of sleep in episodic memory. However, there is a crucial difference between
both theoretical accounts: Whereas the opportunistic consolidation account predicts that
sleep improves episodic memory storage, the interference account predicts that sleep
improves episodic memory retrieval. Specifically, according to the interference account,
sleep compared to wakefulness protects memories from retroactive interference, thereby
improving episodic memory retrieval (e.g., Ecker, Brown, & Lewandowsky, 2015; Ecker,
Tay, & Brown, 2015; Ekstrand, 1967; Jenkins & Dallenbach, 1924; Yonelinas et al., 2019).
Because new learning is virtually absent during sleep, retroactive interference is reduced
compared to wakefulness. Importantly, previous research has shown that retroactive
interference is primarily caused by retrieval and not by storage problems (see, for ex-
ample, Tulving & Psotka, 1971). It is therefore assumed that the reduction of retroactive
interference during sleep supports episodic memory retrieval. In sum, the interference
account proposes a passive role of sleep in episodic memory retrieval by protecting
memories from retroactive interference.

Circadian-Effects Account

The circadian-effects account predicts that observed sleep benefits in episodic memory
are due to circadian effects on encoding and retrieval processes, because sleep and
wakefulness are naturally confounded with diurnal times of learning and testing (e.g.,
Abel & Bäuml, 2013a; Bäuml et al., 2014; Erdfelder et al., 2022; Fenn & Hambrick,
2012, 2013; Payne et al., 2008). To elaborate, a huge bulk of research on sleep and
memory compares nighttime sleep with daytime wakefulness. This sleep study design
confounds sleep and wakefulness with diurnal times of learning and testing (e.g., Abel
& Bäuml, 2013a; Bäuml et al., 2014; Erdfelder et al., 2022; Fenn & Hambrick, 2012, 2013;
Payne et al., 2008).

To check for circadian effects, researchers have therefore introduced morning and
evening control conditions in which encoding and retrieval follow in close succession
parallel to the sleep and wake conditions’ respective learning and testing time. Con-
sider, for example, that a specific daytime (e.g., evening) is beneficial for one process
(e.g., encoding) but detrimental for the other (e.g., retrieval), and for another daytime
(e.g., morning) it is the other way around. This would lead to a null overall effect of
daytime in the control conditions, a beneficial daytime effect in the sleep condition, and
a detrimental effect of daytime in the wake condition. Thus, the typical result pattern
found in sleep and wake conditions of natural sleep studies can also be explained by
phase-shifted circadian rhythms without assuming a causal effect of sleep on memory.
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Although significant progress and important insights into the neurocognitive mecha-
nisms underlying the sleep benefit have been made in past decades, sleep and memory
research is still marked by scientific controversies and theories that require further re-
finement and more rigorous testing. One way to investigate the underlying mechanisms
of the sleep benefit in episodic memory more thoroughly is the application of appropri-
ately designed multinomial processing tree (MPT) models (for reviews, see Batchelder
& Riefer, 1999; Erdfelder et al., 2009).

1.1 Investigating Underlying Mechanisms

Following this approach, Erdfelder et al. (2022) adopted the Encoding-Maintenance-
Retrieval (EMR) multinomial model (Küpper-Tetzel & Erdfelder, 2012) to a typical sleep
study design for paired-associate learning (for details see Appendix A of Article 2;
Berres & Erdfelder, 2023). In this study design, participants learn weakly related word
pairs before performing an immediate cued recall task. After a retention interval, par-
ticipants perform a delayed free recall task followed by final cued recall. The authors
applied the EMR model in two experiments, investigating how sleep compared to wake-
fulness affects episodic memory storage and retrieval.

As outlined above, sleep benefits in episodic memory storage are predicted by active
systems and opportunistic consolidation accounts. To evaluate active versus passive
sleep effects on memory storage, neuroimaging techniques, polysomnography, and the
investigation of various states that reduce retroactive interference (e.g., quiet wake, al-
cohol) are required. This is, however, outside the scope of the work by Erdfelder et al.
(2022) and the present thesis as both compare sleep versus wakefulness by using behav-
ioral data. Although an additional passive role of sleep in memory storage as proposed
by the opportunistic consolidation account cannot be ruled out completely, previous
research has clearly shown that sleep actively improves episodic memory storage (for
a review of neurocognitive evidence, see Article 1; Berres & Erdfelder, 2021). For this
reason, Erdfelder et al. (2022) and the present thesis focus on the active systems consol-
idation account in terms of sleep benefits in episodic memory storage.

In Experiment 1, Erdfelder et al. (2022) evaluated the active systems consolidation
account, the interference account, and the circadian-effects account. According to the
active systems consolidation account, memory storage (parameter m) should be larger
when participants sleep during a 12-hr retention interval than when they stay awake. By
contrast, the interference account predicts a sleep benefit in memory retrieval (param-
eter r f ). Finally, the circadian-effects account predicts phase-shifted circadian rhythms
for encoding and retrieval success, that is, better encoding (parameter e) in the evening
than in the morning, which should be reversed for retrieval (parameter r f ).
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To test these hypotheses, a lab experiment (N = 40) with a randomized 2 × 2
between-subjects design, including study time (9 a.m. vs. 9 p.m.) and length of the
retention interval (6 min vs. 12 hr) as independent variables was conducted. The au-
thors found that the length of the retention interval affects storage (m) and free recall
retrieval (r f ), but not encoding parameters (e). Taken together, the results of Experi-
ment 1 suggest that sleep compared to wakefulness benefits both storage and retrieval,
thereby providing preliminary support for the active systems consolidation and inter-
ference account. By contrast, there was no empirical evidence for circadian effects which
is in line with previous research (e.g., Abel & Bäuml, 2012, 2013a, 2013b; Bäuml et al.,
2014; Fenn & Hambrick, 2013).

In Experiment 2, the authors aimed not only to replicate the results for the 12-hr
retention interval of Experiment 1 with a larger sample but also to provide additional
evidence for the validity of the EMR model. Specifically, the model’s capacity to disen-
tangle storage and retrieval processes was tested by providing half of the participants
with a list of semantic category labels as retrieval cues for the word pairs in the delayed
free recall task. This manipulation should selectively affect the retrieval of stored asso-
ciations in free recall (r f ) by increasing retrieval success in the condition with present
category labels, leaving encoding (e) and storage processes (m) unaffected.

A lab experiment (N = 60) with a randomized 2 × 2 between-subjects design, in-
cluding study time (9 a.m. vs. 9 p.m.) and category labels (absent vs. present) as in-
dependent variables was conducted. Replicating the results of the 12-hr conditions in
Experiment 1, the model-based analysis showed statistically significant better memory
storage (m) and retrieval (r f ) after sleep than wakefulness, supporting the active sys-
tems consolidation and the interference account, respectively. Furthermore, introducing
category labels as retrieval cues in free recall increased memory retrieval (r f ) but left
encoding (e) and storage (m) unaffected, thereby providing additional evidence for the
EMR model’s psychological validity.

To summarize, both experiments show that the EMR model is an appropriate tool
to investigate the sleep benefit in episodic memory. In addition the results of the two
experiments suggest that sleep compared to wakefulness not only actively strengthens
episodic memory storage but also passively supports episodic memory retrieval. Im-
portantly, the findings of Experiment 1 are clearly at odds with the circadian-effects
account, ruling out this alternative explanation. Moreover, previous research showed
compelling neurocognitive evidence for an active role of sleep in episodic memory stor-
age (for a review, see Article 1; Berres & Erdfelder, 2021). For these reasons, the present
thesis focuses on active systems consolidation and interference accounts.
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1.2 An Integrative Framework

So far, theoretical debates on the mechanisms underlying the sleep benefit have fo-
cused on either-or questions (e.g., “Does sleep improve episodic memory by boosting
memory consolidation or by reducing retroactive interference?”), treating theoretical
explanations as mutually exclusive. By contrast, I promote an integrative, multicausal
framework in my thesis. This framework was inspired by the findings of Erdfelder et al.
(2022) and developed based on meta-analytic results (see Article 1; Berres & Erdfelder,
2021). Specifically, it integrates three prominent classes of theories from neuroscience
and psychology, namely, the active systems consolidation, opportunistic consolidation,
and interference account.

In a nutshell, the integrative framework posits that sleep compared to wakefulness
after learning affects episodic memory in two ways: First, sleep actively strengthens
memory storage due to memory consolidation (active systems consolidation account),
perhaps additionally supported by passive protection from interference (opportunistic
consolidation account). Second, sleep passively improves memory retrieval by reducing
retroactive interference (interference account). As such, the assumption that sleep com-
pared to wakefulness fosters both episodic memory storage and retrieval in parallel
offers a more comprehensive explanation of the sleep benefit than previous more
fine-graded theories do. By bridging the gap between neuroscientific and psychological
accounts, the proposed integrative framework is a promising basis to derive additional
predictions, guide future research, and stimulate methodological innovations (Berres &
Erdfelder, 2021).

In the following, I briefly summarize the first article which provides a review of hy-
pothesized underlying processes, a comprehensive quantification of the sleep benefit,
a systematic investigation of potential moderator variables, and the integrative frame-
work described above, which is based on the meta-analytic results. I then provide an
overview of each of the two subsequent articles in which core assumptions of the theo-
ries incorporated in the integrative framework are tested with a multinomial modeling
approach. Specifically, the second article tests the prediction of the active systems con-
solidation account that information salience manipulated via encoding strength and test
expectation moderates the sleep benefit in episodic memory storage. It also addresses
the question whether effects of encoding strength additionally moderate sleep benefits
in episodic memory retrieval (interference account). The third article aims to gener-
alize previous research on the sleep benefit in item-item associations to item-context
associations. According to the active systems consolidation account, sleep should im-
prove source memory for retention intervals of up to 12 hr (Inostroza & Born, 2013;
Klinzing et al., 2019). Because previous findings are quite mixed, I reexamined the sleep-
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strengthens-source-memory hypothesis with a multinomial modeling approach. Finally,
I will discuss limitations of the present thesis and directions for future research on sleep
and episodic memory.

In sum, I hope that this thesis contributes to the development of a “good theory” in
Lewin’s (1952) sense. That is, a theory that helps us understand not only why sleep
boosts memory but also how to maximize the positive effects of sleep. Indeed, such a
theory is of considerable value for developing effective memory-enhancing sleep inter-
ventions in dementia treatment or psychotherapy (e.g., Blackman et al., 2021; Feld &
Diekelmann, 2020; Goerke et al., 2017; Pace-Schott et al., 2015a, 2015b).
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2 The Sleep Benefit in Episodic Memory

Berres, S., & Erdfelder, E. (2021). The sleep benefit in episodic memory: An inte-
grative review and a meta-analysis. Psychological Bulletin, 147(12), 1309–1353.
https://doi.org/10.1037/bul0000350.

Although Ebbinghaus (1885) was the first to document the positive effect of sleep on
memory, it took about 40 years for the observed memory advantage to be attributed
to sleep. Specifically, in their pioneering work, Jenkins and Dallenbach (1924) investi-
gated memory for nonsense syllables of two participants in a free recall task by varying
the time of learning (i.e., day or night) and the length of the retention interval (i.e.,
1, 2, 4, or 8 hr). Comparing retention intervals of equal length filled with either sleep
or wakefulness, the authors found clear evidence for better memory performance af-
ter sleep. Today, the sleep benefit in episodic memory is considered a well-established
effect. However, recent findings and failed replication attempts have cast doubt on its
robustness and theoretical foundation (for a review, see Cordi & Rasch, 2021).

2.1 An Integrative Review and a Meta-Analysis

Critically, despite the wealth of research on the sleep benefit in episodic memory, an
integrative review of hypothesized underlying mechanisms, a comprehensive quan-
tification of the sleep benefit, and a systematic investigation of potential moderator
variables had been missing. To fill this gap, these three points were addressed as follows:

First, because there is still a lot of controversy about the underlying neurocognitive
mechanisms, an exhaustive review of prominent explanations of the sleep benefit orig-
inating from neuroscience and psychology was provided. Specifically, after outlining
active systems consolidation, opportunistic consolidation, and interference accounts,
empirical evidence from neuroimaging and polysomnography research was reviewed
to evaluate the active systems consolidation and opportunistic consolidation account.
This review showed compelling evidence for the active systems consolidation account
and highlighted that more research on other states of reduced retroactive interference
(e.g., quiet wake, alcohol, benzodiazepines) is needed to evaluate the opportunistic

https://doi.org/10.1037/bul0000350
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consolidation account. Next, hypotheses for potential moderator variables were derived
from active systems consolidation and interference accounts to test the predictions of
both theories in a meta-analysis on behavioral measures of the sleep benefit. As such,
the review and the meta-analysis laid the foundation for the integrative framework
proposed in this article.

Second, as the typical size of the sleep benefit in episodic memory across studies was
still unknown, an extensive up-to-date meta-analysis on healthy drug-free human indi-
viduals was conducted to quantify its size. Specifically, the meta-analysis is based on
823 effect sizes from 271 independent samples that were reported in 177 articles pub-
lished between 1967 and 2019. Using an intercept-only three-level model with robust
variance estimation (RVE) to account for dependencies among effect sizes due to mul-
tiple outcome reporting and multiple group comparisons in primary studies, I found a
moderate sleep benefit in episodic memory (Hedges’ g = 0.44).

However, this effect might be overestimated due to selective reporting in the primary
literature, leading to an overrepresentation of significant results in the hypothesized
direction. Importantly, although the overall effect of sleep on episodic memory was re-
duced, it was still significant when accounting for selective reporting by using a modi-
fied variant of Egger’s linear regression (Hedges’ g = 0.28; Pustejovsky & Rodgers, 2019;
Rodgers & Pustejovsky, 2020) and by applying the three-parameter selection model
(3PSM; Vevea & Hedges, 1995) to 20 subsets of independent effect sizes (Mdng = 0.41).

As such, the sleep benefit in episodic memory appears to be quite similar in size to
sleep benefits in prospective (Cohen’s d = 0.41; Leong et al., 2019) and motor memory
(Cohen’s d = 0.44, Pan & Rickard, 2015; Hedges’ g = 0.43, Schmid et al., 2020) and
comparable to typical well-established memory effects (e.g., testing effect: Hedges’ g =

0.50, Rowland, 2014; retrieval-induced forgetting effect: Hedges’ g = 0.35, Murayama
et al., 2014). Consequently, the sleep benefit in episodic memory can be considered a
robust effect, comparable in size to other well-established effects in human memory
research.

By quantifying the sleep benefit, this work helps researchers to plan studies that are
sufficiently powered, thereby increasing replicability in the future. Furthermore, it also
informs about the practical significance of the sleep benefit in episodic memory, for
example, for aging and mental health research (e.g., Feld & Diekelmann, 2020; Goerke
et al., 2017; Gui et al., 2017; Lo et al., 2016; Mander et al., 2017; Pace-Schott et al., 2015a,
2015b; Palagini et al., 2013; Scullin, 2017; Scullin & Bliwise, 2015; Wilhelm et al., 2012).

Third, employing multilevel meta-regressions with robust variance estimates, poten-
tial moderator variables on the sleep benefit were examined systematically. To investi-
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gate beneficial sleep effects on episodic memory, researchers have used a wide variety
of populations (e.g., children, older adults), materials (e.g., word pairs, pictures), sleep
study designs (e.g., naps, total sleep deprivation), and dependent measures (e.g., cued
recall, recognition). However, the impact of these potential moderators had not yet been
studied systematically and in detail. It was therefore crucial to examine potential moder-
ator effects with up-to-date meta-analytical methods as aggregating empirical findings
across various studies allows unique insights that can hardly be obtained from single
experiments.

In total, 16 potential moderators from five topic areas were investigated: (a) popu-
lation characteristics (age), (b) aspects of the encoding situation (emotionality, restudy,
testing, feedback, encoding instruction, directed forgetting instruction), (c) aspects of
memory assessment (memory test, definition of the dependent variable), (d) aspects of
the study design (stimulus material, sleep study design, length of the retention interval,
experimental design), and (e) sleep parameters (total sleep time [TST], slow-wave sleep
[SWS], rapid eye movement [REM] sleep). Furthermore, two control variables were in-
cluded in the meta-analysis to investigate whether randomization in primary studies
and the way effect sizes were extracted from primary studies affect the results. In ad-
dition, a series of sensitivity analyses were performed which showed that the results of
the meta-analysis are by and large robust.

2.2 Developing an Integrative Framework

Although the meta-analysis was limited to variables for which sufficient data was avail-
able for joint moderator analyses, a wide range of potential moderators was examined,
revealing four important findings: First, studying the stimulus material multiple times
instead of just once appears to increase sleep-induced memory benefits, as predicted by
the interference account.

Second, the largest sleep benefit emerged in free recall, followed by cued recall, and
lastly recognition tasks. Whereas almost all performed analyses showed this result pat-
tern descriptively, it was statistically significant for word materials (i.e., single words
and word pairs) only. Thus, at least for word materials, sleep not only boosts episodic
memory as predicted by the active systems consolidation account, but also reduces
retroactive interference in line with the interference account, leading to larger sleep
benefits in memory tasks that rely more on memory retrieval (cf. Dyne et al., 1990;
McKinney, 1935; Postman, 1952).

Third, sleep benefits in episodic memory appear to be larger for differences between
immediate and delayed test performance than for delayed test performance, suggesting
that researchers should favor pre-post difference measures that control for individual
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differences by design to increase the power of statistical tests. Fourth, sleep study de-
signs without constraints on SWS (e.g., natural sleep, nighttime naps) yielded larger
sleep benefits than sleep study designs with SWS-constraints (e.g., SWS-deprived sleep,
daytime naps).1 This pattern fits well to the assumption of the active systems consol-
idation account that SWS is important for memory consolidation while it also urges
caution in generalizing findings across different sleep study designs.

Overall, the results provide initial support for both active systems consolidation and
interference accounts, suggesting that the two theories should not be considered as
mutually exclusive. Rather, it appears that sleep fosters memory storage by memory
consolidation and improves memory retrieval by reducing retroactive interference si-
multaneously which is at the heart of the integrative framework developed based on the
meta-analytic results. Besides evaluating and integrating major theoretical accounts of
the sleep benefit (i.e., active systems consolidation, opportunistic consolidation, and in-
terference accounts) to better understand the underlying processes, this work also helps
researchers design informative replication studies and explain unexpected results.

2.3 Implications for Future Research

In sum, this article presents the first comprehensive meta-analysis on the sleep benefit
in episodic memory. Compared to other meta-analyses on sleep and memory (e.g., Hu
et al., 2020; Schäfer et al., 2020; Schmid et al., 2020), it contains the largest number
of studies, effect sizes, and moderator variables so far. The present meta-analysis also
provides important theoretical insights on the sleep benefit and offers practical guidance
to increase its replicability in future research. However, the integrative framework and
its incorporated theories require more rigorous testing. Specifically, two important core
assumptions of the active systems consolidation account were not sufficiently addressed
in the meta-analysis and require further evaluation:

First, information salience—manipulated via encoding strength and test
expectation—should moderate sleep benefits in episodic memory storage. How-
ever, previous research of Howe (1970) and McGeoch (1929) suggest that encoding
strength also affects interference-based sleep benefits in memory retrieval. Second,
sleep should improve source memory for retention intervals of up to 12 hr (Inostroza
& Born, 2013; Klinzing et al., 2019). However, previous empirical evidence for sleep
1 In a sleep study design with natural sleep, participants in the sleep condition learn the material in the

evening and are tested after a night of sleep in the morning, whereas in the wake condition the time
of learning and testing is reversed. In nighttime and daytime nap designs, participants in the sleep
condition nap during the night (i.e., after 7 p.m.) and during the day (i.e., before 7 p.m.), respectively,
whereas participants in the wake condition stay awake throughout this time. In a sleep study design
with SWS deprivation, participants either sleep in the second part of the night to reduce SWS or are
awakened every time the first epoch of SWS occurs throughout a full night of sleep. This sleep condition
is compared to a wake condition with an equally long period of daytime wakefulness.
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benefits in source memory is mixed, in part perhaps due to source memory measures
that confound item memory, source memory, and guessing.

But how can sleep benefits in episodic memory storage and retrieval or in source
memory be disentangled and appropriately measured? As such, multinomial process-
ing tree models provide an elegant solution to this problem. In the next section, I first
introduce this model class before turning to the two articles in which the multinomial
modeling approach was used to test the core assumptions outlined above.
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3 A Multinomial Modeling Approach

Multinomial processing tree (MPT) models are substantively motivated stochastic mod-
els that explain observed categorical behavioral data by estimating probabilities for the
occurrence of hypothesized latent processes (Batchelder & Riefer, 1999; Erdfelder et
al., 2009; Riefer & Batchelder, 1988). Specifically, these models assume that observed
responses originate from a finite set of discrete processing states that can be explic-
itly specified by branches in a tree structure. Thus, each branch of a processing tree
represents a specific hypothesized sequence of latent processing states that results in a
particular response, whereas a particular response can arise from one or more branches.
By assuming that observed response frequencies follow multinomial distributions mod-
eled by a processing tree, the contribution of each hypothesized latent cognitive process
can be estimated and tested (Batchelder & Riefer, 1999; Erdfelder et al., 2009; Hu &
Batchelder, 1994; Riefer & Batchelder, 1988).

Responses in an episodic memory task are rarely assumed to result from a single cog-
nitive process. Consider for example a standard source-monitoring task in which par-
ticipants study items from two sources and subsequently indicate whether items were
presented previously, and if so, in which source (e.g., Bayen et al., 1996; Kuhlmann et al.,
2021; Murnane & Bayen, 1996). The observed responses may result from multiple cog-
nitive processes, such as memory and guessing processes, rather than a single process.
In contrast to memory performance measures (e.g., hit rates) which likely confound
memory and guessing processes (e.g., Bröder & Meiser, 2007; Murnane & Bayen, 1996),
MPT models provide an elegant solution to decompose the contributions of assumed
latent cognitive processes. As formal mathematical measurement models that are well
developed and understood, MPT models are powerful tools to rigorously test theoret-
ical predictions (Kuhlmann et al., 2019). In fact, once the validity of a MPT model is
established, its parameter estimates can be interpreted as uncontaminated measures of
the hypothesized latent cognitive processes (Hütter & Klauer, 2016). Due to these ad-
vantages, MPT models have gained popularity and provided valuable insights into the
cognitive processes underlying human behavior (for reviews, see Batchelder & Riefer,
1999; Erdfelder et al., 2009; Hütter & Klauer, 2016).
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Model Structure

To illustrate the structure of MPT models, consider the two-high-threshold multinomial
model of source monitoring (2HTSM) in Figure 1. This model was applied in Exper-
iment 1 of Article 3 to disentangle cognitive processes that are likely confounded in
commonly used source memory measures. In a standard source-monitoring task, par-
ticipants studied items (i.e., pictures) that were presented on either the left or right side
of a computer screen. Subsequently, the presented items (i.e., targets) were mixed with
new items (i.e., distractors) and participants were asked to indicate whether the item
was presented previously, and if so, in which source (e.g., Bayen et al., 1996; Murnane
& Bayen, 1996).

As discussed above, observed responses are likely due to multiple latent cognitive
processes rather than one. If participants recognize a target item and identify its source
correctly, they will provide the correct answer. However, they will also answer cor-
rectly by recognizing the target item and guessing the correct source in which the target
was presented. By explicitly specifying the hypothesized latent cognitive processes un-
derlying the observed responses, the 2HTSM provides uncontaminated measures for
item memory, source memory, and guessing. The probability that each branch within
a tree will result in a particular response is calculated by taking the product of the
(conditional) probabilities for all processing states along the branch. Because multiple
branches can lead to the same response, the corresponding response probability is the
sum of all branches that end in this response category (Batchelder & Riefer, 1990).

Model Fit and Model Validity

MPT models are most often fitted to empirical data by complete or partial pooling meth-
ods implemented in appropriate software (see, for example, Heck et al., 2018; Mosha-
gen, 2010). In the complete pooling approach, maximum likelihood (ML) parameter
estimation is used to analyze observed category frequencies aggregated across partic-
ipants and items (Hu & Batchelder, 1994). In the partial pooling method, a Bayesian
approach that relies on Markov-chain Monte Carlo (MCMC) methods is employed to
estimate individual and group-level MPT-parameters. By combining information on the
individual and group level, this approach explicitly accounts for potential individual
differences (Heck et al., 2018). In this thesis, both methods are used to check the ro-
bustness of the results with respect to different distributional assumptions involved in
complete and partial pooling. Importantly, all results reported in the two articles below
appear to be robust.

Using a goodness-of-fit-test, the fit between empirical data and the MPT model can be
assessed. Furthermore, the validity of the MPT model’s assumptions can be established
by showing that experimental manipulations selectively affect specific parameters (Erd-
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felder et al., 2009; Hütter & Klauer, 2016) or by demonstrating functional dissociation
with continuous covariates (Bott et al., 2020). Once, the MPT model’s identifiability
(i.e., a one-to-one mapping of parameter values to observed data), fit, and validity is
established, parameter estimates can be interpreted as uncontaminated measures, and
hypothesis tests can be performed (Erdfelder et al., 2009; Hütter & Klauer, 2016). In the
two articles discussed below, appropriately designed MPT models were applied to test
core assumptions of theories incorporated in the integrative framework.
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Figure 1
Two-High-Threshold Multinomial Model of Source Monitoring (2HTSM) Adapted to the Spatial
Position Source Manipulation Used in Experiment 1 of Article 3

Note. Dle f t = probability of correctly identifying a target item in source “left” as “old”;
Dright = probability of correctly identifying a target item in source “right” as “old”;
DNew = probability of correctly identifying a distractor item as “new”; dle f t = probabil-
ity of correctly identifying the source of a target item in source “left”; dright = probability
of correctly identifying the source of a target item in source “right”; a = probability of
guessing that a correctly identified target item is from source “left”; b = probability of
guessing that an item is “old”; g = probability of guessing that an unrecognized item is
from source “left” if it was guessed to be “old”. Following Submodel 5a of the 2HTSM
(Bayen et al., 1996), two equality constraints—Dle f t = Dright = DNew and dle f t = dright—
were imposed on the model parameters. Adapted from “Source Discrimination, Item
Detection, and Multinomial Models of Source Monitoring”, by U. J. Bayen, K. Murnane,
and E. Erdfelder, 1996, Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion, 22(1), p. 202 (https://doi.org/10.1037/0278-7393.22.1.197). Copyright 1996 by the
American Psychological Association.

https://doi.org/10.1037/0278-7393.22.1.197
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3.1 Investigating Effects of Encoding Strength and Test
Expectation

Berres, S., & Erdfelder, E. (2023). Is it all about storage? Effects of encoding strength and
test expectation on the sleep benefit in episodic memory [Manuscript submitted for
publication]. Department of Psychology, University of Mannheim.

One core prediction of the active systems consolidation account is that specific aspects
of the encoding situation, such as encoding strength or test expectation, selectively en-
hance memory consolidation during sleep and thus episodic memory storage. Specif-
ically, it is assumed that memories are tagged during or shortly after encoding (e.g.,
Barco et al., 2008; Frey & Morris, 1998; Morris, 2006; Redondo & Morris, 2011). These
tags should boost memory consolidation during sleep, resulting in better memory stor-
age (e.g., Antony & Paller, 2017; Bennion et al., 2016; Stickgold & Walker, 2013).

However, recent evidence suggests that sleep not only improves episodic memory
storage through memory consolidation but also episodic memory retrieval by reduc-
ing retroactive interference (Berres & Erdfelder, 2021; Erdfelder et al., 2022). In ad-
dition, previous research showed that retroactive interference tends to decrease with
higher study efforts (Howe, 1970; McGeoch, 1929). Because sleep benefits in episodic
memory retrieval rely on relatively strong retroactive interference during wakefulness,
the research by Howe (1970) and even earlier research by McGeoch (1929) suggests
that sleep-induced retrieval benefits decrease with increasing encoding strength. Hence,
there might be an additional effect of encoding strength on sleep benefits in memory
retrieval.

An Encoding-Maintenance-Retrieval Analysis

To evaluate the active systems consolidation account, information salience was manip-
ulated during (encoding strength, Experiment 1) and after learning (test expectation,
Experiment 2). Moreover, the Encoding-Maintenance-Retrieval (EMR) model (Erdfelder
et al., 2022; Küpper-Tetzel & Erdfelder, 2012) was applied to investigate whether infor-
mation salience affects sleep benefits in episodic memory storage, retrieval, or both. As
such, the EMR model is based on an extended free-then-cued recall paradigm: First,
participants study weakly associated word pairs (e.g., “candy – bread”) and are then
asked to recall the second word of a word pair in an immediate cued recall task that
provides the first word as a memory aid (i.e., “candy – ??”). Please refer to Appendix A
of Article 2 (Berres & Erdfelder, 2023) for a detailed description of the model.

After a retention interval (filled with either a period of sleep or wakefulness), par-
ticipants perform a delayed free recall task, in which the studied stimuli have to be
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retrieved without cues. This is followed by a delayed cued recall task, which is similar
to the immediate cued recall task (Küpper-Tetzel & Erdfelder, 2012, see also Küpper-
Tetzel et al., 2014). Because the EMR model allows to estimate the probabilities of suc-
cessfully maintaining encoded associations across the retention interval (parameter m),
and retrieving stored associations in free recall (parameter r f ), it is a powerful tool to
investigate how encoding strength and test expectation affect the sleep benefit and its
underlying processes. In the following, I briefly summarize the two experiments in-
cluded in this article.

Investigating Effects of Encoding Strength

Experiment 1 aimed at investigating whether encoding strength manipulated in the
medium to high range (i.e., ≳ 50% mean correct immediate recall) affects sleep benefits
in episodic memory storage, sleep benefits in episodic memory retrieval, or both. In
line with Stickgold’s (2009) inverted U-shaped function of the sleep benefit for memory
strength, a larger sleep benefit in episodic memory storage for medium- compared to
strong-encoding conditions was expected. Specifically, it is assumed that very strong
memories should benefit less from further strengthening through memory consolida-
tion during sleep because they already possess sufficient memory strength by definition
(Denis et al., 2021; Denis et al., 2020; Petzka et al., 2021). The hypothesis outlined above
was tested in a lab experiment (N = 27) with a randomized 2 × 2 mixed factorial
design, including encoding strength (medium vs. strong encoding) as within-subject
factor and wake versus sleep as between-subjects factor. As such, encoding strength
was manipulated by presenting half of the stimuli once versus three times.

Replicating the model-based results of Erdfelder et al. (2022), sleep compared to
wakefulness improved both episodic memory storage (parameter m) and retrieval (pa-
rameter r f ) significantly. Furthermore, in contrast to the active systems consolidation
account, which predicts larger sleep benefits for medium- compared to strong-encoded
memories, sleep appears to improve storage (m) for all memories equally. What is more,
the model-based results showed a statistically significant larger sleep benefit in episodic
memory retrieval (r f ) for medium- compared to strong-encoded memories. Specifically,
whereas a clear sleep benefit emerged in the medium-encoding condition, it was ab-
sent in strong encoding due to larger retrieval probabilities in the wake condition. This
is in line with what was expected based on previous research by Howe (1970) and
McGeoch (1929). Overall, the results of Experiment 1 suggest that encoding strength
affects sleep benefits in episodic memory retrieval more than sleep benefits in episodic
memory storage. Because previous findings were typically interpreted solely in terms
of the active systems consolidation account, this result has important implications for
our understanding of encoding-strength effects on sleep benefits.
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Investigating Effects of Test Expectation

As sketched above, tagging of memories for preferred memory consolidation during
sleep can take place not only during but also shortly after encoding (e.g., Barco et al.,
2008; Frey & Morris, 1998; Morris, 2006; Redondo & Morris, 2011). In Experiment 2, the
active systems consolidation account was therefore further evaluated by manipulating
test expectation (i.e., whether or not participants expect a delayed memory test) after
learning. Another objective of Experiment 2 was to check, whether the results of the
strong-encoding condition in Experiment 1 can be conceptually replicated by using a
60%-learning criterion in the immediate cued recall task.2

The 60%-learning criterion was also applied by Wilhelm et al. (2011) who showed
that sleep compared to wakefulness improves delayed cued recall performance in
expectation, but not in no-expectation conditions. The authors explained this finding
by enhanced consolidation of memories that are expected to be of future relevance
(Wilhelm et al., 2011). To test this interpretation, a lab experiment (N = 70) with a
randomized 2 × 2 between-subjects design, including test expectation (no expectation
vs. expectation) and wake versus sleep as independent variables was conducted. Repli-
cating the results of the strong-encoding condition in Experiment 1, the model-based
results showed a statistically significant sleep benefit in episodic memory storage (m),
but not in retrieval (r f ) for expectation and no-expectation conditions. Notably, the
results showed no evidence for a larger sleep benefit in episodic memory storage (m)
for stimuli expected to be tested in the future. This is clearly at odds with Wilhelm et
al.’s (2011) explanation but in line with recent findings by Ashton and Cairney (2021)
and Reverberi et al. (2020) suggesting that test expectation does not affect the sleep
benefit in episodic memory.

To conclude, the presented behavioral results for salience-cue effects on episodic
memory storage as predicted by the active systems consolidation account are mixed.
Nevertheless, investigating effects of encoding strength and test expectation on the
sleep benefit with the EMR model considerably advanced our understanding of these
complex moderator effects. Importantly, both the active systems consolidation and the
retroactive interference account appear to be necessary to explain encoding-strength
effects on the sleep benefit, thereby providing further support for the integrative frame-
work.

Note that all experiments of Article 2 used word pairs (i.e., item-item associations)
as stimulus material. Indeed, only few studies have investigated the sleep benefit in

2 In sleep and memory research, a 60%-learning criterion is often used to ensure sufficient memory strength
(e.g., Backhaus & Junghanns, 2006; Feld et al., 2013; Fenn & Hambrick, 2012, 2013; Gais & Born, 2004;
Marshall et al., 2004; Plihal & Born, 1997; Wilhelm et al., 2011).
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episodic memory using item-source associations. Because these studies yielded mixed
results, a multinomial modeling approach was adopted in the next article to assess the
involved processes more rigorously.

3.2 Reexamining Sleep Benefits in Source Memory

Berres, S., Erdfelder, E., & Kuhlmann, B. G. (2023). Does sleep benefit source memory? In-
vestigating 12-hr retention intervals with a multinomial modeling approach [Manuscript
submitted for publication]. Department of Psychology, University of Mannheim.

The hippocampus appears to play a crucial role in episodic memory by binding the
content of memories (i.e., item memory) to its unique context (i.e., source memory) dur-
ing encoding (for reviews, see Eichenbaum et al., 2007; Mitchell & Johnson, 2009). As
stated by the active systems consolidation account, hippocampal memory representa-
tions are replayed by reactivating specific neuronal firing patterns during subsequent
sleep, especially during SWS (Klinzing et al., 2019; Lewis & Durrant, 2011; O’Neill et
al., 2010; Pfeiffer, 2020; Wilson & McNaughton, 1994). This results in a strengthening of
these context-bound hippocampal memory representations for relatively short retention
intervals (e.g., 12 hr; cf. Jurewicz et al., 2016; Lutz et al., 2017), whereas more gist-like
decontextualized neocortical memory representations are observed for longer retention
intervals (e.g., 3 days; Klinzing et al., 2019).

However, previous studies investigating sleep effects on source memory for retention
intervals of up to 12 hr yielded mixed results (e.g., Köster et al., 2017; Lewis et al., 2011;
Mawdsley et al., 2014; van der Helm et al., 2011; Wang & Fu, 2009; Wang et al., 2017).
These studies differ in several aspects, such as sleep study designs, stimulus materi-
als, and encoding instructions. In addition, the source memory measures used in these
studies also likely contribute to the inconsistent findings. As such, judgments about the
origin of a memory involve multiple cognitive processes like memory, decision making,
guessing, and response biases (Johnson et al., 1993). Critically, several frequently used
measures of item and source memory confound these processes (e.g., Bayen et al., 1996;
Bröder & Meiser, 2007; Murnane & Bayen, 1996). In this article, the core prediction of
the active systems consolidation account that sleep compared to wakefulness benefits
source memory for 12-hr retention intervals was therefore reexamined in two experi-
ments using MPT models to disentangle item memory, source memory, and guessing.

Manipulating one Source Dimension

Experiment 1 aimed at investigating whether source memory for item-context associa-
tions benefits from sleep by manipulating the spatial position (left vs. right) of pictures
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on a computer screen in a standard source-monitoring task (e.g., Bayen et al., 1996;
Murnane & Bayen, 1996). To disentangle cognitive processes that are likely confounded
in commonly used source memory measures, Submodel 5a of the two-high-threshold
multinomial model of source monitoring (2HTSM; Bayen et al., 1996) was used. This
model provides separate parameter estimates for item memory (parameter D), source
memory (parameter d), and guessing (parameters a, b, and g; for details on the standard
source-monitoring task and the 2HTSM, see Section 3). Specifically, the active systems
consolidation account predicts better item memory (D) and source memory (d) in the
sleep than in the wake condition for a 12-hr retention interval. This was tested in an
online experiment (N = 132) by comparing participants randomly assigned either to a
wake or a sleep condition.

Supporting the active systems consolidation account, the model-based results showed
clear evidence for better source memory in the sleep condition. In contrast, the empir-
ical evidence for a sleep benefit in item memory was mixed. This is, however, in line
with previous research (e.g., Köster et al., 2017; Mawdsley et al., 2014; van der Helm
et al., 2011; Wang & Fu, 2009). One possible explanation for this result is that sleep
benefits for word materials appear to be relatively small in recognition tasks compared
to cued or free recall tasks (Berres & Erdfelder, 2021). Because recognition tasks impose
a much lower burden on memory retrieval than, for example, free recall tasks, small
sleep benefits in item recognition might be difficult to detect. To conclude, although the
results of Experiment 1 show that sleep improves source memory within a 12-hr reten-
tion interval as predicted by the active systems consolidation account, an experimental
follow-up evaluation is required to establish the validity of this finding.

Manipulating two Source Dimensions

The main purpose of Experiment 2 was therefore to conceptually replicate the results
for spatial position memory of Experiment 1. By manipulating frame color (blue vs.
yellow) orthogonally to the spatial position (left vs. right) of pictures, Experiment 2
also addressed two additional research questions: First, it was investigated whether
the results for spatial position memory can be generalized to other source dimensions
(i.e., frame color). Second, it was examined whether sleep compared to wakefulness im-
proves memory for context-context associations (i.e., bound source memory for spatial
position and frame color). To disentangle the hypothesized latent processes involved,
a reparameterized variant of the multinomial model of multidimensional source moni-
toring was employed (Meiser, 2014).

This model is based on an extended source-monitoring task (i.e., instead of one, two
source dimensions—spatial position and frame color—are manipulated orthogonally)
and provides parameter estimates for item memory (parameter D), bound source mem-
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ory (i.e., spatial position plus frame color; parameter d), unbound source memory (pa-
rameters ePosition and eColor), and guessing (parameters aPosition, aColor

|le f t , aColor
|right, b, gPosition,

gColor
|le f t , and gColor

|right; Meiser, 2014). According to the active systems consolidation account,
item memory (D), bound source memory (i.e., context-context binding; d), and un-
bound source memory (ePosition, eColor) should be larger when participants sleep during
the 12-hr retention interval than when they stay awake. To test these predictions, an on-
line experiment (N = 134) with a randomized 2 × 2 mixed factorial design, including
source dimension (spatial position vs. frame color) as within-subject factor and wake
versus sleep as between-subjects factor was conducted.

Replicating Experiment 1 and in line with the active systems consolidation account,
the model-based results showed a statistically significant sleep benefit in unbound
source memory (i.e., item-context binding) for source dimension “spatial position”
(ePosition). However, in contrast to what was predicted, no statistically significant sleep
benefit emerged in unbound source memory for source dimension “frame color”
(eColor) and in context-context binding (d). This is probably due to a floor effect in the
encoding of the frame color context, indicating that a sufficiently high level of memory
strength at encoding is necessary for the sleep benefit to occur (cf. Denis et al., 2020;
Muehlroth et al., 2020; Rauchs et al., 2011). Finally, the empirical evidence for a sleep
benefit in item memory was again mixed.

In sum, both experiments consistently showed a sleep benefit in source memory for
spatial position in line with the active systems consolidation account. The results also
suggest that relevant context features, such as spatial position or frame color, must be
sufficiently salient and thus well encoded for the sleep benefit to occur. Further research
with sufficiently high memory strength of item-context and context-context associations
at encoding is therefore needed to clarify the impact of sleep on (a) source dimensions
other than spatial position, and (b) context-context binding. Nevertheless, this article
presents additional support for the active systems consolidation account incorporated
in the integrative framework. In addition, it provides a further demonstration that MPT
models are a powerful alternative to frequently used source memory measures.

In the following section, I first summarize the evidence for the integrative framework
provided by my thesis before discussing limitations and directions for future research.
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4 Discussion

Almost a century of research on the sleep benefit in episodic memory has yielded im-
portant insights into the neurocognitive mechanisms underlying the effect. Despite this
progress, there is still a lot of controversy how to best explain the sleep benefit. Cur-
rently, a variety of theories about the underlying mechanisms exist that require further
refinement and more rigorous testing. Moreover, the mechanisms proposed by these
theories have commonly been discussed as mutually exclusive (e.g., “Does sleep im-
prove episodic memory by boosting memory consolidation or by reducing retroactive
interference?”).

However, there are several findings that can hardly be explained by one theory in
isolation without making additional assumptions. In my thesis, I therefore proposed an
integrative, multicausal framework that provides a broader and more comprehensive
explanation of the sleep benefit. Furthermore, using a multinomial modeling approach,
I tested core assumptions of the theories incorporated in the integrative framework to
gain a deeper understanding of the neurocognitive mechanisms involved. As such, the
integrative framework was developed based on meta-analytic results which showed a
robust sleep benefit of moderate size in episodic memory (Article 1; Berres & Erdfelder,
2021).

To reiterate, according to the integrative framework sleep compared to wakefulness
simultaneously improves both episodic memory storage and retrieval by memory con-
solidation (active systems and opportunistic consolidation account) and reduction of
retroactive interference (interference account), respectively. This prediction received
support from two experiments by Erdfelder et al. (2022) who employed an appropri-
ately designed MPT model to investigate how sleep compared to wakefulness affects
episodic memory storage and retrieval.

4.1 Testing Core Assumptions of the Integrative Framework

Here, I adopted this multinomial modeling approach to test two core assumptions of
the active systems consolidation account, which is incorporated in the integrative frame-
work. These core assumptions were not sufficiently addressed in the meta-analysis be-
cause they require a more thorough investigation of the underlying mechanisms.

The first core assumption of the active systems consolidation account predicts that
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information salience in form of encoding strength and test expectation moderates sleep
benefits in episodic memory storage. However, previous research suggests that encod-
ing strength also affects interference-based sleep benefits in memory retrieval (cf. Howe,
1970; McGeoch, 1929). In their first experiment, Berres and Erdfelder (2023, Article 2)
therefore addressed the question whether encoding strength affects the sleep benefit in
episodic memory storage, retrieval, or both. This was investigated by employing the
EMR model and manipulating encoding strength by presenting word-pairs once versus
three times (i.e., medium vs. strong encoding).

The model-based results replicated Erdfelder et al.’s (2022) finding that sleep fos-
ters both episodic memory storage and retrieval, providing additional support for the
integrative framework. Furthermore, the results also showed that encoding strength af-
fects the sleep benefit in episodic memory retrieval rather than storage. This finding
is at odds with the active systems consolidation account but in line with independent
research showing that retroactive-interference effects decrease with encoding strength.

Moreover, test expectation appears not to affect the sleep benefit in episodic memory
storage which conflicts with the active systems consolidation account. Taken together,
the current empirical evidence suggest that the interference account offers a better ex-
planation of encoding-strength effects on the sleep benefit than the active systems con-
solidation account. More importantly, the results also indicate that sleep benefits in
episodic memory are best explained by considering both the active systems consolida-
tion and the interference account as suggested by the integrative framework.

The second core assumption of the active systems consolidation account predicts that
sleep improves source memory for retention intervals of up to 12 hr (Inostroza & Born,
2013; Klinzing et al., 2019). However, previous research has shown mixed results for a
sleep benefit in source memory. One possible reason for the inconsistent findings could
be the use of source memory measures that confound item memory, source memory,
and guessing. Berres et al. (2023, Article 3) therefore reexamined the question whether
sleep benefits source memory with a multinomial modeling approach to provide
uncontaminated measures of source memory. The model-based results showed a clear
sleep benefit in source memory for sufficiently strong encoded spatial positions and
thus support the active systems consolidation account incorporated in the integrative
framework.

In sum, the three articles provide convincing evidence for the integrative framework.
However, as detailed in the following section, further research is needed to comprehen-
sively test the integrative framework and to generalize findings beyond the employed
sleep study design of natural sleep and wakefulness (cf. Article 1; Berres & Erdfelder,
2021). As demonstrated in this thesis, MPT models are powerful tools to investigate
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the sleep benefit in episodic memory. Adopting the multinomial modeling approach
and enriching it with physiological data from neuroimaging and polysomnography in
future research is a promising way to expand our knowledge of the sleep benefit. Al-
though this thesis contributes towards a better understanding of the sleep benefit in
episodic memory, there are several limitations and open questions that are discussed in
the following section.

4.2 Limitations and Directions for Future Research

By showing encouraging initial support for the integrative framework, this thesis sets
the starting point for follow-up experiments to establish the truth status of the frame-
work more rigorously. In what follows, I describe limitations and outline directions for
future research by focusing on three important points that are not sufficiently addressed
in the three articles of this thesis: (a) the evaluation of the opportunistic consolidation
account, (b) the further validation of the EMR model, (c) the closer examination of
encoding strength, and (d) the generalization of empirical evidence. Finally, I discuss
theoretical, methodological, and practical contributions of the present thesis to sleep-
and-memory research.

Evaluating the Opportunistic Consolidation Account

The major focus of my thesis is on evaluating the active systems consolidation and
interference accounts. Although the circadian-effects account was considered as an al-
ternative explanation and ruled out by previous research (see, for example, Erdfelder
et al., 2022), the thesis remains relatively silent about the opportunistic consolidation ac-
count. This theoretical account predicts that episodic memory storage can be improved
by any state that reduces retroactive interference and thus provides a beneficial environ-
ment for memory consolidation. Consequently, consolidation-based benefits in episodic
memory storage should result not only from sleep but also from other states, such as
quiet wake and consumption of alcohol or benzodiazepines (e.g., Ellenbogen et al., 2006;
Mednick et al., 2011; Wixted, 2004, 2005).

To inform about benefits of sleep compared to quiet wake in memory performance,
an exploratory analysis using multilevel meta-regression with RVE was conducted (see
Article 1; Berres & Erdfelder, 2021). Descriptively, the sleep benefit relative to wakeful
rest was even larger than relative to usual everyday activity and controlled cognitive ac-
tivity during the whole or part of the retention interval. This suggests that physiological
processes associated with sleep rather than reduced retroactive interference due to cog-
nitive inactivity drive the sleep benefit. Thus, this finding contradicts the opportunistic
consolidation account. However, the number of currently available effect sizes for wake-
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ful rest is too small for a meaningful interpretation (Article 1; Berres & Erdfelder, 2021).
Thus, future research is needed to test the opportunistic consolidation account experi-
mentally by comparing sleep with low and high interference wake states while keeping
the retention interval constant.

Moreover, in contrast to the active systems consolidation account, the opportunistic
consolidation account states that neither sleep nor SWS possess specific features that are
important for memory consolidation. Future research should therefore examine physi-
ological data from neuroimaging and polysomnography in addition to behavioral data.
Indeed, including physiological data (e.g., sleep spindle density) as covariates in MPT
model-based analyses may prove particularly beneficial in gaining deeper insights into
the neurocognitive mechanisms underlying the sleep benefit. Finally, as sketched above,
the opportunistic consolidation account predicts that any state that reduces retroactive
interference (e.g., quiet wake, alcohol, benzodiazepines) should boost episodic memory
storage. To answer the question whether results from sleep versus quiet wake com-
parisons can be generalized to other states of reduced retroactive interference, more
research is needed. Again, MPT models may provide valuable information about the
underlying processes.

Consider, for example, the study by Quevedo Pütter and Erdfelder (2022) in which
the EMR model was used to investigate the effect of alcohol consumption after learn-
ing on episodic memory storage (m) and retrieval (r f ). According to the opportunistic
consolidation account, alcohol consumption should improve episodic memory storage
(m) by reducing retroactive interference and thus creating a beneficial environment for
memory consolidation. This hypothesis was tested in a lab experiment (N = 93) with
a randomized between-subjects design, including an alcohol and a placebo condition.
The authors found a statistically significant positive effect of alcohol consumption after
learning on free recall retrieval (r f ) but not on episodic memory storage (m). Thus, these
results contradict the opportunistic consolidation account.

Validating the Encoding-Maintenance-Retrieval Model

In Erdfelder et al. (2022), the validity of the EMR model was established by showing that
experimental manipulations selectively affected specific model parameters (cf. Erdfelder
et al., 2009; Hütter & Klauer, 2016). To elaborate, manipulating the length of retention
intervals selectively affected storage (m) and retrieval (r f ) but not encoding (e; Exper-
iment 1), whereas manipulating the presence of retrieval cues in free recall selectively
affected retrieval (r f ) but neither encoding (e) nor storage (m; Experiment 2).

According to the active systems consolidation account, SWS is important for memory
consolidation. In fact, Plihal and Born (1997) observed a sleep benefit for participants
who slept the first half of the night, which is predominantly characterized by SWS.
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In contrast, no sleep benefit emerged for participants who slept the second half of the
night, which is predominantly characterized by REM sleep (Plihal & Born, 1997). Based
on such a split-night design, the validation technique outlined above can help to further
establish the EMR model’s validity by showing that SWS boosts memory storage (i.e.,
parameter m). More specifically, episodic memory storage (m) should be larger after
the first SWS-rich half of the night than after the second half, which is predominantly
characterized by REM sleep. By contrast, encoding (e) and retrieval (r f ) should barely
be affected by slow-wave-rich versus REM-rich sleep as predicted by the active systems
consolidation account.

However, sleep study designs are often tailored to examine effects of specific sleep
stages (see, for example, the split-night design), resulting in a confound between sleep
parameters and sleep study designs. To check whether the results of split-night vali-
dation studies can be generalized to other sleep study designs, future research should
investigate the discriminant validity of the EMR model’s parameters by analyzing SWS-
specific features as covariates (cf. Bott et al., 2020). Specifically, the active systems con-
solidation account predicts that SWS-specific features, such as the density of sleep spin-
dles, should covary with episodic memory storage (m) but neither with encoding (e)
nor retrieval (r f ). This prediction should hold for all sleep study designs that include
a learning phase, a subsequent retention interval filled with either a period of sleep or
wakefulness, and finally a testing phase. The combination of the two techniques thus
provides a more rigorous measurement validation by testing whether the model param-
eters reliably capture the same neurocognitive mechanisms across different sleep study
designs. This check is necessary to gain a better understanding of the mechanisms un-
derlying memory enhancing sleep intervention techniques like targeted memory reacti-
vation (TMR) by applying the EMR model (for details on TMR, see Feld & Diekelmann,
2020; Hu et al., 2020).

Examining Encoding-Strength Effects

In the first experiment of the second article in the present thesis (Berres & Erdfelder,
2023), the EMR model was employed to investigate the underlying mechanisms of
encoding-strength effects on the sleep benefit in episodic memory. Focusing on the
range of medium to high memory strength, encoding strength was manipulated by
presenting half of the stimuli once versus three times. Thus, as in most previous stud-
ies, only two levels of memory strength were compared. However, a more rigorous test
of Stickgold’s (2009) assumption that the sleep benefit follows an inverted U-shaped
function of memory strength is needed. Future research should therefore systemati-
cally vary encoding strength in small steps over a wide range, ideally using the same
encoding strength manipulation.
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In addition, further research is needed to better understand how various manipula-
tions of information salience affect the sleep benefit and its underlying processes. As
such, information salience can be manipulated not only by varying the number of stim-
ulus presentations or other learning procedures (e.g., Abel et al., 2019; Bäuml et al.,
2014; Bennion et al., 2016; Denis et al., 2020) but also by varying the emotionality of the
stimuli (e.g., Hu et al., 2006; Payne et al., 2015). Because emotional stimuli receive more
attention and thus more elaboration than neutral stimuli at encoding (Hamann, 2001), it
is assumed that emotional stimuli profit more from memory consolidation during sleep
(e.g., Payne & Kensinger, 2010; Walker & van der Helm, 2009).

Although more research is needed to test this prediction experimentally, the first ar-
ticle of this thesis provides tentative support by showing a descriptively larger sleep
benefit for negative compared to positive and neutral stimuli (see Berres & Erdfelder,
2021, p. 1333). Specifically, in the first article of this thesis, emotionality, among a wide
range of potential moderator variables, such as age, memory tests, stimulus materials,
or total sleep time, was examined (see Berres & Erdfelder, 2021, p. 1314). However,
for some potential moderator variables the available sample of effect sizes was sim-
ply too small, or the moderators contained too many missing values to be included
in a multiple-moderator analysis. Thus, it was not possible to address all moderator
variables of interest (e.g., motivational aspects like reward; Diekelmann et al., 2009;
Stickgold & Walker, 2013).

In addition, for some of the analyzed moderator variables and their levels, the avail-
able number of effect sizes was relatively small which introduced uncertainty in the
respective analysis (see, for example, the subgroup moderator analyses for emotional-
ity or the exploratory moderator analysis for the opportunistic consolidation account
outlined above). Consequently, nonsignificant results in moderator analyses, such as for
emotionality, should be considered with caution. Further research is needed to investi-
gate these potential moderators experimentally.

Moreover, future research should investigate whether effects of emotionality on sleep
benefits in episodic memory storage also follow an inverted U-shaped curve, as pre-
dicted by the active systems consolidation account for effects of encoding strength.
Here, the EMR model is a useful method to examine whether and how the cognitive
processes underlying the sleep benefit in episodic memory are affected by emotionality,
leading to a better understanding of both emotionality and encoding-strength effects on
the sleep benefit.

In the third article (Berres et al., 2023), the question whether sleep compared to wake-
fulness benefits source memory for 12-hr retention intervals was examined. Contradict-
ing the active systems consolidation account, no significant sleep benefit emerged for
item-context binding for source dimension “frame color” and context-context binding,
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probably due to floor effects. Thus, the prediction of the active systems consolidation
account should be reinvestigated in future research, ensuring sufficiently high encod-
ing strength, for example, by intentional learning of item-context associations. More
research is also needed to determine the precise time course of memory consolidation
during sleep, which is not yet well understood (e.g., Klinzing et al., 2019; Lewis & Dur-
rant, 2011; Pöhlchen & Schönauer, 2020; Stickgold & Walker, 2007). This point can be
addressed by conducting experiments with standardized study designs and varying re-
tention intervals to determine the minimum and maximum retention interval length for
which sleep benefits in source memory occur.

Generalizing Empirical Evidence

Finally, compared to online experiments (cf. Article 3), lab experiments (cf. Article 2) are
characterized by small sample sizes, which are typical for sleep and memory research
due to time and cost intensive study designs and methods (Berres & Erdfelder, 2021).
In addition, as in this thesis, most participants are healthy young adults who belong to
western, educated, industrialized, rich, and democratic (WEIRD) populations, making
it difficult to generalize the findings (cf. Falk et al., 2013; Henrich et al., 2010). However,
the collection of larger and more diverse samples could be facilitated by supporting
collaborations between institutions (e.g., clinics, universities) or by conducting online
studies—if the research question and the study design permits.

As sketched above, this thesis focused on healthy human individuals and is thus
silent about clinical populations. Investigating the sleep benefit in clinical populations
and comparing the results to a healthy control group can, however, contribute to a
better understanding of the underlying mechanisms. For example, previous studies
have found a lower sleep benefit in children with attention deficit hyperactivity disorder
(ADHD) compared to typically developing children (e.g., Prehn-Kristensen et al., 2011;
Prehn-Kristensen et al., 2017). Here, the EMR model is a prime candidate to clarify the
processes that lead to a reduced sleep benefit in episodic memory among children with
ADHD, providing valuable information for theory building and memory-enhancing
interventions.

In addition, most of the participants investigated in this thesis are young adults.
Because sleep benefits may decrease across the life span due to age-related changes
in sleep parameters, further research is needed to check whether the results can be
generalized to other age groups (for more details, see Berres & Erdfelder, 2021). Again,
MPT models are well suited—particularly because of the capability to analyze sleep
parameters as covariates—to tackle the question whether and how age affects the sleep
benefit and its underlying mechanisms.
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4.3 Contributions to Sleep-and-Memory Research

Despite the outlined limitations, the present thesis makes significant theoretical,
methodological, and practical contributions to the research on sleep and memory: First,
by systematically investigating a wide range of potential moderator variables and by in-
troducing the integrative framework, this thesis makes an important theoretical contri-
bution. As such, knowledge about variables that moderate the sleep benefit is of prime
importance as they offer a better understand of the processes underlying the sleep ben-
efit. Furthermore, the knowledge about moderators also allows to test corresponding
theories, to explain unexpected results, and to design informative replication studies.
In fact, across the three articles in the present thesis, encoding strength appears to be
an important moderator of the sleep benefit that should be carefully considered when
designing studies and interpreting results. The results of the systematic investigation of
moderators in the meta-analysis was also used to develop the integrative framework.

Although a single theory that coherently explains why sleep compared to wake-
fulness improves both episodic memory storage and retrieval would be an attractive
alternative, the currently available evidence supports the integrative framework. For
example, Diekelmann et al. (2009) suggested that systems consolidation (i.e., synaptic
changes across various brain areas) during sleep improves memory retrieval in cued
and free recall tasks. Because memory representations are integrated into preexisting
memory networks, it is assumed that they are linked to a larger number of cues that
facilitate access and thus memory retrieval. However, this assumption is challenged by
empirical evidence showing that no significant behavioral effects of systems consolida-
tion emerge within 10 to 24 hr after learning (e.g., Lutz et al., 2017; Takashima et al.,
2006). For this reason, the integrative framework offers a more plausible explanation of
the sleep benefit for retention intervals up to 12 hr.

Second, the present thesis also makes an important methodological contribution by
demonstrating that MPT models are powerful tools to investigate sleep benefits in
episodic memory more thoroughly. Specifically, by using appropriately designed MPT
models, Article 2 (Berres & Erdfelder, 2023) showed that variations of the sleep benefit
in episodic memory may not always be due to variations in storage but also be due to
variations in retrieval success. Also applying multinomial modeling, Article 3 (Berres
et al., 2023) provided additional evidence that memory consolidation is one of the key
processes that contributes to the sleep benefit in episodic memory.

Third, by quantifying the sleep benefit in episodic memory, this thesis makes a con-
tribution of practical significance. As such, knowledge about the size of the effect is
essential when planning studies on the sleep benefit that are sufficiently powered. Pre-
viously, researchers had to rely on reported effect sizes from single experiments and
on their gut feeling in order to ensure adequately powered studies. The meta-analysis
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included in this thesis now informs about effect sizes under a variety of context con-
ditions. In this way, the present work helps to plan future sleep-and-memory studies
appropriately and to increase replicability of research on the sleep benefit in episodic
memory.

Overall, this thesis contributes to a better understanding of the sleep benefit in
episodic memory, demonstrates the power of MPT models in investigating the underly-
ing mechanisms, and provides guidance to increase the replicability of the sleep benefit
in future research.





35

5 Conclusion

Even though the sleep benefit in episodic memory is considered a well-established find-
ing, knowledge about the typical size of the effect and its underlying mechanisms was
still limited. In my thesis, I have contributed to fill this gap by quantifying the sleep
benefit—which indeed proved robust—and by promoting a theoretical framework that
integrates prominent theories from neuroscience and psychology. As such, this inte-
grative framework was developed based on meta-analytic results and integrates ac-
tive systems consolidation, opportunistic consolidation, and interference accounts. It
received initial empirical support from two articles in which core assumptions of the
incorporated theories were tested with appropriately designed MPT models. Overall,
both the integrative framework and the multinomial modeling approach promoted in
this thesis have the potential to advance our understanding of the underlying neu-
rocognitive mechanisms in the future. Thereby, they may prompt the development of
effective memory-enhancing sleep interventions to maintain proper episodic memory
functioning, especially in clinical populations.
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Abstract 

People recall more information after sleep than after an equally long period of wakefulness. 

However, previous research has shown that this sleep benefit is affected by salience cues that tag 

memories for prioritized consolidation during sleep, suggesting better storage as a consequence of 

sleep. In two experiments, we evaluated this explanation and explored whether sleep also improves 

memory retrieval due to reduced retroactive interference during sleep. To disentangle the cognitive 

processes involved, we used the Encoding-Maintenance-Retrieval (EMR) multinomial model. The 

model provides separate measures for word-pair association encoding (e), maintenance across 

retention intervals (m), and free-recall retrieval of stored word pairs (rf). In Experiment 1, we 

manipulated salience during encoding via encoding strength, that is, we present some stimuli once 

and others three times. Our results for memory storage were mixed. Apparently, memory 

consolidation during sleep improves storage of all memories equally, regardless of their strength. 

Rather, a larger sleep benefit in memory retrieval for medium compared to strong memories 

emerged, in line with independent research showing that retroactive-interference effects decrease 

with encoding strength. In Experiment 2, we varied salience immediately following encoding by 

manipulating test expectation. Test expectation affected neither storage nor retrieval contributions 

to the sleep benefit. Importantly, using a 60%-learning criterion, the absence of the sleep benefit in 

retrieval given strong encoding was replicated. We conclude that sleep improves maintenance in 

and retrieval from memory. Whereas encoding strength moderates the sleep benefit in retrieval, it 

does not impact storage benefits significantly. 

 

Word count (abstract): 244 words 

 

Keywords: episodic memory, consolidation during sleep, interference, encoding strength, test 

expectation 
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Is it all About Storage? Effects of Encoding Strength and Test Expectation on the Sleep Benefit in 

Episodic Memory 

When learning is followed by sleep compared to an equally long period of wakefulness, people 

recall more of the learned information. This sleep benefit in episodic memory is a well-established 

finding in human memory research. It is typically explained by one of two key mechanisms (for a 

review, see Berres & Erdfelder, 2021). The first mechanism is memory consolidation—a process that 

converts recently encoded and thus labile memories into more stable long-term memory 

representations during sleep (Buzsáki, 1998; Diekelmann & Born, 2010; Dudai, 2004, 2012; Dudai et 

al., 2015; Klinzing et al. 2019; Rasch & Born, 2013). Therefore, memory consolidation actively 

increases episodic memory storage. The second mechanism is sleep-induced protection from 

retroactive interference (Ecker, Brown, & Lewandowsky, 2015; Ecker, Tay, & Brown, 2015; Ekstrand, 

1967; Jenkins & Dallenbach, 1924; Yonelinas et al., 2019). In contrast to wakefulness, new learning is 

virtually absent during sleep, thereby reducing retroactive interference for information learned prior 

to sleep. Because retroactive interference is due to retrieval problems in the first place (e.g., Tulving 

& Psotka, 1971), the reduction of retroactive interference during sleep passively increases episodic 

memory retrieval relative to wake control conditions. In fact, recent findings suggest that both 

mechanisms—better maintenance in memory and better retrieval from memory—might jointly 

contribute to the sleep benefit (Berres & Erdfelder, 2021; Erdfelder et al., 2022). That is, sleep 

compared to wakefulness appears to strengthen both episodic memory storage and retrieval. 

Despite encouraging past advances towards a better understanding of the sleep benefit, it is still 

unclear whether and how the underlying cognitive processes are affected by salience cues.1 It has 

been argued that salience cues presented during or shortly after encoding may tag memories for 

preferred memory consolidation during sleep (e.g., Barco et al., 2008; Frey & Morris, 1998; Morris, 

2006; Redondo & Morris, 2011). Although the mechanisms by which these tags affect memory 

 
1 We use “salience cues” as an umbrella term for all cues that indicate future stimulus relevance (e.g., 
emotion, directed forgetting, incentives, encoding strength, test expectation). 
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consolidation during sleep are not yet well understood, it has been hypothesized that tagging boosts 

memory consolidation during sleep, resulting in better memory storage (e.g., Antony & Paller, 2017; 

Bennion et al., 2016; Stickgold & Walker, 2013). In line with this hypothesis, previous research 

showed larger sleep benefits for (a) emotional versus neutral stimuli (e.g., Hu et al., 2006; Payne et 

al., 2015), (b) to-be-remembered versus to-be-forgotten information (Rauchs et al., 2011; Saletin et 

al., 2011), (c) incentivized stimuli (e.g., Oudiette et al., 2013; but see Baran et al., 2013), (d) strongly 

compared to weakly encoded information (e.g., Schoch et al., 2017; Tucker & Fishbein, 2008; but see 

Petzka et al., 2021), and (e) stimuli expected to be tested in the future (Wilhelm et al., 2011; but see 

Ashton & Cairney, 2021). 

However, previous research also suggests an additional effect of encoding strength on sleep 

benefits in subsequent memory retrieval. Specifically, it has been shown that retroactive 

interference tends to decrease with higher study efforts (Howe, 1970; McGeoch, 1929). This may in 

turn reduce sleep benefits in retrieval because these benefits rely on relatively strong retroactive 

interference during wakefulness. Hence, it seems plausible that study efforts manipulated via 

encoding strength additionally affect sleep-induced reduction of retroactive interference and thus 

memory retrieval. We therefore investigated sleep benefits not only in episodic memory storage but 

also in subsequent memory retrieval. In two experiments, we used a multinomial processing tree 

(MPT) model to disentangle storage and retrieval contributions to memory performance. To further 

evaluate the consolidation explanation, we selected two salience manipulations—encoding strength 

(Experiment 1) and test expectation (Experiment 2)—that clearly differ in the timing of salience 

tagging: While encoding strength (i.e., presentation frequency) is manipulated during learning, test 

expectation is manipulated immediately following the learning phase. 

In sum, the current work aims to advance our understanding of the cognitive processes 

underlying effects of information salience on the sleep benefit in episodic memory. Whereas the 

consolidation account of the sleep benefit predicts that information salience boosts sleep benefits in 

episodic memory storage, it does not allow for clear-cut predictions concerning memory retrieval. By 
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manipulating salience during (encoding strength) and after learning (test expectation), we therefore 

evaluate the consolidation explanation and explore the role of possible additional retrieval 

contributions as suggested by research of Howe (1970) and McGeoch (1929). 

The Current Experiments 

To investigate whether information salience affects (a) sleep benefits in episodic memory storage 

caused by memory consolidation, (b) sleep benefits in episodic memory retrieval due to protection 

from retroactive interference, or (c) both, we used the Encoding-Maintenance-Retrieval (EMR) 

model (Erdfelder et al., 2022; Küpper-Tetzel & Erdfelder, 2012). This model belongs to the class of 

Multinomial Processing Tree (MPT) models (for reviews, see Batchelder & Riefer, 1999; Erdfelder et 

al., 2009) and is based on observed frequencies for 12 event categories. These categories result from 

the combination of all possible outcomes in an immediate cued recall task right after learning, 

followed by delayed free and cued recall tasks after a longer retention interval (see Appendix A for a 

more detailed description of the categories). 

Based on observed frequencies for these 12 categories, the EMR model provides separate 

measures for successful encoding of word-pair associations (e), maintaining encoded associations 

across the retention interval (m), and retrieving stored associations in free recall (rf). Further 

parameters are estimated for the probability of word-pair retrieval in cued recall (rc) and various 

probabilities of single word retrieval during free recall when word-pair associations are stored (ss 

and su) versus not stored in memory (us and uu). The index “s” versus “u” of the latter parameters 

indicates whether the preceding cued recall attempt was successful versus unsuccessful, 

respectively. Please refer to Appendix A for a more detailed description of the model. 

Following Erdfelder et al.’s (2022) recommendation, we first fitted a parsimonious independence 

model which precludes effects of the preceding memory test and includes 6 parameters only (i.e., 

parameter e, m, rc, rf, s, u). In case this independence model produced misfit, we relaxed the 

independence assumptions in a second step, starting with parameter u followed by parameter s (cf. 

Erdfelder et al., 2022). Importantly, because we also wanted to check for potential differences in the 
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probability of retrieving stored associations in cued recall (i.e., parameter rc), we did not apply the 

recommended restriction rc = rcs = rcu (see Appendix A) in our model-based analyses. 

As such, the EMR model has been successfully applied in sleep-related and non-sleep-related 

research (e.g., Erdfelder et al., 2022; Küpper-Tetzel & Erdfelder, 2012; Küpper-Tetzel et al., 2014; 

Quevedo Pütter & Erdfelder, 2022). Moreover, the model’s psychological validity was demonstrated 

by showing that the model parameters can be selectively influenced by experimental manipulations 

known to affect specific cognitive processes. For example, Erdfelder et al. (2022) showed that the 

length of the retention interval affects storage (m) and free recall retrieval (rf), but not encoding 

parameters (e). Furthermore, providing category names as retrieval cues during free recall 

selectively influenced the parameter for free recall retrieval (rf) while leaving the parameters for 

encoding (e) and maintenance (m) unaffected (Erdfelder et al., 2022, Experiment 2). Thus, there is 

evidence that the core parameters of the EMR model validly measure the memory processes they 

are supposed to measure. 

MPT models are most often fitted to empirical data using complete or partial pooling approaches 

(for a tutorial, see O. Schmidt et al., 2023). In the complete pooling approach, observed category 

frequencies are aggregated across participants and typically analyzed using maximum likelihood 

(ML) parameter estimation. By contrast, partial pooling typically employs a Bayesian approach that 

relies on Markov-chain Monte Carlo (MCMC) methods (Heck et al., 2018) to estimate individual and 

group-level MPT-parameters, thereby explicitly accounting for potential individual differences 

between participants. Following Erdfelder et al. (2022), we used both approaches to check whether 

our results are robust against the different distributional assumptions involved in complete and 

partial pooling. We made use of the software multiTree (Moshagen, 2010) and the latent-trait model 

(Klauer, 2010) as implemented in the R package TreeBUGS (Heck et al., 2018) for complete and 

partial pooling approaches, respectively. 

For the complete pooling approach conducted with multiTree, we allowed for up to 10,000 

iterations for the expectation maximization (EM) parameter estimation algorithm. Model fit was 



EFFECTS OF ENCODING STRENGTH AND TEST EXPECTATION ON THE SLEEP BENEFIT 8 

assessed using the goodness of fit statistic G2. To evaluate differences between experimental 

conditions, we used the difference in the goodness of fit statistic between baseline and alternative 

models (ΔG2). For the partial pooling approach conducted with TreeBUGS, we used 200,000 

iterations from four MCMC chains, keeping every 10th iteration. Moreover, we used 100,000 

iterations for adaptation to adjust MCMC sampling in the R package JAGS (Plummer, 2003) and 

removed 100,000 burn-in iterations. Furthermore, we used weakly informative priors (i.e., the 

default priors in TreeBUGS, see Heck et al., 2018). Stimulus materials, codebooks, data sets, and 

analysis codes for both experiments reported here are available on the OSF 

(https://osf.io/xe8rt/?view_only=820b76736cec4762a6ba87d360b8d95d). The two experiments 

were not preregistered. 

Experiment 1 

Everyday life comes with a multitude of information that cannot be encoded equally well due to 

limited cognitive resources. Consequently, some pieces of information are better encoded and thus 

possess higher memory strength than others. For this reason, researchers investigated whether 

using encoding strength as a salience cue affects how much episodic memories profit from sleep. 

According to the consolidation account, the sleep benefit in episodic memory storage follows an 

inverted U-shaped function of memory strength, with the largest sleep benefit for medium degrees 

of encoding strength (Stickgold, 2009). In line with this prediction, there is growing empirical support 

that a certain minimum level of memory strength at encoding is necessary for the sleep benefit to 

occur (e.g., Denis et al., 2020; Muehlroth et al., 2020; Rauchs et al., 2011). That is, floor effects might 

counteract sleep-induced memory consolidation when encoding strength is very low (Petzka et al., 

2021). Also in line with the prediction, sleep benefits in episodic memory appear to decrease when 

encoding strength increases beyond a medium level up to very high levels. For example, 

electroencephalography (EEG) studies showed that memories of medium strength (i.e., 

approximately 50% mean correct responses in immediate recall tasks; see Table 1) are associated 

with higher spindle density during non-rapid eye movement (NREM) sleep (C. Schmidt et al., 2006, 
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but see Denis et al., 2021), which is thought to promote memory consolidation (e.g., Fernandez & 

Lüthi, 2020; Klinzing et al., 2019; Muehlroth et al., 2020; Peyrache & Seibt, 2020). In addition, 

targeted memory reactivation (TMR) studies showed that TMR during sleep yielded better memory 

performance provided that initial recall performance is moderately (but not highly) accurate 

(Cairney et al., 2016; Creery et al., 2015).2 

Further support for an inverted U-shaped curve of the sleep benefit in episodic memory storage 

comes from behavioral results. Note, however, that the terms “weak encoding” and “strong 

encoding” have typically been used relative to each other in a quite vague sense. Also, various 

encoding-strength manipulations have been employed. To illustrate, researchers presented study 

materials once versus multiple times (Denis et al., 2020; Denis et al., 2021), used immediate tests 

versus no tests with feedback versus no feedback after learning (Schoch et al., 2017; Tucker & 

Fishbein, 2008; Ukraintseva & Dorokhov, 2012), or applied different learning criteria (Sheth et al., 

2012) and presentation times for feedback (Drosopoulos et al., 2007). For this reason, “weak 

encoding” in one experiment may correspond to “strong encoding” in another experiment or vice 

versa. To enable comparison of previous research with the results of the current experiments, we 

refer to the percentage of correct responses in immediate recall, as comprehensively summarized in 

Table 1. We refer to 40%-60% correct immediate recall responses as medium encoding strength. 

According to this criterion, studies with ≲ 50% mean correct immediate recall correspond to the 

lower limb and studies with ≳ 50% to the upper limb of Stickgold’s (2009) inverted U-shaped 

function. Applying this categorization scheme to the studies, the overall result pattern supports the 

consolidation account: Most studies assigned to the lower limb showed a smaller sleep benefit in 

weak compared to stronger encoding conditions (e.g., Schoch et al., 2017; Tucker & Fishbein, 2008; 

but see Denis et al., 2020; Denis et al., 2021; Ukraintseva & Dorokhov, 2012). By contrast, most 

 
2 In targeted memory reactivation (TMR) studies, subtle auditory reminder cues are presented during sleep. 
The auditory cues are presented jointly with the learning material during the study phase and are played again 
during sleep to reactivate the associated memories. This reactivation should lead to better memory 
performance in a delayed memory test. 
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studies falling in the upper limb of the inverted U-shaped function showed a larger sleep benefit in 

medium- compared to strong-encoding conditions (e.g., Cairney et al., 2016; Drosopoulos et al., 

2007; Petzka et al., 2021; Sheth et al., 2012; but see Denis et al., 2020; Denis et al., 2021; for a 

summary, see Table 1). Overall, the empirical evidence from EEG, TMR, and behavioral studies are in 

line with the consolidation account. According to this account, very strong memories should benefit 

less from further strengthening through memory consolidation during sleep, most likely because 

they already possess sufficient memory strength by default (Denis et al., 2020; Denis et al., 2021; 

Petzka et al., 2021). 

Despite the plausibility of the consolidation account, there is also recent behavioral evidence 

suggesting that memory consolidation during sleep benefits all memories irrespective of their 

memory strength (Petzka et al., 2021). Specifically, Petzka et al. (2021) examined the sleep benefit 

for medium and strong memories (i.e., approximately 65% vs. 93% mean correct responses in 

immediate recall tasks; see Table 1) in two conditions. The first condition was a relatively easy 

standard test condition with a delayed memory test following the retention interval. The second 

condition—the difficult test condition—additionally introduced retroactive interference before the 

delayed memory test. Whereas a sleep benefit for medium but not for strong memories emerged in 

the standard test condition, all memories benefitted from sleep compared to wakefulness in the 

difficult test condition. As a possible interpretation, the authors suggest that sleep may foster 

episodic memory storage irrespective of memory strength unless concealed by ceiling effects for 

strong memories like in the relatively easy standard-test condition (Petzka et al., 2021). In the 

current experiment, we test Petzka et al.’s (2021) interpretation thoroughly by disentangling storage 

and retrieval contributions to the sleep benefit with the EMR model. 

Even though the empirical evidence that has accumulated so far supports the consolidation 

explanation, this does not preclude that encoding strength may additionally affect sleep-induced 

reduction of retroactive interference and thus memory retrieval. In fact, Erdfelder et al. (2022) 

showed that sleep compared to wakefulness has two qualitatively different effects on episodic 
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memory: It actively boosts memory storage due to memory consolidation and, in addition, improves 

memory retrieval passively by reducing retroactive interference. Also, as already pointed out above, 

previous studies showed that retroactive interference tends to decrease with higher study efforts 

(Howe, 1970; McGeoch, 1929), suggesting that sleep benefits in episodic memory retrieval may be 

reduced for more strongly encoded memories. In Experiment 1 we therefore investigated whether 

encoding strength manipulated in the medium to high range affects (a) sleep benefits in episodic 

memory storage, (b) sleep benefits in episodic memory retrieval, or (c) both. In line with Stickgold 

(2009), we expected larger sleep benefits in episodic memory storage for the medium- compared to 

the strong-encoding condition. 

Method 

We applied a 2 × 2 mixed factorial design with encoding strength (medium vs. strong encoding) 

as within-subject factor and wake versus sleep as between-subjects factor. 

Participants 

Data collection took place in spring 2018. We aimed for a sample size of at least 24 participants 

(i.e., nsleep = 12, nwake = 12) but tried to collect as many participants as possible before the semester 

break. The minimum target sample size was based on previous studies investigating encoding-

strength effects on the sleep benefit (see Table 1). For example, Drosopoulos et al. (2007) and Sheth 

et al. (2012) used 10 participants per group to demonstrate a larger sleep benefit in medium- 

compared to strong encoding conditions. 

We performed a priori sensitivity analyses with (a) G*Power (Faul et al., 2007) for the ANOVA-

based memory performance analysis, and (b) multiTree for the EMR model-based analysis. All 

sensitivity analyses were performed using a conventional α-level of .05 and the minimum target 

sample size of N = 24 participants (i.e., nsleep = 12, nwake = 12). For the ANOVA-based memory 

performance analysis, sensitivity analyses confirmed that ANOVA F(1, 22) tests can detect effects 

exceeding medium strength (i.e., f = .30) with a power of 1 - β = .80 (Faul et al., 2007). For the EMR 

model-based analysis, we performed a sensitivity analysis with 40 word pairs per participant and 
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encoding-strength condition (i.e., 2 x 480 = 960 observations in total). Because this is the first time 

the EMR model is used to investigate encoding-strength effects on the sleep benefit, we assumed a 

minimum difference of 0.10 between the wake and sleep group for m- and rf-parameters in medium- 

and strong-encoding conditions, respectively. This assumption was based on the results by Erdfelder 

et al. (2022) who applied the EMR model for the first time to investigate sleep benefits in episodic 

memory. The authors found sleep benefits of ≥ 0.10 in m- and rf-parameters for strong encoded 

memories (i.e., > 72% mean correct responses in immediate cued recall tasks). The sensitivity 

analysis resulted in a power (1 - β) of .68 for parameter m and .94 for parameter rf, respectively.3 As 

baseline parameter values for the sensitivity analyses, we used the ML parameter estimates of 

Erdfelder et al.’s (2022) no-cue wake condition in Experiment 2 (e = .75, m = .85, rc = .98, rf = .51, s = 

.09, us = .25, uu = .07). 

In total, 69 persons participated in the laboratory experiment at the University of Mannheim. 

They were recruited via campus advertisements, social media, or personal contacts and received 

home-made snacks for their participation. We excluded two participants because they reported 

active rehearsal of word pairs during the retention interval. Furthermore, we applied the exclusion 

criteria recommended for the EMR model (cf. Erdfelder et al., 2022) and excluded 14 participants 

with less than 35% and 26 participants with more than 95% correct responses in immediate cued 

recall (see Appendix A for a detailed explanation). Thus, for data analysis 27 participants remained, 

12 in the sleep and 15 in the wake group. The participants were between 17 and 51 years of age (M 

= 22.89 years, SD = 6.46), 20 (74.07%) were female.4 All were native or fluent speakers of German 

and, except for one person, university students. 

Procedure 

 
3 Note that assuming a difference of 0.10 between the wake and sleep group in e- and rc-parameters resulted 
in a power (1 - β) of .95 for parameter e and .99 for parameter rc, respectively. 
4 The 17-year-old person showed a signed parental permission to participate upon entering the laboratory. 
Only one participant was more than 35 years old. Importantly, similar results emerged for memory 
performance and model-based analyses when including only participants between 18 and 35 years of age (see 
Tables S2 to S5 in the supplemental materials). 
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The random assignment took place during online registration with SoSci Survey (Leiner, 2018). 

Participants randomly assigned to the wake condition were informed that the experiment consists of 

two sessions with the first session at 8:30 a.m., followed by the second session 12 hr later. For the 

sleep condition, starting times of the two sessions were reversed. In both conditions, participants 

were asked to choose a date for participation. 

Both sessions of the experiment were conducted with OpenSesame (Mathôt et al., 2012) in the 

laboratory. In the first session, participants read and agreed to the information consent before they 

started the experiment answering several questions. Specifically, participants were asked whether 

they slept at least 6 hr in the night before the experiment and when they woke up this morning. 

Participants also indicated on the Stanford Sleepiness Scale (SSS, Hoddes et al., 1973) how sleepy 

they feel right now. After completing the questions, participants learned 80 weakly related word 

pairs with the instruction to memorize all word pairs as well as possible for a cued recall task at the 

end of the session. To manipulate encoding strength, half of the word pairs were presented once, 

the other half three times in random order. Note that we ensured not to present word pairs multiple 

times in a row, that is, at least one other word was presented between repetitions of the same 

word. To ensure at least medium memory strength even when word pairs are presented only once, 

each word pair was presented for 5 s with an interstimulus interval of 100 ms. The learning phase 

was followed by a distractor task of 15 math equations (e.g., 24 / 2 + 32 = 44). By pressing one of 

two keys, participants decided whether an equation was right or wrong. When responding within 8 

s, participants received feedback on the correctness of their answer. Otherwise, they were informed 

that they responded too slowly. After the distractor task, participants performed the previously 

announced immediate cued recall task. In this self-paced task, the left word of a word pair was 

presented, and participants had to remember and type in the right word (or leave the field blank in 

case of recollection failure). Finally, we informed the participants that in the next session they will 

receive the same cued recall task again, in addition to other tasks. We also asked them (a) not to 

actively rehearse learned word pairs, (b) not to consume alcoholic drinks, (c) not to take a nap 
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during the day, and (d) to go to bed at their usual time. During the 12-hr retention interval, 

participants pursued their usual daily activities or slept at home. To obtain a rough measure of total 

sleep duration and the time spent in deep and light sleep, participants in the sleep condition wore a 

commercial fitness tracker (Xiaomi Mi Band 2). 

At the beginning of the second session, the SSS was presented and answered by the participants. 

This was followed by a surprise free recall task. In this paper-pencil task, participants were asked to 

write down all learned word pairs they could remember within 10 min. In case they remember only 

one word of a pair, participants were instructed to write it down as well. Moreover, we notified 

participants that the order in which word pairs or the two words of a pair are written down does not 

matter. After reading the instructions, a countdown was started on the computer screen and 

participants filled in the sheet of paper with two columns and 80 numbered rows. The free recall 

task was followed by a delayed cued recall task. This task was identical to the immediate cued recall 

except for the presentation order of the left word, which was randomized. Thereafter, participants 

filled in the German version of the reduced Morningness-Eveningness Questionnaire (rMEQ; 

Randler, 2013) and answered demographic questions. We also asked participants in the sleep 

condition about last night’s sleep quality and the time they fell asleep and woke up. By contrast, 

participants in the wake condition were asked whether they slept during the last 12 hr, and if so, 

when they started and stopped sleeping. In addition, we asked participants in both conditions 

whether and how much alcoholic drinks they consumed, and whether they actively rehearsed word 

pairs during the retention interval. The testing session ended with a question about their belief 

concerning the study aim. Finally, participants were thanked, debriefed, and compensated. 

Material 

To facilitate learning and to ensure that responses in recall tasks are based on memory retrieval 

rather than guessing, we used weakly associated word pairs as study material. All words were 

concrete German nouns taken from three category-production norms (Flammer et al., 1985; 

Mannhaupt, 1983; Scheithe & Bäuml, 1995). We created 80 word pairs by selecting an untypical 
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word as cue (e.g., candy) and a typical word as target (e.g., bread) from 80 categories (e.g., food). 

Whenever possible, we selected a cue word with a production index below .02 and a target word 

from the four most frequently named words of a category. The word pairs were than randomly 

assigned to either List A or List B, so that both lists contained 40 word pairs each. We 

counterbalanced the two lists across participants in wake and sleep conditions to minimize material 

effects. Specifically, half of the participants in both experimental conditions learned List A once and 

List B three times whereas the other half learned List B once and List A three times. All word pairs 

including production indices and the assigned list are available on the OSF 

(https://osf.io/xe8rt/?view_only=820b76736cec4762a6ba87d360b8d95d). 

Results 

We applied a significance level of α = .05 for all analyses. The sample characteristics are 

presented in Table S1 in the supplemental materials. All participants stated that they did not 

consume any alcoholic drinks between the two sessions of the experiment. Importantly, all 

participants reported sleeping for at least 6 hr in the night before the experiment. Despite the 

request not to sleep during the day, two participants in the wake condition took a nap.5 For the night 

between learning and testing sessions, participants in the sleep condition reported a mean sleep 

duration of 7.54 hr (SD = 0.61). This corresponds to the sleep duration assessed by fitness trackers 

(sleep duration: M = 7.84 hr, SD = 0.67; time awake: M = 0.01 hr, SD = 0.02; deep sleep: M = 2.04 hr, 

SD = 1.15; light sleep: M = 5.79 hr, SD = 1.29). In addition, participants in the sleep condition 

reported medium sleep quality on a scale ranging from 1 (very bad) to 5 (very good; M = 3.17, SD = 

0.39). 

Memory Performance Analysis 

To check whether the encoding-strength manipulation was successful, we conducted a mixed 

ANOVA on cued recall immediately following learning, with medium- versus strong-encoding 

 
5 One participant napped for 28 min, the other for 1 hr. Note that similar results emerged for memory 
performance and model-based analyses when excluding the two participants from the wake condition (see 
Tables S6 to S9 in the supplemental materials). 
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strength as within-subject factor and wake versus sleep as between-subjects factor. Sample means 

and standard errors for the wake and sleep groups and the two encoding-strength conditions are 

shown in Table 2. As expected, the main effect of encoding strength was clearly statistically 

significant, F(1, 25) = 111.33, MSE = 17.01, p < .001, ηp
2 = .82, with better immediate cued recall 

performance for strong compared to medium encoding. Also as expected, neither the main effect of 

wake versus sleep, F(1, 25) = 0.00, MSE = 47.56, p = .993, ηp
2 < .001, nor the interaction of encoding 

strength and wake versus sleep, F(1, 25) = 0.27, MSE = 17.01, p = .610, ηp
2 = .01, were statistically 

significant. Most importantly, the mean immediate recall rate of 56.58% and 86.38% for word pairs 

presented once versus three-times, respectively, confirmed the effectiveness of our encoding 

strength manipulation (see Table 1). Together these results indicate that medium- versus strong 

encoding was manipulated successfully. 

To test whether the sleep benefit is larger in the medium- compared to the strong-encoding 

condition as predicted for the upper limb of the inverted U-shaped function, we again used mixed 

ANOVAs, this time focusing on delayed cued recall, cued recall forgetting (i.e., the difference initial - 

delayed cued recall performance), and free recall scores as dependent variables. For delayed cued 

and free recall, we found a statistically significant main effect of encoding strength, delayed cued 

recall: F(1, 25) = 157.28, MSE = 12.24, p < .001, ηp
2 = .86; free recall: F(1, 25) = 60.48, MSE = 13.07, p 

< .001, ηp
2 = .71. In both recall tasks, memory performance was better for strong- compared to 

medium encoding (see Table 2). We observed no statistically significant main effect of wake versus 

sleep, delayed cued recall: F(1, 25) = 0.69, MSE = 65.08, p = .414, ηp
2 = .03; free recall: F(1, 25) = 0.57, 

MSE = 36.82, p = .459, ηp
2 = .02. The interaction of encoding strength and wake versus sleep was also 

not statistically significant, delayed cued recall: F(1, 25) = 0.73, MSE = 12.24, p = .402, ηp
2 = .03; free 

recall: F(1, 25) = 1.09, MSE = 13.07, p = .307, ηp
2 = .04. Although the sleep benefit in free recall 

appears to be descriptively larger for medium compared to strong encoding, this interaction effect 

was not statistically significant. 
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For cued recall forgetting, no statistically significant main effect of encoding strength emerged, 

F(1, 25) = 0.05, MSE = 2.89, p = .832, ηp
2 = .002. However, the main effect of wake versus sleep was 

statistically significant, F(1, 25) = 8.11, MSE = 5.63, p = .009, ηp
2 = .25, showing less forgetting in the 

sleep than in the wake condition (see Table 2). By contrast, the interaction of encoding strength and 

wake versus sleep was not statistically significant, F(1, 25) = 0.25, MSE = 2.89, p = .621, ηp
2 = .01. In 

the overall memory performance measures, we thus found no significant evidence for a larger sleep 

benefit in medium compared to strong encoding, neither in delayed cued recall, nor in cued recall 

forgetting or in free recall. 

Due to the application of the strict exclusion criteria recommended for the EMR model, 40 

participants unfortunately had to be excluded. To assess the possible impact of this exclusion on the 

memory performance data, we performed all ANOVAs for the memory performance analysis again, 

this time including the 40 previously excluded participants (i.e., new sample size: nsleep = 35, nwake = 

32). Importantly, similar results emerged when using the larger sample size of N = 67 (for details, see 

the supplemental materials). 

Model-Based Analysis 

As outlined in The Current Experiments section, we first fitted the independence variant of the 

EMR model which, however, produced misfit, G2(20) = 40.34, p = .005. In a second step, we 

therefore relaxed the independence assumption for parameter u (u = us = uu). The resulting 7-

parameter EMR model version fitted the aggregated data well, G2(16) = 21.31, p = .167. Table 3 

summarizes the ML parameter estimates and standard errors of the 7-parameter EMR model for the 

four experimental conditions. 

First, we checked whether the encoding-strength manipulation was successful. As expected, the 

estimated probability of successfully encoding word-pair associations (e) was approximately 30% 

larger in strong-encoding than medium-encoding conditions, indicating a statistically significant main 

effect of encoding strength, ΔG2(1) = 435.35, p < .001. There were neither statistically significant 

encoding differences between wake and sleep conditions, ΔG2(1) = 0.02, p = .885, nor a statistically 
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significant interaction of encoding strength and wake versus sleep, ΔG2(1) = 0.46, p = .499.6 Thus, in 

line with the memory performance analysis, these results show that encoding strength was 

successfully manipulated. 

Second, we tested the hypothesis whether the sleep benefit in episodic memory storage is larger 

for medium-encoded memories compared to strong-encoded memories. For storage parameter m, 

we found a statistically significant main effect of encoding strength, ΔG2(1) = 4.12, p = .042, 

indicating an approximately 3% larger maintenance estimate for strong- than medium-encoding 

conditions. The main effect of wake versus sleep was also statistically significant, ΔG2(1) = 43.03, p < 

.001, showing an increase of about 7% in the estimated probability to successfully maintain encoded 

associations across the retention interval in the sleep relative to the wake condition. By contrast, we 

found no statistically significant interaction of encoding strength and wake versus sleep, ΔG2(1) = 

0.58, p = .445 (for the test method, see Footnote 3). Although this result pattern is descriptively in 

line with the consolidation account, the alternative hypothesis that sleep improves storage for all 

memories equally, irrespective of their strength, cannot be ruled out. 

Third, because protection from retroactive interference might also contribute to encoding-

strength effects on the sleep benefit, we investigated whether encoding strength and sleep versus 

wakefulness affect the probability of successfully retrieving stored associations in free recall (rf). As 

such, free recall tasks are best suited to capture retrieval processes because they rely more on 

memory retrieval than cued recall or recognition tasks (cf. Dyne et al., 1990; McKinney, 1935; 

Postman, 1952). A statistically significant main effect of encoding strength was observed, with about 

10% larger estimated retrieval probabilities for strong compared to medium encoding, ΔG2(1) = 

19.95, p < .001. Moreover, we found a statistically significant main effect of wake versus sleep, 

ΔG2(1) = 224.42, p < .001, and a statistically significant interaction of encoding strength and wake 

versus sleep, ΔG2(1) = 5.52, p = .019. Specifically, whereas retrieval estimates were 9% larger after 

 
6 Interaction tests for MPT models were performed using the method outlined by Kuhlmann et al. (2019). 
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sleep compared to wakefulness for medium encoding, no sleep benefit emerged for strong encoding 

because of better retrieval in the wake condition. 

As expected, there were no significant differences in cued recall retrieval (rc), ΔG2(3) = 1.19, p = 

.756, with participants retrieving stored associations with a probability of about .98 irrespective of 

condition. Our findings thus replicate analogous results of Erdfelder et al. (2022), showing that cued 

recall retrieval is indeed often successful so that rc-parameters are close to 1. 

We also conducted the model-based analysis with Klauer’s (2010) latent-trait approach as 

implemented in TreeBUGS (Heck et al., 2018) to check the robustness of our results. As is apparent 

in Table B1 of the Appendix, the estimated group-level means closely resemble those reported in 

Table 3, indicating that the result pattern is robust against complete versus partial pooling 

approaches. 

Discussion 

Overall, the results of the memory performance analysis did not support the prediction of a 

larger sleep benefit for medium compared to stronger encoded memories. Specifically, there was no 

significant interaction effect of encoding strength and sleep versus wakefulness, neither in delayed 

cued recall, nor in cued recall forgetting or free recall. However, free recall performance showed a 

descriptive result pattern in the predicted direction. Notably, the lack of a significant interaction in 

cued recall forgetting replicates Denis et al.’s (2020) findings in 12-hr conditions for successfully 

visualized items.7 While these authors found less forgetting after sleep than after wakefulness, this 

sleep benefit did not interact with presentation frequency (i.e., 2- vs. 4-times-presentation 

condition). In line with this, our results for pre-post differences in cued recall also showed an almost 

equally strong sleep benefit for medium and strong encoding. 

In contrast to cued recall tasks, we found a descriptive but not statistically significant larger sleep 

benefit for medium compared to strong encoding in free recall. Because free recall tasks depend 

 
7 As already outline above, Denis et al. (2020) asked participants to visualize the stimuli which were presented 
for 1.50 s only. Because successfully visualized compared to not visualized stimuli possess higher memory 
strength at encoding, the former are more suited for a comparison with our results than the latter. 
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more on memory retrieval as memory cues are lacking, potential effects of encoding strength on 

sleep-induced protection from retroactive interference likely affect free recall more than cued recall. 

This might explain why the descriptive trend of a larger sleep benefit for medium compared to 

strong encoding is limited to free recall. 

For a more thorough test of the consolidation account predictions concerning the upper limb of 

the inverted U-shaped function and for a closer look at the processes underlying encoding-strength 

effects on the sleep benefit, we now turn to the model-based results. First, we found no significant 

interaction of encoding strength and wake versus sleep for memory storage. Because we based the 

minimum target sample size on previous studies, it might be that an interaction effect is present 

nevertheless, but smaller than results of prior research suggest—particularly because these studies 

did not use MPT modeling to disentangle storage and retrieval contributions. Of course, the 

insignificant interaction is also in line with the alternative view that memory consolidation during 

sleep benefits all memories equally irrespective of their memory strength. This hypothesis was 

suggested by Petzka et al. (2021) who examined the sleep benefit for medium versus strong 

encoded memories in a relatively easy standard-test condition and in a difficult-test condition. The 

authors found a sleep benefit for medium but not for strong encoded memories in the standard-test 

condition, whereas all memories benefitted from sleep in the difficult-test condition. However, in 

contrast to Petzka et al.’s (2021) study, the mean success rate in immediate cued recall for strong 

encoding is comparably low in our current experiment (i.e., approximately 93% vs. 86%; see Table 1). 

Consequently, it is unlikely that a ceiling effect occurred in the current experiment. To summarize, if 

memory consolidation during sleep indeed preferably improves memory storage for medium- 

compared to strong-encoded memories, this effect appears to be quite small and in general hard to 

detect. 

Second, in addition to evaluating the consolidation account, we also explored whether sleep 

benefits in memory retrieval are affected by encoding strength. We found that sleep compared to 

wakefulness improves not only episodic memory storage but also episodic memory retrieval. This is 
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in line with recent findings suggesting that storage and retrieval might jointly contribute to the sleep 

benefit (Berres & Erdfelder, 2021; Erdfelder et al., 2022). More importantly, we found that the sleep 

benefit in episodic memory retrieval diminishes with increasing encoding strength as might be 

expected based on previous research on retroactive interference (cf. Howe, 1970; McGeoch, 1929). 

Apparently, encoding strength affects sleep benefits in episodic memory retrieval more than in 

episodic memory storage. As such, this finding has important implications for the interpretation of 

sleep benefits observed in memory performance analyses. Typically, the results of these analyses 

have been interpreted in terms of the consolidation explanation, thereby neglecting possible effects 

of sleep on memory retrieval altogether. 

In sum, by manipulating encoding strength, we found mixed evidence for memory storage 

predictions of the consolidation account and demonstrated for the first time that sleep benefits in 

retrieval from episodic memory are affected by encoding strength. However, as sketched above, 

tagging of memories for preferred memory consolidation during sleep can take place not only during 

but also shortly after encoding (e.g., Barco et al., 2008; Frey & Morris, 1998; Morris, 2006; Redondo 

& Morris, 2011). We therefore manipulated test expectation after learning in a second experiment 

to further evaluate the consolidation explanation. Moreover, because Experiment 1 appears to be 

the first demonstration that the sleep benefit in episodic memory retrieval may vanish if encoding 

strength is high, we also checked in Experiment 2 whether this finding can be conceptually replicated 

by applying a 60%-learning criterion in immediate cued recall. 

Experiment 2 

According to the assumption that relevant information is tagged for preferred memory 

consolidation not only during but also shortly after encoding (e.g., Barco et al., 2008; Frey & Morris, 

1998; Morris, 2006; Redondo & Morris, 2011), the sleep benefit in episodic memory storage should 

be larger in expected than in unexpected delayed memory tests. Specifically, in Wilhelm et al.’s 

(2011) first experiment, a sleep benefit in cued recall performance occurred only when participants 

expected a delayed memory test, but not when the delayed test was unexpected. In their study, the 
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authors asked young adults to learn 40 semantically related word pairs. Each word pair was 

presented for 5 s. Following word-pair presentation, participants repeated a cued recall task until 

they mastered at least 60% of the pairs. In this immediate cued recall task, each response was 

followed by the presentation of the correct target word for 2 s. Test expectation was manipulated 

between participants following word-pair encoding at the end of the learning session. Thus, the test-

expectation manipulation could not affect encoding strength. The authors manipulated test 

expectation by correctly informing one group of participants that memory for the word pairs learned 

previously will be tested after the retention interval (expectation condition). In contrast, participants 

in the no-expectation condition were misleadingly informed that they will perform a different task in 

the testing session. The learning session was followed by a 9-hr retention interval for which sleep 

versus wakefulness was manipulated between participants. Finally, in the testing session, 

participants performed a delayed cued recall task and indicated whether they expected a delayed 

memory test. Wilhelm et al. (2011) showed that sleep compared to wakefulness improves delayed 

cued recall performance when the memory test is expected but not when it is unexpected. The 

authors explained their findings with enhanced memory consolidation during sleep for memories 

that were tagged to be of future relevance. To test this interpretation, we investigated whether the 

sleep benefit in episodic memory storage is larger when the delayed memory test is expected rather 

than unexpected. 

A further purpose of Experiment 2 was to examine whether the sleep benefit decrease in the 

strong-encoding condition of Experiment 1 can be replicated when applying a 60%-learning criterion. 

As such, a criterion of 60% has often been used to ensure sufficient learning and memory strength in 

sleep and memory research (e.g., Backhaus & Junghanns, 2006; Feld et al., 2013; Fenn & Hambrick, 

2012, 2013; Gais & Born, 2004; Marshall et al., 2004; Plihal & Born, 1997; Wilhelm et al., 2011). 

Hence, to mimic the strong-encoding condition in Experiment 1 and to follow Wilhelm et al. (2011), 

we implemented a 60%-cutoff for the immediate cued recall task. 
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In sum, in Experiment 2 we investigated (a) whether the sleep benefit in episodic memory 

storage is affected by test expectation and (b) whether the findings in the strong-encoding condition 

of Experiment 1 can be conceptually replicated. Following Wilhelm et al. (2011), we expected a 

larger sleep benefit in memory storage when the upcoming memory test is expected than when it is 

not expected. 

Method 

We used a 2 × 2 factorial design with test expectation (no expectation vs. expectation) and wake 

versus sleep as between-subjects factors. 

Participants 

Following the sensitivity analyses performed for the EMR model-based analysis in Experiment 1, 

we strove for a sample of at least 12 participants per experimental condition, that is, 48 participants 

in total. Using this minimum target sample size of N = 48 participants, an a priori sensitivity analysis 

with a conventional α-level of .05 for the ANOVA-based memory performance analysis confirmed 

that ANOVA F(1, 44) tests can detect large effects (i.e., f = .40) with a power of 1 - β = .80 (Faul et al., 

2007). Hence, the minimum target sample size would be sufficient to find test-expectation effects of 

the size reported by Wilhelm et al. (2011; i.e. d = 0.86 or, equivalently, f = .43) for the sleep benefit 

in episodic memory. 

The laboratory experiment took place at the University of Mannheim in spring 2018. As in 

Experiment 1, we recruited as many participants as possible before the semester break via 

advertisements on campus and social media. Participants received course credit or money for their 

participation (i.e., a flat rate of 14.00 €). From 91 participants, we excluded seven participants 

because they actively rehearsed word pairs during the retention interval. In addition, we excluded 

four participants with more than 95% correct responses in immediate cued recall by following the 

recommended exclusion criteria for the EMR model (cf. Erdfelder et al., 2022; see Appendix A for a 

detailed explanation). Moreover, nine participants of the no-expectation condition had to be 

excluded because they reported that they expected a delayed memory test. Finally, we excluded one 
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participant of the expectation condition who reported that the delayed memory test was 

unexpected. Thus, 70 participants remained for data analysis. Participants were between 18 and 54 

years of age (M = 22.06 years, SD = 4.81), 51 (72.86%) were female.8 They were all native or fluent 

speakers of German and, except for four persons, university students. 

Procedure 

The procedure followed that of Experiment 1 and used the same study builders (i.e., SoSci Survey, 

OpenSesame) with some exceptions: First, after random assignment to one of four experimental 

groups, participants in the wake condition could choose between 8:00 a.m. and 8:30 a.m., whereas 

participants in the sleep condition could choose between 8:00 p.m. and 8:30 p.m. for the starting 

time of the first session. Second, participants learned 40 weakly related word pairs, presented in 

random order for 5 s each with an interstimulus interval of 100 ms, following the same learning 

instruction as in Experiment 1. Third, the sequence of stimulus presentation, distractor task, and 

immediate cued recall task was repeated until participants mastered at least 60% of the word pairs 

in immediate cued recall. Fourth, test expectation was manipulated between participants at the end 

of the learning session. Specifically, we informed participants that the experiment aims at assessing 

motor and verbal learning in the morning and evening. In no-expectation conditions, participants 

were told that we randomly assigned them to two groups: Group A, which completes the motor-

learning session in the morning and the verbal-learning session in the evening, and Group B for 

which the timing of motor- and verbal-learning sessions was reversed. We informed participants in 

the no-expectation-wake condition that they were assigned to Group B and participants in the no-

expectation-sleep condition that they were assigned to Group A. Both groups were notified that the 

next session consists of a motor learning task. In test-expectation conditions, participants were told 

that they will perform the same cued recall task in addition to a motor learning task in the next 

session. Finally, we asked only participants in expectation conditions not to actively rehearse the 

 
8 Note that only one participant was more than 35 years old. However, comparable results emerged for 
memory performance and model-based analyses when including only participants between 18 and 35 years of 
age (see Tables S13 to S16 in the supplemental materials). 
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learned word pairs during the retention interval as they expected a memory test after the retention 

interval. In the second session, all participants performed a free and a cued recall task as in 

Experiment 1, followed by a mock motor task. 

Material 

Using the procedure of Experiment 1, 40 new weakly associated word pairs were created. 

Specifically, we picked 40 of the 80 categories used in Experiment 1 and selected a new untypical 

word as cue and a new typical word as target for each category. All words were concrete German 

nouns taken from three category-production norms (Eckes, 1985/1994; Flammer et al., 1985; 

Mannhaupt, 1983). All word pairs including production indices are available on the OSF 

(https://osf.io/xe8rt/?view_only=820b76736cec4762a6ba87d360b8d95d). 

Results 

Again, we used α = .05 for all analyses. The sample characteristics are presented in Table S12 in 

the supplemental materials. All participants except one stated that they did not consume any 

alcoholic drinks between the two sessions of the experiment. Because the consumed amount of ca. 

2.4% (vol/vol) alcohol in 0.33 L was not substantial, we included the person in the analysis. 

Moreover, except for nine participants (nno expectation, wake = 2, nno expectation, sleep = 3, nexpectation, wake = 3, 

nexpectation, sleep = 1), all participants reported sleeping for at least 6 hr in the night before the 

experiment. Despite the request not to sleep during the day, two participants in the no-expectation-

wake condition took a nap.9 There were no statistically significant differences between no-

expectation-sleep and expectation-sleep conditions in (a) self-reported sleep duration, t(33) = 0.22, 

p = .829; (b) sleep duration assessed by fitness trackers, t(32) = 0.19, p = .847; (c) time awake 

assessed by fitness trackers, t(32) = 0.74, p = .465; (d) deep sleep assessed by fitness trackers, t(32) = 

0.55, p = .588; (e) light sleep assessed by fitness trackers, t(32) = 0.40, p = .691; and (f) self-reported 

 
9 One participant napped for 30 min, the other for 1 hr. Note that comparable results emerged for memory 
performance and model-based analyses when excluding the two participants from the no-expectation-wake 
condition (see Tables S17 to S20 in the supplemental materials). 
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sleep quality, t(32) = 0.37, p = .715.10 Specifically, the self-reported mean sleep duration for the night 

between learning and testing sessions was 7.42 hr (SD = 0.81) for participants in the no-expectation-

sleep condition and 7.48 hr (SD = 0.65) for participants in the expectation-sleep condition. This 

corresponds to the mean sleep duration assessed by fitness trackers which was 7.82 hr (SD = 0.94; 

time awake: M = 0.01 hr, SD = 0.02; deep sleep: M = 1.94 hr, SD = 1.15; light sleep: M = 5.88 hr, SD = 

1.15) in the no-expectation-sleep condition and 7.88 hr (SD = 0.74; time awake: M = 0.04 hr, SD = 

0.14; deep sleep: M = 2.14 hr, SD = 0.95; light sleep: M = 5.74 hr, SD = 0.92) in the expectation-sleep 

condition. Participants in both sleep conditions reported medium sleep quality on a scale ranging 

from 1 (very bad) to 5 (very good; no expectation: M = 3.42, SD = 1.00; expectation: M = 3.55, SD = 

0.96). To reach the learning criterion of 60%, participants repeated the sequence of stimulus 

presentation, distractor task, and immediate cued recall task on average 0.69 times (SD = 0.88). We 

observed no statistically significant differences in the number of repetitions between the four 

conditions, F(3, 66) = 1.15, MSE = 0.76, p = .334 (no expectation, wake: M = 0.59, SD = 0.80; no 

expectation, sleep: M = 0.46, SD = 0.66; expectation, wake: M = 1.00, SD = 0.77; expectation, sleep: 

M = 0.64, SD = 1.09). Furthermore, in their final immediate cued recall task, participants 

remembered on average 78% of the 40 words (M = 31.27 words, SD = 4.02), which is relatively close 

to the learning performance of 86% in the strong-encoding condition of Experiment 1 (strong 

encoding: M = 34.52 words, SD = 3.99; medium encoding: M = 22.67 words, SD = 6.80; see also Table 

1). 

Memory Performance Analysis 

Because we manipulated test expectation at the end of the learning session following the 

immediate cued recall task, we did not expect immediate cued recall to differ between the four 

experimental conditions. As expected, a mixed ANOVA on immediate cued recall performance with 

test expectation and wake versus sleep as between-subjects factors revealed no statistically 

 
10 Note that in the expectation-sleep condition, sleep quality was not captured for one participant and the 
fitness tracker did not record any data for another participant. 
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significant differences, main effect of test expectation: F(1, 66) = 2.34, MSE = 16.23, p = .131, ηp
2 = 

.03; main effect of wake versus sleep: F(1, 66) = 0.13, MSE = 16.23, p = .721, ηp
2 = .002; interaction of 

test expectation and wake versus sleep: F(1, 66) = 0.30, MSE = 16.23, p = .585, ηp
2 = .01 (for the 

number of correctly recalled word pairs, see Table 4). 

To test whether the sleep benefit is larger for expectation than no-expectation conditions as 

observed by Wilhelm et al. (2011), we used two-way ANOVAs on delayed cued recall, cued recall 

forgetting (i.e., the difference initial - delayed cued recall performance), and free recall as dependent 

variables with test expectation and wake versus sleep as between-subjects factors. The results 

showed no statistically significant main effect of test expectation for delayed cued recall, F(1, 66) = 

1.40, MSE = 30.70, p = .241, ηp
2 = .02, cued recall forgetting, F(1, 66) = 0.02, MSE = 6.55, p = .877, ηp

2 

< .001, and free recall, F(1, 66) = 0.16, MSE = 23.58, p = .695, ηp
2 = .002. In addition, we found a 

statistically significant main effect of wake versus sleep for delayed cued recall, F(1, 66) = 5.41, MSE 

= 30.70, p = .023, ηp
2 = .08, and cued recall forgetting, F(1, 66) = 31.32, MSE = 6.55, p < .001, ηp

2 = 

.32. Specifically, we observed better delayed cued recall performance and less forgetting after sleep 

than after wakefulness in both expectation and no-expectation conditions (see Table 4). 

Descriptively, free recall results also indicated a sleep benefit which was, however, not statistically 

significant, F(1, 66) = 1.99, MSE = 23.58, p = .163, ηp
2 = .03. The interaction of test expectation and 

retention interval was not statistically significant either; neither in delayed cued recall, F(1, 66) = 

0.37, MSE = 30.70, p = .547, ηp
2 = .01, nor in cued recall forgetting, F(1, 66) = 0.20, MSE = 6.55, p = 

.656, ηp
2 = .003, nor in free recall, F(1, 66) = 0.06, MSE = 23.58, p = .805, ηp

2 < .001. Taken together, 

our results suggest sleep benefits for delayed cued recall, cued recall forgetting, and—to a lesser 

extent—free recall that are not affected by test expectation. These results are at odds with the 

results observed by Wilhelm et al. (2011). 

Because we excluded four participants based on the application of the exclusion criteria 

recommended for the EMR model, we assessed the possible impact of these exclusions by 

performing all ANOVAs for the memory performance analysis again, this time including the 
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previously excluded participants (i.e., new sample size: nno expectation/wake = 18, nno expectation/sleep = 14, 

nexpectation/wake = 19, nexpectation/sleep = 23). Very similar results emerged when using the larger sample 

size of N = 74, supporting the robustness of our findings (for details, see the supplemental 

materials). 

Model-Based Analysis 

As in Experiment 1, we first fitted the independence model, G2(20) = 47.29, p = .001, followed by 

the 7-parameter EMR model with the relaxed independence assumption for parameter u (u = us = 

uu), G2(16) = 34.85, p = .004. Because both model versions produced misfit, we relaxed the 

independence assumption for parameter s (s = ss = su) instead of parameter u, which also yielded 

misfit, G2(16) = 34.00, p = .005. Finally, we relaxed the independence assumption for both parameter 

s (s = ss = su) and parameter u (u = us = uu). This 8-parameter model produced a slight misfit for the 

aggregated data, G2(12) = 21.50, p = .044, that we consider still acceptable. The ML parameter 

estimates and standard errors are displayed in Table 5. 

First, we checked whether the probability of successfully encoding word-pair associations (e) 

differed between the four experimental conditions. As expected, we observed no statistically 

significant differences in the encoding parameter e, ΔG2(3) = 5.30, p = .151. More importantly, 

participants encoded word pairs with a probability of about .79 irrespective of condition, which is 

relatively close to the encoding probability of .89 in the strong encoding condition of Experiment 1. 

Overall, the results show that, as expected, word-pair encoding success is unaffected by the test 

expectation manipulation that occurred after the immediate cued recall task. 

Second, we tested the prediction of a larger sleep benefit in episodic memory storage for 

expectation than no-expectation conditions. For maintenance parameter m, we observed no 

statistically significant main effect of test expectation, ΔG2(1) = 2.35, p = .125. However, the main 

effect of wake versus sleep was statistically significant, ΔG2(1) = 58.36, p < .001, showing an 

approximately 10% larger probability estimate for the sleep than wake condition to successfully 

maintain encoded associations across the retention interval. By contrast, the interaction of test 
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expectation and wake versus sleep was not statistically significant, ΔG2(1) = 0.90, p = .343. Taken 

together, these findings are clearly at odds with Wilhelm et al.’s (2011) prediction of a larger sleep 

benefit in episodic memory storage for test expectation. 

Third, we tested whether the results in the strong-encoding condition for free-recall-retrieval 

parameter rf of Experiment 1 can be replicated when applying a 60%-learning criterion. Consistent 

with the results obtained in Experiment 1, we found no statistically significant differences for the 

probability of successfully retrieving stored associations in free recall across the four experimental 

conditions, ΔG2(3) = 2.89, p = .409. Overall, the results thus support the hypothesis that the sleep 

benefit in episodic memory retrieval is reduced or might even vanish for higher levels of memory 

strength. 

Fourth, we investigated whether cued recall retrieval (rc) differs between the experimental 

conditions and found no significant differences, ΔG2(3) = 2.78, p = .428. In addition, participants 

retrieved stored associations with a probability of about .99 which corresponds to Experiment 1 and 

previous findings (see Erdfelder et al., 2022). 

Finally, we checked the robustness of our results by performing the model-based analysis with 

Klauer’s (2010) latent-trait approach implemented in TreeBUGS (Heck et al., 2018). Again, the 

estimated group-level means presented in Table B2 resemble those reported in Table 5, indicating 

that the result pattern is robust against complete versus partial pooling approaches to data analysis. 

Discussion 

One purpose of the current experiment was to investigate whether test expectation affects the 

sleep benefit in episodic memory storage. Wilhelm et al. (2011) showed that sleep compared to 

wakefulness improves memory retention performance (i.e., percentage of correctly recalled word 

pairs in the delayed cued recall test with the final-trial performance of the initial cued recall test set 

to 100%) in expectation, but not in no-expectation conditions. The authors proposed that relevant 

information is tagged for preferred memory consolidation during sleep, resulting in larger sleep 

benefits for memories that are expected to be tested in the future. We therefore predicted larger 
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sleep-induced benefits for episodic memory storage in expectation than no-expectation conditions. 

Contrary to this prediction, our memory performance analyses suggest comparable sleep benefits in 

both expectation and no-expectation conditions for delayed cued recall, cued recall forgetting, and 

free recall. Thus, the sleep benefit in episodic memory appears not to be affected by test 

expectation. Although we based our minimum target sample size on the effect size of interest 

reported in Wilhelm et al. (2011; i.e., d = 0.86; f = .43), it may be that test-expectation effects on the 

sleep benefit are actually smaller than expected. Therefore, it could be that we were not able to 

detect the effect with a sample of 70 participants. To check this possibility, we conducted a post hoc 

sensitivity analysis with N = 70 participants and a conventional α-level of .05 for the ANOVA-based 

memory performance analysis. This sensitivity analysis confirmed that ANOVA F(1, 66) tests can 

detect medium to large effects (i.e., f = .34) with a power of 1 - β = .80 (Faul et al., 2007). Thus, even 

if the true effect is smaller than the results of Wilhelm et al. (2011) suggest, we should have been 

able to find test-expectation effects on the sleep benefit. Crucially, our results are in line with a 

recent study by Ashton and Cairney (2021) who also failed to replicate Wilhelm et al.’s (2011) finding 

even though larger sample sizes than in the current experiment were used (i.e., NExperiment 1 = 162, 

NExperiment 2 = 124). Specifically, Ashton and Cairney’s (2021) study was conducted in an online setting 

using a 60% learning criterion for 40 (Experiment 1) and a 40% learning criterion for 100 

semantically-related word pairs (Experiment 2). In both experiments, the authors observed better 

memory retention performance after sleep than wakefulness. However, neither a significant effect 

of test expectation, nor a significant interaction of test expectation and wake versus sleep emerged 

(Ashton & Cairney, 2021).11 These results make it even less likely that our findings are simply the 

outcome of an underpowered experiment. In addition, Reverberi et al. (2020) casted further doubt 

 
11 Note that in Wilhelm et al.’s (2011) first experiment and in the two experiments by Ashton and Cairney 
(2021) the correct target word or word pair was presented after each response in the immediate cued recall 
task. Consequently, the observed differences between the experimental conditions in the delayed memory 
test could therefore also reflect additional learning following the final immediate cued recall trial. Because we 
offered no additional learning opportunity after completing the final trial, our memory performance 
measurement is not contaminated with additional learning influences. 
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on preferred memory consolidation of memories that are expected to be tested in the future. 

Specifically, the authors used two randomly mixed sets of picture-location associations (i.e., 80 

building-location and 80 furniture-location associations) which were learned in three consecutive 

cycles of encoding and cued recall, resulting in an average of 71% correctly remembered 

associations. Prior to the 14.5-hr retention interval which included natural nighttime sleep, 

participants were informed that they would be tested and rewarded only for one of the two learned 

sets. Neither pre-post differences in cued recall nor functional magnetic resonance imaging (fMRI) 

data collected during cued recall after the retention interval showed significant effects of test 

expectation (Reverberi et al., 2020). Hence, our results are in line with recent findings suggesting 

that test expectation does not affect the sleep benefit in episodic memory, thereby challenging 

Wilhelm et al.’s (2011) results. 

We also examined whether the results in the strong-encoding condition of Experiment 1 replicate 

when applying a 60%-learning criterion. In fact, for the maintenance parameter m our findings of a 

statistically significant sleep benefit matched those of Experiment 1. Most importantly, the results 

showed no significant sleep benefit in the free-recall-retrieval parameter for expectation and no-

expectation conditions. Thus, we succeeded in replicating the reduced or rather even absent sleep 

benefit in episodic memory retrieval for strong memories found in Experiment 1. 

General Discussion 

Although it is a well-established finding that sleep compared to wakefulness fosters episodic 

memory, many open questions remain. One of these questions is whether and why salience or 

relevance of information affects how much episodic memories profit from sleep. Here, we tackled 

this question by investigating two salience cues—encoding strength and test expectation—that have 

been argued to tag information for preferred memory consolidation during or shortly after 

encoding. Using MPT modeling to take a more fine-graded look at the cognitive processes underlying 

the sleep benefit by disentangling storage and retrieval contributions to memory performance, we 

conducted two experiments: 
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In Experiment 1 we investigated tagging effects within the encoding phase by presenting half of 

the stimuli once versus three times. It is important to note that we manipulated encoding strength in 

the upper limb of Stickgold’s (2009) inverted U-shaped function. For this range of encoding 

strengths, the consolidation account predicts that memory consolidation during sleep fosters 

medium-strength memories specifically. This prediction was supported by EEG (e.g., C. Schmidt et 

al., 2006) and TMR studies (e.g., Cairney et al., 2016; Creery et al., 2015). This notwithstanding, our 

behavioral results of Experiment 1 for memory storage were mixed. It rather appears that memory 

consolidation during sleep improves storage for all memories equally, irrespective of their encoding 

strength. 

In Experiment 2, we examined tagging after encoding by manipulating whether a later memory 

test is announced after learning is completed. According to Wilhelm et al. (2011), a larger sleep 

benefit in storage should emerge when a later test was expected than when it was not. Contrary to 

this hypothesis but in line with other recent studies (Ashton & Cairney, 2021; Reverberi et al., 2020), 

we found no empirical evidence of a larger sleep benefit in episodic memory storage for stimuli 

expected to be tested in the future. Hence, together with the results of recent studies, our findings 

suggest that tagging relevant memories after encoding for preferred memory consolidation during 

sleep does not necessarily result in a larger sleep benefit—at least not for the salience cue “test 

expectation”. In sum, behavioral results for salience-cue effects on episodic memory storage are 

mixed. One possible reason for the mixed findings is high variability in study design features (e.g., 

sleep study designs, salience cues) in this line of research. This makes it difficult to compare results 

across studies. Another reason is that effects of salience cues on the sleep benefit in episodic 

memory storage appear to be far smaller than previous studies suggest, which makes it hard to 

detect them. Most importantly, however, a better understanding of the tagging-mechanism and 

how it affects memory consolidation during sleep is needed to derive more concise hypotheses to 

evaluate the consolidation account. 



EFFECTS OF ENCODING STRENGTH AND TEST EXPECTATION ON THE SLEEP BENEFIT 33 

Recent findings suggest that storage and retrieval might jointly contribute to the sleep benefit 

(Berres & Erdfelder, 2021; Erdfelder et al., 2022). In addition, previous research showed that 

retroactive interference decreases with higher study efforts (Howe, 1970; McGeoch, 1929). Taken 

together, these findings suggest an additional effect of encoding strength on sleep benefits in 

episodic memory retrieval. In line with this assumption, we observed a sleep benefit in episodic 

memory retrieval for medium- but not for strong-encoding conditions. The result in episodic 

memory retrieval for the strong-encoding condition of Experiment 1 was conceptually replicated in 

Experiment 2 by implementing a 60%-learning criterion.  

However, why did a sleep benefit in episodic memory retrieval occur for medium encoding that 

was absent for strong encoding? As sketched above, previous studies showed that retroactive 

interference decreases with higher study efforts (Howe, 1970; McGeoch, 1929). Accordingly, with 

increasing memory strength, more items are successfully retrieved in both the sleep and the wake 

condition, leaving little room for further improvement of memory retrieval due to retroactive 

interference reduction during sleep. By implication, the sleep benefit in episodic memory retrieval 

should be reduced or might even vanish for high levels of memory strength. Overall, it thus appears 

that encoding strength affects sleep benefits in episodic memory retrieval more than sleep benefits 

in episodic memory storage. 

Our objective in conducting this study was to advance our understanding of the cognitive 

processes underlying information salience effects on the sleep benefit in episodic memory. In fact, 

our findings have important implications for the interpretation and thus our understanding of sleep 

benefits. As sketched before, sleep benefits have typically been interpreted in terms of consolidation 

effects, neglecting interference reduction as an alternative source of sleep benefits (for a 

comprehensive review, see Berres & Erdfelder, 2021). Here we examined, for the first time, whether 

the salience cue “encoding strength” also affects the sleep benefit in episodic memory retrieval. By 

using the EMR model, we added further empirical evidence to the notion that two processes 

contribute to the sleep benefit, namely, memory consolidation and sleep-induced reduction of 
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retroactive interference (cf. Berres & Erdfelder, 2021; Erdfelder et al., 2022). More importantly in 

the present context, we additionally showed that sleep benefits in episodic memory retrieval – but 

not those involved in episodic memory storage – are moderated by encoding strength. Apparently, 

memories of medium compared to high strength benefit more from the sleep-induced retrieval 

benefit. 

Possible Limitations 

As we compared natural nighttime sleep versus daytime wakefulness using a 12-hr retention 

interval in both experiments, the time of learning and testing differed between wake- and sleep 

conditions. Circadian effects could thus act as a possible confounding variable. Although we cannot 

rule out confounding effects completely, circadian effects are rather unlikely to occur in standard 

sleep study designs as used in our experiments. Past research that used additional morning and 

evening control conditions with short retention intervals (e.g., 20 min) has repeatedly shown 

comparable learning and test performance in either condition (e.g., Abel & Bäuml, 2012, 2013a, 

2013b, 2014; Bäuml et al., 2014; Erdfelder et al., 2022; Fenn & Hambrick, 2013). 

Moreover, the EMR model is based on an extended version of the free-then-cued-recall paradigm 

by Rouder and Batchelder (1998) where an immediate cued recall test right after learning is followed 

by a later free and cued recall test after the retention interval. Hence, immediate cued recall 

performance might in principle affect later free recall and delayed cued recall. According to the 

bifurcation model, retrieval per se should be seen as a learning event (e.g., Halamish & Bjork, 2011; 

Kornell et al., 2011; Rowland, 2014). Specifically, word pairs that were successfully retrieved during 

retrieval practice should have a greater memory strength than word pairs that were not successfully 

retrieved (Halamish & Bjork, 2011; Kornell et al., 2011). The bifurcation model thus predicts that, 

during retrieval practice, some word pairs are successfully retrieved and gain memory strength while 

other word pairs are not retrieved and remain at the same level of memory strength as before, 

leading to a bifurcation of the memory-strength distribution after the learning phase (Halamish & 

Bjork, 2011; Kornell et al., 2011; Rickard & Pan, 2018). For this reason, in a later memory test, more 
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word pairs should exceed the retrieval threshold and thus be successfully retrieved when the 

immediate memory test was successful. This leads to the question whether the increased memory 

strength due to successful memory retrieval of some but not all word pairs in the immediate 

memory test biases our delayed free-recall- and delayed-cued-recall results. This appears unlikely for 

two reasons. First, immediate cued recall was used in all experimental conditions. Therefore, the 

memory-strength distribution should be bifurcated regardless of condition so that no condition 

benefits systematically. Second, the bifurcated memory-strength distribution might make it more 

difficult to detect sleep benefits in the upper limb of the inverted U-shaped function, especially 

when memory retrieval is relatively easy and thus most word pairs are above the retrieval threshold 

(e.g., delayed cued recall test; cf. Petzka et al., 2021). However, this does not affect the 

interpretation of our results per se. It thus is unlikely that our findings are systematically biased by 

effects of the initial cued recall test. 

Outlook 

Previous studies investigating the effects of salience cues on the sleep benefit in episodic 

memory differ not only in the salience manipulations employed but also in other features such as (a) 

sleep study designs (e.g., 1 hr nap vs. no nap, natural nighttime sleep vs. daytime wakefulness), (b) 

length of retention intervals (e.g., 4 hr, 12 hr), and (c) retrieval tasks (e.g., cued recall, free recall). 

This variability in study design features makes it difficult to compare results for a specific salience 

cue across studies. Therefore, future research should systematically investigate whether and how 

study design features moderate the sleep benefit in general and effects of information salience at 

encoding in particular. 

In addition, more research is needed to examine how the sleep benefit and its underlying 

processes are affected by differences between encoding-strength manipulations. One way to 

manipulate encoding strength is to vary whether and how often stimuli are restudied or tested, and 

whether feedback is provided (e.g., Abel et al., 2019; Bäuml et al., 2014). Another way of 

manipulating encoding strength is to use different encoding instructions or to assess successfully 
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applied deep encoding strategies (e.g., Bennion et al., 2016; Denis et al., 2020). Besides learning 

procedures, memory strength can also be manipulated by varying the emotionality of the stimulus 

material (e.g., Hu et al., 2006; Payne et al., 2015). As such, emotional stimuli receive more attention 

and also more elaboration than neutral stimuli at encoding (Hamann, 2001). One caveat of these 

encoding-quality manipulations is that it is difficult to compare memory performance results across 

studies in terms of memory strength. In addition, these procedures do not allow for a reliable fine-

grained memory-strength manipulation which is essential for a more rigorous test of Stickgold’s 

(2009) inverted U-shaped function. We therefore suggest using better controllable perceptual 

stimuli (e.g., by manipulating brightness contrast) and to systematically vary encoding strength in 

small steps across the full possible range by employing the same strength manipulation. 

Conclusion 

Using MPT modeling to disentangle encoding, storage, and retrieval, we examined whether and 

how cognitive processes underlying the sleep benefit in episodic memory are affected by two 

salience cues—encoding strength and test expectation. We showed that encoding strength affects 

retrieval more than storage contributions to the sleep benefit. In addition, both storage and retrieval 

contributions to the sleep benefit were unaffected by test expectation. Although further research is 

needed, we provide first evidence that retroactive interference under wakefulness is necessary for 

the sleep benefit in memory retrieval to occur. If retroactive interference effects are suppressed by 

very high memory strength even under wakefulness (cf. Howe, 1970; McGeoch, 1929), there is 

simply no basis for a sleep-induced reduction of retroactive interference. By implication, the sleep 

benefit in memory retrieval reduces or even vanishes when memory strength approaches the 

ceiling. Hence, our findings have important theoretical implications because they indicate that 

variations of the sleep benefit in episodic memory may not always be due to variations in storage 

but at least sometimes also be due to variations in retrieval success. 
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Table 1 

Study Characteristics and Percentage of Correct Responses Averaged Across Sleep and Wake Conditions in Immediate Memory Tests of Relevant Experiments 

References 

Sample 

size 

Sleep study  

design 

Immediate memory 

test 

Percentage of correct 

immediate test responses 

Sleep benefit 

d [95% CI] b 

    
Lower limb 

(≲ 50%) 

Upper limb 

(≳ 50%) 

 

Previous research  

Cairney et al., 2016; picture-word task 

“Weak” condition 

“Strong” condition 

30 Daytime nap Cued recall   

65.20 

85.60 

 

— 

— 

Denis et al., 2020; not visualized, 12-hr interval a 

“Weak” condition 

“Intermediate” condition 

“Strong” condition 

39 Natural sleep and 

wakefulness 

Cued recall  

27.11 

 

 

53.81 

66.88 

 

0.43 [-0.21, 1.06] a 

0.29 [-0.34, 0.92] a 

0.70 [-0.05, 1.35] a 

Denis et al., 2020; visualized, 12-hr interval a 

“Weak” condition 

“Intermediate” condition 

“Strong” condition 

39 Natural sleep and 

wakefulness 

Cued recall  

38.48 

 

 

64.74 

84.22 

 

1.52 [0.81, 2.23] a 

1.28 [0.59, 1.97] a 

1.00 [0.34, 1.67] a 

Denis et al., 2020; overall, 12-hr interval 

“Weak” condition 

“Intermediate” condition 

“Strong” condition 

39 Natural sleep and 

wakefulness 

Cued recall  

32.48 

 

 

 

63.33 

81.19 

 

0.72 [0.08, 1.37] 

0.72 [0.07, 1.37] 

0.51 [-0.13, 1.15] 
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Sample 

size 

Sleep study  

design 

Immediate memory 

test 

Percentage of correct 

immediate test responses 

Sleep benefit 

d [95% CI] b 

    
Lower limb 

(≲ 50%) 

Upper limb 

(≳ 50%) 

 

Denis et al., 2021 

“Weak” condition 

“Intermediate” condition 

“Strong” condition 

54 Daytime nap Cued recall  

31.46 

 

 

58.25 

77.26 

 

0.23 [-0.34, 0.80] 

0.06 [-0.50, 0.63] 

-0.04 [-0.60, 0.53] 

Drosopoulos et al., 2007; experiment 2, overall 

“Weak” condition 

“Intense” condition 

40 Total sleep deprivation in 

the first night after learning 

with recovery night 

Cued recall   

82.50 

95.88 

 

0.75 [-0.16, 1.65] 

-0.13 [-1.01, 0.75] 

Petzka et al., 2021; sequence memory, no 

interference 

“Weak” condition 

“Strong” condition 

60 Natural sleep and 

wakefulness 

Cued recall   

 

66.32 

91.58 

 

 

0.96 [0.21, 1.72] 

-0.20 [-0.92, 0.51] 

Petzka et al., 2021; sequence memory, 

interference 

“Weak” condition 

“Strong” condition 

60 Natural sleep and 

wakefulness 

Cued recall   

 

63.51 

93.86 

 

 

0.60 [-0.13, 1.34] 

1.61 [0.79, 2.44] 

C. Schmidt et al., 2006 

“Difficult” condition 

“Easy” condition 

13 Daytime nap Cued recall  

48.30 

 

 

 

66.00 

 

— 

— 

Schoch et al., 2017; group 2 

“Neutral images” condition 

“Emotional images” condition 

57 Natural sleep and 

wakefulness 

Free recall  

(image description 

using keywords) 

 

27.19 

45.10 

  

-0.32 [-0.85, 0.20] 

0.31 [-0.21, 0.83] 
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References 

Sample 

size 

Sleep study  

design 

Immediate memory 

test 

Percentage of correct 

immediate test responses 

Sleep benefit 

d [95% CI] b 

    
Lower limb 

(≲ 50%) 

Upper limb 

(≳ 50%) 

 

Sheth et al., 2012; experiment 2, 12-hr interval 

“1-time correct recall” condition 

“3-times correct recall” condition 

“6-times correct recall” condition 

62 Natural sleep and 

wakefulness 

Cued recall   

100.00 

100.00 

100.00 

 

3.02 [1.74, 4.30] 

1.30 [0.37, 2.22] 

-0.31 [-1.19, 0.57] 

Tucker & Fishbein, 2008; paired associates 

“No immediate test” condition 

“Immediate test” condition 

33 Daytime nap Cued recall  

— 

42.41 

  

-0.09 [-0.78, 0.59] a 

0.84 [0.13, 1.55] a 

Ukraintseva & Dorokhov, 2012 

“1-time memorization” condition 

“2-times memorization” condition 

14 Daytime nap Cued recall  

— 

47.87 

  

0.70 [-0.07, 1.46] a 

0.22 [-0.52, 0.97] a 

Current experiments  

Experiment 1 

“Medium” condition, cued recall 

“Strong” condition, cued recall 

“Medium” condition, free recall 

“Strong” condition, free recall 

27 Natural sleep and 

wakefulness 

Cued recall   

56.66 

86.30 

56.66 

86.30 

 

0.20 [-0.56, 0.96] 

0.72 [-0.06, 1.50] 

0.79 [0.01, 1.58] 

0.05 [-0.71, 0.81] 

Experiment 2 

“No test expectation” condition, cued recall 

“Test expectation” condition, cued recall 

“No test expectation” condition, free recall 

“Test expectation” condition, free recall 

70 Natural sleep and 

wakefulness 

Cued recall   

76.08 

79.75 

76.08 

79.75 

 

1.49 [0.68, 2.31] 

0.81 [0.16, 1.45] 

0.78 [0.03, 1.53] 

0.59 [-0.05, 1.22] 
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Note. The reported percentage of correct immediate test responses is averaged across sleep and wake conditions. We calculated Cohen’s d on the basis of 

the reported means and standard deviations or standard errors. Note that positive and negative d-values indicate a sleep benefit and a sleep disadvantage 

compared to wakefulness in episodic memory, respectively. Because the studies by Cairney et al. (2016), Creery et al. (2015), and C. Schmidt et al. (2006) 

included no wake condition, no Cohen’s d was computed. Moreover, three relevant studies reported also other memory performance measures: First, 

Cairney et al. (2016) conducted a picture-location task with 30 participants and reported location errors of 3.54 cm for the “weak” and 2.19 cm for the 

“strong” condition in the immediate cued recall task. Second, Creery et al. (2015) conducted a picture-location task with 20 participants and reported 

location errors of 99.25 px (2.63 cm) for bottom-half learners and 68.70 px (1.82 cm) for top-half learners in the immediate cued recall task. Finally, Petzka 

et al. (2021) conducted a spatial memory test with 60 participants and reported error rates in the immediate cued recall task of 56.78% (weak encoding) 

versus 33.49% (strong encoding) for no-interference conditions (weak encoding: d = 0.09, 95% CI [-0.63, 0.81]; strong encoding: d = -0.01, 95% CI [-0.73, 

0.70]) and of 66.52% (weak encoding) versus 33.17% (strong encoding) for interference conditions (weak encoding: d = 0.54, 95% CI [-0.19, 1.27]; strong 

encoding: d = 1.28, 95% CI [0.50, 2.07]), averaged across sleep and wake conditions. 

a We used the open-source WebPlotDigitizer (Rohatgi, 2019) to obtain the necessary values for calculating the mean percentage of correct immediate test 

responses or Cohen’s d. 

b The sleep benefit effect size estimates (d) and the respective 95% confidence intervals were calculated with the web-based effect size calculator provided 

by David B. Wilson (https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php; Lipsey & Wilson, 2001) 
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Table 2 

Means and Standard Errors for the Memory Performance Measures in Experiment 1 

Dependent variable Medium encoding  Strong encoding 

 Wake Sleep  Wake Sleep 

Immediate cued recall 22.93 (1.38) 22.33 (1.27)  34.27 (0.87) 34.83 (0.65) 

Delayed cued recall 20.73 (1.43) 21.75 (1.32)  31.93 (1.08) 34.58 (0.84) 

Cued recall forgetting 2.20 (0.26) 0.58 (0.29)  2.33 (0.57) 0.25 (0.36) 

Free recall 5.80 (0.83) 8.08 (0.69)  14.53 (1.32) 14.75 (0.80) 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. Participants were randomly assigned to a wake (n = 15) and sleep (n = 12) condition. 
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Table 3 

Maximum-Likelihood Parameter Estimates and Standard Errors of the Encoding-Maintenance-

Retrieval (EMR) Multinomial Model for Experiment 1 

Parameter Medium encoding  Strong encoding 

 Wake Sleep  Wake Sleep 

e .59 (.02) .57 (.02)  .88 (.01) .89 (.01) 

m .90 (.02) .97 (.01)  .93 (.01) .99 (.01) 

rc .98 (.01) .98 (.01)  .98 (.01) .99 (.01) 

rf .27 (.03) .36 (.03)  .44 (.02) .42 (.02) 

s .06 (.01) .04 (.01)  .09 (.01) .03 (.01) 

us .05 (.03) .22 (.11)  .19 (.05) .23 (.19) 

uu .03 (.01) .06 (.01)  .03 (.01) .09 (.03) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Standard 

errors of the parameter estimates are presented in parentheses. Estimation results for core 

parameters are displayed in bold. e = probability of successful encoding of word-pair associations; m 

= probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; s = probability of associated single word retrieval during free recall; us = probability of non-

associated single word retrieval during free recall for successful immediate cued-recall retrieval; uu = 

probability of non-associated single word retrieval during free recall for unsuccessful immediate 

cued-recall retrieval. 
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Table 4 

Means and Standard Errors for the Memory Performance Measures in Experiment 2 

Dependent variable No test expectation  Test expectation 

 
Wake 

(n = 17) 
Sleep 

(n = 13) 
 Wake 

(n = 18) 
Sleep 

(n = 22) 

Immediate cued recall 30.35 (0.48) 30.54 (0.50)  32.39 (0.56) 31.50 (0.39) 

Delayed cued recall 25.59 (0.73) 29.54 (0.57)  28.00 (0.80) 30.32 (0.51) 

Cued recall forgetting 4.76 (0.42) 1.00 (0.26)  4.39 (0.31) 1.18 (0.20) 

Free recall 14.12 (0.62) 16.08 (0.67)  13.94 (0.64) 15.32 (0.43) 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. 
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Table 5 

Maximum-Likelihood Parameter Estimates and Standard Errors of the Encoding-Maintenance-

Retrieval (EMR) Multinomial Model for Experiment 2 

Parameter No test expectation  Test expectation 

 Wake Sleep  Wake Sleep 

e .77 (.02) .78 (.02)  .82 (.01) .80 (.01) 

m .85 (.02) .96 (.01)  .87 (.01) .96 (.01) 

rc .99 (.01) .98 (.01)  .99 (.01) .99 (.01) 

rf .53 (.02) .53 (.03)  .48 (.02) .50 (.02) 

ss .10 (.02) .06 (.01)  .10 (.01) .06 (.01) 

su .41 (.22) .51 (.19)  .20 (.19) .00 (.49) 

us .15 (.03) .16 (.08)  .23 (.04) .15 (.05) 

uu .10 (.02) .13 (.02)  .11 (.02) .13 (.02) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Standard 

errors of the parameter estimates are presented in parentheses. Estimation results for core 

parameters are displayed in bold. e = probability of successful encoding of word-pair associations; m 

= probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; ss = probability of associated single word retrieval during free recall for successful immediate 

cued-recall retrieval; su = probability of associated single word retrieval during free recall for 

unsuccessful immediate cued-recall retrieval; us = probability of non-associated single word retrieval 

during free recall for successful immediate cued-recall retrieval; uu = probability of non-associated 

single word retrieval during free recall for unsuccessful immediate cued-recall retrieval. 
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Appendix A 

The Encoding-Maintenance-Retrieval (EMR) Multinomial Model 

The Encoding-Maintenance-Retrieval (EMR) model is a multinomial model for categorical data. Its 

parameters represent success probabilities of latent cognitive processes involved in an extended 

version of the free-then-cued-recall paradigm by Rouder and Batchelder (1998). In the extended 

paradigm, participants study a set of weakly related word pairs (e.g., “candy – bread”), followed by 

three memory tests: First, an immediate cued recall test right after learning in which participants are 

provided with the first word of the word pair as a cue and have to recall the second word (e.g., 

“candy – ??”). Second, a free recall test after a longer retention interval—filled with either sleep or 

wakefulness—in which participants are instructed to recall all word pairs and single words they can 

remember. Third, a delayed cued recall test after finishing the free recall test, resembling the 

immediate cued recall test. For each studied word pair, there are two possible outcomes in cued 

recall (i.e., correct vs. incorrect) and three possible outcomes in free recall tests (i.e., both words 

recalled, one word recalled, no word recalled). Consequently, there are 2 · 3 · 2 = 12 possible 

outcome patterns per word pair. The resulting observation categories E1 to E12 and their definitions 

are summarized in Table A1. 

 

Table A1 

Observation Categories for the Extended Free-Then-Cued-Recall Paradigm 

Immediate cued recall  Free recall  Delayed cued recall 

  Both words One word No word   

Correct  E1 E2 E3  Correct 

 
 E4 E5 E6  Incorrect 

Incorrect  E7 E8 E9  Correct 

 
 E10 E11 E12  Incorrect 
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Note. Definition of the 12 observation categories E1 to E12 adapted from “Encoding, Maintenance, 

and Retrieval Processes in the Lag Effect: A Multinomial Processing Tree Analysis”, by C. E. Küpper-

Tetzel and E. Erdfelder, 2012, Memory, 20(1), p. 39 

(https://doi.org/10.1080/09658211.2011.631550). Copyright 2012 by Psychology Press, Taylor & 

Francis. 

 

In the EMR model, the underlying cognitive processes (i.e., encoding, maintenance, cued- and 

free recall retrieval) are conceived as binary, in other words, as either successful or unsuccessful. The 

model thus enumerates all possible combinations of encoding, maintenance, and retrieval outcomes 

that can occur in the extended free-then-cued-recall paradigm for each presented word pair. Based 

on this, it is possible to set up a system of model equations, expressing the probabilities of all 12 

observation categories as a function of latent probabilities associated with the possible cognitive 

processes involved (i.e., encoding, maintenance, cued- and free recall retrieval). 

As illustrated in Figure A1 (based on Erdfelder et al., 2022), the latent cognitive processes connect 

the stimulus (word pair) on the left with the observed participant response on the right. The 

generalized model version in Figure A1 also shows that the EMR model consists of a structural model 

(left side) and a measurement model (right side). The structural model defines three latent memory 

processes underlying memory judgments: First, a word-pair association has been successfully 

encoded (probability e) before immediate cued recall and is maintained in memory until delayed 

free-then-cued recall (probability rc·m). Second, a word-pair association has been successfully 

encoded (probability e) before immediate cued recall but is forgotten until delayed free-then-cued 

recall (probability rc·(1-m)). Third, a word-pair association has not been successfully encoded 

(complementary probability 1-e) and is thus not available in memory for neither immediate cued 

recall nor delayed free-then-cued recall. By contrast, the measurement model defines the success 

probabilities in the immediate cued and delayed free-then-cued-recall tests. On the basis of previous 

research, Erdfelder et al. (2022) recommend the following procedure to specify the measurement 
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model: First, the retrieval probability in the immediate cued recall test (probability rc) depends only 

on successful encoding and not on processes that occur after the initial cued recall test. If encoding 

fails, immediate cued recall will be unsuccessful because word pairs are selected so that the second 

word cannot be guessed correctly when the word pair association is not available in memory. 

Second, an independence model in which the three latent states of encoding, maintenance, and 

retrieval fully explain stochastic dependencies between the immediate and the two delayed memory 

tests (cf. Küpper-Tetzel & Erdfelder, 2012) should be fitted first. This parsimonious model version 

includes 6 parameters only (i.e., parameter e, m, rc, rf, s, u), provides more reliable parameter 

estimates with smaller standard errors, and allows easier interpretation. However, in case the 

independence model produces misfit, the independence assumption should be relaxed, starting with 

parameter u and followed by parameter s. This procedure allows to cope with the possibility that 

word-pair storage fails in the encoding or maintenance phase whereas storage and retrieval of a 

single word in free recall may succeed depending on whether the immediate cued recall was 

successful (ss, us) or unsuccessful (su, uu). Moreover, it is assumed that delayed cued recall of an 

encoded association fails when a word-pair association is not successfully maintained during the 

retention interval. Third, because cued recall parameters (rc) are expected to be close to 1 (i.e., cued 

recall retrieval of a stored word pair is typically successful), the restriction pattern rc = rcs = rcu is 

recommended as a default. Finally, it is important that immediate cued recall performance is neither 

too bad nor perfect as it causes zero cells in certain observation categories thereby threatening 

model applicability. For this reason, it is recommended to exclude participants with less than 35% 

correct responses in immediate cued recall to ensure sufficient observations in categories E1 to E6. 

Furthermore, participants with more than than 95% correct immediate cued recall responses should 

be excluded to reduce the occurrence of zero cells in categories E7 to E12 (Erdfelder et al., 2022). 
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Figure A1 

Generalized Version of the Encoding-Maintenance-Retrieval (EMR) Model for the Extended Free-

Then-Cued Recall Paradigm 

 

Note. Rectangles indicate observable test conditions and outcomes. Rectangles with rounded 

corners indicate latent cognitive processes. Parameters attached to the branches denote transition 

probabilities between unobservable states. Please refer to Table A1 for the meaning of the 12 

possible outcome categories E1 to E12. e = probability of successful encoding of word-pair 

associations; m = probability of maintaining encoded associations across the retention interval; rc = 

probability of retrieving stored associations in immediate cued recall; rcs = probability of retrieving 
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stored associations in delayed cued recall for successful immediate cued-recall retrieval; rcu = 

probability of retrieving stored associations in delayed cued recall for unsuccessful immediate cued-

recall retrieval; rfs = probability of retrieving stored associations in free recall for successful 

immediate cued-recall retrieval; rfu = probability of retrieving stored associations in free recall for 

unsuccessful immediate cued-recall retrieval; ss = probability of associated single word retrieval 

during free recall for successful immediate cued-recall retrieval; su = probability of associated single 

word retrieval during free recall for unsuccessful immediate cued-recall retrieval; us = probability of 

non-associated single word retrieval during free recall for successful immediate cued-recall retrieval; 

uu = probability of non-associated single word retrieval during free recall for unsuccessful immediate 

cued-recall retrieval. Adapted from “Why Does Sleep Improve Episodic Memory? An Encoding-

Maintenance-Retrieval Analysis”, by E. Erdfelder, S. Berres, J. Quevedo Pütter, and C. E. Küpper-

Tetzel, 2022, Manuscript submitted for publication. 
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Appendix B 

Results of the Bayesian-Hierarchical Multinomial Processing Tree (MPT) Model Analyses 

 

Table B1 

Posterior Group Level Means and Posterior Standard Deviations of the Hierarchical Bayesian 

Multinomial Processing Tree (MPT) Analysis with TreeBUGS for Experiment 1 

Parameter Medium encoding  Strong encoding 

 Wake Sleep  Wake Sleep 

e .61 (.06) .58 (.06)  .90 (.04) .91 (.03) 

m .91 (.03) .96 (.09)  .95 (.03) .94 (.14) 

rc .98 (.02) .98 (.02)  .98 (.01) .98 (.01) 

rf .23 (.04) .36 (.05)  .42 (.05) .42 (.07) 

s .05 (.02) .05 (.04)  .09 (.02) .03 (.04) 

us .05 (.05) .31 (.21)  .21 (.08) .42 (.25) 

uu .03 (.01) .06 (.02)  .03 (.04) .10 (.09) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Posterior 

standard deviations are presented in parentheses. Estimation results for core parameters are 

displayed in bold. There was good MCMC chain convergence (R̂ < 1.05) and model fit (medium-

encoding-wake condition: pT1 = .18, pT2 = .33; medium-encoding-sleep condition: pT1 = .37, pT2 = .64; 

strong-encoding-wake condition: pT1 = .53, pT2 = .61; strong-encoding-sleep condition: pT1 = .60, pT2 = 

.50). e = probability of successful encoding of word-pair associations; m = probability of maintaining 

encoded associations across the retention interval; rc = probability of retrieving stored associations 

in cued recall; rf = probability of retrieving stored associations in free recall; s = probability of 

associated single word retrieval during free recall; us = probability of non-associated single word 

retrieval during free recall for successful immediate cued-recall retrieval; uu = probability of non-

associated single word retrieval during free recall for unsuccessful immediate cued-recall retrieval; R̂ 
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= potential scale reduction factor (Gelman & Rubin, 1992); pT1 = posterior predictive p-value for the 

mean; pT2 = posterior predictive p-value for the covariance. 
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Table B2 

Posterior Group Level Means and Posterior Standard Deviations of the Hierarchical Bayesian 

Multinomial Processing Tree (MPT) Analysis with TreeBUGS for Experiment 2 

Parameter No test expectation  Test expectation 

 Wake Sleep  Wake Sleep 

e .78 (.03) .80 (.03)  .83 (.03) .81 (.02) 

m .86 (.04) .98 (.05)  .88 (.03) .98 (.01) 

rc .99 (.01) .98 (.01)  .99 (.01) .99 (.01) 

rf .52 (.03) .52 (.05)  .47 (.03) .50 (.02) 

ss .10 (.02) .07 (.02)  .10 (.02) .07 (.01) 

su .47 (.23) .48 (.20)  .39 (.26) .24 (.24) 

us .17 (.06) .28 (.18)  .24 (.05) .15 (.10) 

uu .09 (.04) .14 (.03)  .12 (.03) .13 (.02) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Posterior 

standard deviations are presented in parentheses. Estimation results for core parameters are 

displayed in bold. There was good MCMC chain convergence (R̂ < 1.05) and model fit (no-

expectation-wake condition: pT1 = .44, pT2 = .47; no-expectation-sleep condition: pT1 = .24, pT2 = .47; 

expectation-wake condition: pT1 = .36, pT2 = .46; expectation-sleep condition: pT1 = .14, pT2 = .23). e = 

probability of successful encoding of word-pair associations; m = probability of maintaining encoded 

associations across the retention interval; rc = probability of retrieving stored associations in cued 

recall; rf = probability of retrieving stored associations in free recall; ss = probability of associated 

single word retrieval during free recall for successful immediate cued-recall retrieval; su = probability 

of associated single word retrieval during free recall for unsuccessful immediate cued-recall 

retrieval; us = probability of non-associated single word retrieval during free recall for successful 

immediate cued-recall retrieval; uu = probability of non-associated single word retrieval during free 

recall for unsuccessful immediate cued-recall retrieval; R̂ = potential scale reduction factor (Gelman 
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& Rubin, 1992); pT1 = posterior predictive p-value for the mean; pT2 = posterior predictive p-value for 

the covariance. 
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Table S1 

Sample Characteristics for Experiment 1 

Variable Total  Wake  Sleep   

 M SD  M SD  M SD t(25) p 

Age, in years 22.89 6.46  24.40 8.40  21.00 1.35 1.38 .179 

SSS, learning session 2.78 1.05  2.73 0.88  2.83 1.27 0.24 .811 

SSS, testing session 2.81 1.00  2.80 1.08  2.83 0.94 0.08 .933 

rMEQ, sum score 15.26 3.84  14.93 4.30  15.67 3.31 0.49 .631 

Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced 

Morningness-Eveningness Questionnaire (Randler, 2013). The SSS captures sleepiness on a 7-point 

scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum 

scores that are based on five items (Cronbach’s α = .76). Sum scores can range from 4 to 25 with 

higher values indicating stronger morning preferences. The wake condition contains 8 female and 7 

male participants, whereas the sleep condition contains only female participants. 
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Table S2 

Sample Characteristics for Experiment 1 Including Only Participants Between 18 and 35 Years of Age 

Variable Total  Wake  Sleep   

 M SD  M SD  M SD t(23) p 

Age, in years 22.00 3.16  22.92 4.05  21.00 1.35 1.56 .131 

SSS, learning session 2.76 1.05  2.69 0.85  2.83 1.27 0.33 .745 

SSS, testing session 2.76 1.01  2.69 1.11  2.83 0.94 0.34 .736 

rMEQ, sum score 15.44 3.84  15.23 4.40  15.67 3.31 0.28 .784 

Sleep duration, 
self-report 

  
 

  
 

7.54 0.61   

Sleep duration a       7.84 0.67   

Time awake a       0.01 0.02   

Deep sleep a       2.04 1.15   

Light sleep a       5.79 1.29   

Sleep quality       3.17 0.39   

Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced 

Morningness-Eveningness Questionnaire (Randler, 2013). The SSS captures sleepiness on a 7-point 

scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum 

scores that are based on five items (Cronbach’s α = .78). Sum scores can range from 4 to 25 with 

higher values indicating stronger morning preferences. Sleep duration, time awake, deep sleep, and 

light sleep are reported in hours. Sleep quality was assessed via self-report on a 5-point scale with 

higher values indicating better sleep quality. The wake condition contains 13 participants (8 female) 

and the sleep condition 12 participants (12 female). All participants stated that they slept for at least 

6 hr in the night before the first session of the experiment and that they did not consume any 

alcoholic drinks between the first and second session. Two participants in the wake condition 

napped between the sessions: One participant napped for 28 min, the other for 1 hr. 

a Assessed by a commercial fitness tracker (Xiaomi Mi Band 2).  
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Table S3 

Means and Standard Errors for the Memory Performance Measures in Experiment 1 Including Only 

Participants Between 18 and 35 Years of Age 

Dependent variable Medium encoding  Strong encoding   

 Wake Sleep  Wake Sleep F(1, 23) p 

Immediate cued recall 24.00 (1.42) 22.33 (1.32)  34.31 (0.92) 34.83 (0.68) 0.93 .344 

Delayed cued recall 21.77 (1.48) 21.75 (1.37)  32.15 (1.17) 34.58 (0.87) 1.59 .221 

Cued recall forgetting 2.23 (0.30) 0.58 (0.30)  2.15 (0.63) 0.25 (0.37) 0.07 .797 

Free recall 6.15 (0.90) 8.08 (0.72)  15.15 (1.43) 14.75 (0.84) 1.21 .282 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. Participants were randomly assigned to a wake (n = 13) and sleep (n = 12) condition. F 

= F value for the interaction of encoding strength and wake versus sleep. 

  



SUPPLEMENTAL MATERIALS: EFFECTS OF ENCODING STRENGTH AND TEST EXPECTATION ON THE SLEEP BENEFIT 6 

Table S4 

Maximum-Likelihood Parameter Estimates and Standard Errors of the Encoding-Maintenance-

Retrieval (EMR) Multinomial Model for Experiment 1 Including Only Participants Between 18 and 35 

Years of Age 

Parameter Medium encoding  Strong encoding 

 Wake Sleep  Wake Sleep 

e .62 (.02) .57 (.02)  .88 (.01) .89 (.01) 

m .90 (.02) .97 (.01)  .93 (.01) .99 (.01) 

rc .98 (.01) .98 (.01)  .98 (.01) .99 (.01) 

rf .27 (.03) .36 (.03)  .46 (.02) .42 (.02) 

s .06 (.01) .04 (.01)  .08 (.01) .03 (.01) 

us .06 (.03) .22 (.11)  .20 (.06) .23 (.19) 

uu .03 (.01) .06 (.01)  .03 (.01) .09 (.03) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Standard 

errors of the parameter estimates are presented in parentheses. The model fitted the data well, 

G2(16) = 20.86, p = .184. e = probability of successful encoding of word-pair associations; m = 

probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; s = probability of associated single word retrieval during free recall; us = probability of non-

associated single word retrieval during free recall for successful immediate cued-recall retrieval; uu = 

probability of non-associated single word retrieval during free recall for unsuccessful immediate 

cued-recall retrieval. 
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Table S5 

Posterior Group Level Means and Posterior Standard Deviations of the Hierarchical Bayesian 

Multinomial Processing Tree (MPT) Analysis with TreeBUGS for Experiment 1 Including Only 

Participants Between 18 and 35 Years of Age 

Parameter Medium encoding  Strong encoding 

 Wake Sleep  Wake Sleep 

e .64 (.07) .58 (.05)  .90 (.04) .91 (.03) 

m .92 (.04) .96 (.11)  .96 (.04) .95 (.13) 

rc .98 (.03) .98 (.02)  .98 (.01) .99 (.01) 

rf .23 (.05) .36 (.05)  .44 (.06) .42 (.06) 

s .06 (.02) .05 (.05)  .09 (.02) .03 (.03) 

us .08 (.09) .31 (.21)  .22 (.09) .43 (.26) 

uu .03 (.02) .06 (.03)  .04 (.06) .10 (.09) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Posterior 

standard deviations are presented in parentheses. There was good MCMC chain convergence (R̂ < 

1.05) and model fit (medium-encoding-wake condition: pT1 = .27, pT2 = .37; medium-encoding-sleep 

condition: pT1 = .35, pT2 = .64; strong-encoding-wake condition: pT1 = .42, pT2 = .59; strong-encoding-

sleep condition: pT1 = .60, pT2 = .50). e = probability of successful encoding of word-pair associations; 

m = probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; s = probability of associated single word retrieval during free recall; us = probability of non-

associated single word retrieval during free recall for successful immediate cued-recall retrieval; uu = 

probability of non-associated single word retrieval during free recall for unsuccessful immediate 

cued-recall retrieval; R̂ = potential scale reduction factor (Gelman & Rubin, 1992); pT1 = posterior 

predictive p-value for the mean; pT2 = posterior predictive p-value for the covariance. 
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Table S6 

Sample Characteristics for Experiment 1 Including Only Participants Without Daytime Naps 

Variable Total  Wake  Sleep   

 M SD  M SD  M SD t(23) p 

Age, in years 22.88 6.72  24.62 9.04  21.00 1.35 1.37 .184 

SSS, learning session 2.80 1.08  2.77 0.93  2.83 1.27 0.15 .886 

SSS, testing session 2.92 0.95  3.00 1.00  2.83 0.94 0.43 .672 

rMEQ, sum score 15.28 3.95  14.92 4.57  15.67 3.31 0.46 .648 

Sleep duration, 
self-report 

      7.54 0.61   

Sleep duration a       7.84 0.67   

Time awake a       0.01 0.02   

Deep sleep a       2.04 1.15   

Light sleep a       5.79 1.29   

Sleep quality       3.17 0.39   

Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced 

Morningness-Eveningness Questionnaire (Randler, 2013). The SSS captures sleepiness on a 7-point 

scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum 

scores that are based on five items (Cronbach’s α = .76). Sum scores can range from 4 to 25 with 

higher values indicating stronger morning preferences. Sleep duration, time awake, deep sleep, and 

light sleep are reported in hours. Sleep quality was assessed via self-report on a 5-point scale with 

higher values indicating better sleep quality. The wake condition contains 13 participants (7 female) 

and the sleep condition 12 participants (12 female). All participants stated that they slept for at least 

6 hr in the night before the first session of the experiment and that they did not consume any 

alcoholic drinks between the first and second session. 

a Assessed by a commercial fitness tracker (Xiaomi Mi Band 2). 
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Table S7 

Means and Standard Errors for the Memory Performance Measures in Experiment 1 Including Only 

Participants Without Daytime Naps 

Dependent variable Medium encoding  Strong encoding   

 Wake Sleep  Wake Sleep F(1, 23) p 

Immediate cued recall 22.69 (1.53) 22.33 (1.32)  34.31 (0.97) 34.83 (0.68) 0.14 .714 

Delayed cued recall 20.23 (1.57) 21.75 (1.37)  31.77 (1.16) 34.58 (0.87) 0.45 .507 

Cued recall forgetting 2.46 (0.25) 0.58 (0.30)  2.54 (0.58) 0.25 (0.37) 0.18 .672 

Free recall 5.62 (0.92) 8.08 (0.72)  14.77 (1.47) 14.75 (0.84) 1.40 .250 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. Participants were randomly assigned to a wake (n = 13) and sleep (n = 12) condition. F 

= F value for the interaction of encoding strength and wake versus sleep. 
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Table S8 

Maximum-Likelihood Parameter Estimates and Standard Errors of the Encoding-Maintenance-

Retrieval (EMR) Multinomial Model for Experiment 1 Including Only Participants Without Daytime 

Naps 

Parameter Medium encoding  Strong encoding 

 Wake Sleep  Wake Sleep 

e .58 (.02) .57 (.02)  .88 (.01) .89 (.01) 

m .88 (.02) .97 (.01)  .92 (.01) .99 (.01) 

rc .98 (.01) .98 (.01)  .98 (.01) .99 (.01) 

rf .27 (.03) .36 (.03)  .45 (.02) .42 (.02) 

s .06 (.01) .04 (.01)  .09 (.01) .03 (.01) 

us .05 (.03) .22 (.11)  .20 (.06) .23 (.19) 

uu .03 (.01) .06 (.01)  .03 (.02) .09 (.03) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Standard 

errors of the parameter estimates are presented in parentheses. The model fitted the data well, 

G2(16) = 18.54, p = .293. e = probability of successful encoding of word-pair associations; m = 

probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; s = probability of associated single word retrieval during free recall; us = probability of non-

associated single word retrieval during free recall for successful immediate cued-recall retrieval; uu = 

probability of non-associated single word retrieval during free recall for unsuccessful immediate 

cued-recall retrieval. 
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Table S9 

Posterior Group Level Means and Posterior Standard Deviations of the Hierarchical Bayesian 

Multinomial Processing Tree (MPT) Analysis with TreeBUGS for Experiment 1 Including Only 

Participants Without Daytime Naps 

Parameter Medium encoding  Strong encoding 

 Wake Sleep  Wake Sleep 

e .61 (.07) .58 (.06)  .90 (.05) .91 (.03) 

m .90 (.03) .96 (.09)  .95 (.03) .95 (.13) 

rc .98 (.03) .98 (.02)  .98 (.01) .99 (.01) 

rf .23 (.05) .36 (.05)  .42 (.07) .42 (.06) 

s .05 (.02) .05 (.04)  .10 (.02) .03 (.04) 

us .06 (.06) .30 (.21)  .24 (.09) .42 (.26) 

uu .03 (.02) .06 (.03)  .05 (.06) .10 (.09) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Posterior 

standard deviations are presented in parentheses. There was good MCMC chain convergence (R̂ < 

1.05) and model fit (medium-encoding-wake condition: pT1 = .26, pT2 = .35; medium-encoding-sleep 

condition: pT1 = .35, pT2 = .64; strong-encoding-wake condition: pT1 = .56, pT2 = .61; strong-encoding-

sleep condition: pT1 = .60, pT2 = .49). e = probability of successful encoding of word-pair associations; 

m = probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; s = probability of associated single word retrieval during free recall; us = probability of non-

associated single word retrieval during free recall for successful immediate cued-recall retrieval; uu = 

probability of non-associated single word retrieval during free recall for unsuccessful immediate 

cued-recall retrieval; R̂ = potential scale reduction factor (Gelman & Rubin, 1992); pT1 = posterior 

predictive p-value for the mean; pT2 = posterior predictive p-value for the covariance. 
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Table S10 

Sample Characteristics for Experiment 1 Including all Participants Previously Excluded due EMR 

Model Specific Exclusion Criteria 

Variable Total  Wake  Sleep   

 M SD  M SD  M SD t(65) p 

Age, in years 22.87 5.69  24.22 7.75  21.63 2.17 1.90 .062 

SSS, learning session 2.84 0.93  2.81 0.93  2.86 0.94 0.19 .846 

SSS, testing session 2.73 1.12  3.03 1.23  2.46 0.95 2.15 .035 

rMEQ, sum score 14.88 4.05  14.75 3.88  15.00 4.26 0.25 .803 

Sleep duration, 
self-report 

      7.24 0.89   

Sleep duration a       7.55 0.90   

Time awake a       0.04 0.13   

Deep sleep a       2.12 1.12   

Light sleep a       5.43 1.27   

Sleep quality       3.29 0.86   

Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced 

Morningness-Eveningness Questionnaire (Randler, 2013). The SSS captures sleepiness on a 7-point 

scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum 

scores that are based on five items (Cronbach’s α = .78). Sum scores can range from 4 to 25 with 

higher values indicating stronger morning preferences. Sleep duration, time awake, deep sleep, and 

light sleep are reported in hours. Sleep quality was assessed via self-report on a 5-point scale with 

higher values indicating better sleep quality. The wake condition contains 32 participants (18 female) 

and the sleep condition 35 participants (30 female). All participants stated that they slept for at least 

6 hr in the night before the first session of the experiment and that they did not consume any 

alcoholic drinks between the first and second session. 

a Assessed by a commercial fitness tracker (Xiaomi Mi Band 2).  
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Table S11 

Means and Standard Errors for the Memory Performance Measures in Experiment 1 Including all 

Participants Previously Excluded due EMR Model Specific Exclusion Criteria 

Dependent variable Medium encoding  Strong encoding   

 Wake Sleep  Wake Sleep F(1, 65) p 

Immediate cued recall 21.56 (1.33) 24.86 (1.24)  32.72 (0.99) 35.40 (0.82) 0.16 .694 

Delayed cued recall 19.34 (1.31) 24.29 (1.26)  30.06 (1.11) 34.71 (0.92) 0.04 .833 

Cued recall forgetting 2.22 (0.23) 0.57 (0.17)  2.66 (0.35) 0.69 (0.21) 0.34 .560 

Free recall 5.28 (0.46) 8.43 (0.56)  12.59 (0.78) 15.09 (0.65) 0.32 .574 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. Participants were randomly assigned to a wake (n = 32) and sleep (n = 35) condition. F 

= F value for the interaction of encoding strength and wake versus sleep. 
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Additional Memory Performance Analysis for Experiment 1 Including all Participants Previously 

Excluded due EMR Model Specific Exclusion Criteria 

Due to the application of the exclusion criteria recommended for the EMR model, 40 participants 

had to be excluded. We therefore performed all ANOVAs for the memory performance analysis 

again, this time including the 40 previously excluded participants (i.e., new sample size: nsleep = 35, 

nwake = 32). As in the main analysis, a statistically significant main effect of encoding strength 

emerged with better memory performance in strong- compared to medium encoding, delayed cued 

recall: F(1, 65) = 237.84, MSE = 15.72, p < .001, ηp
2 = .79; free recall: F(1, 65) = 145.16, MSE = 11.24, p 

< .001, ηp
2 = .69. In contrast to the main analysis, we found a statistically significant main effect of 

wake versus sleep with better memory performance after sleep compared to wakefulness, delayed 

cued recall: F(1, 65) = 4.70, MSE = 163.57, p = .034, ηp
2 = .07; free recall: F(1, 65) = 6.49, MSE = 40.94, 

p = .013, ηp
2 = .09. In line with the results of the main analysis, however, no statistically significant 

interaction effects of encoding strength and wake versus sleep emerged; delayed cued recall: F(1, 

65) = 0.04, MSE = 15.72, p = .833, ηp
2 < .01; free recall: F(1, 65) = 0.32, MSE = 11.24, p = .574, ηp

2 = 

.01. Furthermore, the result patterns for cued recall forgetting did not differ between the main and 

current analyses; main effect of encoding strength: F(1, 65) = 1.00, MSE = 2.55, p = .321, ηp
2 = .02, 

main effect of wake versus sleep: F(1, 65) = 19.58, MSE = 5.59, p < .001, ηp
2 = .23, interaction effect 

of encoding strength and wake versus sleep: F(1, 65) = 0.34, MSE = 2.55, p = .560, ηp
2 = .01. The same 

was true for immediate cued recall; main effect of encoding strength: F(1, 65) = 196.10, MSE = 20.07, 

p < .001, ηp
2 = .75, main effect of wake versus sleep: F(1, 65) = 2.06, MSE = 144.62, p = .156, ηp

2 = .03, 

interaction effect of encoding strength and wake versus sleep: F(1, 65) = 0.16, MSE = 20.07, p = .694, 

ηp
2 = .002. Thus, similar results emerged when using the larger sample size of N = 67 (for sample 

characteristics, sample means and standard errors of all experimental conditions, see Tables S10 and 

S11). 
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Table S12 

Sample Characteristics for Experiment 2 

Variable Total  No test expectation  Test expectation   

   Wake  Sleep  Wake  Sleep   

 M SD  M SD  M SD  M SD  M SD F(3, 66) p 

Age, in years 22.06 4.81  23.53 8.29  22.31 3.07  21.89 3.31  20.91 2.51 0.97 .414 

SSS, learning session 2.79 1.06  2.41 1.06  2.92 1.32  2.61 0.92  3.14 0.94 1.80 .156 

SSS, testing session 2.77 1.22  3.18 0.81  2.54 1.39  3.11 1.41  2.32 1.09 2.41 .075 

rMEQ, sum score 15.03 3.58  14.88 4.06  14.62 4.17  14.22 3.28  16.05 3.03 0.96 .417 

Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced Morningness-Eveningness Questionnaire (Randler, 

2013). The SSS captures sleepiness on a 7-point scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum scores that 

are based on five items (Cronbach’s α = .71). Sum scores can range from 4 to 25 with higher values indicating stronger morning preferences. The no-

expectation-wake condition contains 14 female and 3 male participants, the no-expectation-sleep condition 8 female and 5 male participants, the 

expectation-wake condition 13 female and 5 male participants, and the expectation-sleep condition 16 female and 6 male participants. 
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Table S13 

Sample Characteristics for Experiment 2 Including Only Participants Between 18 and 35 Years of Age 

Variable Total  No test expectation  Test expectation    

   Wake  Sleep  Wake  Sleep    

 M SD  M SD  M SD  M SD  M SD F(3, 65) t(33) p 

Age, in years 21.59 2.88  21.62 2.75  22.31 3.07  21.89 3.31  20.91 2.51 0.74  .533 

SSS, learning session 2.78 1.07  2.38 1.09  2.92 1.32  2.61 0.92  3.14 0.94 1.88  .142 

SSS, testing session 2.75 1.22  3.12 0.81  2.54 1.39  3.11 1.41  2.32 1.09 2.20  .097 

rMEQ, sum score 14.96 3.56  14.56 3.97  14.62 4.17  14.22 3.28  16.05 3.03 1.05  .377 

Sleep duration, 
self-report 

      7.42 0.81     7.48 0.65  0.22 .829 

Sleep duration a       7.82 0.94     7.88 0.74  0.19c .847 

Time awake a       0.01 0.02     0.04 0.14  0.74c .465 

Deep sleep a       1.94 1.15     2.14 0.95  0.55c .588 

Light sleep a       5.88 1.15     5.74 0.92  0.40c .691 

Sleep quality       3.42 1.00     3.55 0.96  0.37c .715 

Repetitions b 0.68 0.88  0.56 0.81  0.46 0.66  1.00 0.77  0.64 1.09 1.18  .326 
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Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced Morningness-Eveningness Questionnaire (Randler, 

2013). The SSS captures sleepiness on a 7-point scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum scores that 

are based on five items (Cronbach’s α = .70). Sum scores can range from 4 to 25 with higher values indicating stronger morning preferences. Sleep duration, 

time awake, deep sleep, and light sleep are reported in hours. Sleep quality was assessed via self-report on a 5-point scale with higher values indicating 

better sleep quality. The no-expectation-wake condition contains 16 participants (13 female), the no-expectation-sleep condition 13 participants (8 female), 

the expectation-wake condition 18 participants (13 female), and the expectation-sleep condition 22 participants (16 female). With the exception of 8 

participants (nno expectation, wake = 1, nno expectation, sleep = 3, nexpectation, wake = 3, nexpectation, sleep = 1), all participants stated that they slept for at least 6 hr in the night 

before the first session of the experiment. All but one participant reported that they did not consume any alcoholic drinks between the first and second 

session. Two participants in the wake condition napped between the sessions: One participant napped for 30 min, the other for 1 hr. 

a Assessed by a commercial fitness tracker (Xiaomi Mi Band 2). b How many times the sequence of learning phase, distractor task, and immediate cued recall 

task was repeated until participants responded at least 60% correctly on the immediate cued recall task. c df = 32, because sleep quality was not captured 

for one participant and the fitness tracker did not record any data for another participant. 
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Table S14 

Means and Standard Errors for the Memory Performance Measures in Experiment 2 Including Only 

Participants Between 18 and 35 Years of Age 

Dependent variable No test expectation  Test expectation   

 
Wake 

(n = 16) 
Sleep 

(n = 13) 
 Wake 

(n = 18) 
Sleep 

(n = 22) 
 

F(1, 65) 
 

p 

Immediate cued recall 30.62 (0.48) 30.54 (0.51)  32.39 (0.57) 31.50 (0.40) 0.17 .685 

Delayed cued recall 25.94 (0.74) 29.54 (0.58)  28.00 (0.80) 30.32 (0.52) 0.22 .638 

Cued recall forgetting 4.69 (0.44) 1.00 (0.26)  4.39 (0.31) 1.18 (0.21) 0.14 .705 

Free recall 14.19 (0.64) 16.08 (0.67)  13.94 (0.65) 15.32 (0.43) 0.05 .830 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. F = F value for the interaction of test expectation and wake versus sleep. 
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Table S15 

Maximum-Likelihood Parameter Estimates and Standard Errors of the Encoding-Maintenance-

Retrieval (EMR) Multinomial Model for Experiment 2 Including Only Participants Between 18 and 35 

Years of Age 

Parameter No test expectation  Test expectation 

 Wake Sleep  Wake Sleep 

e .77 (.02) .78 (.02)  .82 (.01) .80 (.01) 

m .85 (.02) .96 (.01)  .87 (.01) .96 (.01) 

rc .99 (.01) .98 (.01)  .99 (.01) .99 (.01) 

rf .53 (.02) .53 (.03)  .48 (.02) .50 (.02) 

ss .09 (.02) .06 (.01)  .10 (.01) .06 (.01) 

su .60 (.25) .51 (.19)  .20 (.19) .00 (.49) 

us .15 (.03) .16 (.08)  .23 (.04) .15 (.05) 

uu .10 (.02) .13 (.02)  .11 (.02) .13 (.02) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Standard 

errors of the parameter estimates are presented in parentheses. The model produced a slight misfit, 

G2(12) = 21.71, p = .041. e = probability of successful encoding of word-pair associations; m = 

probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; ss = probability of associated single word retrieval during free recall for successful immediate 

cued-recall retrieval; su = probability of associated single word retrieval during free recall for 

unsuccessful immediate cued-recall retrieval; us = probability of non-associated single word retrieval 

during free recall for successful immediate cued-recall retrieval; uu = probability of non-associated 

single word retrieval during free recall for unsuccessful immediate cued-recall retrieval. 
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Table S16 

Posterior Group Level Means and Posterior Standard Deviations of the Hierarchical Bayesian 

Multinomial Processing Tree (MPT) Analysis with TreeBUGS for Experiment 2 Including Only 

Participants Between 18 and 35 Years of Age 

Parameter No test expectation  Test expectation 

 Wake Sleep  Wake Sleep 

e .79 (.02) .80 (.03)  .83 (.03) .81 (.02) 

m .87 (.04) .98 (.04)  .88 (.03) .98 (.02) 

rc .99 (.01) .98 (.01)  .99 (.01) .99 (.01) 

rf .52 (.04) .52 (.05)  .47 (.03) .50 (.02) 

ss .10 (.02) .07 (.02)  .10 (.02) .07 (.01) 

su .56 (.23) .49 (.21)  .38 (.25) .23 (.24) 

us .17 (.06) .28 (.18)  .24 (.05) .15 (.10) 

uu .10 (.04) .14 (.03)  .12 (.03) .13 (.02) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Posterior 

standard deviations are presented in parentheses. There was good MCMC chain convergence (R̂ < 

1.05) and model fit (no-expectation-wake condition: pT1 = .34, pT2 = .44; no-expectation-sleep 

condition: pT1 = .24, pT2 = .45; expectation-wake condition: pT1 = .37, pT2 = .47; expectation-sleep 

condition: pT1 = .14, pT2 = .23). e = probability of successful encoding of word-pair associations; m = 

probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; ss = probability of associated single word retrieval during free recall for successful immediate 

cued-recall retrieval; su = probability of associated single word retrieval during free recall for 

unsuccessful immediate cued-recall retrieval; us = probability of non-associated single word retrieval 

during free recall for successful immediate cued-recall retrieval; uu = probability of non-associated 

single word retrieval during free recall for unsuccessful immediate cued-recall retrieval; R̂ = potential 
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scale reduction factor (Gelman & Rubin, 1992); pT1 = posterior predictive p-value for the mean; pT2 = 

posterior predictive p-value for the covariance. 
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Table S17 

Sample Characteristics for Experiment 2 Including Only Participants Without Daytime Naps 

Variable Total  No test expectation  Test expectation    

   Wake  Sleep  Wake  Sleep    

 M SD  M SD  M SD  M SD  M SD F(3, 64) t(33) p 

Age, in years 22.04 4.86  23.67 8.80  22.31 3.07  21.89 3.31  20.91 2.51 0.97  .411 

SSS, learning session 2.78 1.06  2.33 1.05  2.92 1.32  2.61 0.92  3.14 0.94 2.03  .119 

SSS, testing session 2.78 1.23  3.27 0.80  2.54 1.39  3.11 1.41  2.32 1.09 2.58  .061 

rMEQ, sum score 15.13 3.56  15.33 4.01  14.62 4.17  14.22 3.28  16.05 3.03 0.98  .407 

Sleep duration, 
self-report 

      7.42 0.81     7.48 0.65  0.22 .829 

Sleep duration a       7.82 0.94     7.88 0.74  0.19c .847 

Time awake a       0.01 0.02     0.04 0.14  0.74c .465 

Deep sleep a       1.94 1.15     2.14 0.95  0.55c .588 

Light sleep a       5.88 1.15     5.74 0.92  0.40c .691 

Sleep quality       3.42 1.00     3.55 0.96  0.37c .715 

Repetitions b 0.69 0.89  0.60 0.83  0.46 0.66  1.00 0.77  0.64 1.09 1.11  .352 
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Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced Morningness-Eveningness Questionnaire (Randler, 

2013). The SSS captures sleepiness on a 7-point scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum scores that 

are based on five items (Cronbach’s α = .71). Sum scores can range from 4 to 25 with higher values indicating stronger morning preferences. Sleep duration, 

time awake, deep sleep, and light sleep are reported in hours. Sleep quality was assessed via self-report on a 5-point scale with higher values indicating 

better sleep quality. The no-expectation-wake condition contains 15 participants (14 female), the no-expectation-sleep condition 13 participants (8 female), 

the expectation-wake condition 18 participants (13 female), and the expectation-sleep condition 22 participants (16 female). With the exception of 8 

participants (nno expectation, wake = 1, nno expectation, sleep = 3, nexpectation, wake = 3, nexpectation, sleep = 1), all participants stated that they slept for at least 6 hr in the night 

before the first session of the experiment. All but one participant reported that they did not consume any alcoholic drinks between the first and second 

session. 

a Assessed by a commercial fitness tracker (Xiaomi Mi Band 2). b How many times the sequence of learning phase, distractor task, and immediate cued recall 

task was repeated until participants responded at least 60% correctly on the immediate cued recall task. c df = 32, because sleep quality was not captured 

for one participant and the fitness tracker did not record any data for another participant. 
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Table S18 

Means and Standard Errors for the Memory Performance Measures in Experiment 2 Including Only 

Participants Without Daytime Naps 

Dependent variable No test expectation  Test expectation   

 
Wake 

(n = 15) 
Sleep 

(n = 13) 
 Wake 

(n = 18) 
Sleep 

(n = 22) 
 

F(1, 64) 
 

p 

Immediate cued recall 30.47 (0.51) 30.54 (0.51)  32.39 (0.57) 31.50 (0.40) 0.23 .636 

Delayed cued recall 25.33 (0.79) 29.54 (0.58)  28.00 (0.81) 30.32 (0.52) 0.46 .499 

Cued recall forgetting 5.13 (0.44) 1.00 (0.26)  4.39 (0.31) 1.18 (0.21) 0.54 .464 

Free recall 14.00 (0.66) 16.08 (0.68)  13.94 (0.65) 15.32 (0.43) 0.08 .773 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. F = F value for the interaction of test expectation and wake versus sleep. 
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Table S19 

Maximum-Likelihood Parameter Estimates and Standard Errors of the Encoding-Maintenance-

Retrieval (EMR) Multinomial Model for Experiment 2 Including Only Participants Without Daytime 

Naps 

Parameter No test expectation  Test expectation 

 Wake Sleep  Wake Sleep 

e .77 (.02) .78 (.02)  .82 (.01) .80 (.01) 

m .84 (.02) .96 (.01)  .87 (.01) .96 (.01) 

rc .98 (.01) .98 (.01)  .99 (.01) .99 (.01) 

rf .53 (.03) .53 (.03)  .48 (.02) .50 (.02) 

ss .10 (.02) .06 (.01)  .10 (.01) .06 (.01) 

su .41 (.22) .51 (.19)  .20 (.19) .00 (.49) 

us .16 (.03) .16 (.08)  .23 (.04) .15 (.05) 

uu .10 (.02) .13 (.02)  .11 (.02) .13 (.02) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Standard 

errors of the parameter estimates are presented in parentheses. The model produced a slight misfit, 

G2(12) = 21.77, p = .040. e = probability of successful encoding of word-pair associations; m = 

probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; ss = probability of associated single word retrieval during free recall for successful immediate 

cued-recall retrieval; su = probability of associated single word retrieval during free recall for 

unsuccessful immediate cued-recall retrieval; us = probability of non-associated single word retrieval 

during free recall for successful immediate cued-recall retrieval; uu = probability of non-associated 

single word retrieval during free recall for unsuccessful immediate cued-recall retrieval. 
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Table S20 

Posterior Group Level Means and Posterior Standard Deviations of the Hierarchical Bayesian 

Multinomial Processing Tree (MPT) Analysis with TreeBUGS for Experiment 2 Including Only 

Participants Without Daytime Naps 

Parameter No test expectation  Test expectation 

 Wake Sleep  Wake Sleep 

e .79 (.03) .80 (.03)  .83 (.03) .81 (.02) 

m .85 (.04) .98 (.04)  .88 (.03) .98 (.02) 

rc .98 (.01) .98 (.01)  .99 (.01) .99 (.01) 

rf .51 (.04) .52 (.05)  .47 (.03) .50 (.02) 

ss .10 (.02) .07 (.02)  .10 (.02) .07 (.01) 

su .48 (.23) .48 (.20)  .39 (.26) .24 (.24) 

us .17 (.06) .28 (.18)  .24 (.05) .15 (.10) 

uu .10 (.04) .14 (.03)  .12 (.03) .13 (.02) 

Note. The table shows the estimated success probabilities of latent cognitive processes. Posterior 

standard deviations are presented in parentheses. There was good MCMC chain convergence (R̂ < 

1.05) and model fit (no-expectation-wake condition: pT1 = .47, pT2 = .48; no-expectation-sleep 

condition: pT1 = .25, pT2 = .47; expectation-wake condition: pT1 = .37, pT2 = .46; expectation-sleep 

condition: pT1 = .13, pT2 = .24). e = probability of successful encoding of word-pair associations; m = 

probability of maintaining encoded associations across the retention interval; rc = probability of 

retrieving stored associations in cued recall; rf = probability of retrieving stored associations in free 

recall; ss = probability of associated single word retrieval during free recall for successful immediate 

cued-recall retrieval; su = probability of associated single word retrieval during free recall for 

unsuccessful immediate cued-recall retrieval; us = probability of non-associated single word retrieval 

during free recall for successful immediate cued-recall retrieval; uu = probability of non-associated 

single word retrieval during free recall for unsuccessful immediate cued-recall retrieval; R̂ = potential 



SUPPLEMENTAL MATERIALS: EFFECTS OF ENCODING STRENGTH AND TEST EXPECTATION ON THE SLEEP BENEFIT 27 

scale reduction factor (Gelman & Rubin, 1992); pT1 = posterior predictive p-value for the mean; pT2 = 

posterior predictive p-value for the covariance. 
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Table S21 

Sample Characteristics for Experiment 2 Including all Participants Previously Excluded due EMR Model Specific Exclusion Criteria 

Variable Total  No test expectation  Test expectation    

   Wake  Sleep  Wake  Sleep    

 M SD  M SD  M SD  M SD  M SD F(3, 70) t(35) p 

Age, in years 22.12 4.70  23.61 8.05  22.29 2.95  21.84 3.22  21.09 2.59 1.00  .398 

SSS, learning session 2.80 1.03  2.44 1.04  2.93 1.27  2.63 0.90  3.13 0.92 1.79  .157 

SSS, testing session 2.74 1.25  3.28 0.89  2.43 1.40  3.00 1.45  2.30 1.06 2.80  .046 

rMEQ, sum score 14.96 3.63  14.67 4.04  14.64 4.01  13.95 3.41  16.22 3.07 1.52  .218 

Sleep duration, 
self-report 

      7.48 0.81     7.49 0.64  0.03 .977 

Sleep duration a       7.80 0.90     7.87 0.72  0.24c .812 

Time awake a       0.01 0.02     0.04 0.14  0.76c .451 

Deep sleep a       1.99 1.12     2.18 0.95  0.53c .597 

Light sleep a       5.81 1.13     5.69 0.93  0.35c .730 

Sleep quality       3.46 0.97     3.57 0.95  0.31c .756 

Repetitions b 0.70 0.86  0.61 0.78  0.50 0.65  1.00 0.75  0.65 1.07 1.13  .344 
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Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced Morningness-Eveningness Questionnaire (Randler, 

2013). The SSS captures sleepiness on a 7-point scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum scores that 

are based on five items (Cronbach’s α = .73). Sum scores can range from 4 to 25 with higher values indicating stronger morning preferences. Sleep duration, 

time awake, deep sleep, and light sleep are reported in hours. Sleep quality was assessed via self-report on a 5-point scale with higher values indicating 

better sleep quality. The no-expectation-wake condition contains 18 participants (15 female), the no-expectation-sleep condition 14 participants (8 female), 

the expectation-wake condition 19 participants (14 female), and the expectation-sleep condition 23 participants (16 female). With the exception of 9 

participants (nno expectation, wake = 2, nno expectation, sleep = 3, nexpectation, wake = 3, nexpectation, sleep = 1), all participants stated that they slept for at least 6 hr in the night 

before the first session of the experiment. All but one participant reported that they did not consume any alcoholic drinks between the first and second 

session. 

a Assessed by a commercial fitness tracker (Xiaomi Mi Band 2). b How many times the sequence of learning phase, distractor task, and immediate cued recall 

task was repeated until participants responded at least 60% correctly on the immediate cued recall task. c df = 34, because sleep quality was not captured 

for one participant and the fitness tracker did not record any data for another participant. 
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Table S22 

Means and Standard Errors for the Memory Performance Measures in Experiment 2 Including all 

Participants Previously Excluded due EMR Model Specific Exclusion Criteria 

Dependent variable No test expectation  Test expectation   

 
Wake 

(n = 18) 
Sleep 

(n = 14) 
 Wake 

(n = 19) 
Sleep 

(n = 23) 
 

F(1, 70) 
 

p 

Immediate cued recall 30.83 (0.51) 31.21 (0.56)  32.74 (0.56) 31.87 (0.43) 0.37 .547 

Delayed cued recall 26.11 (0.74) 30.14 (0.60)  28.37 (0.78) 30.74 (0.54) 0.37 .543 

Cued recall forgetting 4.72 (0.40) 1.07 (0.24)  4.37 (0.29) 1.13 (0.20) 0.12 .727 

Free recall 14.06 (0.58) 16.00 (0.62)  14.37 (0.64) 15.52 (0.42) 0.12 .730 

Note. The table shows the mean number of words (cued recall) and word pairs (free recall) correctly 

recalled in the respective memory test. Standard errors of the mean are presented in parentheses. 

Cued recall forgetting represents the difference between immediate and delayed cued recall 

performance. F = F value for the interaction of test expectation and wake versus sleep. 
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Additional Memory Performance Analysis for Experiment 2 Including all Participants Previously 

Excluded due EMR Model Specific Exclusion Criteria 

Because we excluded four participants based on the application of the exclusion criteria 

recommended for the EMR model, we performed all ANOVAs for the memory performance analysis 

again, this time including the previously excluded participants (i.e., new sample size: nno expectation/wake 

= 18, nno expectation/sleep = 14, nexpectation/wake = 19, nexpectation/sleep = 23). As in the main analysis, none of our 

analyses showed a significant main effect of test expectation, delayed cued recall: F(1, 70) = 1.10, 

MSE = 33.03, p = .297, ηp
2 = .02; cued recall forgetting: F(1, 70) = 0.06, MSE = 6.22, p = .803, ηp

2 < 

.001; free recall: F(1, 70) = 0.01, MSE = 23.44, p = .943, ηp
2 < .001. Also in line with the main analysis, 

we found a statistically significant main effect of wake versus sleep with better memory 

performance after sleep compared to wakefulness in delayed cued recall, F(1, 70) = 5.56, MSE = 

33.03, p = .021, ηp
2 = .07, and cued recall forgetting, F(1, 70) = 34.19, MSE = 6.22, p < .001, ηp

2 = .33. 

However, again no statistically significant main effect of wake versus sleep emerged in free recall: 

F(1, 70) = 1.83, MSE = 23.44, p = .180, ηp
2 = .03. Furthermore, consistent with the main analysis, no 

statistically significant interaction effects of test expectation and wake versus sleep emerged; 

delayed cued recall: F(1, 70) = 0.37, MSE = 33.03, p = .543, ηp
2 = .01; cued recall forgetting: F(1, 70) = 

0.12, MSE = 6.22, p = .727, ηp
2 = .002; free recall: F(1, 70) = 0.12, MSE = 23.44, p = .730, ηp

2 = .002. 

Furthermore, the result patterns for immediate cued recall did not differ between the previous and 

current analyses; main effect of test expectation: F(1, 70) = 1.54, MSE = 19.07, p = .219, ηp
2 = .02; 

main effect of wake versus sleep: F(1, 70) = 0.06, MSE = 19.07, p = .814, ηp
2 < .001; interaction effect 

of test expectation and wake versus sleep: F(1, 70) = 0.37, MSE = 19.07, p = .547, ηp
2 = .01. Thus, 

using the larger sample size of N = 74, we observed similar results (for sample characteristics, sample 

means and standard errors of all experimental conditions, see Tables S21 and S22). 
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Abstract 

For retention intervals of up to 12 hr, the active systems consolidation hypothesis (Inostroza & Born, 

2013; Klinzing et al., 2019) predicts that sleep compared to wakefulness strengthens the context 

binding of memories previously established during encoding. Sleep should thus improve source 

memory. We tested this prediction in two online source-monitoring experiments using intentionally 

learned pictures as items and incidentally learned screen positions and frame colors as source 

dimensions. In Experiment 1, we examined source memory by varying the spatial position of pictures 

on the computer screen. Multinomial modeling analyses revealed a significant sleep benefit in 

source memory. In Experiment 2, we manipulated both the spatial position and the frame color of 

pictures orthogonally to investigate source memory for two different source dimensions at the same 

time, also allowing exploration of bound memory for both source dimensions. The sleep benefit on 

spatial source memory replicated. In contrast, no source memory sleep benefit was observed for 

either frame color or bound memory of both source dimensions, probably as a consequence of a 

floor effect in incidental encoding of color associations. In sum, the results of both experiments 

show that sleep within a 12-hr retention interval improves source memory for spatial positions, 

supporting the prediction of the active systems consolidation hypothesis. However, additional 

research is required to clarify the impact of sleep on source memory for other context features and 

bound memories of multiple source dimensions. 

 

Keywords: episodic memory, source memory, consolidation during sleep, binding, multinomial 

processing tree modeling 
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Does Sleep Benefit Source Memory?  

Investigating 12-hr Retention Intervals with a Multinomial Modeling Approach 

Episodic memory refers to memory for past events, experiences, or the source (context)1 of 

information (e.g., location, time; Tulving, 2002). Empirical evidence from neuroimaging techniques 

such as functional magnetic resonance imaging (fMRI) points to a crucial role of the hippocampus in 

episodic memory (for reviews, see Eichenbaum et al., 2007; Mitchell & Johnson, 2009). Specifically, 

the hippocampus appears to bind the content of memories (i.e., item memory) to its unique context 

(i.e., source memory) during encoding. 

Our present research addresses the role of sleep in these source binding processes. Almost a 

century of research in neuroscience and psychology has impressively shown that episodic memory is 

supported by sleep (for a recent meta-analysis, see Berres & Erdfelder, 2021). One mechanism 

assumed to underlie the sleep benefit in episodic memory is memory consolidation. As such, 

memory consolidation during sleep increases episodic memory storage by converting recently 

encoded and therefore labile memories into more stable long-term memory representations 

(Buzsáki, 1998; Diekelmann & Born, 2010; Dudai, 2004, 2012; Dudai et al., 2015; Klinzing et al. 2019; 

Rasch & Born, 2013). There are various theories that explain sleep benefits in episodic memory by 

memory consolidation, such as the sequential hypothesis2 (Ambrosini & Giuditta, 2001; Giuditta, 

2014; Giuditta et al., 1995) and the synaptic homeostasis hypothesis3 (Cirelli & Tononi, 2015; Tononi 

& Cirelli, 2003, 2006, 2014, 2020). In the current work, we focus on memory consolidation as 

proposed by the active systems consolidation hypothesis (Born & Wilhelm, 2012; Diekelmann & 

Born, 2010; Feld & Born, 2017; Inostroza & Born, 2013; Klinzing et al., 2019; Rasch & Born, 2013). 

 
1 We use the terms source and context interchangeably. This is in line with the more general definition of 
source in the source-monitoring framework (Johnson et al., 1993) that comprises both context features (e.g., 
spatial position) and internal features (e.g., cognitive operations; Mitchell & Johnson, 2009). 
2 The sequential hypothesis states that memories are consolidated in two consecutive steps during slow-wave 
sleep (SWS) and rapid eye movement (REM) sleep (Ambrosini & Giuditta, 2001; Giuditta, 2014; Giuditta et al., 
1995). 
3 The synaptic homeostasis hypothesis states that sleep renormalizes synaptic connections that were 
strengthened during wakefulness, thereby restoring cellular homeostasis (Cirelli & Tononi, 2015; Tononi & 
Cirelli, 2003, 2006, 2014, 2020). 
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This hypothesis is arguably “the currently most integrative account of sleep-dependent memory 

consolidation” (Klinzing et al., 2019, p. 1598), because it incorporates aspects of various 

consolidation theories—including the sequential and synaptic homeostasis hypothesis. Specifically, 

the active systems consolidation hypothesis states that during wakefulness, components of a 

memory representation (e.g., color, texture, odor of a fruit) are formed and distributed across 

various neocortical brain areas. In parallel, the hippocampus binds these components to a unique 

memory representation. During subsequent sleep, especially during slow-wave sleep (SWS), the 

hippocampal memory representation is replayed by reactivating specific neuronal firing patterns 

(Klinzing et al., 2019; Lewis & Durrant, 2011; O’Neill et al., 2010; Pfeiffer, 2020; Wilson & 

McNaughton, 1994). These local synaptic upscaling processes strengthen not only synaptic 

connections in the hippocampus and thus stabilize the hippocampal memory representation but also 

strengthen the separate components of the memory representation by triggering replay in the 

various neocortical brain areas. Simultaneously, global synaptic downscaling renormalizes the 

strength of synaptic connections across all cortical and subcortical areas by diminishing neuronal 

firing rates (Feld & Born, 2017; Klinzing et al., 2019). It is assumed that the combination of local 

synaptic upscaling and global synaptic downscaling in the hippocampus and neocortex results in a 

net strengthening of episodic context-bound hippocampal memory representations for relatively 

short retention intervals (e.g., 12 hr) and more gist-like decontextualized neocortical memory 

representations for longer retention intervals (e.g., 3 days; Klinzing et al., 2019). This assumption is 

supported by studies indicating a strengthening but no decontextualization of episodic memories 

within 10 to 12 hr after learning (e.g., Jurewicz et al., 2016; Lutz et al., 2017). In brief, according to 

the active systems consolidation hypothesis, sleep compared to wakefulness within a 12-hr 

retention interval should strengthen associations between the components of a memory 

representation that were previously established during encoding. 

To investigate the sleep benefit in episodic memory, researchers have often used item-item 

associations such as word pairs as stimulus material (Diekelmann et al., 2009; Klinzing et al., 2019; 
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for a meta-analysis on single words and word pairs, see Berres & Erdfelder, 2021). By contrast, only a 

few studies investigated the sleep benefit using item-source associations (for a discussion of 

functional differences between item-item and item-source associations, see Mayes et al., 2007). In 

the following section, we review the rather mixed outcomes of item-source association studies 

conducted so far. 

Overview of Research on Sleep Benefits in Source Memory 

Using a split-night design, Rauchs et al. (2004) found better free recall performance for spatial 

positions (i.e., top vs. bottom) of words in a what-where-when task after sleep in the second half of 

the night (i.e., sleep predominantly characterized by rapid eye movement [REM] sleep) compared to 

wakefulness. In contrast, sleep-wake comparisons in the second half of the night for word-list 

associations (i.e., temporal source memory, “when” dimension) showed no significant differences. 

Correspondingly, the authors found no significant differences for sleep-wake comparisons in the first 

half of the night (i.e., sleep predominantly characterized by SWS) for spatial positions and lists. 

Furthermore, all sleep-wake comparisons for spatial positions and lists in the subsequent recognition 

test were insignificant. When comparing sleep deprivation in the first versus the second half of the 

night, the authors found better free recall performance for word positions after SWS deprivation 

than after REM sleep deprivation (Rauchs et al., 2004). These results suggest that REM sleep 

contributes to the sleep benefit in item-position associations, thereby conflicting with the active 

systems consolidation hypothesis which considers SWS to be more important for memory 

consolidation. However, in line with the consolidation hypothesis, other split-night studies showed 

worse memory of the frame color and spatial position for neutral pictures after SWS deprivation 

than after REM sleep deprivation, pointing to a pivotal role of SWS for memory performance (see 

Groch et al., 2015; Sopp et al., 2017). 

The results were also mixed for studies comparing naps versus wakefulness during the day or 

early evening: Wang and Fu (2009) as well as Köster et al. (2017) found no significant differences 

between sleep and wakefulness for picture-background color associations, contradicting the active 
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systems consolidation hypothesis. By contrast, van der Helm et al. (2011) found a significant sleep 

benefit in source memory for word-context associations in line with the active systems consolidation 

hypothesis. Further support is provided by Lewis et al. (2011, Experiment 2), who observed 

significantly less forgetting after sleep than wakefulness in source memory for object-background 

photo associations. 

Classical sleep study designs that compared nighttime sleep and daytime wakefulness using 

retention intervals up to 12 hr resulted in somewhat stronger evidence for sleep-induced context 

memory improvements as predicted by the active systems consolidation hypothesis. Lewis et al. 

(2011) made use of such a design in their first experiment and found results very similar to their nap 

study in Experiment 2. Also using a retention interval of 12 hr filled with either sleep or wakefulness, 

Mawdsley et al. (2014) observed a significant sleep benefit in source memory for word-position 

associations. Wang et al. (2017) investigated the sleep benefit for word pair-temporal context 

associations in children. Specifically, children learned two lists of word pairs with 1 hr between 

learning of the first and second list (temporal context). After a retention interval of 11 hr, memory 

for word pairs was tested with a cued recall task. In addition, children were asked to indicate the list 

of the respective word pair. The authors found that interpolated sleep compared to wakefulness 

improved memory for word pairs and the temporal context but not for word pair-temporal context 

associations, which contradicts the active systems consolidation hypothesis (Wang et al., 2017). 

Overall, the empirical evidence concerning sleep benefits in source memory is thus quite mixed. 

The reviewed studies differ in several aspects that may explain the mixed results observed with 

respect to the sleep benefit in item-context associations. For example, researchers have not only 

used a wide variety of sleep study designs (i.e., split-night designs, daytime naps, nighttime naps, 

natural sleep and wakefulness), but also different stimulus materials for items (i.e., single words, 

word pairs, pictures) and sources (i.e., spatial positions, frame colors, background colors, 

background photos, posters, lists), next to different encoding instructions (i.e., intentional learning 
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of item-context associations, incidental learning of item-context associations, intentional learning of 

items but incidental learning of contexts). 

Further important, the source memory measures used likely contribute to the inconsistent results 

pattern. According to the source-monitoring framework, multiple cognitive processes such as 

memory, decision making, guessing, and response biases are involved in making judgments about 

the origin of a memory (Johnson et al., 1993). These cognitive processes are confounded in 

frequently used standard measures of source memory (cf. Batchelder & Riefer, 1990). Source 

memory is often measured by simply counting the number of correct source attributions (e.g., Groch 

et al., 2015; Lewis et al., 2011; Mawdsley et al., 2014; Wang et al., 2017) or by using the source 

identification measure (SIM; e.g., van der Helm et al., 2011), defined as the proportion of correct 

source attributions for all target items, irrespective of whether they were identified as “old” or 

“new”. Another frequently used measure for source memory is the average conditional source 

identification measure (ACSIM; Rauchs et al., 2004; Sopp et al., 2017; Wang & Fu, 2009), defined as 

the proportion of correct source attributions for all target items correctly identified as “old”, 

averaged across the two sources (e.g., left, right). Although item and source memory are somewhat 

less confounded in ACSIM than in SIM, all of the listed source memory measures confound item 

memory, source memory, and guessing to some degree (Bröder & Meiser, 2007; Murnane & Bayen, 

1996). We therefore argue that more rigorous and less contaminated measures of source memory 

are required to test whether sleep compared to wakefulness strengthens the context binding of 

episodic memories for retention intervals up to 12 hr, as predicted by the active systems 

consolidation hypothesis (Inostroza & Born, 2013; Klinzing et al., 2019). 

The Current Experiments 

We tested the sleep-strengthens-source-memory hypothesis in two experiments using 

multinomial processing-tree models to disentangle cognitive processes that are likely confounded in 

commonly used measures of source memory. In Experiment 1, we manipulated the spatial position 

of pictures on a computer screen in a standard source-monitoring task (e.g., Bayen et al., 1996; 
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Murnane & Bayen, 1996) to investigate source memory for item-context associations after a 12-hr 

retention interval filled with either a period of nighttime sleep or daytime wakefulness. We 

conducted a second experiment with the main purpose to conceptually replicate the results for 

spatial position memory of Experiment 1. In Experiment 2, we additionally manipulated the frame 

color orthogonally to the spatial position of pictures. This allowed us to explore two additional 

research questions: First, can the results for spatial position memory be generalized to other source 

dimensions (i.e., frame color memory)? Second, does sleep compared to wakefulness benefit 

memory for context-context associations (i.e., bound source memory for spatial position and frame 

color)? 

Methodological Considerations 

In both experiments, we explicitly instructed participants to study the pictures for a later 

recognition test (i.e., intentional learning of items), whereas no such instruction was provided for 

their sources (i.e., sources were learned incidentally). To counteract possible floor effects in source 

memory, participants performed an orienting task during the learning phase that requires attending 

to the relevant source information but involves no rehearsal (i.e., indicating spatial positions using 

response keys; cf. Boywitt & Meiser, 2012). By preventing participants from using explicit rehearsal 

strategies for item-context and context-context associations, this approach creates a more realistic 

setting for examining everyday source monitoring. Note that most previous studies on the sleep 

benefit concerning context-binding employed intentional learning of item-context associations (for 

incidental learning, for example, see Mawdsley et al., 2014; Wang et al., 2017). 

To allow comparisons with previous studies, we report hit rates and false-alarm rates in addition 

to the sensitivity index d’ and response bias c for item memory. Whereas sensitivity and response 

bias are confounded in hit rates (i.e., proportion of target items correctly identified as “old”) and 

false-alarm rates (i.e., proportion of distractor items falsely identified as “old”), sensitivity and 

response bias are separated in d’ and c as derived from the signal detection theory (SDT; Stanislaw & 

Todorov, 1999; e.g., van der Helm et al., 2011). Specifically, larger positive values of d’ indicate 
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better discrimination between target and distractor items. Response bias c denotes the general 

tendency to respond “old” or “new”, with larger negative values indicating a stronger “old”-response 

bias, values close to zero no response bias, and larger positive values a stronger “new”-response bias 

(Stanislaw & Todorov, 1999). 

For source memory, we report the average conditional source identification measure (ACSIM), 

defined as the proportion of correct source attributions for all target items correctly identified as 

“old”, averaged across the two sources (e.g., left, right) of a source dimension (e.g., spatial position; 

Murnane & Bayen, 1996). Because ACSIM is not defined when all target items correctly identified as 

“old” are assigned to the same source (e.g., right) of a source dimension (e.g., spatial position), we 

report the conditional source identification measure (CSIM) in these cases. This measure is defined 

as the averaged proportion of correct source attributions for all target items correctly identified as 

“old”. For ACSIM and CSIM, larger positive values indicate better source memory. Note, however, 

that both measures confound source memory with item memory in some circumstances, for 

example, when targets are identified as “old” based on guessing (Bayen et al., 1996; for a detailed 

discussion, see Murnane & Bayen, 1996). 

In contrast to ACSIM and CSIM, multinomial processing tree (MPT) models allow to disentangle 

source memory from item memory and guessing (for reviews on this model class and a MPT tutorial, 

see Batchelder & Riefer, 1999; Erdfelder et al., 2009; Schmidt et al., 2023). MPT models have 

therefore gained considerable popularity in source memory research (e.g., Arnold et al., 2019; Bell et 

al., 2017; Boywitt & Meiser, 2012; Kuhlmann et al., 2016). There are several options for fitting MPT 

models to empirical data (e.g., Heck et al., 2018; Moshagen, 2010), with complete and partial 

pooling being the two most often used methods. Specifically, in the complete pooling approach, 

observed category frequencies are aggregated across participants, and the maximum likelihood (ML) 

method is used to obtain MPT-parameter estimates. In contrast to complete pooling, the partial 

pooling approach explicitly accounts for potential individual differences between participants by 

combining information on the individual and group level. For individual and group-level parameter 
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estimation, partial pooling relies on a Bayesian approach employing Markov-chain Monte Carlo 

(MCMC) methods (Heck et al., 2018). Here we used both methods to check whether our results are 

robust against the different distributional assumptions involved in complete and partial pooling. We 

used the software multiTree (Moshagen, 2010) and the latent-trait approach (Klauer, 2010) as 

implemented in the R package TreeBUGS (Heck et al., 2018) for complete and partial pooling, 

respectively. 

Transparency and Openness 

Hypotheses, study design, sample size, and analysis plan were preregistered for Experiment 1 

(https://osf.io/gctzn) and Experiment 2 (https://osf.io/a6z4u). For both experiments, the data and 

stimulus materials are available at the Open Science Framework (OSF; 

https://osf.io/8rmj2/?view_only=02e5eec5c3e54fd4aff3d55eedebffa7). In the respective Method 

sections, we provide detailed information about the MPT models used, sample size determination, 

and data exclusions. 

Experiment 1 

To reiterate, according to the active systems consolidation hypothesis, the hippocampus binds 

the content (i.e., item memory) and its unique context (i.e., source memory) to a unique memory 

representation during encoding. This memory representation is replayed during subsequent sleep 

which should result in better item and source memory compared to wakefulness (Feld & Born, 2017; 

Klinzing et al., 2019). For a 12-hr retention interval, the active systems consolidation hypothesis thus 

predicts that both item memory and source memory should benefit from sleep. To test these two 

hypotheses, we used the two-high-threshold MPT model of source monitoring (2HTSM) shown in 

Figure 1. The 2HTSM model performed best in a comparative validation study of source monitoring 

models (Bayen et al., 1996). As such, this model is based on a standard source-monitoring task in 

which participants study items from two sources and are subsequently asked whether the item was 

previously presented, and if so, in which source (e.g., Bayen et al., 1996; Murnane & Bayen, 1996). 

The 2HTSM provides separate parameters for item memory, source memory, and guessing. 
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Specifically, participants correctly recognize a target item presented in source A or B as “old” or a 

distractor item as “new” with probability D. Conditionally on correct item recognition, participants 

correctly identify the source with probability d. However, if item memory (1 - D) or source memory 

(1 - d) fails, participants are assumed to guess. In case of successful item memory but failing source 

memory, participants correctly guess the source of a target item with probability a. If item memory 

fails, participants guess “old” with probability b. Finally, if both item and source memory fail, 

participants correctly guess the source with probability g (Bayen et al., 1996). 

In the most general version of the 2HSTM, item memory, source memory, and source guessing 

may vary between item types and sources as illustrated in Figure 1. To arrive at an identifiable and 

most parsimonious 2HTSM submodel that still fits the data, we first tested invariance of item 

memory with respect to item types and sources, followed by invariance tests of source memory, and 

finally guessing. By using this principled strategy, we aimed at identifying a submodel with a 

minimum of precisely estimable parameters (see Bayen et al., 1996). 

According to the active systems consolidation hypothesis, the corresponding item memory and 

source memory parameters should both be larger when participants sleep during the 12-hr 

retention interval than when they stay awake. 

Method 

In this experiment, we compared participants randomly assigned to a wake versus sleep 

condition. Whereas participants in the wake condition learned the material in the morning and were 

tested in the evening after a 12-hr retention interval of daytime wakefulness, this was reversed for 

participants in the sleep condition who were tested after a period of nighttime sleep. Crucially note 

that previous research showed comparable performance in learning as well as testing parameters by 

using the same sleep study design, showing that circadian effects are not a serious confound in this 

design (e.g., Abel & Bäuml, 2012, 2013a, 2013b, 2014; Bäuml et al., 2014; Erdfelder et al., 2022; Fenn 

& Hambrick, 2013). 

Participants 
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We determined the necessary sample size a priori by conducting two power analyses: First, 

despite our directional predictions, we conservatively performed an a priori power analysis for a 

two-tailed t test with two independent groups using G*Power 3.1 (Faul et al., 2007). Given a medium 

effect size (Cohen’s d = 0.50), a conventional α-level of .05, and a target-power of 1 - β = .80, the 

analysis resulted in a total sample size of 128 participants. Second, we determined the necessary 

sample size for the model-based analysis using multiTree (Moshagen, 2010). Assuming a sleep-wake 

difference of .10 in the crucial parameter (D or d, depending on the hypothesis), an analysis based 

on 130 participants, 60 target items, and 30 distractor items resulted in a power larger than .99 for 

the item memory parameter D and a power of .96 for the source memory parameter d (for more 

detailed information, see the preregistration on the OSF, https://osf.io/gctzn). Thus, we strove for a 

sample of 130 participants. Data collection took place from fall 2020 to spring 2021. Note that we 

extended the data collection phase until we reached the desired number of participants because 

data collection was slow and only a fraction of the targeted sample size was collected within the 

preregistered three months. 

In total, 174 participants recruited via mailing lists of the University of Mannheim, social media, 

personal contacts, and the online research platform Prolific (https://www.prolific.co; Palan & 

Schitter, 2018; Peer et al., 2017) took part in the online experiment. After successful completion of 

the experiment, 103 participants recruited via Prolific (59.20%) were paid a flat fee of £ 4.50, 

whereas 71 participants recruited through other channels (40.80%) either received corresponding 

course credits or were eligible to win vouchers. Due to random assignment to the wake versus sleep 

condition, the number of participants who were paid (nwake = 50, nsleep = 53), received corresponding 

course credits or were eligible to win vouchers (nwake = 40, nsleep = 31) were approximately balanced 

across the experimental conditions.4 Note that the experiment was successfully completed only if 

 
4 To check whether our results are confounded by the type of compensation, we conducted additional 
exploratory analyses based on the analyzed data of Experiment 1 and Experiment 2. Results are provided in 
the Supplemental Materials (see Table S2 and S5). There was no evidence that item memory (i.e., hit rates, d’) 
and ACSIM-based source memory performance in the wake and sleep conditions were affected by the type of 
compensation. 
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the following two conditions were met: First, all parts of the experiment had to be completed within 

the set time frames (i.e., registration, learning, and testing session). Second, more than 50% of the 

responses in the orienting task had to be correct. 

Following the preregistered exclusion criteria, 23 participants were excluded from the analysis, 

because they indicated that they were distracted or disturbed during the experiment. Another four 

participants had to be excluded because the retention interval was not within 11–13 hr. 

Furthermore, seven participants of the wake condition were excluded because they napped during 

the retention interval, and two participants were excluded because they reported having 

neurological disorders. We also excluded two participants because of substantial alcohol 

consumption (i.e., females were excluded if they consumed more than 20 g alcohol, males were 

excluded if they consumed more than 40 g alcohol), and one participant with a larger false-alarm 

rate than hit rate. Three additional participants were excluded for unforeseen reasons not included 

in the preregistration: One participant reported using memory aids (e.g., notes, screenshots), one 

participant reported technical problems, and another participant assigned to the wake condition 

delayed the start of the experiment so that it started in the evening instead of the morning. In sum, 

we excluded 42 participants, leaving 132 participants for analysis, all of them fluent in German. The 

132 participants were between 18 and 35 years of age (M = 26.77 years, SD = 4.48), 84 (63.64%) 

were female (see Table S1 in the Supplemental Materials for more detailed sample characteristics). 

Materials 

We selected 160 colored object photos from the bank of standardized stimuli (BOSS; Brodeur et 

al., 2010) of which 60 randomly chosen target pictures were displayed on either the left or right side 

of the screen (i.e., 30 pictures each were displayed at the 10% and 90% position on the x-axis). Thus, 

spatial positions of pictures (left vs. right) served as the two sources of interest. Another 30 pictures 

were randomly selected as distractors, and four additional pictures were randomly selected as 

buffer items which were included at the start of the learning phase to prevent primacy effects. Note 

that we decided against including a recency buffer because of the 12-hr retention interval. A list of 
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the 160 pictures and detailed information about the selection criteria are available at the OSF 

(https://osf.io/8rmj2/?view_only=02e5eec5c3e54fd4aff3d55eedebffa7). 

Procedure 

The online experiment was conducted with SoSci Survey (Leiner, 2020), using lab.js (Henninger et 

al., 2022) for stimulus presentation during the study phase, and consisted of three parts: 

registration, learning, and testing session. In the registration session, participants gave informed 

consent before being randomly assigned to either the sleep or wake condition. They were asked to 

pick a date and time for the first session in line with their randomly predetermined condition (i.e., 

wake condition: 7 a.m. to 10 a.m.; sleep condition: 7 p.m. to 10 p.m.) and were informed that the 

second session starts 12 hr later. Participants received the access link via email or Prolific notification 

15 min before the start of the learning session. During the study phase, 64 randomly selected 

pictures (i.e., 4 buffer and 60 target items) were sequentially presented on the left or right side of 

the screen for 4 s each with an interstimulus interval of 1 s (i.e., blank white screen for 500 ms 

followed by a fixation cross for 500 ms). While a picture was presented on the screen, participants 

performed the orienting task, which entailed pressing the correct button for the spatial position. The 

two buttons labeled “left” and “right” were arranged next to each other and were displayed below 

the picture. Only participants who answered with the correct spatial position for more than 50% of 

the 64 pictures completed the learning session and were invited to the testing session 12 hr later. 

Again, participants received the access link via email or Prolific notification 15 min before the session 

started. For the testing session, the 60 target items were intermixed with 30 distractor items and 

presented in the middle of the screen with two buttons labeled “old” and “new” below. Note that 

we varied the spatial position of the labels “old” and “new” randomly between participants but kept 

it constant within participants. By pressing one of the two buttons, participants indicated whether 

the picture was presented during the study phase (“old”) or not (“new”). If participants answered 

“old”, they were asked whether the picture was presented left or right and to respond with the 

corresponding button. This task was followed by control and demographic questions (for details, see 
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the preregistration on the OSF, https://osf.io/gctzn), before participants were finally thanked and 

debriefed. 

Results 

We set a significance level of α = .05 for all analyses. For hit and false alarm rates as well as d’ and 

c measures of item recognition we report means, standard errors, and t-test results in Table 1.5 

Regarding item memory, all two-tailed t tests for two independent groups showed insignificant 

differences between the sleep and wake condition, t(130) ≤ 1.62, p ≥ .107 (see Table 1). In contrast, 

source memory as measured by ACSIM significantly benefitted from sleep, t(130) = 3.46, p = .001, 

estimated Cohen’s d = 0.59 (sleep condition: M = 0.77, SE = 0.01; wake condition: M = 0.69, SE = 

0.01). Taken together, using commonly applied measures of item and source memory, we found 

statistically significant evidence for a sleep benefit in source memory but not in item memory. 

The most parsimonious model we originally aimed at—Submodel 4 of the 2HTSM with parameter 

D for item memory, parameter d for source memory, and parameters b and g for guessing (Bayen et 

al., 1996; see the preregistration on the OSF, https://osf.io/gctzn)—produced considerable misfit for 

the aggregated data, G2(4) = 10.21, p = .037. While invariance of item and source memory 

parameters across item types and sources turned out to be unproblematic, assuming invariance of 

source guessing parameters a and g in addition resulted in the observed misfit. Hence, applying 

Submodel 5a of the 2HTSM (Bayen et al., 1996)—with a single parameter D for item memory, a 

single parameter d for source memory, and three parameters a, b, and g for guessing—resulted in a 

good fit, G2(2) = 1.78, p = .411. The ML parameter estimates, standard errors, and 95% confidence 

intervals of Submodel 5a for the wake and sleep condition are summarized in Table 2. We found a 

statistically significant difference between sleep versus wake conditions in the item memory 

parameter D, ΔG2(1) = 13.66, p < .001. The item memory parameter estimate for the sleep condition 

 
5 In both experiments, we calculated the sensitivity index d’ by Zhit rate - Zfalse-alarm rate and response bias c by -0.5 
* (Zhit rate + Zfalse-alarm rate), with Z denoting the probit transformation (see, for example, Stanislaw & Todorov, 
1999). Note that we used the log-linear rule (i.e., adding 0.50 to hits, false alarms, misses, and correct 
rejections; Hautus, 1995) to obtain estimates of d’ and c even in case of extreme hit rates and false alarm rates 
of 0 or 1. 
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was almost 5% larger than for the wake condition. Similarly, the source memory parameter d also 

differed significantly between conditions, ΔG2(1) = 31.30, p < .001, with about 15% higher source 

memory estimates after sleep than after wakefulness. Concerning the guessing parameters, we 

found significantly more “old”-guessing in the wake than the sleep condition (parameter b), ΔG2(1) = 

6.09, p = .014; and a significantly stronger “left” guessing bias for unrecognized items after sleep 

than after wakefulness (parameter g), ΔG2(1) = 10.13, p = .001. By contrast, there was no statistically 

significant difference between the sleep and wake condition in source guessing for recognized items 

(parameter a), ΔG2(1) = 1.36, p = .243. 

To check the robustness of our results, we reanalyzed the same data in the framework of Klauer’s 

(2010) hierarchical latent-trait model as implemented in TreeBUGS (Heck et al., 2018). As can be 

seen in the Appendix (see Table A1), the estimated group-level means resembled those reported in 

Table 2. We thus conclude that the basic result pattern does not depend on whether complete or 

partial pooling approaches are used for data analysis. 

Discussion 

Both the ACSIM-based and the model-based results suggest that sleep compared to wakefulness 

benefits source memory. This is in line with a core prediction of the active systems consolidation 

hypothesis that sleep benefits source memory for retention intervals of up to 12 hr. 

For item memory, the descriptive result patterns of d’ and the aggregated as well as hierarchical 

model-based analyses suggest that sleep compared to wakefulness might benefit item recognition. 

Whereas item memory was descriptively higher after sleep versus wakefulness in all three analyses, 

the sleep benefit was significant only for complete pooling. This deviance is likely due to different 

analysis-levels (i.e., complete pooling, partial pooling, no pooling) that account for potential 

individual differences to a varying extend. Our results are in line with previous research that uses 

recognition tasks to assess item memory, yielding mixed evidence for the active systems 

consolidation hypothesis: Some studies found a significant sleep benefit in item memory (e.g., 

Köster et al., 2017; Mawdsley et al., 2014; Wang et al., 2017), whereas others did not (e.g., van der 
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Helm et al., 2011; Wang & Fu, 2009). In fact, a recent meta-analysis showed that the sleep benefit 

for word materials is largest in free recall, followed by cued recall, and lastly recognition tasks 

(Berres & Erdfelder, 2021). This suggests that item recognition apparently benefits from sleep only 

slightly, thereby making it difficult to detect these small positive sleep effects in item recognition 

tasks (e.g., Rauchs et al., 2004; Wang & Fu, 2009). 

In sum, Experiment 1 indicates that sleep improves source memory within a 12-hr retention 

interval as predicted by the active systems consolidation hypothesis. However, to establish the 

validity of this conclusion more rigorously, our results require an experimental follow-up evaluation. 

We therefore conducted a second experiment with the aim to conceptually replicate the results for 

spatial position memory. By manipulating frame color orthogonally to the spatial position of pictures 

in Experiment 2, we were able to additionally explore whether the results for spatial position 

memory extent to a second source dimension (i.e., frame color). Furthermore, we explored whether 

sleep within a 12-hr retention interval also strengthens bound memory for spatial position and 

frame color. 

Experiment 2 

As in Experiment 1, we predict that both item memory and source memory should benefit from 

sleep compared to wakefulness in a 12-hr retention interval. Because hippocampal memory 

representations include not only item-context but also context-context associations, we also 

explored whether sleep improves bound memory for two source dimensions. We tested these 

predictions using a reparameterized variant of the MPT model of multidimensional source 

monitoring (Meiser, 2014), shown in Figure 2. Like the 2HTSM, this model is based on a source-

monitoring task that is, however, extended to two source dimensions (e.g., a position dimension 

with sources “left” and “right”, and a color dimension with sources “blue” and “yellow”; Meiser, 

2014). 

The multinomial model of multidimensional source monitoring provides separate parameter 

estimates for item memory, bound source memory (i.e., spatial position plus frame color), unbound 
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source memory (e.g., spatial position only), and guessing. Specifically, participants correctly 

recognize a target item presented by source i of the first source dimension (e.g., “left” or “right” on 

source dimension “spatial position”) and source j of the second source dimension (e.g., “blue” or 

“yellow” on source dimension “frame color”) as “old” with probability Dij or detect a distractor item 

as “new” with probability Dnew. Conditionally on correct item recognition, participants correctly 

identify the source combination (e.g., left and blue, left and yellow, right and blue, right and yellow) 

of recognized items with bound source probability dij. In contrast, if bound source memory fails for 

recognized items (i.e., the source combination is not correctly identified with probability 1 - dij), 

participants can still correctly identify the sources i (e.g., “left” or “right” on source dimension 

“spatial position”) and j (e.g., “blue” or “yellow” on source dimension “frame color”) of either or 

both source dimensions independently with probabilities eij
Position and eij

Color, respectively. However, if 

item memory (1 - Dij), bound source memory (1 - dij), and unbound source memory (1 - eij
Position, 1 - 

eij
Color) fail, participants are assumed to guess. In case of successful item memory but bound-source-

memory and unbound-source-memory failure for either or both source dimensions, participants 

guess source A of source dimension i (e.g., “left” on source dimension “spatial position”) for a target 

item with probability aPosition. They also guess source X of source dimension j (e.g., “blue” on source 

dimension “frame color”) for a target item assigned to source A (e.g., left) or B (e.g., right) of source 

dimension i (e.g., spatial position) with probability a|left
Color or a|right

Color, respectively. If item memory 

fails, participants guess “old” with probability b. For unrecognized target or distractor items 

identified as “old”, participants guess source A of source dimension i (e.g., “left” on source 

dimension “spatial position”) with probability gPosition. In addition, they guess source X of source 

dimension j (e.g., “blue” on source dimension “frame color”) for unrecognized target or distractor 

items assigned to source A (e.g., left) or B (e.g., right) of source dimension i (e.g., spatial position) 

with probability g|left
Color or g|right

Color, respectively (Meiser, 2014). 

In its most general version, the multidimensional source memory model allows for parameters 

that may differ between item types and sources as illustrated in Figure 2. To simplify this model and 
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ensure identifiability of parameters, we employed basically the same principled strategy as 

previously used for the 2HTSM in Experiment 1. Specifically, we successively imposed the following 

set of constraints on the parameters (cf. Meiser, 2014; Meiser & Bröder, 2002): First, the item 

memory parameters Dij were equated across the source dimensions “spatial position” and “frame 

color”, and DNew was constrained to be equal to the resulting item memory parameter D. Second, the 

bound source memory parameters dij were also equated across the source dimensions “spatial 

position” and “frame color” (parameter d). Next, the unbound source memory parameters for 

spatial position eij
Position and frame color eij

Color were equated across the source dimension “frame 

color” (parameter ePosition) and “spatial position” (parameter eColor), respectively (Meiser, 2014; 

Meiser & Bröder, 2002). Finally, additional equality constraints were imposed on the source guessing 

parameters (i.e., aPosition = gPosition, a|left
Color = g|left

Color, a|right
Color = g|right

Color). 

Drawing on the active systems consolidation hypothesis we predict for a 12-hr retention interval 

that the corresponding item memory parameters, bound source memory parameters, and unbound 

source memory parameters ePosition and eColor should be larger after sleep than wakefulness. 

Method 

A 2 × 2 mixed factorial design with source dimension (spatial position vs. frame color) as within-

subject factor and wake versus sleep as between-subjects factor was used in this experiment. Like in 

Experiment 1, participants were randomly assigned to a wake or sleep condition and learned the 

material either in the morning or in the evening before they were tested following a 12-hr retention 

interval. 

Participants 

To determine the necessary sample size for the model-based analysis a priori, we used multiTree 

(Moshagen, 2010). For an α-level of .05 and an assumed difference of .10 in the parameter of 

interest between the sleep and wake condition, the analysis for 130 participants, 120 target items, 

and 60 distractor items resulted in a power larger than .99 for item memory D, a power of .78 for 

bound source memory d, and power values of .67 and .61 for unbound source memories ePosition and 
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eColor, respectively (for more detailed information, see the preregistration on the OSF, 

https://osf.io/a6z4u). As already detailed for Experiment 1, we aimed at a sample size of 130 

participants in Experiment 2 and extended the pre-registered data collection period for the same 

reason as in Experiment 1. Specifically, we collected data from fall 2020 to spring 2021, using the 

same channels for participant recruitment as in Experiment 1. We made sure that participants of 

Experiment 1 did not additionally participate in Experiment 2 and vice versa. 

In total, 175 participants took part in the online experiment and were rewarded for successful 

completion with a flat fee of £ 6.00, as Experiment 2 took longer to complete than Experiment 1. 

Following the preregistered exclusion criteria, 14 participants were excluded because they indicated 

that they were distracted or disturbed during the experiment. One participant admitted not to have 

taken the testing session seriously and was thus excluded. Two further participants were excluded 

because the retention interval was not within 11–13 hr. In addition, we excluded eight participants 

of the wake condition who napped during the retention interval. Another two participants reported 

having neurological disorders and were thus excluded. Furthermore, we excluded two participants 

because of substantial alcohol consumption6, and three participants with larger false-alarm rates 

than hit rates.7 We also excluded nine additional participants for unforeseen reasons not included in 

the preregistration: Four participants reported technical problems, and one participant assigned to 

the wake condition delayed the start of the experiment so that it started at noon instead of the 

morning. Four additional participants were excluded because they indicated having detailed 

knowledge about the study design or the aim of the experiment. In sum, we excluded 41 

participants, leaving 134 participants for analysis, all of them fluent in German. These 134 

participants were between 18 and 35 years of age (M = 25.58 years, SD = 4.51), 84 (62.69%) were 

female (see Table S4 in the Supplemental Materials for more detailed sample characteristics). 

 
6 When excluding all six participants who consumed alcohol (nwake = 4, nsleep = 2), the result patterns for item 
and source memory performance did not change (see Table S6 in the Supplemental Materials). 
7 One participant met the preregistered exclusion criterion “color blindness”. However, the participant 
reported being red-green color blind. This does not affect discrimination of blue and yellow. Therefore, the 
participant was not excluded from the analysis. 
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Materials 

The stimulus material consisted of 200 grey-scaled object drawings selected from the multilingual 

picture databank (MultiPic; Duñabeitia et al., 2018). Of the 200 drawings, 120 target pictures were 

randomly chosen for each participant and displayed on either the left or the right side of the screen 

(i.e., 30 pictures each were displayed at the 10% and 90% position on the x-axis) with either a blue or 

a yellow colored frame (i.e., 30 pictures each were displayed in a blue colored 20-px frame with red-

green-blue [RGB] values of 0, 40, 255, and in a complementary gold colored 20-px frame with RGB 

values of 255, 215, 0). Hence, spatial position (left vs. right) and frame color (blue vs. yellow) served 

as the two source dimensions of interest. Note that each source combination appeared equally often 

(i.e., 30 times). Another 60 pictures were randomly selected as distractors. Finally, four additional 

pictures were randomly selected as buffer items and presented in the beginning of the learning 

phase to prevent primacy effects. Hence, responses to these items were not included in our data 

analyses. As in Experiment 1, no recency buffer was included because of the 12-hr retention interval. 

A list of the 200 pictures and detailed information about the selection criteria are available at the 

OSF (https://osf.io/8rmj2/?view_only=02e5eec5c3e54fd4aff3d55eedebffa7). 

Procedure 

The procedure followed that of Experiment 1 and used the same online study builders (i.e., SoSci 

Survey, lab.js), but with the following changes to the source-monitoring task: During the study 

phase, 124 randomly selected pictures (i.e., 4 buffer and 120 target items) were sequentially 

presented on the left or right side of the screen in a blue or yellow colored frame for 5 s each with 

an interstimulus interval of 1 s (i.e., blank white screen for 500 ms followed by a fixation cross for 

500 ms). The orienting task entailed pressing the correct button for spatial position and frame color 

of a picture shown on the screen. The two buttons for spatial position labeled “left” and “right” were 

arranged next to each other and were displayed in gray on the left side below the picture. The two 

buttons for frame color labeled “blue” and “yellow” were also arranged next to each other but 

displayed in the respective color on the right side below the picture. Only participants who answered 
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with the correct spatial position for more than 50% of the 124 pictures completed the learning 

session and were invited to the testing session 12 hr later. For the testing session, the 120 target 

items were intermixed with 60 distractor items and presented frameless in the middle of the screen 

with two buttons labeled “old” and “new” below. Note that the spatial position of the labels “old” 

and “new” was varied between participants as in Experiment 1. If participants answered “old”, they 

were asked about the spatial position and frame color of the picture. To respond, participants 

pressed one of the two respectively labeled left buttons for “left plus blue” or “left plus yellow” or 

one of the two respectively labeled right buttons for “right plus blue” or “right plus yellow”. 

Whereas the labels for spatial position were always presented on the respective sides of the screen, 

the position for the frame-color labels was varied between participants (i.e., for half of the 

participants the labels “left plus blue” and “right plus blue” were displayed above “left plus yellow” 

and “right plus yellow”, while this order was reversed for the other half of the participants; for a 

detailed description of the procedure, see the preregistration on the OSF, https://osf.io/a6z4u). 

Results 

As in Experiment 1, we first analyzed effects of sleep versus wakefulness on commonly used 

measures of item and source memory. Again, we set a significance level of α = .05 for all analyses. 

Means, standard errors, and t-test results for hit and false alarm rates as well as d’ and c of item 

recognition are reported in Table 3. Concerning item memory, all two-tailed t tests between the 

sleep and wake groups were insignificant, t(132) ≤ 1.29, p ≥ .199 (see Table 3). To analyze ACSIM-

based source memory, we performed a mixed ANOVA using source dimension (spatial position vs. 

frame color) as within-subject factor and wake versus sleep as between-subjects factor. There was a 

statistically significant main effect of the wake versus sleep condition, with better source memory 

after sleep (M = 0.61, SE = 0.01) than after wakefulness (M = 0.57, SE = 0.01), F(1, 132) = 6.71, p = 

.011, ηp
2 = .05. We also found a statistically significant main effect of source dimension, with better 

source memory for spatial position (M = 0.64, SE = 0.01) than for frame color (M = 0.55, SE = 0.01), 

F(1, 132) = 42.59, p < .001, ηp
2 = .24. However, there was no statistically significant interaction effect 
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of the wake versus sleep condition and source memory, F(1, 132) = 2.97, p = .087. In sum, using 

commonly used item and source memory measures, we found a statistically significant sleep benefit 

in source memory but not in item memory. 

In a second step, we tested our hypotheses using the MPT model of multidimensional source 

monitoring (Meiser, 2014) as described above. First, we fitted the most parsimonious model version, 

including equality constraints on the source guessing parameters (i.e., aPosition = gPosition, a|left
Color = 

g|left
Color, a|right

Color = g|right
Color). Applying this model to the aggregated data, however, resulted in 

misfit, G2(24) = 41.42, p = .015. As in case of the 2HTSM used in Experiment 1, we therefore fitted 

the model without the additional constraints on the source guessing parameters to the aggregated 

data, which resulted in a good fit, G2(18) = 23.82, p = .161. The ML parameter estimates, standard 

errors, and 95% confidence intervals of this model version for the four experimental conditions are 

displayed in Table 4. We found a statistically significant difference between the sleep and wake 

condition in item memory D, ΔG2(1) = 31.54, p < .001, with about 6% larger item recognition 

estimates following sleep. This matches the result for item memory observed in the aggregate 

analyses of Experiment 1. By contrast, there was no statistically significant sleep benefit in bound 

source memory d, ΔG2(1) = 0.003, p = .955. The likely reason for this unexpected result is that in both 

the sleep and the wake condition the estimate of correctly identifying the source combination of 

recognized target items was very low (d = .04), reflecting a floor effect in episodic context-context 

binding. Because bound source memory is very low, the unbound source memory parameters ePosition 

and eColor resemble the source memory parameter d for item-context binding of the 2HTSM in 

Experiment 1.8 Replicating Experiment 1, the unbound source memory parameter for spatial position 

ePosition differed significantly between the sleep and wake condition, ΔG2(1) = 7.93, p = .005. In line 

with the active systems consolidation hypothesis, the item-context binding probability for the source 

 
8 For this reason, we refrain from reporting the preregistered 2HTSM-analyses for separate source dimensions. 
Not surprisingly given the very low d parameters, the separate 2HTSM analyses for spatial position and frame 
color were highly similar to those for parameters ePosition and eColor in the multidimensional source monitoring 
model. For detailed information on the originally planned analyses with the 2HTSM, see the preregistration 
document on the OSF (https://osf.io/a6z4u). 
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dimension “spatial position” was almost 13% larger in the sleep than in the wake condition. In 

contrast, there was no statistically significant sleep benefit for the unbound source memory 

parameter for color eColor, ΔG2(1) = 0.41, p = .523, although there was a descriptive pattern in the 

predicted direction. Similar to the result for bound source memory, it appears that this unexpected 

result is a consequence of the low probability of correctly identifying the source (i.e., blue, yellow) of 

recognized target items on the source dimension “frame color”. In fact, unbound source memory for 

color (eColor ≤ .10) is significantly worse than for spatial position (ePosition ≥ .30) in both the sleep, 

ΔG2(1) = 135.92, p < .001, and the wake condition, ΔG2(1) = 46.98, p < .001. Concerning guessing 

parameters, we found no statistically significant differences between sleep and wake conditions 

whatsoever, all ΔG2(1) <= 2.19, p >= .139. 

As in Experiment 1, we checked the robustness of our results by performing an alternative model-

based analysis using Klauer’s (2010) latent-trait model as implemented in TreeBUGS (Heck et al., 

2018). Again, as detailed in the Appendix (see Table A2), the estimated group-level means of the 

hierarchical MPT model closely resembled those reported in Table 4. We conclude that the basic 

result pattern is robust against using complete versus partial pooling data analysis methods. 

Discussion 

Replicating Experiment 1 and some of the previous studies (e.g., Mawdsley et al., 2014; van der 

Helm et al., 2011), we observed a significant sleep benefit in ACSIM-based and model-based source 

memory for spatial position in Experiment 2. This supports a core prediction of the active systems 

consolidation hypothesis, namely, that sleep compared to wakefulness should benefit item-context-

binding in episodic memory for retention intervals up to 12 hr. However, this core prediction was 

not confirmed for the second source dimension “frame color”, that is, the corresponding item-

context binding parameter, eColor, did not differ significantly between sleep and wake conditions. 

Moreover, compared to source dimension “spatial position”, source dimension “frame color” 

exhibited considerably worse source memory in both sleep and wake conditions, suggesting that 

frame colors were only weakly encoded. 
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Although some empirical findings suggest that weakly encoded memories profit more from 

memory consolidation during sleep than stronger encoded memories (e.g., Denis et al., 2020; 

Drosopoulos et al., 2007), there are other studies showing that stronger memories benefit more 

(e.g., Tucker & Fishbein, 2008; Schoch et al., 2017). At first glance, these results appear 

contradictory, they are however in line with the assumption that sleep benefits follow an inverted U-

shaped function of memory strength (Stickgold, 2009). According to this account, sleep benefits 

increase with encoding strength up to a medium level of memory strength before they decrease. In 

Experiment 2, memory strength likely ranges within the lower limb of the inverted U-shaped 

function, as indicated by the unbound source memory parameter estimates of the aggregated 

model-based analysis for spatial position (ePosition ≤ .43) and frame color (eColor ≤ .10). Thus, the 

consolidation-based sleep benefit in source memory should be larger for spatial position than for 

frame color. However, for frame color, we observed no significant sleep benefit in source memory. 

This result can be explained by previous research showing that a minimum level of memory strength 

at encoding is necessary for the sleep benefit to occur (e.g., Denis et al., 2020; Muehlroth et al., 

2020; Rauchs et al., 2011). The insignificant sleep benefit in source memory for frame color may 

therefore be a consequence of insufficient encoding. 

Former studies that used color as source dimension to investigate episodic context-binding 

enforced intentional learning of item-context associations (e.g., Köster et al., 2017; Wang & Fu, 

2009). In contrast, item-context and context-context associations were incidentally learned in our 

Experiment 2 to create a more realistic setting that resembles everyday source monitoring. 

Obviously, although we employed an orienting task towards both source dimensions, incidental 

learning does not seem to support encoding of the frame color context. 

In fact, frame color appears to be a less salient context feature than spatial position. For at least 

two reasons, an item’s frame color is less likely to be encoded successfully than its spatial position. 

First, from an evolutionary perspective, it has often been argued that spatial position is more 

important for survival and thus receives prioritized processing (Hasher & Zacks, 1979; Nairne et al., 
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2012; Yin et al., 2019). Second, according to the object-file theory of visual perception (Kahneman et 

al., 1992; Mitroff et al., 2004, 2005), the spatial position of an object is encoded in a first step by 

default. Other details such as color are added in a second step that requires more elaborated 

processing (Chen & Wyble, 2015). Taking these theories into account, it does not come as a surprise 

that context memory for frame color is considerably worse than context memory for spatial position, 

irrespective of sleep or wake states during retention. 

In terms of item memory, Experiment 2 replicated the mixed results of Experiment 1 and 

previous research (e.g., Mawdsley et al., 2014; van der Helm et al., 2011). Like in Experiment 1, the 

observed descriptive result patterns of d’ and the aggregated as well as hierarchical model-based 

analyses suggest that sleep compared to wakefulness might benefit item recognition. Again, this 

pattern was significant only for complete pooling. Hence, the results of Experiment 1 and 

Experiment 2 might hint to a sleep benefit in item recognition, which is however hard to detect due 

to its small size. 

In sum, Experiment 2 confirms the conclusion drawn from Experiment 1 that sleep benefits 

binding of salient context features in episodic memory for a 12-hr retention interval as predicted by 

the active systems consolidation hypothesis. In addition to replicating the results of the first 

experiment, Experiment 2 also explored whether sleep benefits context-context binding. However, 

bound source memory for spatial position and frame color did not differ significantly between sleep 

and wake conditions, most likely as a consequence of floor effects in either condition. Together with 

the insignificant sleep benefit in source memory for the less salient source dimension “frame color”, 

this result suggests that a sufficiently high memory strength of item-context and context-context 

associations at encoding is necessary for the sleep benefit to occur. Whereas spatial position 

appears to be a context feature that receives sufficient processing during encoding, frame color 

apparently does not—at least under incidental learning conditions as employed in Experiment 2. 

General Discussion 
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In two experiments, we tested a core assumption of the active systems consolidation hypothesis, 

namely, that sleep benefits episodic memory context-binding for relatively short retention intervals 

of up to 12 hr. In contrast to previous research, we made use of MPT models which provide 

uncontaminated measures of source memory. Both experiments consistently showed a sleep benefit 

in source memory for spatial position as predicted by the active systems consolidation account. In 

contrast, the results for item memory were mixed which is in line with previous research. 

Using MPT models to decompose source monitoring performance in effects of separate 

underlying cognitive processes is a powerful alternative to traditional measures. However, there are 

also caveats that must be considered in MPT modeling. Specifically, by imposing equality constraints 

on model parameters of source monitoring MPT models, several submodels can be defined, which 

raises the problem of determining which model to use (Bayen et al., 1996). This problem is usually 

solved by applying the most parsimonious model that still fits the data (i.e., the model with the 

smallest number of free parameters). In case of the 2HTSM, the most parsimonious model is 

Submodel 4 which imposes equality constraints on all item memory parameters, all source memory 

parameters, and on the guessing parameters a and g, respectively (Bayen et al., 1996). However, we 

were forced to relax the equality constraint for the guessing parameters (Submodel 5a), because 

applying Submodel 4 to the aggregated data of Experiment 1 resulted in misfit (see the Results 

section of Experiment 1). Alternatively, one could also relax the equality constraint for the source 

memory parameters instead of the two source guessing parameters, resulting in a data equivalent 

model (i.e., Submodel 5d of Bayen et al., 1996) that fits the data as well as Submodel 5a. Most 

important with respect to our research questions, however, both Submodel 5a and 5d showed 

statistically significant sleep benefits in item memory and in source memory for at least one of the 

two sources involved.9 In other words, our substantive conclusions concerning sleep benefits in item 

 
9 Applying Submodel 5d resulted in the same good fit as in case of Submodel 5a, G2(2) = 1.78, p = .411. For 
Submodel 5d, we found a statistically significant sleep benefit in item memory (parameter D; sleep: MLE = .65, 
SE = .01; wake: MLE = .60, SE = .01), ΔG2(1) = 13.66, p < .001. However, whereas a significant sleep benefit 
emerged in source memory for source “right” (parameter dright; sleep: MLE = .73, SE = .03; wake: MLE = .51, SE 
= .06), ΔG2(1) = 12.28, p < .001, we observed no significant sleep benefit in source memory for source “left” 
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and source memory would not be severely affected by whether we prefer Submodel 5a or 5d for 

data analysis. 

Fortunately, the more complex design of Experiment 2 with two source dimensions circumvents 

problems of submodel data equivalency (Bröder & Meiser, 2007). The corresponding 

multidimensional source monitoring model clearly showed that sleep benefits unbound source 

memory for both spatial positions (i.e., left and right) to the same degree. Taking this into account, it 

seems safe to adopt a model with a single source memory parameter (i.e., Submodel 5a) also for 

Experiment 1. Most importantly, however, all model-based results provide unequivocal evidence for 

a sleep benefit in episodic memory binding of spatial context features, irrespective of the 2HTSM 

submodel used. 

Aside from the measures used to assess item and source memory, there are further potential 

moderators that may have contributed to the mixed results in previous research, specifically, the 

sleep study design employed and the encoding strength of relevant episodic information. As already 

outlined in the introduction, researchers have used different sleep study designs to investigate sleep 

benefits in episodic memory context-binding, ranging from split-night designs (e.g., Groch et al., 

2015; Rauchs et al., 2004; Sopp et al., 2017), naps (e.g., Köster et al., 2017; van der Helm et al., 2011; 

Wang & Fu, 2009), to comparisons of natural night sleep with daytime wakefulness (e.g., Lewis et al., 

2011; Mawdsley et al., 2014; Wang et al., 2017). All these sleep studies differ in the amount of SWS 

associated with sleep, a sleep feature assumed to be essential for memory consolidation (e.g., 

Klinzing et al., 2019; Lewis & Durrant, 2011). In fact, a recent meta-analysis on the sleep benefit in 

episodic memory showed that sleep benefits tend to be larger for sleep study designs associated 

 
(parameter dleft; sleep: MLE = .46, SE = .08; wake: MLE = .45, SE = .06), ΔG2(1) = 0.01, p = .919. Concerning the 
guessing parameters, we found significantly more “old”-guessing in the wake than in the sleep condition 
(parameter b; sleep: MLE = .20, SE = .01; wake: MLE = .25, SE = .01), ΔG2(1) = 6.09, p = .014, resembling the 
result observed with Submodel 5a. However, with respect to a stronger “left” guessing bias after sleep 
(parameter a; sleep: MLE = .64, SE = .04; wake: MLE = .47, SE = .04), ΔG2(1) = 10.13, p = .001, the result differed 
from the one achieved with Submodel 5a. 
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with large amounts of SWS (Berres & Erdfelder, 2021). It is therefore likely that different sleep study 

designs additionally contributed to the mixed results reported in the literature. 

Weak encoding strength may explain why we observed no significant sleep benefit neither in 

source memory for frame color nor in bound source memory for spatial position and frame color. 

The fact that both corresponding parameters were at or near floor level suggests that sufficiently 

high memory strength of item-context and context-context associations at encoding is necessary for 

the sleep benefit to occur (cf. Denis et al., 2020; Muehlroth et al., 2020; Rauchs et al., 2011). The 

strength of memory representations is affected by various aspects of the encoding situation, such as 

presentation time, scope and type of the stimulus material, and encoding instructions. In fact, 

whereas the current experiments and few others employed incidental learning of item-context 

associations (e.g., Mawdsley et al., 2014; Wang et al., 2017), most previous studies used intentional 

learning, in some cases even with the explicit instruction to use mnemonic strategies for context 

encoding (e.g., Köster et al., 2017; Lewis et al., 2011). Moreover, different source dimensions require 

different degrees of cognitive effort to be encoded successfully (see the Discussion section of 

Experiment 2). These aspects, among others, may have affected the strength of the memory 

representation at encoding, contributing to the mixed results in different sleep studies of source 

monitoring found thus far. 

In line with the active systems consolidation hypothesis, we found convincing evidence for a 

sleep benefit in source memory using a 12-hr retention interval. Note, however, that sleep benefits 

in episodic memory can be explained not only by memory consolidation but also by reduced 

retroactive interference (for a review of consolidation and interference theories, see Berres & 

Erdfelder, 2021). The contextual binding account (Yonelinas et al., 2019), for example, explains the 

sleep benefit in terms of a passive effect on memory retrieval. Specifically, retrieval of a target 

information can be impaired by information learned before or after, provided the content or context 

of the interfering and the target information resemble each other. In other words, context similarity 

(i.e., similarity of any aspect of a specific learning situation such as spatial position or color) may 



SLEEP BENEFITS IN SOURCE MEMORY 31 

foster retroactive interference. During sleep however, new learning is virtually absent. Thus, 

retroactive interference due to content or context similarity is reduced which in turn should 

facilitate retrieval of the target information after sleep compared to wakefulness (Yonelinas et al., 

2019). 

Yet, in terms of source memory, sleep benefits due to reduced retroactive interference appear to 

play a minor role. According to the memory-system dependent forgetting hypothesis (Hardt et al., 

2013; see also Sadeh et al., 2014), interference effects on hippocampal memory representations, 

such as item-item or item-context associations, should be “minimal” (Hardt et al., 2013, p. 111). As 

such, the circuit architecture of the hippocampus is assumed to allow efficient pattern separation by 

assigning orthogonal representations even to highly similar information, thereby diminishing 

overlapping neuronal populations and thus interference. By contrast, memory representations like 

item memory, that are linked to extrahippocampal regions, are represented by overlapping neuronal 

populations. As a consequence, these memories should be very susceptible to interference (Hardt et 

al., 2013). Indeed, supporting this theory, Kuhlmann et al. (2021) investigated forgetting over short, 

interference-filled lags in three experiments and found pronounced interference-based forgetting in 

item memory compared to item-item and item-context associative memory (see also Sadeh et al., 

2014). 

Taking the memory-system dependent forgetting hypothesis into account when considering 

underlying processes of the sleep benefit in source memory, two assumptions can be made: First, 

because for source memory interference effects should be minimal, it can be assumed that sleep 

benefits in item-item and item-context associative memory depend more on memory consolidation 

than on reduced retroactive interference. Therefore, we interpret our results for source memory in 

terms of the active systems consolidation hypothesis, although additional sleep benefits on memory 

retrieval as predicted by the contextual binding account cannot be ruled out completely. 

Second, for item memory, which should be very susceptible to interference, it can be assumed that 

sleep benefits are more heavily based on retrieval advantages due to reduced retroactive 



SLEEP BENEFITS IN SOURCE MEMORY 32 

interference compared to source memory. This assumption can also offer a possible explanation for 

the mixed evidence of sleep benefits in item memory. To reiterate, the results of Experiment 1 and 

Experiment 2 might hint to a small sleep benefit in item recognition. The small size of the effect 

might be due to the fact, that we assessed item memory with a recognition task. Recent meta-

analyses suggest that the sleep benefit is moderated by the retrieval procedure (e.g., Berres & 

Erdfelder, 2021; Newbury & Monaghan, 2019). As such, free recall relies more heavily on memory 

retrieval than cued recall, and cued recall more than recognition. Thus, sleep benefits due to 

reduced retroactive interference should be largest in free recall, followed by cued recall, and lastly 

recognition tasks (cf. Dyne et al., 1990; McKinney, 1935; Postman, 1952). This might explain why 

findings regarding sleep benefits in item memory are mixed. 

Apart from the processes underlying the sleep benefit in item and source memory, several open 

questions remain for future research. First, probably because bound source memory parameter d 

was at floor level (Experiment 2), no significant sleep benefit in context-context binding emerged. 

Future studies should therefore ensure that context-context associations are encoded with sufficient 

memory strength to allow for a rigorous test of the hypothesis that sleep benefits bound source 

memory. This may, however, require switching to intentional learning instructions and associative 

encoding strategies and thus a very specific type of encoding only. 

Second, in the current experiments, we investigated the sleep benefit in source memory using a 

12 hr retention interval. However, the precise time course of memory consolidation during sleep is 

not yet well understood (Dudai, 2004, 2012; Dudai et al., 2015; Klinzing et al., 2019; Lewis & Durrant, 

2011; Pöhlchen & Schönauer, 2020; Stickgold, 2005; Stickgold & Walker, 2007). Further studies using 

standardized designs with different retention intervals are therefore necessary to explore the 

minimum and maximum retention interval for which sleep compared to wakefulness benefits source 

memory. 

Third, context-recollection in episodic memory is often not only assessed with source memory 

measures but also with remember-know judgments to capture subjective retrieval experiences with 
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respect to conscious recollection and familiarity in addition (for a review, see Inostroza & Born, 

2013). In the current experiments, we used source memory measures only because they reflect 

hippocampus-dependent memories more directly than remember-know judgments. Nevertheless, 

extending model-based analyses to include remember-know judgments (see, for example, Meiser, 

2014) may provide more fine-graded insights into sleep-dependent benefits in episodic memory 

context-binding. In this context it is particularly interesting to investigate less hippocampus-

dependent memories in future research, as recent studies suggest that memories which likely do not 

require the hippocampus during encoding may depend on it for consolidation during sleep (e.g., 

Sawangjit et al., 2018; Schapiro et al., 2019). 

Conclusion 

Our two experiments consistently show that sleep benefits source memory, provided that 

relevant context features—such as the spatial position of an item—are sufficiently salient and thus 

well encoded. These results are in line with the prediction of the active systems consolidation 

hypothesis that sleep benefits item-context-binding for 12-hr retention intervals. In addition, our 

findings call attention to potential moderators that may explain the mixed results in previous 

research, such as level of analysis employed or the encoding strength of source dimensions that 

prevents sleep benefits in context-context bindings when at least one source dimension is 

insufficiently encoded (see Experiment 2). In sum, the present research adds to the growing 

empirical evidence that memory consolidation as described by the active systems consolidation 

hypothesis is one of the key neurocognitive processes that contributes to the sleep benefit in 

episodic memory. 
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Table 1 

Results of Item-Memory Analysis in Experiment 1 

Dependent variable Wake  Sleep    

 M SE  M SE  t(130) p 

Hit rate 0.70 0.02  0.72 0.02  0.65 .517 

False-alarm rate 0.10 0.01  0.07 0.01  1.62 .107 

Sensitivity index d’ 2.05 0.09  2.27 0.08  1.35 .181 

Response bias c 0.41 0.03  0.43 0.03  0.31 .759 

Note. Means and standard errors of the mean are shown for the wake (n = 65) and sleep condition (n 

= 67), as well as the results of two-tailed t tests comparing the two independent groups. 
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Table 2 

Aggregated Parameter Estimates of the Two-High-Threshold Multinomial Model of Source 

Monitoring (2HTSM) for Experiment 1 

Parameter Wake  Sleep 

 MLE SE 95% CI  MLE SE 95% CI 

D .60 .01 [.58, .62]  .65 .01 [.64, .67] 

d .48 .02 [.44, .52]  .63 .02 [.60, .67] 

a .44 .02 [.39, .48]  .48 .03 [.43, .53] 

b .25 .01 [.22, .27]  .20 .01 [.17, .23] 

g .47 .04 [.40, .54]  .64 .04 [.57, .72] 

Note. For the aggregated model-based analysis, maximum likelihood estimates (MLE), standard 

errors (SE), and 95% confidence intervals (CI) are reported. D = probability of correctly identifying a 

target item as “old” and a distractor item as “new”; d = probability of correctly identifying the source 

of a target item; a = probability of guessing that a correctly identified target item is from source 

“left”; b = probability of guessing that an item is “old”; g = probability of guessing that an 

unrecognized item is from source “left” if it was guessed to be “old”. 
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Table 3 

Results of Item-Memory Analysis in Experiment 2 

Dependent variable Wake  Sleep    

 M SE  M SE  t(132) p 

Hit rate 0.47 0.02  0.52 0.02  1.29 .199 

False-alarm rate 0.14 0.01  0.13 0.01  0.55 .581 

Sensitivity index d’ 1.16 0.07  1.32 0.07  1.25 .212 

Response bias c 0.66 0.04  0.60 0.04  0.72 .474 

Note. Means and standard errors of the mean are shown for the wake (n = 62) and sleep condition (n 

= 72), as well as the results of two-tailed t tests comparing the two independent groups. 
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Table 4 

Aggregated Parameter Estimates of the Multinomial Model of Multidimensional Source Monitoring 

for Experiment 2 

Parameter Wake  Sleep 

 MLE SE 95% CI  MLE SE 95% CI 

D .33 .01 [.32, .35]  .40 .01 [.38, .41] 

d .04 .04 [.00, .11]a  .04 .04 [.00, .11]a 

ePosition .30 .04 [.23, .37]  .43 .03 [.37, .49] 

eColor .07 .04 [.00, .15]a  .10 .04 [.02, .18] 

aPosition .48 .02 [.44, .52]  .43 .02 [.39, .47] 

a|left
Color .51 .02 [.46, .55]  .50 .02 [.46, .53] 

a|right
Color .61 .03 [.54, .67]  .57 .03 [.51, .63] 

b .21 .01 [.19, .22]  .21 .01 [.19, .22] 

gPosition .51 .02 [.46, .55]  .55 .02 [.50, .59] 

g|left
Color .49 .03 [.43, .55]  .53 .03 [.48, .58] 

g|right
Color .47 .03 [.40, .53]  .52 .03 [.45, .58] 

Note. For the aggregated model-based analysis, maximum likelihood estimates (MLE), standard 

errors (SE), and 95% confidence intervals (CI) are reported. D = probability of correctly identifying a 

target item as “old” and a distractor item as “new”; d = probability of correctly identifying the source 

combination of a target item; ePosition = probability of correctly identifying the source (i.e., left, right) 

on source dimension “spatial position” if the target item was correctly identified as “old”; eColor = 

probability of correctly identifying the source (i.e., blue, yellow) on source dimension “frame color” if 

the target item was correctly identified as “old”; aPosition = probability of guessing ‘‘left” on source 

dimension “spatial position” if the target item was correctly identified as “old”; a|left
Color = probability 

of guessing “blue” on source dimension “frame color” if the target item was correctly identified as 

“old” and assigned to source “left”; a|right
Color = probability of guessing “blue” on source dimension 
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“frame color” if the target item was correctly identified as “old” and assigned to source “right”; b = 

probability of guessing that an item is “old”; gPosition = probability of guessing “left” on source 

dimension “spatial position” if the unrecognized item was guessed to be “old”; g|left
Color = probability 

of guessing “blue” on source dimension “frame color” if the unrecognized item was guessed to be 

“old” and assigned to source “left”; g|right
Color = probability of guessing “blue” on source dimension 

“frame color” if the unrecognized item was guessed to be “old” and assigned to source “right”. 

a Asymptotic confidence interval boundaries with values below .00 or above 1.00 were set to 0 and 

1, respectively, because the parameter space limits the range of admissible values to [.00, 1.00]. 
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Figure 1 

Two-High-Threshold Multinomial Model of Source Monitoring (2HTSM) Adapted to the Spatial 

Position Source Manipulation Used in Experiment 1 

 

Note. Dleft = probability of correctly identifying a target item in source “left” as “old”; Dright = 

probability of correctly identifying a target item in source “right” as “old”; DNew = probability of 

correctly identifying a distractor item as “new”; dleft = probability of correctly identifying the source 

of a target item in source “left”; dright = probability of correctly identifying the source of a target item 

in source “right”; a = probability of guessing that a correctly identified target item is from source 

“left”; b = probability of guessing that an item is “old”; g = probability of guessing that an 

unrecognized item is from source “left” if it was guessed to be “old”. Adapted from “Source 

Discrimination, Item Detection, and Multinomial Models of Source Monitoring”, by U. J. Bayen, K. 

Murnane, and E. Erdfelder, 1996, Journal of Experimental Psychology: Learning, Memory, and 
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Cognition, 22(1), p. 202 (https://doi.org/10.1037/0278-7393.22.1.197). Copyright 1996 by the 

American Psychological Association. 
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Figure 2 

Multinomial Model of Multidimensional Source Monitoring Used in Experiment 2 

 

Note. Dij = probability of correctly recognizing a target item in sources i (i.e., “left” or “right” on 

source dimension “spatial position”) and j (i.e., “blue” or “yellow” on source dimension “frame 

color”) of both source dimensions; DNew = probability of correctly identifying a distractor item as 

“new”; dij = probability of correctly identifying the source combination i, j of a recognized item (i.e., 

“left and blue”, “left and yellow”, “right and blue”, or “right and yellow”, respectively); eij
Position = 

probability of correctly identifying the source (i.e., left, right) on source dimension “spatial position” 

of a recognized item; eij
Color = probability of correctly identifying the source (i.e., blue, yellow) on 

source dimension “frame color” of a recognized item; aPosition = probability of guessing ‘‘left” on 

source dimension “spatial position” of a recognized item; a|left
Color = probability of guessing “blue” on 

source dimension “frame color” if the target item was correctly identified as “old” and assigned to 

source “left”; a|right
Color = probability of guessing “blue” on source dimension “frame color” if the 

target item was correctly identified as “old” and assigned to source “right”; b = probability of 



SLEEP BENEFITS IN SOURCE MEMORY 53 

guessing that an unrecognized item is “old”; gPosition = probability of guessing “left” on source 

dimension “spatial position” if the unrecognized item was guessed to be “old”; g|left
Color = probability 

of guessing “blue” on source dimension “frame color” if the unrecognized item was guessed to be 

“old” and assigned to source “left”; g|right
Color = probability of guessing “blue” on source dimension 

“frame color” if the unrecognized item was guessed to be “old” and assigned to source “right”. 

Adapted from “Analyzing Stochastic Dependence of Cognitive Processes in Multidimensional Source 

Recognition”, by T. Meiser, 2014, Experimental Psychology, 61(5), p. 408 

(https://doi.org/10.1027/1618-3169/a000261). Copyright 2014 by Hogrefe Publishing. 
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Appendix 

Results of the Bayesian-Hierarchical Multinomial Processing Tree (MPT) Model Analyses 

 

Table A1 

Hierarchical Bayesian Parameter Estimates of the Latent-Trait Version of the Two-High-Threshold 

Multinomial Model of Source Monitoring (2HTSM) for Experiment 1 

Parameter Wake  Sleep 

 M SD 95% BCI  M SD 95% BCI 

D .62 .03 [.55, .68]  .68 .03 [.62, .73] 

d .42 .05 [.33, .51]  .62 .04 [.54, .69] 

a .44 .03 [.37, .51]  .48 .03 [.42, .53] 

b .18 .03 [.13, .24]  .17 .03 [.11, .23] 

g .49 .05 [.40, .58]  .70 .08 [.53, .86] 

Note. For the latent-trait model (Klauer, 2010), posterior means (M), posterior standard deviations 

(SD), and 95% Bayesian credibility intervals (BCI) of the probability transformed group-level 

parameters as estimated with TreeBUGS (Heck et al., 2018) are reported. There was good MCMC 

chain convergence (R̂ < 1.05) and model fit (wake condition: pT1 = .39, pT2 = .50; sleep condition: pT1 = 

.58, pT2 = .41). D = probability of correctly identifying a target item as “old” and a distractor item as 

“new”; d = probability of correctly identifying the target item source; a = probability of guessing that 

a correctly identified target item is from source “left”; b = probability of guessing that an item is 

“old”; g = probability of guessing that an unrecognized item is from source “left” if it was guessed to 

be “old”; R̂ = potential scale reduction factor (Gelman & Rubin, 1992); pT1 = posterior predictive p-

value for the mean; pT2 = posterior predictive p-value for the covariance. 
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Table A2 

Hierarchical Bayesian Parameter Estimates of the Latent-Trait Version of the Multinomial Model of 

Multidimensional Source Monitoring for Experiment 2 

Parameter Wake  Sleep 

 M SD 95% BCI  M SD 95% BCI 

D .29 .03 [.23, .36]  .36 .03 [.31, .42] 

d .01 .01 [.00, .03]  .01 .01 [.00, .04] 

ePosition .21 .05 [.10, .31]  .34 .06 [.22, .46] 

eColor .01 .01 [.00, .04]  .01 .01 [.00, .03] 

aPosition .44 .03 [.38, .50]  .45 .03 [.40, .51] 

a|left
Color .54 .04 [.46, .61]  .52 .02 [.47, .56] 

a|right
Color .63 .05 [.54, .75]  .58 .05 [.48, .68] 

b .17 .02 [.13, .22]  .19 .02 [.15, .23] 

gPosition .53 .03 [.47, .58]  .53 .03 [.47, .59] 

g|left
Color .46 .04 [.39, .53]  .48 .04 [.40, .56] 

g|right
Color .47 .03 [.40, .54]  .51 .04 [.44, .59] 

Note. For the latent-trait model (Klauer, 2010), posterior means (M), posterior standard deviations 

(SD), and 95% Bayesian credibility intervals (BCI) of the probability transformed group-level 

parameters as estimated with TreeBUGS (Heck et al., 2018) are reported. There was good MCMC 

chain convergence (R̂ < 1.05) and model fit (wake condition: pT1 = .52, pT2 = .42; sleep condition: pT1 = 

.05, pT2 = .48). D = probability of correctly identifying a target item as “old” and a distractor item as 

“new”; d = probability of correctly identifying the source combination of a target item; ePosition = 

probability of correctly identifying the source (i.e., left, right) on source dimension “spatial position” 

independent from source dimension “frame color” if the target item was correctly identified as 

“old”; eColor = probability of correctly identifying the source (i.e., blue, yellow) on source dimension 

“frame color” independent from source dimension “spatial position” if the target item was correctly 
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identified as “old”; aPosition = probability of guessing ‘‘left” on source dimension “spatial position” if 

the target item was correctly identified as “old”; a|left
Color = probability of guessing “blue” on source 

dimension “frame color” if the target item was correctly identified as “old” and assigned to source 

“left”; a|right
Color = probability of guessing “blue” on source dimension “frame color” if the target item 

was correctly identified as “old” and assigned to source “right”; b = probability of guessing that an 

item is “old”; gPosition = probability of guessing “left” on source dimension “spatial position” if the 

unrecognized item was guessed to be “old”; g|left
Color = probability of guessing “blue” on source 

dimension “frame color” if the unrecognized item was guessed to be “old” and assigned to source 

“left”; g|right
Color = probability of guessing “blue” on source dimension “frame color” if the 

unrecognized item was guessed to be “old” and assigned to source “right”; R̂ = potential scale 

reduction factor (Gelman & Rubin, 1992); pT1 = posterior predictive p-value for the mean; pT2 = 

posterior predictive p-value for the covariance. 
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Table S1 

Sample Characteristics for Experiment 1 

Variable Total  Wake  Sleep   

 M SD  M SD  M SD t(130) p 

Age, in years 26.77 4.48  27.11 4.38  26.45 4.58 0.85 .399 

SSS, learning session 2.48 0.96  2.55 0.85  2.40 1.06 0.90 .369 

SSS, testing session 2.55 1.13  2.62 0.84  2.48 1.35 0.70 .485 

rMEQ, sum score 14.00 3.83  14.15 3.79  13.85 3.89 0.45 .651 

Retention interval 11.99 0.14  11.97 0.13  12.01 0.15 1.44 .151 

Sleep duration       7.37 1.19   

Sleep quality       2.16 0.91   

Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced 

Morningness-Eveningness Questionnaire (Randler, 2013). The SSS captures sleepiness on a 7-point 

scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum 

scores that are based on five items (Cronbach’s α = .74). Sum scores can range from 4 to 25 with 

higher values indicating stronger morning preferences. The retention interval and self-reported 

sleep duration (Mdn = 7.50 hr, range: 3.00–9.33) in the experimental night are shown in hours. Sleep 

quality for the experimental night was assessed via self-report on a 5-point scale with higher values 

indicating better sleep quality. The wake condition contains 65 participants (41 female) of which 40 

participants were recruited via Prolific and received payment whereas the sleep condition contains 

67 participants (43 female) of which 46 participants were recruited via Prolific. The number of payed 

participants in the wake and sleep condition does not differ significantly, t(130) = 0.85, p = .395. In 

total, two participants (nwake = 1, nsleep = 1) hold an intermediate school certificate and 130 

participants (nwake = 64, nsleep = 66) hold a qualification for college/university entrance. Whereas 78 

participants are college/university students (nwake = 38, nsleep = 40), 54 participants (nwake = 27, nsleep = 

27) pursue an occupation.  
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Table S2 

Means and Standard Errors for the Memory Performance Measures in Experiment 1 by Type of 

Compensation 

Dependent variable No payment  Payment   

 Wake Sleep  Wake Sleep F(1,128) p 

Hit rate 0.72 (0.02) 0.71 (0.02)  0.69 (0.01) 0.73 (0.01) 0.47 .496 

False-alarm rate 0.05 (0.01) 0.07 (0.01)  0.12 (0.13) 0.07 (0.01) 4.63 .033 

Sensitivity index d’ 2.37 (0.08) 2.21 (0.08)  1.84 (0.09) 2.29 (0.08) 3.18 .077 

Response bias c 0.49 (0.04) 0.44 (0.04)  0.36 (0.03) 0.43 (0.03) 0.66 .419 

ACSIMPosition 0.72 (0.01) 0.75 (0.01)  0.67 (0.01) 0.78 (0.01) 2.32 .130 

Note. Standard errors of the mean are presented in parentheses. Participants were either recruited 

via Prolifc (86; nwake = 40, nsleep = 46) or other channels (46; nwake = 25, nsleep = 21) and were randomly 

assigned to a wake versus sleep condition. Only participants recruited via Prolific were paid. ACSIM = 

average conditional source identification measure; F = F value for the interaction of compensation 

type and wake versus sleep. 
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Table S3 

Sample Characteristics for Experiment 2 

Variable Total  Wake  Sleep   

 M SD  M SD  M SD t(132) p 

Age, in years 25.58 4.51  25.11 4.49  25.99 4.52 1.12 .265 

SSS, learning session 2.74 1.27  2.68 1.13  2.79 1.38 0.52 .605 

SSS, testing session 2.99 1.37  2.98 1.26  3.00 1.47 0.07 .946 

rMEQ, sum score 13.08 4.04  12.95 3.62  13.19 4.39 0.35 .726 

Retention interval 12.01 0.20  11.98 0.22  12.03 0.17 1.64 .104 

Sleep duration       6.99 1.48   

Sleep quality       2.26 0.89   

Note. SSS = Stanford Sleepiness Scale (Hoddes et al., 1973); rMEQ = German version of the reduced 

Morningness-Eveningness Questionnaire (Randler, 2013). The SSS captures sleepiness on a 7-point 

scale with higher values indicating greater sleepiness. The rMEQ assesses chronotype with sum 

scores that are based on five items (Cronbach’s α = .77). Sum scores can range from 4 to 25 with 

higher values indicating stronger morning preferences. The retention interval and self-reported 

sleep duration (Mdn = 7.25 hr, range: 0.50–8.92) in the experimental night are shown in hours. Sleep 

quality for the experimental night was assessed via self-report on a 5-point scale with higher values 

indicating better sleep quality. The wake condition contains 62 participants (36 female) of which 43 

participants were recruited via Prolific and received payment whereas the sleep condition contains 

72 participants (48 female) of which 43 participants were recruited via Prolific. The number of payed 

participants in the wake and sleep condition does not differ significantly, t(132) = 1.16, p = .250. In 

total, the sample includes one pupil (sleep condition), two participants (nwake = 1, nsleep = 1) with no 

secondary school certificate, six participants (nwake = 3, nsleep = 3) with an intermediate school 

certificate and 125 participants (nwake = 58, nsleep = 67) with a qualification for college/university 
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entrance. Whereas 70 participants are college/university students (nwake = 33, nsleep = 37), 64 

participants (nwake = 29, nsleep = 35) pursue an occupation.  
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Table S4 

Means and Standard Errors for the Memory Performance Measures in Experiment 2 by Type of 

Compensation 

Dependent variable No payment  Payment   

 Wake Sleep  Wake Sleep F(1,130) p 

Hit rate 0.37 (0.02) 0.44 (0.02)  0.51 (0.02) 0.58 (0.02) 0.00 .944 

False-alarm rate 0.13 (0.01) 0.09 (0.01)  0.14 (0.12) 0.15 (0.01) 1.42 .236 

Sensitivity index d’ 2.37 (0.08) 2.21 (0.08)  1.84 (0.09) 2.29 (0.08) 1.62 .205 

Response bias c 0.49 (0.04) 0.44 (0.04)  0.36 (0.03) 0.43 (0.03) 0.84 .362 

ACSIMPosition 0.59 (0.01) 0.70 (0.01)  0.61 (0.01) 0.64 (0.01) 2.66 .105 

ACSIMColor 0.58 (0.01) 0.61 (0.01)  0.53 (0.01) 0.53 (0.01) 0.30 .585 

Note. Standard errors of the mean are presented in parentheses. Participants were either recruited 

via Prolifc (86; nwake = 43, nsleep = 43) or other channels (48; nwake = 19, nsleep = 29) and were randomly 

assigned to a wake versus sleep condition. Only participants recruited via Prolific were paid. ACSIM = 

average conditional source identification measure; F = F value for the interaction of compensation 

type and wake versus sleep. 
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