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Abstract 

Model evaluation is a central topic in structural equation modeling. Researchers commonly 

evaluate whether a model fits their data with fixed cutoffs for fit indices (e.g., CFI ≥ .95 for 

good model fit). Researchers apply the same fixed cutoffs in various empirical settings, even 

if those settings diverge from the simulated scenarios the cutoffs originated from. In this thesis, 

I outlined why this one-size-fits-all usage of fixed cutoffs is invalid and proposed alternative 

approaches for model evaluation. 

In the first manuscript, I investigated the fit indices’ sensitivity to misspecification in 

confirmatory factor models and their susceptibility to various model, data, and estimation 

characteristics in a large-scale simulation. Several characteristics (especially the factor 

correlation and the type of estimator) strongly influenced fit indices. They interacted in 

complex ways implying that cutoffs for fit indices are only valid for the context from which 

they originate. Based on the large-scale simulation, I developed two approaches to generate 

cutoffs tailored to empirical settings resembling the simulated scenarios. Researchers can read 

out scenario-specific cutoffs from large-scale tables. Alternatively, researchers can use 

regression formulae and plug in characteristics of interest to calculate scenario-specific cutoffs.  

In the second manuscript, I reviewed and discussed all approaches to tailored cutoffs 

proposed in the literature. Based on the literature review, I developed a new approach that 

combines a Monte Carlo simulation with receiver operating characteristic (ROC) analysis. The 

so-called simulation-cum-ROC approach generates cutoffs for various fit indices tailored to the 

setting of interest. Uniquely, it guides researchers on which fit index best evaluates whether 

the model fits the data (or not) in the setting of interest.  

In the third manuscript, I focused on a specific area in which binary decisions on model 

fit abound: measurement invariance testing. I developed effect size measures, so-called 

Measurement Invariance Violation Indices (MIVIs), for items and item sets that continuously 

quantify non-invariance (i.e., misfit) if identified by binary cutoffs. MIVIs quantify non-

invariant parameter differences in units of the latent variable’s pooled standard deviation.  

This thesis demonstrated that cutoffs must be tailored to the setting of interest for valid 

model evaluation. I outlined and developed various approaches that differ in their flexibility to 

obtain scenario-specific cutoffs. Newly developed effect size measures allow researchers to 

continuously quantify misfit (i.e., non-invariance) in addition to cutoffs following the binary 

fit-misfit logic. This research is a step towards more valid model evaluation techniques.
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I first highlight the importance of model evaluation. Further, I contrast the standard practice of 

model evaluation (done via fixed cutoffs for fit indices) with its methodological criticism 
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1  Introduction 

1.1    The Importance of Model Evaluation 

Nearly every science rooted in (post)positivism has an a priori mental representation or 

theoretical model of its entities and their relationships (i.e., the causal mechanisms; Della Porta 

& Keating, 2008). General examples of such theoretical models are Newton’s law of universal 

gravitation (1687/1999), which explains the phenomenon of gravity on earth, and Durkheim’s 

study of suicide (1897/1951), stating that socially integrated individuals are less likely to 

commit suicide. In psychology, theoretical models frequently include unobservable constructs 

(Borsboom et al., 2003), such as self-esteem, personality, or religious belief. 

A fundamental principle of quantitative science is to corroborate or falsify theoretical 

models in empirical reality (Popper, 2002). Therefore, a theoretical model must be testable. In 

psychology, specific (and frequently multiple) items represent an unobservable construct 

(Borsboom et al., 2003). An individual’s manifestation of the construct determines their 

answers to the items. The relation between a psychological construct and its items is a 

theoretical model by itself (i.e., the so-called measurement model, e.g., Borsboom et al., 2003), 

easily tested in empirical reality. Individuals need to provide answers to the items, and 

covariances between them make it possible to estimate the latent, unobserved variable 

representing the psychological construct (e.g., Bollen, 1989). For instance, items such as “I 

take a positive attitude toward myself” and “I feel that I have a number of good qualities” 

should operationalize self-esteem (Rosenberg, 1965). 

Although a particular theoretical representation might seem logical or straightforward, 

empirical tests might suggest that the theoretical model is wrong (and potentially more or less 

complex than theoretically assumed, e.g., Popper, 2002).1 It is essential, if not a central 

fundament of quantitative science, to evaluate theoretical models in empirical reality. This 

thesis’s focus is the central and ubiquitous topic of model evaluation in the context of 

psychological constructs. I focus on structural equation models, particularly confirmatory 

factor analysis models, that originate from the classical test theory as opposed to models from 

 
1 Model tests in empirical reality might incorrectly suggest that a theoretical model is wrong—for 

example, as the tools to evaluate those models are fallible, where I elaborate on later. 
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the item response theory (for the different interpretations of models from the two theories, see 

Borsboom et al., 2003).   

1.2    The Standard Practice of Model Evaluation 

When using structural equation modeling (or, as it is the specific focus, confirmatory factor 

analysis), researchers typically evaluate theoretical models tested in the empirical reality with 

fit indices. Fit indices are essentially effect sizes for misfit; they should quantify how well a 

model (e.g., the theoretical model) approximates data (e.g., empirical data). As indicators of 

global (mis)fit, they evaluate the fit of the overall model (for an overview, see Schermelleh-

Engel et al., 2003). Commonly used fit indices are the confirmatory fit index (CFI; Bentler, 

1990), the root mean squared error of approximation (RMSEA; Steiger, 1990; see also Chen, 

2007), and the standardized root mean squared residual (SRMR; Bentler, 1995; Hu & Bentler, 

1999). 

The common practice of model evaluation targets a binary fit-misfit decision instead of 

a continuous quantification of misfit (e.g., Jackson et al., 2009; McNeish & Wolf, 2021). Thus, 

researchers apply so-called cutoffs (i.e., decision thresholds) for fit indices. Commonly used 

cutoffs for fit indices indicating a well-fitting model are CFI ≥ .950, RMSEA ≤ .060, and 

SRMR ≤ .080 (Hu & Bentler, 1999). Not only overall but also nested model fit is evaluated 

similarly with common cutoffs for fit indices. Examining the comparability of models across 

groups is a prominent case of nested model fit testing (i.e., measurement invariance testing, 

e.g., Davidov et al., 2014; Millsap, 2011; Steenkamp & Baumgartner, 1998). Measurement 

invariance testing proceeds in a sequential fashion (Chen, 2007): When testing the equality of 

factor loadings in a model fitted across groups (i.e., metric invariance) with a reasonable sample 

size (total N > 300, equal cross-group sample sizes), researchers should reject the model with 

equal factor loadings if ΔCFI ≤ −.010 in combination with ΔRMSEA ≥ .015 or ΔSRMR ≥ .030 

in comparison to the model without equal factor loadings (i.e., configural invariance). The same 

strategy and cutoffs apply to testing the equality of item intercepts (i.e., scalar invariance) or 

residual variances across groups (i.e., uniqueness invariance)—with the only exception that 

researchers should use ΔSRMR ≥ .010 as a cutoff.1 For unequal cross-group sample sizes and 

a small total sample size (total N ≤ 300), researchers should use less stringent cutoffs (i.e., 

reducing the absolute above-stated values by .005). 

 
1 SRMR turned out to be more sensitive to metric non-invariance instead of scalar or uniqueness non-

invariance (Chen, 2007). 
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But where do these cutoffs come from? Cutoffs commonly originate from simulation 

studies (e.g., Chen, 2007; Hu & Bentler, 1999).1 In these simulation studies, researchers specify 

the “true” model, which they never know in empirical reality. From this true model, more 

precisely called the data-generating or population model, they repeatedly sample data via a 

Monte Carlo simulation (e.g., Mooney, 1997). Then, a model structurally identical to the 

population model (i.e., the analysis model) is fit to each sampled data. Researchers save values 

of fit indices each time they fit the analysis model to the sampled data. This way, they obtain 

distributions of fit indices. A specific value of the resulting fit index distribution can serve as 

a cutoff. If higher values point to worse fit (e.g., RMSEA or SRMR), the fit index value at the 

95th percentile is a commonly chosen cutoff. If lower values point to worse fit (e.g., CFI), the 

fit index value at the 5th percentile is a commonly chosen cutoff. Those cutoffs have a 5% Type 

I error rate of falsely rejecting a correctly specified model. Researchers can also include a 

condition where the analysis model is still the same, but the population model differs. The 

analysis model severely diverges from that population model (i.e., the analysis model is 

misspecified). Misspecification (or “severe divergence”) refers to the failure of the analysis 

model to capture relevant complexities of the population model (e.g., specific parameters or 

factors). Thus, defining a model as misspecified is a subjective but considerate decision. 

Researchers then simulate data from the population model and fit the analysis model to that 

data. Including a condition with a misspecified model allows them to evaluate Type II error 

rates (i.e., how many misspecified models the cutoff wrongly accepts) in addition to Type I 

error rates. Type II error rates should be low (i.e., close to 0%) at the previously chosen cutoff. 

Thus, when a theoretical model is tested in empirical reality, an analysis model, 

representing the theoretical model, is fit to empirical data. Once the model is fit to the data, 

standard statistical programs already provide several fit indices (such as Mplus, Muthén & 

Muthén, 1998-2017, or the lavaan package in R, Rosseel, 2012). If empirical values of fit 

indices pass the cutoffs, originating from simulation studies (e.g., Chen, 2007; Hu & Bentler, 

1999), the researcher accepts the model. Empirical evidence favors the model as it fits to data 

 
1 Simulations generating distributions for fit indices are especially useful if the fit index distribution is 

unknown. The ꭓ2 test statistic follows a ꭓ2 distribution (if distributional assumptions hold, e.g., 

Schermelleh-Engel et al., 2003). If fit indices incorporate the ꭓ2 test statistic (e.g., RMSEA), their 

distributions can be inferred (e.g., Moshagen & Erdfelder, 2016). If fit indices do not incorporate the ꭓ2 

test statistic (e.g., SRMR), their distributions remain unknown. Simulations allow to generate fit index 

distributions if fit indices do not follow a known distribution or if assumptions are violated so that fit 

indices do not follow a known distribution anymore (e.g., the ꭓ2 test statistic does not follow a ꭓ2 

distribution anymore, if the items are not multivariate normal). 
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generated from a still unknown population model. More technically, empirical evidence favors 

the null hypothesis, H0, stating that the model is identical to the population model (Neyman & 

Pearson, 1928, 1933; see also Biau et al., 2010; Moshagen & Erdfelder, 2016; Perezgonzalez, 

2015). The model is assumed to be correctly specified. If empirical values of fit indices fail the 

cutoffs, the researcher rejects the model. Empirical evidence does not favor the model as it 

does not fit to data generated from a still unknown population model. More technically, 

empirical evidence favors the alternative hypothesis, H1, stating that the model is not identical 

to the population model to a specific degree of intolerable misspecification (Neyman & 

Pearson, 1928, 1933; see also Biau et al., 2010; Moshagen & Erdfelder, 2016; Perezgonzalez, 

2015). The model is assumed to be misspecified.1  

Crucially, researchers use cutoffs, derived once in a simulation, across diverse 

empirical settings (e.g., Jackson et al., 2009; McNeish & Wolf, 2021). Thus, the usage of 

cutoffs is independent of the specific empirical setting, which is why I call them fixed cutoffs. 

Several textbooks (e.g., Kline, 2016) promote this common way of model evaluation. It is 

ubiquitously used, easy to apply, follows an objective principle, and is accepted effectively by 

all journals (e.g., Jackson et al., 2009). 

1.3 Methodological Criticism of the Standard Practice of Model 

Evaluation 

Evaluating model fit using fixed cutoffs across various empirical settings sounds too good to 

be true, and it certainly is. Many methodologists heavily criticize this standard practice of 

model evaluation (e.g., Heene et al., 2011; Markland, 2007; Marsh et al., 2004; McNeish & 

Wolf, 2021; Niemand & Mai, 2018; Nye & Drasgow, 2011a). The core of their criticism is that 

the one-size-fits-all logic of fixed cutoffs is fallible: Values of fit indices, and accordingly their 

cutoffs, depend not only on misfit but also on other characteristics of the empirical setting. 

Values of fit indices vary with different model, data, and estimation characteristics (for an 

overview, see Groskurth, Bluemke, & Lechner, 2022a; Niemand & Mai, 2018). For instance, 

it has been shown in many studies that model misspecification is harder to detect with lower 

factor loadings (Beierl et al., 2018; Groskurth, Bluemke, & Lechner, 2022a; Hancock & 

 
1 Methodological recommendations partly exist on which fit indices researchers should rely on (e.g., 

Chen, 2007; Mai et al., 2021). In practice, the preference for fit indices remains vague; researchers rely 

on all fit indices equally (e.g., Jackson et al., 2009). 
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Mueller, 2011; Heene et al., 2011, McNeish et al., 2018; Shi et al., 2018, 2019; Shi & Maydeu-

Olivares, 2020). 

It follows that fixed cutoffs are only valid for empirical settings close to the simulated 

scenarios from which the cutoffs originate. To derive cutoffs via a simulation, researchers 

cannot include all possible model, data, and estimation characteristics that might occur in the 

empirical reality but instead focus on a tiny subset of them (e.g., sample size and response 

distribution in Hu & Bentler, 1999). Thus, cutoffs are derived based on particular simulation 

scenarios but applied in empirical settings that may be considerably different from these 

simulation scenarios.  

Applying the same fixed cutoffs to diverse empirical settings, which differ from the 

initial simulated scenarios, can lead to wrong conclusions in model evaluation (e.g., McNeish 

& Wolf, 2021). Theoretical models might be rejected (or accepted) in empirical settings not 

because they are invalid (or valid) models of psychological constructs but because the methods 

to evaluate these models are invalid. Relying on decision criteria that can lead to wrong 

conclusions undoubtedly harms moving forward in science. 

1.4 Closing the Gap Between the Standard Practice of Model 

Evaluation and Its Methodological Criticism 

1.4.1  Defining the Gap 

Given the large gap between the standard practice of model evaluation and related 

methodological recommendations, why has the standard practice of model evaluation not 

substantially changed yet? I can only hypothesize about possible answers to this central 

question. Three reasons crossed my mind why fixed cutoffs have not yet been replaced: One 

reason might be that it is not entirely clear to applied researchers how invalid fixed cutoffs are. 

Another reason might be that there are no easy-to-apply alternatives to fixed cutoffs. A final 

reason might be that fixed cutoffs seem relatively tolerant. Researchers might be afraid that 

their model will fail when using alternatives (which can hamper publication as a result; Flora, 

2020). In addition to binary cutoffs, a new, continuous view on (mis)fit is potentially needed. 

I elaborate on the three reasons in the following.  
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1.4.2  Understanding the Gap 

1.4.2.1 Is There an Unawareness About the Limited Generalizability of Fixed Cutoffs? 

Studies evaluating the sensitivity of fit indices to model misspecification and their 

susceptibility to model, data, and estimation characteristics commonly focus on a single 

influential characteristic (e.g., factor loadings; Heene et al., 2011). This might lead to the 

assumption that one can track those influences and explain the absolute fit index value one 

observes. For instance, one might argue that the model fits well, although one observes a “bad” 

fit index value. One might explain that the “bad” fit index value results from low factor loadings 

but not from model misfit (e.g., Heene et al., 2011). Can you be sure that the fit index value 

became “bad” because of low factor loadings but not model misfit? Or might it indeed become 

“bad” because of the model misfit, as, for instance, the chosen estimator leads to a greater fit 

index sensitivity to misfit (e.g., Xia & Yang, 2019)? This illustration shows that influences of 

model, data, and estimation characteristics on fit indices are multitude and might interact in 

complex ways.  

Previous research has identified several characteristics influencing fit indices. Those 

characteristics are the sample size (e.g., DiStefano et al., 2019), type of estimator (e.g., Xia & 

Yang, 2019), number of items (e.g., Kenny & McCoach, 2003), number and distribution of 

response options (e.g., Xia & Yang, 2018), magnitude of factor loadings (e.g., Heene et al., 

2011), and factor correlation (e.g., Beauducel & Wittmann, 2005). 

However, there has not been any integrative study that includes all previously known 

characteristics influencing fit indices. How fit indices react to the joint influences of all those 

characteristics remains unclear. It remains unknown how those influences attenuate or 

aggravate when investigated in tandem. Investigating several influences in tandem also 

provides a holistic picture of the relative importance of those influences. Such a holistic study 

may underline even more strongly than previous ones that fit indices depend on several 

characteristics that may interact in complex ways. It may push applied researchers toward 

abandoning fixed cutoffs for fit indices. Consequently, one goal of this thesis was to replicate 

and extend prior knowledge on the fit indices’ sensitivity to misspecification and their 

susceptibility to several model, data, and estimation characteristics by investigating many 

characteristics in tandem. 

The first manuscript (Groskurth, Bluemke, & Lechner, 2022a) aimed at this goal: It 

presented the most in-depth simulation study on fit indices for confirmatory factor analysis 
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models to date. By including several characteristics into one simulation study (that were 

primarily studied in isolation before), I replicated knowledge: Fit indices were not only 

sensitive to model misspecification (as they should be) but also susceptible to a wide range of 

model, data, and estimation characteristics (e.g., type of estimator and loading magnitude). By 

considering several characteristics in tandem, I also unraveled patterns that would otherwise 

remain unnoticed: The factor correlation (of analysis models with unmodeled cross-loadings 

that were present in the population) moderated several effects (e.g., the influence of the type of 

estimator on fit indices). Model, data, and estimation characteristics interacted in complex and 

highly unpredictable ways.  

Recognizing the susceptibility of fit indices to several model, data, and estimation 

characteristics—and, in turn, the invalidity of fixed cutoffs when applied to empirical settings 

different from the initial simulated scenarios—is just one part that may lead to a change of the 

status quo in model evaluation. Methodologists must provide easy-to-apply alternatives to 

fixed cutoffs to help researchers entirely abandon fixed cutoffs. 

1.4.2.2 Are There No Alternatives to Fixed Cutoffs? 

A recent suggestion for a more valid model evaluation was to generate tailored cutoffs as an 

alternative to fixed cutoffs (e.g., Millsap, 2013). These cutoffs are generated specifically for 

the setting of interest. They are, thus, a natural solution to the pressing problems of fixed cutoffs 

that methodologists have pointed out.   

Currently, there are five principal approaches to generating tailored cutoffs that differ 

in their flexibility to accommodate different fit indices and settings of interest. I ordered them 

from least to most flexible. The first approach is the table-based one. Similar to looking up 

critical values of z-scores or t-statistics, researchers select the cutoff that best matches their 

empirical setting from scenario-specific cutoff tables (Groskurth, Bluemke, & Lechner, 2022a). 

A second approach is χ2 distribution-based. Relying on statistical assumptions of the χ2 

distribution without and with misspecification, researchers generate tailored cutoffs for fit 

indices that include the χ2 test statistic (Moshagen & Erdfelder, 2016). A third approach is 

regression-based. Researchers generate tailored cutoffs based on meta-regression results from 

a prior simulation study (Nye & Drasgow, 2011a; see also Groskurth, Bluemke, & Lechner, 

2022a). In the simulation-based approach, the fourth approach, researchers fit the model of 

interest to data repeatedly sampled from a known population model. They generate tailored 

cutoffs based on the resulting values of fit indices (McNeish & Wolf, 2021; Millsap, 2013; 
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Niemand & Mai, 2018; Pornprasertmanit, 2014). In essence, the simulation-based approach is 

a parametric bootstrap approach. It samples (i.e., simulates) data based on parameters (i.e., 

from the population model). Differently, the non-parametric bootstrap approach samples data 

based on transformed empirical data as a fifth approach. In essence, researchers fit the model 

of interest to data repeatedly sampled from transformed empirical data. Crucially, they 

transform empirical data as if the model has generated it. Researchers generate tailored cutoffs 

based on the resulting values of fit indices (Bollen & Stine, 1992; Kim & Millsap, 2014).  

The above summary of tailored cutoff approaches illuminated the emerging status of 

this strand of research: There has been only a couple of approaches, which mainly began to 

emerge one decade ago (i.e., Bollen & Stine, 1992; Kim & Millsap, 2014; Millsap, 2013; 

Pornprasertmanit, 2014), with the recent emergence of new approaches around 2020 (e.g., 

McNeish & Wolf, 2021; Niemand & Mai, 2018). In the history of model evaluation, 

approaches of tailored cutoffs for fit indices can be considered relatively new. To analyze the 

interest in tailored cutoff approaches, I quantified the cumulative increase of citations in 

GoogleScholar across the years since seminal articles were published. I included the following 

seminal articles: Kim and Millsap (2014, bootstrap), McNeish and Wolf (2021, simulation), 

Millsap (2013, simulation), Moshagen and Erdfelder (2016, χ2 distribution), Niemand and Mai 

(2018, simulation), and Pornprasertmanit (2014, simulation).1 I did not include Nye and 

Drasgow (2011a, regression) and Groskurth, Bluemke, and Lechner (2022a, table and 

regression) as their focus was on the susceptibility of fit indices to the setting of interest. I also 

omitted Bollen and Stine (1992, bootstrap). That article had around 1,600 citations at the time 

of this writing. Thus, it raised lots of interest; much more than any other article included 

(receiving only up to around 150 citations)—which is why I considered it an outlier here. 

Figure 1.1 shows the interest in seminal articles on tailored cutoff approaches quantified 

through the cumulative increase of citations in GoogleScholar.  

For most publications (i.e., McNeish & Wolf, 2021; Moshagen & Erdfelder, 2016; 

Niemand & Mai, 2018), the interest has exponentially increased since 2020, although 

publications dated back some years ago (i.e., Moshagen & Erdfelder, 2016). Likewise, interest 

in Millsap’s (2013) simulation-based approach has started rising recently. Only Kim and 

Millsap’s (2014) bootstrap approach to tailored cutoffs has raised interest continuously since 

 
1 I initially intended to analyze the number of citations of seminal articles in PsycIndex that include 

keywords such as “dynamic fit index” or “tailored cutoffs.” Because these keywords only led to one 

article (McNeish & Wolf, 2021), I decided to analyze the number of citations of seminal articles in 

GoogleScholar. 
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its publication date. Pornprasertmanit’s (2014) doctoral thesis, including the simulation-based 

approach, is the only publication developing a tailored cutoff approach that has no rise in 

interest yet. In sum, researchers recently showed a willingness to discuss, adopt, and expand 

tailored cutoffs as an alternative to fixed cutoffs. 

 

Figure 1.1: Cumulative Increase of Citations for Seminal Tailored Cutoff Articles in GoogleScholar 

 
Note. I created the figure on November 25th, 2022. Thus, data for 2022 does not include the entire year. 
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Many methodologists provide automated tools for their tailored cutoff approaches, such 

as R functions, shiny apps, and websites (Jak et al., 2021; Jobst et al., 2021; Mai et al., 2021; 

McNeish & Wolf, 2021; Moshagen & Erdfelder, 2016; Niemand & Mai, 2018; 

Pornprasertmanit et al., 2021; Schmalbach et al., 2019). These tools enable researchers to 

derive tailored cutoffs easily. Researchers must not have any experience in, for instance, 

simulating data to generate tailored cutoffs. They must plug in their model, data, and estimation 

characteristics on the website/function/shiny app, which automatically does the calculation in 

the background.   

My former elaborations may let readers think there are multiple (or even enough) 

approaches to start with the integration of tailored cutoffs into the common practice of model 

evaluation. Thanks to the automated tools, the approaches seem easy to apply. Although 

tailored cutoff approaches get more and more recognition (as quantified through the number of 

citations, see Figure 1.1), using fixed cutoffs for model evaluation is still the dominant practice. 

Applied research rarely uses tailored cutoffs. This is evident from the absolute number of 

citations in Figure 1.1: Each seminal article on tailored cutoff approaches reached no more than 

150 citations in GoogleScholar since their publication, except for Bollen and Stine’s (1992) 

article reaching around 1,600 citations. Hu and Bentler’s (1999) seminal article on fixed cutoffs 

has already received around 9,500 additional citations in 2022 alone (and more than 97,000 

citations since its publication) in GoogleScholar at the time of this writing. So, what could 

convince researchers to apply tailored cutoffs instead of fixed cutoffs?  

To my knowledge, there has not yet been any study that summarizes and compares all 

approaches to tailored cutoffs. Such integration of approaches could be beneficial for applied 

researchers: It makes aware of currently available approaches to tailored cutoffs. Further, 

researchers learn about those approaches and their advantages, disadvantages, and limitations 

in a very condensed way—and they learn in which empirical settings the different approaches 

are helpful. Integration of approaches enables researchers to select the best approach for their 

empirical setting. Further, integration of approaches helps to move forward methodologically: 

Discussing which approaches of tailored cutoffs are developed so far, as well as the possibilities 

and limits of their applicability, helps identifying research gaps for improvement of approaches 

or suggesting new approaches. Thus, one goal of this thesis was to summarize and evaluate 

tailored cutoff approaches which was realized in the second manuscript (Groskurth, Bhaktha, 

& Lechner, 2022).  
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Another goal was to build on and extend existing approaches to tailored cutoffs. In the 

first manuscript (Groskurth, Bluemke, & Lechner, 2022a), I suggested table- and regression-

based approaches to tailored cutoffs for a wider variety of scenarios than previously suggested 

(e.g., Nye & Drasgow, 2011a). In the second manuscript (Groskurth, Bhaktha, & Lechner, 

2022), I developed a tailored cutoff approach that includes a feature not included in existing 

approaches: It provides guidance on which fit index to rely on in the setting of interest. The so-

called simulation-cum-ROC approach combines a Monte Carlo simulation with receiver 

operating characteristic (ROC) analysis. Notably, the approach generates tailored cutoffs while 

identifying well-performing fit indices in the given setting. Thus, it evaluates the fit indices’ 

performance in discriminating between correctly specified and misspecified models. 

So far, I have outlined (and developed) different approaches to tailored cutoffs and 

thoroughly investigated the susceptibility of fit indices. If the problem of fixed cutoffs for fit 

indices is made entirely clear, and easy-to-apply alternatives to fixed cutoffs are well-known, 

what might still hinder applied researchers from changing the status quo of model evaluation? 

Researchers might be concerned that their model will fail when applying tailored instead of 

fixed cutoffs. From recent articles (e.g., Groskurth, Bhaktha, & Lechner, 2022; McNeish & 

Wolf, 2021), tailored cutoffs seem stricter, that is, more inclined to reject models than fixed 

cutoffs. It is well-known (as part of the replication crisis) that manuscripts have a higher chance 

of getting published in most journals if the models of interest are accepted (e.g., Flora, 2020). 

Thus, to entirely change the status quo of model evaluation, the fear of model failure must 

shrink—potentially through quantifying the impact of (mis)fit in addition to defining (mis)fit 

in a binary way. 

1.4.2.3 Is the Quantification of Misfit Needed? 

Current examples in articles on tailored cutoffs (e.g., Groskurth, Bhaktha, & Lechner, 2022; 

McNeish & Wolf, 2021) could quickly raise the impression that tailored cutoffs are more 

inclined to reject models than fixed cutoffs.1 For instance, in all of McNeish and Wolf’s (2021) 

empirical examples evaluating either one-, two-, or multi-factor models, tailored cutoffs 

(generated to detect minor levels of misspecification) for CFI were not below .962, for RMSEA 

 
1 Mainly, tailored cutoffs are derived from exactly fitting models (e.g., Bollen & Stine, 1992; McNeish 

& Wolf, 2021; Nye & Drasgow, 2011a; cf. Kim & Millsap, 2014; Millsap, 2013; Pornprasertmanit, 

2014). Cutoffs are generated under the premise that analysis models are only acceptable if they capture 

all parameters from the population model (Millsap, 2007). I discussed approximately fitting models, as 

an alternative, in more depth in Chapter 3 of this thesis as well as in the second manuscript (Groskurth, 

Bhaktha, & Lechner, 2022). 
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not above .076, for SRMR not above .037. Similarly, in Groskurth, Bhaktha, and Lechner’s 

(2022) examples evaluating two-factor models, tailored cutoffs for CFI were not below .984, 

for RMSEA not above .047, and for SRMR not above .031. In both studies (Groskurth, 

Bhaktha, & Lechner, 2022; McNeish & Wolf, 2021), tailored cutoffs were generally stricter 

than Hu and Bentler’s (1999) fixed cutoffs (i.e., CFI around .950, RMSEA around .060, SRMR 

around .080). 

If the model of interest fails (i.e., must be rejected), researchers may be unsure how to 

proceed. There are many ways to handle model misfit: The most common way is to employ 

local modifications by freely estimating certain misspecified parameters (identified via 

modification indices and the expected parameter change, e.g., Kaplan, 1991; Podsakoff et al., 

2003; Saris et al. 2009; Whittaker, 2012). Alternatively, researchers theoretically define a 

completely new model. All these approaches mainly focus on refining or changing the existing 

model. Crucially, they all dismiss an essential step that could lead to the conclusion of retaining 

the model: They do not thoroughly analyze misfit and its potential implication. The central 

question remains unanswered: Is misfit large enough to be detrimental for further analysis? 

For such further analysis, observed descriptive statistics (e.g., mean scores) or observed 

(co)variances (e.g., regression coefficients) are often of interest (McNeish & Wolf, 2020; Musil 

et al., 1998; Widaman & Revelle, 2022)—especially in a relational way (e.g., Chen, 2008): The 

core of cross-cultural research is to compare group statistics or predictors of various constructs 

(such as self-esteem) across cultures, countries, or ethnic groups (Berry et al., 2002; e.g., Chen, 

2008). In clinical research, descriptive statistics (e.g., the incidence of depressive disorders) of 

the treatment group (e.g., who went through a prevention program) compared to the control 

group (e.g., without prevention program) are regularly of interest (e.g., Cuijpers et al., 2021). 

Similarly, common questions in developmental research are concerned with investigating 

differences (e.g., in personality) across cohort or age groups (e.g., Roberts et al., 2006). I could 

extend this list of examples to more areas within psychology (and, more generally, the social 

sciences), underlining that many studies aim at group comparisons. Such comparisons require 

measurement invariance (i.e., equal item-to-factor structure and model parameters across 

groups); non-invariance (i.e., unequal item-to-factor structure or model parameters across 

groups) disturbs such comparisons (e.g., Chen, 2008; Steinmetz, 2013). The central question 

remains: Is this misfit (i.e., non-invariance) large enough to be detrimental for further analysis 

(i.e., group comparisons)? 
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So-called effect size measures continuously quantify the extent of non-invariance 

present in the model.1 In particular, they quantify how strongly specific parameters differ across 

groups. Effect size measures for measurement invariance tests abound in the item response 

theory framework (Meade, 2010). Within the classical test theory framework, researchers have 

started developing effect size measures for measurement invariance tests roughly a decade ago 

(Millsap & Olivera-Aguilar, 2012; Nye & Drasgow, 2011b; Oberski, 2014; Oberski et al., 

2015; Pornprasertmanit, 2022). However, some existing effect size measures are complex to 

apply, requiring extra statistical packages (Dueber, 2019; Nye & Drasgow, 2011b; Oberski, 

2014). Other existing effect size measures focus only on non-invariant parameter differences 

of single items (Millsap & Olivera-Aguilar, 2012; Pornprasertmanit, 2022; likewise, the 

modification index and expected parameter change) and not additionally on those of the 

complete item set, making it unable to investigate compensation or aggregation effects. Non-

invariant parameter differences can compensate for each other if the pattern of non-invariance 

is mixed (Chen, 2008). The pattern of non-invariance is mixed if one group has higher 

parameter values on some non-invariant items but lower on others compared to another group. 

Non-invariant parameter differences can sum to zero so that, for instance, mean score 

differences across groups remain unbiased despite non-invariance being present. Differently, 

the pattern of non-invariance is uniform if one group always has higher parameter values on 

all non-invariant items than another group (Chen, 2008). Thus, non-invariant parameter 

differences aggregate so that, for instance, non-invariance impacts mean score differences 

across groups.   

Thus, another goal of this thesis was to derive easy-to-apply effect size measures that 

quantify misfit (i.e., non-invariance) in multi-group confirmatory factor analysis for items and 

item sets. The third manuscript (Groskurth, Bluemke, & Lechner, 2022b) suggested so-called 

Measurement Invariance Violation Indices (MIVIs) as effect size measures for non-invariant 

parameter differences in items and item sets. MIVIs quantify the loading, intercept, or 

uniqueness differences of non-invariant items in units of the pooled standard deviation of the 

latent variable (either per item or as an average for item sets). They help decide on keeping 

non-invariant items or dropping them from the item set. Further, they assist in evaluating the 

quality of a questionnaire in a new research context. MIVIs are also helpful in assessing the 

 
1 Fit indices cannot be used as effect size measures here. They vary depending on the characteristics of 

the empirical setting (as outlined throughout this thesis). Further, they were already used in hypothesis 

testing when evaluating the fit of the invariance model with binary cutoffs. They should not be used as 

effect size measures simultaneously (Gomer et al., 2019). 
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amount of bias due to non-invariance in simple proxies such as observed (co)variances or  mean 

scores. 

By providing valuable tools to quantify misfit and its impact on simple statistics 

continuously, I wanted to provide a different, practical view on misfit and enrich binary 

decisions on model fit from a quantitative perspective. Using effect size measures to quantify 

misfit (here: non-invariance) connects to the replication crisis, where abandoning binary fit-

misfit decisions is hotly debated (e.g., Cumming, 2014; Flora, 2020; Savalei & Dunn, 2015). 

In other words, using effect size measures to quantify misfit also exhibits a change of 

perspectives: It implies moving away from (solely) binary decisions to (additional) continuous 

quantifications.  

1.4.3  Goals of the Present Research 

This thesis aimed to provide insights and tools that hopefully aid in changing the status quo of 

model evaluation in structural equation modeling, particularly confirmatory factor analysis. I 

approached this overarching goal by pursuing two strategies: (1) As a first strategy, I 

investigated which model, data, and estimation characteristics influence fit indices and how 

they influence them. I mainly pursued this strategy in the first manuscript (Groskurth, Bluemke, 

& Lechner, 2022a) by conducting a large-scale simulation study. (2) As a second strategy, I 

developed novel approaches for model evaluation that do not rely on fixed cutoffs. I mainly 

pursued this strategy in the second manuscript (Groskurth, Bhaktha, & Lechner, 2022) by 

developing the simulation-cum-ROC approach that generates cutoffs tailored to the setting of 

interest. Additionally, the table- and regression-based approaches to tailored cutoffs in the first 

manuscript belonged to that strategy (Groskurth, Bluemke, & Lechner, 2022a). I also primarily 

followed the second strategy in the third manuscript (Groskurth, Bluemke, & Lechner, 2022b), 

developing effect size measures (so-called Measurement Invariance Violations Indices) to 

quantify misfit (i.e., non-invariance) in addition to binary fit-misfit decisions. Ultimately, I 

hope the provided insights and tools help to move forward in abandoning fixed cutoffs for more 

valid model evaluation. I discuss the main gist of all three manuscripts below. Figure 5.1 in 

Chapter 5 visualizes the integrative concept of this thesis. Further, Chapter 5 includes an 

empirical example illustrating all approaches developed in this thesis. 
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2 The Present Research 

2.1    Manuscript I: Problems of Fixed Cutoffs for Fit Indices 

Groskurth, K., Bluemke, M., & Lechner, C. M. (2022a). Why we need to abandon fixed cutoffs 

for goodness-of-fit indices: A thorough simulation and possible solutions. Invited 

revision at Behavior Research Methods. 

2.1.1 Motivation: Why Are Fixed Cutoffs Invalid, and What Are Open 

Questions? 

Methodologists have long criticized the use of fixed cutoffs for fit indices. Fixed cutoffs are 

invalid when applied in empirical settings which were not part of the simulation scenarios from 

which the cutoffs originated. This conclusion stems from the finding that fit indices are 

susceptible to several model, data, and estimation characteristics. These are the sample size 

(e.g., DiStefano et al., 2019), type of estimator (e.g., Xia & Yang, 2019), number of items (e.g., 

Kenny & McCoach, 2003), number and distribution of response options (e.g., Xia & Yang, 

2018), magnitude of factor loadings (e.g., Heene et al., 2011), and factor correlation (e.g., 

Beauducel & Wittmann, 2005). Prior simulation studies mainly focused on influences of 

specific characteristics on fit indices, a large-scale simulation study investigating all influences 

in tandem is lacking. It remains unclear how susceptible fit indices are to the joint influences 

of these characteristics and interactions thereof (e.g., sample size × number of response 

options). Such a large-scale simulation study allows for investigating which influences 

replicate while controlling the impact of other characteristics. Investigating joint influences 

might unravel new patterns (i.e., substantial interactions) that remain hidden when focusing on 

single characteristics. Such a study allows for comparing the relative strength of influences on 

fit indices. It can identify the most important influences (among many).  

Two questions guided the present simulation study: Which model, data, and estimation 

characteristics influence values of fit indices the most? How do those characteristics influence 

the sensitivity of fit indices to detect misspecification? The first question concerns the 

susceptibility of fit indices to model, data, and estimation characteristics. The second question 

concerns the sensitivity of fit indices to detect misspecification. 
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2.1.2 Method: Simulation Study 

The present Monte Carlo simulation study contained several scenarios. Each scenario 

comprised a population model with various characteristics, from which I sampled data in 

various sizes, and a correctly specified or misspecified analysis model fit to the data with 

different estimators. I only included confirmatory factor analysis models. I conducted two 

separate simulations, investigating two combinations of correctly specified and misspecified 

models. Either the factor dimensionality or cross-loadings were correctly specified or 

misspecified. I analyzed these two simulations separately. 

In the first simulation, the population model was either a one-factor or correlated two-

factor model. Factor correlations were r = .70, .50, or .30 to include different magnitudes of 

misspecification (i.e., a difference of .30, .50, or .70, when viewed from two perfectly 

correlating factors r = 1, which essentially subsume to a single factor). I fit a one-factor analysis 

model to data from both population models (i.e., one-factor and correlated two-factor). Thus, 

each analysis model was either correctly specified or misspecified regarding factor 

dimensionality.  

In the second simulation, the population model was a two-factor model, either without 

or with cross-loadings. To include different magnitudes and proportions of misspecification, 

17% or 33% of all items had cross-loadings with a standardized size of .20 or .30. Cross-

loadings were only present on one of the two factors. I fit a two-factor analysis model without 

any cross-loadings to data generated from both population models (i.e., without and with cross-

loadings). Thus, each analysis model was either correctly specified or misspecified regarding 

cross-loadings.  

In both simulations, I varied six different model, data, and estimation characteristics: 

number of items (6, 12), number of response options (3, 5, 7), distribution of responses 

(symmetric, asymmetric), loading magnitude (.40, .60, .80), sample size (200, 500, 2,000), and 

type of estimator. I included the following types of estimators: maximum likelihood, ML, its 

robust variant, MLR, (constructed for continuously measured items), diagonally weighted least 

squares, DWLS, and its means-and-variances adjusted variant, WLSMV (constructed for 

categorically measured items; Li, 2016). In the simulation for models without and with cross-

loadings, I also varied the factor correlation (.00, .30). Depending on the factor correlation, 

factors were forced to be uncorrelated (factor correlation = .00) or allowed to correlate (factor 

correlation = .30) in both population and analysis models. In the simulation regarding factor 
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dimensionality, the factor correlation confounded with the misspecification and was, thus, not 

considered an independent characteristic. I sampled data 1,000 times from each scenario, which 

resulted in n = 1,728,000 for the first simulation regarding factor dimensionality and n = 

4,320,000 for the second simulation regarding cross-loadings. The final analysis contained fit 

indices for N = 5,956,844 converged models (about 2% of the models did not converge for 

various reasons).  

I considered CFI (Bentler, 1990), RMSEA (Steiger, 1990; see also Chen, 2007), and 

SRMR (Bentler, 1995; Hu & Bentler, 1999) as fit indices. I also investigated influences on the 

χ2 test statistic (Bollen, 1989) and its prominent variant, which is the χ2 test statistic divided by 

the model’s degrees of freedom (χ2/df). Essentially, the χ2 test statistic is a formal test statistic 

rather than a fit index, although often used as the latter (Jöreskog & Sörbom, 1993).  

2.1.3 Results: Summary of Key Findings 

I only discuss the main insights from the descriptive, bivariate, and multivariate analysis in the 

following. First, fit indices detected misspecification of the factor dimensionality and 

unmodeled cross-loadings. As expected, all fit indices showed worse fit as the two factors’ 

correlation in the population model decreased, but a one-factor analysis model was fit. With 

more and higher cross-loadings in the population model, unmodeled in the analysis model, fit 

indices showed worse fit. However, the expected pattern for unmodeled cross-loadings only 

occurred if the two factors did not correlate in the population model and could not correlate in 

the analysis model. 

Second, as the last finding suggested, fit indices’ sensitivity to misspecification 

depended on several characteristics. The most interesting finding was the following: When the 

factors of the two-factor analysis model were allowed to correlate and the proportion of 

unmodeled cross-loadings increased, fit indices showed better (and not worse) fit. Fit indices 

signaled better fit as the degree of misspecification increased. Although it seems 

counterintuitive, this finding is plausible. A two-factor analysis model with correlated factors 

(flexibly) accounts for substantial cross-loadings in the population model (unmodeled in the 

analysis model) through other model parameters. Most prominently, it accounts for substantial 

unmodeled cross-loadings through the factor correlation. The factor correlation increases as 

the factor with unmodeled cross-loadings becomes a blend of both factors. The higher the 

proportion of unmodeled cross-loadings, the stronger the correlation between both factors (i.e., 

the more one factor becomes a blend of both), and, ultimately, the better the fit. I found a strong 
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correlation (tau-b = .54) between the estimated factor correlation and the proportion of 

unmodeled cross-loadings, which corroborated the interpretation. Likewise, factor loadings 

became higher for items with unmodeled cross-loadings. Through the simulation design, an 

item’s residual variance decreased if its factor loading increased or when a cross-loading was 

added to the population model. 

Third, model, data, and estimation characteristics did not only interact with model 

misspecification. Fit indices were susceptible to characteristics even when controlling for 

model misspecification or looking at correctly specified models. Especially the type of 

estimator, loading magnitude, and factor correlation influenced fit indices. Fit indices were 

differently susceptible for correctly specified and misspecified models. They were even 

differently susceptible to various kinds of those models (i.e., those of the factor dimensionality 

and cross-loading simulation). My results indicated that established patterns of fit index 

susceptibility were more complex than previously assumed, as those patterns changed with 

different model, data, and estimation characteristics. Most interestingly, studies (Xia & Yang, 

2019) have shown that fit indices (i.e., χ2, CFI, and RMSEA) indicated better fit for 

misspecified models based on estimators for categorical data (i.e., DWLS) than for continuous 

data (i.e., ML). My simulation study revealed the same pattern as former studies (Xia & Yang, 

2019). It even found the pattern for fit indices (χ2, χ2/df, CFI, and RMSEA) of models with 

different types of misspecification (i.e., factor dimensionality and cross-loadings). There was 

just one exception, which revealed the complexity of influences on fit indices. The pattern 

reversed with uncorrelated factors and unmodeled cross-loadings: Fit indices (i.e., χ2, χ2/df, 

CFI, and RMSEA) indicated worse fit for misspecified models based on estimators for 

categorical data (i.e., DWLS) than for continuous data (i.e., ML). 

Fourth, investigating several known influences in tandem also revealed that some 

characteristics did not impact fit indices as substantially as previous research suggested. For 

instance, Xia and Yang (2018) showed that fit indices (i.e., χ2, χ2/df, CFI, and RMSEA) from 

misspecified models indicated better fit with asymmetric response distributions than with 

symmetric ones (estimated with DWLS and WLSMV that are estimators for categorical items). 

I replicated this finding in a multivariate regression analysis, though the interaction effect 

(DWLS/WLSMV × asymmetric response distribution) was relatively small compared to 

others. To illustrate, the CFI of a two-factor analysis model with unmodeled cross-loadings 

changed only by 0.001 points with the interaction term DWLS × asymmetric (reference: ML, 
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symmetric), whereas it changed by 0.032 points with the interaction term DWLS × correlated 

factors (reference: ML, uncorrelated factors). 

2.1.4 Discussion: We Need Alternatives to Fixed Cutoffs! 

These findings showed that fit indices depended strongly on several model, data, and estimation 

characteristics other than misspecification. There cannot be a single cutoff judging model fit 

across diverse scenarios. Applied researchers must switch to cutoffs tailored to the specific 

setting of interest. Based on the simulation study, I provided two tools to generate cutoffs 

tailored to diverse empirical settings.  

First, I generated scenario-specific cutoff tables. The tables contain cutoffs from 

simulated, scenario-specific fit index distributions at a 5% Type I error rate (i.e., 5% of the 

time, cutoffs wrongly rejected correctly specified models). Similar to looking up critical values 

of z-scores or t-statistics, researchers select the cutoff that best matches their empirical setting 

from the scenario-specific cutoff tables. The first manuscript (Groskurth, Bluemke, & Lechner, 

2022a) includes scenario-specific cutoff tables for fit indices of this simulation study. 

Second, I used those scenario-specific cutoff tables and regressed the cutoffs, as the 

dependent variable, on all model, data, and estimation characteristics (as well as their 

interactions), as independent variables, separately for each fit index. Thus, I obtained a 

regression formula that contains weights (i.e., regression coefficients) for each characteristic 

considered in the simulation study. This regression formula can be used to derive a tailored 

cutoff. Researchers need to plug the characteristics of the empirical setting (e.g., ML estimator, 

six items, seven response options, symmetric response distribution, average standardized 

loading magnitude of .80, sample size of 500, one factor) into the regression formula. The 

weighted sum of the characteristics prescribed through the regression formula predicts the 

cutoff. The first manuscript (Groskurth, Bluemke, & Lechner, 2022a) includes regression 

formulae for fit indices of this simulation study. Chapter 5 contains an empirical example of 

generating tailored cutoffs from the table- and regression-based approaches. 

The table- and regression-based approaches allow for scenario-specific cutoffs; 

however, those cutoffs are valid only if the setting of interest does not deviate strongly from 

the scenarios in the initial simulation. Further, it remains unknown which fit index (out of 

various ones commonly considered) is most helpful for fit-misfit decisions in the setting of 

interest. Thus, in the second manuscript, I explored a more general approach that generates 

tailored cutoffs for well-performing fit indices within the setting of interest. 
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2.2 Manuscript II: Tailored Cutoffs as Alternatives to Fixed 

Cutoffs 

Groskurth, K., Bhaktha, N., & Lechner, C. M. (2022). Making model judgments ROC(K)-solid: 

Tailored cutoffs for fit indices through simulation and ROC analysis in structural 

equation modeling. Invited revision at Psychological Methods. 

2.2.1 Motivation: Why a New Tailored Cutoff Approach? 

Having already outlined some approaches to tailored cutoffs in the first manuscript (Groskurth, 

Bluemke, & Lechner, 2022a), I took an even closer look at different—more flexible and widely 

applicable—approaches to tailored cutoffs in the second manuscript (Groskurth, Bhaktha, & 

Lechner, 2022). Besides the table- and regression-based approaches outlined in the first 

manuscript (Groskurth, Bluemke, & Lechner, 2022a), other approaches to tailored cutoffs have 

been developed in recent years. The χ2 distribution-based approach uses the χ2-distributional 

features without and with misspecification at different sample sizes, degrees of freedom, and 

the number of items to generate cutoffs for fit indices including the χ2 test statistic (Moshagen 

& Erdfelder, 2016; see also Jak et al., 2021; Jobst et al., 2021). Further, simulations can 

generate tailored cutoffs. Researchers obtain fit index distributions by fitting the model of 

interest to simulated data for which the population model is known (McNeish & Wolf, 2021, 

2022; Millsap, 2007, 2013; Niemand & Mai, 2018; Mai et al., 2021; Pornprasertmanit, 2014; 

see also Schmalbach et al., 2019; Pornprasertmanit et al., 2021). Similarly, tailored cutoffs can 

result from bootstrapping—the non-parametric variant of the simulation-based approach 

outlined before. The non-parametric bootstrap approach obtains fit index distributions from a 

model of interest fit to transformed data. The data originates from the empirical data 

transformed as if the model has generated it (Bollen & Stine, 1992; Kim & Millsap, 2014; see 

also Yuan & Hayashi, 2003; Yuan et al., 2004, 2007). 

All approaches are superior to fixed cutoffs. Some of them allow a quick derivation of 

tailored cutoffs (i.e., table-, regression-, and χ2 distribution-based approaches). Others enable 

the generation of cutoffs for several fit indices across various settings (i.e., bootstrap and 

simulation-based approaches). However, none of the existing approaches allows for evaluating 

the performance of several fit indices (i.e., their ability to discriminate between correctly 

specified and misspecified models) within the setting of interest. Assessing the performance of 

fit indices, in general, helps to answer the question on which fit index one can (primarily) rely 
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on for fit-misfit decisions—an important question with which many researchers grapple (e.g., 

Jackson et al., 2019; Mai et al., 2021).   

2.2.2 Approach: The Simulation-cum-ROC Approach 

Thus, I developed the so-called simulation-cum-ROC approach. It builds on the simulation-

based approach (e.g., McNeish & Wolf, 2021; Millsap, 2013; Pornprasertmanit, 2014) rather 

than the bootstrap approach as the simulation-based approach has a long tradition for 

generating cutoffs (e.g., Hu & Bentler, 1999). Thus, the simulation-based approach is 

presumably better known and easier to understand than the bootstrap approach. Features of the 

receiver operating characteristic (ROC) analysis (for a detailed description of ROC analysis, 

see Flach, 2016) herein advance the simulation-based approach. The simulation-cum-ROC 

approach allows to generate tailored cutoffs at balanced Type I and Type II error rates (i.e., 

false rejection and false acceptance probabilities) for all fit indices of interest. Importantly, it 

allows to evaluate the performance of fit indices and helps to pick the fit index that performs 

best in the setting of interest. 

The simulation-cum-ROC approach works as follows (see also Figure 2.1). As an input 

step, researchers need to fit their model of interest to empirical data. This is important to obtain 

the model, data, and estimation characteristics of interest (e.g., magnitude of factor loadings, 

multivariate response distributions, type of estimator). Those characteristics are needed in the 

next step to tailor the simulation to the setting of interest. 

As a first step of the simulation-cum-ROC approach, researchers must repeatedly draw 

data from two different population models through a Monte Carlo simulation. Those models 

should align with the hypotheses of the specific research question. The null hypothesis, H0, 

states that a population model structurally identical to the analysis model has generated the 

underlying data. The alternative hypothesis, H1, states that a population model structurally 

different from the analysis model to a specific degree of intolerable misspecification has 

generated the underlying data (Neyman & Pearson, 1928, 1933; see also Biau et al., 2010; 

Moshagen & Erdfelder, 2016; Perezgonzalez, 2015). Thus, the population model of H0 is 

structurally identical to the analysis model. Here, the analysis model is correctly specified. The 

population model of H1 is structurally different from the analysis model (e.g., population model 

parameters remain unmodeled in the analysis model; Hu & Bentler, 1998). Here, the analysis 

model is misspecified (e.g., under-parameterized to the population model; Hu & Bentler, 1998). 

What constitutes a relevant H1 population model and, thus, misspecification is open to the 
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researcher and their research question. Then, researchers fit the analysis model to data 

simulated from the H0 and H1 population models and record the fit index values. Importantly, 

they orientate the simulation upon the model, data, and estimation characteristics of interest 

(e.g., magnitude of factor loadings, multivariate response distributions, type of estimator) 

identified in the input step. For instance, the analysis model is the one of interest. The 

population models have, for instance, identical parameter values (e.g., factor loadings) to those 

of the empirical model (i.e., the model of interest fit to empirical data) identified in the input 

step. Likewise, the multivariate response distribution, sample size, and estimator used are 

identical to those in the input step. 

In the second step of the simulation-cum-ROC approach, researchers must thoroughly 

analyze the resulting fit index distributions from correctly specified and misspecified models. 

ROC analysis visualizes the fit indices’ ability to discriminate between those distributions at 

different cutoff points via the ROC curve. The area under the curve, AUC, quantifies what the 

ROC curve visualizes—the performance of each fit index. Generally, fit indices with AUC 

values closer to 1 can better discriminate between correctly specified and misspecified models. 

Thus, researchers should rely only on fit indices with high AUC values (e.g., AUC ≥ .80; 

Padgett & Morgan, 2021) when evaluating model fit. However, it can be informative to 

investigate distributions of low-performing fit indices as well. Fit indices quantify different 

aspects of the model–data relation (for an overview, see Schermelleh-Engel et al., 2003). For 

instance, the ꭓ2 test statistic (e.g., Bollen, 1989) quantifies the discrepancy between the model-

implied and sample-based variance-covariance matrix. SRMR quantifies the average residuals 

between model-implied and sample-based covariance matrices (Bentler, 1995). As fit indices 

characterize the model–data relation differently, the shape and overlap of their distributions 

help to diagnose the model further (see Browne et al., 2002; Lai & Green, 2016; Moshagen & 

Auerswald, 2018). Fit index distributions are, thus, also printed in the third step. 

In the third step of the simulation-cum-ROC approach, researchers choose optimal 

cutoffs. The optimal cutoff is the fit index value that best balances Type I error rates (i.e., 

incorrectly rejecting a correctly specified model) and Type II error rates (i.e., incorrectly 

accepting a misspecified model) for fit indices with high AUC values (e.g., AUC ≥ .80; Padgett 

& Morgan, 2021). Fit index distributions, the accuracy, Type I error rates, and Type II error 

rates are printed together with the optimal cutoffs. They reveal which error rates are to be 

expected when applying the cutoffs in the specific setting. 



 

Figure 2.1: The Simulation-cum-ROC Approach 

 

Note. Figure copied from Groskurth, Bhaktha, and Lechner (2022).

P
resen

t R
esearch

 
 

2
3
  

 
 



24   

 

 

Finally, as an output step, researchers compare empirical fit index values to the tailored 

cutoffs generated via the simulation-cum-ROC approach to decide whether the model of 

interest fits the empirical data. Researchers should rely primarily on fit-or-misfit indications 

from the fit index with the highest AUC value (identified in the second step of the simulation-

cum-ROC approach). The second manuscript (Groskurth, Bhaktha, & Lechner, 2022) includes 

empirical examples illustrating how tailored cutoffs can be generated via the simulation-cum-

ROC approach. Chapter 5 compares tailored cutoffs generated via the simulation-cum-ROC 

approach to table- and regression-based cutoffs within an empirical example. 

2.2.3 Discussion: Usability of the Simulation-cum-ROC Approach 

Overall, the simulation-cum-ROC approach generates cutoffs at balanced Type I and Type II 

error rates tailored to the setting of interest. Thus, it constitutes a clear advancement over 

generic fixed cutoffs (e.g., Hu & Bentler, 1999). Enriching Monte Carlo simulations with ROC 

analysis allows for evaluating the performance of fit indices in discriminating between 

correctly specified and misspecified models. Thus, the simulation-cum-ROC approach 

provides guidance on which fit index to rely on in the setting of interest, which uniquely 

distinguishes it from other approaches to tailored cutoffs. 

The simulation-cum-ROC approach exhibits great flexibility: Several approaches to 

tailored cutoffs predefine what constitutes correctly specified and misspecified models (e.g., 

McNeish & Wolf, 2021; Niemand & Mai, 2018). The simulation-cum-ROC approach requires 

applied researchers to define population models relative to which the analysis model is either 

correctly specified or misspecified. Thus, researchers must decide which model–data relation 

they deem acceptable and which they deem unacceptable. Many considerations might influence 

these decisions (Cudeck & Henly, 1991; MacCallum, 2003; MacCallum & Tucker, 1991): 

Should the model of interest exactly describe the underlying population? If so, the analysis 

model should be structurally identical to the H0 population model. Cutoffs point to good fit if 

the analysis model is identical to the population model. Should the model of interest be 

generalized across different populations, ignoring minor factors that might be present only in 

the specific population? If so, the analysis model should be approximately like the H0 

population model (e.g., minor factors are apparent in the H0 population model but not included 

in the analysis model). Cutoffs point to good fit if the analysis model captures the relevant 

complexities of the population model (e.g., major/general factors). At the same time, it stays 

plausible across different population models (e.g., ignoring minor factors that might be specific 
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to a certain population). Is there a strong theory for an alternative model based on which I want 

to reject the model of interest if that alternative model would have generated the data? If there 

is a strong theory for an alternative model, this is a relevant H1 population model. Otherwise, 

researchers must find another plausible H1 population model. Additionally, researchers can 

define not only single but several H1 population models (but also H0 population models when 

using approximately fitting analysis models) to include a wide variety of forms and sizes of 

misspecification in the simulation-cum-ROC approach (Pornprasertmanit et al., 2013; 

Pornprasertmanit, 2014). 

Further, the simulation-cum-ROC approach allows researchers to evaluate which Type 

I and Type II error rates they are willing to accept. Several approaches obtain tailored cutoffs 

at predefined error rates—and provide no cutoff if it exceeds certain error rates (10%; McNeish 

and Wolf, 2021). The simulation-cum-ROC approach provides cutoffs at balanced Type I and 

Type II error rates. Although the AUC screens out low-performing fit indices (Padgett & 

Morgan, 2021, recommended AUC ≥ .80), error rates of cutoffs might exceed conventional 

levels of 10%. It is left to the researcher whether they decide to use such cutoffs. Researchers 

might be willing to use cutoffs exceeding conventional error probabilities when they are highly 

interested in the very concrete operationalization of their hypotheses (e.g., the alternative 

population model has a strong theoretical foundation). 

The flexibility of the simulation-cum-ROC approach requires researchers to thoroughly 

think through their research question, hypotheses, and error probabilities based on their model 

evaluation of interest. To avoid subjectivity (or arbitrary decisions) influencing the results, 

researchers must justify their choices (e.g., population models, accepted error probabilities) 

when applying the simulation-cum-ROC approach. The simulation-cum-ROC approach 

requires researchers to make choices explicitly (that are otherwise implicitly made, e.g., 

McNeish & Wolf, 2021). As such, others can evaluate the appropriateness of this 

argumentation. To ease the computational part and, in turn, the application of the simulation-

cum-ROC approach to tailored cutoffs, I appended R code to the manuscript and developed a 

shiny app (available under https://kg11.shinyapps.io/tailoredcutoffs/). 

  

https://kg11.shinyapps.io/tailoredcutoffs/
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2.3 Manuscript III: Effect Size Measures to Quantify 

Measurement Non-Invariance 

Groskurth, K., Bluemke, M., & Lechner, C. M. (2022b). Measurement Invariance Violation 

Indices (MIVIs): Effect sizes for non-invariance of items and item sets. Manuscript in 

preparation. 

2.3.1 Motivation: How Detrimental Is Non-Invariance? 

The third manuscript went beyond the binary fit-misfit decision of model evaluation and 

evaluated the size and impact of misfit itself. It focused on the unique context of measurement 

non-invariance. Here, the goal is to assess whether group-level statistics (such as average self-

esteem) are comparable across groups (such as countries) without bias (i.e., non-invariance). 

Measurement invariance testing (e.g., Davidov et al., 2014; Millsap, 2011; Steenkamp & 

Baumgartner, 1998) commonly operates in a sequential hierarchy. Configural invariance tests 

investigate whether the item-to-factor structure is the same across groups. Metric invariance 

tests examine whether factor loadings are the same across groups. Scalar invariance tests 

additionally constrain the intercepts to be the same across groups. Finally, uniqueness 

invariance tests additionally constrain residual variances to be the same across groups.  

Researchers should refrain from comparing observed statistics (such as variances or 

mean scores) across groups when non-invariance bias is large (i.e., strong or many parameter 

differences across groups). Small non-invariance bias (i.e., tiny or few parameter differences 

across groups) need not be detrimental to differences in cross-group statistics (Chen, 2008). 

Further, uniform non-invariance (i.e., all non-invariant parameters are higher in one group) 

biases differences in cross-group statistics stronger than mixed non-invariance (i.e., some non-

invariant parameters are higher in one group, others are higher in another group; Chen, 2008) 

Effect size measures are useful for quantifying non-invariance bias (e.g., Millsap & 

Olivera-Aguilar, 2012; Nye & Drasgow, 2011b; Oberski, 2014; Pornprasertmanit, 2022). 

However, existing effect size measures are relatively complicated to apply (as they require 

extra statistical packages; Dueber, 2019; Nye & Drasgow, 2011b; Oberski, 2014). 

Alternatively, they focus only on single items instead of the complete item set (Millsap & 

Olivera-Aguilar, 2012; Pornprasertmanit, 2022), making it impossible to investigate 

aggregation or compensation effects (i.e., due to uniform or mixed non-invariance).  
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2.3.2 Approach: The Measurement Invariance Violation Indices (MIVIs) 

To address these shortcomings, I proposed the easy-to-apply Measurement Invariance 

Violation Indices (MIVIs) that are effect size measures for items and item sets. The core idea 

of MIVIs is to quantify the non-invariant differences in parameters (i.e., factor loadings, 

intercepts, or residual standard deviations) in units of the standard deviation of the latent 

variable pooled across groups. The parameter differences constitute the numerator. The pooled 

latent standard deviation forms the denominator. Pooled latent standard deviations are 

favorable compared to pooled observed standard deviations of items and item sets. Unlike 

observed standard deviations (of either items or item sets), latent standard deviations are the 

same for all items in an item set, independent of the number of items in an item set, and consist 

of true score variance only (i.e., the variance of the latent variable).  

MIVIs rest on partially invariant multi-group confirmatory factor analysis models 

(Byrne et al., 1989). Full invariance requires that cross-group parameter constraints must hold 

for all items. Partial invariance implies that cross-group parameter constraints must only hold 

for some (at least two) items (Byrne et al., 1989; Steenkamp & Baumgartner, 1998; Steinmetz, 

2013). The model has group-equivalent and group-specific factor loadings, intercepts, or 

unique variances. 

I derived absolute and signed (i.e., directional) versions of MIVIs for items and item 

sets (summarized in Table 2.1). Absolute MIVIs contain the absolute value of parameter 

differences in the numerator. They are bounded at zero and can only have positive values. 

Signed MIVIs trace the mathematical signs of the parameter differences. Thus, signed MIVIs 

allow for the investigation of aggregation or compensation effects when either uniform or 

mixed non-invariance is present. Signed MIVIs are unbounded. 

MIVIs at the item level only include parameter differences of single items. They are 

specifically helpful in scale development processes with no fixed item set. MIVIs at the level 

of item sets summarize across all parameter differences. Dividing those MIVIs by the number 

of items in a set gives an overall impression of how biased the item set is on average. Those 

MIVIs are especially relevant if non-invariance occurs in a fixed item set needed for further 

analysis (such as comparing observed variances or mean scores across groups). 
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Table 2.1: Measurement Invariance Violation Indices (MIVIs) 

 

 Measurement Invariance Violation Indices (MIVIs) 
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𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 
|λ2𝑗 – λ1𝑗| 

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
 𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑 = 

λ2𝑗 – λ1𝑗

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
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𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 
|τ2𝑗 – τ1𝑗| 

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
 𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑 = 

τ2𝑗 – τ1𝑗
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𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 
|√θ2𝑗 – √θ1𝑗| 

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
 𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑 = 

√θ2𝑗 – √θ1𝑗

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
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𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  =  
∑  |λ2𝑗 − λ1𝑗|

𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 = not applicable 
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𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 
∑  |τ2𝑗 − τ1𝑗|

𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 = 

∑ (τ2𝑗 − τ1𝑗)
𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 
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𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 = 
∑ |√θ2𝑗 – √θ1𝑗|

𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 = 

∑ (√θ2𝑗 – √θ1𝑗)
𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 

 𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑 =√
(𝑛2−1)Φ2+ (𝑛1−1)Φ1 

𝑛1+𝑛2− 2
  

Assumptions / preconditions 

1. Multi-factor models: separate MIVIs must be estimated per factor 

2. Multi-group measurement model must be correctly identified 

3. Common factor model must hold 

4. When estimating MIVIs, partial invariance model for the invariance level of interest must hold 

5. Final partial invariance model should be identified by fixing the latent variable at 1 / latent mean at 0 

6. Three types of MIVIs must not be compared (i.e., MIVI–L, MIVI–I, MIVI–U) 

Note. I defined MIVIs for a non-invariant (unstandardized) loading λ𝑘𝑗 , intercept 𝜏𝑘𝑗, or unique standard deviation 

√θ𝑘𝑗  of the non-invariant item j (j = 1, 2, …, p) in group k (k = 1, 2). The equation for the standard deviation of 

the latent variable pooled across groups, 𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑, was obtained from Cohen (1988). Here, Φ𝑘 is the variance 

of the scores on the latent variable, and 𝑛𝑘 is the sample size in group k. 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑  is only given for 

intercepts or unique standard deviations but not for factor loadings. Loadings multiply with the latent means and 

variances, whereas intercepts or unique variances are additive components when producing observed means and 

variances of the items (or item sets; for a formula-based definition, see Nye & Drasgow, 2011b). Thus, loadings 

ultimately connect to the means and variances of the latent variable; compensation (or aggregation) across groups 

is, thus, not immediately conceivable. 
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Although effect sizes, such as MIVI values, can be used continuously, some guidance 

on what constitutes small, medium, or large non-invariance can be helpful. Small non-

invariance bias may allow researchers to retain items in an item set or to compare group-level 

statistics, despite non-invariance being present. 

Cohen’s (1988, 1992) effect size guidelines for his d, quantifying the independent mean 

difference relative to the pooled standard deviation, could serve as initial guidance, especially 

for 𝑀𝐼𝑉𝐼 − 𝐼 quantifying intercept differences. He suggested that |d| = 0.2 may indicate a 

substantial but small, |d| = 0.5 a medium, and |d| = 0.8 a large effect. However, these guidelines 

are extremely rough. Appropriate guidelines are subject to many aspects like the substantive 

research question, type of analysis, empirical setting, and parameter of interest (i.e., loading, 

intercept, or uniqueness) that may influence what is considered a critical value (e.g., Steinmetz, 

2013). 

2.3.3 Discussion: Usability of MIVIs  

By quantifying non-invariance bias in a continuous and easy-to-apply manner, MIVIs 

overcome the binary fit-misfit logic in model testing, precisely in measurement invariance 

testing. With not yet fixed item sets (such as in the scale development process), MIVIs help to 

select group-fair items. With fixed item sets, MIVIs can evaluate the questionnaire quality in a 

new context. Further, MIVIs can quantify the bias due to non-invariance in the item set that 

resonates in observed statistics compared across groups (e.g., variances or mean scores). To 

ease the application of MIVIs, I provided Mplus and R codes in the manuscript (Groskurth, 

Bluemke, & Lechner, 2022b). 

Even when MIVIs identify non-substantial or mixed non-invariance (i.e., non-

invariance that compensates across groups), researchers must be aware that non-invariance is 

present in the item set. MIVIs are no legitimation to completely ignore non-invariance; instead, 

MIVIs quantify its size and, ultimately, its potential impact on observed statistics compared 

across groups (e.g., variances or mean scores). If non-invariance is present in either form, 

researchers should always reflect on the causes of the specific non-invariance. Researchers can 

investigate causes of non-invariance theoretically (e.g., Chen, 2008) but also empirically, such 

as via a multiple-indicators multiple-causes model (or more flexible variations of it, e.g., Bauer, 

2017; Kolbe et al., 2022). 
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3 General Discussion 

3.1    Summary 

The overarching goal of this thesis was to close the gap between the practice of using fixed 

cutoffs for model evaluation and the methodological criticism of its one-size-fits-all usage by 

pursuing two strategies. As a first strategy, I thoroughly investigated how several model, data, 

and estimation characteristics influence fit indices through a large-scale simulation study in the 

first manuscript (Groskurth, Bluemke, & Lechner, 2022a). Fit index values differ not only 

depending on model misspecification (as they should) but also depending on the setting of 

interest (as they should not). No generic, binary heuristic (i.e., fixed cutoff) will adequately 

differentiate between fit index values of correctly specified and misspecified models across 

diverse settings. Thus, cutoffs have no external validity; they are only valid within the setting 

from which they originate. Cutoffs must be tailored to the setting of interest. As a second 

strategy, I developed novel approaches for model evaluation that do not rely on fixed cutoffs. 

Thus, I summarized existing approaches to tailored cutoffs in the second manuscript 

(Groskurth, Bhaktha, & Lechner, 2022). Then, I developed easy-to-apply approaches to cutoffs 

tailored to the setting of interest, particularly table- and regression-based approaches in the first 

manuscript (Groskurth, Bluemke, & Lechner, 2022a) and the simulation-cum-ROC approach 

in the second manuscript (Groskurth, Bhaktha, & Lechner, 2022). I also developed so-called 

Measurement Invariance Violation Indices in the third manuscript (Groskurth, Bluemke, & 

Lechner, 2022b) that allow for continuously quantifying misfit (i.e., non-invariance) in 

addition to binary fit-misfit decisions (made through cutoffs for fit indices).  

After summarizing the main contributions of the three manuscripts, I next discuss what 

they add to the methodology and general practice of model evaluation. The first section 

considers the methodological perspective and is concerned with the accumulation of 

knowledge through the three manuscripts. The second section considers the applied perspective 

and is concerned with the understandability of explanations and the applicability of approaches 

to change the practice of model evaluation through the three manuscripts. 
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3.2    Methodological Perspective: Contribution to the Methodology 

of Model Evaluation 

In this section, I discuss how all three manuscripts contributed to accumulating knowledge on 

problems of and alternatives to fixed cutoffs for fit indices. Specifically, the first manuscript 

(Groskurth, Bluemke, & Lechner, 2022a) contributed to the literature on the sensitivity and 

susceptibility of fit indices to diverse model, data, and estimation characteristics—merely 

analyzed in isolation before. Evaluating several characteristics in tandem helped to evaluate 

the relative importance of those influences. As such, some characteristics had a smaller impact 

on fit indices than previously assumed. For instance, the response distribution had not such a 

strong influence on DWLS/WLSMV-based fit indices as initially suggested by Xia and Yang 

(2018). Differently, other more underappreciated characteristics had a stronger impact on fit 

indices than previously assumed. Especially interesting was that several unmodeled cross-

loadings resulted in good fit when factors correlated. The correlated two-factor model (flexibly) 

accounts for unmodeled cross-loadings through other parameters (i.e., factor correlation and 

factor loadings). Further, nearly every characteristic impacted fit indices to some extent—

making the influences non-traceable across diverse settings. 

The large-scale simulation study focused on confirmatory factor analysis (CFA). I 

know only one similarly large simulation study on another model class, exploratory structural 

equation modeling (ESEM; Garrido et al., 2016). Garrido et al. (2016) mainly included the 

characteristics I included (i.e., factor loading, number of items, number of factors, factor 

correlation, sample size, response categories, distribution, and estimators) but only focused on 

correctly specified models. Findings somewhat differed across model classes. For instance, 

Garrido et al. (2016) found a strong influence of the number of items per factor and sample 

size on all fit indices they investigated (i.e., CFI, TLI, RMSEA, SRMR) for correctly specified 

ESEM models. In my study (Groskurth, Bluemke, & Lechner, 2022a), the number of items 

only strongly impacted ꭓ2, and the sample size only strongly impacted SRMR for correctly 

specified CFA models. The different findings could hint at model-specific operations. Put 

differently, values of fit indices and the strength of influences on these values may differ by 

model type.1 I do not know about any comparative large-scale simulation study for longitudinal 

 
1 Alternatively, different operationalizations of these characteristics may produce different results. 

Garrido et al. (2016), for instance, simulated smaller sample sizes with levels of 100, 300, and 1,000 

than I did in Groskurth, Bluemke, and Lechner (2022a) with sample size levels of 200, 500, and 

2,000. 
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or multilevel models. However, such a large simulation study on the sensitivity and 

susceptibility of fit indices in either longitudinal or multilevel models could help gain further 

insights into related model classes. 

One could argue that additional research on the sensitivity and susceptibility of fit 

indices to different model classes is cumbersome. Either way, one can interpret values of fit 

indices only in the specific setting of interest; there is no generalization at all possible. Values 

of fit indices differ depending on the setting of interest, different cutoffs to classify “good” and 

“bad” values of fit indices must ultimately apply.  

Further, the manuscripts contributed to the literature on so-called tailored cutoffs for fit 

indices. I summarized and compared the different approaches to tailored cutoffs (Groskurth, 

Bluemke, & Lechner, 2022a; Groskurth, Bhaktha, & Lechner, 2022). There had been no 

systematic review of all these approaches before these manuscripts. So far, I have only 

compared the approaches conceptually. I did not yet conduct a simulation study that 

systematically compared, for instance, the Type I and Type II error rates of cutoffs generated 

from the different approaches in different settings. Such a simulation study can further increase 

the understanding of the different approaches—as a relevant next step for future research 

building on my first two manuscripts (Groskurth, Bluemke, & Lechner, 2022a; Groskurth, 

Bhaktha, & Lechner, 2022). 

I did not only compare the different approaches to tailored cutoffs but also developed 

approaches myself. Based on the large-scale simulation study of the first manuscript 

(Groskurth, Bluemke, & Lechner, 2022a), I built cutoff tables for specific scenarios valid for 

comparable empirical settings. I borrowed a feature from other statistics, such as t-tests, where 

selecting cutoffs from large-scale tables is common practice. Further, I used the regression-

based approach invented by Nye and Drasgow (2011a) and derived regression formulae for 

generating tailored cutoffs. My simulation included more characteristics than Nye and 

Drasgows’ (e.g., they focused only on the DWLS estimator), so researchers may use my 

regression formulae for a broader set of empirical settings. Crucially, empirical settings must 

be like the scenarios in the simulation, either from Groskurth, Bluemke, and Lechner (2022a) 

or Nye and Drasgow (2011a). Thus, regression formulae or cutoff tables are still limited, so I 

developed the more flexible simulation-cum-ROC approach in the second manuscript 

(Groskurth, Bhaktha, & Lechner, 2022) that is applicable to all settings of interest. The 

simulation-cum-ROC approach follows a simulation-based approach to tailored cutoffs (like 

many others, such as McNeish & Wolf, 2021, or Millsap, 2013). Unlike others, it borrows ROC 
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analysis from signal detection theory (Wixted, 2020), which allows not only for generating 

tailored cutoffs with balanced Type I and Type II error rates but also evaluating the 

performance of fit indices in the setting of interest.  

The second manuscript (Groskurth, Bhaktha, & Lechner, 2022) additionally outlined 

how researchers can integrate different and more advanced definitions of H0 and H1 population 

models into the simulation-cum-ROC approach (or any other simulation-based approach to 

tailored cutoffs). For instance, researchers can generate cutoffs based on an analysis model 

approximately identical to the H0 population model. Further, they can consider multiple forms 

and sizes of misspecification by including multiple H1 population models (and H0 population 

models alike when considering approximate fit). Up to now, I have only described the advanced 

definitions of H0 and H1 population models, which originate primarily from Millsap (2013) and 

Pornprasertmanit (2014). No standalone guideline study comparing, implementing, and sharing 

computational code exists for the different definitions of the H0 and H1 population models. 

The third manuscript (Groskurth, Bluemke, & Lechner, 2022b) contributed to the 

literature on effect sizes for measurement non-invariance. It provides an approach that quickly 

quantifies measurement non-invariance in loadings, intercepts, and residual variances, the so-

called Measurement Invariance Violation Indices (MIVIs). I built on just a handful of effect 

size measures for measurement non-invariance in the context of the classical test theory 

(Millsap & Olivera-Aguilar, 2012; Nye & Drasgow, 2011b; Oberski, 2014; Pornprasertmanit, 

2022). So far, there has not been any systematic review of those effect size measures, which is 

an essential next step for the research community.  

I have declared MIVIs as continuous effect sizes for non-invariance. However, 

researchers cannot only use effect sizes continuously. Categorical heuristics help to interpret 

what makes a small, medium, and large effect. Heuristics can be either derived by simulations 

(e.g., Nye et al., 2019) or gathered by empirical data (e.g., Gignac & Szodorai, 2016). So far, I 

have lent myself to Cohen’s effect size guidelines (1992) for his d, which are certainly too 

generic. MIVIs need specific guidelines on what constitutes a small, medium, and large effect 

in its very own effect size logic—researchers must be able to differentiate sample fluctuations 

from systematic small, medium, or large non-invariance. However, the interpretation of MIVIs 

depends on the research question, the non-invariant parameter (i.e., factor loadings, intercepts, 

or residual variances), and the empirical setting. Indeed, effect sizes need a tailored approach 

to appropriate guidelines. 
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3.3    Applied Perspective: Contribution to the General Practice of 

Model Evaluation  

So far, I have reviewed how the three manuscripts contributed to the accumulation of 

knowledge for the methodology of model evaluation. But to make a real impact on the practice 

of model evaluation, the manuscripts must be understandable and useful for applied 

researchers. Here, I discuss how the three manuscripts contributed to the gradual improvement 

of model evaluation practices. 

The first manuscript (Groskurth, Bluemke, & Lechner, 2022a) showed that fit indices 

varied with model, data, and estimation characteristics in strong and unpredictable ways. Thus, 

fit index values are not easily explainable by specific characteristics, nor are influences of 

characteristics directly traceable. To make all the influences as easily digestible as possible, I 

generated an overview table showing all relevant (i.e., strong) effects. The intractability of 

specific influences on fit indices (especially in empirical settings) should not imply researchers 

should abandon those fit indices in general. Instead, they should use cutoffs more 

conscientiously—not in a one-size-fits-all but scenario-specific logic. 

Therefore, I developed easy-to-apply alternatives to fixed cutoffs: Cutoff tables, where 

one can look up different cutoffs for different scenarios, and regression formulae, where 

researchers can plug in characteristics of interest to calculate tailored cutoffs (see Groskurth, 

Bluemke, & Lechner, 2022a)—as long as the characteristics of the setting of interest match 

those of the given, simulated scenarios. I anecdotally demonstrated their usage in the first 

manuscript (Groskurth, Bluemke, & Lechner, 2022a). In Chapter 5, I demonstrated their usage 

through an empirical example. 

Further, I developed a highly flexible (though more involved) approach to tailored 

cutoffs: the simulation-cum-ROC approach (Groskurth, Bhaktha, & Lechner, 2022). Although 

researchers can apply this approach without any knowledge of conducting simulations, it 

certainly helps to have some pre-knowledge—or even more in-depth knowledge when using 

the approach’s full flexibility.  

To make applying the simulation-cum-ROC approach as easy as possible, I shared the 

R code of my examples (which researchers can adjust according to their needs). To ease the 

application even more, I developed a shiny app: Researchers need to plug in their model, data, 

and estimation characteristics of interest. With this information, the app generates cutoffs via 

the simulation-cum-ROC approach. Researchers do not need to execute R or any statistical 
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software. An important step for future research is to increase the flexibility of the shiny app 

even more. It should include not only single but several different definitions of population 

models (see Pornprasertmanit, 2014). Further, the shiny app should not only include balanced 

but different weightings of Type I and Type II error rates.  

Another important step for future research is to provide a detailed tutorial on deriving 

cutoffs via the simulation-cum-ROC approach across diverse settings (apart from the examples 

in the manuscript). The tutorial could also extend the simulation-cum-ROC approach to 

different model classes (such as multi-group confirmatory factor analysis models). 

Additionally, its extension to research questions other than global fit evaluation (such as nested 

fit evaluation within measurement invariance testing, e.g., Pornprasertmanit et al., 2013) is an 

important future step. Including all flexible options of the simulation-cum-ROC approach into 

the shiny app and writing a hands-on tutorial on the simulation-cum-ROC approach will 

undoubtedly foster the applicability of the approach and, in turn, the use of tailored cutoffs. 

Further, I have shown that model evaluation does not need to stop when the model of 

interest fails (i.e., is rejected): In the specific context of (partial) measurement non-invariance, 

I developed the so-called Measurement Invariance Violation Indices (MIVIs) to quantify the 

bias of non-invariant loadings, intercepts, or residual variances (Groskurth, Bluemke, & 

Lechner, 2022b). I have provided simulated examples in the third manuscript (Groskurth, 

Bluemke, & Lechner, 2022b) and an empirical example in Chapter 5 that illustrates the 

application of MIVIs for intercept and uniqueness non-invariance, respectively. Further 

research can be built on this, illustrating the use of MIVIs to quantify non-invariance in 

loadings. 

The actual implementation of MIVIs is easy: Researchers must add a few lines of code 

in statistical programs such as R or Mplus. Thus, I do not believe it is essential to implement 

MIVIs in an R package, but this could be a next step in the distant future. More important, as 

outlined previously, tailored guidelines for interpreting MIVIs as small, medium, or large 

effects are desperately needed.  
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3.4    Future Directions 

3.4.1 For Methodological Research 

The preceding reviews of the manuscripts’ contributions to the methodology and general 

practice of model evaluation have already revealed some directions for future research based 

on the three manuscripts’ findings. Here, I take a broader look at much-needed future directions 

for research in the general field of model evaluation. These broad directions point to a more in-

depth integration of approximate fit and the use of effect size measures for model evaluation. 

The famous phrase “All models are wrong, but some are useful,” dating back to Box 

(1978, p. 202), presumably guides many researchers through model evaluation. The phrase 

essentially taps into the issue of approximate model fit (Cudeck & Henly, 1991; MacCallum, 

2003; MacCallum & Tucker, 1991). It means that researchers are satisfied with selecting a 

good (enough) model approximation to the data. Phrased differently, the analysis model should 

capture the relevant complexities of the population model (e.g., major/general factors). At the 

same time, it should generalize across population models (e.g., ignoring minor factors that 

might be specific to a certain population). It also implies that researchers do not want a model 

that exactly describes a certain population (including all minor common factors specific to that 

population). In most cases (MacCallum, 2003), the goal of model evaluation is to find a model 

that does not fit the data exactly but only approximately (i.e., considering minor model error 

acceptable such as dismissing minor factors).  

Contrary to this goal of model evaluation is a strict reliance on tests of exact fit (i.e., ꭓ2 

test statistic) or the generation of cutoffs for fit indices from exactly fitting models (e.g., 

Groskurth, Bhaktha, & Lechner, 2022; Hu & Bentler, 1999; Niemand & Mai, 2018). To derive 

cutoffs for approximately fitting models, researchers must first define approximate fit: How 

much misfit am I willing to accept? Only a few approaches concretely provide ways to define 

approximate fit (e.g., Millsap, 2013; Pornprasertmanit, 2014; Yuan et al., 2007). There has not 

yet been any extensive review (except for a very small section in the second manuscript, 

Groskurth, Bhaktha, & Lechner, 2022) on definitions of approximate fit, existing approaches 

to approximate fit, and guidelines on how to operationalize approximate fit in specific settings.  

Related to the question of approximate fit is the impact of misfit itself: How strongly 

does certain misfit impact the estimation of parameters? Put differently: How detrimental is 

certain misfit? Answering this question helps to understand how much misfit researchers can 

accept. To answer this question, researchers can investigate, for instance, how strongly misfit 
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biases parameter estimates and summary statistics (such as variances and means) through 

simulation studies. This may show that certain extreme positions are explicitly legitimate: 

Robitzsch and Lüdtke (2022) argued against the local optimization of models, which they call 

model-based inference, and in favor of design-based inference. Design-based inference means, 

for example, that researchers assume unit loadings, even if the model fits worse than a model 

with different loadings—simply because the theory dictates it, and the assumption of unit 

loadings is relevant for further analysis. This is an appropriate technique if such misfit does not 

severely bias parameter estimates and summary statistics (such as variances and means). 

3.4.2 For Dissemination and Wide-Spread Implementation of 

Methodological Advancements 

Similarly (or even more) important than identifying fields of action for research is to foster the 

dissemination of methodological advancements, especially through hands-on tutorials, 

requirements raised by editors and reviewers, and their inclusion in method curricula. 

In general, it seems that tutorials, especially in the context of new methods for model 

evaluation, are missing. It is, for instance, long known that fixed cutoffs for fit indices are 

invalid in many empirical settings (Marsh et al., 2004). Alternatives have been suggested ten 

years after that (e.g., Millsap, 2013) but have not been regularly picked up. Illustrative, widely 

spread tutorials could have helped to disseminate the idea of tailored cutoffs even earlier. 

Svetina et al. (2020) is a good example of a hands-on tutorial in the context of measurement 

invariance testing with categorical items. 

However, not only the idea of tailored cutoffs (such as any other methodological 

innovation) must be promoted in a more accessible way to applied researchers, but also the 

journals’ acceptance of fixed cutoffs for model evaluation must undoubtedly change. Applying 

fixed cutoffs seems legitimate, as journals continue to publish studies evaluating models with 

fixed cutoffs. Suppose journals would require (or at least recommend) using more valid 

approaches for model evaluation than fixed cutoffs. In that case, more valid alternatives will 

undoubtedly replace fixed cutoffs soon. 

Additionally, lecturers should teach approaches to tailored cutoffs in structural equation 

modeling classes. Cursory glances at textbooks and lecture slides suggest that, all too often, 

students today are taught to apply conventional fixed cutoffs for canonical fit indices rather 

mechanistically. They seem to never learn about the origins of cutoffs and the potential 

problems of fit indices. Raising awareness of these issues and highlighting potential 
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alternatives would be vital to improving model evaluation. The well-known problems of fixed 

cutoffs must be shared across students so that they “grow up” with more valid alternatives 

already. Learning and getting to know cutting-edge research from the beginning of an academic 

career might help disseminate new methods and foster critical examination of methods in 

general. 

3.5    Advice for Applied Researchers 

Before concluding, I want to add general advice to applied researchers on choosing appropriate 

cutoffs for fit indices. Structural equation modeling techniques, particularly confirmatory 

factor analysis, are primarily tools to investigate substantive cause-effect relationships of 

variables. Applied research focuses on specific relationships, such as how self-esteem affects 

life satisfaction (Cao & Liang, 2020) or how religious belief affects death anxiety (Jong & 

Halberstadt, 2016). Selecting a well-fitting model to represent constructs of interest is not the 

focus but a necessary pre-step to investigate the research question of interest. 

Although this research investigates global (mis)fit through fit indices, researchers 

should examine a model of interest from different angles. Investigating local (mis)fit is 

additionally relevant (i.e., how well each part of the model fits the data). Researchers are well 

acquainted with the modification index and expected parameter change. The modification 

index shows how strongly ꭓ2 improves when freely estimating an initially fixed parameter 

(Satorra, 1989; Sörbom, 1989; see also Whittaker, 2012). The expected parameter change 

indicates the size of a fixed parameter if it will be freely estimated (Saris et al., 1987; Chou & 

Bentler, 1993; see also Whittaker, 2012). Both work best in combination and in addition to the 

power of the modification index (Saris et al. 2009). Investigating standardized residuals 

between model-implied and sample-based covariances and—even better—the model’s 

plausibility of conditional (in)dependence assumptions between variables help to localize 

where the model does or does not fit (Maydeu-Olivares & Shi, 2017; Thoemmes et al., 2018). 

Researchers might also inspect the plausibility of parameters (e.g., their direction and size) and 

how well the model was replicated in previous investigations (if applicable) to decide whether 

they retain or disregard the model of interest. Thus, evaluating the global fit via fit indices is 

necessary but insufficient for the fit-misfit decision of the model of interest. 

 This thesis showed that researchers must not completely abandon cutoffs for fit indices. 

Instead, they should use cutoffs for fit indices more conscientiously. When simulation 

scenarios from which cutoffs originated match empirical settings, researchers can use the 
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cutoffs suggested by Hu and Bentler (1999) or any other previous simulation study. Likewise, 

simple approaches to tailored cutoffs, such as table-based (e.g., Groskurth, Bluemke, & 

Lechner, 2022a) or regression-based ones (e.g., Groskurth, Bluemke, & Lechner, 2022a; Nye 

& Drasgow, 2011a), allow obtaining valid cutoffs. However, the empirical setting does not 

always match any already simulated scenario. Only in that case must researchers use highly 

flexible tools such as the simulation-cum-ROC approach (Groskurth, Bhaktha, & Lechner, 

2022) to obtain valid cutoffs. Additionally, the simulation-cum-ROC approach is helpful when 

researchers need guidance on which fit index to rely on in fit-misfit decisions in a specific 

setting. 

3.6    Conclusion 

This thesis outlined problems surrounding the one-size-fits-all usage of fixed cutoffs for 

evaluating structural equation models, particularly confirmatory factor analysis models. To 

address these problems, it provided new, more valid perspectives on model evaluation. It would 

be naïve to assume that this research would magically change the standard practice of model 

evaluation via fixed cutoffs for fit indices that is so firmly entrenched. There is still a lot to do 

until the status quo of model evaluation changes, such as the promotion of approximate fit, the 

evaluation of the bias induced by misfit, and changing method curricula. Nonetheless, I hope 

this research is at least a step toward more valid model evaluation.
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5 Appendix 

Integrative Concept of This Thesis 

Figure 5.1: Integrative Concept  
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Examples of All Approaches Developed in This Thesis 

To illustrate all approaches developed in this doctoral thesis, I use the example of the 

Rosenberg Self-Esteem Scale (Rosenberg, 1965). Rosenberg (1965) constructed ten items that 

are supposed to measure global self-esteem, with half of the items referring to positive feelings 

about the self and the other half to negative ones. Although constructed as a one-factor scale, 

several studies found a two-factor structure (or more complex structures, as outlined in Supple 

et al., 2013). For this example, I used publicly available data (Nießen et al., 2020) of a quota 

sample aged 18 to 69 from the United Kingdom (UK; N = 468). I included the R code for this 

example, which also contains details on the packages I used, in an OSF online repository 

(https://osf.io/vwjmq/).  

 As shown in Figure 5.2, I fit the two-factor model to the empirical data with MLR and 

recorded the empirical values of commonly used fit indices (i.e., ꭓ2(34) = 119.05, p < .001, CFI 

= .947, RMSEA = .073, SRMR = .051). The classical way to evaluate whether fit indices point 

to good or bad fit of the model is to compare them with fixed cutoffs (e.g., Hu & Bentler, 1999; 

CFI around ≥ .95, RMSEA around ≤ .06, SRMR around ≤ .08). In this example of the two-

factor Rosenberg Self-Esteem Scale model, only RMSEA exceeded its cutoff and, thus, pointed 

to bad fit. CFI was around its cutoff and, thus, acceptable. SRMR pointed to good fit. When 

relying on fixed cutoffs, I would conclude that the two-factor model fits the data. As outlined 

in this thesis, the values of fit indices depend on the setting of interest. Once-proposed cutoffs 

are not generalizable to empirical settings different from the initial simulated scenarios. Hu and 

Bentler (1999) did not base their cutoffs on a two-factor model with ten items but on a three-

factor model with 15 items. Thus, their cutoffs were invalid for the present setting. 

 I developed a so-called table-based approach to tailored cutoffs in the first manuscript 

(Groskurth, Bluemke, & Lechner, 2022a). I obtained cutoffs (at a 5% Type I error rate) for 

several scenarios from a large-scale simulation study. I saved them in a large scenario-specific 

table (included in Additional File 4 of the first manuscript). I can read out the cutoff that best 

matches the empirical setting. According to the table-based cutoffs that best matched this 

empirical setting (CFI ≥ .992, RMSEA ≤ .027, SRMR ≤ .030), I rejected the two-factor model, 

as empirical fit index values indicated bad fit when compared against table-based cutoffs. 

Overall, the cutoffs’ simulated scenarios were like the empirical setting investigated here. 

However, there were still some differences, as outlined in Figure 5.2: For instance, I 

investigated ten items in this empirical setting, but the closest simulated scenario contained 12 

https://osf.io/vwjmq/
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items. The simulation considered only a factor correlation of r = .30, whereas the current 

model’s factors correlated at r = .71. 

 In the first manuscript (Groskurth, Bluemke, & Lechner, 2022a), I also developed 

regression formulae that allow the generation of tailored cutoffs for empirical settings not 

exactly equal to the simulated scenarios. The scenario-specific cutoff tables were the basis for 

the regression formulae. Thus, both originate from the same simulation study—the regression 

formulae just better accommodate settings different from the simulated scenarios through 

extrapolation. To obtain cutoffs, I plugged the model, data, and estimation characteristics from 

this empirical setting (as outlined in Figure 5.2) in the regression formulae (i.e., the R code 

from Additional File 5 of the first manuscript). The cutoffs (i.e., CFI = 1, RMSEA ≤ .033, 

SRMR ≤ .034) were relatively close to those from the table-based approach (i.e., CFI ≥ .992, 

RMSEA ≤ .027, SRMR ≤ .030). However, neither table-based nor regression-based cutoffs 

were simulated explicitly for the setting of interest. Neither were Type I error rates considered 

in addition to Type II error rates, nor were researchers given any guidance as to which fit 

indices were most reliable in the setting of interest. 

 To obtain information about the performance of fit indices and explicitly simulate 

cutoffs at balanced Type I and Type II error rates for the setting of interest, I needed to generate 

tailored cutoffs via the simulation-cum-ROC approach outlined in the second manuscript 

(Groskurth, Bhaktha, & Lechner, 2022). Here, I used the same example of the Rosenberg Self-

Esteem Scale model as in the second manuscript. I also generated tailored cutoffs in the same 

way (i.e., with a two-factor model as the H0 population model and a bi-factor model as the H1 

population model). The second manuscript contains all the details. Here, tailored cutoffs 

generated via the simulation-cum-ROC approach (ꭓ2(34) ≤ 70.82, CFI ≥ .984, RMSEA ≤ .047, 

SRMR ≤ .031) were very similar to those of the regression-based approach (CFI = 1, RMSEA 

≤ .033, SRMR ≤ .034). They were also like those of the table-based approach (CFI ≥ .992, 

RMSEA ≤ .027, SRMR ≤ .030). This was certainly due to the similarity of this empirical setting 

to the simulated scenarios where table-based but also regression-based cutoffs originated from. 

If the settings were more dissimilar, table-based but also regression-based cutoffs would be 

more invalid and, thus, dissimilar to those of the simulation-cum-ROC approach. 

 The simulation-cum-ROC approach suggested that all fit indices performed well for the 

setting of interest. The empirical values of fit indices compared to the cutoffs of the simulation-

cum-ROC approach (in Figure 5.2) suggested that the two-factor model of the Rosenberg Self-

Esteem Scale fit poorly. The simulation-cum-ROC approach generates the most tailored and, 
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thus, most valid cutoffs among the approaches presented in Figure 5.2. Unlike the fixed cutoffs 

that classified the model as correctly specified according to most fit indices (i.e., only RMSEA 

points to misspecification), tailored cutoffs classified the model as misspecified according to 

all fit indices in this example. The simulation-cum-ROC approach also revealed that all fit 

indices could equally discriminate between correctly and misspecified models as defined here. 

Thus, I did not need to prioritize any fit index in this setting.  

 

Figure 5.2: Testing the Two-Factor Model of the Rosenberg Self-Esteem Scale 

 
Note. Standardized loadings.

 aAUC = 1 for all fit indices, Type I and Type II error rates = 0% for all 

cutoffs of the simulation-cum-ROC approach. *** p < .001. I identified the model by fixing the latent 

variables at 1 and latent means at 0. 
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So far, I have evaluated whether the model of interest fits the data via binary fit-misfit 

decisions (using cutoffs for fit indices). In the following, I move over to another context, the 

context of measurement invariance testing, where it is especially important to continuously 

quantify misfit (i.e., non-invariance), if present, in addition to binary fit-misfit decisions. 

Measurement invariance tests (e.g., Davidov et al., 2014; Millsap, 2011; Steenkamp & 

Baumgartner, 1998) evaluate the comparability of cross-group statistics. Quantifying non-

invariance, if present, helps to investigate how biased cross-group comparisons are.  

To conduct measurement invariance tests, I needed to find a well-fitting model. I 

modified the previously evaluated two-factor model and found evidence for a bi-factor model 

for the Rosenberg Self-Esteem Scale in the UK data. All details on this model modification 

(including the generation of tailored cutoffs via the simulation-cum-ROC approach) were 

included in the R code, stored in an OSF online repository (https://osf.io/vwjmq/). Suppose my 

goal was to evaluate the comparability of the bi-factor Rosenberg Self-Esteem Scale model 

across the UK and another country included in the data, Germany (N = 474). As outlined in 

Figure 5.3, I found evidence for configural invariance (i.e., equal item-to-factor structure), 

metric invariance (i.e., equal loadings), and scalar invariance (i.e., equal intercepts). The fit did 

not deteriorate strongly through the additional constraints on loadings and intercepts, according 

to CFI and RMSEA. The uniqueness model (i.e., equal loadings, intercepts, and residual 

variances) fit worse than the scalar model. When freely estimating two residual variances, the 

final partial uniqueness model fit as well as the scalar model. I accepted the partial uniqueness 

invariance, implying that latent (co)variances and observed means were comparable across the 

UK and Germany without bias (e.g., Chen, 2008; Steenkamp & Baumgartner, 1998; Steinmetz, 

2013). The partial uniqueness model did not allow the comparison of observed variances as the 

two non-invariant residual variances could bias such comparisons (e.g., Steenkamp & 

Baumgartner, 1998). The non-invariant residual variances pertained to Item 7 (“I feel that I’m 

a person of worth, at least on an equal plane with others”) and Item 2R (“At times I think I am 

no good at all”). The R code contains further details on arriving at the partial uniqueness model.  

An important question remained: How large is the non-invariance of the two residual 

variances identified through the partial uniqueness model? Measurement Invariance Violation 

Indices (MIVIs) developed in the third manuscript (Groskurth, Bluemke, & Lechner, 2022b) 

help to answer that question. I estimated MIVIs based on the pooled standard deviation of the 

general factor (loading on all ten items). MIVIs estimated at the item level showed that non-

invariance due to Item 7 (𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 7|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒= 0.14) and Item 2R (𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 2𝑅|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒= 

https://osf.io/vwjmq/


56   

 

 

0.13) was equally large. The signed MIVIs revealed a negative value for Item 7 and a positive 

for Item 2R. Thus, the non-invariance pattern was mixed; non-invariant residual variances were 

smaller in the UK than in Germany for Item 7 and larger in the UK than in Germany for Item 

2R. Adding up all absolute non-invariant parameters differences within the item set (i.e., 

𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) amounted to an average bias of 0.03 pooled latent standard deviations. 

When non-invariant parameter differences were allowed to cancel out in the item set (i.e., 

𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑), they compensated for each other, amounting to an average bias of 

−0.00 pooled latent standard deviations. The confidence interval of 𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 

included zero (i.e., CI95%[−0.01; 0.01]). Thus, although non-invariance was present, the non-

invariant parameter differences in residual variances would not impact cross-country 

differences of observed scale score statistics.  

This example showed that MIVIs provided more in-depth information on a model’s 

cross-group comparability. Measurement invariance tests must not stop after the binary fit-

misfit decision. Instead, one can quantify non-invariance, if present, with the aid of MIVIs to 

evaluate the strength of the model’s incomparability—relevant to assessing the non-invariance 

bias in further analysis (e.g., comparisons of summary statistics). 
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Figure 5.3: Investigating Measurement Invariance for the Rosenberg Self-Esteem Across the UK and 

Germany 

 
Note. The final partial uniqueness model with green layered parameters fixed across groups and non-

layered parameters freely estimated across groups is displayed. Bootstrap confidence intervals are 

smaller than they should be due to an internal error in the R package lavaan (version 0.6.12; Rosseel, 

2012) that does not allow including the standard error of the latent variable’s variance. I estimated 

MIVIs based on the pooled standard deviation of the general RSES (= Rosenberg Self Esteem Scale) 

factor and used the total number of items (i.e., ten) when estimating 𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡. ** p < .010, *** 

p < .001. I identified the model by fixing the latent variables at 1 and latent means at 0. 
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Abstract 

To evaluate model fit in confirmatory factor analysis, researchers compare goodness-of-fit indices 

(GOFs) against fixed cutoff values (e.g., CFI > .95) derived from simulation studies. Methodologists 

have cautioned that cutoffs for GOFs are only valid for settings similar to those covered in the 

simulation scenarios from which cutoffs originated—which contrasts with their widespread use across 

various empirical settings. This research comprehensively addresses the limited generalizability of fixed 

cutoffs for commonly used GOFs (i.e., ꭓ2, ꭓ2/df, CFI, RMSEA, SRMR) by following two paths. First, 

we conducted the most thorough simulation study to date on the sensitivity of GOFs to model 

misspecification (i.e., misspecified factor dimensionality and unmodeled cross-loadings) and their 

susceptibility to further data and analysis characteristics (i.e., estimator, number of indicators, number 

and distribution of response options, loading magnitude, sample size, and factor correlation). We 

integrated all characteristics in our simulation study that had been identified as influential in previous 

studies. Our simulation enabled us to replicate well-known issues with GOFs but also to uncover several 

previously unknown or at least underappreciated issues. Especially the factor correlation moderated 

several effects on GOFs. Second, we discussed several strategies for assessing model fit that take the 

context dependency of GOFs into account. We argued that tailored cutoffs are the way forward. Based 

on the large-scale simulation study, we generated large tables with scenario-specific cutoffs and 

regression formulae to predict cutoffs tailored to several empirical settings.
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Are Goodness-of-Fit Indices Any Good? Why We Cannot Be so 

Sure 

In social and behavioral science research, researchers commonly employ goodness-of-fit 

indices (GOFs) to evaluate the fit of latent variable models such as confirmatory factor analysis 

(CFA) models. The most widely used GOFs (e.g., Jackson et al., 2009) are the chi-square test 

statistic divided by the model degrees of freedom (χ2/df), the comparative fit index (CFI), the 

root mean square error of approximation (RMSEA), and the standardized root mean square 

residual (SRMR). In addition, researchers often rely on the traditional chi-square test statistic 

of exact model fit (χ2). Although strictly speaking, it is not a GOF but a formal test, researchers 

use χ2 in much the same way as they use GOFs (see also Jöreskog & Sörbom, 1993), which is 

why we henceforth subsume it under the same rubric. 

Cutoffs for GOFs, on which binary decisions about accepting or rejecting a model rest, 

were derived from simulation studies. Simulation studies represent highly controlled settings 

in which—different from the analysis of real data—researchers know and have control over 

the population (or data-generating) model. Researchers specify a population model, simulate 

data based on that model, and introduce model misspecification of known strength in the 

analysis model. Then, they examine how GOFs respond to such misspecification. Based on the 

distribution of GOFs, researchers derive cutoffs for these GOFs so that a critical level of 

misspecification leads to model rejection. What constitutes a “critical” level of 

misspecification, and hence a reasonable cutoff, is a somewhat arbitrary decision. In the past 

two decades, the cutoffs suggested by Hu and Bentler (1999) have been the most prominent 

and widely used ones, with their article boasting more than 95,000 citations in GoogleScholar 

at the time of this writing. According to these authors, CFI ≥ .950, RMSEA ≤ .060, and 

SRMR ≤ .080 point to good model fit. Reußner (2019) and Rutkowski and Svetina (2014) have 

proposed similar cutoffs. Though based on statistical principles rather than derived from 

simulation studies, the observed χ2 value should not exceed a critical χ2 value to indicate a well-

fitting model; the critical χ2 value varies with the model degrees of freedom (Bollen, 1989; see 

Moshagen & Erdfelder, 2016, for additional suggestions on critical values). Ullman (2014) 

suggested that a ratio of χ2/df below 2 indicates a well-fitting model. 

However, there are severe problems with relying on fixed cutoffs for GOFs in model 

evaluation (e.g., McNeish & Wolf, 2021). The key underlying issue is that simulation studies 

can only cover a limited set of scenarios. These scenarios are far from covering all possible 
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combinations of data and analysis characteristics that researchers will encounter in applied 

settings. If GOFs only react to model misspecification predictably and uniformly, the 

constraints of simulation studies will not pose a major problem. If, by contrast, GOFs react not 

only to misspecification but also to other characteristics of the data and analysis, their validity 

for judging the model fit may be severely compromised. We henceforth refer to the undesirable 

dependence of GOFs on data and analysis characteristics as susceptibility and contrast it with 

their desirable sensitivity to misspecification. Such susceptibility to data and analysis 

characteristics of GOFs is no purely hypothetical concern. Although GOFs are designed to 

quantify the degree of model misspecification and should ideally not react to any data or 

analysis characteristic, they apparently do so as identified in several studies (for an overview, 

see Niemand & Mai, 2018).  

It follows that established cutoffs for GOFs are sufficiently certain to be valid only in 

empirical settings (i.e., combinations of data and analysis characteristics) that closely resemble 

the scenarios covered by the simulations from which these cutoffs were derived. The range of 

scenarios covered by existing simulations is dwarfed by the diversity and complexity of 

empirical settings encountered in applied research. Consequently, cutoffs for GOFs may lack 

external validity, and blindly applying the same set of cutoffs to many different empirical 

settings can mislead researchers into erroneous conclusions about model fit and substantive 

questions.  

Unfortunately, current reporting practice shows that researchers apply the same cutoffs 

in the presence of data or analysis characteristics that can differ markedly from the ones in the 

simulation studies (for an overview, see Jackson et al., 2009; McNeish & Wolf, 2021). It 

appears that concerns regarding overgeneralizations of cutoffs (e.g., Heene et al., 2011; 

Markland, 2007; Marsh et al., 2004; McNeish & Wolf, 2021; Niemand & Mai, 2018; Nye & 

Drasgow, 2011) have gone largely unheeded. The widespread, or in fact near-universal, 

practice of relying on (fixed) cutoffs for GOFs in model evaluation is alarming, given the 

ongoing uncertainty about the applicability of fixed cutoffs for GOFs to scenarios hitherto 

uncharted by simulation studies. 

Just how problematic is the practice of using fixed cutoffs for GOFs? And what can be 

used as an alternative to fixed cutoffs? In the following, we review extant research on the 

susceptibilities of GOFs to data and analysis characteristics. Following our review of the 

susceptibilities, we present a thorough simulation study that integrates, replicates, and extends 

previous simulation studies and represents the most thorough simulation on the sensitivity and 
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susceptibility of GOFs obtained from CFA models to date. We discuss several time-honored 

and promising emerging alternatives for model fit evaluation that do not rely on fixed cutoffs. 

We argue that cutoffs need to be tailored to the empirical setting. Based on the large-scale 

simulation study, we generated user-friendly tables with scenario-specific cutoffs and 

developed regression formulae to predict cutoffs for several empirical settings. 

Susceptibilities of GOFs to Data and Analysis Characteristics: A 

Review of Previous Findings 

GOFs are intended to enable evaluations of model fit, specifically, to help detect non-negligible 

model misspecification.1 However, previous investigations showed that GOFs are susceptible 

to various data and analysis characteristics other than model misspecification (e.g., Beauducel 

& Herzberg, 2006).2 These are the sample size (e.g., DiStefano et al., 2019), type of estimator 

(e.g., Xia & Yang, 2019), the number of indicators3 (e.g., Kenny & McCoach, 2003), number 

and distribution of response options (e.g., Xia & Yang, 2018), the magnitude of factor loadings 

(e.g., Heene et al., 2011), and the factor correlation (e.g., Beauducel & Wittmann, 2005). 

 
1 Researchers often assume that GOFs can detect all types of misspecification. As Hayduk (2014) 

demonstrated, χ2, which is incorporated in χ2/df, CFI, and RMSEA, cannot detect any misspecification 

in certain constellations of population and analysis models. The analysis model may appear to fit 

perfectly, although a different population model has generated the data. We hereby acknowledge the 

existence of close-fitting models that are seriously misspecified. 

2 We term the influences of data and analysis characteristics on GOFs as “problems” or 

“susceptibilities,” even though many of the problems are natural (and sometimes even desirable) 

consequences of the statistical properties of GOFs. Especially the dependence of χ2 on sample size is 

readily comprehensible. As a strict and formal test, rather than a GOF, χ2 depends on the model degrees 

of freedom. Per definition, the power of χ2 to detect model misspecification increases as the sample size 

grows (e.g., Moshagen & Erdfelder, 2016). From the perspective of applied researchers, it would be 

desirable for GOFs to quantify the degree of model misspecification across many data and analysis 

characteristics, irrespective of other considerations such as sample size or other empirical features. That 

is, GOFs should ideally reflect model misspecification only—any other influences on GOFs are 

undesirable (e.g., Schermelleh-Engel et al., 2003). Therefore, we label any influences on GOFs other 

than misspecification as problematic from an applied researcher’s perspective. 

3 Adding indicators to the model is one way to vary the model complexity. Beauducel and Herzberg 

(2006) and Fan and Sivo (2007), for instance, varied the model complexity by changing the number of 

indicators and the number of factors. Moshagen (2012) and Shi, DiStefano, et al. (2018) showed that 

the number of indicators rather than the number of factors drive the effects of model complexity on 

model fit. 
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The impact of those characteristics differed for correctly specified and misspecified 

models. For correctly specified models, GOFs (i.e., χ2, χ2/df, CFI, RMSEA, and SRMR) 

typically signaled better model fit with increasing sample size (e.g., Beauducel & Herzberg, 

2006; Chen et al., 2008; DiStefano et al., 2019; Kenny et al., 2015; Sharma et al., 2005; Shi et 

al., 2019). Likewise, GOFs (i.e., CFI and SRMR) of correctly specified models pointed to better 

fit with a higher magnitude of factor loadings (and a lower magnitude of residual variances, 

Beierl et al., 2018; Heene et al., 2011; Shi et al., 2019). GOFs (i.e., CFI, RMSEA, and SRMR) 

also signaled better model fit with a symmetric instead of an asymmetric response distribution 

(Reußner, 2019). The influence of the number of indicators on GOFs of correctly specified 

models interacted with the sample size: At small sample sizes (e.g., N = 100), GOFs (i.e., χ2/df, 

CFI, and RMSEA) indicated worse model fit when indicators of similar psychometric quality 

were added (Kenny & McCoach, 2003; see also Sharma et al., 2005; Shi et al., 2019). At large 

sample sizes (N = 1,000), GOFs (i.e., χ2/df and RMSEA) pointed to better model fit as the 

number of indicators increased (only CFI was no longer affected; Kenny & McCoach, 2003). 

Per statistical definition, χ2 increases when adding indicators without further restrictions to the 

model (Bollen, 1989). Only the magnitude of factor covariance/correlation in correctly 

specified multidimensional models seemed to be something GOFs (i.e., χ2, CFI, RMSEA, and 

SRMR) are impervious to (Beauducel & Herzberg, 2006; Beierl et al., 2018). 

For misspecified models, studies found that GOFs (i.e., χ2, χ2/df, CFI, and SRMR1) 

typically signaled worse model fit with an increasing number of indicators (only RMSEA was 

affected vice versa, e.g., DiStefano et al., 2019; Kenny & McCoach, 2003; Savalei, 2012; Shi 

& Maydeu-Olivares, 2020; Shi et al., 2019). Likewise, GOFs (i.e., χ2, RMSEA, and SRMR) of 

misspecified models showed worse model fit with a higher magnitude of factor loadings (and 

a lower magnitude of residual variances)—only CFI was affected inconsistently across studies 

(Beierl et al., 2018; Hancock & Mueller, 2011; Heene et al., 2011; McNeish et al., 2018; Shi 

et al., 2019; Shi & Maydeu-Olivares, 2020; Shi, Maydeu-Olivares, & DiStefano, 2018; cf. 

Moshagen & Auerswald, 2018, who kept the degree of misspecification and residual error 

variances constant). GOFs of misspecified models also suggested worse model fit with a 

symmetric instead of an asymmetric response distribution (Reußner, 2019; Xia & Yang, 

 
1 Shi, Maydeu-Olivares, and DiStefano (2018) only found the effect of model size on SRMR for models 

with unmodeled cross-loadings but not misspecified factor dimensionality. 
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2018).1 Similarly, GOFs (i.e., χ2 and SRMR) of models with uncorrelated factors pointed to 

worse fit than with correlated factors for certain misspecification (i.e., with unmodeled cross-

loadings that all have the same sign; Beauducel & Wittmann, 2005). The influence of the 

sample size on GOFs of misspecified models was mixed: χ2, χ2/df, and RMSEA indicated worse 

model fit with increasing sample size, whereas CFI and SRMR suggested better model fit (e.g., 

Beauducel & Wittmann, 2005; DiStefano et al., 2019; Nye & Drasgow, 2011).  

GOFs also depended directly on the estimator used. Researchers mainly apply 

maximum likelihood (ML; Bollen, 1989) or its robust cousin MLR that corrects the χ2 test 

statistic and standard errors of ML-estimated parameters for non-normality (L. K. Muthén & 

B. O. Muthén, 1998-2017; Yuan & Bentler, 2000). Both imply parameter estimation based on 

unstandardized covariances or Pearson correlations. Diagonally weighted least squares 

(DWLS) based on polychoric correlations or its mean and variance adjusted (WLSMV) χ2 test 

statistic and standard errors are less commonly applied (B. Muthén, 1984; B. Muthén et al., 

1997). However, they are gaining relevance as more and more researchers note their utility for 

ordered-categorical data, such as data from rating scales (for an overview of the estimation 

procedures, see Li, 2016). Generally, the DWLS-/WLSMV-based GOFs (i.e., χ2, CFI, and 

RMSEA) pointed to better model fit than the ML-based ones (Beauducel & Herzberg, 2006; 

Nye & Drasgow, 2011; Xia & Yang, 2019)—for correctly specified and misspecified models.2 

The effect was only reversed for SRMR; it indicated worse fit with DWLS than ML for 

correctly specified models (Beauducel & Herzberg, 2006). The type of estimator also 

influenced other effects: DWLS/WLSMV-based GOFs (i.e., χ2, χ2/df, CFI, and RMSEA) 

generally suggested worse fit with a higher (compared to a lower) number of response 

options—for correctly specified and misspecified models (Beauducel & Herzberg, 2006; Xia 

& Yang, 2018).  

 
1 In particular, Reußner (2019) found that CFI, RMSEA, and SRMR were susceptible to the type of the 

response distribution when using estimators that assume multivariate normal and continous data (i.e., 

maximum likelihood, ML). For estimators that make no assumption about the underlying response 

distribution (i.e., diagonally weighted least squares, DWLS), Xia and Yang (2018) mathematically 

derived that the number and distribution of response options directly influence GOFs (i.e., χ2, χ2/df, CFI, 

and RMSEA). Both characteristics determine the precision of polychoric correlations that features in 

the fit function of DWLS and the mean and variance adjustment (WLSMV) of the χ2 test statistic, which 

transfers to χ2/df, CFI, and RMSEA. 

2 Savalei (2020) proposed an analytical correction to DWLS-/WLSMV-based GOFs to make them 

appear like ML-based ones, which has not yet been implemented in major statistical programs like R 

or Mplus. 
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Thus, there are already several indications that GOFs are strongly susceptible to 

extraneous influences (other than misspecification). However, no prior simulation study has 

investigated all aforementioned influences on GOFs in tandem. Instead, the focus was mainly 

on one or two of those influences. For instance, research has repeatedly focused on the effects 

of different magnitudes of factor loadings on GOFs (e.g., Beierl et al., 2018; Heene et al., 2011; 

Shi et al., 2019). In turn, research often investigated the effects of the number of response 

options and type of estimator on GOFs in tandem (e.g., Xia & Yang, 2019).  

As no prior simulation study has integrated all aforementioned influences on GOFs, it 

remains unclear how susceptible GOFs are to the joint influences of these characteristics. This 

includes not only the presence of multiple main effects but also how interaction terms (e.g., 

sample size × number of response options) attenuate or aggravate any known biases of GOFs. 

It remains unclear which effects on GOFs replicate when several characteristics are assessed 

jointly that have been identified as influential previously. The integration of several 

characteristics might reveal new influential patterns (i.e., relevant interaction effects) that could 

further extend the literature on the susceptibility of GOFs. Although a comprehensive study 

soon reaches a high level of complexity, such replication-extension studies are uniquely 

important for the cumulative scientific process (Bonett, 2012). They aid in exposing misleading 

findings from prior studies through replication checks, generalizing effect sizes across 

simulation scenarios, and assessing moderator effects through interaction terms.  

The Present Simulation 

Aims of the Simulation 

In our Monte Carlo simulation study (for more details on Monte Carlo simulations, see 

Boomsma, 2013), we aim to replicate and extend previous findings from simulation studies. In 

particular, we look closely at the joint impact of a wide range of data and analysis 

characteristics on GOFs. We focus on CFA models here. CFA models (i.e., measurement 

models) are uniquely important within the latent variable modeling framework, as they are the 

basis for many structural models.   

Design of the Simulation 

To ensure external validity, we designed our simulation to cover realistic scenarios typically 

encountered in behavioral and social science research. Each scenario comprised a population 
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model with various characteristics. It included 1,000 randomly drawn samples of varying sizes 

based on that population model. Additionally, it incorporated a correctly specified or 

misspecified analysis model that we fit to each randomly sampled data through different 

estimators.  

We focused on different combinations of population and analysis models to cover a 

breadth of models that may occur in real-world settings. In the first combination, the population 

model was either a one-factor or correlated two-factor model. Factor correlations were r = .70, 

.50, or .30 to include different magnitudes of misspecification (i.e., a difference of .30, .50, or 

.70, when viewed from two perfectly correlating factors r = 1, which essentially subsume to a 

single factor). We fit a one-factor analysis model to data generated from both population 

models (i.e., one-factor and correlated two-factor). Thus, each analysis model was either 

correctly specified or misspecified regarding factor dimensionality. Figure 1 shows exemplary 

population and analysis models for the factor dimensionality scenarios.  

In the second combination, the population model was a two-factor model, either without 

or with cross-loadings. To include different magnitudes and proportions of misspecification, 

17% or 33% of all items had cross-loadings with a standardized size of .20 or .30. Cross-

loadings were only present on one of the two factors. We fit a two-factor analysis model 

without any cross-loadings to data generated from both types of population models (i.e., 

without and with cross-loadings). Thus, each analysis model was either correctly specified or 

misspecified regarding cross-loadings. Figure 2 shows exemplary population and analysis 

models for the cross-loading scenarios.  

In both combinations, we varied six data and analysis characteristics in total: type of 

estimator, number of indicators, number of response options, distribution of response options, 

loading magnitude, and sample size.1 With either correctly specified or misspecified models 

regarding cross-loadings, we also varied the factor correlation (i.e., factors were either 

correlated or uncorrelated). Depending on the factor correlation, the two factors of the 

 
1 To obtain ordered categorical indicators and determine the shapes of the resulting response distribution 

(i.e., symmetric or asymmetric), we cut the initially continuous data by setting different thresholds. To 

simulate a symmetric distribution of responses, we set thresholds to produce three (thresholds/z-values: 

−0.75, +0.75; with corresponding frequency percentages: 23%, 54%, 23%), five (thresholds/z-values: 

−1.20, −0.40, +0.40, +1.20; percentages: 12%, 23%, 31%, 23%, 12%), or seven equidistant response 

options  (thresholds/z-values: −1.25, −0.75, −0.25, +0.25, +0.75, +1.25; percentages: 11%, 12%, 18%, 

20%, 18%, 12%, 11%). To simulate an asymmetric response distribution, we shifted these response 

options to thresholds/z-values of +0.00, +1.04 (percentage: 50%, 35%, 15%) for the scenario with three 

response options; −0.39, +0.31, +0.74, +1.28 (percentage: 35%, 27%, 15%, 13%, 10%) for five response 

options; and −0.52, +0.00, +0.35, +0.64, +0.99, +1.40 (percentage: 20%, 20%, 15%, 15%, 10%, 10%, 

10%) for seven response options. 
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population and analysis models were either allowed to correlate or forced to be uncorrelated. 

With a misspecified factor dimensionality, the factor correlation confounds with the 

misspecification; we, thus, cannot include the factor correlation as an independent 

characteristic. Table 1 summarizes the different scenarios analyzed in this study—that were 

orientated upon typical settings encountered in empirical research. 

 

Figure 1: Exemplary Population and Analysis Models for the Factor-Dimensionality Scenarios  

 
Note. We chose to illustrate a model with six indicators for exemplary purposes here. 
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Figure 2: Exemplary Population and Analysis Models for the Cross-Loading Scenarios 

 
Note. We chose to illustrate a model with six indicators, correlated factors, and two cross-loadings (i.e., 

cross-loadings exist for 33% of all six indicators) for exemplary purposes here. 
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Table 1: Simulation Scenarios 

 Realization  

 For all Population Models: 

Factor Variances = 1 

Residual Variances = 1 − (𝑉𝑎𝑟(𝐹1) × 𝜆𝐹1
2 +  𝑉𝑎𝑟(𝐹2) × 𝜆𝐹2

2 + 2 × 𝜆𝐹1 × 𝜆𝐹2 × 𝐶𝑜𝑣(𝐹1, 𝐹2)) 

Replications = 1,000 

   

Characteristic (1) 

Factor Dimensionality 

(2) 

Cross-Loadings 

Literature on typical 

settings used for 

operationalization 

Population Model One-Factor 

Model 

Two-Factor Model Two-Factor Model Two-Factor Model 

w/  

Cross-Loadings 
 

 

Analysis Model One-Factor 

Model 
One-Factor Model Two-Factor Model Two-Factor Model 

w/o Cross-Loadings 
 

Specification Correct Misspecified Correct Misspecified  

Magnitude of 

Misspecification 

.00 .30, .50, .70 .00 .20, .30  

Proportion of 
Misspecification 

0.00 
(= 0%) 

1.00 
(= 100%) 

0.00 
(= 0%) 

0.17, 0.33 
(= 17%, 33%) 

 

 

Estimator ML, 

MLRc, 
DWLS, 

WLSMV 

ML, 

MLRc, 
DWLS, 

WLSMV 

ML, 

MLRc, 
DWLS, 

WLSMV 

ML, 

MLRc, 
DWLS, 

WLSMV 

 

Number of 

Indicators 

6, 12 6, 12 6, 12 6, 12 Rammstedt & 

Beierlein (2014) 

Response Options 3, 5, 7 3, 5, 7 3, 5, 7 3, 5, 7 Clark & Watson 
(2019); Simms et al. 

(2019) 

Distribution of 

Responsesa 

Symmetric 

(skew=0.00), 

Asymmetric 
(skew=0.65) 

 

Symmetric 

(skew=0.00), 

Asymmetric 
(skew=0.65) 

 

Symmetric 

(skew=0.00), 

Asymmetric 
(skew=0.65) 

 

Symmetric 

(skew=0.00), 

Asymmetric 
(skew=0.65) 

 

Blanca et al. (2013) 

Loading Magnitude .40, .60, .80 .40, .60, .80 .40, .60, .80 .40, .60, .80 Soto & John (2017) 

Sample Size 200, 500,  

2,000 

200, 500,  

2,000 

200, 500,  

2,000 

200, 500,  

2,000 

Bilsky et al. (2011); 

Comrey & Lee (1992); 
Nießen et al. (2019) 

Factor Correlation − − .00, .30 

(factors not 
allowed/allowed to 

correlate) 

.00, .30 

(factors not 
allowed/allowed to 

correlate) 

Groskurth et al. 

(2021); Kim et al. 
(2021); Lee & Cagle 

(2017); Soto & John 

(2017) 

Total Number of 

Scenarios 

432 
(n = 432,000) 

1,296 
(n = 648,000) 

864 
(n = 864,000) 

3,456 
(n = 3,456,000) 

 

1,728 

(n = 1,728,000) 

4,320 

(n = 4,320,000) 

 

6,048 

(N = 6,048,000) 

 

Resampled Datab 7%  

Non-Convergence 2% 
(Final N = 5,956,844) 

 

Note. F1 = first factor; F2 = second factor; Var = variance; λ = factor loading; Cov = covariance; N = 

total number of data sets, n = subset of data sets. aFor all scenarios: Excess kurtosis ≈ −0.80. bWe had 

to re-simulate data whenever cell frequencies for any response option of any indicator resulted in fewer 

than five data points because DWLS/WLSMV can only estimate thresholds for response options that 

do contain observations. cWe analyzed the commonly used Yuan and Bentler (2000) correction of the 

χ2 test statistic here.  
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In our simulation study, all factors in the population models were latent variables with 

unit variance. Residual variances of the observed indicators depended on the population model 

parameters to obtain standardized observed indicators. Analysis models achieved identification 

by fixing the loading of the first indicator of each factor to unity. Unlike ML estimation, DWLS 

(and, accordingly, also WLSMV) include thresholds in the model parameterization that define 

the utilization of response options depending on the standing of the latent variable. To identify 

the DWLS/WLSMV-based analysis model, we followed the procedure Millsap (2011) outlined 

in line with the theta parameterization. Unlike delta parameterization, which fixes the residual 

variances of the intermediate continuous latent response variables to one, theta 

parameterization scales their distribution by fixing their variances to one. 

We considered the following GOFs: χ2 (Bollen, 1989) χ2/df, CFI (Bentler, 1990; see 

also Widaman & Thompson, 2003), RMSEA (Steiger, 1990; see also Chen, 2007), and SRMR 

(Bentler, 1995; Hu & Bentler, 1999). Generally, GOF values closer to zero point to bad fit, 

except for CFI where values closer to 1 point to good fit. We did not include the computational 

details here, but interested readers will find them in the above-cited papers.  

The final analysis contained GOFs for N = 5,956,844 converged models. We used R 

3.6.3 (R Core Team, 2020) for all analyses. We documented all used R packages in our R code. 

Two packages were particularly central to our analyses: We generated data with MASS 7.3-53 

(Venables & Ripley, 2002) and fit the analysis models to the data with lavaan 0.6-7 (Rosseel, 

2012). We took all GOFs from the lavaan output except for the “manual” computation of χ2/df. 

We set seeds within the R-code for complete reproducibility and monitored the R-package 

versions via renv 0.12.2 (Ushey, 2020). We did not preregister the design and analysis of this 

study. The full code is available on the Open Science Framework (OSF) at 

https://osf.io/e6kxa/?view_only=946034c00dee431897f67ca7ded58918. 

  

https://osf.io/e6kxa/?view_only=946034c00dee431897f67ca7ded58918
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Statistical Analyses 

The outcomes of interest were the sensitivity of GOFs to model misspecification and their 

susceptibility to influences other than model misspecification, such as the type of estimator or 

sample size. We analyzed the sensitivity and susceptibility via descriptive and inferential 

statistics along four main steps. First and foremost, we inspected the distributions of GOFs 

across the different scenarios. Second, we looked at zero-order correlations (Kendall’s tau-b to 

account for ordinal level data) between the GOFs and simulation characteristics to get a first 

impression of their sensitivity and susceptibility. Third, we looked at the characteristics’ main 

and interaction effects on GOFs, including linear and quadratic terms, in multivariate 

regression. The multivariate regression conveys the size of any effects while preserving the 

natural units of the variables (i.e., unstandardized beta-weights) to ease the interpretation.  

We limited the multivariate regression to only include two-way interactions for three 

reasons: First, we faced a technical restriction regarding higher levels of interactions. We had 

to resort to the biglm function from the biglm package in R (Lumley, 2013) explicitly designed 

to handle big data. However, the biglm function is limited regarding the number of independent 

variables, including interaction effects. As our thorough analyses comprised large data and 

many variables, these technical restrictions confined our analysis to two-way interactions. A 

second reason was that the purpose of the regression is only to solidify, from a multivariate 

perspective, and quantify the various influences on GOFs that simpler analysis (e.g., the 

descriptive statistics) might suggest. A two-way interaction already suffices to show whether 

GOFs are subject to complex influences of various characteristics. Yet another reason why we 

focused on two-way interactions is to preserve straightforward interpretability. Whereas two-

way interactions are readily interpretable, three- or even four-way interactions would 

complicate matters beyond a point where they add much value.  

Fourth and finally, we visually inspected selected large influences on GOFs. We 

selected those characteristics for visualization, which appeared to have a large (or complex) 

impact on GOFs in the preceding analyses. The visualization permits in-depth interpretation of 

higher-order interaction effects. The final visualization of the most relevant influences is key 

to our analysis. 

  



76   

 

 

Simulation Results 

Sensitivity of GOFs: Descriptive Statistics 

We first inspected how GOFs distribute across correctly specified and misspecified models in 

different scenarios (pooled across all simulation characteristics). Figure 3 compares the GOF 

distributions (i.e., χ2, χ2/df, CFI, RMSEA, and SRMR) as violin plots for either correctly 

specified or misspecified models regarding factor dimensionality (i.e., one-factor analysis 

models for either a one-factor or two-factor population model). The Y-axis represents different 

degrees of severity of the misspecification, with the correctly specified model as a point of 

reference shown on top in green. The X-axis represents the relevant range of values for each 

GOF. The black trace line vertically connects the GOF medians from different scenarios to 

reflect trends. We displayed each GOF in its original metric and direction. Similarly, Figure 4 

shows the magnitude and proportion of cross-loadings in the population model that went 

unmodeled in the analysis model. We further split the figure into uncorrelated and correlated 

factor scenarios (factor correlation = .00 or .30) shown in Panels A and B, respectively. Tables 

A1 and A2 in Additional File 1 of the Supplementary Material provide detailed descriptive 

statistics. 

As expected, all GOFs signaled worse model fit with increasing magnitude of 

misspecification in Figures 3 and 4, as evidenced by medians shifting toward unfavorable fit 

values. That is, all GOFs detected the misspecification of factor dimensionality and the 

misspecification due to increasingly unmodeled cross-loadings.  

However, we observed distinct influences of the proportion of unmodeled cross-

loadings on GOFs in uncorrelated and correlated factor scenarios in Figure 4. For uncorrelated 

factors, an increasing proportion of misspecification also shifted the GOF distribution toward 

more unfavorable values. For correlated factors, higher proportions of unmodeled cross-

loadings resulted in lower medians of each GOF distribution (as the zigzag trace line indicates). 

Consequently, as the number of indicators with unmodeled cross-loadings increased, GOFs 

tended to indicate better, not worse, model fit. We attend to this pattern in more detail in the 

Discussion. 
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Figure 3:  Distribution of GOFs for Scenarios with Correctly Specified and Misspecified Factor 

Dimensionality Through the Manipulation of the Factor Correlation 

 
Note. We displayed each GOF in its original metric and direction. We restricted the X-axis to increase 

the readability. 

 

 

  



78   

 

 
Figure 4: Distribution of GOFs for Scenarios with Correctly Specified and Misspecified Models     

Regarding Cross-Loadings  

 
Note. The levels of the Y-axis refer to the magnitude of misspecification and proportion of 

misspecification, separated by a slash. We displayed each GOF in its original metric and direction. We 

split the figure by factor correlation and restricted the X-axis to increase the readability. 
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Sensitivity and Susceptibility of GOFs: Multivariate Analysis with Joint Effects of 

Characteristics 

Next, we quantified how GOFs responded to the different characteristics in correctly specified 

and misspecified models. We computed Kendall’s tau-b as a measure of the bivariate 

association between each simulation characteristic and GOF to get a first impression of their 

sensitivity and susceptibility. For space reasons, the bivariate analysis is not included here but 

in Additional File 2 of the Supplementary Material. Then, for all GOFs, we examined the joint 

effects of the characteristics combined, including their two-way interaction effects, in a 

multivariate regression analysis using a least squares estimator (Lumley, 2013; Miller, 1992). 

We modeled quadratic effects in addition to linear ones for independent variables with more 

than two levels.  



 

Table 2: Summary of the Sensitivities and Susceptibilities of GOFs to Model Misspecification and Other Influences 

Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

Misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

 Main effects 

Misspecification magnitude  −  −  −   −   −   

Misspecification proportion a  −   −   −   −   −  

Estimator (Reference ML)           

MLR  − (Dim.)  − (Dim.) + (2F)   − (Dim.)   

DWLS +  − (Load.) + − (Load.) −  + / −  + (1F) − (Load.) − (2F)  − (Load.) 

WLSMV  − (Load.)  − (Load.)   − (Load.)    − (Load.)   

Number of indicators −           

Response options           

Asymmetric (Reference symmetric) −  −       − (1F)         

Loading magnitude   −  −   + (Load.)   −    − (Dim.) 

Sample size                 +     

Correlated factors (.30, Reference .00) a   +   +    +    +   +  

 Large two-way interaction effects 

Misspecification magnitude×           

DWLS  − (Load.)  − (Load.)       

WLSMV  − (Load.)         

Correlated factors a  +   +   +   +   + 

Misspecification proportion a ×           

DWLS  −   −        

Correlated factors a  +   +  +  +   + 

MLR×           

Asymmetric +  + − (Dim.)   + (1F)    

DWLS×           

Number of indicators +          

Asymmetric +    +        + (1F)      

Loading magnitude +    +         

Correlated factors a + +  + + + +  + + +  

WLSMV×           

Asymmetric +    +       + (1F)      

Correlated factors a      +     

           

8
0
 

 
  

 



 

Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

Misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

Loading magnitude×           

Correlated factors a       −      

Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR were multiplied by −1). Thus, “+” points to improving fit 

and “−” to worse fit with the increase of a characteristic. Blank gray cells indicate that the scenario was not/could not be tested in our simulation. Blank white 

cells indicate that we found no (relatively large) effect. Brackets indicate effects that apply only to certain scenarios (printed in light gray color). If we found 

different effects per type of correctly specified or misspecified model, we separated the effects with a slash (1F/2F and Dim./Load., respectively). 1F = one-

factor CFA. 2F = two-factor CFA. Correct = correctly specified models. Misspecified = misspecified models. Dim. = misspecified factor dimensionality. Load. 

= unmodeled cross-loadings. MLR = MLR (Yuan & Bentler, 2000). aOnly for GOFs from two-factor models (2F) and models with unmodeled cross-loadings 

(Load.). The multiplication sign (×) indicates interaction terms. SRMR is only available for comparing ML and DWLS because SRMR point estimates are 

identical for models with ML and MLR estimators and models with DWLS and WLSMV estimators (Maydeu-Olivares et al., 2018). We based the summary 

table on the findings from Table A3 for correctly specified models and Table A4 for misspecified models in Additional File 3 from the Supplementary Material. 

The table includes main and large two-way interaction effects. 
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Correctly Specified Models. Several Table 2 columns summarize the findings for 

correctly specified one- or two-factor models in terms of the direction of effects (not actual 

results or effect sizes), taken from the detailed regression results in Table A3 in Additional File 

3 of the Supplementary Material. We only included relatively large effects from the regression 

in Table A3 in the Table 2. Those large effects of single independent variables might be small 

on an absolute scale. Still, they stood out as strong relative to all other effects (and might even 

aggregate with seemingly small effects of other independent variables). We discuss those 

effects in the following. We start by describing strong main effects. Then, we move over to 

findings of interaction effects that only multivariate analysis can uncover. Conclusively, we 

analyze the variance of GOFs explained by the included data and analysis characteristics (R2). 

Multivariate regression revealed that GOFs were relatively susceptible to various 

characteristics even in correctly specified models. SRMR depended on the sample size and 

suggested a better fit with increasing sample size. χ2 depended on the number of indicators. It 

suggested better fit with a decreasing number of indicators. χ2, χ2/df, and RMSEA (the latter 

especially in scenarios with one-factor models) suggested better fit for symmetric instead of 

asymmetric response distributions. The type of estimator impacted all GOFs. However, effects 

were mixed for different GOFs. Whereas χ2, χ2/df, and RMSEA (the latter in scenarios with 

one-factor models) indicated better fit when using DWLS instead of ML, CFI and SRMR (the 

latter especially in scenarios with two-factor models) pointed to worse fit with DWLS.  

The type of estimator also moderated several effects on GOFs. The number-of-indicator 

dependency of χ2 became less strong when switching from ML to DWLS. Likewise, when 

using MLR, DWLS, or WLSMV instead of ML, the effect of the distribution vanished. Further, 

regression models revealed interactions between the estimator (DWLS vs. ML) and other 

characteristics: With DWLS, increasing loading magnitudes suggested better fit according to 

χ2 and χ2/df, but not other GOFs. In the presence of correlated factors, DWLS indicated better 

model fit than in the presence of uncorrelated factors according to all tested GOFs. 

The explained variance (R2) in the multivariate regression quantifies the joint 

explanatory power of all simulated characteristics on GOFs, which should ideally be low (as 

GOFs are otherwise susceptible to those characteristics). We found R2 to be consistently higher 

for correctly specified one-factor than two-factor models for all GOFs (see Table A3 in 

Additional File 3 of the Supplementary Material). The characteristics of our simulation 

explained the largest share of variance in χ2 and SRMR of correctly specified one- and two-

factor models (.815 ≤ R2 ≤ .894), meaning that χ2 and SRMR depended most strongly on the 
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various simulation characteristics. By comparison, all tested GOFs derived from χ2 (i.e., χ2/df, 

CFI, and RMSEA) were less influenced by data- and analysis-specific characteristics than χ2 

(or SRMR, for that matter), which in turn limited the GOF variability for correctly specified 

models that those characteristics might have explained (.061 ≤ R2 ≤ .266). Overall, the effects 

of characteristics on GOFs in the multivariate analysis were relatively small in absolute terms 

(though they might aggregate with seemingly small effects of other characteristics, see Table 

A3 in Additional File 3 of the Supplementary Material). 

Misspecified Models. The summary in Table 2 shows columns for models with 

misspecified factor dimensionality or unmodeled cross-loadings. Table 2 includes main and 

large two-way interaction effects of model misspecification and other characteristics based on 

the detailed regression results in Table A4 in Additional File 3 of the Supplementary Material. 

We marked those effects as relatively large (or relevant) that were equal to or larger than the 

main effects of the magnitude or, if applicable, the proportion of misspecification. We discuss 

those effects in the following. We first describe the sensitivity of GOFs to the main effects of 

the magnitude or proportion of misspecification, followed by describing the interaction effects 

between the misspecification and other characteristics. Third, we explore the susceptibility of 

GOFs to data and analysis characteristics. Fourth, we analyze the explained variance (R2) of 

GOFs taking all intended influences (i.e., magnitude and proportion of misspecification) and 

those of other characteristics together.  

All GOFs were sensitive to the magnitude of misspecification in all regression models. 

They indicated worse fit as the magnitude of the misspecification increased (i.e., more 

misspecification in factor dimensionality, higher unmodeled cross-loadings). Likewise, 

increasing the proportion of cross-loadings in the population model but leaving them 

unmodeled in the analysis model suggested decreasing model fit—as expected (holding all else 

equal).  

Crucially, the sensitivity of GOFs to misspecification depended on several other 

characteristics—a problem that only multivariate analysis can unravel. This differential 

sensitivity of GOFs became evident through substantial two-way interaction effects of the 

magnitude and proportion of misspecification with the factor correlation (for all GOFs) and the 

type of estimator (for χ2 and χ2/df ) in scenarios with unmodeled cross-loadings. We specifically 

draw the reader’s attention to the interaction between the proportion of misspecification and 

the factor correlation—a trend already evident in the GOF distributions in Figure 4 and 

confirmed by the multivariate analysis summarized in Table 2. GOFs correctly suggested worse 
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fit with a higher proportion of unmodeled cross-loadings when factors were uncorrelated. 

When factors were correlated, GOFs somewhat paradoxically suggested better fit. The factor 

correlation moderated the effect of the proportion of unmodeled cross-loadings on GOFs.  

Further, GOFs were susceptible to many data and analysis characteristics. As the 

loading magnitude increased, the multivariate regression showed that most GOFs typically 

indicated worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR; the latter especially in scenarios with 

misspecified factor dimensionality). Thus, low loadings concealed misfit. Only CFI pointed to 

better model fit with increasing loading magnitudes in scenarios with unmodeled cross-

loadings—an effect that seemed to vanish with correlated rather than uncorrelated factors. 

GOFs also pointed to worse fit in the presence of uncorrelated rather than correlated factors 

with unmodeled cross-loadings. We also observed a strong influence of the type of estimator 

on all GOFs (either in scenarios with misspecified factor dimensionality or unmodeled cross-

loadings). The multivariate regression also revealed several substantial interactions with the 

type of estimator. Most GOFs were not simply susceptible to the type of estimator but 

differentially so, depending on correlating factors (for χ2, χ2/df, CFI, and RMSEA in scenarios 

with unmodeled cross-loadings) or asymmetric response distributions (for χ2/df in scenarios 

with misspecified factor dimensionality).  

Fourth, the magnitude and proportion of misspecification and all other characteristics 

together explained up to 96% of the variation in GOFs (usually more than 62% in most 

scenarios; see Table A4 in Additional File 3 of the Supplementary Material). As an exception 

to this rule, χ2 and χ2/df were not explained (R2 = .002 at most) in scenarios with misspecified 

factor dimensionality. Thus, in scenarios with misspecified factor dimensionality, the R2 

pattern spoke favorably of χ2 and the χ2/df ratio as being immune to systematic influences of 

data and analysis characteristics but also, and problematically so, as being insensitive to model 

misspecification (at least in our extensive simulation that manipulated several other 

characteristics).  
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Sensitivity and Susceptibility of GOFs: Selected, Visualized Effects of Characteristics 

Finally, we visualized selected main and interaction effects on GOFs. Our previous analyses 

identified substantial influences on GOFs. The sensitivity of GOFs to misspecification (i.e., 

unmodeled cross-loadings) was mediated by the factor correlation as identified through the 

descriptive statistics (Figure 4) and multivariate regression (Table 2). The regression further 

revealed a substantial susceptibility of all GOFs to different types of estimators and loading 

magnitudes (for misspecified models). Influences on GOFs for correctly specified models had 

rather small effects in absolute terms. (Though those might aggregate with seemingly small 

effects of other characteristics, see Table A3 in Additional File 3 of the Supplementary 

Material.) Thus, we only selected effects on GOFs of misspecified models for an in-depth 

investigation. The visualization helps to illustrate the complex dependency of GOFs on these 

characteristics and the way they interact.   

Figures 5–8 display those interactions via conditional median plots. The Y-axis shows 

the respective GOF and its values (original metric without altering the direction); the X-axis 

conveys the estimators or loading magnitudes. We disentangled the magnitude and, if 

applicable, proportion of misspecification by using differentially colored and, if applicable, 

shaped lines that connect medians for each scenario in the plot. We further split the figures by 

factor correlation for scenarios with unmodeled cross-loadings.  

As a general trend, GOFs were sensitive to misspecification. They correctly indicated 

worse fit with increasing magnitudes of misspecification across all estimators and loading 

magnitudes (Figures 5–8). As expected, a higher proportion of unmodeled cross-loadings also 

went along with worse fit when factors were uncorrelated. By contrast, a higher proportion of 

unmodeled cross-loadings suggested better fit when factors were correlated (Figures 6 and 8; 

compare this to Figure 4; see also Discussion). 

Next, we took a closer look at the susceptibility of GOFs to the type of estimator. A 

predominant trend was that GOFs were least sensitive to misspecification with DWLS 

compared to any other estimator (Figures 5 and 6), except for SRMR. However, the factor 

correlation moderated this trend. It is capable of being completely reversed. In the presence of 

uncorrelated factors, GOFs (i.e., χ2, χ2/df, and RMSEA) suggested worse model fit with DWLS 

than with other estimators (the only exception being CFI when using WLSMV; see Panel A in 

Figure 6).  
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Figure 5:  Median Values of GOFs Conditioned on the Type of Estimator and Misspecification for 

Scenarios with Misspecified Factor Dimensionality 

 

Note. We displayed each GOF in its original metric and direction. MLR = MLR (Yuan & Bentler, 

2000).   
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Figure 6:  Median Values of GOFs Conditioned on the Type of Estimator and Misspecification for 

Scenarios with Unmodeled Cross-Loadings 

 
Note. We displayed each GOF in its original metric and direction. We split the figure by factor 

correlation. MLR = MLR (Yuan & Bentler, 2000). 
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GOFs were not only susceptible to the type of estimator but also to the loading 

magnitude (i.e., the magnitude of primary loadings in the population model). GOFs became 

more sensitive to the magnitude of misspecification and, if applicable, proportion of 

misspecification with higher loading magnitudes (Figures 7 and 8). However, as visualized in 

Panel B in Figure 8, a higher proportion of misspecification resulted in more optimistic model 

fit in correlated-factor scenarios, as stated before. CFI was an exception to this pattern. 

Specifically, CFI showed a reverse or U-shaped relationship between loading magnitude and 

misspecification due to unmodeled cross-loadings, depending on the scenarios one looks at. 

Put differently, CFI pointed to better fit with increasing loading magnitudes in most scenarios 

of unmodeled cross-loadings (Panels A and B in Figure 8). Only at a large proportion of 

unmodeled cross-loadings (33%) and correlated factors (Panel B in Figure 8), CFI pointed to 

better fit with low and high loading magnitudes, while medium loadings magnitudes showed 

worse fit. 

 

Figure 7: Median Values of GOFs Conditioned on Loading Magnitude and Misspecification for 

Scenarios with Misspecified Factor Dimensionality 

 
Note. We displayed each GOF in its original metric and direction.   
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Figure 8: Median Values of GOFs Conditioned on Loading Magnitude and Misspecification for 

Scenarios with Unmodeled Cross-Loadings 

 
Note. We displayed each GOF in its original metric and direction. We split the figure by factor 

correlation. 

 

 



90   

 

 

Discussion 

GOFs were designed to detect model misspecification and help judge the tenability of latent 

variable models (e.g., Hu & Bentler, 1999). But how well do GOFs fulfill this purpose? We 

approached this question by conducting the most thorough simulation study on the sensitivity 

of GOFs to model misspecification in CFA models and their susceptibility to other data and 

analysis characteristics. Crucially, data and analysis characteristics other than misspecification 

should not influence GOFs, lest judgments of model fit may become seriously biased.  

Five main insights emerged from our analysis of about 6 × 106 simulated data sets. First 

and unsurprisingly, GOFs were sensitive to misspecification of both factor dimensionality and 

cross-loadings: All GOFs correctly indicated worse fit as the degree of misspecified factor 

dimensionality increased (i.e., the correlation between two factors that were incorrectly 

modeled as a single factor decreased). GOFs also correctly indicated worse model fit as the 

magnitude and proportion of unmodeled cross-loadings grew (but only when the factors in the 

model were uncorrelated).  

Second, the sensitivity of GOFs to model misspecification was not the same across all 

scenarios but varied considerably depending on several other data and analysis characteristics 

(especially the type of estimator and correlating factors). The most interesting finding was that, 

when factors were correlated, GOFs suggested better (rather than worse) model fit as the 

proportion of unmodeled cross-loadings grew. It may surprise applied researchers that the 

ability of GOFs to detect misspecification depends so strongly on the correlation of factors. In 

hindsight, this finding is plausible: Fitting a correlated two-factor analysis model that ignores 

substantial cross-loadings in the population model implies a different meaning and orientation 

of the two factors in the variable space. The factor with the indicators whose cross-loadings 

went unmodeled reflects a blend of both factors, such that the factor correlation increases. 

Concomitantly, the estimated factor loadings of indicators with unmodeled cross-loadings are 

higher than those of correctly modeled indicators (and—by design—residual variances 

decreased when cross-loadings were added to the population model). Therefore, a model with 

correlated factors and substantial cross-loadings that go unmodeled (i.e., are assumed to be 

zero) accounts for the unmodeled cross-loadings through other model parameters (i.e., the 

factor correlation and factor loadings). That results in seemingly good model fit despite 

misspecification. A strong correlation between the estimated factor correlation and the 

proportion of unmodeled cross-loadings corroborated this interpretation (tau-b = .54). Phrased 
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differently, the estimated factor correlations were higher than the induced one (i.e., factor 

correlation of .30 in the population model) and increased when the proportion of unmodeled 

cross-loadings increased (0%, 17%, 33% unmodeled cross-loadings: median of estimated 

factor correlations = .30, .46, .54, respectively). 

Third, GOFs showed considerable susceptibility to data and analysis characteristics of 

correctly specified and misspecified models. All GOFs analyzed here were susceptible to 

influences other than model misspecification (especially influences of the type of estimator, 

loading magnitude, and factor correlation). The susceptibility of GOFs to data and analysis 

characteristics differed between correctly specified models, misspecified models, and different 

kinds of misspecified models. We replicated several findings of the susceptibility of GOFs to 

data and analysis characteristics that had been identified previously. Similar to previous 

studies, we identified a strong dependency of GOFs on the type of distribution (Reußner, 2019) 

and the type of estimator (Beauducel & Herzberg, 2006; Nye & Drasgow, 2011) in correctly 

specified models. Like previous studies, we also identified a strong dependency of GOFs on 

the magnitude of factor loadings (e.g., Beierl et al., 2018; Hancock & Mueller, 2011; Heene et 

al., 2011) and the type of factor correlation (only with unmodeled cross-loadings; Beauducel 

& Wittmann, 2005) in misspecified models. 

Fourth, we also shed new light on former findings and unravel hidden complexities of 

the GOFs’ susceptibility to data and analysis characteristics. Most interestingly, former studies 

(Xia & Yang, 2019) found that DWLS-based GOFs (i.e., χ2, CFI, and RMSEA) depicted 

misspecified models more favorably than ML-based GOFs. Our results extended that finding 

and revealed an interaction with the factor correlation when cross-loadings went unmodeled. 

DWLS-based GOFs pointed to better fit than ML-based ones with correlated factors; 

uncorrelated factors reversed the effect.  

Fifth, some known influences on GOFs were not as substantial as previously assumed 

when considering multiple influences in a multivariate analysis. For instance, Xia and Yang 

(2018) found that asymmetric response distributions lead to more optimistic model fit 

evaluations for DWLS-/WLSMV-based GOFs (i.e., χ2, χ2/df, CFI, and RMSEA) for 

misspecified models than do symmetric ones. The same applies to ML-based GOFs (i.e., CFI, 

RMSEA, and SRMR), as Reußner (2019) found. Though we replicated these principal findings, 

our main effects of asymmetry as well as the interaction effects between DLWS/WLSMV and 

asymmetry were relatively small compared to other effects in our multivariate analysis. 

Likewise, we only found a relatively strong sample size dependency for SRMR in correctly 
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specified models. Different from what was suggested by previous studies (e.g., Kenny et al., 

2015; Sharma et al., 2005; Shi et al., 2019), the sample size dependency of other GOFs 

remained relatively small compared to other influences in the multivariate analysis. To fully 

compare our main and interaction effects with previous findings, we refer the reader to Table 

A5 in Additional File 3 of the Supplementary Material. These findings highlight that 

considering the interdependencies among the different influences on GOFs is essential to fully 

understand the differential sensitivity and susceptibility to extraneous influences on GOFs. 

As outlined throughout the paper, we investigated the sensitivity and susceptibility of 

GOFs for many combinations of data/analysis characteristics and types of misspecification, 

considerably extending the scope of previous simulation studies. Still, our enlarged simulation 

could not cover all (potentially relevant) data and analysis characteristics or types of 

misspecification. An important limitation to be aware of is our self-imposed restriction to CFA 

models (see Garrido et al., 2016, for an extensive simulation about fit in exploratory structural 

equation models). Further, we limited ourselves to two types of misspecification (i.e., 

misspecification due to factor dimensionality and misspecification due to unmodeled cross-

loadings), being fully aware that other types of misspecification regularly occur in empirical 

settings (such as unmodeled residual covariances; see Podsakoff et al., 2003). Such different 

types of misspecification are likely to impact GOFs differently (e.g., Savalei, 2012; Shi et al., 

2019, 2018; Shi & Maydeu-Olivares, 2020). While covering many scenarios, we certainly did 

not cover all scenarios regularly found in empirical reality. For instance, models with more 

than two factors and more than 12 indicators get relevant for several psychological inventories 

(e.g., the Big Five Inventory by Soto & John, 2017, has 15 factors of facet traits nested in five 

domain factors and based on 60 indicators in total). Likewise, sample sizes larger than 2,000 

regularly occur in large-scale assessments (e.g., Programme for the International Assessment 

of Adult Competencies, PIAAC, has a per-country sample size of at least 4,500; OECD, 2013). 
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Implications 

We acknowledge that the sheer number of results from our simulation can be daunting. 

However, together these results convey a clear and straightforward message. The sensitivity of 

GOFs to model misspecification varies greatly across analysis scenarios. GOFs are susceptible 

to various data and analysis characteristics. GOF values reflect characteristics other than the 

magnitude and proportion of model misspecification. These conclusions align with those of 

several other studies as our comprehensive simulation study replicated several known 

influences on GOFs (such as their dependency on the type of estimator, e.g., Beauducel & 

Herzberg, 2006; Xia & Yang, 2019). In addition, we refined the current knowledge on the 

sensitivity and susceptibility of GOFs by unraveling several relevant moderator effects through 

large interactions (especially with the type of estimator and factor correlation) in our simulation 

study. Our findings underline even more strongly than previous findings that GOFs respond to 

various data and analysis characteristics in complex and hard-to-predict ways. 

Thus, one must not blindly trust the values of GOFs as if they exclusively reflect 

(mis)fit, let alone rigidly apply fixed cutoffs for model evaluation. We believe this important 

insight should be internalized by all (applied) researchers and included in statistics and methods 

curricula dealing with model evaluation. Moreover, we understand that the findings may sound 

pessimistic and leave some readers wondering how to approach model evaluation in the future. 

However, all fundamental issues with GOFs that we and others identified (e.g., Marsh et al., 

2004; McNeish & Wolf, 2021) have a silver lining. They can encourage researchers to think 

more deeply about the appropriateness of fixed cutoffs for GOFs and explore alternative 

procedures that will ultimately lead to more valid judgments about whether a model can be 

accepted.  

Below, we first expand on the problem of fixed cutoffs for GOFs that springs from the 

differential sensitivity and susceptibility of GOFs to various data and analysis characteristics. 

Following this, we outline several promising avenues for model evaluation that do not rely on 

problematic fixed cutoffs.   
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(Fixed Cutoffs for) GOFs Are More Problematic Than Commonly 

Assumed 

Considering the findings of our simulation, how solid as a basis for evaluating model fit are 

fixed cutoffs for GOFs? Our results suggest that relying on the same fixed cutoffs to judge 

model fit in real data applications can be highly problematic and misleading in many settings. 

Thanks to the breadth of scenarios we studied, we can further illustrate and quantify this 

problem. To do so, we estimated the frequency distribution of GOFs for correctly specified 

models separately for each simulation scenario. The 95% quantile (for χ2, χ2/df, RMSEA, and 

SRMR; 5% quantile for CFI) of each frequency distribution corresponds to a 5% probability 

of concluding that a model is misspecified when it is, in fact, correctly specified (i.e., 5% Type 

I error rate). We can use those quantiles as relevant cutoffs for GOFs. Additional File 4 of the 

Supplementary Material (Tables A6–A10) shows the tabulated quantiles.  

Researchers often take CFI values above .950 to indicate good model fit (Hu & Bentler, 

1999). This heuristic might be sufficiently accurate under some but certainly not under all 

circumstances. Especially low loading magnitudes undermine the nominal Type I error rate 

when using a cutoff of CFI > .950. In some scenarios, much more lenient values than .950 

maintain a 5% error rate. For example, a cutoff as low as CFI = .813 is fully appropriate to 

demarcate correctly specified and misspecified models for a one-factor model estimated with 

ML at a sample size of N = 200, with loadings of .40 for six indicators and seven response 

options, in the presence of asymmetric data. In other scenarios, such as in the presence of high 

loadings, maintaining a 5% error rate requires much stricter values than .950 (e.g., a cutoff of 

.979 results with loadings of .80 in an otherwise identical setting). To be very clear, accepting 

(or rejecting) models under various scenarios at a fixed cutoff (.950) does not effectively 

control the Type I error rate. Fixed cutoffs cannot do justice to every possible setting. 

Consequently, we strongly discourage researchers from inferring the tenability of a model 

based on conventional, fixed cutoffs.  

These examples highlight two caveats about fixed cutoffs, such as those by Hu and 

Bentler (1999), that have guided applied researchers’ model evaluations for over two decades. 

Using cutoffs in settings not covered in the initial simulation studies is highly problematic. This 

pertains, for instance, to testing models with low compared to high factor loadings. For model 

evaluations through GOFs to be valid, researchers need to consider their specific data and 

analysis characteristics. In this regard, our findings reinforce previous warnings against 

overgeneralizing cutoffs, including those by Hu and Bentler (1999) in their original publication 
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suggesting the canonical cutoffs (see also Marsh et al., 2004; McNeish & Wolf, 2021; Nye & 

Drasgow, 2011).  

Moving from Fixed to Tailored Cutoffs Is the Way Forward 

Where does this leave applied researchers seeking to evaluate their model’s fit? We recommend 

that researchers take three steps. First, researchers should consider and test alternative models 

to learn more about potentially better-suited models. Second, they need to inspect local (mis)fit, 

for instance, via the residual matrix and modification indices, to investigate whether a model 

is probably correctly specified or misspecified (see Pornprasertmanit, 2014, for a sophisticated 

strategy to evaluate local fit). Third, and most promisingly, researchers should inspect global 

fit not via fixed but via tailored (sometimes called “dynamic”; McNeish & Wolf, 2021, 2022) 

cutoffs for GOFs to evaluate the overall model fit free from bias, including any entailed misfit. 

Whereas considering alternative models and inspecting local fit are time-honored strategies, 

tailored cutoffs are a much more recent approach that, we believe, holds great promise and 

offers a much-needed remedy for the issues with GOFs identified in our present simulation. 

We believe applied research needs to move toward tailored cutoffs for GOFs that take into 

account the specific data and analysis characteristics. However, tailored cutoffs are recent and 

not yet widely used. To foster the much-needed move toward tailored cutoffs, we outline the 

procedures for evaluating tailored cutoffs in more detail here. We hope to encourage more 

researchers to consider this emerging strategy. We also provide practical examples and R code 

illustrating how tailored cutoffs can be implemented. 

Tailoring cutoffs for GOFs to the specific data and analysis characteristics can be 

achieved in different ways. One strategy, which we call the table-based approach, is to consider 

tables from simulation studies with scenario-specific cutoffs, such as Tables A6 to A10 in 

Additional File 4 of the Supplementary Material. These tables contain cutoffs for combinations 

of data and analysis characteristics. They were created to read out the cutoff that can maintain 

error rates at the desired level in one’s specific empirical setting (i.e., accounting for the data 

and analysis characteristics). This strategy is easy to apply and reminiscent of looking up 

critical values of, say, z-scores or t-statistics. One merely selects cutoffs for GOFs from the 

simulation scenario most closely resembling one’s own empirical data and analysis 

characteristics. For example, for a one-factor model with six indicators, five response options, 

factor loadings around .60, and a symmetric response distribution estimated with WLSMV in 

a sample of 200 respondents, one would reject the tested model if the χ2/df ratio is larger than 
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1.918, CFI is smaller than .972, RMSEA is larger than .068, or SRMR is larger than .048. 

However, the table-based approach is somewhat limited: If one’s actual data and analysis 

characteristics are dissimilar to those of simulation scenarios, cutoffs are not given.  

Two other strategies to arrive at tailored cutoffs are superior to the simplistic first 

strategy. Those are regression-/equation-based (e.g., Nye & Drasgow, 2011) and simulation-

based approaches (e.g., McNeish & Wolf, 2021, 2022; Millsap, 2007, 2013; Pornprasertmanit, 

2014).  

In the regression-/equation-based approach,1 a regression formula predicts the tailored 

cutoff (Nye & Drasgow, 2011). The formula originates from a single simulation study 

containing information about how data and analysis characteristics influence a GOF. Users 

plug characteristics of their own empirical setting into the formula to obtain a cutoff. 

To exemplify the regression-/equation-based approach, we derived regression formulae 

for tailored cutoffs based on the results of our present simulation. The procedure was as 

follows: We took the cutoffs of Tables A6 to A10 in Additional File 4 of the Supplementary 

Material as dependent variables and regressed them on all data and analysis characteristics and 

their quadratic terms and two-way interactions separately for each GOF. The data and analysis 

characteristics, as well as their quadratic terms and two-way interactions, explained a large 

share of the variation in cutoffs for GOFs (R2 ≥ .810). We saved the regression coefficients in 

Table 3. The sum of the regression coefficients times the characteristics (i.e., the regression 

formula) predicts an appropriate cutoff for each GOF. To arrive at appropriate cutoffs for one’s 

own empirical problem, one plugs their empirical data and analysis characteristics into the 

regression formulae using the coefficients from Table 3. We included a user-friendly R script 

in Additional File 5 of the Supplementary Material for this purpose. In principle, the regression 

formulae allow researchers to derive appropriate cutoffs even if their empirical data and 

analysis characteristics do not perfectly match the ones from the simulation studies.  

This approach constitutes a clear advancement over the status quo of rigidly using fixed 

cutoffs, whatever the preferred heuristic for a GOF is. Further, it is more general than the 

simplistic table-based approach described first. It is also highly efficient because no new 

simulation must be carried out (as in the simulation-based approach described next). However, 

 
1 One can also loosely subsume another approach under the regression-/equation-based category: 

Researchers can derive tailored cutoffs by relying on statistical assumptions of the χ2 distribution 

without and with misspecification (Moshagen & Erdfelder, 2016). Except for the distribution of χ2, 

GOF distributions are unknown. As many GOFs (e.g., RMSEA) incorporate the χ2, one can infer their 

distribution without and with model misspecification from the χ2 distribution. A certain quantile of the 

GOF distribution without misspecification may serve as a cutoff. 
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the potential downside is that the starting point is still a single simulation study that can never 

cover all possible real-world settings, no matter how thorough. Although extrapolation is 

possible in principle, researchers should only use the regression formulae for tailored cutoffs 

when empirical settings do not strongly deviate from the simulation scenarios.  

 

Table 3: Regression Coefficients to Derive Tailored Cutoffs 

Independent variables 
Dependent variable 

χ2 χ2/df CFI RMSEA SRMR 

Intercept −23.94201 3.28519 −0.53129 0.13285 0.05279 

  Main effects 

Estimator (Reference: ML)      

MLR 6.72418 0.45189 −0.21041 0.01536 − 

DWLS 5.84976 −0.68404 0.19662 −0.03062 0.03774 

WLSMV −4.68805 −0.27096 0.06079 −0.00865 − 

Number of indicators 11.08965 −0.04753 0.04016 −0.00235 0.00278 

Response options −7.16670 −0.35058 0.12387 −0.00896 −0.00963 

Response options^2 0.72250 0.03496 −0.00936 0.00098 0.00084 

Asymmetric −0.27294 0.02331 −0.04904 −0.00024 −0.00115 

Loading magnitude −25.73792 −3.58376 4.12967 −0.08865 0.02653 

Loading magnitude^2 20.41717 2.96247 −2.75074 0.05766 −0.09506 

Sample size 0.00906 0.45022 2.27580 −0.12606 −0.05619 

Sample size^2 1.20211 −0.15723 −0.82698 0.04331 0.01882 

Number of factors −12.26618 −0.19792 −0.32211 −0.00594 0.01323 

  Two−way interaction effects 

Estimator (Reference: ML)      

MLR×Number of indicators −0.49485 −0.01090 0.00247 −0.00041 − 

MLR×Response options 0.17085 0.00216 0.00384 0.00005 − 

MLR×Response options^2 −0.02131 −0.00052 −0.00024 −0.00001 − 

MLR×Asymmetric −2.71568 −0.08311 −0.00135 −0.00225 − 

MLR×Loading magnitude −7.76460 −0.99175 0.45378 −0.03246 − 

MLR×Loading magnitude^2 −2.61117 0.42949 −0.31994 0.01556 − 

MLR×Sample size −3.93101 −0.26550 0.09707 −0.00768 − 

MLR×Sample size^2 1.45709 0.09907 −0.03794 0.00311 − 

MLR×Number of factors 2.71283 0.11781 −0.00868 0.00304 − 

DWLS×Number of indicators −2.43747 0.00544 0.00158 −0.00038 −0.00022 

DWLS×Response options −0.39327 −0.02550 −0.00440 −0.00033 −0.00758 

DWLS×Response options^2 0.02110 0.00195 0.00034 0.00003 0.00058 

DWLS×Asymmetric −3.01669 −0.09613 0.00452 −0.00244 0.00140 

DWLS×Loading magnitude −41.99689 −1.36226 −0.30944 −0.05998 −0.00280 

DWLS×Loading magnitude^2 16.73726 0.48895 0.18350 0.02118 −0.00311 

DWLS×Sample size −2.10846 −0.11430 −0.11629 0.02896 −0.02165 

DWLS×Sample size^2 0.75628 0.04419 0.04250 −0.00982 0.00756 

DWLS×Number of factors 16.86537 0.64662 −0.01075 0.02281 0.00330 
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Independent variables 
Dependent variable 

χ2 χ2/df CFI RMSEA SRMR 

WLSMV×Number of indicators −0.60239 −0.00413 0.00097 −0.00029 − 

WLSMV×Response options 0.63654 0.01440 −0.00270 0.00054 − 

WLSMV×Response options^2 −0.05539 −0.00115 0.00022 −0.00004 − 

WLSMV×Asymmetric −2.91980 −0.09484 0.00368 −0.00256 − 

WLSMV×Loading magnitude 10.29574 0.24493 −0.06415 0.00577 − 

WLSMV×Loading magnitude^2 −15.70961 −0.45035 0.03405 −0.01194 − 

WLSMV×Sample size 3.01133 0.05021 −0.04314 0.00682 − 

WLSMV×Sample size^2 −1.16888 −0.01938 0.01545 −0.00250 − 

WLSMV×Number of factors 3.90897 0.15706 −0.00697 0.00452 − 

Number of indicators×      

Response options −0.25997 −0.00776 0.00002 −0.00033 −0.00019 

Response options^2 0.02789 0.00081 −0.00003 0.00004 0.00002 

Asymmetric 0.17890 0.00040 0.00034 0.00002 0.00003 

Loading magnitude −4.80064 −0.04388 −0.10488 −0.00698 −0.00316 

Loading magnitude^2 3.83154 0.04484 0.07017 0.00652 0.00190 

Sample size −1.04664 0.00016 −0.01404 0.00655 −0.00160 

Sample size^2 0.38895 0.00157 0.00500 −0.00224 0.00058 

Number of factors 0.64889 −0.01164 0.00234 −0.00030 0.00003 

Response options×      

Asymmetric 0.47743 0.01356 −0.00319 0.00043 0.00061 

Loading magnitude 22.43204 1.53987 −0.33800 0.04504 0.01794 

Loading magnitude^2 −19.13312 −1.33866 0.23297 −0.03818 −0.01639 

Sample size 2.42094 −0.20111 −0.00951 −0.00561 0.01125 

Sample size^2 −1.16974 0.07428 0.00109 0.00208 −0.00388 

Number of factors 1.18404 0.04887 0.00555 0.00098 0.00068 

Response options^2×      

Asymmetric −0.04690 −0.00122 0.00031 −0.00005 −0.00006 

Loading magnitude −2.12451 −0.14685 0.02682 −0.00451 −0.00166 

Loading magnitude^2 1.79085 0.12730 −0.01863 0.00381 0.00151 

Sample size −0.40475 0.01424 0.00006 0.00030 −0.00097 

Sample size^2 0.17973 −0.00524 0.00020 −0.00011 0.00034 

Number of factors −0.10687 −0.00463 −0.00039 −0.00010 −0.00005 

Asymmetric×      

Loading magnitude 3.71952 0.27558 0.11280 0.01327 0.00844 

Loading magnitude^2 −1.17710 −0.18396 −0.07174 −0.00937 −0.00713 

Sample size 0.29781 −0.00253 0.02437 −0.00219 −0.00393 

Sample size^2 −0.16484 −0.00346 −0.00870 0.00072 0.00138 

Number of factors −0.81043 −0.03425 −0.00208 −0.00101 −0.00028 

Loading magnitude×      

Sample size 16.43214 0.03858 −5.87140 0.01187 −0.04098 

Sample size^2 −8.22119 −0.08583 2.14448 −0.00411 0.01586 

Number of factors 1.82103 0.21559 0.65988 0.02703 −0.01793 

Loading magnitude^2×      

Sample size −15.03742 −0.14310 3.87122 0.00022 0.06458 

Sample size^2 7.54665 0.12608 −1.41187 0.00015 −0.02336 

Number of factors 5.02726 0.03351 −0.43878 −0.01413 0.04983 

Sample size×      

Number of factors 0.39375 0.08076 0.09529 −0.00988 −0.02326 

Sample size^2×      

Number of factors −0.26943 −0.03848 −0.03378 0.00320 0.00784 
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Independent variables 
Dependent variable 

χ2 χ2/df CFI RMSEA SRMR 

Number of factors×      

Correlated factors −2.51728 −0.05765 0.00487 −0.00223 −0.00481 

R2 .970 .810 .902 .903 .963 
N 1,296 1,296 1,296 1,296 648 

Note. MLR = MLR (Yuan & Bentler, 2000). The multiplication sign (×) indicates interaction terms. To 

correctly interpret the sample-size regression coefficient, divide the sample size by 1,000 before 

plugging it into the equation. Regression coefficients are unstandardized and uncentered. Independent 

variables with more than two simulated levels were included additionally in quadratic form. SRMR is 

only available for comparing ML and DWLS because SRMR point estimates are identical for models 

with ML and MLR estimators and models with DWLS and WLSMV estimators (Maydeu-Olivares et 

al., 2018). We omitted standard errors and p-values for clarity. Regression coefficients to derive tailored 

cutoffs for χ2 were colored gray. They heavily depend on the degrees of freedom and are, thus, barely 

useful for models different from the ones in the paper. The sum of the regression coefficients times the 

characteristics (i.e., the regression formula) predicts an appropriate cutoff for each GOF.   

 

If empirical settings strongly deviate from simulation scenarios, cutoffs should be used 

neither from cutoff tables nor regression formulae. Instead, one may adopt another approach 

and conduct a small-scale, scenario-specific simulation to investigate the behavior of GOFs. 

Several authors suggested this approach (most recently, McNeish & Wolf, 2021, 2022; for 

similar earlier work, see Millsap, 2007, 2013; Niemand & Mai, 2018; Pornprasertmanit, 2014; 

for nested models, see Pornprasertmanit et al., 2013). Before initializing the simulation, 

researchers define analysis and population models. Then, they simulate data from the 

population model (via a Monte Carlo simulation, similar to what we did in the present paper), 

fit the analysis model to the data, and record the GOFs. Similar to our tables in Additional File 

4 of the Supplementary Material, researchers then extract cutoffs from the resulting GOF 

distributions. The analysis model can equal (or approximately equal; see Millsap, 2007, 2013; 

Pornprasertmanit, 2014) the population model, which corresponds to a correctly specified 

model. Cutoffs derived from the GOF distribution of correctly specified models control the 

Type I error rate (as implemented in the approaches of McNeish & Wolf, 2021, 2022; Millsap, 

2007, 2013; Niemand & Mai, 2018; Pornprasertmanit, 2014). Including a misspecified model 

(i.e., where the analysis model differs considerably from the population model) allows 

controlling the Type II error rate (i.e., the probability of concluding that a model is correctly 

specified when it is, in fact, misspecified) in the derivation of tailored cutoffs (as implemented 

in the approaches of McNeish & Wolf, 2021, 2022; Pornprasertmanit, 2014). Further, including 

several misspecified models might help to evaluate model fit gradually (e.g., McNeish & Wolf, 

2021, 2022). 
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Choosing simulation characteristics (e.g., analysis model, sample size, estimator) 

similar to those of the empirical setting of interest is the gold standard to arrive at tailored 

cutoffs. By simulating data, cutoffs can be tailored to the setting of interest. However, the 

flexibility of the simulation-based approach may not always be a merit but also a difficulty. 

The simulation-based approach demands specific knowledge about defining population and 

analysis models and running and analyzing simulations. Automated solutions (i.e., shiny apps) 

can considerably ease the process (e.g., McNeish & Wolf, 2021). 

In sum, the table-, regression-/equation-, and simulation-based approaches are three 

alternative ways to arrive at tailored cutoffs for model evaluation. Although these procedures 

are more involved than judging model fit against fixed cutoffs for GOFs, we hope our 

simulation results have convinced the reader of the urgency of phasing out fixed cutoffs in 

favor of a more valid tailored approach. 

Conclusion 

GOFs were designed to detect model misspecification and support the evaluation of model fit. 

However, our simulation study highlights two fundamental problems with GOFs. First, GOFs 

reflect not only model misspecification; they are also susceptible to a range of data and analysis 

characteristics (other than model misspecification). Second, the sensitivity of GOFs to model 

misspecification also depends on such characteristics. In this regard, a particularly impressive 

(and alarming) finding was the strong dependence on absolute GOF values and their 

misspecification sensitivity to the factor correlation, the magnitude of factor loadings, and the 

type of estimator. Such characteristics are irrelevant from the applied researcher’s point of view 

for judging model fit or identifying misspecification. Hence, they should ideally have no 

bearing at all on GOFs. However, our findings converge with—and even expand—previous 

smaller-scale simulations suggesting that a range of characteristics other than misspecification 

influence absolute GOF values. 

The pattern of associations between those characteristics and GOFs is complex, as 

interaction effects attest; it varies for different GOFs and is hard to predict for specific 

constellations. This complexity means simple modifications cannot come to the rescue, such 

as adding or subtracting a constant from cutoff values. The problem lies with fixed cutoffs for 

GOFs as such. Fixed cutoffs cannot do justice to all combinations of data and analysis 

characteristics researchers encounter in applied settings.  
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Our findings make it abundantly clear that the conventional practice of relying on fixed 

cutoffs for GOFs is far more problematic than commonly assumed. Even though previous 

simulations had raised some of the issues highlighted in our study, the practice has not changed. 

Hu and Bentler (1999) already cautioned researchers to execute discretion when using their 

cutoffs (see also McNeish & Wolf, 2021). However, applied researchers continue to rely on 

these cutoffs even in settings markedly different from the scenarios covered by Hu and Bentler 

(1999) and related studies by Reußner (2019) and Rutkowski and Svetina (2014). More than 

20 years later, our detailed simulation resonates with their initial warnings and brings several 

additional issues to light. Consequently, we urge researchers to be wary of the problems with 

fixed cutoffs. 

We recommend researchers routinely adopt the time-honored strategies of inspecting 

(and reporting) local fit and comparing alternative models instead of relying exclusively on 

GOFs. Methodologists have long advocated these effective strategies, but these are far from 

being universally applied in published research. Overall, however, we believe the field needs 

to move away from relying on fixed cutoffs and toward cutoffs tailored to the specific data and 

analysis characteristics (e.g., McNeish & Wolf, 2021, 2022). Tailored cutoffs offer an 

appropriate response to the susceptibility of GOFs and the ensuing lack of validity of fixed 

cutoffs. To contribute to a much-needed shift toward tailored cutoffs, we discussed and 

developed emerging strategies for implementing tailored cutoffs and pointed to ongoing work 

that aims to improve these strategies further. We hope our simulation results will encourage 

researchers to embark on this path, ultimately resulting in valid and replicable research. 
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Additional File 1: Descriptive Statistics of GOFs  

Table A1: Descriptive Statistics of GOFs for Correctly Specified or Misspecified Models Regarding 

Factor Dimensionality 

Specification Mdn M SD Min Max 

 χ2 

correct: 0  19.918 29.555 23.900 0.224 127.951 

misspecified: .30  92.502 263.896 477.293 0.728 3,509.264 

misspecified: .50 176.865 584.419 5,521.009 0.957 1,864,111.000 

misspecified: .70  289.410 885.368 45,863.610 1.121 29,896,940.000 

 χ2/df 

correct: 0  0.918 0.936 0.405 0.025 13.982 

misspecified: .30  3.279 9.953 16.231 0.081 171.069 

misspecified: .50 6.472 25.068 562.245 0.106 207,123.400 

misspecified: .70  10.472 40.016 5,093.109 0.125 3,321,882.000 

 CFI 

correct: 0  1 .993 0.024 0 1 

misspecified: .30  .938 .926 0.063 0 1 

misspecified: .50 .834 .814 0.125 0 1 

misspecified: .70  .692 .683 0.142 0 1 

 RMSEA 

correct: 0  0 0.009 0.015 0 0.255 

misspecified: .30  0.065 0.080 0.060 0 0.622 

misspecified: .50 0.101 0.123 0.103 0 18.855 

misspecified: .70  0.137 0.155 0.119 0 40.755 

 SRMR 

correct: 0  0.020 0.023 0.014 0.002 0.101 

misspecified: .30  0.053 0.056 0.023 0.007 0.161 

misspecified: .50 0.077 0.086 0.042 0.012 0.254 

misspecified: .70  0.104 0.118 0.063 0.012 0.351 
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Table A2: Descriptive Statistics of GOF for Correctly Specified or Misspecified Models Regarding 

Cross-Loadings 

 Mdn M SD Min Max 

 Factor Correlation 

Specification .00 .03 .00 .03 .00 .03 .00 .03 .00 .03 

 χ2 

correct: 0, 0%  28.129 23.052 31.716 29.467 24.395 23.759 0.277 0.195 321.851 978.836 

mis.: .20, 17% 65.239 52.658 87.120 67.502 92.751 73.443 0.458 0.416 1,361.707 1,008.538 

mis.: .20, 33% 79.558 47.684 126.889 58.648 164.171 61.815 0.588 0.212 2,287.394 601.259 

mis.: .30, 17%  96.065 68.946 162.217 116.498 202.464 154.999 0.962 0.298 2,504.531 3,545.111 

mis.: .30, 33% 127.529 57.021 251.330 86.083 370.583 111.319 2.211 0.289 4,612.157 1,120.618 

 χ2/df 

correct: 0, 0%  0.958 0.923 1.001 0.949 0.407 0.508 0.031 0.024 13.538 122.354 

mis.: .20, 17% 2.155 1.654 3.272 2.593 3.009 2.667 0.051 0.052 38.937 126.067 

mis.: .20, 33% 2.899 1.490 4.879 2.218 5.276 2.131 0.065 0.027 66.259 66.132 

mis.: .30, 17%  3.678 2.287 6.324 4.454 6.844 5.860 0.107 0.037 77.623 443.139 

mis.: .30, 33% 5.300 1.868 9.930 3.396 12.073 4.149 0.246 0.036 131.666 41.791 

 CFI 

correct: 0, 0%  1 1 .988 .990 0.039 0.035 0 0 1 1 

mis.: .20, 17% .969 .985 .949 .977 0.063 0.038 0 0 1 1 

mis.: .20, 33% .952 .991 .924 .984 0.078 0.029 0 0 1 1 

mis.: .30, 17%  .927 .969 .898 .964 0.088 0.039 0 0 1 1 

mis.: .30, 33% .893 .986 .865 .982 0.103 0.024 0 0 1 1 

 RMSEA 

correct: 0, 0%  0 0 0.010 0.009 0.016 0.015 0 0 0.251 0.779 

mis.: .20, 17% 0.043 0.033 0.045 0.035 0.025 0.026 0 0 0.272 0.791 

mis.: .20, 33% 0.055 0.028 0.059 0.030 0.030 0.024 0 0 0.318 0.571 

mis.: .30, 17%  0.067 0.047 0.071 0.051 0.031 0.034 0 0 0.325 1.487 

mis.: .30, 33% 0.085 0.039 0.092 0.042 0.040 0.030 0 0 0.397 0.418 

 SRMR 

correct: 0, 0%  0.030 0.024 0.032 0.027 0.017 0.015 0.003 0.002 0.163 0.093 

mis.: .20, 17% 0.052 0.037 0.054 0.038 0.018 0.013 0.006 0.004 0.185 0.107 

mis.: .20, 33% 0.065 0.035 0.068 0.036 0.022 0.013 0.010 0.003 0.206 0.103 

mis.: .30, 17%  0.070 0.046 0.071 0.046 0.022 0.016 0.014 0.005 0.199 0.119 

mis.: .30, 33% 0.092 0.041 0.094 0.041 0.029 0.014 0.020 0.004 0.246 0.115 

Note. The magnitude of unmodeled cross-loadings, followed by the proportion of indicators with 

unmodeled cross-loadings in percent. Mis = misspecified. 
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Additional File 2: Bivariate Associations of GOFs with 

Characteristics  

Here, we quantified how GOFs responded to the different characteristics in correctly specified 

and misspecified models. We computed Kendall’s tau-b as a measure of association between 

each simulation characteristic and GOF. Bivariate correlations collapse across non-focal 

scenarios (i.e., those characteristics that are not part of the specific bivariate correlation but 

vary in the data). Thus, bivariate findings may be misleading as they can mask other, more 

complex interdependencies between simulation characteristics that only multivariate analysis 

can reveal. Nonetheless, bivariate correlations help gain a first impression of how simulation 

characteristics and GOFs were associated. 

To facilitate the readability of the following correlation tables, presented in a colored 

heatmap style, we recoded GOFs such that lower values consistently represent worse model fit 

(i.e., χ2, χ2/df, RMSEA, and SRMR were multiplied by −1). For increasing values of the 

simulated characteristics, positive correlations (colored in green) point to GOF values that 

indicate improving fit and negative correlations (colored in red) point to diminishing fit: the 

stronger the absolute correlation coefficient, the more intense the color. Correlations of GOFs 

with the magnitude and proportion of misspecification help explore their sensitivity to 

misspecification. Correlations of GOFs with other characteristics alert to their unintended 

susceptibility in correctly specified or misspecified models. 
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Correctly Specified Models. Figure A1 shows the correlations for correctly specified 

one-factor models. GOFs and characteristics correlated moderately to strongly in many 

instances (.20 ≤ |tau-b| ≤ .71). With the DWLS estimator instead of the ML estimator, GOFs 

typically pointed to better model fit (.22 ≤ tau-b ≤ .42; except for SRMR with tau-b = −.12). 

As the number of indicators increased, χ2 indicated less acceptable models (tau-b = −.71). Akin 

to χ2, SRMR was also susceptible to the number of indicators, suggesting worse model fit as 

models used more and more indicators (tau-b = −.20). SRMR was strongly influenced by 

sample size. Its values indicated better model fit when sample size increased (tau-b = .63). 

SRMR also pointed to better model fit with increasing loading magnitude (tau-b = .33). Overall, 

Figure A1 demonstrates the extent of GOF susceptibility to data and analysis characteristics 

for correctly specified one-factor models. 

 

Figure A1: Zero-Order Correlation Between Characteristics and GOFs of Correctly Specified One-

Factor Models 

 
Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR 

were multiplied by −1). MLR = MLR (Yuan & Bentler, 2000). We only displayed SRMR for comparing 

ML and DWLS because SRMR point estimates are identical for models estimated with ML or MLR 

and models estimated with DWLS or WLSMV (Maydeu-Olivares et al., 2018). 
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Figure A2 shows the findings for two-factor models. Akin to GOFs of one-factor 

models, though to a lesser extent (.12 ≤ tau-b ≤ .21), GOFs of two-factor models were related 

to the type of estimator, indicating better model fit when estimated with DWLS compared to 

ML, except for SRMR (tau-b = −.16). As for GOFs of one-factor models, there were substantial 

correlations between χ2 and the number of indicators (tau-b = −.71), as well between SRMR 

and sample size (tau-b = .69) or the number of indicators (tau-b = −.21) for two-factor models. 

The correlation coefficients resulting from two-factor models were very similar to those from 

one-factor models (and the mathematical signs of the strongest coefficients were identical), 

suggesting that the number of factors did not substantially impact GOFs from correctly 

specified models. We found the biggest difference between SRMR and loading magnitude for 

one- and two-factor models (.33 vs. .10, respectively). 

 

Figure A2: Zero-Order Correlation Between Characteristics and GOFs of Correctly Specified Two-

Factor Models 

 
Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR 

were multiplied by −1). MLR = MLR (Yuan & Bentler, 2000). We only displayed SRMR for comparing 

ML and DWLS because SRMR point estimates are identical for models estimated with ML or MLR 

and models estimated with DWLS or WLSMV (Maydeu-Olivares et al., 2018). 
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Misspecified Models. Figure A3 shows the correlations between simulation 

characteristics and GOFs of analysis models that were misspecified regarding the factor 

dimensionality of the population models. All GOFs correlated substantially with the magnitude 

of misspecification (−.58 ≤ tau-b ≤ −.21), as they should. GOFs indicated consistently worse 

fit with increasing magnitudes of misspecification.  

Unfortunately for the applied researcher, GOFs correlated with data and analysis 

characteristics other than misspecification. In fact, GOF susceptibility to other characteristics 

was extensive, sometimes exceeding GOF sensitivity to misspecification: All GOFs (except 

CFI) indicated substantially worse model fit as loading magnitudes increased (−.74 ≤ tau-b ≤ 

−.52). The χ2 and χ2/df increased with sample size (i.e., they have stronger power to detect 

misspecification). They indicated worse fit with larger samples (−.39 ≤ tau-b ≤ −.35), as 

intended by their mathematical definition. The χ2 also increased with the number of indicators 

(per definition and true in our study, tau-b = −.37), against which the χ2/df ratio is sufficiently 

guarded (tau-b = .09).  

 

Figure A3: Zero-Order Correlation Between Characteristics and GOFs of Models with Misspecified 

Factor Dimensionality  

 
Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR 

were multiplied by −1). MLR = MLR (Yuan & Bentler, 2000). We only displayed SRMR for comparing 

ML and DWLS because SRMR point estimates are identical for models estimated with ML or MLR 

and models estimated with DWLS or WLSMV (Maydeu-Olivares et al., 2018). 
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For models that were misspecified regarding cross-loadings (Figure A4), all GOFs 

correlated with the magnitude of misspecification (i.e., the size of unmodeled cross-loadings; 

−.25 ≤ tau-b ≤ −.15). Differently, all GOFs barely correlated with the proportion of 

misspecification (.02 ≤ |tau-b| ≤ .06). In sum, all GOFs were sensitive for the magnitude of 

misspecification. Still, they did not seem sensitive to the proportion of misspecification (which 

might be spurious due to a moderation effect of the factor correlation, see Figure 4).   

Problematically, GOFs of models with unmodeled cross-loadings were susceptible to 

many characteristics. All else being equal, GOFs showed better fit when factors were correlated 

instead of uncorrelated (.21 ≤ tau-b ≤ .51). Further, GOFs suggested worse fit with higher 

loading magnitudes (−.39 ≤ tau-b ≤ −.22), while only CFI pointed to better fit (tau-b = .24). χ2 

was strongly associated with the number of indicators (tau-b = −.53) and the sample size (tau-

b = −.36). Also, χ2/df and SRMR varied immensely with sample size, the former pointing to 

worse (tau-b = −.48) and the latter to better fit (tau-b = .24) with increasing sample size. GOF 

correlations with other characteristics were smaller than the correlations with the magnitude of 

misspecification. 

 

Figure A4: Zero-Order Correlation Between Characteristics and GOFs of Models with Unmodeled 

Cross-Loadings  

 
Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR 

were multiplied by −1). MLR = MLR (Yuan & Bentler, 2000). We only displayed SRMR for comparing 

ML and DWLS because SRMR point estimates are identical for models estimated with ML or MLR 

and models estimated with DWLS or WLSMV (Maydeu-Olivares et al., 2018). 
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Additional File 3: Main and Interaction Effects on GOFs 

Table A3: Conditional Main and Interaction Effects on GOFs Resulting from Correctly Specified 

Models 

Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

1F 2F 1F 2F 1F 2F 1F 2F 1F 2F 

Intercept −31.882 −31.862 −1.007 −1.007 1.002 1.003 −0.003 −0.004 −0.009 −0.013 

 Main effects 

Estimator (Reference ML)           

MLR 0.587 0.409 0.026 0.024 0.003 0.007 −0.000 0.001 − − 

DWLS 13.755 3.685 0.440 0.062 −0.006 −0.005 0.003 −0.001 −0.001 −0.002 

WLSMV 0.271 −0.001 0.011 −0.004 −0.003 −0.001 −0.002 −0.000 − − 

Number of indicators −7.957 −7.830 0.000 −0.001 −0.001 −0.000 0.000 0.000 −0.000 −0.000 

Response options 0.182 0.168 0.007 0.005 0.000 0.000 0.000 0.000 −0.000 −0.000 

Response options^2 −0.042 0.060 −0.003 0.001 0.000 −0.000 −0.000 0.000 −0.000 0.000 

Asymmetric (Reference 

symmetric) 
−3.594 −1.300 −0.111 −0.034 −0.001 −0.000 −0.004 −0.001 −0.001 0.000 

Loading magnitude −1.032 −0.604 −0.035 −0.017 −0.001 −0.001 −0.001 −0.001 0.001 −0.000 

Loading magnitude^2 −0.165 −0.080 −0.006 −0.001 0.000 0.000 −0.000 −0.000 0.000 −0.000 

Sample size 0.084 0.061 0.003 0.002 0.001 0.001 0.001 0.001 0.002 0.003 

Sample size^2 −0.008 0.001 −0.000 0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 

Correlated factors (.30, Reference 

.00) 
− 0.825 − −0.017 − −0.003 − −0.001 − 0.001 

 Two-way interaction effects 

Estimator            

MLR×Number of indicators 0.610 0.257 0.002 0.008 0.001 0.001 0.000 0.000 − − 

DWLS×Number of indicators 3.691 1.995 0.001 0.017 0.000 0.001 0.000 0.001 −0.000 −0.000 

WLSMV×Number of 

indicators 
0.697 0.313 0.000 0.006 0.000 0.000 0.000 0.000 − − 

MLR×Response options 0.016 0.026 0.000 0.002 0.000 0.000 0.000 0.000 − − 

DWLS×Response options 0.403 0.179 0.013 0.004 −0.000 −0.000 0.000 −0.000 0.001 0.001 

WLSMV×Response options −0.053 −0.060 −0.002 −0.002 −0.000 −0.000 −0.000 −0.000 − − 

MLR×Response options^2 0.023 0.009 0.000 0.001 −0.000 −0.000 0.000 0.000 − − 

DWLS×Response options^2 −0.098 −0.057 −0.004 −0.002 0.000 0.000 −0.000 −0.000 −0.000 −0.000 

WLSMV×Response options^2 0.025 0.017 0.000 0.000 0.000 0.000 0.000 0.000 − − 

MLR×Asymmetric 3.462 1.240 0.108 0.030 0.002 0.000 0.004 0.001 − − 

DWLS×Asymmetric 3.545 1.233 0.112 0.028 0.003 0.002 0.005 0.001 −0.000 −0.001 

WLSMV×Asymmetric 3.539 1.293 0.112 0.030 0.003 0.001 0.005 0.001 − − 

MLR×Loading magnitude 1.131 0.491 0.039 0.017 0.001 0.002 0.002 0.001 − − 

DWLS×Loading magnitude 3.876 2.141 0.123 0.061 −0.003 −0.002 0.002 0.001 0.001 0.000 

WLSMV×Loading magnitude 1.308 0.511 0.042 0.012 −0.001 −0.000 0.002 0.001 − − 

MLR×Loading magnitude^2 0.152 0.001 0.004 −0.002 −0.000 −0.001 0.000 −0.000 − − 

DWLS×Loading magnitude^2 0.072 0.120 0.002 0.004 0.001 0.000 −0.000 −0.000 0.000 0.000 

WLSMV×Loading 

magnitude^2 
0.228 0.067 0.007 0.002 0.000 −0.000 0.000 0.000 − − 

MLR×Sample size 0.053 0.075 0.003 0.004 0.000 0.001 −0.000 0.000 − − 

DWLS×Sample size −0.010 0.058 −0.000 0.002 −0.002 −0.001 −0.001 −0.000 0.000 0.001 

WLSMV×Sample size −0.035 0.016 −0.001 0.001 −0.001 −0.000 −0.000 −0.000 − − 

MLR×Sample size^2 −0.006 −0.009 −0.000 −0.000 −0.000 −0.000 0.000 −0.000 − − 

DWLS×Sample size^2 −0.000 −0.007 −0.000 −0.000 0.000 0.000 0.000 0.000 −0.000 −0.000 

WLSMV×Sample size^2 0.003 −0.002 0.000 −0.000 0.000 0.000 0.000 0.000 − − 

MLR×Correlated factors − 0.118 − −0.011 − −0.003 − −0.000 − − 

DWLS×Correlated factors − 5.954 − 0.247 − 0.004 − 0.007 − 0.002 

WLSMV×Correlated factors − 0.395 − 0.018 − 0.001 − 0.000 − − 

Number of indicators×           

Response options 0.016 0.003 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 0.000 0.000 

Response options^2 −0.020 −0.011 −0.001 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 

Asymmetric −0.224 −0.113 −0.000 −0.002 0.000 0.000 −0.000 −0.000 −0.000 −0.000 

Loading magnitude 0.113 0.091 0.000 0.000 −0.000 −0.000 −0.000 −0.000 0.000 0.000 

Loading magnitude^2 −0.018 0.001 −0.000 −0.000 0.000 0.000 −0.000 −0.000 0.000 0.000 
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Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

1F 2F 1F 2F 1F 2F 1F 2F 1F 2F 

Number of indicators× 

Sample size 0.022 0.026 −0.000 0.000 −0.000 −0.000 −0.000 −0.000 0.000 0.000 

Sample size^2 −0.002 −0.003 −0.000 −0.000 0.000 0.000 0.000 0.000 −0.000 −0.000 

Correlated factors − 0.254 − −0.004 − −0.000 − −0.000 − −0.000 

Response options×           

Asymmetric −0.057 −0.009 −0.002 −0.001 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 

Loading magnitude 0.022 0.031 0.001 0.001 −0.000 −0.000 0.000 0.000 0.000 0.000 

Loading magnitude^2 −0.001 −0.000 0.000 −0.000 0.000 0.000 0.000 −0.000 0.000 0.000 

Sample size 0.021 0.023 0.001 0.001 −0.000 −0.000 0.000 0.000 −0.000 −0.000 

Sample size^2 −0.003 −0.003 −0.000 −0.000 0.000 0.000 −0.000 −0.000 0.000 0.000 

Correlated factors − 0.034 − 0.002 − −0.000 − 0.000 − 0.000 

Response options^2×           

Asymmetric 0.035 0.019 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

Loading magnitude 0.002 −0.005 −0.000 −0.000 0.000 0.000 −0.000 −0.000 −0.000 −0.000 

Loading magnitude^2 −0.002 −0.003 0.000 −0.000 −0.000 −0.000 0.000 −0.000 0.000 −0.000 

Sample size 0.001 0.004 −0.000 −0.000 0.000 0.000 −0.000 −0.000 0.000 0.000 

Sample size^2 −0.000 −0.002 0.000 −0.000 −0.000 −0.000 0.000 −0.000 −0.000 −0.000 

Correlated factors − 0.014 − 0.002 − 0.000 − 0.000 − 0.000 

Asymmetric×           

Loading magnitude −0.314 −0.097 −0.009 −0.002 0.000 0.001 −0.000 −0.000 0.000 0.000 

Loading magnitude^2 −0.022 −0.010 −0.001 0.000 −0.000 −0.000 −0.000 −0.000 0.000 0.000 

Sample size 0.011 −0.006 0.001 −0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Sample size^2 −0.000 0.001 −0.000 0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 

Correlated factors − −0.221 − −0.007 − 0.000 − −0.000 − −0.000 

Loading magnitude×           

Sample size −0.011 −0.005 −0.001 −0.000 −0.001 −0.001 −0.000 −0.000 −0.000 −0.000 

Sample size^2 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Correlated factors − 0.407 − 0.014 − −0.001 − 0.000 − 0.001 

Loading magnitude^2×           

Sample size 0.000 −0.005 −0.000 −0.000 0.000 0.000 0.000 −0.000 −0.000 −0.000 

Sample size^2 0.000 0.001 0.000 0.000 −0.000 −0.000 −0.000 0.000 0.000 0.000 

Correlated factors − 0.064 − 0.003 − 0.001 − 0.000 − 0.000 

Sample size×           

Correlated factors − 0.014 − 0.000 − −0.000 − −0.000 − −0.000 

Sample size^2×           

Correlated factors − −0.004 − −0.000 − 0.000 − 0.000 − 0.000 

R2 .894 .860 .266 .061 .213 .194 .219 .130 .893 .815 

Number of observations 431,910 849,004 431,910 849,004 431,910 849,004 431,914 849,052 215,957 424,526 

 Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR 

were multiplied by ‒1). Relatively large effects are in black, and all others are in light gray color. Those 

large effects of single independent variables might be small on an absolute scale. Still, they stood out 

as strong relative to all other effects (and might even aggregate with seemingly small effects of other 

independent variables). Despite the relative strength of those independent variables, the cutpoint of 

what constitutes a large and a small effect was arbitrarily set. As linear and quadratic independent 

variables depend on each other, we always marked both if they (or one of them) were large. 1F = one-

factor CFA. 2F = two-factor CFA. The multiplication sign (×) indicates interaction terms. For the 

correct interpretation of the sample size regression coefficient, multiply the outcome by 100. To 

correctly interpret the loading magnitude regression coefficient, divide the outcome by 10. The mean-

centered independent variables (except binary variables) eased the computation of interaction effects. 

Regression coefficients are unstandardized. Bold regression coefficients are with p < .001. Independent 

variables with more than two simulated levels were entered additionally in quadratic form. SRMR is 

only available for comparing ML and DWLS because SRMR point estimates are identical for models 

with ML and MLR estimators and models with DWLS and WLSMV estimators (Maydeu-Olivares et 

al., 2018). 
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Table A4: Conditional Main and Interaction Effects on GOFs Resulting from Misspecified Models 

Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

Dim. Load. Dim. Load. Dim. Load. Dim. Load. Dim. Load. 

Intercept −167.174 −112.681 1.707 −4.785 0.797 0.936 −0.109 −0.061 −0.065 −0.057 

 Main effects 

Misspecification magnitude −130.557 −79.952 −8.623 −3.347 −0.077 −0.057 −0.017 −0.027 −0.013 −0.023 

Misspecification magnitude^2 −39.354 − −3.593 − −0.006 − 0.001 − −0.000 − 

Misspecification proportion − −27.943 − −1.187 − −0.015 − −0.008 − −0.011 

Estimator (Reference ML)          

MLR −514.771 0.555 −47.487 0.022 −0.053 0.004 −0.017 0.000 − − 

DWLS 1.962 −138.532 1.299 −4.315 0.104 −0.023 0.002 −0.033 −0.012 −0.012 

WLSMV −96.210 −71.258 −2.679 −2.038 0.026 −0.026 −0.013 −0.018 − − 

Number of indicators −45.523 −23.113 3.209 0.549 −0.003 0.004 0.005 0.004 −0.001 −0.001 

Response options −25.684 −6.994 −0.792 −0.287 −0.004 0.000 −0.005 −0.002 −0.003 −0.002 

Response options^2 1.878 2.220 −0.516 0.099 0.001 0.000 0.002 0.001 0.001 0.001 

Asymmetric (Reference symmetric) −89.771 10.346 −10.766 0.471 −0.000 0.000 0.005 0.003 0.002 0.003 

Loading magnitude −321.908 −28.669 −14.605 −1.313 −0.042 0.027 −0.048 −0.011 −0.024 −0.010 

Loading magnitude^2 −120.149 −2.277 −6.660 −0.148 −0.006 −0.005 −0.007 −0.000 −0.003 −0.000 

Sample size −43.171 −10.725 −2.315 −0.468 −0.000 0.000 −0.000 −0.000 0.001 0.001 

Sample size^2 −0.320 0.005 −0.026 0.000 0.000 −0.000 0.000 0.000 −0.000 −0.000 

Correlated factors (.30, Reference 

.00) 
− 49.824 − 2.236 − 0.044 − 0.021 − 0.029 

 Two-way interaction effects 

Misspecification magnitude×           

Misspecification proportion − −9.422 − −0.373 − 0.000 − −0.000 − −0.002 

MLR −100.276 1.710 −10.052 0.033 −0.020 −0.001 −0.003 0.000 − − 

DWLS −74.353 −56.634 −2.114 −1.648 0.020 −0.001 −0.008 −0.007 −0.003 −0.003 

WLSMV −20.426 −33.341 −0.707 −0.953 0.005 −0.005 −0.003 −0.005 − − 

Number of indicators −17.863 −12.204 1.211 0.283 0.000 0.001 0.001 0.001 −0.000 −0.000 

Response options −9.313 −5.940 −0.357 −0.246 −0.000 −0.000 −0.001 −0.001 −0.000 −0.000 

Response options^2 15.766 1.615 1.566 0.067 0.000 0.000 0.000 0.000 0.000 0.000 

Asymmetric −21.413 8.468 −3.397 0.346 0.001 0.001 0.001 0.001 0.000 0.001 

Loading magnitude −67.084 −22.930 −2.676 −0.976 −0.000 0.008 −0.005 −0.005 −0.006 −0.004 

Loading magnitude^2 1.861 −2.612 1.115 −0.145 0.003 −0.000 0.000 −0.000 −0.001 −0.000 

Sample size −17.483 −7.797 −0.877 −0.308 −0.001 −0.001 −0.000 −0.000 −0.000 −0.000 

Sample size^2 −0.156 0.045 −0.017 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Correlated factors − 62.662 − 2.477 − 0.048 − 0.014 − 0.015 

Misspecification magnitude^2×           

MLR 24.642 − 0.677 − 0.004 − 0.002 − − − 

DWLS −18.140 − −0.682 − −0.004 − −0.001 − 0.000 − 

WLSMV −5.441 − −0.256 − −0.003 − −0.000 − − − 

Number of indicators 0.820 − 0.006 − −0.000 − −0.000 − −0.000 − 

Response options 1.643 − −0.006 − 0.000 − 0.000 − 0.000 − 

Response options^2 5.857 − 0.705 − −0.000 − −0.000 − 0.000 − 

Asymmetric −18.668 − −2.137 − 0.000 − −0.000 − 0.000 − 

Loading magnitude 13.016 − 1.016 − 0.003 − 0.001 − −0.000 − 

Loading magnitude^2 15.872 − 1.401 − 0.001 − 0.000 − −0.000 − 

Sample size 0.590 − 0.024 − −0.000 − 0.000 − −0.000 − 

Sample size^2 −0.087 − −0.013 − 0.000 − −0.000 − 0.000 − 

Misspecification proportion×           

MLR − 0.608 − 0.051 − 0.001 − 0.001 − − 

DWLS − −37.402 − −1.313 − −0.009 − −0.006 − −0.001 

WLSMV − −21.313 − −0.811 − −0.009 − −0.005 − − 

Number of indicators − −2.433 − 0.057 − 0.000 − 0.000 − 0.000 

Response options − −0.857 − −0.029 − 0.000 − −0.000 − −0.000 

Response options^2 − 0.267 − 0.009 − −0.000 − −0.000 − 0.000 

Asymmetric − 1.656 − 0.066 − 0.000 − 0.000 − 0.000 

Loading magnitude − −2.314 − −0.072 − 0.002 − 0.000 − −0.001 

Loading magnitude^2 − 0.717 − 0.031 − 0.000 − 0.000 − −0.000 
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Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

Dim. Load. Dim. Load. Dim. Load. Dim. Load. Dim. Load. 

Misspecification proportion× 

Sample size − −1.576 − −0.061 − −0.000 − 0.000 − −0.000 

Sample size^2 − 0.011 − 0.000 − 0.000 − −0.000 − 0.000 

Correlated factors − 49.403 − 2.008 − 0.025 − 0.015 − 0.013 

Estimator          

MLR×Number of indicators 47.694 0.922 6.461 0.015 0.009 0.001 0.002 0.000 − − 

DWLS×Number of indicators −29.986 −16.612 −0.829 −0.102 0.005 0.000 −0.002 −0.001 0.000 0.000 

WLSMV×Number of indicators −18.247 −11.131 −0.167 −0.067 0.001 −0.002 −0.001 −0.001 − − 

MLR×Response options −8.729 0.184 0.153 0.004 0.000 0.000 −0.000 0.000 − − 

DWLS×Response options −12.392 −6.535 −0.221 −0.174 0.003 −0.000 −0.001 −0.001 0.003 0.002 

WLSMV×Response options −3.316 −3.389 −0.098 −0.097 0.001 −0.000 −0.001 −0.001 − − 

MLR×Response options^2 73.658 −0.009 7.895 −0.000 0.000 −0.000 0.000 0.000 − − 

DWLS×Response options^2 2.547 1.561 0.022 0.040 −0.001 −0.000 0.000 0.000 −0.001 −0.001 

WLSMV×Response options^2 0.718 0.744 0.009 0.018 −0.000 0.000 0.000 0.000 − − 

MLR×Asymmetric −133.306 4.543 −18.182 0.151 −0.000 −0.000 0.006 0.002 − − 

DWLS×Asymmetric 40.572 8.876 1.309 0.215 0.004 0.001 0.004 0.002 −0.001 −0.003 

WLSMV×Asymmetric 36.456 4.791 1.338 0.103 0.005 0.001 0.004 0.001 − − 

MLR×Loading magnitude −66.301 1.634 −5.498 0.042 −0.005 0.001 −0.002 0.001 − − 

DWLS×Loading magnitude −50.201 −24.485 −0.466 −0.655 0.035 0.005 −0.001 −0.002 −0.004 −0.001 

WLSMV×Loading magnitude −21.672 −8.976 −0.458 −0.233 0.029 0.008 −0.001 −0.001 − − 

MLR×Loading magnitude^2 58.306 0.282 6.659 0.005 −0.001 −0.001 0.000 −0.000 − − 

DWLS×Loading magnitude^2 −19.863 −1.374 −0.259 −0.016 0.007 0.001 −0.001 0.000 −0.001 −0.000 

WLSMV×Loading magnitude^2 9.300 3.151 0.356 0.110 0.012 0.001 0.002 0.001 − − 

MLR×Sample size −27.493 0.329 −2.630 0.010 0.000 0.001 −0.000 0.000 − − 

DWLS×Sample size −8.532 −8.106 −0.061 −0.220 −0.001 −0.001 −0.001 −0.001 0.000 0.000 

WLSMV×Sample size −7.576 −5.017 −0.184 −0.136 −0.000 −0.000 −0.000 −0.000 − − 

MLR×Sample size^2 −0.891 −0.011 −0.078 −0.000 −0.000 −0.000 −0.000 −0.000 − − 

DWLS×Sample size^2 0.014 0.064 −0.000 0.001 0.000 0.000 0.000 0.000 −0.000 −0.000 

WLSMV×Sample size^2 0.013 0.036 0.000 0.001 0.000 0.000 0.000 0.000 − − 

MLR×Correlated factors − −0.251 − −0.050 − −0.002 − −0.000 − − 

DWLS×Correlated factors − 138.007 − 4.672 − 0.032 − 0.037 − 0.010 

WLSMV×Correlated factors − 31.241 − 0.861 − 0.025 − 0.006 − − 

Number of indicators×           

Response options −8.834 −1.280 0.113 0.035 −0.000 −0.000 0.000 0.000 0.000 0.000 

Response options^2 −3.563 0.334 −0.693 −0.010 0.000 −0.000 −0.000 −0.000 −0.000 −0.000 

Asymmetric 24.401 1.780 1.497 −0.051 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 

Loading magnitude −47.821 −4.470 1.357 0.151 0.000 −0.001 0.002 0.001 −0.000 0.000 

Loading magnitude^2 −18.627 −0.341 −0.250 0.027 −0.000 0.000 0.000 0.000 −0.000 0.000 

Sample size −8.761 −1.714 0.385 0.043 0.000 −0.000 0.000 0.000 0.000 0.000 

Sample size^2 0.039 0.003 0.005 −0.000 −0.000 0.000 −0.000 −0.000 −0.000 −0.000 

Correlated factors − 12.477 − −0.287 − −0.004 − −0.002 − −0.000 

Response options×           

Asymmetric 7.955 1.669 0.067 0.077 0.001 0.000 0.001 0.001 0.001 0.000 

Loading magnitude −24.744 −2.691 −0.906 −0.117 −0.000 −0.000 −0.002 −0.001 −0.001 −0.000 

Loading magnitude^2 −6.760 −0.442 −0.262 −0.024 0.000 0.000 −0.000 −0.000 −0.000 −0.000 

Sample size −4.875 −0.835 −0.172 −0.033 0.000 −0.000 0.000 0.000 −0.000 −0.000 

Sample size^2 −0.035 0.006 −0.002 −0.000 −0.000 −0.000 −0.000 −0.000 0.000 0.000 

Correlated factors − 4.480 − 0.160 − −0.000 − 0.001 − 0.001 

Response options^2×           

Asymmetric 30.370 −0.640 3.721 −0.028 −0.000 0.000 −0.001 −0.000 −0.000 −0.000 

Loading magnitude 7.021 0.729 0.267 0.031 0.000 0.000 0.001 0.000 0.000 0.000 

Loading magnitude^2 −10.971 0.109 −1.359 0.006 −0.000 0.000 0.000 0.000 0.000 0.000 

Sample size 3.512 0.246 0.292 0.010 −0.000 0.000 −0.000 0.000 0.000 0.000 

Sample size^2 0.113 −0.004 0.014 −0.000 0.000 −0.000 0.000 −0.000 −0.000 −0.000 

Correlated factors − −1.207 − −0.047 − 0.000 − −0.000 − −0.000 

Asymmetric×           

Loading magnitude 28.194 3.714 1.210 0.158 −0.001 0.001 0.002 0.001 −0.000 0.000 

Loading magnitude^2 42.004 0.509 4.232 0.027 −0.001 −0.000 0.000 0.000 −0.000 0.000 

Sample size 0.202 1.264 −0.370 0.050 0.000 0.000 0.000 0.000 0.000 0.000 

Sample size^2 −0.558 −0.009 −0.063 0.000 −0.000 −0.000 −0.000 −0.000 −0.000 −0.000 
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Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

Dim. Load. Dim. Load. Dim. Load. Dim. Load. Dim. Load. 

Asymmetric×           

Correlated factors − −7.959 − −0.308 − −0.000 − −0.002 − −0.001 

Loading magnitude×           

Sample size −32.467 −3.158 −1.358 −0.131 −0.000 −0.000 0.000 −0.000 −0.000 −0.000 

Sample size^2 0.006 0.015 0.002 −0.000 0.000 0.000 −0.000 0.000 0.000 0.000 

Correlated factors − 9.909 − 0.340 − −0.030 − −0.001 − 0.005 

Loading magnitude^2×           

Sample size −6.888 −0.310 −0.153 −0.019 0.000 0.000 0.000 0.000 0.000 0.000 

Sample size^2 0.186 −0.007 0.021 0.000 −0.000 −0.000 −0.000 −0.000 −0.000 0.000 

Correlated factors − −3.413 − −0.153 − 0.005 − −0.001 − −0.000 

Sample size×           

Correlated factors − 8.014 − 0.310 − 0.000 − −0.000 − 0.000 

Sample size^2×           

Correlated factors − −0.037 − −0.001 − −0.000 − −0.000 − −0.000 

R2 .002 .736 .000 .780 .719 .619 .684 .697 .956 .845 

Number of observations 1,286,474 3,386,579 1,286,474 3,386,579 1,286,474 3,386,579 1,289,172 3,386,706 644,586 1,693,353 

Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR 

were multiplied by ‒1). Relatively large effects are in black, and all other effects are in light gray color. 

We marked those effects as relatively large that were equal to or larger than the effects of 

misspecification. For scenarios with misspecified factor dimensionality (Dim.), we marked those 

effects that were equal to or larger than the linear plus quadratic main effect of the magnitude of 

misspecification (as both depend on each other). For scenarios with unmodeled cross-loadings (Load.), 

we marked those effects that were equal to or larger than either the main effect of the magnitude of 

misspecification or the proportion of misspecification (as both were independent in misspecified data). 

As linear and quadratic independent variables depend on each other, we always marked both if they (or 

one of them) were large. MLR = MLR (Yuan & Bentler, 2000). Dim. = misspecified factor 

dimensionality. Load. = unmodeled cross-loadings. The multiplication sign (×) indicates interaction 

terms. For the correct interpretation of the sample size regression coefficient, multiply the outcome by 

100. For the correct interpretation of the misspecification magnitude, misspecification proportion, and 

loading magnitude regression coefficient, divide the outcome by 10. The mean-centered independent 

variables (except binary variables) eased the computation of interaction effects. Regression coefficients 

are unstandardized. Bold regression coefficients are with p < .001. Independent variables with more 

than two simulated levels were entered additionally in quadratic form. (Be careful: Only the magnitude 

of misspecification for models with misspecified factor dimensionality had more than two simulated 

levels, but not the magnitude of misspecification for models with unmodeled cross-loadings.) SRMR 

is only available for comparing ML and DWLS because SRMR point estimates are identical for models 

with ML and MLR estimators and models with DWLS and WLSMV estimators (Maydeu-Olivares et 

al., 2018). 



 

Table A5: Summary of the Sensitivities and Susceptibilities of GOFs to Model Misspecification and Other Influences Including Findings from Previous Studies 

Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

[findings from previous studies ] 

 Main effects 

Misspecification magnitude  −              [−]  −              [−]  −               [−]  −   [−]  −            [−] 

Misspecification proportiona                  [−]  −              [−]  −               [−]  −  [−]  −            [−] 

Estimator (Reference ML)           

MLR  − (Dim.)  − (Dim.) + (2F)   − (Dim.)     

DWLS +   [+] − (Load.) [+] + − (Load.)              [+] + / −   [+] + (1F) [+] − (Load.) [+] − (2F) [−] − (Load.) 

WLSMV      [+] − (Load.) [+]  − (Load.)              [+] − (Load.)  [+]            [+] − (Load.) [+]   

Number of indicators −   [−]                 [−]                     [−]                [−]                  [−]                   [+]                 [0/−] 

Response options           

Asymmetric (Reference symmetric) −  −               [−]                    [+] − (1F) [−]                 [+]            [−]                [+]   

Loading magnitude   −              [−]   −              [+] + (Load.)    −              [−]            [+] − (Dim.) [−] 

Sample size      [+]                  [−] [+]                   [−]               [+]    [+]            [+]                 [−] +         [+]                [+] 

Correlated factors (.30, Reference .00)a      [0] +              [+]  +              [0] +              [0] +             [0] +             [+] 

 Large two-way interaction effects 

Misspecification magnitude×           

DWLS  − (Load.)  − (Load.)       

WLSMV  − (Load.)         

Correlated factors a  +   +   +   +  + 

Misspecification proportion a ×           

DWLS  −  −        

Correlated factors a  +   +   +   +   +  

MLR×           

Asymmetric +  + − (Dim.)   + (1F)    

DWLS×           

Number of indicators +          

Response options        [−]      [−]      [−]    [−]             [+]  

Asymmetric +    [+]   +     [+]      [+] + (1F)    [+]   

Loading magnitude +    +          

Correlated factors a + +  + +  + +  + +  +  

WLSMV×           

Response options      [−]     [−]      [−]              [−]    [−]             [−]   [−]    

Asymmetric +      [+] +     [+]      [+] + (1F)    [+]   

Correlated factors a      +      

Number of indicators×           

Sample size          [⋃]                 [⋃]     
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Independent variables 

Dependent variables 

χ2 χ2/df CFI RMSEA SRMR 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

correct 

(1F/2F) 

misspecified 

(Dim./Load.) 

[findings from previous studies ] 

Loading magnitude×           

Correlated factors a      −      

Note. We recoded GOFs so that lower values represent worse fit (i.e., χ2, χ2/df, RMSEA, and SRMR were multiplied by −1). Thus, “+” points to improving fit 

with the increase of a characteristic, “−” to worse fit, “⋃” to initially worse, then better fit. Blank gray cells indicate that the scenario was not/could not be tested 

in our simulation. Blank white cells indicate that we found no (relatively large) effect. Brackets indicate effects that apply only to certain scenarios (printed in 

light gray color). If we found different effects per type of correctly specified or misspecified model, we separated the effects with a slash (1F/2F and Dim./Load., 

respectively). Effects from previous studies are in square brackets (including no effects, “0”). 1F = one-factor CFA. 2F = two-factor CFA. Correct = correctly 

specified models. Misspecified = misspecified models. Dim. = misspecified factor dimensionality. Load. = unmodeled cross-loadings. MLR = MLR (Yuan & 

Bentler, 2000). aOnly for GOFs from two-factor models (2F) and models with unmodeled cross-loadings (Load.). The multiplication sign (×) indicates 

interaction terms. SRMR is only available for comparing ML and DWLS because SRMR point estimates are identical for models with ML and MLR estimators 

and models with DWLS and WLSMV estimators (Maydeu-Olivares et al., 2018). We based the summary table on the findings from Table A3 for correctly 

specified models and Table A4 for misspecified models in this Additional File 3 from the Supplementary Material. The table includes main and large two-way 

interaction effects. 
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Additional File 4: 5%/95% Quantiles of GOF Distributions from 

Correctly Specified Models 

Table A6: 95% Quantiles of χ2 Distributions Resulting from Correctly Specified Models 
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 ML MLR DWLS WLSMV 

1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

200 6 .40 3 sym 16.4 13.8 17.3 19.0 20.1 17.3 13.2 11.9 17.8 16.1 13.8 17.3 

200 6 .40 3 asym 17.1 13.9 16.6 19.6 21.3 16.6 13.3 13.0 17.8 16.2 14.7 17.3 

200 6 .40 5 sym 17.4 14.1 17.4 19.4 20.4 17.5 13.6 13.0 19.0 17.2 14.7 18.1 

200 6 .40 5 asym 17.7 14.7 17.4 19.4 21.1 17.8 13.8 12.6 18.6 17.6 14.8 18.1 

200 6 .40 7 sym 18.3 14.0 17.4 19.9 19.3 17.5 14.3 13.1 19.1 18.1 14.9 18.4 

200 6 .40 7 asym 18.2 14.1 17.3 21.0 18.9 17.7 13.9 12.6 18.7 17.7 14.2 18.0 

200 6 .60 3 sym 17.4 15.7 17.0 17.2 17.2 17.3 10.4 12.5 18.2 16.0 15.6 16.6 

200 6 .60 3 asym 19.2 15.8 17.3 17.9 16.4 17.6 10.9 12.1 19.0 16.8 15.3 17.4 

200 6 .60 5 sym 18.3 16.3 16.9 18.7 17.2 16.9 10.4 12.9 19.7 17.3 16.7 17.6 

200 6 .60 5 asym 20.4 17.2 17.6 19.3 18.4 17.8 11.5 13.1 20.0 17.9 16.8 18.0 

200 6 .60 7 sym 17.7 15.7 17.0 17.9 16.5 17.3 10.2 11.5 21.1 17.2 15.0 18.7 

200 6 .60 7 asym 20.1 16.1 16.7 19.0 16.4 17.0 10.9 12.6 20.4 17.6 16.0 18.4 

200 6 .80 3 sym 17.9 16.1 16.7 17.1 16.3 17.2 8.3 10.2 20.9 15.5 15.8 16.7 

200 6 .80 3 asym 21.9 17.3 17.3 17.9 16.6 17.2 8.3 9.9 22.6 16.3 15.6 17.7 

200 6 .80 5 sym 18.1 16.6 16.8 17.8 16.8 16.6 7.8 9.6 24.2 16.8 17.0 17.9 

200 6 .80 5 asym 22.2 16.4 17.7 18.2 16.1 18.0 7.8 9.6 23.0 16.9 16.1 17.4 

200 6 .80 7 sym 18.9 16.0 17.9 18.1 16.3 17.8 7.4 8.9 27.0 16.5 16.1 19.6 

200 6 .80 7 asym 22.1 16.2 17.1 17.7 16.1 17.4 7.3 9.4 24.7 16.6 15.9 18.2 

200 12 .40 3 sym 77.3 72.8 74.6 78.4 75.8 77.8 61.6 64.6 70.9 73.4 70.2 71.9 

200 12 .40 3 asym 75.8 73.2 74.9 75.0 75.9 77.4 59.6 63.9 70.2 71.2 70.0 71.5 

200 12 .40 5 sym 74.9 72.5 75.4 76.4 75.6 77.0 58.5 64.6 73.8 72.5 71.6 74.8 

200 12 .40 5 asym 76.7 73.9 73.7 75.0 75.5 75.4 59.0 65.8 72.2 71.8 72.1 73.6 

200 12 .40 7 sym 77.6 74.8 76.3 78.9 76.9 78.1 61.4 68.1 75.9 76.1 74.9 76.7 

200 12 .40 7 asym 79.4 75.2 75.2 77.6 77.0 77.6 60.6 67.1 74.6 75.8 74.5 75.7 

200 12 .60 3 sym 75.3 72.1 75.1 74.9 72.8 75.3 46.3 55.8 73.5 69.8 69.4 73.3 

200 12 .60 3 asym 83.4 78.5 77.2 76.1 75.5 75.8 47.1 57.6 74.7 71.2 71.4 75.3 

200 12 .60 5 sym 75.9 73.4 73.6 74.9 73.7 74.2 43.8 56.3 74.6 71.1 72.6 74.5 

200 12 .60 5 asym 83.7 78.4 77.8 75.9 75.3 76.4 44.2 58.2 75.0 70.5 73.5 75.1 

200 12 .60 7 sym 77.6 75.7 76.8 75.8 75.9 76.8 44.1 57.2 80.1 73.0 73.7 78.1 

200 12 .60 7 asym 84.1 78.6 77.2 76.4 76.2 75.3 45.6 58.4 78.8 73.3 74.5 77.2 

200 12 .80 3 sym 80.2 74.5 77.0 75.6 73.7 76.7 37.7 46.9 88.0 69.8 70.5 75.1 

200 12 .80 3 asym 95.9 81.9 81.7 76.9 74.3 76.8 35.6 46.0 86.8 69.6 70.2 75.8 

200 12 .80 5 sym 77.9 74.3 76.2 75.4 73.9 75.8 32.4 42.9 92.3 69.1 71.1 75.7 

200 12 .80 5 asym 93.3 81.2 80.0 76.4 74.2 75.6 31.5 43.5 91.2 69.3 71.6 75.8 

200 12 .80 7 sym 81.2 77.3 77.6 76.3 76.2 76.4 31.1 44.5 106.2 69.8 74.0 80.4 

200 12 .80 7 asym 96.9 84.0 81.6 79.4 76.0 77.2 31.5 44.4 101.6 70.9 74.6 79.4 

500 6 .40 3 sym 17.3 15.4 17.5 18.0 18.8 17.5 13.6 13.9 18.1 17.0 15.5 17.7 

500 6 .40 3 asym 17.6 15.4 17.4 17.8 19.8 17.4 13.6 13.7 17.7 17.1 15.3 17.4 

500 6 .40 5 sym 16.8 15.2 17.0 17.3 17.5 17.1 12.9 13.6 17.6 16.8 15.5 17.2 

500 6 .40 5 asym 18.4 15.6 17.0 18.7 17.3 17.0 13.4 13.7 17.6 16.9 15.9 17.3 

500 6 .40 7 sym 15.9 15.5 17.5 16.3 17.3 17.6 12.3 13.9 18.5 16.4 15.6 18.0 

500 6 .40 7 asym 17.4 15.8 17.6 17.3 17.4 17.6 13.0 13.7 18.5 16.9 15.4 18.1 

500 6 .60 3 sym 17.8 15.7 16.3 17.8 15.9 16.2 10.7 12.2 18.4 17.2 15.9 17.0 

500 6 .60 3 asym 19.0 15.9 17.6 17.3 16.1 17.5 10.6 12.3 19.0 16.6 15.6 17.6 

500 6 .60 5 sym 17.0 16.2 17.0 16.8 16.3 17.3 9.9 12.6 20.0 16.9 16.8 18.0 

500 6 .60 5 asym 18.4 17.0 17.6 16.8 17.0 17.5 10.2 12.5 19.6 17.0 16.5 17.7 

500 6 .60 7 sym 17.6 15.8 17.4 17.6 15.8 17.2 9.8 11.7 19.5 17.4 15.9 17.4 

500 6 .60 7 asym 19.2 16.4 17.0 17.2 16.3 17.1 10.0 12.3 19.7 17.3 16.2 18.0 

500 6 .80 3 sym 18.1 15.8 16.7 17.4 15.8 16.8 8.5 9.9 23.0 16.8 15.5 18.2 

500 6 .80 3 asym 21.8 16.2 16.8 17.1 15.6 16.7 7.9 9.5 22.9 16.4 15.7 18.1 

500 6 .80 5 sym 17.9 16.3 16.8 17.5 16.1 16.9 7.2 9.3 22.8 16.6 16.2 17.2 

500 6 .80 5 asym 21.6 16.9 17.4 17.1 16.1 17.4 6.9 9.1 20.6 16.2 15.7 16.0 

500 6 .80 7 sym 18.5 15.8 16.6 17.6 15.9 16.7 7.1 8.7 22.8 16.8 15.9 17.1 

500 6 .80 7 asym 22.5 16.6 17.6 18.0 16.0 17.4 7.1 9.0 22.8 16.8 16.2 17.3 



124   

 

 
sa

m
p
le

 s
iz

e 

n
u

m
b
er

 o
f 

in
d

ic
at

o
rs

 

lo
ad

in
g

 

m
ag

n
it

u
d
e 

re
sp

o
n

se
 

o
p
ti

o
n

s 

d
is

tr
ib

u
ti

o
n
 ML MLR DWLS WLSMV 

1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

500 12 .40 3 sym 73.4 72.1 73.3 73.6 73.6 74.2 57.7 63.6 70.1 71.2 70.9 72.8 

500 12 .40 3 asym 75.6 72.9 75.1 73.1 72.5 74.9 57.1 64.4 72.7 71.1 71.1 75.1 

500 12 .40 5 sym 73.8 72.3 74.7 74.2 73.0 75.2 57.1 62.8 71.4 72.5 71.8 74.3 

500 12 .40 5 asym 76.0 73.1 74.8 73.6 73.2 74.9 57.7 62.9 71.6 73.0 71.4 74.5 

500 12 .40 7 sym 73.1 73.1 73.2 73.1 73.9 74.3 55.8 63.8 69.7 72.6 73.0 72.9 

500 12 .40 7 asym 77.4 74.8 74.6 75.2 74.8 74.5 57.6 63.6 70.0 73.2 72.5 73.0 

500 12 .60 3 sym 74.5 71.3 73.2 73.6 71.1 73.5 46.6 55.9 72.7 72.2 71.3 74.4 

500 12 .60 3 asym 82.1 75.5 74.9 74.0 71.8 72.9 46.7 55.9 73.0 72.5 70.9 75.2 

500 12 .60 5 sym 74.3 73.6 73.6 73.3 73.1 73.3 42.0 55.0 73.3 71.3 72.9 74.2 

500 12 .60 5 asym 81.6 76.3 78.0 74.1 72.4 75.6 43.4 55.1 72.6 71.9 71.9 74.0 

500 12 .60 7 sym 75.9 72.7 74.7 74.5 72.3 74.6 42.8 55.3 74.5 74.0 74.1 74.5 

500 12 .60 7 asym 81.5 75.2 76.4 73.4 71.3 74.2 43.2 54.1 71.5 72.6 71.5 73.0 

500 12 .80 3 sym 77.9 72.8 74.6 73.9 72.0 73.4 36.9 47.9 88.2 71.8 73.2 75.7 

500 12 .80 3 asym 92.8 80.5 79.0 72.8 72.4 73.0 34.1 46.2 89.7 70.6 72.2 77.9 

500 12 .80 5 sym 75.8 73.1 73.7 72.5 72.2 72.8 30.7 41.7 93.7 70.0 71.9 76.2 

500 12 .80 5 asym 91.1 80.6 81.4 73.1 72.8 75.7 30.5 41.8 89.8 70.0 71.6 74.9 

500 12 .80 7 sym 78.2 72.6 73.6 74.3 71.1 72.4 29.6 40.9 89.8 71.5 72.5 73.9 

500 12 .80 7 asym 94.6 81.3 79.4 75.7 73.0 73.9 30.0 41.9 89.0 71.1 73.0 74.3 

2,000 6 .40 3 sym 17.2 14.8 17.6 17.3 15.3 17.6 13.4 14.0 17.7 16.9 15.4 17.4 

2,000 6 .40 3 asym 17.1 15.3 16.7 16.6 15.7 16.7 13.1 13.7 17.1 16.5 15.4 16.9 

2,000 6 .40 5 sym 16.7 15.2 16.7 16.9 15.8 16.6 12.7 13.9 17.0 16.7 15.8 16.6 

2,000 6 .40 5 asym 17.0 15.5 16.9 16.5 15.7 16.9 12.7 13.7 17.5 16.4 15.6 17.2 

2,000 6 .40 7 sym 16.7 15.1 16.5 16.8 15.6 16.4 12.7 13.4 16.6 16.9 15.3 16.2 

2,000 6 .40 7 asym 17.2 15.2 16.4 16.7 15.6 16.3 13.1 13.0 17.2 17.0 14.9 16.9 

2,000 6 .60 3 sym 17.7 15.6 16.7 17.3 15.7 16.6 10.9 12.2 18.1 17.2 15.9 16.8 

2,000 6 .60 3 asym 18.8 15.6 16.1 16.9 15.3 16.1 10.4 12.2 17.9 16.6 15.3 16.6 

2,000 6 .60 5 sym 16.9 15.6 16.8 16.7 15.6 16.7 9.7 11.8 18.2 16.8 15.8 16.5 

2,000 6 .60 5 asym 18.2 16.0 16.6 16.4 15.5 16.6 9.6 11.6 18.8 16.4 15.2 17.0 

2,000 6 .60 7 sym 17.4 15.0 16.7 16.9 15.0 16.6 9.7 11.2 18.3 16.9 15.1 16.5 

2,000 6 .60 7 asym 18.6 15.5 17.2 16.7 15.0 17.2 9.5 11.1 18.8 16.3 14.9 17.0 

2,000 6 .80 3 sym 19.2 15.4 16.9 18.1 15.4 17.0 8.8 10.4 22.6 17.7 16.4 17.8 

2,000 6 .80 3 asym 20.7 16.4 16.7 16.5 15.6 16.7 7.8 10.0 21.7 16.6 15.9 17.1 

2,000 6 .80 5 sym 17.4 15.7 16.4 16.7 15.7 16.4 7.1 8.7 23.2 16.6 15.4 17.2 

2,000 6 .80 5 asym 20.9 16.1 16.4 16.7 15.3 16.5 6.8 8.6 21.3 16.3 15.0 16.3 

2,000 6 .80 7 sym 18.1 15.0 17.0 17.1 15.0 17.0 6.7 8.4 21.6 16.6 15.4 16.3 

2,000 6 .80 7 asym 21.1 16.2 16.1 16.7 15.4 16.2 6.6 8.4 22.1 16.3 15.4 16.8 

2,000 12 .40 3 sym 73.9 71.6 72.7 73.7 71.5 72.8 58.2 63.9 67.7 73.0 71.7 71.2 

2,000 12 .40 3 asym 75.8 73.2 75.2 72.8 71.6 74.2 57.8 62.7 70.4 72.6 70.5 73.9 

2,000 12 .40 5 sym 69.8 70.6 70.7 69.4 70.5 70.7 53.9 61.3 68.3 70.2 70.6 72.0 

2,000 12 .40 5 asym 75.8 72.7 73.2 72.6 71.3 72.4 55.3 61.6 68.3 71.3 70.6 72.3 

2,000 12 .40 7 sym 73.7 72.0 72.7 73.3 72.0 73.0 55.1 61.7 68.8 72.6 71.2 72.9 

2,000 12 .40 7 asym 75.6 74.7 73.9 72.8 73.0 73.0 55.0 62.8 69.0 72.3 72.2 72.8 

2,000 12 .60 3 sym 73.3 70.6 73.1 71.7 70.3 73.0 44.9 54.9 71.4 71.2 70.7 73.7 

2,000 12 .60 3 asym 81.1 73.0 76.1 72.5 69.0 73.1 44.9 53.2 71.3 71.8 68.7 73.9 

2,000 12 .60 5 sym 73.4 70.3 71.4 71.7 69.9 71.2 41.9 52.3 70.5 72.1 70.8 72.5 

2,000 12 .60 5 asym 80.5 74.4 75.1 71.9 70.3 72.6 42.5 53.7 69.1 72.4 71.4 71.8 

2,000 12 .60 7 sym 75.1 72.8 72.9 73.1 72.0 72.5 40.7 53.8 70.0 72.2 72.5 72.0 

2,000 12 .60 7 asym 81.6 76.0 73.4 73.4 71.8 70.8 42.0 54.1 69.3 72.8 72.4 71.6 

2,000 12 .80 3 sym 76.7 73.8 75.9 72.6 72.2 74.4 35.5 45.9 86.3 70.8 71.4 75.4 

2,000 12 .80 3 asym 91.0 80.6 78.5 72.5 72.1 72.5 33.6 45.0 83.0 71.4 71.6 73.9 

2,000 12 .80 5 sym 77.3 72.6 72.2 73.8 71.3 71.2 31.0 41.1 90.7 73.2 72.4 74.7 

2,000 12 .80 5 asym 90.7 79.1 77.2 71.8 70.7 71.1 30.2 41.6 92.7 71.8 71.9 76.9 

2,000 12 .80 7 sym 77.4 72.4 73.0 72.7 70.6 71.5 28.7 38.5 89.8 71.5 70.5 73.7 

2,000 12 .80 7 asym 91.2 79.3 80.0 72.1 71.1 73.4 28.8 40.7 83.7 71.0 72.2 71.9 

Note. MLR = MLR (Yuan & Bentler, 2000). 1F = one-factor CFA. 2F = two-factor CFA: factor 

correlation either .30 (correlated) or .00 (uncorrelated). 
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Table A7: 95% Quantiles of χ2/df Distributions Resulting from Correctly Specified Models 
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1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

200 6 .40 3 sym 1.818 1.731 1.927 2.110 2.512 1.927 1.467 1.492 1.977 1.791 1.722 1.925 

200 6 .40 3 asym 1.897 1.733 1.849 2.177 2.658 1.848 1.480 1.626 1.973 1.797 1.834 1.923 

200 6 .40 5 sym 1.928 1.763 1.934 2.157 2.548 1.940 1.516 1.628 2.109 1.916 1.842 2.016 

200 6 .40 5 asym 1.966 1.842 1.933 2.156 2.634 1.976 1.535 1.570 2.070 1.951 1.856 2.016 

200 6 .40 7 sym 2.031 1.745 1.937 2.206 2.413 1.949 1.584 1.636 2.122 2.014 1.860 2.041 

200 6 .40 7 asym 2.025 1.764 1.927 2.335 2.361 1.961 1.542 1.578 2.078 1.966 1.771 2.001 

200 6 .60 3 sym 1.935 1.960 1.894 1.909 2.144 1.919 1.159 1.564 2.027 1.772 1.953 1.846 

200 6 .60 3 asym 2.132 1.981 1.925 1.987 2.056 1.953 1.209 1.510 2.115 1.870 1.917 1.935 

200 6 .60 5 sym 2.037 2.032 1.882 2.083 2.156 1.882 1.157 1.606 2.192 1.918 2.087 1.960 

200 6 .60 5 asym 2.266 2.153 1.951 2.147 2.303 1.976 1.281 1.634 2.226 1.991 2.105 1.997 

200 6 .60 7 sym 1.962 1.958 1.885 1.988 2.059 1.922 1.133 1.433 2.349 1.913 1.874 2.082 

200 6 .60 7 asym 2.237 2.014 1.860 2.111 2.055 1.894 1.213 1.569 2.271 1.953 2.004 2.043 

200 6 .80 3 sym 1.985 2.012 1.853 1.895 2.041 1.907 0.926 1.281 2.320 1.722 1.980 1.857 

200 6 .80 3 asym 2.430 2.168 1.927 1.992 2.073 1.906 0.921 1.241 2.512 1.816 1.948 1.971 

200 6 .80 5 sym 2.017 2.081 1.864 1.979 2.101 1.846 0.867 1.201 2.687 1.865 2.122 1.990 

200 6 .80 5 asym 2.468 2.052 1.965 2.026 2.011 1.998 0.864 1.197 2.553 1.883 2.008 1.938 

200 6 .80 7 sym 2.101 1.996 1.985 2.016 2.032 1.982 0.817 1.112 3.000 1.835 2.016 2.174 

200 6 .80 7 asym 2.454 2.027 1.898 1.971 2.008 1.934 0.806 1.171 2.749 1.847 1.984 2.026 

200 12 .40 3 sym 1.431 1.373 1.381 1.453 1.430 1.440 1.140 1.218 1.313 1.359 1.324 1.332 

200 12 .40 3 asym 1.404 1.382 1.387 1.390 1.431 1.434 1.104 1.206 1.300 1.319 1.320 1.324 

200 12 .40 5 sym 1.387 1.368 1.397 1.415 1.427 1.427 1.084 1.218 1.367 1.343 1.351 1.385 

200 12 .40 5 asym 1.420 1.395 1.364 1.389 1.425 1.397 1.092 1.242 1.336 1.330 1.361 1.362 

200 12 .40 7 sym 1.437 1.411 1.413 1.462 1.451 1.447 1.137 1.285 1.406 1.409 1.413 1.420 

200 12 .40 7 asym 1.470 1.418 1.392 1.436 1.453 1.437 1.123 1.266 1.381 1.403 1.405 1.401 

200 12 .60 3 sym 1.394 1.361 1.390 1.387 1.374 1.394 0.858 1.053 1.361 1.292 1.309 1.357 

200 12 .60 3 asym 1.544 1.480 1.430 1.409 1.424 1.404 0.873 1.086 1.382 1.318 1.348 1.395 

200 12 .60 5 sym 1.406 1.385 1.362 1.387 1.391 1.374 0.811 1.063 1.382 1.317 1.370 1.379 

200 12 .60 5 asym 1.551 1.478 1.441 1.406 1.421 1.415 0.818 1.098 1.389 1.305 1.387 1.391 

200 12 .60 7 sym 1.437 1.428 1.423 1.404 1.431 1.422 0.816 1.080 1.483 1.352 1.390 1.447 

200 12 .60 7 asym 1.557 1.484 1.430 1.415 1.438 1.395 0.844 1.103 1.458 1.358 1.405 1.429 

200 12 .80 3 sym 1.486 1.406 1.426 1.400 1.391 1.421 0.699 0.885 1.629 1.293 1.330 1.390 

200 12 .80 3 asym 1.776 1.546 1.514 1.425 1.402 1.421 0.660 0.867 1.607 1.288 1.324 1.403 

200 12 .80 5 sym 1.442 1.402 1.412 1.397 1.394 1.404 0.600 0.809 1.709 1.280 1.342 1.402 

200 12 .80 5 asym 1.728 1.532 1.482 1.414 1.399 1.401 0.584 0.821 1.689 1.283 1.351 1.404 

200 12 .80 7 sym 1.503 1.458 1.436 1.413 1.438 1.416 0.575 0.840 1.967 1.292 1.397 1.489 

200 12 .80 7 asym 1.795 1.585 1.511 1.470 1.435 1.429 0.583 0.837 1.881 1.313 1.408 1.470 

500 6 .40 3 sym 1.917 1.931 1.941 2.005 2.350 1.946 1.511 1.733 2.007 1.884 1.942 1.969 

500 6 .40 3 asym 1.955 1.923 1.931 1.979 2.478 1.931 1.515 1.708 1.970 1.897 1.918 1.935 

500 6 .40 5 sym 1.863 1.902 1.894 1.926 2.185 1.904 1.437 1.704 1.959 1.867 1.938 1.910 

500 6 .40 5 asym 2.041 1.949 1.888 2.074 2.159 1.887 1.491 1.712 1.955 1.883 1.990 1.917 

500 6 .40 7 sym 1.771 1.935 1.940 1.816 2.159 1.958 1.372 1.739 2.056 1.825 1.950 1.999 

500 6 .40 7 asym 1.935 1.970 1.958 1.925 2.172 1.955 1.448 1.716 2.054 1.881 1.922 2.006 

500 6 .60 3 sym 1.983 1.957 1.814 1.977 1.988 1.805 1.186 1.528 2.040 1.916 1.991 1.885 

500 6 .60 3 asym 2.112 1.993 1.950 1.917 2.009 1.940 1.174 1.536 2.111 1.849 1.949 1.951 

500 6 .60 5 sym 1.888 2.023 1.888 1.867 2.038 1.917 1.100 1.571 2.227 1.877 2.100 2.000 

500 6 .60 5 asym 2.049 2.124 1.954 1.864 2.120 1.947 1.128 1.567 2.173 1.889 2.060 1.963 

500 6 .60 7 sym 1.957 1.969 1.928 1.955 1.979 1.914 1.092 1.462 2.172 1.939 1.985 1.934 

500 6 .60 7 asym 2.129 2.049 1.884 1.915 2.042 1.901 1.108 1.535 2.193 1.921 2.026 1.996 

500 6 .80 3 sym 2.010 1.970 1.857 1.930 1.973 1.862 0.943 1.234 2.552 1.866 1.940 2.017 

500 6 .80 3 asym 2.424 2.025 1.862 1.895 1.947 1.858 0.879 1.186 2.549 1.819 1.960 2.012 

500 6 .80 5 sym 1.989 2.043 1.869 1.949 2.008 1.879 0.803 1.167 2.529 1.840 2.022 1.915 

500 6 .80 5 asym 2.403 2.114 1.938 1.897 2.017 1.929 0.766 1.135 2.287 1.802 1.959 1.780 

500 6 .80 7 sym 2.052 1.979 1.840 1.957 1.986 1.854 0.790 1.082 2.531 1.872 1.993 1.899 

500 6 .80 7 asym 2.500 2.069 1.954 1.996 2.003 1.936 0.784 1.122 2.535 1.867 2.029 1.926 

500 12 .40 3 sym 1.359 1.361 1.358 1.363 1.388 1.375 1.069 1.201 1.298 1.319 1.338 1.348 

500 12 .40 3 asym 1.400 1.376 1.391 1.353 1.368 1.387 1.057 1.216 1.345 1.317 1.341 1.390 

500 12 .40 5 sym 1.366 1.364 1.383 1.373 1.377 1.392 1.058 1.185 1.322 1.343 1.356 1.376 

500 12 .40 5 asym 1.407 1.380 1.386 1.363 1.381 1.388 1.068 1.187 1.326 1.351 1.348 1.380 

500 12 .40 7 sym 1.353 1.380 1.356 1.353 1.393 1.375 1.034 1.204 1.290 1.344 1.377 1.350 

500 12 .40 7 asym 1.433 1.412 1.381 1.393 1.411 1.379 1.067 1.200 1.296 1.355 1.367 1.353 

500 12 .60 3 sym 1.379 1.345 1.356 1.364 1.342 1.361 0.862 1.055 1.347 1.337 1.345 1.378 

500 12 .60 3 asym 1.520 1.425 1.388 1.370 1.355 1.350 0.864 1.055 1.352 1.342 1.337 1.392 

500 12 .60 5 sym 1.377 1.389 1.364 1.358 1.379 1.358 0.778 1.038 1.357 1.321 1.375 1.374 

500 12 .60 5 asym 1.512 1.440 1.445 1.371 1.366 1.401 0.805 1.039 1.344 1.331 1.356 1.370 

500 12 .60 7 sym 1.406 1.371 1.384 1.379 1.365 1.382 0.792 1.043 1.379 1.371 1.398 1.380 

500 12 .60 7 asym 1.509 1.420 1.415 1.359 1.345 1.374 0.801 1.021 1.323 1.344 1.350 1.352 

500 12 .80 3 sym 1.443 1.374 1.382 1.369 1.358 1.359 0.684 0.903 1.633 1.329 1.381 1.402 

500 12 .80 3 asym 1.718 1.518 1.462 1.348 1.366 1.351 0.632 0.871 1.661 1.308 1.362 1.443 

500 12 .80 5 sym 1.403 1.379 1.364 1.343 1.362 1.348 0.569 0.788 1.734 1.296 1.358 1.411 

500 12 .80 5 asym 1.688 1.520 1.508 1.355 1.373 1.403 0.564 0.789 1.664 1.297 1.351 1.387 

500 12 .80 7 sym 1.448 1.369 1.363 1.375 1.341 1.341 0.549 0.771 1.663 1.324 1.369 1.368 
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1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

500 12 .80 7 asym 1.752 1.533 1.470 1.401 1.376 1.368 0.556 0.790 1.647 1.316 1.377 1.375 

2,000 6 .40 3 sym 1.913 1.852 1.960 1.918 1.907 1.957 1.491 1.746 1.962 1.874 1.924 1.931 

2,000 6 .40 3 asym 1.900 1.911 1.850 1.847 1.962 1.854 1.455 1.711 1.902 1.832 1.921 1.873 

2,000 6 .40 5 sym 1.857 1.905 1.851 1.881 1.970 1.847 1.407 1.743 1.890 1.852 1.979 1.845 

2,000 6 .40 5 asym 1.891 1.932 1.875 1.835 1.959 1.880 1.412 1.715 1.947 1.820 1.951 1.907 

2,000 6 .40 7 sym 1.853 1.891 1.831 1.863 1.946 1.820 1.410 1.677 1.839 1.881 1.909 1.799 

2,000 6 .40 7 asym 1.908 1.906 1.823 1.854 1.946 1.816 1.451 1.623 1.914 1.891 1.858 1.878 

2,000 6 .60 3 sym 1.963 1.953 1.852 1.927 1.959 1.846 1.209 1.525 2.008 1.912 1.984 1.863 

2,000 6 .60 3 asym 2.085 1.952 1.794 1.875 1.913 1.786 1.157 1.520 1.994 1.841 1.913 1.850 

2,000 6 .60 5 sym 1.877 1.956 1.864 1.856 1.950 1.859 1.077 1.475 2.027 1.863 1.971 1.837 

2,000 6 .60 5 asym 2.024 1.995 1.840 1.818 1.932 1.845 1.062 1.453 2.088 1.819 1.898 1.893 

2,000 6 .60 7 sym 1.938 1.873 1.856 1.873 1.873 1.848 1.074 1.403 2.038 1.873 1.890 1.834 

2,000 6 .60 7 asym 2.067 1.934 1.909 1.859 1.878 1.908 1.052 1.390 2.085 1.809 1.860 1.885 

2,000 6 .80 3 sym 2.132 1.927 1.883 2.009 1.920 1.889 0.978 1.296 2.513 1.965 2.052 1.977 

2,000 6 .80 3 asym 2.304 2.044 1.859 1.836 1.955 1.855 0.866 1.247 2.406 1.849 1.990 1.896 

2,000 6 .80 5 sym 1.935 1.964 1.827 1.852 1.958 1.826 0.788 1.090 2.572 1.847 1.927 1.910 

2,000 6 .80 5 asym 2.326 2.008 1.822 1.852 1.915 1.833 0.760 1.070 2.372 1.808 1.877 1.814 

2,000 6 .80 7 sym 2.013 1.881 1.892 1.897 1.879 1.893 0.739 1.045 2.395 1.843 1.929 1.813 

2,000 6 .80 7 asym 2.340 2.022 1.789 1.857 1.930 1.797 0.738 1.052 2.460 1.806 1.926 1.867 

2,000 12 .40 3 sym 1.368 1.351 1.346 1.365 1.349 1.349 1.078 1.206 1.254 1.351 1.352 1.319 

2,000 12 .40 3 asym 1.405 1.381 1.392 1.349 1.351 1.374 1.071 1.184 1.304 1.345 1.331 1.368 

2,000 12 .40 5 sym 1.292 1.332 1.309 1.285 1.330 1.309 0.999 1.157 1.264 1.300 1.332 1.334 

2,000 12 .40 5 asym 1.404 1.371 1.356 1.345 1.346 1.341 1.024 1.162 1.265 1.320 1.332 1.339 

2,000 12 .40 7 sym 1.365 1.358 1.347 1.357 1.358 1.352 1.020 1.164 1.273 1.344 1.343 1.349 

2,000 12 .40 7 asym 1.399 1.409 1.369 1.347 1.378 1.352 1.019 1.185 1.277 1.340 1.362 1.349 

2,000 12 .60 3 sym 1.357 1.332 1.354 1.329 1.327 1.352 0.831 1.037 1.323 1.318 1.334 1.365 

2,000 12 .60 3 asym 1.501 1.378 1.409 1.342 1.301 1.354 0.831 1.003 1.320 1.329 1.297 1.369 

2,000 12 .60 5 sym 1.359 1.326 1.322 1.328 1.320 1.318 0.775 0.987 1.305 1.335 1.336 1.343 

2,000 12 .60 5 asym 1.491 1.405 1.391 1.332 1.326 1.344 0.787 1.013 1.279 1.341 1.347 1.330 

2,000 12 .60 7 sym 1.391 1.374 1.350 1.355 1.359 1.342 0.753 1.014 1.297 1.337 1.368 1.334 

2,000 12 .60 7 asym 1.511 1.435 1.358 1.359 1.356 1.311 0.778 1.021 1.283 1.347 1.366 1.326 

2,000 12 .80 3 sym 1.421 1.392 1.406 1.345 1.363 1.377 0.658 0.866 1.598 1.311 1.348 1.397 

2,000 12 .80 3 asym 1.684 1.521 1.454 1.342 1.360 1.342 0.623 0.849 1.538 1.322 1.350 1.368 

2,000 12 .80 5 sym 1.431 1.371 1.337 1.367 1.345 1.319 0.574 0.775 1.679 1.355 1.365 1.382 

2,000 12 .80 5 asym 1.680 1.492 1.429 1.330 1.335 1.317 0.559 0.786 1.717 1.329 1.356 1.425 

2,000 12 .80 7 sym 1.433 1.366 1.351 1.346 1.333 1.324 0.532 0.726 1.662 1.324 1.330 1.365 

2,000 12 .80 7 asym 1.688 1.497 1.481 1.335 1.342 1.358 0.533 0.768 1.549 1.315 1.362 1.332 

Note. MLR = MLR (Yuan & Bentler, 2000). 1F = one-factor CFA. 2F = two-factor CFA: factor 

correlation either .30 (correlated) or .00 (uncorrelated). 
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Table A8: 5% Quantiles of CFI Distributions Resulting from Correctly Specified Models 
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 ML MLR DWLS WLSMV 

1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

200 6 .40 3 sym .814 .785 .649 .746 .438 .641 .914 .866 .668 .847 .789 .663 

200 6 .40 3 asym .803 .769 .631 .690 .361 .631 .912 .835 .634 .836 .774 .621 

200 6 .40 5 sym .830 .810 .695 .771 .548 .702 .926 .878 .714 .856 .807 .705 

200 6 .40 5 asym .812 .779 .648 .737 .452 .641 .922 .872 .644 .846 .798 .635 

200 6 .40 7 sym .839 .834 .716 .797 .630 .723 .932 .891 .710 .870 .823 .704 

200 6 .40 7 asym .813 .803 .699 .743 .612 .692 .920 .876 .719 .852 .809 .713 

200 6 .60 3 sym .952 .919 .917 .948 .904 .915 .996 .967 .926 .972 .935 .927 

200 6 .60 3 asym .938 .924 .910 .938 .903 .898 .994 .969 .915 .967 .937 .915 

200 6 .60 5 sym .955 .932 .934 .953 .923 .934 .996 .974 .942 .972 .947 .943 

200 6 .60 5 asym .937 .922 .926 .938 .904 .924 .994 .970 .932 .967 .939 .933 

200 6 .60 7 sym .956 .943 .937 .955 .936 .934 .997 .984 .939 .976 .957 .940 

200 6 .60 7 asym .942 .932 .935 .942 .922 .927 .995 .977 .935 .972 .949 .936 

200 6 .80 3 sym .982 .974 .974 .982 .972 .972 1 .997 .983 .995 .985 .985 

200 6 .80 3 asym .973 .971 .973 .976 .968 .970 1 .997 .980 .993 .985 .982 

200 6 .80 5 sym .985 .980 .981 .985 .979 .980 1 .998 .986 .996 .988 .988 

200 6 .80 5 asym .977 .979 .978 .980 .977 .974 1 .998 .986 .995 .988 .987 

200 6 .80 7 sym .985 .982 .981 .985 .981 .980 1 .999 .986 .996 .990 .987 

200 6 .80 7 asym .979 .979 .980 .982 .977 .976 1 .999 .985 .995 .989 .987 

200 12 .40 3 sym .828 .789 .779 .815 .752 .739 .966 .910 .862 .886 .830 .813 

200 12 .40 3 asym .832 .775 .755 .829 .724 .711 .977 .907 .836 .897 .818 .785 

200 12 .40 5 sym .874 .829 .807 .867 .803 .789 .985 .932 .873 .920 .855 .828 

200 12 .40 5 asym .852 .799 .796 .853 .767 .776 .983 .915 .869 .910 .839 .822 

200 12 .40 7 sym .865 .820 .816 .860 .799 .799 .977 .920 .870 .910 .847 .827 

200 12 .40 7 asym .843 .788 .782 .844 .753 .750 .980 .908 .861 .909 .829 .815 

200 12 .60 3 sym .955 .944 .938 .956 .941 .936 1 .996 .972 .981 .966 .957 

200 12 .60 3 asym .937 .925 .929 .947 .927 .930 1 .994 .967 .978 .958 .950 

200 12 .60 5 sym .964 .955 .954 .964 .953 .952 1 .997 .977 .984 .968 .965 

200 12 .60 5 asym .948 .936 .939 .955 .939 .938 1 .993 .973 .982 .963 .958 

200 12 .60 7 sym .963 .951 .951 .963 .949 .950 1 .995 .974 .983 .967 .962 

200 12 .60 7 asym .947 .939 .944 .955 .941 .944 1 .993 .972 .980 .962 .959 

200 12 .80 3 sym .980 .978 .976 .982 .979 .976 1 1 .991 .996 .990 .989 

200 12 .80 3 asym .968 .971 .973 .977 .976 .974 1 1 .990 .995 .990 .987 

200 12 .80 5 sym .985 .983 .983 .986 .983 .982 1 1 .993 .997 .993 .991 

200 12 .80 5 asym .974 .977 .978 .981 .980 .980 1 1 .993 .996 .992 .990 

200 12 .80 7 sym .984 .982 .982 .986 .982 .982 1 1 .992 .996 .992 .989 

200 12 .80 7 asym .973 .976 .978 .980 .979 .979 1 1 .992 .996 .991 .989 

500 6 .40 3 sym .916 .865 .831 .907 .811 .828 .964 .908 .839 .934 .871 .838 

500 6 .40 3 asym .902 .858 .821 .894 .763 .814 .957 .903 .827 .926 .872 .825 

500 6 .40 5 sym .935 .903 .878 .931 .871 .878 .977 .932 .885 .950 .905 .884 

500 6 .40 5 asym .921 .887 .859 .917 .844 .857 .973 .918 .869 .946 .892 .867 

500 6 .40 7 sym .944 .895 .869 .941 .868 .869 .981 .931 .878 .957 .906 .877 

500 6 .40 7 asym .930 .877 .859 .924 .825 .852 .976 .921 .861 .948 .891 .859 

500 6 .60 3 sym .979 .969 .967 .979 .968 .967 .998 .988 .970 .988 .974 .971 

500 6 .60 3 asym .975 .965 .962 .977 .963 .960 .998 .987 .968 .987 .974 .968 

500 6 .60 5 sym .985 .974 .972 .984 .974 .972 .999 .991 .975 .990 .978 .975 

500 6 .60 5 asym .979 .969 .968 .981 .966 .966 .999 .989 .973 .989 .978 .974 

500 6 .60 7 sym .984 .978 .975 .984 .976 .974 .999 .993 .979 .990 .983 .980 

500 6 .60 7 asym .979 .974 .971 .980 .972 .969 .999 .991 .974 .990 .979 .975 

500 6 .80 3 sym .992 .990 .990 .993 .990 .989 1 .999 .992 .998 .995 .993 

500 6 .80 3 asym .990 .990 .990 .992 .989 .989 1 .999 .992 .997 .994 .993 

500 6 .80 5 sym .994 .992 .992 .994 .992 .992 1 .999 .995 .998 .995 .996 

500 6 .80 5 asym .991 .991 .991 .993 .990 .990 1 1 .995 .998 .995 .996 

500 6 .80 7 sym .994 .993 .993 .994 .993 .993 1 1 .995 .998 .996 .996 

500 6 .80 7 asym .991 .992 .992 .992 .991 .991 1 1 .995 .998 .995 .995 

500 12 .40 3 sym .940 .906 .906 .939 .902 .901 .993 .961 .942 .962 .927 .922 

500 12 .40 3 asym .930 .897 .888 .936 .894 .884 .995 .958 .925 .962 .922 .902 

500 12 .40 5 sym .950 .928 .922 .950 .924 .919 .996 .974 .951 .968 .944 .934 

500 12 .40 5 asym .939 .915 .909 .942 .912 .907 .995 .970 .946 .966 .938 .926 

500 12 .40 7 sym .954 .929 .926 .953 .927 .923 .998 .974 .958 .971 .943 .940 

500 12 .40 7 asym .939 .911 .913 .942 .911 .909 .995 .971 .954 .967 .939 .936 

500 12 .60 3 sym .982 .979 .977 .983 .978 .977 1 .998 .988 .991 .985 .982 

500 12 .60 3 asym .975 .972 .973 .979 .975 .974 1 .998 .987 .990 .984 .980 
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 ML MLR DWLS WLSMV 

1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

500 12 .60 5 sym .986 .981 .982 .987 .981 .981 1 .999 .991 .993 .987 .987 

500 12 .60 5 asym .978 .976 .976 .982 .979 .976 1 .999 .990 .992 .986 .985 

500 12 .60 7 sym .986 .982 .981 .986 .982 .981 1 .999 .991 .993 .987 .987 

500 12 .60 7 asym .980 .978 .977 .984 .980 .979 1 .999 .991 .993 .988 .986 

500 12 .80 3 sym .992 .992 .991 .993 .992 .992 1 1 .996 .998 .996 .995 

500 12 .80 3 asym .988 .989 .990 .992 .991 .991 1 1 .996 .998 .996 .994 

500 12 .80 5 sym .994 .994 .994 .995 .994 .994 1 1 .997 .999 .997 .996 

500 12 .80 5 asym .990 .991 .991 .994 .992 .992 1 1 .997 .998 .997 .996 

500 12 .80 7 sym .994 .994 .994 .995 .994 .994 1 1 .998 .999 .997 .997 

500 12 .80 7 asym .990 .991 .992 .993 .993 .993 1 1 .997 .998 .997 .996 

2,000 6 .40 3 sym .978 .965 .954 .978 .963 .954 .991 .976 .960 .983 .967 .960 

2,000 6 .40 3 asym .976 .960 .952 .976 .958 .951 .990 .973 .956 .982 .964 .956 

2,000 6 .40 5 sym .984 .972 .969 .984 .970 .969 .995 .981 .970 .988 .974 .971 

2,000 6 .40 5 asym .981 .970 .961 .981 .968 .961 .994 .980 .966 .987 .973 .966 

2,000 6 .40 7 sym .985 .975 .971 .984 .974 .971 .995 .983 .972 .988 .976 .972 

2,000 6 .40 7 asym .981 .968 .966 .981 .967 .965 .994 .982 .970 .987 .975 .970 

2,000 6 .60 3 sym .995 .992 .991 .995 .992 .991 .999 .997 .993 .997 .994 .993 

2,000 6 .60 3 asym .994 .991 .991 .994 .991 .991 1 .996 .992 .997 .993 .993 

2,000 6 .60 5 sym .996 .994 .994 .996 .994 .994 1 .998 .995 .998 .995 .995 

2,000 6 .60 5 asym .995 .993 .993 .995 .993 .992 1 .998 .994 .998 .995 .994 

2,000 6 .60 7 sym .996 .995 .994 .996 .995 .994 1 .998 .995 .998 .996 .995 

2,000 6 .60 7 asym .995 .994 .993 .995 .994 .992 1 .998 .994 .998 .996 .994 

2,000 6 .80 3 sym .998 .998 .997 .998 .997 .997 1 1 .998 .999 .998 .998 

2,000 6 .80 3 asym .998 .997 .997 .998 .997 .997 1 1 .998 .999 .998 .998 

2,000 6 .80 5 sym .999 .998 .998 .999 .998 .998 1 1 .999 1 .999 .999 

2,000 6 .80 5 asym .998 .998 .998 .998 .998 .998 1 1 .999 .999 .999 .999 

2,000 6 .80 7 sym .999 .998 .998 .999 .998 .998 1 1 .999 1 .999 .999 

2,000 6 .80 7 asym .998 .998 .998 .998 .998 .998 1 1 .999 1 .999 .999 

2,000 12 .40 3 sym .985 .977 .975 .985 .977 .975 .998 .991 .986 .990 .982 .981 

2,000 12 .40 3 asym .982 .975 .971 .984 .976 .972 .998 .990 .984 .990 .981 .978 

2,000 12 .40 5 sym .990 .983 .983 .990 .983 .983 1 .995 .990 .994 .987 .985 

2,000 12 .40 5 asym .985 .978 .978 .986 .979 .978 1 .993 .988 .992 .985 .983 

2,000 12 .40 7 sym .988 .982 .982 .988 .982 .982 1 .994 .990 .993 .987 .986 

2,000 12 .40 7 asym .985 .978 .978 .987 .979 .979 1 .993 .988 .993 .985 .984 

2,000 12 .60 3 sym .996 .995 .994 .996 .995 .994 1 1 .997 .998 .996 .996 

2,000 12 .60 3 asym .994 .994 .993 .995 .995 .993 1 1 .997 .998 .997 .995 

2,000 12 .60 5 sym .997 .996 .996 .997 .996 .996 1 1 .998 .998 .997 .997 

2,000 12 .60 5 asym .995 .994 .994 .996 .995 .995 1 1 .998 .998 .997 .997 

2,000 12 .60 7 sym .997 .996 .996 .997 .996 .996 1 1 .998 .998 .997 .997 

2,000 12 .60 7 asym .995 .994 .995 .996 .995 .996 1 1 .998 .998 .997 .997 

2,000 12 .80 3 sym .998 .998 .998 .998 .998 .998 1 1 .999 1 .999 .999 

2,000 12 .80 3 asym .997 .997 .997 .998 .998 .998 1 1 .999 .999 .999 .999 

2,000 12 .80 5 sym .999 .998 .999 .999 .999 .999 1 1 .999 1 .999 .999 

2,000 12 .80 5 asym .998 .998 .998 .998 .998 .998 1 1 .999 1 .999 .999 

2,000 12 .80 7 sym .999 .999 .999 .999 .999 .999 1 1 .999 1 .999 .999 

2,000 12 .80 7 asym .998 .998 .998 .999 .998 .998 1 1 .999 1 .999 .999 

Note. MLR = MLR (Yuan & Bentler, 2000). 1F = one-factor CFA. 2F = two-factor CFA: factor 

correlation either .30 (correlated) or .00 (uncorrelated). 
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Table A9: 95% Quantiles of RMSEA Distributions Resulting from Correctly Specified Models 
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 ML MLR DWLS WLSMV 

1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

200 6 .40 3 sym .064 .060 .068 .074 .087 .068 .048 .050 .070 .063 .060 .068 

200 6 .40 3 asym .067 .061 .065 .077 .091 .065 .049 .056 .070 .063 .065 .068 

200 6 .40 5 sym .068 .062 .068 .076 .088 .069 .051 .056 .075 .068 .065 .071 

200 6 .40 5 asym .070 .065 .068 .076 .090 .070 .052 .054 .073 .069 .066 .071 

200 6 .40 7 sym .072 .061 .068 .078 .084 .069 .054 .057 .075 .071 .066 .072 

200 6 .40 7 asym .072 .062 .068 .082 .082 .069 .052 .054 .074 .070 .062 .071 

200 6 .60 3 sym .068 .069 .067 .067 .076 .068 .028 .053 .072 .062 .069 .065 

200 6 .60 3 asym .075 .070 .068 .070 .073 .069 .032 .051 .075 .066 .068 .069 

200 6 .60 5 sym .072 .072 .066 .074 .076 .066 .028 .055 .077 .068 .074 .069 

200 6 .60 5 asym .080 .076 .069 .076 .081 .070 .038 .056 .078 .071 .075 .071 

200 6 .60 7 sym .069 .069 .067 .070 .073 .068 .026 .047 .082 .068 .066 .074 

200 6 .60 7 asym .079 .071 .066 .075 .073 .067 .033 .053 .080 .069 .071 .072 

200 6 .80 3 sym .070 .071 .065 .067 .072 .067 0 .038 .081 .060 .070 .066 

200 6 .80 3 asym .085 .076 .068 .070 .073 .067 0 .035 .087 .064 .069 .070 

200 6 .80 5 sym .071 .074 .066 .070 .074 .065 0 .032 .092 .066 .075 .071 

200 6 .80 5 asym .086 .073 .069 .072 .071 .071 0 .031 .088 .067 .071 .069 

200 6 .80 7 sym .074 .071 .070 .071 .072 .070 0 .024 .100 .065 .071 .077 

200 6 .80 7 asym .085 .072 .067 .070 .071 .068 0 .029 .094 .065 .070 .072 

200 12 .40 3 sym .046 .043 .044 .048 .046 .047 .027 .033 .040 .042 .040 .041 

200 12 .40 3 asym .045 .044 .044 .044 .046 .047 .023 .032 .039 .040 .040 .040 

200 12 .40 5 sym .044 .043 .045 .046 .046 .046 .020 .033 .043 .041 .042 .044 

200 12 .40 5 asym .046 .044 .043 .044 .046 .045 .022 .035 .041 .041 .043 .043 

200 12 .40 7 sym .047 .045 .045 .048 .047 .047 .026 .038 .045 .045 .046 .046 

200 12 .40 7 asym .048 .046 .044 .047 .048 .047 .025 .037 .044 .045 .045 .045 

200 12 .60 3 sym .044 .042 .044 .044 .043 .044 0 .016 .043 .038 .039 .042 

200 12 .60 3 asym .052 .049 .046 .045 .046 .045 0 .021 .044 .040 .042 .045 

200 12 .60 5 sym .045 .044 .043 .044 .044 .043 0 .018 .044 .040 .043 .044 

200 12 .60 5 asym .052 .049 .047 .045 .046 .046 0 .022 .044 .039 .044 .044 

200 12 .60 7 sym .047 .046 .046 .045 .046 .046 0 .020 .049 .042 .044 .047 

200 12 .60 7 asym .053 .049 .046 .046 .047 .044 0 .023 .048 .042 .045 .046 

200 12 .80 3 sym .049 .045 .046 .045 .044 .046 0 0 .056 .038 .041 .044 

200 12 .80 3 asym .062 .052 .051 .046 .045 .046 0 0 .055 .038 .040 .045 

200 12 .80 5 sym .047 .045 .045 .045 .044 .045 0 0 .060 .038 .041 .045 

200 12 .80 5 asym .060 .052 .049 .046 .045 .045 0 0 .059 .038 .042 .045 

200 12 .80 7 sym .050 .048 .047 .045 .047 .046 0 0 .070 .038 .045 .050 

200 12 .80 7 asym .063 .054 .051 .048 .047 .046 0 0 .067 .040 .045 .049 

500 6 .40 3 sym .043 .043 .043 .045 .052 .044 .032 .038 .045 .042 .043 .044 

500 6 .40 3 asym .044 .043 .043 .044 .054 .043 .032 .038 .044 .042 .043 .043 

500 6 .40 5 sym .042 .042 .042 .043 .049 .043 .030 .038 .044 .042 .043 .043 

500 6 .40 5 asym .046 .044 .042 .046 .048 .042 .031 .038 .044 .042 .045 .043 

500 6 .40 7 sym .039 .043 .043 .040 .048 .044 .027 .038 .046 .041 .044 .045 

500 6 .40 7 asym .043 .044 .044 .043 .048 .044 .030 .038 .046 .042 .043 .045 

500 6 .60 3 sym .044 .044 .040 .044 .044 .040 .019 .033 .046 .043 .045 .042 

500 6 .60 3 asym .047 .045 .044 .043 .045 .043 .019 .033 .047 .041 .044 .044 

500 6 .60 5 sym .042 .045 .042 .042 .046 .043 .014 .034 .050 .042 .047 .045 

500 6 .60 5 asym .046 .047 .044 .042 .047 .044 .016 .034 .048 .042 .046 .044 

500 6 .60 7 sym .044 .044 .043 .044 .044 .043 .014 .030 .048 .043 .044 .043 

500 6 .60 7 asym .048 .046 .042 .043 .046 .042 .015 .033 .049 .043 .045 .045 

500 6 .80 3 sym .045 .044 .041 .043 .044 .042 0 .022 .056 .042 .043 .045 

500 6 .80 3 asym .053 .045 .042 .042 .044 .041 0 .019 .056 .041 .044 .045 

500 6 .80 5 sym .044 .046 .042 .044 .045 .042 0 .018 .055 .041 .045 .043 

500 6 .80 5 asym .053 .047 .043 .042 .045 .043 0 .016 .051 .040 .044 .040 

500 6 .80 7 sym .046 .044 .041 .044 .044 .041 0 .013 .055 .042 .045 .042 

500 6 .80 7 asym .055 .046 .044 .045 .045 .043 0 .016 .055 .042 .045 .043 

500 12 .40 3 sym .027 .027 .027 .027 .028 .027 .012 .020 .024 .025 .026 .026 

500 12 .40 3 asym .028 .027 .028 .027 .027 .028 .011 .021 .026 .025 .026 .028 

500 12 .40 5 sym .027 .027 .028 .027 .027 .028 .011 .019 .025 .026 .027 .027 

500 12 .40 5 asym .029 .028 .028 .027 .028 .028 .012 .019 .026 .027 .026 .028 

500 12 .40 7 sym .027 .028 .027 .027 .028 .027 .008 .020 .024 .026 .027 .026 

500 12 .40 7 asym .029 .029 .028 .028 .029 .028 .012 .020 .024 .027 .027 .027 

500 12 .60 3 sym .028 .026 .027 .027 .026 .027 0 .011 .026 .026 .026 .028 

500 12 .60 3 asym .032 .029 .028 .027 .027 .026 0 .011 .027 .026 .026 .028 
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 ML MLR DWLS WLSMV 

1F 2F 1F 2F 1F 2F 1F 2F 

 .30 .00  .30 .00  .30 .00  .30 .00 

500 12 .60 5 sym .027 .028 .027 .027 .028 .027 0 .009 .027 .025 .027 .027 

500 12 .60 5 asym .032 .030 .030 .027 .027 .028 0 .009 .026 .026 .027 .027 

500 12 .60 7 sym .029 .027 .028 .028 .027 .028 0 .009 .028 .027 .028 .028 

500 12 .60 7 asym .032 .029 .029 .027 .026 .027 0 .006 .025 .026 .026 .027 

500 12 .80 3 sym .030 .027 .028 .027 .027 .027 0 0 .036 .026 .028 .028 

500 12 .80 3 asym .038 .032 .030 .026 .027 .027 0 0 .036 .025 .027 .030 

500 12 .80 5 sym .028 .028 .027 .026 .027 .026 0 0 .038 .024 .027 .029 

500 12 .80 5 asym .037 .032 .032 .027 .027 .028 0 0 .036 .024 .027 .028 

500 12 .80 7 sym .030 .027 .027 .027 .026 .026 0 0 .036 .025 .027 .027 

500 12 .80 7 asym .039 .033 .031 .028 .027 .027 0 0 .036 .025 .027 .027 

2,000 6 .40 3 sym .021 .021 .022 .021 .021 .022 .016 .019 .022 .021 .021 .022 

2,000 6 .40 3 asym .021 .021 .021 .021 .022 .021 .015 .019 .021 .020 .021 .021 

2,000 6 .40 5 sym .021 .021 .021 .021 .022 .021 .014 .019 .021 .021 .022 .021 

2,000 6 .40 5 asym .021 .022 .021 .020 .022 .021 .014 .019 .022 .020 .022 .021 

2,000 6 .40 7 sym .021 .021 .020 .021 .022 .020 .014 .018 .020 .021 .021 .020 

2,000 6 .40 7 asym .021 .021 .020 .021 .022 .020 .015 .018 .021 .021 .021 .021 

2,000 6 .60 3 sym .022 .022 .021 .022 .022 .021 .010 .016 .022 .021 .022 .021 

2,000 6 .60 3 asym .023 .022 .020 .021 .021 .020 .009 .016 .022 .021 .021 .021 

2,000 6 .60 5 sym .021 .022 .021 .021 .022 .021 .006 .015 .023 .021 .022 .020 

2,000 6 .60 5 asym .023 .022 .020 .020 .022 .021 .006 .015 .023 .020 .021 .021 

2,000 6 .60 7 sym .022 .021 .021 .021 .021 .021 .006 .014 .023 .021 .021 .020 

2,000 6 .60 7 asym .023 .022 .021 .021 .021 .021 .005 .014 .023 .020 .021 .021 

2,000 6 .80 3 sym .024 .022 .021 .022 .021 .021 0 .012 .028 .022 .023 .022 

2,000 6 .80 3 asym .026 .023 .021 .020 .022 .021 0 .011 .027 .021 .022 .021 

2,000 6 .80 5 sym .022 .022 .020 .021 .022 .020 0 .007 .028 .021 .022 .021 

2,000 6 .80 5 asym .026 .022 .020 .021 .021 .020 0 .006 .026 .020 .021 .020 

2,000 6 .80 7 sym .023 .021 .021 .021 .021 .021 0 .005 .026 .021 .022 .020 

2,000 6 .80 7 asym .026 .023 .020 .021 .022 .020 0 .005 .027 .020 .022 .021 

2,000 12 .40 3 sym .014 .013 .013 .014 .013 .013 .006 .010 .011 .013 .013 .013 

2,000 12 .40 3 asym .014 .014 .014 .013 .013 .014 .006 .010 .012 .013 .013 .014 

2,000 12 .40 5 sym .012 .013 .012 .012 .013 .012 0 .009 .011 .012 .013 .013 

2,000 12 .40 5 asym .014 .014 .013 .013 .013 .013 .003 .009 .012 .013 .013 .013 

2,000 12 .40 7 sym .014 .013 .013 .013 .013 .013 .003 .009 .012 .013 .013 .013 

2,000 12 .40 7 asym .014 .014 .014 .013 .014 .013 .003 .010 .012 .013 .013 .013 

2,000 12 .60 3 sym .013 .013 .013 .013 .013 .013 0 .004 .013 .013 .013 .014 

2,000 12 .60 3 asym .016 .014 .014 .013 .012 .013 0 .001 .013 .013 .012 .014 

2,000 12 .60 5 sym .013 .013 .013 .013 .013 .013 0 0 .012 .013 .013 .013 

2,000 12 .60 5 asym .016 .014 .014 .013 .013 .013 0 .003 .012 .013 .013 .013 

2,000 12 .60 7 sym .014 .014 .013 .013 .013 .013 0 .003 .012 .013 .014 .013 

2,000 12 .60 7 asym .016 .015 .013 .013 .013 .012 0 .003 .012 .013 .014 .013 

2,000 12 .80 3 sym .015 .014 .014 .013 .013 .014 0 0 .017 .012 .013 .014 

2,000 12 .80 3 asym .018 .016 .015 .013 .013 .013 0 0 .016 .013 .013 .014 

2,000 12 .80 5 sym .015 .014 .013 .014 .013 .013 0 0 .018 .013 .014 .014 

2,000 12 .80 5 asym .018 .016 .015 .013 .013 .013 0 0 .019 .013 .013 .015 

2,000 12 .80 7 sym .015 .014 .013 .013 .013 .013 0 0 .018 .013 .013 .014 

2,000 12 .80 7 asym .019 .016 .016 .013 .013 .013 0 0 .017 .013 .013 .013 

Note. MLR = MLR (Yuan & Bentler, 2000). 1F = one-factor CFA. 2F = two-factor CFA: factor 

correlation either .30 (correlated) or .00 (uncorrelated). 
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Table A10: 95% Quantiles of SRMR Distributions Resulting from Correctly Specified Models 
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ML/MLR DWLS/WLSMV 

1F 2F 1F 2F 

 .30 .00  .30 .00 

200 6 .40 3 sym .048 .047 .056 .068 .066 .079 

200 6 .40 3 asym .049 .048 .056 .072 .071 .083 

200 6 .40 5 sym .048 .047 .056 .059 .059 .070 

200 6 .40 5 asym .049 .047 .056 .064 .061 .074 

200 6 .40 7 sym .049 .046 .056 .058 .057 .067 

200 6 .40 7 asym .050 .047 .057 .061 .059 .070 

200 6 .60 3 sym .040 .048 .057 .056 .067 .080 

200 6 .60 3 asym .043 .047 .058 .060 .068 .085 

200 6 .60 5 sym .039 .048 .057 .048 .057 .071 

200 6 .60 5 asym .043 .049 .058 .053 .061 .076 

200 6 .60 7 sym .039 .045 .059 .046 .053 .072 

200 6 .60 7 asym .042 .047 .059 .049 .057 .075 

200 6 .80 3 sym .028 .042 .060 .038 .058 .086 

200 6 .80 3 asym .031 .043 .063 .040 .059 .094 

200 6 .80 5 sym .024 .041 .064 .029 .047 .079 

200 6 .80 5 asym .028 .042 .064 .031 .051 .082 

200 6 .80 7 sym .023 .039 .067 .028 .045 .080 

200 6 .80 7 asym .027 .041 .064 .029 .048 .081 

200 12 .40 3 sym .057 .059 .061 .076 .078 .082 

200 12 .40 3 asym .057 .059 .061 .078 .082 .086 

200 12 .40 5 sym .054 .058 .062 .064 .067 .072 

200 12 .40 5 asym .056 .059 .061 .067 .073 .075 

200 12 .40 7 sym .055 .059 .062 .062 .066 .071 

200 12 .40 7 asym .057 .060 .062 .066 .070 .074 

200 12 .60 3 sym .046 .054 .061 .061 .072 .082 

200 12 .60 3 asym .048 .056 .062 .064 .076 .087 

200 12 .60 5 sym .043 .053 .061 .050 .061 .071 

200 12 .60 5 asym .047 .055 .062 .054 .066 .076 

200 12 .60 7 sym .043 .053 .063 .049 .059 .072 

200 12 .60 7 asym .046 .055 .063 .052 .064 .075 

200 12 .80 3 sym .032 .047 .067 .042 .062 .090 

200 12 .80 3 asym .035 .048 .067 .043 .064 .093 

200 12 .80 5 sym .027 .044 .067 .032 .050 .078 

200 12 .80 5 asym .031 .046 .068 .034 .054 .083 

200 12 .80 7 sym .027 .044 .071 .030 .048 .081 

200 12 .80 7 asym .031 .046 .069 .032 .052 .083 

500 6 .40 3 sym .031 .032 .036 .044 .045 .051 

500 6 .40 3 asym .032 .032 .036 .047 .047 .053 

500 6 .40 5 sym .030 .032 .036 .037 .039 .044 

500 6 .40 5 asym .032 .032 .035 .040 .041 .046 

500 6 .40 7 sym .029 .032 .036 .035 .038 .043 

500 6 .40 7 asym .031 .032 .036 .038 .040 .046 

500 6 .60 3 sym .026 .030 .036 .036 .041 .052 

500 6 .60 3 asym .027 .031 .037 .037 .043 .055 

500 6 .60 5 sym .024 .030 .038 .029 .037 .047 

500 6 .60 5 asym .026 .031 .037 .032 .039 .049 

500 6 .60 7 sym .024 .029 .038 .028 .034 .045 

500 6 .60 7 asym .026 .031 .037 .030 .037 .047 

500 6 .80 3 sym .018 .026 .041 .024 .036 .058 

500 6 .80 3 asym .019 .027 .041 .024 .037 .061 

500 6 .80 5 sym .015 .025 .041 .018 .030 .050 

500 6 .80 5 asym .017 .026 .039 .019 .032 .050 

500 6 .80 7 sym .015 .025 .041 .017 .028 .048 

500 6 .80 7 asym .017 .026 .040 .018 .031 .051 

500 12 .40 3 sym .035 .037 .039 .047 .050 .052 

500 12 .40 3 asym .036 .038 .040 .049 .053 .056 
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ML/MLR DWLS/WLSMV 

1F 2F 1F 2F 

 .30 .00  .30 .00 

500 12 .40 5 sym .035 .037 .039 .040 .043 .046 

500 12 .40 5 asym .035 .038 .040 .043 .046 .049 

500 12 .40 7 sym .034 .037 .039 .039 .042 .044 

500 12 .40 7 asym .035 .038 .039 .041 .044 .046 

500 12 .60 3 sym .029 .034 .039 .039 .045 .053 

500 12 .60 3 asym .031 .035 .039 .040 .048 .055 

500 12 .60 5 sym .027 .034 .039 .031 .039 .046 

500 12 .60 5 asym .029 .035 .039 .034 .041 .048 

500 12 .60 7 sym .027 .034 .039 .031 .038 .045 

500 12 .60 7 asym .029 .034 .039 .032 .039 .046 

500 12 .80 3 sym .020 .030 .042 .026 .040 .057 

500 12 .80 3 asym .022 .031 .043 .026 .041 .061 

500 12 .80 5 sym .017 .028 .043 .019 .031 .051 

500 12 .80 5 asym .019 .029 .043 .021 .034 .053 

500 12 .80 7 sym .016 .027 .042 .018 .030 .048 

500 12 .80 7 asym .019 .029 .042 .019 .032 .051 

2,000 6 .40 3 sym .015 .016 .018 .022 .023 .026 

2,000 6 .40 3 asym .016 .016 .018 .023 .024 .026 

2,000 6 .40 5 sym .015 .016 .018 .019 .020 .022 

2,000 6 .40 5 asym .015 .016 .018 .020 .021 .024 

2,000 6 .40 7 sym .015 .016 .018 .018 .019 .021 

2,000 6 .40 7 asym .015 .016 .018 .019 .019 .022 

2,000 6 .60 3 sym .013 .015 .018 .018 .021 .026 

2,000 6 .60 3 asym .013 .015 .018 .019 .022 .027 

2,000 6 .60 5 sym .012 .015 .018 .015 .018 .022 

2,000 6 .60 5 asym .013 .015 .018 .015 .019 .024 

2,000 6 .60 7 sym .012 .014 .018 .014 .017 .022 

2,000 6 .60 7 asym .013 .015 .018 .015 .018 .023 

2,000 6 .80 3 sym .009 .013 .020 .012 .018 .029 

2,000 6 .80 3 asym .009 .014 .020 .012 .019 .030 

2,000 6 .80 5 sym .007 .012 .020 .009 .015 .025 

2,000 6 .80 5 asym .008 .013 .020 .009 .016 .026 

2,000 6 .80 7 sym .007 .012 .020 .008 .014 .024 

2,000 6 .80 7 asym .008 .013 .020 .009 .015 .026 

2,000 12 .40 3 sym .018 .019 .019 .024 .025 .026 

2,000 12 .40 3 asym .018 .019 .020 .025 .026 .028 

2,000 12 .40 5 sym .017 .018 .019 .020 .021 .023 

2,000 12 .40 5 asym .018 .019 .019 .021 .023 .024 

2,000 12 .40 7 sym .017 .018 .019 .019 .021 .022 

2,000 12 .40 7 asym .018 .019 .020 .020 .022 .023 

2,000 12 .60 3 sym .014 .017 .020 .019 .022 .026 

2,000 12 .60 3 asym .015 .017 .020 .020 .023 .028 

2,000 12 .60 5 sym .014 .017 .019 .016 .019 .023 

2,000 12 .60 5 asym .015 .017 .020 .017 .021 .024 

2,000 12 .60 7 sym .013 .017 .019 .015 .019 .022 

2,000 12 .60 7 asym .014 .017 .019 .016 .020 .023 

2,000 12 .80 3 sym .010 .015 .021 .013 .019 .029 

2,000 12 .80 3 asym .011 .015 .021 .013 .020 .030 

2,000 12 .80 5 sym .008 .014 .022 .010 .016 .025 

2,000 12 .80 5 asym .010 .015 .022 .010 .017 .028 

2,000 12 .80 7 sym .008 .014 .021 .009 .015 .024 

2,000 12 .80 7 asym .009 .014 .021 .009 .016 .025 

Note. MLR = MLR (Yuan & Bentler, 2000). 1F = one-factor CFA. 2F = two-factor CFA: factor 

correlation either .30 (correlated) or .00 (uncorrelated). 
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Additional File 5: Code to Derive Tailored Cutoffs via Regression 

Formulae in R 

####################### 

#Derive tailored cutoffs via regression formulae 

###################### 

 

#Please insert the data and analysis characteristics of your model of interest 

#Example: ML estimator, 6 items, 7-point Likert scale, symmetric indicator distribution, 

average loading magnitude of 0.8, N = 500, one-factor CFA 

 

estimatorMLR <- 0 #1 if MLR estimator, 0 if not 

estimatorDWLS <- 0 #1 if DWLS estimator, 0 if not 

estimatorWLSMV <- 0 #1 if WLSMV estimator, 0 if not 

nitem <- 6 # number of items 

res.op <- 7 # number of response options 

distrasym <- 0 #1 if asymmetric indicator distribution, 0 if symmetric distribution 

loading.magnitude <- 0.8 #average loading magnitude 

sample <- 500 # sample size 

nfactorCFA <- 1 # number of latent variables/factors 

correlated.factors <- 0 #only applies if nfactorCFA > 1: 1 if correlated factors, 0 if 

uncorrelated factors 

 

 

##################################### 

#Code to derive tailored cutoffs 

#################################### 

 

sample <- sample/1000 

 

#chisq 

chisq <- (-23.94201+ 

            estimatorMLR*6.72418+ 

            estimatorDWLS*5.84976+ 

            estimatorWLSMV*-4.68805+ 

            nitem*11.08965+ 

            res.op*-7.16670+ 

            I((res.op)^2)*0.72250+ 

            distrasym*-0.27294+ 

            loading.magnitude*-25.73792+ 

            I((loading.magnitude)^2)*20.41717+ 

            sample*0.00906+ 

            I((sample)^2)*1.20211+ 

            nfactorCFA*-12.26618+ 

            estimatorMLR*nitem*-0.49485+ 

            estimatorMLR*res.op*0.17085+ 

            estimatorMLR*I((res.op)^2)*-0.02131+ 

            estimatorMLR*distrasym*-2.71568+ 

            estimatorMLR*loading.magnitude*-7.76460+ 

            estimatorMLR*I((loading.magnitude)^2)*-2.61117+ 

            estimatorMLR*sample*-3.93101+ 

            estimatorMLR*I((sample)^2)*1.45709+ 

            estimatorMLR*nfactorCFA*2.71283+ 

            estimatorDWLS*nitem*-2.43747+ 

            estimatorDWLS*res.op*-0.39327+ 

            estimatorDWLS*I((res.op)^2)*0.02110+ 

            estimatorDWLS*distrasym*-3.01669+ 

            estimatorDWLS*loading.magnitude*-41.99689+ 

            estimatorDWLS*I((loading.magnitude)^2)*16.73726+ 

            estimatorDWLS*sample*-2.10846+ 

            estimatorDWLS*I((sample)^2)*0.75628+ 

            estimatorDWLS*nfactorCFA*16.86537+ 

            estimatorWLSMV*nitem*-0.60239+ 

            estimatorWLSMV*res.op*0.63654+ 

            estimatorWLSMV*I((res.op)^2)*-0.05539+ 

            estimatorWLSMV*distrasym*-2.91980+ 

            estimatorWLSMV*loading.magnitude*10.29574+ 

            estimatorWLSMV*I((loading.magnitude)^2)*-15.70961+ 

            estimatorWLSMV*sample*3.01133+ 

            estimatorWLSMV*I((sample)^2)*-1.16888+ 

            estimatorWLSMV*nfactorCFA*3.90897+ 
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            nitem*res.op*-0.25997+ 

            nitem*I((res.op)^2)*0.02789+ 

            nitem*distrasym*0.17890+ 

            nitem*loading.magnitude*-4.80064+ 

            nitem*I((loading.magnitude)^2)*3.83154+ 

            nitem*sample*-1.04664+ 

            nitem*I((sample)^2)*0.38895+ 

            nitem*nfactorCFA*0.64889+ 

            res.op*distrasym*0.47743+ 

            res.op*loading.magnitude*22.43204+ 

            res.op*I((loading.magnitude)^2)*-19.13312+ 

            res.op*sample*2.42094+ 

            res.op*I((sample)^2)*-1.16974+ 

            res.op*nfactorCFA*1.18404+ 

            I((res.op)^2)*distrasym*-0.04690+ 

            I((res.op)^2)*loading.magnitude*-2.12451+ 

            I((res.op)^2)*I((loading.magnitude)^2)*1.79085+ 

            I((res.op)^2)*sample*-0.40475+ 

            I((res.op)^2)*I((sample)^2)*0.17973+ 

            I((res.op)^2)*nfactorCFA*-0.10687+ 

            distrasym*loading.magnitude*3.71952+ 

            distrasym*I((loading.magnitude)^2)*-1.17710+ 

            distrasym*sample*0.29781+ 

            distrasym*I((sample)^2)*-0.16484+ 

            distrasym*nfactorCFA*-0.81043+ 

            loading.magnitude*sample*16.43214+ 

            loading.magnitude*I((sample)^2)*-8.22119+ 

            loading.magnitude*nfactorCFA*1.82103+ 

            I((loading.magnitude)^2)*sample*-15.03742+ 

            I((loading.magnitude)^2)*I((sample)^2)*7.54665+ 

            I((loading.magnitude)^2)*nfactorCFA*5.02726+ 

            sample*nfactorCFA*0.39375+ 

            I((sample)^2)*nfactorCFA*-0.26943+ 

            nfactorCFA*correlated.factors*-2.51728) 

 

 

#chisq.df 

chisq.df <- (3.28519+ 

                 estimatorMLR*0.45189+ 

                 estimatorDWLS*-0.68404+ 

                 estimatorWLSMV*-0.27096+ 

                 nitem*-0.04753+ 

                 res.op*-0.35058+ 

                 I((res.op)^2)*0.03496+ 

                 distrasym*0.02331+ 

                 loading.magnitude*-3.58376+ 

                 I((loading.magnitude)^2)*2.96247+ 

                 sample*0.45022+ 

                 I((sample)^2)*-0.15723+ 

                 nfactorCFA*-0.19792+ 

                 estimatorMLR*nitem*-0.01090+ 

                 estimatorMLR*res.op*0.00216+ 

                 estimatorMLR*I((res.op)^2)*-0.00052+ 

                 estimatorMLR*distrasym*-0.08311+ 

                 estimatorMLR*loading.magnitude*-0.99175+ 

                 estimatorMLR*I((loading.magnitude)^2)*0.42949+ 

                 estimatorMLR*sample*-0.26550+ 

                 estimatorMLR*I((sample)^2)*0.09907+ 

                 estimatorMLR*nfactorCFA*0.11781+ 

                 estimatorDWLS*nitem*0.00544+ 

                 estimatorDWLS*res.op*-0.02550+ 

                 estimatorDWLS*I((res.op)^2)*0.00195+ 

                 estimatorDWLS*distrasym*-0.09613+ 

                 estimatorDWLS*loading.magnitude*-1.36226+ 

                 estimatorDWLS*I((loading.magnitude)^2)*0.48895+ 

                 estimatorDWLS*sample*-0.11430+ 

                 estimatorDWLS*I((sample)^2)*0.04419+ 

                 estimatorDWLS*nfactorCFA*0.64662+ 

                 estimatorWLSMV*nitem*-0.00413+ 

                 estimatorWLSMV*res.op*0.01440+ 

                 estimatorWLSMV*I((res.op)^2)*-0.00115+ 

                 estimatorWLSMV*distrasym*-0.09484+ 

                 estimatorWLSMV*loading.magnitude*0.24493+ 

                 estimatorWLSMV*I((loading.magnitude)^2)*-0.45035+ 

                 estimatorWLSMV*sample*0.05021+ 

                 estimatorWLSMV*I((sample)^2)*-0.01938+ 
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                 estimatorWLSMV*nfactorCFA*0.15706+ 

                 nitem*res.op*-0.00776+ 

                 nitem*I((res.op)^2)*0.00081+ 

                 nitem*distrasym*0.00040+ 

                 nitem*loading.magnitude*-0.04388+ 

                 nitem*I((loading.magnitude)^2)*0.04484+ 

                 nitem*sample*0.00016+ 

                 nitem*I((sample)^2)*0.00157+ 

                 nitem*nfactorCFA*-0.01164+ 

                 res.op*distrasym*0.01356+ 

                 res.op*loading.magnitude*1.53987+ 

                 res.op*I((loading.magnitude)^2)*-1.33866+ 

                 res.op*sample*-0.20111+ 

                 res.op*I((sample)^2)*0.07428+ 

                 res.op*nfactorCFA*0.04887+ 

                 I((res.op)^2)*distrasym*-0.00122+ 

                 I((res.op)^2)*loading.magnitude*-0.14685+ 

                 I((res.op)^2)*I((loading.magnitude)^2)*0.12730+ 

                 I((res.op)^2)*sample*0.01424+ 

                 I((res.op)^2)*I((sample)^2)*-0.00524+ 

                 I((res.op)^2)*nfactorCFA*-0.00463+ 

                 distrasym*loading.magnitude*0.27558+ 

                 distrasym*I((loading.magnitude)^2)*-0.18396+ 

                 distrasym*sample*-0.00253+ 

                 distrasym*I((sample)^2)*-0.00346+ 

                 distrasym*nfactorCFA*-0.03425+ 

                 loading.magnitude*sample*0.03858+ 

                 loading.magnitude*I((sample)^2)*-0.08583+ 

                 loading.magnitude*nfactorCFA*0.21559+ 

                 I((loading.magnitude)^2)*sample*-0.14310+ 

                 I((loading.magnitude)^2)*I((sample)^2)*0.12608+ 

                 I((loading.magnitude)^2)*nfactorCFA*0.03351+ 

                 sample*nfactorCFA*0.08076+ 

                 I((sample)^2)*nfactorCFA*-0.03848+ 

                 nfactorCFA*correlated.factors*-0.05765) 

 

#cfi 

cfi <- (-0.53129+ 

            estimatorMLR*-0.21041+ 

            estimatorDWLS*0.19662+ 

            estimatorWLSMV*0.06079+ 

            nitem*0.04016+ 

            res.op*0.12387+ 

            I((res.op)^2)*-0.00936+ 

            distrasym*-0.04904+ 

            loading.magnitude*4.12967+ 

            I((loading.magnitude)^2)*-2.75074+ 

            sample*2.27580+ 

            I((sample)^2)*-0.82698+ 

            nfactorCFA*-0.32211+ 

            estimatorMLR*nitem*0.00247+ 

            estimatorMLR*res.op*0.00384+ 

            estimatorMLR*I((res.op)^2)*-0.00024+ 

            estimatorMLR*distrasym*-0.00135+ 

            estimatorMLR*loading.magnitude*0.45378+ 

            estimatorMLR*I((loading.magnitude)^2)*-0.31994+ 

            estimatorMLR*sample*0.09707+ 

            estimatorMLR*I((sample)^2)*-0.03794+ 

            estimatorMLR*nfactorCFA*-0.00868+ 

            estimatorDWLS*nitem*0.00158+ 

            estimatorDWLS*res.op*-0.00440+ 

            estimatorDWLS*I((res.op)^2)*0.00034+ 

            estimatorDWLS*distrasym*0.00452+ 

            estimatorDWLS*loading.magnitude*-0.30944+ 

            estimatorDWLS*I((loading.magnitude)^2)*0.18350+ 

            estimatorDWLS*sample*-0.11629+ 

            estimatorDWLS*I((sample)^2)*0.04250+ 

            estimatorDWLS*nfactorCFA*-0.01075+ 

            estimatorWLSMV*nitem*0.00097+ 

            estimatorWLSMV*res.op*-0.00270+ 

            estimatorWLSMV*I((res.op)^2)*0.00022+ 

            estimatorWLSMV*distrasym*0.00368+ 

            estimatorWLSMV*loading.magnitude*-0.06415+ 

            estimatorWLSMV*I((loading.magnitude)^2)*0.03405+ 

            estimatorWLSMV*sample*-0.04314+ 

            estimatorWLSMV*I((sample)^2)*0.01545+ 
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            estimatorWLSMV*nfactorCFA*-0.00697+ 

            nitem*res.op*0.00002+ 

            nitem*I((res.op)^2)*-0.00003+ 

            nitem*distrasym*0.00034+ 

            nitem*loading.magnitude*-0.10488+ 

            nitem*I((loading.magnitude)^2)*0.07017+ 

            nitem*sample*-0.01404+ 

            nitem*I((sample)^2)*0.00500+ 

            nitem*nfactorCFA*0.00234+ 

            res.op*distrasym*-0.00319+ 

            res.op*loading.magnitude*-0.33800+ 

            res.op*I((loading.magnitude)^2)*0.23297+ 

            res.op*sample*-0.00951+ 

            res.op*I((sample)^2)*0.00109+ 

            res.op*nfactorCFA*0.00555+ 

            I((res.op)^2)*distrasym*0.00031+ 

            I((res.op)^2)*loading.magnitude*0.02682+ 

            I((res.op)^2)*I((loading.magnitude)^2)*-0.01863+ 

            I((res.op)^2)*sample*0.00006+ 

            I((res.op)^2)*I((sample)^2)*0.00020+ 

            I((res.op)^2)*nfactorCFA*-0.00039+ 

            distrasym*loading.magnitude*0.11280+ 

            distrasym*I((loading.magnitude)^2)*-0.07174+ 

            distrasym*sample*0.02437+ 

            distrasym*I((sample)^2)*-0.00870+ 

            distrasym*nfactorCFA*-0.00208+ 

            loading.magnitude*sample*-5.87140+ 

            loading.magnitude*I((sample)^2)*2.14448+ 

            loading.magnitude*nfactorCFA*0.65988+ 

            I((loading.magnitude)^2)*sample*3.87122+ 

            I((loading.magnitude)^2)*I((sample)^2)*-1.41187+ 

            I((loading.magnitude)^2)*nfactorCFA*-0.43878+ 

            sample*nfactorCFA*0.09529+ 

            I((sample)^2)*nfactorCFA*-0.03378+ 

            nfactorCFA*correlated.factors*0.00487) 

 

#rmsea 

rmsea <- (0.13285+ 

              estimatorMLR*0.01536+ 

              estimatorDWLS*-0.03062+ 

              estimatorWLSMV*-0.00865+ 

              nitem*-0.00235+ 

              res.op*-0.00896+ 

              I((res.op)^2)*0.00098+ 

              distrasym*-0.00024+ 

              loading.magnitude*-0.08865+ 

              I((loading.magnitude)^2)*0.05766+ 

              sample*-0.12606+ 

              I((sample)^2)*0.04331+ 

              nfactorCFA*-0.00594+ 

              estimatorMLR*nitem*-0.00041+ 

              estimatorMLR*res.op*0.00005+ 

              estimatorMLR*I((res.op)^2)*-0.00001+ 

              estimatorMLR*distrasym*-0.00225+ 

              estimatorMLR*loading.magnitude*-0.03246+ 

              estimatorMLR*I((loading.magnitude)^2)*0.01556+ 

              estimatorMLR*sample*-0.00768+ 

              estimatorMLR*I((sample)^2)*0.00311+ 

              estimatorMLR*nfactorCFA*0.00304+ 

              estimatorDWLS*nitem*-0.00038+ 

              estimatorDWLS*res.op*-0.00033+ 

              estimatorDWLS*I((res.op)^2)*0.00003+ 

              estimatorDWLS*distrasym*-0.00244+ 

              estimatorDWLS*loading.magnitude*-0.05998+ 

              estimatorDWLS*I((loading.magnitude)^2)*0.02118+ 

              estimatorDWLS*sample*0.02896+ 

              estimatorDWLS*I((sample)^2)*-0.00982+ 

              estimatorDWLS*nfactorCFA*0.02281+ 

              estimatorWLSMV*nitem*-0.00029+ 

              estimatorWLSMV*res.op*0.00054+ 

              estimatorWLSMV*I((res.op)^2)*-0.00004+ 

              estimatorWLSMV*distrasym*-0.00256+ 

              estimatorWLSMV*loading.magnitude*0.00577+ 

              estimatorWLSMV*I((loading.magnitude)^2)*-0.01194+ 

              estimatorWLSMV*sample*0.00682+ 

              estimatorWLSMV*I((sample)^2)*-0.00250+ 



Manuscript I  137 

 

 
              estimatorWLSMV*nfactorCFA*0.00452+ 

              nitem*res.op*-0.00033+ 

              nitem*I((res.op)^2)*0.00004+ 

              nitem*distrasym*0.00002+ 

              nitem*loading.magnitude*-0.00698+ 

              nitem*I((loading.magnitude)^2)*0.00652+ 

              nitem*sample*0.00655+ 

              nitem*I((sample)^2)*-0.00224+ 

              nitem*nfactorCFA*-0.00030+ 

              res.op*distrasym*0.00043+ 

              res.op*loading.magnitude*0.04504+ 

              res.op*I((loading.magnitude)^2)*-0.03818+ 

              res.op*sample*-0.00561+ 

              res.op*I((sample)^2)*0.00208+ 

              res.op*nfactorCFA*0.00098+ 

              I((res.op)^2)*distrasym*-0.00005+ 

              I((res.op)^2)*loading.magnitude*-0.00451+ 

              I((res.op)^2)*I((loading.magnitude)^2)*0.00381+ 

              I((res.op)^2)*sample*0.00030+ 

              I((res.op)^2)*I((sample)^2)*-0.00011+ 

              I((res.op)^2)*nfactorCFA*-0.00010+ 

              distrasym*loading.magnitude*0.01327+ 

              distrasym*I((loading.magnitude)^2)*-0.00937+ 

              distrasym*sample*-0.00219+ 

              distrasym*I((sample)^2)*0.00072+ 

              distrasym*nfactorCFA*-0.00101+ 

              loading.magnitude*sample*0.01187+ 

              loading.magnitude*I((sample)^2)*-0.00411+ 

              loading.magnitude*nfactorCFA*0.02703+ 

              I((loading.magnitude)^2)*sample*0.00022+ 

              I((loading.magnitude)^2)*I((sample)^2)*0.00015+ 

              I((loading.magnitude)^2)*nfactorCFA*-0.01413+ 

              sample*nfactorCFA*-0.00988+ 

              I((sample)^2)*nfactorCFA*0.00320+ 

              nfactorCFA*correlated.factors*-0.00223) 

 

 

#srmr 

srmr <- (0.05279+ 

             estimatorDWLS*0.03774+ 

             nitem*0.00278+ 

             res.op*-0.00963+ 

             I((res.op)^2)*0.00084+ 

             distrasym*-0.00115+ 

             loading.magnitude*0.02653+ 

             I((loading.magnitude)^2)*-0.09506+ 

             sample*-0.05619+ 

             I((sample)^2)*0.01882+ 

             nfactorCFA*0.01323+ 

             estimatorDWLS*nitem*-0.00022+ 

             estimatorDWLS*res.op*-0.00758+ 

             estimatorDWLS*I((res.op)^2)*0.00058+ 

             estimatorDWLS*distrasym*0.00140+ 

             estimatorDWLS*loading.magnitude*-0.00280+ 

             estimatorDWLS*I((loading.magnitude)^2)*-0.00311+ 

             estimatorDWLS*sample*-0.02165+ 

             estimatorDWLS*I((sample)^2)*0.00756+ 

             estimatorDWLS*nfactorCFA*0.00330+ 

             nitem*res.op*-0.00019+ 

             nitem*I((res.op)^2)*0.00002+ 

             nitem*distrasym*0.00003+ 

             nitem*loading.magnitude*-0.00316+ 

             nitem*I((loading.magnitude)^2)*0.00190+ 

             nitem*sample*-0.00160+ 

             nitem*I((sample)^2)*0.00058+ 

             nitem*nfactorCFA*0.00003+ 

             res.op*distrasym*0.00061+ 

             res.op*loading.magnitude*0.01794+ 

             res.op*I((loading.magnitude)^2)*-0.01639+ 

             res.op*sample*0.01125+ 

             res.op*I((sample)^2)*-0.00388+ 

             res.op*nfactorCFA*0.00068+ 

             I((res.op)^2)*distrasym*-0.00006+ 

             I((res.op)^2)*loading.magnitude*-0.00166+ 

             I((res.op)^2)*I((loading.magnitude)^2)*0.00151+ 

             I((res.op)^2)*sample*-0.00097+ 
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             I((res.op)^2)*I((sample)^2)*0.00034+ 

             I((res.op)^2)*nfactorCFA*-0.00005+ 

             distrasym*loading.magnitude*0.00844+ 

             distrasym*I((loading.magnitude)^2)*-0.00713+ 

             distrasym*sample*-0.00393+ 

             distrasym*I((sample)^2)*0.00138+ 

             distrasym*nfactorCFA*-0.00028+ 

             loading.magnitude*sample*-0.04098+ 

             loading.magnitude*I((sample)^2)*0.01586+ 

             loading.magnitude*nfactorCFA*-0.01793+ 

             I((loading.magnitude)^2)*sample*0.06458+ 

             I((loading.magnitude)^2)*I((sample)^2)*-0.02336+ 

             I((loading.magnitude)^2)*nfactorCFA*0.04983+ 

             sample*nfactorCFA*-0.02326+ 

             I((sample)^2)*nfactorCFA*0.00784+ 

             nfactorCFA*correlated.factors*-0.00481) 

 

print(paste0("The following cutoffs were derived based on the regression formulae: Chi2/df = 

", round(chisq.df,3),  

             ", CFI = ", round(cfi, 3), ", RMSEA = ", round(rmsea,3), ", SRMR = ", 

round(srmr,3),". The Chi2 cutoff was ", round(chisq,3),  

             ", but please note that it heavily depends on the degrees of freedom and should 

not be used for models different from the ones in the paper.", collapse=""))
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Abstract 

To evaluate model fit in confirmatory factor analysis, researchers compare fit indices against fixed 

cutoff values (e.g., CFI ≥ .950 indicates a well-fitting model). Although using fixed cutoffs is 

widespread, methodologists have long cautioned against overgeneralizing such cutoffs, highlighting 

that one should only apply fixed cutoffs in settings highly similar to the simulation studies from which 

those cutoffs originate. Values of fit indices vary depending on the model, estimation, and data 

characteristics of the empirical setting. Conclusions regarding whether a model does or does not fit the 

data may ultimately be biased. As a solution, methodologists have proposed four principal approaches 

to obtain so-called tailored (or “dynamic”) cutoffs that are explicitly generated for the setting of interest. 

We herein review these approaches. Notably, none of these approaches have yet provided guidelines 

on which fit index (out of all fit indices of interest) best evaluates whether the model fits the data (or 

not) in the specific setting. Thus, we proposed the so-called simulation-cum-ROC approach that 

combines a Monte Carlo simulation with receiver operating characteristic (ROC) analysis. The 

simulation-cum-ROC approach generates tailored cutoffs while identifying the most reliable fit indices 

in the given setting. We provided computational R code and a shiny app for an easy implementation of 

the approach. Thus, prior knowledge of Monte Carlo simulations and ROC analysis is not needed to 

generate tailored cutoffs with the simulation-cum-ROC approach. 
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The Problem with Fixed Cutoffs for A Specific Set of Fit Indices 

To test the goodness of confirmatory factor analysis (CFA) models—and structural equation 

models (SEM) more generally—researchers typically rely on cutoffs for fit indices (Jackson et 

al., 2009; Kline, 2016). Apart from testing exact model fit via the chi-square test statistic (χ2; 

e.g., Bollen, 1989), some of the most commonly used global fit indices are the comparative fit 

index (CFI; Bentler, 1990), the root mean square error of approximation (RMSEA; Steiger, 

1990), and the standardized root mean residual (SRMR; Bentler, 1995). Most prominently, Hu 

and Bentler (1999) proposed, based on a simulation study, that CFI should be above or close 

to .950, RMSEA should be below or close to .060, and SRMR should be below or close to .080 

to indicate good model fit. By comparing empirical values of fit indices against these cutoffs, 

researchers evaluate whether their model does fit the data (i.e., is assumed to be correctly 

specified) or does not fit the data (i.e., is assumed to be misspecified). This simple binary 

(yes/no) decision-making on model fit using the same, fixed cutoffs across diverse empirical 

settings has guided research for decades (e.g., Jackson et al., 2009).  

However, evaluating model fit via fixed cutoffs for fit indices is more problematic than 

many researchers appear to realize. Fit indices are not only sensitive to misspecification, as 

intended, but undesirably susceptible to a range of model, estimation, and data characteristics. 

These characteristics include, for example, the magnitude of factor loadings, the type of 

estimator, the sample size, and interactions thereof, especially when the model is misspecified 

(e.g., Groskurth et al., 2022; Heene et al., 2011; Moshagen & Auerswald, 2018; Shi et al., 2019; 

Xia & Yang, 2018, 2019; for an overview, see Niemand & Mai, 2018). Likewise, the (non-) 

normality of the items’ multivariate response distribution influences fit indices, regardless of 

whether the model is correctly specified or misspecified (e.g., Fouladi, 2000; Yuan & Bentler, 

1999, 2000b; Yuan et al., 2004). Further complicating matters, different fit indices react 

differently to model misspecification, extraneous characteristics, and the interaction between 

them (Groskurth et al., 2022; Lai & Green, 2016; Moshagen & Auerswald, 2018).   

Thus, two key challenges exist in using fit indices for model evaluation. First, the 

performance of fit indices to detect model misspecification can vary greatly across empirical 

settings. The differential performance threatens the ability of fit indices to demarcate between 

correctly specified and misspecified models (e.g., Reußner, 2019). No fit index universally 

outperforms others (for an overview, see Groskurth et al., 2022; Niemand & Mai, 2018). 

Second, by implication, cutoffs for fit indices pertain only to a specific empirical setting (i.e., 
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a combination between model, estimation, and data characteristics). Cutoffs may no longer be 

valid in empirical settings that diverge markedly from the simulation studies generating the 

cutoffs (e.g., Hu & Bentler, 1999; McNeish & Wolf, 2021).  

Therefore, it is impossible to arrive at general rules on the performance of specific fit 

indices, let alone fixed cutoffs that are universally applicable across settings. It is likewise 

impossible to devise a simulation study that includes all possible settings. Although Hu and 

Bentler (1999) already warned against overgeneralizing their cutoffs, their cautionary note 

seems to have been largely unheeded in applied research (e.g., Jackson et al., 2009; McNeish 

& Wolf, 2021). In practice, researchers apply cutoffs for fit indices rather uncritically. Treating 

the once-proposed cutoffs and sets of fit indices as “golden rules” can result in wrong 

conclusions regarding model fit (Marsh et al., 2004; for examples, see McNeish & Wolf, 2021). 

Such erroneous results threaten the integrity of scientific findings.  

A solution that has long been proposed is to use tailored or “dynamic” cutoffs for fit 

indices customized to a specific setting of interest (Millsap, 2013; see also Kim & Millsap, 

2014, based on Bollen & Stine, 1992). Tailored cutoffs are not yet widely used despite recently 

regaining traction (e.g., McNeish & Wolf, 2021, 2022). Toward the ultimate aim of helping 

researchers transition to more valid model evaluation practices via tailored cutoffs, the first 

goal of this study was to review and summarize existing approaches to generating tailored 

cutoffs. Such a systematic overview is currently missing from the literature. This review 

revealed that all approaches to generating tailored cutoffs have unique strengths and, while 

being generally superior to fixed cutoffs, share some limitations. Chief among these limitations 

is that none of the extant approaches allows for a performance evaluation of fit indices. Thus, 

they provide no guidelines on which fit index (out of all fit indices of interest) can best 

discriminate between correctly specified and misspecified models in a given setting. 

 Therefore, the second goal of our study was to introduce and illustrate a novel approach 

that builds on—and extends—prior approaches (e.g., McNeish & Wolf, 2021, 2022; Millsap, 

2013; Pornprasertmanit, 2014). It combines a Monte Carlo simulation, an often-used procedure 

in psychometrics, with a receiver operating characteristic (ROC) analysis widely used in 

machine learning. Our so-called simulation-cum-ROC approach answers two questions: (1) 

Which fit indices, if any, perform well in a setting of interest? (2) Which cutoffs best 

discriminate between correctly specified and misspecified models in that setting? In this regard, 

our approach generates tailored cutoffs for well-performing fit indices. We illustrate this 

approach with empirical examples and provide a shiny app that facilitates its application. 
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The Logic Behind Generating Tailored Cutoffs for Fit Indices 

In recent years, methodologists have called for a move away from using the same fixed cutoffs 

across diverse empirical settings and proposed several approaches to generate cutoffs tailored 

to the setting of interest (e.g., McNeish & Wolf, 2021; Millsap, 2013; Pornprasertmanit, 2014). 

Before introducing any of these approaches to tailored cutoffs, we need to differentiate between 

two core situations: In an empirical testing setting (i.e., when fitting the analysis model of 

interest to empirical data), one never knows whether the analysis model is correctly specified 

or misspecified because the true population model is unknown. In a hypothetical scenario (e.g., 

when simulating data), one knows that the analysis model is either correctly specified or 

misspecified because one can define the population model.  

Before testing the analysis model with tailored cutoffs for fit indices, we need to encode 

different hypotheses about how the empirical data might have come about. More specifically, 

we follow the Neyman-Pearson approach to hypothesis testing here (Neyman & Pearson, 1928, 

1933; see Biau et al., 2010, Moshagen & Erdfelder, 2016; Perezgonzalez, 2015). The Neyman-

Pearson approach requires specifying a null hypothesis (H0) and an alternative hypothesis (H1). 

H0 states that the analysis model is identical to the population model. The analysis model is 

correctly specified. H1 states that the analysis model is not identical to the population model to 

a specific degree of intolerable misspecification. The analysis model is misspecified.  

All approaches to tailored cutoffs (e.g., McNeish & Wolf, 2021) operationalize the two 

hypotheses within hypothetical scenarios (i.e., with known population models). They provide 

different ways to operationalize how fit index values might be distributed when the analysis 

model is either correctly specified or misspecified. In particular, approaches to tailored cutoffs 

do not use any hypothetical scenario (like approaches to fixed cutoffs would do), but they 

explicitly operationalize the fit index distribution within the setting of interest (e.g., using a 

sample size equal to the empirical one and the analysis model of interest). A cutoff is then 

generated from these fit index distributions (e.g., corresponding to a certain percentile). A 

cutoff is selected in a way that it classifies a large share of correctly specified models as 

correctly specified and a large share of misspecified models as misspecified. It should classify 

only a small share of correctly specified models as misspecified (i.e., Type I error rate) and 

only a small share of misspecified models as correctly specified (i.e., Type II error rate). 

After deriving a tailored cutoff by utilizing fit index distributions under hypothetical 

scenarios through any of the various approaches, one tests with this cutoff which hypothesis—
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H0 or H1—is more plausible given the empirical data generated from an unknown population 

model (Neyman & Pearson, 1928).1 If the empirical fit index value passes the cutoff, one 

accepts the analysis model. Accepting the analysis model means finding empirical evidence 

that favors the H0 instead of the H1. However, as the population model that has generated the 

empirical data remains unknown, one can never exclude that there is a better analysis model 

among the myriad possible models that one has not considered (Groeben & Westmeyer, 1981). 

If the empirical fit index value fails the cutoff, one rejects the analysis model. Rejecting the 

analysis model means finding empirical evidence that favors the H1 instead of the H0. Empirical 

evidence suggests a model superior to the analysis model—however, that analysis model 

remains unknown, like the population model that has generated the empirical data (Groeben & 

Westmeyer, 1981).  

  

 
1 Another way to test whether empirical evidence favors the H0 (i.e., the model-implied variance-

covariance matrix equals the one in the population) is to look at confidence intervals for fit indices. If 

those confidence intervals include (or are very close to) 0 indicating perfect fit (for RMSEA and SRMR, 

alternatively 1 for CFI), empirical evidence favors the H0 (e.g., Schermelleh-Engel et al., 2003; or at 

least one is not able to find evidence against it, Yuan et al., 2016). Confidence intervals have been 

suggested for several widely used fit indices such as CFI (Cheng & Wu, 2017; Lai, 2019; Yuan et al., 

2016; Zhang & Savalei, 2016), RMSEA (Brosseau-Liard et al., 2012; Browne & Cudeck, 1992; Cheng 

& Wu, 2017; Zhang & Savalei, 2016), and SRMR (Cheng & Wu, 2017; Maydeu-Olivares, 2017; 

Maydeu-Olivares et al., 2018). 
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A Review of Existing Approaches to Generating Tailored Cutoffs 

Currently, there are four principal approaches allowing to generate tailored cutoffs in 

hypothetical scenarios (Table 1)1 that fall on a continuum from parametric to non-parametric 

approaches:  

(1) The χ2 distribution-based approach generates cutoffs by relying on statistical 

assumptions of the χ2 distribution without and with misspecification (Moshagen & 

Erdfelder, 2016). 

(2) The regression-based approach generates cutoffs based on meta-regression results from 

a prior simulation study (Nye & Drasgow, 2011; see also Groskurth et al., 2022). 

(3) The simulation-based approach generates cutoffs based on fit index distributions from 

an analysis model fit to multiple samples from a known population model (McNeish & 

Wolf, 2021, 2022; Millsap, 2007, 2013; Mai et al., 2021; Niemand & Mai, 2018; 

Pornprasertmanit, 2014).  

(4) The bootstrap approach generates cutoffs based on fit index distributions from an 

analysis model fit to multiple samples based on transformed empirical data (i.e., as if 

the model has generated the data, Bollen & Stine, 1992; Kim & Millsap, 2014).  

 
1 Some would also include the table-based approach to generating tailored cutoffs (e.g., Groskurth et 

al., 2022). Reminiscent of looking up critical values for z-scores, one reads out scenario-specific cutoffs 

from large tables originating from simulation studies. However, as this approach is still very inflexible 

(as it only allows to read out cutoffs for those scenarios covered in the initial simulation study), we 

dismiss the approach in our review.  



 

Table 1: Existing Approaches to Generate Tailored Cutoffs 
Principal 

approach 

Author(s) Type 

I 

error? 

Type 

II 

error? 

Performance 

of  

fit indices? 

Tailored to … Helpful resources  

χ2 Distribution: 

Generating 

cutoffs based on 

distributional 

assumptions  

 

Moshagen & 

Erdfelder (2016) 

✓ ✓  sample size, degrees of freedom, and number of 

items for fit indices whose distributions can be 

derived from χ2  

Shiny app: https://sempower.shinyapps.io/sempower,  

https://sjak.shinyapps.io/power4SEM/ (Jak et al., 2021) 

R package: semPower 

Tutorial: Jobst et al. (2021) 

Regression: 

Generating 

cutoffs based on  

meta-regressions  

Nye & Drasgow 

(2011) 

✓   sample size and response distribution for RMSEA 

and SRMR 

Regression formulae: included in the paper 

 Groskurth et al. 

(2022) 

✓   estimator, number of items, number of response 

options, response distribution, loading magnitude, 

sample size, and factor correlation for χ2, 

χ2/degrees of freedom, CFI, RMSEA, SRMR 

 

Regression formulae: included in the paper 

R code: included in the paper 

Simulation: 

Generating 

cutoffs based on 

simulated fit 

index 

distributions  

Niemand & Mai 

(2018), Mai et al. 

(2021) 

✓   number of items, number of factors, loading 

magnitude, degrees of freedom, sample size, and 

response distribution for multiple fit indices 

 

R package: FCO 

Millsap (2007, 2013) ✓   all model, estimation, and data characteristics for 

available fit indices 

 

R package: simsem (Pornprasertmanit et al., 2021),  

ezCutoffs (Schmalbach et al., 2019) 

McNeish & Wolf 

(2021, 2022) 

✓ ✓  all model, estimation, and data characteristics for 

available fit indices 

Shiny app: https://dynamicfit.app/__landing__/  

R package: dynamic 

Mplus code: included in the paper 

Pornprasertmanit 

(2014) 

✓ ✓  all model, estimation, and data characteristics for 

available fit indices 
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https://sjak.shinyapps.io/power4SEM/
https://dynamicfit.app/__landing__/


 

Principal 

approach 

Author(s) Type 

I 

error? 

Type 

II 

error? 

Performance 

of  

fit indices? 

Tailored to … Helpful resources  

Bootstrap: 

Generating 

cutoffs based on 

bootstrapped fit 

index 

distributions  

 

Bollen & Stine 

(1992), Kim & 

Millsap (2014) 

✓   all model, estimation, and data characteristics for 

available fit indices  

 

R package: simsem (Pornprasertmanit et al., 2021), 

lavaan (Rosseel, 2012) 

R code: included in the paper 

 

Yuan & Hayashi 

(2003), Yuan et al. 

(2004, 2007) 

✓ ✓  all model, estimation, and data characteristics for 

available fit indices 

 

R package: lavaan (Rosseel, 2012) 

 

Simulation + 

ROC analysis 

Present study  

(simulation-cum-

ROC) 

✓ ✓ ✓ all model, estimation, and data characteristics for 

available fit indices 

 

Shiny app: https://kg11.shinyapps.io/tailoredcutoffs/ 

R code: included in the paper 

Note. Mai et al. (2021) provided general recommendations on the performance of fit indices depending on the purpose of the research question (testing an 

established versus a novel model), the focus of estimation (testing a measurement model or structural model), and sample size (below or above N = 200) derived 

from an extensive simulation study. As those recommendations were based on a prior simulation study and cannot be specifically derived within settings of 

interest, we did not highlight them in this table. 

1
4
6
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χ2 Distribution-Based Approach  

One option to generate tailored cutoffs is via the parametric χ2 distribution-based approach as 

outlined by Moshagen and Erdfelder (2016; see also Jak et al., 2021; Jobst et al., 2021). Both 

for the χ2 test statistic itself and for fit indices that incorporate the χ2 test statistic (e.g., 

RMSEA), one can infer the distributions based on correctly specified and misspecified models 

from the χ2 distribution. Those distributions can be harnessed to generate cutoffs. 

More specifically, the χ2 test statistic follows a central χ2 distribution if the analysis 

model is correctly specified (i.e., the model-implied variance-covariance matrix is exactly 

identical to the one in the population, H0). Contrariwise, the χ2 test statistic follows a non-

central χ2 distribution if the analysis model is misspecified (i.e., the model-implied matrix is 

not exactly identical to the one in the population, H1). The expected value of the central χ2 

distribution equals the model’s degrees of freedom. The expected value of the non-central χ2 

distribution equals the degrees of freedom plus a so-called non-centrality parameter. The non-

centrality parameter depends on the misspecification and sample size (for a detailed 

description, see Bollen, 1989; Chun & Shapiro, 2009; Moshagen & Erdfelder, 2016). If one 

defines a to-be-detected effect size difference (based on the non-centrality parameter) between 

the central and non-central χ2 distribution, one can obtain a cutoff for the χ2 test statistic at a 

specific ratio of Type I and Type II error rates. Typically, the Type I and Type II error rates are 

balanced (i.e., equally small).  

The χ2 distribution-based approach has the advantage of computational speed. 

Statistical tools such as R rapidly solve the equations needed to generate cutoffs. However, a 

disadvantage of this procedure is the limited extent of tailoring. The approach can only generate 

cutoffs for fit indices that are transformations of the χ2 test statistic (e.g., RMSEA). It is not 

applicable to fit indices that are based, for example, on standardized residuals (e.g., SRMR) 

and, thus, do not follow a known distribution. Moreover, one calculates tailored cutoffs from 

Moshagen and Erdfelder’s (2016) χ2 distribution-based approach under specific assumptions 

such that items follow a multivariate normal distribution, in which case the distribution of the 

χ2 test statistic is known. Non-normal multivariate distributions of the items (e.g., Fouladi, 

2000; Yuan & Bentler, 1999, 2000b; Yuan et al., 2004) or large models with many items 

(Moshagen, 2012) violate the distributional assumptions of the χ2 test statistic. Then, different 

test statistics (e.g., Yuan & Bentler, 2007) are necessary to generate valid cutoffs that are not 

always straightforward to handle. In sum, the χ2 distribution-based approach limits the extent 
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to which users can tailor cutoffs to their specific setting of interest and the range of fit indices 

for which users can generate the cutoffs (see Table 1).  

Regression-Based Approach  

The basic idea of the parametric regression-based approach is to predict tailored cutoffs through 

a regression formula. The formula originates from a single, though ideally extensive, 

simulation study. The formula comprises predictors with associated regression coefficients that 

contain information about how various model, estimation, and data characteristics (e.g., 

number of items, type of estimator, and distribution of responses) influence cutoffs for a fit 

index. Users plug the model, estimation, and data characteristics of the setting of interest into 

the formula to obtain a cutoff. 

For example, Nye and Drasgow (2011) simulated data based on multiple predefined 

characteristics. They evaluated Type I and Type II error rates for a range of possible cutoffs 

(derived by informed guesses). To arrive at a tailored cutoff, they regressed the Type I error 

rate on influential characteristics and cutoff values. Rearranging the formula leads to an 

appropriate cutoff value for the user-defined characteristics and a predefined Type I error rate. 

By following the same approach, Groskurth et al. (2022) also provided formulae that allow for 

the prediction of tailored cutoffs, though for more fit indices and across a wider range of 

characteristics than Nye and Drasgow’s (2011) formulae. 

 Like the χ2 distribution-based approach, the regression-based approach has the 

advantage of speed. Users merely have to plug their characteristics into the formula, commonly 

solved by a statistical tool such as R. However, each formula is only as inclusive as the 

simulation study from which it was derived. For instance, Nye and Drasgow’s (2011) formulae 

covered only models estimated with diagonally weighted least squares, while Groskurth et al.’s 

(2022) formulae covered only CFA models. The formula may not be valid for settings beyond 

those covered in the original simulation study. Further, one can only obtain cutoffs for those 

fit indices that were considered in the simulation study from which the formulae hail. Groskurth 

et al. (2022) developed formulae for χ2, χ2/degrees of freedom, CFI, RMSEA, and SRMR; Nye 

and Drasgow (2011) developed formulae for RMSEA and SRMR. Akin to the χ2 distribution-

based approach, the regression-based approach limits the extent to which users can tailor 

cutoffs to their specific setting of interest and the range of fit indices for which users can 

generate the cutoffs (see Table 1).  
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Simulation-Based Approach  

As a third parametric approach, one may use a Monte Carlo simulation to generate tailored 

cutoffs (McNeish & Wolf, 2021, 2022; Millsap, 2007, 2013; Mai et al., 2021; Niemand & Mai, 

2018; Pornprasertmanit, 2014; for nested models, see Pornprasertmanit et al., 2013). Before 

initializing the simulation, one defines a population model. Then, one repeatedly simulates data 

from that population model, fits the analysis model to each data set, and records the fit index 

values. One can then set cutoffs based on a certain percentile of the fit index distribution.  

In more detail, the general procedure is to specify a population model from which to 

draw multiple samples. Drawing multiple samples from a known population model 

characterizes a so-called Monte Carlo simulation (for an overview and detailed description, see 

Boomsma, 2013). After conducting the Monte Carlo simulation, the next step is to fit the 

analysis model to each simulated data set (i.e., drawn sample). The analysis model is identical 

(or nearly identical) to the population model; it captures all relevant features of the population 

model and is, thus, correctly specified (H0). After fitting the analysis model to the data, one 

records the fit index values of each fitted model. A cutoff can then be set based on a specific 

percentile, commonly the 95th, of the resulting fit index distribution (or, equivalently, the 5th 

percentile for fit indices where higher values indicate better fit). At this percentile, the cutoff 

categorizes 95% of correctly specified models as correctly specified and 5% of correctly 

specified models as misspecified (i.e., the Type I error rate).   

One may repeat the procedure with the same analysis model but a population model 

with more (or different) parameters than the analysis model. For instance, one fixes non-zero 

parameters in the population model to zero in the analysis model (Hu & Bentler, 1998). The 

analysis model is, thus, underspecified (i.e., misspecified) relative to the population model 

(H1). Misspecification implies that the analysis model fails to capture relevant features of the 

population model. Including a misspecified scenario allows for evaluating how many 

misspecified models a cutoff categorizes as correctly specified (i.e., the Type II error rate). 

The simulation-based approach is computationally intensive but also very flexible. It 

allows tailoring cutoffs for all fit indices available in a given statistical program to the specific 

model, estimation, and data characteristics. Combined with the computers’ continuously 

increasing statistical power, this is one of the reasons why this approach has recently gained 

traction (McNeish & Wolf, 2021; 2022). 
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Bootstrap Approach  

Tailored cutoffs can be generated not only via a Monte Carlo simulation, which is essentially 

a parametric bootstrap approach (simulating, i.e., sampling, data based on model parameters), 

but also via a non-parametric bootstrap approach (i.e., sampling data based on transformed 

empirical data). Thus, the fourth approach uses non-parametric bootstrapping to generate 

tailored cutoffs in hypothetical scenarios (Bollen & Stine, 1992; Kim & Millsap, 2014; Yuan 

& Hayashi, 2003; Yuan et al., 2004, 2007). The algorithm transforms the empirical data such 

that the analysis model fits it. By repeatedly sampling the transformed data and fitting the 

analysis model, one can record fit index values, obtain a distribution for each fit index, and 

generate cutoffs.  

In the following, we explain the bootstrap approach according to Bollen and Stine 

(1992) and Kim and Millsap (2014). Their bootstrap approach transforms each observation in 

the empirical data using the data-based and model-implied covariance and mean structure (see 

also Yung & Bentler, 1996). After the transformation, one obtains data that behaves as if the 

analysis model has generated it. The algorithm repeatedly samples the transformed data (with 

replacement), fits the analysis model to each resampled data set, and records the values of fit 

indices for each fitted model. The bootstrap method outlined above allows evaluating Type I 

error rates (i.e., incorrectly rejecting a correctly specified model) for cutoffs that correspond to 

a certain percentile of the resulting fit index distribution—like in the simulation-based 

approach. Yuan and Hayashi (2003), as well as Yuan et al. (2004; 2007), developed an 

extended bootstrap approach that also allows investigating power (i.e., correctly rejecting a 

misspecified model—the complement of the Type II error rate). 

The bootstrap approach is highly flexible, similar to the simulation-based approach. 

Through repeated sampling, users can generate cutoffs for all available fit indices tailored to 

all choice characteristics. Akin to the simulation-based approach, this comes at the expense of 

greater computational intensity than required for the χ2 distribution- and regression-based 

approaches. 
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Limitations of the Existing Approaches 

All four approaches to tailored cutoffs have their merits and constitute a clear advancement 

over fixed cutoffs. Some approaches have an advantage in terms of computational speed in 

arriving at tailored cutoffs (i.e., the χ2 distribution-based and regression-based, both 

parametric). Other approaches stand out as they are very general and generate cutoffs for a 

wide range of fit indices across a wide range of characteristics (i.e., the parametric simulation-

based and non-parametric bootstrap).  

However, these approaches also have specific limitations (see Table 1). One limitation 

they share is that they do not assess which fit index (among several fit indices a researcher may 

consider) is best able to discriminate between correctly specified and misspecified models in 

the setting of interest. The existing approaches do not guide researchers on which fit indices 

they should rely on for judging model fit. Such guidance on how much weight to assign to each 

fit index is especially needed when fit index decisions on model fit disagree, which often occurs 

in practice (e.g., Lai & Green, 2016; Moshagen & Auerswald, 2018).  

We, therefore, introduce a novel approach that builds on previous approaches and 

extends them by (1) identifying well-performing fit indices in a specific setting of interest while 

(2) generating tailored cutoffs that control both Type I and Type II error rates. This new 

approach is both general and adaptable enough to support valid judgments of model fit across 

the various settings that researchers may encounter. 
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A Novel Approach to Tailored Cutoffs: The Simulation-cum-

ROC Approach 

Our novel approach augments the simulation-based approach (e.g., McNeish & Wolf, 2021; 

Millsap, 2013; Pornprasertmanit, 2014) that is currently most well-known among applied 

researchers and has a long tradition for generating cutoffs (dating back to the initial Hu & 

Bentler, 1999, article). The unique contribution of our approach is to combine the simulation-

based approach with a receiver operating characteristic (ROC) analysis. The so-called 

simulation-cum-ROC approach enables us to (1) rank the performance of any fit index in the 

setting of interest, including—but not limited to—the canonical fit indices on which we focus 

in this study (i.e., CFI, RMSEA, SRMR, but also ꭓ2). Further, it enables us to (2) generate 

tailored cutoffs at balanced Type I and Type II error rates for well-performing fit indices. Our 

approach thus allows for a more informative and rigorous evaluation of model fit. 

In a nutshell, our approach works as follows. First, we use a Monte Carlo simulation to 

generate data from two population models that encode different assumptions about what 

models may have generated the data. One population model is structurally identical to the 

analysis model (such that the analysis model is correctly specified relative to the population 

model; H0). The other population model diverges from that analysis model (such that the 

analysis model is misspecified relative to the population model; H1). We fit the analysis model 

to data simulated from the two population models and record the fit index values. Second, we 

analyze the fit index distributions with ROC analysis. ROC analysis equips researchers with a 

tool to rank fit indices in terms of their ability to discriminate between correctly specified and 

misspecified models. Third, we generate cutoffs for well-performing fit indices. These cutoffs 

balance Type I and Type II error rates. We visualized the three steps to arrive at tailored cutoffs 

for well-performing fit indices in Figure 1. 



 

Figure 1: The Simulation-cum-ROC Approach 
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Fundamentals of ROC Analysis 

Before outlining the details of our approach, we briefly introduce ROC analysis. We base the 

introduction of ROC analysis on Flach (2016) and Padgett and Morgan (2021). Flach (2016) 

provided a general description of ROC analysis, and Padgett and Morgan (2021) connected 

ROC analysis to model fit evaluation.  

ROC analysis originated within the context of signal detection theory in communication 

technology (for a detailed overview of the history of ROC analysis and signal detection theory, 

see Wixted, 2020). It provides a tool to evaluate the ability of a binary classifier to make correct 

diagnostic decisions in diverse scenarios, such as hypothesis testing. ROC analysis finds the 

optimal value for a classifier in making a diagnostic decision, such as classifying an analysis 

model as correctly specified or misspecified. It has supported decision-making in medicine for 

many decades and gained wide popularity in machine learning (for an overview, see Majnik & 

Bosnić, 2013).  

Fit indices are, in essence, continuous classifiers that generally suggest better fit for 

correctly specified and worse fit for misspecified models. Cutoffs for these fit indices act as 

decision thresholds. These cutoffs should be chosen so that a large share of analysis models is 

correctly classified as correctly specified or misspecified. 

Cutoffs for fit indices have a high sensitivity (i.e., true positive rate) if they classify a 

high share of misspecified models as misspecified (i.e., true positive) and only a small share of 

misspecified models as correctly specified (i.e., false negative, Type II error). In turn, cutoffs 

for fit indices have a high specificity (i.e., true negative rate) if they classify a high share of 

correctly specified models as correctly specified (i.e., true negative) and only a small share of 

correctly specified models as misspecified (i.e., false positive, Type I error). The formulae to 

calculate sensitivity and specificity read as 

Sensitivity (or True Positive Rate) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
; (1) 

Specificity (or True Negative Rate) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
. (2) 

The goal is to find a cutoff for each fit index that provides an optimal balance between 

sensitivity and specificity (i.e., which maximizes the sum of sensitivity and specificity – 1, the 

so-called Youden index). Such an optimal cutoff has a high accuracy, which means that the 

share of true positives and true negatives is large among all classified cases:  

Accuracy = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
    (3) 
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A so-called ROC curve visualizes the sensitivity and specificity at different cutoffs. 

These cutoffs may be generated arbitrarily (within the range of fit index values, e.g., Flach, 

2016), or the actual fit index values are taken as cutoffs (as we do here, following Thiele & 

Hirschfeld, 2021). The graph visualizing the ROC curve has the sensitivity (or true positive 

rate) on its Y-axis and 1 − specificity (or false positive rate) on its X-axis. The area under the 

curve (AUC) quantifies the information of the ROC curve. We visualized the relationship 

between the distributions of a fit index, true and false positive rates of cutoffs, the ROC curve, 

and AUC values in Figure 2.  

The AUC ranges between 0 and 1. It indicates the discrimination ability of a fit index 

at different cutoffs. An AUC of 1 is most favorable; it implies that all cutoffs have a true 

positive rate of 1 or a false negative rate of 0. Thus, 100% of the time, the fit index correctly 

discriminates between correctly specified and misspecified models (e.g., D’Agostino et al., 

2013). The optimal cutoff, with the optimal balance between sensitivity and specificity, has a 

true positive rate of 1 and a false negative rate of 0. The ROC curve peaks in the upper left of 

the graph. Fit index distributions from correctly specified and misspecified models do not 

overlap and behave as expected (see Figure 2).  

An AUC of 0.5 can imply different things, but most importantly, it can imply that all 

cutoffs have equal true and false positive rates. The discrimination ability of the fit index at 

different cutoffs is no better than a guess (e.g., D’Agostino et al., 2013). No optimal cutoff can 

be identified. In this case, the ROC curve is an ascending diagonal. Fit index distributions from 

correctly specified and misspecified models completely overlap; no distinction is possible (see 

Figure 2).  

An AUC of 0 implies that all cutoffs have a true positive rate of 0 or a false positive 

rate of 1. The fit index has no discrimination ability at all at different cutoffs. An optimal cutoff 

cannot be identified. The ROC curve peaks in the lower right of the graph. Fit index 

distributions do not overlap; however, fit index values from correctly specified models behave 

unexpectedly and indicate worse fit than those from misspecified models (see Figure 2).  



 

Figure 2: Relation of Fit Index Distributions, Cutoffs, and the ROC Curve for Different AUC Values 

 

Note. The figure shows fit index distributions and a sample of fit index values from those distributions. Higher fit index values indicate worse fit here. We 

further estimated true and false positive rates of cutoffs based on the sample of fit index values. The ROC curve visualizes the true and false positive rates of 

cutoffs. The interplay of fit index distributions, true and false positive rates, and the ROC curve differ across AUC values. tpr = true positive rate; fpr = false 

positive rate. 
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Overall, the outlined relations indicate that the AUC quantifies what the ROC curve 

visualizes, namely, the performance of fit indices in terms of true and false positive rates at 

different cutoffs. The optimal cutoff is the one that has the highest sum of sensitivity (i.e., true 

positive rate) and specificity (i.e., 1 − false positive rate) across all evaluated cutoffs. Thus, the 

optimal cutoff shows up as a peak in the upper left of the graph (i.e., highest true positive rate 

and lowest false positive rate).  

Combining Monte Carlo Simulation with ROC Analysis to Generate 

Tailored Cutoffs for Fit Indices 

Having reviewed the basics of ROC analysis, we now detail our novel approach to evaluating 

the performance of fit indices and generating tailored cutoffs. We walk the reader through each 

step of the procedure shown in Figure 1. 

Input: Fit Analysis Model to Empirical Data 

Suppose we want to test whether a six-item scale measures a single underlying factor as its 

theory proposes. Survey data, including 500 participants’ responses to the six items of the scale, 

form the basis for our empirical test of the model. We fit our to-be-tested analysis model of 

interest—a one-factor CFA model—to these data using robust maximum likelihood (MLR). 

We aim to test two hypotheses. The H0 states that a population model identical to the analysis 

model  (i.e., a one-factor model) has generated the data; if empirical evidence favors the H0, we 

want to accept this analysis model. The H1 states that an alternative population model different 

from the analysis model has generated the data (i.e., the population model has more parameters 

than the analysis model); if empirical evidence favors the H1, we want to reject the analysis 

model. Thus, we define two diverging states of the world that describe how the data may 

hypothetically have come about (i.e., H0 and H1), and we can find evidence in favor of one or 

the other. To test the two hypotheses, we want to compare the empirical values of fit indices, 

obtained when fitting the analysis model to empirical data, against cutoffs tailored to the 

specific characteristics of our empirical setting. We obtain these cutoffs through the following 

three steps. 

Step 1: Simulate Data and Fit Analysis Model to Simulated Data 

In the first step, we conduct a Monte Carlo simulation closely designed to mimic the real 

empirical setting in terms of the model of interest (e.g., number of items, the magnitude of 
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factor loadings), the estimator (e.g., MLR), and the data characteristics (e.g., N = 500, 

multivariate distribution). 

In keeping with the Neyman-Pearson approach, we operationalize the two competing 

hypotheses, H0 versus H1, about population models that may have generated the data. We 

simulate distributions of fit indices for our analysis model (i.e., the model of interest that we 

seek to test) through a Monte Carlo simulation under these two hypotheses. We encourage 

researchers to provide a strong rationale for their hypotheses and models. Providing a strong 

rationale is in line with recent calls for more rigorous theory testing in psychology, formalized 

theories, and preregistration (e.g., Borsboom et al., 2021; Fried, 2020; Guest & Martin, 2021). 

We then simulate data from an H0 population model structurally identical to the analysis 

model (i.e., a one-factor CFA model). We also simulate data from an H1 population model that 

diverges substantially from the analysis model. For example, an H1 population model could 

have two factors, whereas the H0 population model (and the analysis model of interest) have 

one factor. No prior assumptions need to be made about the strength of misspecification, that 

is, how strongly the analysis model diverges from the H1 population model. Notably, neither 

model needs to be nested (i.e., analysis and population models alike do not need to represent a 

subspace of each other), meaning that our approach is very flexible regarding model definition.1 

After repeatedly simulating data from the H0 and H1 population models (e.g., 500 times 

each), we fit the one-factor analysis model to all simulated data and record the values of the fit 

indices. We obtain distributions of fit index values for correctly specified models (under the 

H0) and misspecified models (under the H1).  

Step 2: Evaluate the Performance of Fit Indices  

After simulating data and obtaining fit index distributions, we evaluate the performance of fit 

indices on the simulated data via the ROC curve and the AUC in particular. Both reflect the 

balance of a fit index between the true positive rate, or sensitivity, and the false positive rate, 

or 1 – specificity, at certain cutoffs. Fit indices with an AUC closer to 1 perform better; they 

have higher sensitivity and specificity across cutoffs. An AUC closer to 1 demonstrates a good 

ability of a fit index to discriminate between correctly specified and misspecified models.  

 
1 The simulation-cum-ROC requires two different population models representing hypothetical 

scenarios on how the data might have come about, encoded in H0 and H1 (following the Neyman-

Pearson approach). But these population models are not being compared in the same way that 

researchers would compare competing analysis models in their empirical data; instead, these 

populations models are just a “crutch” needed for generating cutoffs. These cutoffs are, in turn, used to 

make a statistical decision between the H0 and H1 for the analysis model tested in empirical data. 
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In the following, we consider only those fit indices that reach an AUC of at least .80 or 

higher, which aligns with earlier work (Padgett & Morgan, 2021). An AUC of .80 implies that 

80% of the time, the fit index correctly discriminates between correctly specified and 

misspecified models at the different potential cutoffs (e.g., D’Agostino et al., 2013). Notably, 

this AUC threshold of .80 is not a universally valid one. We use it for illustrative purposes 

here. Depending on the specific application, a researcher may choose higher (stricter) or lower 

(more lenient) AUC values—especially as Type I and Type II error rates of the corresponding 

cutoffs can exceed conventional levels of 5% at such an AUC threshold. We return to this point 

in the Discussion. The key point to understand here is that ROC analysis, particularly the AUC, 

offers a highly informative tool to evaluate the performance of fit indices in the given setting. 

Hence, it provides guidance regarding which fit index (or indices) are best to judge the model’s 

fit. 

Although we recommend focusing on high-performing fit indices with an AUC above 

a certain threshold (e.g., .80), it can be informative to inspect the distributions of low-

performing fit indices as well and, if desired, also consider low-performing fit indices in 

judging the model fit. This is because different fit indices quantify different model, estimation, 

and data aspects (for an overview, see Schermelleh-Engel et al., 2003). For example, the ꭓ2 test 

statistic (e.g., Bollen, 1989) quantifies the discrepancy between model-implied and sample-

based variance-covariance matrix (with RMSEA being a transformation of it; Steiger, 1990). 

CFI indicates how well the model reproduces the sample-based variance-covariance matrix 

compared to a model where all items are uncorrelated (Bentler, 1990). SRMR quantifies the 

average residuals between model-implied and sample-based covariance matrices (Bentler, 

1995). The distributions’ shape and overlap for each fit index help diagnose models further—

as fit indices characterize models differently (see Browne et al., 2002; Lai & Green, 2016; 

Moshagen & Auerswald, 2018). 

Thus, even strongly overlapping distributions (i.e., AUC around .50) may provide 

important insights. Such strongly overlapping fit index distributions imply that a fit index 

cannot distinguish between correctly specified and misspecified models. The misspecification 

of the analysis model relative to the H1 population model as quantified through the fit index 

might not be strong enough. Alternatively, the analysis model can flexibly account for data 

from both population models. Flexible (i.e., more complex) models are weaker than inflexible 

(i.e., less complex) ones, as flexible models fit a wide range of data (e.g., MacCallum, 2003). 
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Step 3: Generate Tailored Cutoffs 

After identifying well-performing fit indices (e.g., AUC ≥ .80) and screening out the others, 

we can identify optimal cutoffs. For each fit index, ROC analysis selects an optimal cutoff at 

the highest sum of sensitivity and specificity and, thus, the highest accuracy. At those cutoffs, 

the fit indices can best classify correctly specified models as correctly specified and 

misspecified ones as misspecified. 

We provide cutoffs along with their accuracy, Type I error rate (i.e., 1 – specificity), 

and Type II error rate (i.e., 1 – sensitivity). Generally, the cutoff with the highest accuracy 

across fit indices belongs to the best-performing fit index (i.e., the one with the highest AUC).1 

In addition, we visualize the fit index distributions from correctly specified and misspecified 

models. An essential strength of the simulation-cum-ROC approach is that it returns the error 

probabilities associated with applying a set of cutoffs. It draws researchers’ attention to how 

well cutoffs can discriminate between correctly specified and misspecified models in the 

context of interest (quantified through Type I and Type II error rates).  

Output: Evaluate the Fit of the Analysis Model to Empirical Data with Tailored Cutoffs  

Having generated tailored cutoffs for well-performing fit indices, we can evaluate how well 

our analysis model (i.e., a one-factor model in our example) fits the empirical data by 

comparing the empirical values of the fit indices against the tailored cutoffs. In doing so, three 

scenarios may occur: (a) all fit indices point to good model fit, (b) all fit indices point to bad 

model fit, or (c) some fit indices point to good and some to bad model fit. 

If all empirical values of fit indices pass the proposed tailored cutoffs, then the analysis 

model has a good fit. The evidence unequivocally favors the H0 instead of the H1, and we can 

accept the analysis model. If all empirical values of fit indices fail the proposed tailored cutoffs, 

the analysis model has poor fit. The evidence favors the H1 instead of the H0, and we need to 

reject the analysis model.  

There could be less straightforward empirical settings where the fit indices disagree 

(i.e., some pass, but others fail their respective cutoffs). In such cases, we can leverage the 

information from the ROC curve about the performance of fit indices. If there is a best-

performing fit index and its empirical value suggests that the analysis model fits (i.e., passes 

 
1 Exceptions may occur where the fit index with the highest AUC does not have the cutoff with the 

highest accuracy. For instance, the fit index with the highest AUC does not need to have the cutoff with 

the highest accuracy if AUC values of different fit indices are only marginally different from each other. 
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its tailored cutoff), the evidence favors the H0 instead of the H1. We accept the analysis model. 

If the best-performing fit index suggests that the analysis model does not fit, the evidence favors 

the H1 instead of the H0. We reject the analysis model. Thus, in those less-straightforward 

scenarios, we prioritize the best-performing fit index and its corresponding cutoff for our 

decision on model fit.  

If we reject the analysis model, we might want to modify it to find a better-fitting 

alternative. Modification indices help identify local misfit, though theory should also guide 

model modification (Fried, 2020). If theoretical and empirical indications lead to alterations of 

the analysis model, we need to test the modified model again. We need to repeat the above 

procedure (Steps 1 to 3) once we state a new H0 and H1. We always state a new H0 and H1 

when we modify a model and test it again.  

Application of the Simulation-cum-ROC Approach 

In the following, we provide two examples that illustrate the simulation-cum-ROC approach. 

The main aim of the first example is to walk the reader through the three steps to generate and 

apply tailored cutoffs. For that reason, we chose a simple example without further 

complications. In this example, an alternative model, which can serve as an H1 population 

model, was already proposed in the literature. All fit indices performed equally well in this 

example. Neither is always guaranteed to be the case in empirical applications.  

Thus, the main aim of the second example is to showcase the potential of the simulation-

cum-ROC approach in ranking the performance of fit indices. In this example, an alternative 

model, which can serve as an H1 population model, has not already been proposed in the 

literature. Further, the fit indices of interest differed in their performance in this example; not 

all fit indices performed well enough to be useful for model evaluation.  

We used publicly available secondary data for both examples (Nießen et al., 2018, 

2020). We conducted all analyses with R (version 4.1.1; R Core Team, 2021). We employed 

the R package lavaan to fit the models (version 0.6.9; Rosseel, 2012), simsem to simulate the 

data (version 0.5.16; Pornprasertmanit et al., 2021), pROC to plot the ROC curves (version 

1.18.0; Robin et al., 2011), and cutpointr to obtain cutoffs for fit indices (version 1.1.1; Thiele 

& Hirschfeld, 2021). We documented all other used packages in the R code. Additional File 1 

of the Supplementary Material includes the computational code. We did not preregister the 

study.  
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We also programmed a shiny app which is available under 

https://kg11.shinyapps.io/tailoredcutoffs/. Specifically, one needs to plug in their analysis 

model, population models, marginal skewness and excess kurtosis of each item’s response 

distribution (used to obtain multivariate non-normal data with Vale and Maurelli’s method, 

19831), estimator, sample size, number of simulation runs, fit indices one is interested in, and 

AUC cutpoint. The shiny app internally runs through Steps 1 to 3 of the simulation-cum-ROC 

approach. It allows downloading the ROC curves from Step 2 as well as the fit index 

distributions and tailored cutoffs from Step 3. Users do not need to execute any statistical 

program locally; the shiny app does all the computational work to arrive at tailored cutoffs 

within the simulation-cum-ROC approach. 

Example 1: The Rosenberg Self-Esteem Scale 

We chose the Rosenberg Self-Esteem Scale for the first example of generating tailored cutoffs 

via the simulation-cum-ROC approach (Rosenberg, 1965). This scale measures global self-

esteem with ten items (five referring to positive feelings about the self and five to negative 

ones) rated on a four-point rating scale. Initially constructed with a single factor, later studies 

found evidence for a two-factor structure (or even more complex structures, see Supple et al., 

2013, for an overview). We used publicly available data (N = 468; Nießen et al., 2020) that 

contains the Rosenberg Self-Esteem Scale applied to a quota sample of adults aged 18 to 69 

from the United Kingdom.  

Input: Fit Analysis Model to Empirical Data. We fit the two-factor model to the 

empirical data using MLR. Figure 3 depicts the two-factor model and the empirical fit index 

values. Here, we evaluated whether empirical evidence favored the H0 or H1 for the two-factor 

model using tailored cutoffs. We would accept the two-factor model if empirical evidence 

favored the H0 stating that the two-factor model was identical to the population model. We 

would reject the two-factor model if empirical evidence favored the H1 stating that the two-

factor model was not identical to the population model to an intolerable degree of 

misspecification. 

 

 

 
1 Olvera Astivia and Zumbo (2015) have shown that estimates of skewness and kurtosis are downward-

biased using Vale and Maurelli’s method, especially in small samples. Because we employed the 

simsem package (Pornprasertmanit et al., 2021) and no alternative method was implemented there, we 

relied on Vale and Maurelli’s method to obtain multivariate non-normal data. 

https://kg11.shinyapps.io/tailoredcutoffs/
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Figure 3: Empirical Two-Factor Rosenberg Self-Esteem Scale Model 

  
Note. Unstandardized coefficients. RSES = Rosenberg Self-Esteem Scale. We recoded the items so that 

higher values imply higher self-esteem. We omitted the residual variances and the mean structure for 

clarity. N = 468. *** p < .001. 

 

Step 1: Simulate Data and Fit Analysis Model to Simulated Data. After fitting the 

two-factor model to empirical data, we operationalized H0 and H1 as a basis for the Monte 

Carlo simulation. The two-factor model served as an analysis model in the simulation. The 

structure and parameter estimates of the two-factor model fit to empirical data served as the H0 

population model. Relative to the two-factor population model, the two-factor analysis model 

was correctly specified.  

As an H1 population model, we chose a bi-factor model proposed in the literature on 

the Rosenberg Self-Esteem Scale (for an overview, see Supple et al., 2013). The structure and 

parameter estimates of a bi-factor model fit to empirical data served as the H1 population model. 

Relative to the bi-factor population model, the two-factor analysis model was severely 

underspecified (i.e., misspecified). Figure 4 shows the population and analysis models. 
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We simulated data from the H0 and H1 population models, fit the two-factor analysis 

model to that data, and recorded the fit index values. The Monte Carlo simulation closely 

resembled the empirical setting regarding the sample size (i.e., N = 468), the estimator of choice 

(i.e., MLR), and the multivariate response distribution. We simulated 500 data sets from each 

population model. Simulating the data, fitting the analysis model, and recording the fit indices 

took four to five minutes on a standard computer using R (single-threaded). 

 

Figure 4: Proposed Analysis and Population Models of the Rosenberg Self-Esteem Scale  

 
Note. We simulated data from both population models and fit the same analysis model to the data. 

Because the analysis model was structurally identical to the H0 population model, it was correctly 

specified when fit to data generated from that population model. Because the analysis model differed 

from the H1 population model, it was misspecified when fit to data generated from that population 

model. Unstandardized coefficients. RSES = Rosenberg Self-Esteem Scale. We recoded the items so 

that higher values imply higher self-esteem. We omitted the residual variances and the mean structure 

for clarity. 
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Step 2: Evaluate the Performance of Fit Indices. After simulating the data, we 

evaluated the performance of fit indices as quantified through the AUC. We stipulated to only 

consider fit indices with an AUC of .80 or higher (Padgett & Morgan, 2021) and disregarded 

all others. Figure 5 displays the ROC curves of the fit indices (in different line shapes). All fit 

indices had an AUC equal to or higher than .80, namely an AUC of 1. Therefore, all fit indices 

discriminated equally well between correctly specified and misspecified models.  

 

Figure 5: ROC Curves for Fit Indices with AUC ≥ .80 of the Rosenberg Self-Esteem Scale Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Cfi.scaled is the CFI version and rmsea.scaled 

is the RMSEA version calculated with this test statistic. 

 

  



166   

 

 

Step 3: Generate Tailored Cutoffs. In Step 3, we generated cutoffs for well-performing 

fit indices. All fit indices performed equally well (as quantified through the AUC). Thus, we 

generated tailored cutoffs for all fit indices. Figure 6 depicts the fit index distributions for the 

simulated data. The distribution colored in lighter gray is the one for fit index values from 

correctly specified models. The distribution colored in darker gray is the one for fit index values 

from misspecified models. The vertical dash corresponds to the cutoff (maximizing the sum of 

sensitivity and specificity − 1).1 The cutoffs were the following: χ2(34) ≤ 70.82, CFI ≥ .984, 

RMSEA ≤ .047, SRMR ≤ .031. All cutoffs across fit indices had an accuracy of 1. Type I and 

Type II error rates were zero for all cutoffs. Thus, all cutoffs perfectly discriminated between 

correctly specified and misspecified models in this setting.  

 

  

 
1 As evident from Figure 6, we let the algorithm take the mean of the optimal cutoff and the next highest 

fit index value as a revised optimal cutoff (or the next lowest fit index value when lower values imply 

worse fit, such as for CFI; Thiele & Hirschfeld, 2021). To find an optimal cutoff, the algorithm first 

uses each fit index value as a potential cutoff starting with those indicating good (e.g., CFI = 1.00, 

RMSEA = 0.00) to bad model fit (e.g., CFI = 0.00, RMSEA = 1.00) and evaluates sensitivity and 

specificity. Then it selects the fit index value with the highest sum of sensitivity and specificity as an 

optimal cutoff. For non-overlapping distributions, both the worst fit index value from correctly specified 

models and the best fit index value from misspecified models have the highest sum of sensitivity and 

specificity. The algorithm would, thus, choose the worst fit index value from correctly specified models 

as an optimal cutoff. It is the first value with the highest sum of sensitivity and specificity (because the 

algorithm starts from good to bad model fit). We let the algorithm take the mean between the optimal 

cutoff (i.e., the worst fit index value from correctly specified models in non-overlapping distributions) 

and the next value (i.e., the best fit index value from misspecified models in non-overlapping 

distributions) as a revised optimal cutoff to avoid bias in favor of correctly specified models.  
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Figure 6: Cutoffs for Fit Indices with AUC ≥ .80 of the Rosenberg Self-Esteem Scale Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Cfi.scaled is the CFI version and rmsea.scaled 

is the RMSEA version calculated with this test statistic. The distribution colored in lighter gray 

originates from correctly specified models. The distribution colored in darker gray originates from 

misspecified models. Overlapping (parts of) distributions have an even darker gray color than the 

distribution from misspecified models. The vertical dash corresponds to the cutoff for each fit index (at 

the highest sum of sensitivity and specificity – 1). 

 

Output: Evaluate the Fit of the Analysis Model to Empirical Data with Tailored 

Cutoffs. Judged against the tailored cutoffs, we rejected the two-factor model for the Rosenberg 

Self-Esteem Scale fit to empirical data. None of the empirical fit index values for the two-factor 

model (χ2(34) = 119.05; CFI = .947; RMSEA = .073; SRMR = .051) passed the tailored cutoffs 

(i.e., χ2(34) ≤ 70.82, CFI ≥ .984, RMSEA ≤ .047, SRMR ≤ .031). Evidence favored the H1, 

stating that another (less restrictive) population model had generated the data. Interestingly, 

traditional fixed cutoffs of CFI around .950, RMSEA around .060, and SRMR around .080 (Hu 

& Bentler, 1999) would wrongly lead to accepting the two-factor model. 
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Example 2: The Social Desirability-Gamma Short Scale 

To illustrate the potential of the simulation-cum-ROC approach, we took the Social 

Desirability-Gamma Short Scale (Kemper et al., 2014; Nießen et al., 2019) as a second 

example. Paulhus’s (2002) theoretical model of socially desirable responding was the basis for 

this scale. Socially desirable responding refers to deliberate attempts to present oneself as a 

nice person or good citizen. The Social Desirability-Gamma Short Scale measures the two 

aspects of the Gamma factor of socially desirable responding: exaggerating one’s positive 

qualities (PQ+) and minimizing one’s negative qualities (NQ−) with three items each. 

Respondents rate these items on a five-point rating scale. Publicly available data (N = 474; 

Nießen et al., 2018) contains the German version of the scale applied to a quota sample of 

adults aged 18 to 69 years in Germany.  

Input: Fit Analysis Model to Empirical Data. We fit the two-factor model of the Social 

Desirability-Gamma Short Scale to the empirical data using MLR (following Nießen et al., 

2019). Figure 7 depicts the two-factor model and its empirical values of fit indices. Here, we 

evaluated whether empirical evidence favored the H0 or H1 for the two-factor model using 

tailored cutoffs. We would accept the two-factor model if evidence favored the H0 stating that 

the two-factor model was identical to the population model. We would reject the two-factor 

model if empirical evidence favored the H1 stating that the two-factor model was not identical 

to population model to an intolerable degree of misspecification. 
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Figure 7: Empirical Two-Factor Social Desirability-Gamma Short Scale Model  

 
Note. Unstandardized coefficients. PQ+ = exaggerating positive qualities; NQ− = minimizing negative 

qualities. We recoded NQ− so that higher values imply more socially desirable responses. We omitted 

the residual variances and the mean structure for clarity. N = 474. *** p < .001. 

 

 Step 1: Simulate Data and Fit Analysis Model to Simulated Data. After fitting the 

two-factor model to empirical data, we operationalized H0 and H1 as a basis for the Monte 

Carlo simulation. The two-factor model served as an analysis model in the simulation. The 

structure and parameter estimates of the two-factor model fit to empirical data served as the H0 

population model. Relative to the H0 population model, the two-factor analysis model was 

correctly specified.  

Next, we needed to define a theoretically justifiable H1 population model—which has 

not been suggested in the literature yet and was, thus, not as immediately apparent as in the 

previous example. A good candidate for an H1 population model could be a two-factor model 

that contains additional residual covariances to capture shared wording effects. The question 

of whether additional residual covariances are needed to account for the covariances among 

items fully is one with which applied researchers frequently grapple (e.g., Bluemke et al., 2016; 

Podsakoff et al., 2003). Correlations of r = .50 have been considered large (Cohen, 1992). Two 

unmodeled residual correlations have been considered moderate misspecification for six-item 

models (McNeish & Wolf, 2021). We chose an H1 population model that was identical to the 
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H0 population model (and, thus, the analysis model) in the latent-variable part but comprised 

two residual correlations of r = .50 each. We modeled one residual correlation between the first 

and second item of the PQ+ factor (resulting in a residual covariance of 0.20), both of which 

ask for emotional control. We modeled another residual correlation between the first and third 

item of the NQ− factor (resulting in a residual covariance of 0.31), both of which refer to 

behavior in interactions. Relative to this H1 population model, the two-factor analysis model 

was severely underspecified (i.e., misspecified). Figure 8 shows the population and analysis 

models for examining H0 and H1.  

 

Figure 8: Proposed Analysis and Population Models of the Social Desirability-Gamma Short Scale  

 
Note. We simulated data from both population models and fit the same analysis model to the data. 

Because the analysis model was structurally identical to the H0 population model, it was correctly 

specified when fit to data generated from that population model. Because the analysis model differed 

from the H1 population model, it was misspecified when fit to data generated from that population 

model. Unstandardized coefficients. PQ+ = exaggerating positive qualities; NQ− = minimizing negative 

qualities. We recoded NQ− so that higher values imply more socially desirable responses. We omitted 

the residual variances and the mean structure for clarity. 
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We simulated data from the population models, fit the analysis model to each simulated 

data set, and recorded the fit indices. Essential features of the simulation mimicked the 

empirical setting in terms of the sample size (i.e., N = 474), estimator (i.e., MLR), the 

multivariate response distribution, and the number of simulation runs (i.e., 500, which we 

recommend as a minimum). Simulating the data, fitting the analysis model, and recording the 

fit indices took two to three minutes on a standard computer using R (single-threaded). 

Step 2: Evaluate the Performance of Fit Indices. In the following, we took a closer 

look at the performance of the fit indices. In contrast to the previous example, not all fit indices 

passed the AUC ≥ .80 benchmark, and the AUCs were generally lower. Figure 9 visualizes the 

ROC curves of three fit indices with an AUC of .80 or higher: χ2, RMSEA, and SRMR. We 

disregarded CFI because, with an AUC below .80, it did not perform adequately in this setting. 

Among the three well-performing fit indices with AUC ≥ .80 (i.e., χ2, RMSEA, and SRMR but 

not CFI), SRMR had the highest AUC (= .92) and was, thus, the best-performing one in the 

setting of interest.  

 

Figure 9: ROC Curves for Fit Indices with AUC ≥ .80 of the Social Desirability-Gamma Short Scale 

Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Rmsea.scaled is the RMSEA version calculated 

with this test statistic. 



172   

 

 

Step 3: Generate Tailored Cutoffs. We generated cutoffs only for the three well-

performing fit indices in the following. The recommended cutoff for χ2 was 9.54, for RMSEA 

.020, and for SRMR .025 (Figure 10). In line with the AUC, the cutoff for SRMR had the 

highest accuracy (= .851) and the lowest Type II error rate (= 11%). It better categorized 

misspecified models as misspecified than cutoffs for other fit indices. The Type I error rate was 

the same for all cutoffs (= 19%). Thus, the SRMR, with its corresponding cutoff, had the best 

ability to demarcate between correctly specified and misspecified models in the setting at hand. 

The greatest difference between correctly specified and misspecified models in the specific 

setting was due to average standardized residuals. 

The reader may have noticed that these cutoffs’ Type I and Type II error rates are above 

conventional levels of 5%. The strength of the simulation-cum-ROC approach is the thorough 

analysis of fit index distributions and the deliberate use of cutoffs. It makes us aware of the 

error probabilities involved. If we deem the error rates too high, we can redefine the H1 

population model. To redefine the H1 population model, we need to repeat Steps 1 through 3 

of the simulation-cum-ROC approach: In Step 1, we need to define a new H1 population model, 

from which the analysis model is “further” away than the initial H1 population model. For 

instance, the new H1 population model contains more or higher non-zero parameter values than 

the initial H1 population model, which the analysis model wrongly fixes to zero. 

Alternatively, we can use the cutoffs while accepting their given error probability. In 

this example of the Social Desirability-Gamma Short Scale, we deemed the error probabilities 

acceptable (especially the ones of SRMR) because we explicitly wanted to retain the definitions 

of population models as outlined and justified. Imposing stronger misspecification through 

redefining the H1 population model would lead to more lenient cutoffs than the current ones. 

This would imply that those cutoffs could lead to accepting an empirical model that contains 

misfit of a size that we initially deemed unacceptable (i.e., through the initial definition of the 

H1 population model relative to which the analysis model is misspecified). 
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Figure 10: Cutoffs for Fit Indices with AUC ≥ .80 of the Social Desirability-Gamma Short Scale Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Rmsea.scaled is the RMSEA version calculated 

with this test statistic. The distribution colored in lighter gray originates from correctly specified 

models. The distribution colored in darker gray originates from misspecified models. Overlapping (parts 

of) distributions have an even darker gray color than the distribution from misspecified models. The 

vertical dash corresponds to the cutoff for each fit index (at the highest sum of sensitivity and specificity 

– 1). 

 

Output: Evaluate the Fit of the Model to Empirical Data with Tailored Cutoffs. When 

comparing the empirical fit index values to the cutoffs tailored to the setting of interest, we 

needed to reject the two-factor model of the Social Desirability-Gamma Short Scale. The 

empirical values of fit indices (χ2(8) = 32.06, p < .001; CFI = .947; RMSEA = .080; SRMR = 

.048) clearly failed the tailored cutoffs (χ2(8) ≤ 9.54; CFI = should not be considered; RMSEA 

≤ .020; SRMR ≤ .025). Thus, we found empirical evidence favoring the H1 instead of the H0, 

concluding that a model different from a two-factor one is likely to have generated the data. 

Notably, traditional fixed cutoffs of CFI around .950, RMSEA around .060, and SRMR around 

.080 (Hu & Bentler, 1999) would wrongly lead to accepting the two-factor model. 
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Discussion  

Fixed cutoffs for fit indices are far more problematic than many researchers realize (e.g., 

Groskurth et al., 2022; Marsh et al., 2004; Lai & Green, 2016). Fixed cutoffs have low external 

validity and do not generalize well to settings not covered in simulation studies from which 

these cutoffs originate. This is because fit indices are susceptible to various influences other 

than model misspecification they should detect (for an overview, see Groskurth et al., 2022; 

Niemand & Mai, 2018; McNeish & Wolf, 2021, 2022; Pornprasertmanit, 2014). Cutoffs 

tailored to the setting of interest are generally more appropriate than fixed cutoffs whenever 

the setting falls outside the limited range of simulation scenarios from which these cutoffs were 

derived (such as those by Hu and Bentler, 1999). Therefore, methodologists are increasingly 

urging that fixed cutoffs should be abandoned and replaced by tailored (or “dynamic”) cutoffs 

(e.g., Markland, 2007; Marsh et al., 2004; McNeish & Wolf, 2021; Niemand & Mai, 2018; Nye 

& Drasgow, 2011).  

We reviewed four principal approaches to generating tailored cutoffs in the current 

study. Ours is the first study to review and systematize the approaches to tailored cutoffs 

comprehensively. While we have outlined their strengths and limitations on a conceptual level, 

future research may additionally want to compare their performance statistically. For example, 

simulation studies comparing the Type I and Type II error rates of cutoffs generated from the 

various approaches in different contexts have yet to be conducted.   

 We then introduced a novel approach, the simulation-cum-ROC approach, that 

augments the simulation-based approach to tailored cutoffs that has gained traction in the recent 

literature (e.g., McNeish & Wolf, 2021, 2022; Millsap, 2013; Niemand & Mai, 2018). By 

applying ROC analysis to distributions of fit indices from a Monte Carlo simulation, the 

simulation-cum-ROC approach provides a highly informative way to evaluate model fit. Like 

several other approaches outlined in our review, the simulation-cum-ROC approach generates 

(1) tailored cutoffs at balanced Type I and Type II error rates for several fit indices across 

various settings. However, it conceptually advances previous approaches by (2) ranking the 

performance of fit indices in the specific setting of interest. Thus, the unique strength of the 

simulation-cum-ROC approach is that it provides guidance on which fit index to rely (or at 

least assign the greatest weight) when evaluating model fit in the specific setting of interest.  

To illustrate how our proposed simulation-cum-ROC approach works, we tested models 

of the Rosenberg Self-Esteem Scale and the Social Desirability-Gamma Short Scale. We wish 
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to emphasize that we intend these examples as proof of principle. In presenting these examples, 

we made several choices on the selection of fit indices, the definition of population models, 

and the relative importance of Type I and Type II error rates in generating tailored cutoffs. 

Researchers can modify most of these choices when applying the proposed simulation-cum-

ROC approach to other empirical problems. We highlight some of these choices in the 

following to underscore our approach’s generality and identify areas in which future research 

may progress. 

To begin with, researchers may consider additional variants of fit indices or different 

fit indices altogether. In our examples, we focused on the three widely used fit indices, CFI, 

RMSEA, and SRMR (Jackson et al., 2009), to keep these examples simple. Additionally, as is 

routine in applied research, we considered χ2 in much the same way (and not as a strict formal 

test; see Jöreskog & Sörbom, 1993).1 We relied on a χ2 test statistic approximately equivalent 

to the Yuan-Bentler one (Yuan & Bentler, 2000a; called chisq.scaled in lavaan, see also Savalei 

& Rosseel, 2022). Following standard practice (e.g., Muthén & Muthén, 1998-2017), we relied 

on the CFI and RMSEA versions calculated with this χ2 test statistic (called cfi.scaled and 

rmsea.scaled in lavaan). The standard formulations of fit indices (and test statistics) are not 

without critics. Several authors (Brosseau-Liard et al., 2012; Brosseau-Liard & Savalei, 2014; 

Gomer et al., 2019; Yuan & Marshall, 2004; Yuan, 2005; Zhang, 2008) have pointed out 

problems and suggested improved formulations. Therefore, researchers may prefer not to go 

with the fit indices and their conventional formulations we used in the examples. Notably, the 

simulation-cum-ROC approach can be generalized to include any other fit index (and test 

statistic), including variants of the canonical fit indices (e.g., Yuan, 2005) but also other, less 

widely used fit indices (e.g., McDonald’s measure of centrality, McDonald, 1989, or the 

adjusted goodness of fit index, Jöreskog & Sörbom, 1986).  

Moreover, in our examples of the simulation-cum-ROC approach, we chose an AUC 

value of .80 as a threshold. Researchers may choose higher AUC thresholds to obtain lower 

Type I and Type II error rates. Moreover, we selected that cutoff as the optimal one that had 

the highest sum of sensitivity + specificity – 1 (i.e., the Youden index balancing Type I and 

Type II error rates). Alternatively, researchers may maximize sensitivity given a minimal 

specificity value to obtain optimal cutoffs (or vice versa). 

 
1 As one reviewer correctly pointed out, RMSEA is just a transformation of χ2 (e.g., Moshagen & 

Erdfelder, 2016). RMSEA can therefore be considered redundant because its performance in terms of 

the AUC will be the same as that of the χ2. Nonetheless, we decided to generate cutoffs for χ2 and 

RMSEA in the examples because both are regularly used for model evaluation (Jackson et al., 2009). 
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Further, we rejected the empirical model based on tailored cutoffs in both examples. In 

both examples, we did not go through the steps of modifying the model and testing that 

modified model again. However, we demonstrate how to employ the simulation-cum-ROC 

approach to test a modified Social Desirability-Gamma Short Scale model for interested 

readers in Additional File 2 of the Supplementary Material. 

It is essential to realize that tailored cutoffs derived from the simulation-cum-ROC 

approach are the most accurate decision thresholds for the setting from which they originate. 

That said, one should not make the same mistake as with traditional cutoffs and generalize 

tailored cutoffs to any different combination of model, estimation, and data characteristics. 

Different combinations affect the performance of fit indices and their cutoffs in unexpected 

and non-traceable ways (for an overview, see Niemand & Mai, 2018; Pornprasertmanit, 2014), 

and erroneous conclusions may result. We instead underline that no general cutoff or general 

statement on the performance of those commonly used fit indices exists (see also, e.g., Marsh 

et al., 2004; McNeish & Wolf, 2021; Nye & Drasgow, 2011).  

Advanced Definitions of Population Models 

A challenge in applying the simulation-cum-ROC approach—one that it shares with similar 

simulation-based approaches (e.g., Pornprasertmanit, 2014)—concerns the definition of the H0 

and H1 population models. More advanced definitions of population models can be easily 

integrated into the simulation-cum-ROC approach. For example, one could define an H0 

population model relative to which the analysis model is negligibly underspecified to test for 

approximate fit, as suggested by Millsap (2007, 2013) and Pornprasertmanit (2014). We indeed 

believe that alternative definitions of the population model can be fruitful, which is why we 

briefly review possible extensions of our approach (and similar approaches) that have been 

proposed in prior work. We further identify areas in which future work on generating tailored 

cutoffs could make further progress.  

Approximate Fit 

In our examples illustrating the simulation-cum-ROC approach, the to-be-tested analysis 

models were always identical to the H0 population models. In other words, we generated cutoffs 

based on an analysis model that exactly fit the data generated by (i.e., simulated from) an H0 

population model. Only fluctuations through sampling influenced the resulting fit index 

distributions and, accordingly, the cutoffs (Cudeck & Henly, 1991; MacCallum, 2003; 
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MacCallum & Tucker, 1991). Testing this assumption of exact fit has guided model evaluation 

for years; the entire distributional assumptions of the ꭓ2 test statistic rely on exact fit testing 

(e.g., Bollen, 1989). Testing exact fit is legitimate if the aim is to find a model that perfectly 

describes the specific population. This model should perfectly reproduce all major and minor 

common factors in the specific data.  

In empirical applications, researchers commonly want to find models that do not solely 

reproduce a specific population but are generalizable to different populations (Cudeck & 

Henly, 1991; Millsap, 2007). In other words, researchers do not want to find an overfitting 

model. Toward that end, it can be advantageous to consider not only sampling fluctuations but 

also model error when generating cutoffs (Cudeck & Henly, 1991; MacCallum, 2003; 

MacCallum & Tucker, 1991). Model error, in this context, means choosing an H0 population 

model relative to which the analysis model already contains minor misspecification, such as 

small unmodeled residual correlations (e.g., Millsap, 2007, 2013). The analysis model is 

underspecified (i.e., misspecified) to a certain degree relative to the H0 population model. 

Researchers still consider the analysis model correctly specified, barring minor 

misspecification they deem acceptable. It is within their realistic expectations of how well a 

model can capture the complexities of a real population while still being plausible in other 

populations (for an overview and in-depth discussion, see MacCallum, 2003). Including model 

error (in addition to sampling fluctuations) in the derivation of cutoffs is known as testing 

approximate fit and has already been implemented in several approaches (e.g., Kim & Millsap, 

2014; McNeish & Wolf, 2021; Millsap, 2013; Yuan & Hayashi, 2003; Yuan et al., 2004, 2007). 

We opted against testing approximate fit in our two examples for didactic reasons (i.e., 

to keep the exposition simple). However, for interested readers, we included an additional 

example that illustrates how to select the H0 population model to test approximate (instead of 

exact) fit in Additional File 2 of the Supplementary Material. As the example demonstrates, 

testing approximate fit via the simulation-cum-ROC approach works in much the same way as 

testing exact fit and poses no additional hurdle.  

Multiple Population Models  

So far, we have always defined a single H1 population model to test the fit of an analysis model 

of interest. In the words of Pornprasertmanit (2014; see also Pornprasertmanit et al., 2013), we 

followed the fixed method (see also Millsap, 2013). By following the fixed method (i.e., 

defining only a single H1 population model relative to an analysis model), we take only one 
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form and one size of misspecification (e.g., omitted residual correlation of r = .50) out of all 

possible ones in the space of conceivable models into account.  

Thus, Pornprasertmanit (2014; see also Pornprasertmanit et al., 2013) proposed new 

methods that take a wider variety of misspecification forms and sizes into account (e.g., omitted 

residual correlations of r ≥ .50; omitted cross-loadings ≥ .20). The methods apply to both H0 

population models (to test approximate fit) and H1 population models. The only difference in 

defining the population models is that the H0 population model implies trivial, acceptable 

misspecification and the H1 population model implies severe, unacceptable misspecification of 

the analysis model.  

In the random method, one defines several H0 / H1 population models relative to an 

underspecified analysis model. (The analysis model is trivially underspecified relative to the 

H0 population models and severely underspecified relative to the H1 population models.) The 

algorithm randomly picks a new H0 / H1 population model from the initially defined ones each 

time it starts simulating data. This approach considers multiple H0 / H1 population models 

relative to an underspecified analysis model. Thus, H0 / H1 population models are the same for 

different fit indices but differ across simulation runs. 

In the maximal method (for defining H0 population models) or the minimal method (for 

defining H1 population models), one again defines several H0 / H1 population models relative 

to an underspecified analysis model. Then, one draws data from all those population models 

and fits the analysis model to the data. When selecting an H0 population model, one picks the 

population model that generates data with the largest trivial misfit of the analysis model 

(quantified through the fit index of interest). When selecting an H1 population model, one picks 

the population model that generates data with the smallest severe misfit of the analysis model. 

Thus, H0 / H1 population models can differ for different fit indices but are the same across 

simulation runs.  

Although we only applied the fixed method in our examples (again, to keep the 

exposition simple and help readers understand the basic mechanics of our simulation-cum-

ROC approach), we encourage researchers to consider the random and maximal/minimal 

methods in future work on the simulation-cum-ROC approach. So far, neither the random nor 

the maximal/minimal methods are features of the shiny app and the supplementary R code. We 

plan to implement these features in later versions. Further, a tutorial on the simulation-cum-

ROC approach, including exemplary R code containing the random and maximal/minimal 

methods, will surely aid the application. 
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Forms and Sizes of Misspecification 

So far, we have followed the traditional way of defining population models: The analysis model 

is (either trivially or severely) misspecified relative to the population model, as it either omits 

specific parameters, fixes them to a wrong value, or proposes a different model structure 

altogether (e.g., Curran et al., 1996; Hu & Benter, 1998, 1999; McNeish & Wolf, 2021; 

Millsap, 2013; Satorra & Saris, 1985; Yuan & Bentler, 1997). This traditional way of defining 

population models might be considered too static and context-dependent (i.e., dependent on a 

specific form of misspecification). A further step could be to define population models relative 

to which analysis models are either trivially (H0) or severely misspecified (H1) in an effect size 

logic that does not require defining a specific form of misspecification (e.g., omitted 

parameters). For example, some authors (Cudeck & Browne, 1992; Moshagen & Auerswald, 

2018; Yuan et al., 2007) proposed defining (or approximating) the population variance-

covariance matrix at a given distance from the analysis model structure. This is reminiscent of 

defining the difference in ꭓ2 distributions through a predefined difference in the non-centrality 

parameter (e.g., Moshagen & Erdfelder, 2016; see Jak et al., 2021, for a tool to quantify omitted 

parameters in terms of the non-centrality parameter). This approach does not require defining 

misspecification in terms of omitted or wrongly fixed parameters—but rather in an effect size 

logic. 

A more general challenge of defining reasonable population models for generating fit 

index distributions is that the literature does not provide specific guidelines on the appropriate 

effect size of trivial or severe misspecification. Although such guidelines would undoubtedly 

be helpful, providing universally applicable guidelines across settings may not be possible. 

What constitutes a reasonable population model, and a trivial or severe misspecification of the 

analysis model relative to that population model, depends on many characteristics of the study, 

such as the research question, empirical setting, study design, and the data. Researchers need 

to justify their definition of a population model based on those characteristics. By requiring 

that population models need to be made explicit, editors, reviewers, and readers of the study 

can judge the appropriateness of the underlying assumptions. 
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Conclusion 

Tailored cutoffs are ideally suited to the setting of interest because they account for the many 

model, estimation, and data characteristics that can influence fit indices and render fixed cutoffs 

questionable. This study reviewed four principal approaches that researchers can employ to 

generate tailored cutoffs. We then presented a novel approach, the simulation-cum-ROC 

approach, that extends previous approaches by introducing ROC analysis. Introducing ROC 

analysis to model fit evaluation is a contribution that uniquely characterizes our approach. It 

allows evaluating the performance of fit indices in a given setting, enabling researchers to make 

informed decisions about which fit indices to rely on (or which to assign the greatest weight 

to). Our approach then derives the most accurate cutoffs for the setting of interest. To the best 

of our knowledge, the proposed procedure is the only one that allows basing cutoff decisions 

on balanced Type I and Type II error rates combined with a performance index for fit indices. 

Our procedure comprises three steps (plus fitting and testing the empirical analysis model). We 

provide a shiny app and R code to enable researchers to easily generate tailored cutoffs for their 

own empirical problems. We hope to encourage applied researchers to abandon the traditional 

fixed cutoffs in favor of tailored ones. This will allow them to make more valid judgments 

about model fit and ultimately increase the replicability of research findings. By reviewing 

possible extensions of our approach, we also hope to encourage methodologists to expand 

further—and help disseminate—the current approaches to generating tailored cutoffs 

(including our simulation-cum-ROC approach). 
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Additional File 1: R Code for the Examples 

R Code for the Self-Written Functions Needed for the Examples 

################################# 

#Functions for: TAILORED CUTOFFS FOR FIT INDICES VIA THE SIMULATION-CUM-ROC APPROACH 

################################# 

 

#NOTE:  If the goal is NOT to put equal weight on sensitivity and specificity when deriving 

cutoffs (metric = youden) 

#       but to put either more weight on sensitivity (metric = sens_constrain) or specificity 

(metric = spec_constrain),  

#       the "metric"-argument of cutpointr needs to be changed accordingly. 

 

 

#### 

#Function to simulate data and fit analysis model to it 

#### 

#Default: CFA model identified via latent variance 

sim.Dat <- function(runs=runs, analysisModel=analysisModel, sample=sample, 

populationModel.cor=populationModel.cor,  

                    populationModel.mis=populationModel.mis, std.lv=TRUE, modelKind = "cfa", 

estimator = estimator,  

                    dist = dist, seed=seed){ 

   

          #Load required package 

          if (!require(simsem)) { install.packages("simsem"); require(simsem) } 

           

          #Simulate data from population model relative to which the analysis model is 

correctly specified, fit analysis model to simulated data 

          Output.cor <- simsem::sim(runs, model=analysisModel, n=sample, 

generate=populationModel.cor, std.lv=std.lv, lavaanfun = modelKind, estimator = estimator, 

indDist = dist, seed=seed, silent=TRUE) 

           

          #Simulate data from population model relative to which the analysis model is 

misspecified, fit analysis model to simulated data 

          Output.mis <- simsem::sim(runs, model=analysisModel, n=sample, 

generate=populationModel.mis, std.lv=std.lv, lavaanfun = modelKind, estimator = estimator, 

indDist = dist, seed=seed,  silent=TRUE) 

           

          #Extract fit indices 

          fit.cor <- inspect(Output.cor, "fit") 

          fit.mis <- inspect(Output.mis, "fit") 

           

          #Add variable indicating whether the analysis model is correctly specified or 

misspecified 

          fit.cor$specification <- factor(0, 0:1, c("correctly specified", "misspecified")) 

          fit.mis$specification <- factor(1, 0:1, c("correctly specified", "misspecified")) 

           

          #Combine data relative to which the analysis model is either correctly specified and 

misspecified 

          fit <- rbind(fit.cor, fit.mis) 

          return(fit) 

   

} 

 

 

#### 

#Function to convert strings to quosures 

#### 

#Credits: https://github.com/r-lib/rlang/issues/116 

stringToQuoser <- function(varName) { 

  if (!require(wrapr)) { install.packages("wrapr"); require(wrapr) } 

  if (!require(rlang)) { install.packages("rlang"); require(rlang) } 

  wrapr::let(c(VARNAME = varName), rlang::quo(VARNAME)) 

   

} 

 

 

#### 

#Function to display ROC curve 

#### 
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plotROC <- function(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, data = fit) { 

   

  #Load required packages 

  if (!require(cutpointr)) { install.packages("cutpointr"); require(cutpointr) } 

  if (!require(pROC)) { install.packages("pROC"); require(pROC) } 

  if (!require(ggrepel)) { install.packages("ggrepel"); require(simsemggrepel) } 

  if (!require(dplyr)) { install.packages("dplyr"); require(dplyr) } 

   

  #Select only the best demarcating fit indices (i.e., those with AUC >= than AUC cutpoint) 

and save them in one object 

  GOFs.updated <- c() 

  for (g in 1:length(GOFs)){ 

    GOF <- stringToQuoser(GOFs[[g]]) 

     

    if (is.na(match(GOFs[[g]], GOFs.reverse)) == TRUE){ 

      test.GOF <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, pos_class = 

"correctly specified",  

                                       neg_class = "misspecified", 

                                       direction = "<=",  

                                       method = maximize_metric, metric = youden, na.rm=TRUE, 

use_midpoints=TRUE)   

       

    }else{ 

      test.GOF <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, pos_class = 

"correctly specified",  

                                       neg_class = "misspecified", 

                                       direction = ">=",  

                                       method = maximize_metric, metric = youden, na.rm=TRUE, 

use_midpoints=TRUE) 

    } 

     

    if (test.GOF$AUC>=AUC.cut){ 

      GOFs.updated <- c(GOFs.updated, GOFs[[g]]) 

    }  

  } 

   

  #Here: only for those fit indices with AUC >= than AUC cutpoint. 

  if (length(GOFs.updated)>0 & length(GOFs.updated)<7){ 

     

    test.GOF <- list() 

    models <- list() 

    preds <- list() 

    rocs <- list() 

     

    #Save fit indices with AUC >= than AUC cutpoint. 

    for (gu in 1:length(GOFs.updated)){ 

      GOF <- stringToQuoser(GOFs.updated[[gu]]) 

       

      if (is.na(match(GOFs.updated[[gu]], GOFs.reverse)) == TRUE){ 

        test.GOF[[gu]] <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, 

pos_class = "correctly specified",  

                                               neg_class = "misspecified", 

                                               direction = "<=",  

                                               method = maximize_metric, metric = youden, 

na.rm=TRUE, use_midpoints=TRUE)  

         

      }else{ 

        test.GOF[[gu]] <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, 

pos_class = "correctly specified",  

                                               neg_class = "misspecified", 

                                               direction = ">=",  

                                               method = maximize_metric, metric = youden, 

na.rm=TRUE, use_midpoints=TRUE) 

      } 

       

       

       

      #Predict fitted values for those with AUC >= than AUC cutpoint. 

      models[[gu]] <- glm(as.formula(paste0("specification ~ ", GOFs.updated[[gu]])), data = 

fit, family = binomial(link = "logit")) 

      preds[[gu]] <- predict(models[[gu]], type = "response") 

       

      if (is.na(match(GOFs.updated[[gu]], GOFs.reverse)) == TRUE){ 

      rocs[[gu]] <- pROC::roc(as.formula(paste0("specification ~ ", GOFs.updated[[gu]])), fit, 

direction = "<") 

      }else{ 
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      rocs[[gu]] <- pROC::roc(as.formula(paste0("specification ~ ", GOFs.updated[[gu]])), fit, 

direction = ">") 

      } 

        } 

     

     

    #Plot ROC curves 

    windowsFonts(Times = windowsFont("Times New Roman")) 

    for (gu in 1:length(GOFs.updated)){ 

      if(gu == 1){ 

        plot(rocs[[1]], col = "#555555", lty = 1, lwd=1, xlab="false positive rate (1 - 

specificity)", ylab="true positive rate (sensitivity)", legacy.axes = TRUE, family = "Times") 

        legend.full <- c(paste0(GOFs.updated[[1]], " (AUC = ", round(test.GOF[[1]]$AUC,3), 

")")) 

      } else { 

        plot(rocs[[gu]], col = "#555555", lty = gu, lwd=1+gu/10*5, add = TRUE, legacy.axes = 

TRUE, family = "Times") 

        legend.full <- c(legend.full,paste0(GOFs.updated[[gu]], " (AUC = ", 

round(test.GOF[[gu]]$AUC,3), ")")) 

      } 

    } 

     

    op <- par(family = "serif") 

     

    legend("bottomright", 

           title= paste0("fit indices with AUC >= ", AUC.cut), 

           legend = legend.full,  

           col = "#555555",  

           bty="n", 

           lty = 1:gu, 

           lwd=1:1+gu/10*5, 

           text.col = "black",  

           horiz = F) 

     

    par(op) 

     

    #Save plot externally 

    tiff("ROCcurve.tiff", units="cm", width=14, height=14, res=600) 

 

    windowsFonts(Times = windowsFont("Times New Roman")) 

    for (gu in 1:length(GOFs.updated)){ 

      if(gu == 1){ 

        plot(rocs[[1]], col = "#555555", lty = 1, lwd=1, xlab="false positive rate (1 - 

specificity)", ylab="true positive rate (sensitivity)", legacy.axes = TRUE, family = "Times") 

        legend.full <- c(paste0(GOFs.updated[[1]], " (AUC = ", round(test.GOF[[1]]$AUC,3), 

")")) 

      } else { 

        plot(rocs[[gu]], col = "#555555", lty = gu, lwd=1+gu/10*5, add = TRUE, legacy.axes = 

TRUE, family = "Times") 

        legend.full <- c(legend.full,paste0(GOFs.updated[[gu]], " (AUC = ", 

round(test.GOF[[gu]]$AUC,3), ")")) 

      } 

    } 

     

    op <- par(family = "serif") 

     

    legend("bottomright", 

           title= paste0("fit indices with AUC >= ", AUC.cut), 

           legend = legend.full,  

           col = "#555555",  

           bty="n", 

           lty = 1:gu, 

           lwd=1:1+gu/10*5, 

           text.col = "black",  

           horiz = F) 

    par(op) 

     

    dev.off() 

     

  } else if (length(GOFs.updated)>0 & length(GOFs.updated)<7){ 

     

    print("ROC curves are only displayed when less than seven fit indices perform well.") 

     

  } else {print("There is no fit index meeting the AUC criteria.")} 

   

} 
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#### 

#Function to display fit index distribution and cutoff (including its accuracy) 

#### 

 

cutoffPerform <- function(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, data = 

fit) { 

   

   

  #Load required packages 

  if (!require(cutpointr)) { install.packages("cutpointr"); require(cutpointr) } 

  if (!require(ggpubr)) { install.packages("ggpubr"); require(ggpubr) } 

   

  #Select only the best demarcating fit indices (i.e., those with AUC >= than AUC cutpoint) 

and save them in one object 

  return.list <- list() 

  GOFs.updated <- c() 

  for (g in 1:length(GOFs)){ 

    GOF <- stringToQuoser(GOFs[[g]]) 

     

    if (is.na(match(GOFs[[g]], GOFs.reverse)) == TRUE){ 

      test.GOF <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, pos_class = 

"correctly specified",  

                                       neg_class = "misspecified", 

                                       direction = "<=",  

                                       method = maximize_metric, metric = youden, na.rm=TRUE, 

use_midpoints=TRUE)   

       

    }else{ 

      test.GOF <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, pos_class = 

"correctly specified",  

                                       neg_class = "misspecified", 

                                       direction = ">=",  

                                       method = maximize_metric, metric = youden, na.rm=TRUE, 

use_midpoints=TRUE) 

    } 

     

    if (test.GOF$AUC>=AUC.cut){ 

      GOFs.updated <- c(GOFs.updated, GOFs[[g]]) 

    }  

  } 

   

  #Here: only for those fit indices with AUC >= than AUC cutpoint. 

  if (length(GOFs.updated)>0){ 

     

    test.GOF <- list() 

     

    #Save those GOFs with AUC >= than AUC cutpoint. 

    for (gu in 1:length(GOFs.updated)){ 

      GOF <- stringToQuoser(GOFs.updated[[gu]]) 

       

      if (is.na(match(GOFs.updated[[gu]], GOFs.reverse)) == TRUE){ 

        test.GOF[[gu]] <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, 

pos_class = "correctly specified",  

                                               neg_class = "misspecified", 

                                               direction = "<=",  

                                               method = maximize_metric, metric = youden, 

na.rm=TRUE, use_midpoints=TRUE)  

         

      }else{ 

        test.GOF[[gu]] <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, 

pos_class = "correctly specified",  

                                               neg_class = "misspecified", 

                                               direction = ">=",  

                                               method = maximize_metric, metric = youden, 

na.rm=TRUE, use_midpoints=TRUE) 

      } 

       

    } 

     

     

    #Plot fit index distribution 

    distr <- list() 

    for (gu in 1:length(GOFs.updated)){ 

      names(test.GOF[[gu]][["data"]][[1]])[1] <- "value" 
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      windowsFonts(Times = windowsFont("Times New Roman"))  

      distr[[gu]] <- test.GOF[[gu]][["data"]][[1]] %>% ggplot( aes(x=value, 

fill=specification)) + 

                      geom_histogram(alpha=0.5, position = 'identity', bins=30) + 

                      xlab(paste0(GOFs.updated[[gu]], "\ncutoff = 

",round(test.GOF[[gu]]$optimal_cutpoint,3),": accuracy = ", round(test.GOF[[gu]]$acc,3),  

                                                      ", \ntype I error rate = ", round((1-

test.GOF[[gu]]$specificity)*100,0),"%", 

                                                      ", type II error rate = ", round((1-

test.GOF[[gu]]$sensitivity)*100,0),"%")) + 

                      ylab("")+ aes(fill=specification) + theme_minimal() + 

scale_fill_manual(values=c("gray70", "gray40")) + 

                      geom_vline(xintercept = test.GOF[[gu]]$optimal_cutpoint, 

linetype="solid", color = "black", size=1)+ 

                      annotate(x=test.GOF[[gu]]$optimal_cutpoint,y=+Inf, label= paste0("cutoff 

\n= \n",round(test.GOF[[gu]]$optimal_cutpoint,3)),vjust=2, geom="label", size=3, family = 

"Times")+ 

                      guides(fill=guide_legend(title="analysis model"))+               

                      theme(text=element_text(family="Times"))  

      names(test.GOF[[gu]][["data"]][[1]])[1] <- paste0(GOFs.updated[[gu]]) 

       } 

     

    full.distr <- ggpubr::ggarrange(plotlist=distr,  common.legend=TRUE) 

    full.distr <- ggpubr::annotate_figure(full.distr, 

                                          left = text_grob(paste0("count", collapse=""), color 

= "black", size = 12, rot = 90, family = "Times")) 

     

     

    return.list[[1]] <- full.distr 

     

    #Save plots externally 

    ggplot2::ggsave("Cutoff.tiff", full.distr, height = 17, width = 20, dpi = 600, units = 

"cm") 

     

    #Display (accuracy of) cutoffs for fit indices 

    for (gu in 1:length(GOFs.updated)){ 

      return.list[[gu+1]] <- summary(test.GOF[[gu]]) 

    } 

     

    return(return.list) 

     

  } else {print("There is no fit index meeting the AUC criteria.")} 

   

} 

 

 

#### 

#Function to tabulate tailored cutoffs against empirical values of fit indices 

#### 

 

modelfit <- function(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, 

empirical.model = empirical.model, simulated.data = fit) { 

   

  #Load required packages 

  if (!require(cutpointr)) { install.packages("cutpointr"); require(cutpointr) } 

  if (!require(ggpubr)) { install.packages("ggpubr"); require(ggpubr) } 

  if (!require(lavaan)) { install.packages("lavaan"); require(lavaan) } 

  if (!require(dplyr)) { install.packages("dplyr"); require(dplyr) } 

  if (!require(tibble)) { install.packages("tibble"); require(tibble) } 

  if (!require(tableHTML)) { install.packages("tableHTML"); require(tableHTML) } 

   

  #Select only the best demarcating fit indices (i.e., those with AUC >= than AUC cutpoint) 

and save them in one object 

  GOFs.updated <- c() 

  for (g in 1:length(GOFs)){ 

    GOF <- stringToQuoser(GOFs[[g]]) 

     

    if (is.na(match(GOFs[[g]], GOFs.reverse)) == TRUE){ 

      test.GOF <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, pos_class = 

"correctly specified",  

                                       neg_class = "misspecified", 

                                       direction = "<=",  

                                       method = maximize_metric, metric = youden, na.rm=TRUE, 

use_midpoints=TRUE)   

       

    }else{ 
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      test.GOF <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, pos_class = 

"correctly specified",  

                                       neg_class = "misspecified", 

                                       direction = ">=",  

                                       method = maximize_metric, metric = youden, na.rm=TRUE, 

use_midpoints=TRUE) 

    } 

     

    if (test.GOF$AUC>=AUC.cut){ 

      GOFs.updated <- c(GOFs.updated, GOFs[[g]]) 

    }  

  } 

   

  #Here: only for those fit indices with AUC >= than AUC cutpoint. 

  if (length(GOFs.updated)>0){ 

     

    test.GOF <- list() 

     

    #Save those fit indices with AUC >= than AUC cutpoint. 

    for (gu in 1:length(GOFs.updated)){ 

      GOF <- stringToQuoser(GOFs.updated[[gu]]) 

       

      if (is.na(match(GOFs.updated[[gu]], GOFs.reverse)) == TRUE){ 

        test.GOF[[gu]] <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, 

pos_class = "correctly specified",  

                                               neg_class = "misspecified", 

                                               direction = "<=",  

                                               method = maximize_metric, metric = youden, 

na.rm=TRUE, use_midpoints=TRUE)  

         

      }else{ 

        test.GOF[[gu]] <- cutpointr::cutpointr(fit, x = !!GOF, class = specification, 

pos_class = "correctly specified",  

                                               neg_class = "misspecified", 

                                               direction = ">=",  

                                               method = maximize_metric, metric = youden, 

na.rm=TRUE, use_midpoints=TRUE) 

      } 

       

    } 

     

     

    #Save tailored cutoffs and compare them in a table to the empirical values of fit indices 

    ROC.fit <- c() 

    for (gu in 1:length(GOFs.updated)){ 

      ROC.fit <- c(ROC.fit, round(test.GOF[[gu]]$optimal_cutpoint,3)) 

    } 

    names(ROC.fit) <- GOFs.updated 

     

    fit.tbl <- 

cbind(as.data.frame(ROC.fit),as.data.frame(round(c(lavaan::fitMeasures(empirical.model, 

fit.measures=GOFs.updated)), digits = 3))) 

    colnames(fit.tbl) <- c("tailored.cutoffs", "empirical.values") 

    rownames(fit.tbl) <- GOFs.updated 

     

    for (gu in 1:length(GOFs.updated)){ 

      if (is.na(match(GOFs.updated[[gu]], GOFs.reverse)) == FALSE){ 

        fit.tbl[GOFs.updated[[gu]],] <- fit.tbl[GOFs.updated[[gu]],]*(-1) 

      }} 

     

    fit.tbl <- data.frame(fit.tbl) %>%  

      dplyr::mutate(empirical.values = ifelse(empirical.values > tailored.cutoffs, 

paste0('<font color="red">', empirical.values, '</font>'), paste0('<font color="green">', 

empirical.values, '</font>')))  

    rownames(fit.tbl) <- GOFs.updated 

     

    for (gu in 1:length(GOFs.updated)){ 

      if (is.na(match(GOFs.updated[[gu]], GOFs.reverse)) == FALSE){ 

        fit.tbl[GOFs.updated[[gu]], "tailored.cutoffs"] <- fit.tbl[GOFs.updated[[gu]], 

"tailored.cutoffs"]*(-1) 

        fit.tbl[GOFs.updated[[gu]], "empirical.values"] <- gsub(">-

",">",fit.tbl[GOFs.updated[[gu]], "empirical.values"]) 

      }} 

     

    overview <- data.frame(fit.tbl) %>%  

      tableHTML::tableHTML(escape = FALSE, rownames=TRUE, widths = rep(100,3)) %>% 



196   

 

 
      add_theme('scientific') 

     

    return(overview) 

     

     

  } else {print("There is no fit index meeting the AUC criteria.")} 

   

} 

 

 

 

 

R Code for the Examples 

R Code for the Rosenberg Self-Esteem Scale Example 

############################# 

#Generate Tailored Cutoffs via the Simulation-cum-ROC Approach 

#for the Two-Factor Model of the Rosenberg Self-Esteem Scale 

############################ 

 

#Background:  - The Rosenberg Self-Esteem Scale (RSES; Rosenberg, 1965) measures global self-

esteem 

#             - 10 items (5 referring to positive feelings, 5 to negative ones) 

#             - Answers must be given on a four-point Likert scale 

 

#Goal:  Although initially constructed as a one-factor model,  

#       empirical studies instead found evidence for a two-factor model 

#       (for an overview see Supple et al., 2013).  

#       The goal is to test the two-factor RSES analysis models. 

 

 

#Data:  Publicly available data set including the RSES in Germany and the UK 

#       (Niessen, et al., 2020). 

#       --> here we only look at the UK data 

 

 

################### 

# Preparation 

################### 

 

#Clear working space 

rm(list = ls()) 

 

#Set working directory 

#setwd() 

 

#Load data 

load("R-1.Rda") 

 

#Select RSES data for UK respondents 

UK <- R1[ which(R1$COUN==2), ] 

RSES.data <- UK[c("RSES1", "RSES2R", "RSES3", "RSES4", "RSES5R", "RSES6R", "RSES7", "RSES8R", 

"RSES9R", "RSES10")] 

rm(R1, UK) 

 

#RSES in UK must to be recoded  

#so that higher values imply more self-esteem 

RSES.data$RSES1 <- 5-RSES.data$RSES1 

RSES.data$RSES2R <- 5-RSES.data$RSES2R 

RSES.data$RSES3 <- 5-RSES.data$RSES3 

RSES.data$RSES4 <- 5-RSES.data$RSES4 

RSES.data$RSES5R <- 5-RSES.data$RSES5R 

RSES.data$RSES6R <- 5-RSES.data$RSES6R 

RSES.data$RSES7 <- 5-RSES.data$RSES7 

RSES.data$RSES8R <- 5-RSES.data$RSES8R 

RSES.data$RSES9R <- 5-RSES.data$RSES9R 

RSES.data$RSES10 <- 5-RSES.data$RSES10 

 

#Load required package 

if (!require(lavaan)) { install.packages("lavaan"); require(lavaan) } 
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if (!require(psych)) { install.packages("psych"); require(psych) } 

if (!require(simsem)) { install.packages("simsem"); require(simsem) } 

 

#Read in functions for generating cutoffs via the simulation-cum-ROC approach 

source("FUNCTIONS_cutoffsROC.R") 

 

##################### 

# Input: Fit analysis model to empirical data 

##################### 

 

################# 

# Two-factor 

################# 

cfa1 <- " 

LV_RSES =~ NA*RSES1 + RSES3 + RSES4 + RSES7 + RSES10 

LV_RSESR =~ NA*RSES2R + RSES5R + RSES6R  + RSES8R + RSES9R  

             

LV_RSES + LV_RSESR ~ 0*1 

" 

 

cfa1.fit <- lavaan::cfa(cfa1, data = RSES.data, estimator = "mlr", missing = "fiml", 

std.lv=TRUE) 

summary(cfa1.fit, standardized = T, fit.measures = T) 

 

#Extract model parameters for the simulation-cum-ROC approach 

model1 <- as.data.frame(lavaan::parameterEstimates(cfa1.fit))[c("lhs", "op", "est", "rhs")] 

model1$rhs[model1$op == "~1"] <- "1" 

model1$op[model1$op == "~1"] <- "~" 

model1 <- paste(paste0(model1$lhs, model1$op, round(model1$est, digits=3), "*", model1$rhs), 

collapse = "\n ") 

model1  

 

 

##############################################################################################

############## 

 

######### 

#Step 1: Simulate data and fit analysis model to simulated data 

######### 

 

 

#Population model relative to which the analysis model is correctly specified 

populationModel.cor <- model1 

 

#Population model (bi-factor with positive and negative method factor) relative to which the 

analysis model is misspecified 

cfa2 <- " 

LV_RSES =~ NA*RSES1 + RSES3 + RSES4 + RSES7 + RSES10 + RSES2R + RSES5R + RSES6R  + RSES8R + 

RSES9R  

 

LV_RSESPO =~ NA*RSES1 + RSES3 + RSES4 + RSES7 + RSES10 

LV_RSESNE =~ NA*RSES2R + RSES5R + RSES6R  + RSES8R + RSES9R  

             

LV_RSES + LV_RSESPO + LV_RSESNE ~ 0*1 

LV_RSES ~~ 0*LV_RSESPO 

LV_RSES ~~ 0*LV_RSESNE 

LV_RSESPO ~~ 0*LV_RSESNE 

" 

 

cfa2.fit <- lavaan::cfa(cfa2, data = RSES.data, estimator = "mlr", missing = "fiml", 

std.lv=TRUE) 

summary(cfa2.fit, standardized = T, fit.measures = T) 

 

model2 <- as.data.frame(lavaan::parameterEstimates(cfa2.fit))[c("lhs", "op", "est", "rhs")] 

model2$rhs[model2$op == "~1"] <- "1" 

model2$op[model2$op == "~1"] <- "~" 

model2 <- paste(paste0(model2$lhs, model2$op, round(model2$est, digits=3), "*", model2$rhs), 

collapse = "\n ") 

model2 

 

populationModel.mis <- model2 

 

#Analysis model  

analysisModel <- cfa1 

 

###### 
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#Response distribution per item (skewness and excessive kurtosis) 

dist <- simsem::bindDist(skewness = psych::describe(RSES.data)$skew,  

                         kurtosis = psych::describe(RSES.data)$kurtosis) 

 

#Sample size 

sample <- c(468) 

 

#Simulation runs 

runs <- 500 

 

#Estimator 

estimator <- c("MLR") 

 

#Select seed to make the simulation reproducible 

seed <- c(12345) 

 

#Track starting time 

start_time <- Sys.time() 

 

#Execute simulation and save fit indices per run 

fit <- sim.Dat(runs=runs, analysisModel=analysisModel, sample=sample, 

populationModel.cor=populationModel.cor,  

               populationModel.mis=populationModel.mis, std.lv=TRUE, modelKind = "cfa", 

estimator = estimator,  

               dist = dist, seed=seed) 

 

#Track end time and estimate needed time 

end_time <- Sys.time() 

end_time - start_time 

 

#Clean cache to free up memory space 

invisible(gc()) 

 

######### 

#Step 2: Evaluate the performance of fit indices 

######### 

 

#Choose fit indices of interest 

GOFs <- c("chisq.scaled","cfi.scaled", "rmsea.scaled", "srmr") 

 

#Which of the fit indices of interest are reverse coded, that is higher values imply better 

fit (e.g., CFI)? 

#if no reversed fit indices are included please write GOFs.reverse <- c() 

GOFs.reverse <- c("cfi.scaled") 

 

#Set AUC cutpoint --> you may play around with it 

AUC.cut <- 0.800 

 

#Plot ROC curve(s) 

plotROC(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, data = fit) 

 

######### 

#Step 3: Generate tailored cutoffs 

######### 

cutoffPerform(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, data = fit) 

 

############################################################################################## 

######### 

#Output: Evaluate the fit of the  analysis model to empirical data with tailored cutoffs  

######## 

 

#Tabulate tailored cutoffs via the simulation-cum-ROC approach against empirical fit indices 

modelfit(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, empirical.model = 

cfa1.fit, simulated.data = fit) 

 

 

########################### 

#REFERENCES 

#Niessen, D., Partsch, M., Groskurth, K. (2020). Data for: An English-Language Adaptation of 

the Risk Proneness Short Scale (R-1) (Version: 1.0.0). https://doi.org/10.7802/2080 

#Rosenberg, M. (1965). Society and the adolescent self-image. Princeton University Press. 

#Supple, A. J., Su, J., Plunkett, S. W., Peterson, G. W., & Bush, K. R. (2013). Factor 

structure of the Rosenberg self-esteem scale. Journal of Cross-Cultural Psychology, 44(5), 

748-764. https://doi.org/10.1177/0022022112468942 
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R Code for the Social Desirability-Gamma Short Scale Example  

############################# 

#Generate Tailored Cutoffs via the Simulation-cum-ROC Approach 

#for the Model of the Social Desirability-Gamma Short Scale 

############################ 

 

#Background:  - The Social Desirability-Gamma Short Scale (KSE-G; Kemper et al., 2014; Niessen 

et al., 2019) measures two aspects of the Gamma factor  

#              of socially desirable responding (SDR) with three items each:  

#               exaggerating positive qualities (PQ+) and minimizing negative qualities (NQ-). 

#             - The scale is constructed as a two-factor scale. Both factors are allowed to 

correlate. 

 

#Data:  Freely available data set including the KSE-G in Germany and the UK 

#       (Niessen, et al., 2018).  

#       For the sample description, see Niessen, et al. (2019) --> here we only look at the 

German data 

 

 

################### 

# Preparation 

################### 

 

#Clear working space 

rm(list = ls()) 

 

#Set working directory 

#setwd() 

 

#Load data 

load("KSE-G.Rda") 

 

#Select KSE-G data for German respondents 

GER <- KSEG[ which(KSEG$COUN==1), ] 

KSEG.data <- GER[c("SDPQ1", "SDPQ2", "SDPQ3", "SDNQ1", "SDNQ2", "SDNQ3")] 

rm(KSEG, GER) 

 

#Recode NQ- so that higher values imply more socially desirable responding 

KSEG.data$SDNQ1 <- 6-KSEG.data$SDNQ1 

KSEG.data$SDNQ2 <- 6-KSEG.data$SDNQ2 

KSEG.data$SDNQ3 <- 6-KSEG.data$SDNQ3 

 

#Load required package 

if (!require(lavaan)) { install.packages("lavaan"); require(lavaan) } 

if (!require(psych)) { install.packages("psych"); require(psych) } 

if (!require(simsem)) { install.packages("simsem"); require(simsem) } 

 

#Read in functions for generating cutoffs via the simulation-cum-ROC approach 

source("FUNCTIONS_cutoffsROC.R") 

 

##################### 

# Input: Fit analysis model to empirical data 

##################### 

 

################# 

# Two-factor (exact/approximate fit) 

################# 

cfa1 <- " 

LV_SDPQ =~ NA*SDPQ1 + SDPQ2 + SDPQ3 

LV_SDNQ =~ NA*SDNQ1 + SDNQ2 + SDNQ3 

             

LV_SDPQ+LV_SDNQ ~ 0*1 

" 

 

cfa1.fit <- lavaan::cfa(cfa1, data = KSEG.data, estimator = "mlr", missing = "fiml", 

std.lv=TRUE) 

summary(cfa1.fit, standardized = T, fit.measures = T) 

 

#Extract model parameters for the simulation-cum-ROC approach 

model1 <- as.data.frame(lavaan::parameterEstimates(cfa1.fit))[c("lhs", "op", "est", "rhs")] 

model1$rhs[model1$op == "~1"] <- "1" 

model1$op[model1$op == "~1"] <- "~" 

model1 <- paste(paste0(model1$lhs, model1$op, round(model1$est, digits=3), "*", model1$rhs), 

collapse = " \n") 
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model1  

 

################# 

# Select for: Modification of the two-factor analysis model (exact fit) 

################# 

#modindices(cfa1.fit) #Highest modification index: SDPQ1 ~~ SDPQ2: MI = 25.437 

 

#Define two-factor analysis model including additional residual covariance 

#cfa2 <- " 

#LV_SDPQ =~ NA*SDPQ1 + SDPQ2 + SDPQ3 

#LV_SDNQ =~ NA*SDNQ1 + SDNQ2 + SDNQ3 

             

#LV_SDPQ+LV_SDNQ ~ 0*1 

#SDPQ1 ~~ SDPQ2 

#" 

 

#cfa2.fit <- lavaan::cfa(cfa2, data = KSEG.data, estimator = "mlr", missing = "fiml", 

std.lv=TRUE) 

#summary(cfa2.fit, standardized = T, fit.measures = T) 

 

#Extract model parameters for the simulation-cum-ROC approach 

#model2 <- as.data.frame(lavaan::parameterEstimates(cfa2.fit))[c("lhs", "op", "est", "rhs")] 

#model2$rhs[model2$op == "~1"] <- "1" 

#model2$op[model2$op == "~1"] <- "~" 

#model2 <- paste(paste0(model2$lhs, model2$op, round(model2$est, digits=3), "*", model2$rhs), 

collapse = " \n") 

#model2  

 

 

##############################################################################################

############## 

 

######### 

#Step 1: Simulate data and fit analysis model to simulated data 

######### 

 

#Population model relative to which the analysis model is correctly specified 

populationModel.cor <- model1 

 

#Population model relative to which the analysis model is misspecified 

print(paste0("The residual correlation of .500 between SDPQ1 and SDPQ2 corresponds to a 

residual covariance of ", round(0.50*sqrt(0.505*0.321),3))) # 0.201 

print(paste0("The residual correlation of .500 between SDNQ1 and SDNQ3 corresponds to a 

residual covariance of ", round(0.50*sqrt(0.673*0.556),3))) # 0.306 

populationModel.mis <- paste(model1, " \nSDPQ1~~0.201*SDPQ2 \nSDNQ1~~0.306*SDNQ3") 

 

#Analysis model  

analysisModel <- cfa1 

 

################# 

# Select for: Modification of the two-factor analysis model (exact fit) 

################# 

#Population model relative to which the analysis model is correctly specified 

#populationModel.cor <- model2 

 

#Population model relative to which the analysis model is misspecified 

#print(paste0("The residual correlation of .500 between SDPQ1 and SDPQ3 corresponds to a 

residual covariance of ", round(0.50*sqrt(0.653*0.224),3))) # 0.191 

#print(paste0("The residual correlation of .500 between SDNQ1 and SDNQ3 corresponds to a 

residual covariance of ", round(0.50*sqrt(0.684*0.554),3))) # 0.308 

#populationModel.mis <- paste(model2, "\nSDPQ1~~0.191*SDPQ3 \nSDNQ1~~0.308*SDNQ3") 

 

#Analysis model  

#analysisModel <- cfa2 

 

################# 

# Select for: Two-factor analysis model (approximate fit) 

################# 

#Population model relative to which the analysis model is correctly specified 

#print(paste0("The residual correlation of .200 between SDPQ1 and SDPQ2 corresponds to a 

residual covariance of ", round(0.20*sqrt(0.505*0.321),3))) # 0.081 

#print(paste0("The residual correlation of .200 between SDNQ1 and SDNQ3 corresponds to a 

residual covariance of ", round(0.20*sqrt(0.673*0.556),3))) # 0.122 

#populationModel.cor <- paste(model1, "\nSDPQ1~~0.081*SDPQ2 \nSDNQ1~~0.122*SDNQ3") 

 

#Population model relative to which the analysis model is misspecified 
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#print(paste0("The residual correlation of .500 between SDPQ1 and SDPQ2 corresponds to a 

residual covariance of ", round(0.50*sqrt(0.505*0.321),3))) # 0.201 

#print(paste0("The residual correlation of .500 between SDNQ1 and SDNQ3 corresponds to a 

residual covariance of ", round(0.50*sqrt(0.673*0.556),3))) # 0.306 

#populationModel.mis <- paste(model1, " \nSDPQ1~~0.201*SDPQ2 \nSDNQ1~~0.306*SDNQ3") 

 

#Analysis model  

#analysisModel <- cfa1 

 

###### 

 

#Response distribution per item (skewness and excessive kurtosis) 

dist <- simsem::bindDist(skewness = psych::describe(KSEG.data)$skew,  

                         kurtosis = psych::describe(KSEG.data)$kurtosis) 

 

#Sample size 

sample <- c(474) 

 

#Simulation runs 

runs <- 500 

 

#Estimator 

estimator <- c("MLR") 

 

#Select seed to make the simulation reproducible 

seed <- c(12345) 

 

#Track starting time 

start_time <- Sys.time() 

 

#Execute simulation and save fit indices per run 

fit <- sim.Dat(runs=runs, analysisModel=analysisModel, sample=sample, 

populationModel.cor=populationModel.cor,  

               populationModel.mis=populationModel.mis, std.lv=TRUE, modelKind = "cfa", 

estimator = estimator,  

               dist = dist, seed=seed) 

 

#Track end time and estimate needed time 

end_time <- Sys.time() 

end_time - start_time 

 

#Clean cache to free up memory space 

invisible(gc()) 

 

######### 

#Step 2: Evaluate the performance of fit indices 

######### 

 

#Choose fit indices of interest 

GOFs <- c("chisq.scaled","cfi.scaled", "rmsea.scaled", "srmr") 

 

#Which of the fit indices of interest are reverse coded, that is higher values imply better 

fit (e.g., CFI)? 

#if no reversed fit indices are included please write GOFs.reverse <- c() 

GOFs.reverse <- c("cfi.scaled") 

 

#Set AUC cutpoint --> you may play around with it 

AUC.cut <- 0.800 

#AUC.cut <- 0.700 # to reproduce example of approximate fit 

 

#Plot ROC curve(s) 

plotROC(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, data = fit) 

 

######### 

#Step 3: Generate tailored cutoffs 

######### 

cutoffPerform(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, data = fit) 

 

############################################################################################## 

######### 

#Output: Evaluate the fit of the analysis model to empirical data with tailored cutoffs  

######## 

 

################# 

#Test of two-factor analysis model (exact/approximate fit) 

################# 
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#Tabulate tailored cutoffs via the simulation-cum-ROC approach against empirical fit indices 

modelfit(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, empirical.model = 

cfa1.fit, simulated.data = fit) 

 

################# 

# Select for: Modification of the two-factor analysis model (exact fit) 

################# 

#Tabulate tailored cutoffs via the simulation-cum-ROC approach against empirical fit indices 

#modelfit(GOFs = GOFs, GOFs.reverse = GOFs.reverse, AUC.cut = AUC.cut, empirical.model = 

cfa2.fit, simulated.data = fit) 

 

 

########################### 
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Additional File 2: Generate Tailored Cutoffs for Additional 

Models of the Social Desirability-Gamma Short Scale 

Modified Two-Factor Model  

Tailored cutoffs showed that the two-factor Social Desirability-Gamma Short Scale model did 

not exactly fit the data. The modification indices (MI) suggested including a residual 

covariance between the first and second item of the PQ+ factor (exaggerating one’s positive 

qualities; MI = 25.44). Including such a residual covariance was not only methodologically but 

also theoretically justified as both items ask for emotional control (Item 1, PQ+, English-

language version: “In an argument, I always remain objective and stick to the facts.” Item 2, 

PQ+, English-language version: “Even if I am feeling stressed, I am always friendly and polite 

to others.”). In the following, we derived tailored cutoffs via the simulation-cum-ROC 

approach to testing the modified two-factor model (i.e., the two-factor model with a residual 

covariance between Items 1 and 2 of PQ+) in empirical data (see Figure S1).  

We took the structure and parameter estimates from the empirical modified two-factor 

model as the H0 population model. A plausible H1 population model might be like the H0 

population model but with two additional residual correlations of r = .50. We chose an 

additional residual correlation between the first and last item of the NQ− factor (resulting in a 

covariance of 0.31), both referring to behavior in interactions. We chose another residual 

correlation between the first and last item of the PQ+ factor (resulting in a covariance of 0.19), 

both referring to conversations. We simulated data from the H0 and H1 population models, 

aligning with the characteristics of the empirical setting. We used the modified two-factor 

model as an analysis model and fit it to all simulated data (Figure S2). Figure S3 shows that χ2, 

CFI, RMSEA, and SRMR had an AUC of .80 or higher. SRMR had the highest AUC (= .98). 

The recommended cutoff for χ2 was 12.59, for CFI .994, for RMSEA .041, and for SRMR .025. 

As suggested by the AUC, the SRMR cutoff had the highest accuracy (= .94), as well as the 

lowest Type I error rate (= 8%) and Type II error rate (= 4%), as visualized in Figure S4. The 

SRMR had the best ability to demarcate between correctly specified and misspecified models. 

The empirical values of χ2, RMSEA, and SRMR passed the corresponding cutoffs, and 

the empirical value of CFI failed its cutoff (although it was very close to it; compare Figures 

S1 and S4). We accepted the modified two-factor model because χ2, RMSEA, and SRMR had 

a better discrimination ability (i.e., higher AUCs) than CFI in the setting of interest. A two-
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factor population model with a residual covariance between Items 1 and 2 of PQ+ seemed to 

have generated the data.   

 

Figure S1: Empirical Modified Two-Factor Social Desirability-Gamma Short Scale Model 

 
Note. Unstandardized coefficients. PQ+ = exaggerating positive qualities; NQ− = minimizing negative 

qualities. We recoded NQ− so that higher values imply more socially desirable responses. We omitted 

the residual variances and the mean structure for clarity. N = 474. *** p < .001.  
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Figure S2: Proposed Modified Analysis and Population Models of the Social Desirability-Gamma 

Short Scale 

 
Note. We simulated data from both population models and fit the same analysis model to the data. 

Because the analysis model was structurally identical to the H0 population model, it was correctly 

specified when fit to data generated from that population model. Because the analysis model differed 

from the H1 population model, it was misspecified when fit to data generated from that population 

model. Unstandardized coefficients. PQ+ = exaggerating positive qualities; NQ− = minimizing negative 

qualities. We recoded NQ− so that higher values imply more socially desirable responses. We omitted 

the residual variances and the mean structure for clarity. 
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Figure S3: ROC Curves for Fit Indices with AUC ≥ .80 of the Modified Social Desirability-Gamma 

Short Scale Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Cfi.scaled is the CFI version and rmsea.scaled 

is the RMSEA version calculated with this test statistic. 
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Figure S4: Cutoffs for Fit Indices with AUC ≥ .80 of the Modified Social Desirability-Gamma Short 

Scale Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Cfi.scaled is the CFI version and rmsea.scaled 

is the RMSEA version calculated with this test statistic. The distribution colored in lighter gray 

originates from correctly specified models. The distribution colored in darker gray originates from 

misspecified models. Overlapping (parts of) distributions have an even darker gray color than the 

distribution from misspecified models. The vertical dash corresponds to the cutoff for each fit index (at 

the highest sum of sensitivity and specificity – 1). 
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Approximately Fitting Model 

Here, we again generated tailored cutoffs for the initial two-factor model of the Social 

Desirability-Gamma Short Scale (see Figure S5). Unlike the example in the paper, we 

generated cutoffs for an approximately (instead of exactly) correctly specified model. 

Generating tailored cutoffs for approximately (instead of exactly) correctly specified models 

allowed us to incorporate the assumption of imperfect but acceptable model fit.  

Like in the paper, we fit the two-factor model of the Social Desirability-Gamma Short 

Scale (Kemper et al., 2014; Nießen et al., 2019) to data from Germany (Nießen et al., 2018). 

Then, we defined the H0 and H1 population models (Figure S6, see Figure 8 of the paper). The 

structure and parameter estimates of the H0 population model were identical to those from the 

two-factor empirical model. Additionally, the H0 population model included two residual 

correlations of r = .20 that we considered small. We modeled a residual correlation between 

the first and second item of the PQ+ factor (resulting in a residual covariance of 0.08), which 

both ask for emotional control. Further, we modeled an additional residual correlation between 

the first and third item of the NQ− factor (resulting in a residual covariance of 0.12), which 

both refer to behavior in interactions. We used the two-factor model as an analysis model. 

When fitting the two-factor analysis model to data sampled from that H0 population model, the 

analysis model was underspecified (or misspecified). We still labeled the two-factor analysis 

model fit to data sampled from that H0 population model as (approximately) correctly specified. 

We were explicitly willing to accept minor misspecification (such as small residual 

correlations), for instance, to prevent overfitting.  

We defined the H1 population model in the same way as in the paper to compare cutoffs 

across examples for exact and approximate fit. The H1 population model was identical to the 

H0 population model except for two substantial residual correlations with r = .50. If the true 

population model were a two-factor one with (at most) two minor residual correlations (r = 

.20), we would accept the two-factor analysis model. If the true population model were 

different from a two-factor one, such as a two-factor model with two additional residual 

correlations of (at least) r = .50, we would reject the two-factor analysis model. 

The discrimination ability of χ2, RMSEA, and SRMR was worse for fit indices based 

on approximately instead of exactly correctly specified models (Figure S7, Figure 9). The 

AUCs ranged from .73 to .82 for the former and from .83 to .92 for the latter. Remember that 

the fit index distribution from misspecified models stayed the same. Thus, the fit index 

distribution from approximately correctly specified models overlapped stronger with the one 



Manuscript II  209 

 

 

from misspecified models than the fit index distribution from exactly correctly specified 

models. The fit index distribution from approximately correctly specified models contained an 

(acceptable) form of misspecification. It was shifted towards the fit index distribution from 

(severely) misspecified models. Alike (Figure S8, Figure 10), cutoffs that balance Type I and 

Type II errors were (a bit) more lenient with approximately (χ2(8) ≤ 11.25; RMSEA ≤ .029; 

SRMR ≤ .028) than exactly correctly specified models (χ2(8) ≤ 9.54; RMSEA ≤ .020; SRMR 

≤ .025). The accuracy, as well as the Type I and Type II error rates, were worse for the former 

(e.g., accuracy = 751; Type I error rate = 28%; Type II error rate = 21% for SRMR) than the 

latter (e.g., accuracy = .851; Type I error rate = 19%; Type II error rate = 11% for SRMR).  

In this example, the conclusion was the same: The two-factor model of the Social 

Desirability-Gamma Short Scale must be rejected because the empirical values (χ2(8) = 32.06, 

p < .001; RMSEA = .080; SRMR = .048) failed all cutoffs.   

So, what is the essential difference between using approximately instead of exactly 

correctly specified models? The crucial difference is that we explicitly model different 

assumptions of the population model. When using approximately correctly specified models, 

we explicitly model the assumption (and generate cutoffs accordingly) that the analysis model 

does not need to be perfectly identical to the population model to be correctly specified. When 

using exactly correctly specified models, we explicitly model the assumption (and generate 

cutoffs accordingly) that the analysis model needs to be perfectly identical to the population 

model to be correctly specified. Thus, the crucial difference of cutoffs based on exactly and 

approximately correctly specified models concerns the definition of the H0 population model—

we either incorporate the assumption of perfect or imperfect fit. In turn, the definition of the 

H0 population model influences the resulting cutoffs, accuracy, Type I and Type error rates, 

and AUCs, and, thus, how we look at the empirical data.  
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Figure S5: Empirical Two-Factor Social Desirability-Gamma Short Scale Model  

 
Note. Unstandardized coefficients. PQ+ = exaggerating positive qualities; NQ− = minimizing negative 

qualities. We recoded NQ− so that higher values imply more socially desirable responses. We omitted 

the residual variances and the mean structure for clarity. N = 474. *** p < .001.   
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Figure S6: Proposed Analysis and Population Models of the Social Desirability-Gamma Short Scale 

for Testing Approximate Fit  

 
Note. We simulated data from both population models and fit the same analysis model to the data. 

Because the analysis model was structurally identical to the H0 population model, it was correctly 

specified when fit to data generated from that population model. Because the analysis model differed 

from the H1 population model, it was misspecified when fit to data generated from that population 

model. Unstandardized coefficients. PQ+ = exaggerating positive qualities; NQ− = minimizing negative 

qualities. We recoded NQ− so that higher values imply more socially desirable responses. We omitted 

the residual variances and the mean structure for clarity. 

  



212   

 

 
Figure S7: ROC Curves for Fit Indices with AUC ≥ .70 Testing the Approximate Fit of the Social 

Desirability-Gamma Short Scale Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Rmsea.scaled is the RMSEA version calculated 

with this test statistic. 
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Figure S8: Cutoffs for Fit Indices with AUC ≥ .70 Testing the Approximate Fit of the Social 

Desirability-Gamma Short Scale Model 

 
Note. Chisq.scaled is a ꭓ2 test statistic asymptotically equivalent to the robust Yuan-Bentler test statistic 

(Yuan & Bentler, 2000a) to account for non-normality. Rmsea.scaled is the RMSEA version calculated 

with this test statistic. The distribution colored in lighter gray originates from correctly specified 

models. The distribution colored in darker gray originates from misspecified models. Overlapping (parts 

of) distributions have an even darker gray color than the distribution from misspecified models. The 

vertical dash corresponds to the cutoff for each fit index (at the highest sum of sensitivity and specificity 

– 1).
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Abstract 

In many applications, measurement invariance does not hold. When a model with a certain level of 

invariance is rejected, the amount of non-invariance bias may either be consequential or practically 

irrelevant. So far, few attempts have been made to quantify the extent of bias due to the lack of 

measurement invariance. We derive new effect size measures from first principles called Measurement 

Invariance Violation Indices (MIVIs) for items and item sets. MIVIs assume that one can compare the 

basic measurement model across groups (i.e., configural invariance holds) but cannot compare some 

factor loadings, intercepts, and/or unique variances. Assuming partial invariance for a set of items, 

MIVIs quantify non-invariant factor loading, intercept, or uniqueness differences in relation to the 

pooled latent standard deviation (either per item or as an average for item sets). Thus, parameter 

differences can be interpreted in standard deviation units (of the pooled latent variable). One can further 

inspect the compensatory cancelation and non-compensatory aggregation effects of non-invariance bias 

when maintaining the directional information (signed MIVIs). MIVIs support the group-fair item 

selection, help to evaluate the questionnaire quality, and allow for assessing the amount of non-

invariance bias when comparing simple, observed statistics (e.g., mean scores) across groups.
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Introduction 

Statistical comparisons are ubiquitous in the social sciences. Researchers may, for instance, 

compare numeracy scores of an exam across two school classes or the learning motivation 

across two entire school districts. Such comparisons are only valid if the test captures the 

numeracy scores, alternatively learning motivation, without bias across the two groups. The 

latent construct (e.g., numeracy or learning motivation) must be placed on a comparable scale. 

Otherwise, researchers compare apples with oranges (Chen, 2008). Examining the validity of 

numerical group comparisons is called measurement invariance testing in linear latent variable 

modeling (and differential item functioning in item response theory frameworks; Osterlind & 

Everson, 2009).  

Crucially, some statistical comparisons (i.e., including variances or means) are only 

valid if specific levels of measurement invariance hold. If metric invariance does not hold, any 

differences (or lack of differences) in latent (co)variances might be spurious (Steenkamp & 

Baumgartner, 1998). If scalar invariance does not hold, any differences (or lack of differences) 

in latent or observed means might be spurious (Steenkamp & Baumgartner, 1998; Steinmetz, 

2013; cf. DeShon, 2004; Wu et al., 2007). The uniqueness invariance level answers the question 

of whether any differences (or lack of differences) in observed (co)variances might be spurious 

(Steenkamp & Baumgartner, 1998; Millsap & Olivera-Aguilar, 2012). 

Despite the necessity of establishing measurement invariance, applied researchers often 

compare group-level statistics (such as mean scores) without testing for measurement 

invariance (e.g., Boer et al., 2018). When researchers do report measurement invariance tests, 

they frequently find that invariance does not hold; especially uniqueness or scalar invariance 

is often hard to reach (e.g., Davidov et al., 2012, 2014; Dong & Dumas, 2020). A practical 

question thus arises: How consequential are any violations of invariance? In other words: How 

much non-invariance bias is present when comparing relevant group-level statistics (e.g., mean 

scores)? 

This work proposes an intuitive way to empirically quantify non-invariance bias in 

factor loadings, intercepts, and/or unique variances. Whereas researchers should refrain from 

comparing statistics (such as mean scores) across groups when non-invariance bias is large 

(e.g., intercepts differ strongly due to the different use of response styles), small non-invariance 

bias may not be detrimental. Several effect size measures currently compete for acceptance 

among psychometricians and more widespread recognition by applied researchers (for a 
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review, see Gunn et al., 2020). Our proposed effect size measures, termed Measurement 

Invariance Violation Indices (MIVIs), quantify the differences in measurement model 

parameters (i.e., factor loadings, intercepts, or unique standard deviations) in units of latent 

standard deviations pooled across groups. MIVIs provide an intuitive metric for bias in items 

and item sets. The indices are readily implemented in standard structural equation modeling 

(SEM) software for confirmatory factor analysis (CFA). We provide examples for the few code 

lines that need to be added in Mplus or R to estimate MIVIs. 

Testing for Measurement Invariance  

Basics of Measurement Invariance Testing 

Before defining MIVIs as effect size measures, we outline the basics of measurement 

invariance testing (Davidov et al., 2014; Millsap, 2011; Millsap & Olivera-Aguilar, 2012; 

Steenkamp & Baumgartner, 1998). Assuming a common-factor model holds, one can test 

measurement invariance across multiple groups. In the following, we consider a multi-group 

application in a unidimensional measurement scenario for individual i: Let 𝐱 be a p × 1 vector 

of observed measures, such as a set of approximately continuous rating scores across p items 

obtained from a social survey or psychological test. Let 𝑤𝑖 be the individual score on the 

common factor forming the latent dimension underlying the correlated p measures to achieve 

model identification (if necessary, by additional constraints). We measure 𝑤𝑖 by a set of items 

𝐱𝑖𝑘 for an individual who belongs to a specific group, such as language, nationality, gender, 

school class, or age group. We can then express the congeneric factor model for the kth 

subgroup (k = 1, ..., K), assuming p items and one common factor, as  

𝐱𝑖𝑘 = 𝛕𝑘 + 𝛌𝑘𝑤𝑖𝑘 + 𝐮𝑖𝑘.    (1) 

Here, 𝛕𝑘 is a p × 1 vector of regression intercept parameters, 𝛌𝑘 is a p × 1 vector of factor 

loading parameters, and 𝐮𝑖𝑘 is a p × 1 vector of unique scores. In line with classical test theory, 

unique scores are assumed to be statistically independent (i.e., uncorrelated) and do not 

correlate with common scores of the latent variable. The variance-covariance matrix, 𝚺, of the 

factor model in the kth subgroup is  

𝚺𝑘 = 𝛌𝑘𝛷𝑘𝛌𝑘
′  + 𝚯𝑘.     (2) 

Here, 𝛷𝑘 is the variance of the latent scores 𝐰𝑘 and 𝚯𝑘 is the variance matrix of the unique 

scores 𝐮𝑘. Then, the observed item means 𝐸(𝐱𝑘) are related to the latent factor mean 𝜅𝑘 in the 

kth subgroup as  
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𝐸(𝐱𝑘) =  𝛕𝑘 + 𝛌𝑘𝜅𝑘.     (3) 

Because the expected means of uniqueness terms are zero, they drop from Equation 3 (Millsap, 

2011; Millsap & Olivera-Aguilar, 2012; Steenkamp & Baumgartner, 1998).1 

Measurement invariance holds if a multi-group CFA model fits after constraining cross-

group parameters to equality: For a model to be invariant, the same item-to-factor structure 

(i.e., configural invariance), factor loadings (i.e., metric invariance; 𝛌1 = … = 𝛌𝐾) and 

intercepts (i.e., scalar invariance, 𝛕1 = … = 𝛕𝐾) must be equivalent across the K groups. For 

strict invariance to hold, even the unique item variances must be equal (i.e., uniqueness 

invariance, 𝚯1 = … = 𝚯𝐾). Readers can revisit the logic of invariance testing in Additional 

File 1 of the Supplementary Materials. Additional File 1 not only contains a detailed description 

of the traditional, sequential approach to measurement invariance testing (e.g., Meredith, 1993; 

Millsap, 2011; Steenkamp & Baumgartner, 1998) but also the description of a less well-known 

approach to measurement invariance testing by Raykov et al. (2013). As an alternative to the 

traditional bottom-up approach, Raykov et al. (2013) suggested a top-down procedure for 

measurement invariance testing.  

The Problem of Establishing Measurement Invariance 

Measurement invariance is indispensable for specific statistical comparisons to be valid but 

often hard to reach in empirical settings (Davidov et al., 2012, 2014). Lack of invariance 

hampers researchers’ ability to perform group comparisons. These comparisons, all too often, 

motivated the research in the first place (e.g., rankings of countries, comparability of validity 

coefficients across gender, or mean-level comparisons across age groups).  

However, the more restrictive the invariance level, the harder it is to reach. In Dong and 

Dumas’s (2020) meta-analysis of personality constructs (across culture, gender, and age 

groups), only 8 out of 67 group comparisons (11.9%) reached uniqueness invariance, and only 

22.4% reached scalar invariance. Most group comparisons only reached metric invariance 

(35.8%). Similarly, Zercher and colleagues (2015) conducted a measurement invariance test of 

items measuring Schwartz’s human value of Universalism across 90 groups. They found that 

metric invariance held for all groups, but (partial) scalar invariance held for only 37 out of 90 

groups (41.1%). In Dong and Dumas’s (2020) meta-analysis of personality constructs, about a 

 
1 DeShon (2004) and Wu et al. (2007) argued that the means of uniqueness terms are rarely zero in 

reality. Oftentimes factor models are not correctly specified and unmodeled latent variables lead to 

means of uniqueness terms that are different from zero.  
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quarter reached merely configural invariance (23.9%). Some group comparisons did not even 

attain configural invariance (6.0%). Chen (2008), who conducted a meta-analysis of cross-

cultural studies, supported the finding and found that 9 out of 130 group comparisons lacked 

configural invariance (6.9%). 

If uniqueness, scalar, or metric invariance is unattainable, there is always the option to 

test for partial invariance (Byrne et al., 1989). Equality constraints on the factor loadings, 

intercepts, or uniquenesses are relaxed for some items, whereas the rest remains constrained 

(i.e., invariant). For partial invariance to hold, a pure CFA measurement model requires at least 

two equivalent items across groups (in terms of factor loadings, intercepts, or uniquenesses) 

with at least one group-specific (i.e., freely estimated) item (Byrne et al., 1989; Steenkamp & 

Baumgartner, 1998; Steinmetz, 2013). Partial invariance enables researchers to compare latent 

group statistics; this does not require full invariance. Differently, comparing observed group 

statistics requires full invariance (e.g., Steinmetz, 2013). 

Underutilization of Effect Sizes in Invariance Testing 

Typically, invariance testing stops after reaching either full or partial invariance in a binary 

accept-or-reject logic (see Additional File 1 of the Supplementary Materials for an overview). 

The binary accept-or-reject logic of measurement invariance testing discards essential 

information: When a certain invariance level does not (fully) hold, it remains unknown how 

large and serious the resulting bias in cross-group comparisons of observed statistics (e.g., 

group differences in mean scores) would be. Effect sizes can complement traditional model 

comparisons by enabling the researcher to quantify the size of non-invariant model parameter 

differences. In the development process of item sets, one might consider discarding items with 

large bias due to non-invariance but keeping those with only negligible bias. In fixed item sets, 

the size of non-invariance bias helps researchers evaluate (next to other information: McNeish 

& Wolf, 2020; Widaman & Revelle, 2022) whether cross-group comparisons of observed, 

simplified aggregates of the item set (such as unit-weighted mean scores) can be valid ways of 

approximating the cross-group differences in the latent variable representing the levels of the 

construct. If effect sizes indicate that non-invariance bias (a) adds up at the level of simplified 

aggregates or (b) is large for specific items or the whole item set, one might better refrain from 

comparing observed statistics across groups. If effect sizes indicate that non-invariance bias (a) 

cancels out at the level of simplified aggregates or (b) is so tiny that it is practically 

inconsequential, one might consider comparing observed statistics across groups.  
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Millsap and Olivera-Aguilar (2012) provided such effect size measures for factor 

loadings, intercepts, and unique variances, which we call difference measures here.1 To define 

a difference measure for factor loadings, Millsap and Olivera-Aguilar (2012, see also 

Pornprasertmanit, 2022) assumed a unidimensional CFA model that shows partial metric 

invariance across two groups (K = 2). Item j (j = 1, …, p) has non-invariant loadings across 

groups. That is, loading 𝜆1𝑗 of item j in group 1 differs from loading 𝜆2𝑗 of item j in group 2, 

which are both, thus, freely estimated across groups. Millsap and Olivera-Aguilar are not 

explicit about the intercepts; however, to quantify only the loading difference, intercept 𝜏1𝑗 of 

item j in group 1 must be equal to intercept 𝜏2𝑗 of item j in group 2. Otherwise, the loading 

difference measure does not only quantify the non-invariant loading difference but also the 

intercept difference. At any common latent score 𝑤, Millsap and Olivera-Aguilar expressed 

the expected difference in observed item scores 𝑥𝑗 between the two groups as  

𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗 = |𝐸(𝑥2𝑗 − 𝑥1𝑗|𝑤)|  

    = |(𝜏2𝑗  –  𝜏1𝑗) + (𝜆2𝑗 − 𝜆1𝑗)𝑤| .   (4) 

Equation 4 represents the expected absolute difference in raw metrics between two people’s 

item scores (both from different groups) that arise due to loading invariance despite identical 

values on the latent variables. Millsap and Olivera-Aguilar proposed to quantify the impact of 

loading differences (and/or intercept differences to be correct) on expected differences in 

observed item scores in three steps:  

(1) Define a meaningful difference on the observed scale, which might be 𝑥𝑑 = 𝑥2𝑗 − 𝑥1𝑗. 

Millsap and Olivera-Aguilar did not propose guidelines for defining a meaningful 

difference in observed item scores but left it open to the applied researcher.  

(2) Calculate the range of common latent scores 𝐰 for which |𝐸(𝑥2𝑗 − 𝑥1𝑗|𝐰)| ≤ 𝑥𝑑 .  

(3) Evaluate how many individuals are in the region |𝐸(𝑥2𝑗 − 𝑥1𝑗|𝐰)| > 𝑥𝑑. Means and 

variances of 𝐰 estimated in each group (i.e., the latent variance 𝛷𝑘 and the latent mean 

𝜅𝑘) should help this evaluation.   

If the model has no loading differences (i.e., if metric invariance holds), the loading difference 

measure (Equation 4) is not useful anymore because the expected observed score difference 

 
1 Other approaches for quantifying measurement non-invariance, which we do not review here, do exist 

(e.g., Nye & Drasgow, 2011; Oberski, 2014). Yet, other effect size approaches are not as easy to apply 

as the effect size measures of Millsap and Olivera-Aguilar (2012). 
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will always equal the raw intercept difference: 𝐸(𝑥2𝑗 − 𝑥1𝑗|𝑤) =  𝑥2𝑗 − 𝑥1𝑗. Thus, Millsap 

and Olivera-Aguilar developed a specific intercept difference measure.  

To define their intercept difference measure, Millsap and Olivera-Aguilar (2012) 

assumed a unidimensional CFA model showing partial scalar invariance across two groups (K 

= 2). Item j (j = 1, …, p) has non-invariant intercepts across groups. That is, intercept 𝜏1𝑗 of 

item j in group 1 differs from intercept 𝜏2𝑗 of item j in group 2, which are both, thus, freely 

estimated across groups. Millsap and Olivera-Aguilar’s intercept difference measure represents 

the proportion of the cross-group difference in item means attributable to the difference in 

intercepts: 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗 = 
|𝜏2𝑗 − 𝜏1𝑗|

|𝐸(𝑥2𝑗)−𝐸(𝑥1𝑗)|
.     (5) 

Here, 𝐸(𝑥1𝑗) and 𝐸(𝑥2𝑗) are approximated by the observed means of item j for groups 1 and 

2 (alternatively by Equation 3). Thus, the numerator denotes the intercept difference of item j; 

the denominator reflects the mean difference of item j. If there is no intercept difference 

between groups (i.e., the numerator equals zero), the intercept difference measure will be zero 

(unless the item mean difference is zero, in which case the ratio is undefined). 

Further, Millsap and Olivera-Aguilar (2012) developed a specific uniqueness difference 

measure to quantify non-invariance bias due to differing unique variances. For the uniqueness 

difference measure, Millsap and Olivera-Aguilar assumed a unidimensional CFA model 

showing partial uniqueness invariance across two groups (K = 2). Item j (j = 1, …, p) has non-

invariant unique variances across groups. That is, unique variance 𝜃1𝑗 of item j in group 1 

differs from unique variance 𝜃2𝑗  of item j in group 2, which are both, thus, freely estimated 

across groups. Millsap and Olivera-Aguilar’s uniqueness difference measure represents the 

proportion of the cross-group difference in item variances attributable to the difference in 

unique variances: 

𝑈𝑛𝑖𝑞𝑢𝑒𝑛𝑒𝑠𝑠 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑗 = 
|𝜃2𝑗 – 𝜃1𝑗|

|𝜎2𝑗
2 −𝜎1𝑗

2 |
.    (6) 

The item variance 𝜎𝑘𝑗
2  can be approximated by the observed item variance of item j in group k 

(alternatively by 𝜎𝑘𝑗
2 = 𝜆𝑗

′𝛷𝑘𝜆𝑗 + 𝜃𝑘𝑗 including loading 𝜆𝑗 of item j and latent variance 𝛷𝑘 in 

group k). The numerator reflects the difference in unique variances of item j; the denominator 

reflects the difference in total variances of item j. If there is no difference in unique variances 

between groups (i.e., the numerator equals zero), the uniqueness difference measure will be 

zero (unless the item variance difference is zero, in which case the ratio is undefined). 
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Millsap and Olivera-Aguilar’s (2012) difference measures help quantify non-

invariance. They are easy to implement in standard software such as Mplus (Muthén & Muthén, 

1998-2017) or R (using the lavaan package; Rosseel, 2012). Still, they have three crucial 

problems: First, they do not come with a unified rationale spanning different model parameters 

(i.e., factor loadings, intercepts, and unique variances). Although one should not compare effect 

sizes for different model parameters, an intuitive logic that applies to all parameters will surely 

aid the understanding and, in turn, the applicability of a set of effect size measures. Second, 

Millsap and Olivera-Aguilar only vaguely defined what constitutes a meaningful raw-metric 

difference in observed item scores, given a specific score on the latent variable, which hampers 

at least the application of the loading difference measure. Third, the denominators of Millsap 

and Olivera-Aguilar’s intercept and uniqueness difference measures (i.e., the difference in item 

means or item variances) change their units with each item. Accordingly, researchers can only 

evaluate the bias item-by-item. Effect size measures that apply to single items and item sets 

alike would be favorable. 

Objective 

We develop new effect size measures to quantify the degree of non-invariance, which we term 

Measurement Invariance Violation Indices (MIVIs). MIVIs are derived for non-invariance in 

three different model parameters (i.e., factor loadings, intercepts, and unique variances) and 

for each model parameter in four different versions (item/item set × absolute/signed). Thus, 

MIVIs build on the difference measures proposed by Millsap and Olivera-Aguilar (2012) but 

improve on them in three regards: First, MIVIs quantify non-invariance bias with the same 

rationale (i.e., denominator) for all model parameter differences (in the numerator, i.e., factor 

loadings, intercepts, and unique variances). This makes MIVIs easy to grasp. Second, MIVIs 

have identical points of reference (i.e., denominators) comparable across multiple items. 

Consequently, they are informative about systematic―compensatory or non-compensatory― 

non-invariance bias. As a third asset, MIVIs consider sampling error by providing bootstrap 

confidence intervals around the point estimate (Cumming & Finch, 2001). MIVIs are also 

readily implemented in standard statistical programs such as Mplus or R.  

Depending on the specific research stage (e.g., scale development vs. application of an 

extant and well-defined item set for measuring a construct comparably across groups), MIVIs 

have various advantages for quantifying the amount of non-invariance bias. In scale 
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development settings, MIVIs can support the group-fair item selection (i.e., the decision on 

keeping non-invariant items or dropping them from the item set). In settings with fixed item 

sets, MIVIs can help evaluate the quality of a questionnaire in a new context (e.g., an 

international large-scale assessment, say, with new countries onboarding a survey program). 

MIVIs are also helpful in evaluating the amount of bias in comparing observed statistics (e.g., 

mean scores) across groups.1 We highlighted all advantages of MIVIs in Table 1.  

 

Table 1: Advantages of MIVIs  

 Absolute Signed 

It
em
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Scale development: 

+ MIVIs support group-fair item selection (decision on keeping or 

dropping non-invariant items) 

It
em
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Settings with fixed item set: 

+ MIVIs evaluate the 

quality of a questionnaire 

Settings with fixed item set: 

+ MIVIs evaluate the amount of 

bias in comparing observed 

statistics across groups 

 

  

 
1 Notably, calculating mean scores requires additional assumptions such as tau-equivalent or parallel 

measurements. However, methodologists still debate about the necessity to which these assumptions 

must hold before using mean scores (McNeish & Wolf, 2020; Widaman & Revelle, 2022). 
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Measurement Invariance Violation Indices (MIVIs) 

Preconsiderations and Prerequisites 

Like Millsap and Olivera-Aguilar’s (2012) difference measures, MIVIs are estimated based on 

a tenable (i.e., well-fitting) partial invariance model with at least one freely estimated parameter 

of interest (i.e., factor loadings, intercepts, or unique variances). We assume models to be 

unidimensional. When models are multidimensional (assuming no cross-loadings), MIVIs 

should be separately estimated for each common factor (or latent variable). Before defining 

MIVIs, we discuss the key idea of the new effect size measures. 

 The key idea of MIVIs is to use the pooled (across groups) standard deviation of the 

latent variable as a denominator and the (unstandardized) parameter differences of interest as 

a numerator. The pooled standard deviation SDLV, pooled of the latent variable (Cohen, 1988) is 

defined as  

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑 =√
(𝑛2−1)𝛷2+ (𝑛1−1)𝛷1 

𝑛1+𝑛2− 2
 .    (7) 

One may ask why we chose the pooled standard deviation of the latent variable as a common 

denominator for all MIVIs, instead of the (observed) pooled standard deviation of an item or 

the item set (e.g., Pornprasertmanit, 2022). The pooled standard deviation of the latent variable 

as a common denominator is favorable in at least three regards: (1) It is the same across items 

in an item set, (2) it is independent of the number of items in an item set, and (3) it solely 

consists of true score variance. 

First, a problem with an item’s pooled standard deviation is that it differs across items 

of an item set. Consequently, not only differences in parameters of interest (i.e., factor loadings, 

intercepts, or unique variances) but also differences in the pooled standard deviation of the item 

would impact the effect size. The effect size would not be comparable across items of an item 

set; information about systematic―compensatory or non-compensatory―non-invariance bias 

would remain hidden. By using the pooled standard deviation of the latent variable as a 

common denominator, we make MIVIs comparable across items of an item set.  

Second, a problem with an item set’s pooled standard deviation is that it changes 

dramatically with the number of items in it. (The pooled standard deviation of the item set is 

estimated by the sum of item variances plus two times all item covariances, e.g., Nye & 

Drasgow, 2011). Thus, the effect size would drastically depend on the number of items in an 
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item set. Differently, the pooled standard deviation of the latent variable is relatively 

independent of the number of items in an item set. 

Third, another problem with both the pooled standard deviation of the item and the item 

set is that they compound true score variation with fluctuating error variation. Differently, the 

pooled standard deviation of the latent variable is the true score variation. 

However, taking the pooled standard deviation of the latent variable as a common 

denominator for an effect size also has its limitations: The effect size depends on the 

identification method. Typically, researchers use the (pooled) standard deviation per item to 

standardize model parameters (i.e., factor loadings, intercepts, or unique variances; Muthén, 

1998-2004; Pornprasertmanit, 2022). Parameter estimates standardized with the (pooled) 

standard deviation per item are independent of the identification method (e.g., Putnick & 

Bornstein, 2016). That is, estimates are the same, independent of whether the model is 

identified by fixing the latent variance and latent mean or by fixing an anchor item’s loading 

or intercept to a certain value. Because MIVIs include raw parameters in the numerator, 

standardized by the (pooled) standard deviation of the latent variable (not the item), MIVIs 

change with the identification method. To obtain common ground for MIVIs, we propose 

identifying the final model by fixing the reference group’s latent variance to 1 (and its latent 

mean to 0). As MIVIs are based on partial invariance models, latent variances can be freely 

estimated in all groups other than the reference group. 

Effect Size Measures for Items 

Absolute Effect Size Measures 

To define MIVIs for items, we start on the assumption of a tenable partial invariance model 

with at least one freely estimated factor loading, intercept, or unique standard deviation across 

groups.1 We define MIVIs for an (unstandardized) loading 𝜆𝑘𝑗, intercept 𝜏𝑘𝑗, or unique 

standard deviation √𝜃𝑘𝑗  of the non-invariant item j in group k as  

 

𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 
|𝜆2𝑗 – 𝜆1𝑗| 

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
,      (8a) 

 
1 We include differences in unique standard deviations instead of differences in unique variances in the 

numerator to be consistent with the entity of the denominator (which is also a standard deviation). If 

one prefers to retain the metric of unique variances (as it is in the measurement model), one might use 

differences in unique variances in the numerator as an alternative version of 𝑀𝐼𝑉𝐼 − 𝑈. 
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𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒  = 
|𝜏2𝑗 – 𝜏1𝑗| 

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
,      (8b) 

𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 
|√𝜃2𝑗 – √𝜃1𝑗| 

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
.     (8c) 

These MIVIs pertain to the item level, are naturally bounded at zero on one end, and reflect an 

absolute loading, intercept, or uniqueness difference relative to the pooled standard deviation 

of the latent variable.  

To adequately interpret and understand MIVI, one needs to revisit the logic of Equation 

3: In a common factor model, common scores on the latent variable and observed item scores 

relate to each other through linear regression of the observed scores on the latent scores (e.g., 

Wu et al., 2007, for a visualization). Whereas loadings represent the steepness (or slope/weight) 

of regression lines, intercepts represent their origin. Unique scores describe the differences 

between the scores of the latent variable on the regression line and the observed item scores. 

For a factor model to be invariant across groups, the regression lines that relate the observed 

units to the latent property should be identical across groups. Further, the variance of the unique 

scores should be identical across groups (i.e., observed scores have an equal precision across 

groups; see DeShon, 2004). MIVIs quantify the differences in those regression lines across 

groups: 𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 quantifies the differences in regression weights, 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 the differences in regression origins, and 𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 the 

differences in the standard deviations of unique scores. Ideally for group comparisons, all 

differences would be zero.  

The different meanings of the three parameters (i.e., factor loadings, intercepts, and 

unique variances represent different features of a regression) have two important implications. 

First, an intercept and a unique variance should only be fixed across groups if the corresponding 

loading can be fixed without inducing misfit. If a loading is non-invariant across groups, the 

item’s intercept (as well as its unique variance) should not undergo invariance tests. They, too, 

should be estimated freely across groups. Thus, metric non-invariance of an item implies scalar 

and uniqueness non-invariance of that item. If the units (i.e., loadings) differ across groups, 

unit shifts (i.e., intercepts) and unique variances are barely comparable (theoretically and, 

often, empirically; e.g., Millsap & Olivera-Aguilar, 2012). Then, one stops the quantification 

of item non-invariance at the level of loadings (i.e., 𝑀𝐼𝑉𝐼– 𝐿)—although it might be helpful to 

obtain a rough estimate of intercept or uniqueness non-invariance too (i.e., 𝑀𝐼𝑉𝐼– 𝐼 or 

𝑀𝐼𝑉𝐼– 𝑈) in some cases. Because the expected mean of unique scores is zero (see Equation 3), 
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scalar invariance is not a prerequisite for testing uniqueness invariance (Steinmetz, 2013; cf. 

DeShon, 2004; Wu et al., 2007). 

Second, one cannot compare the three types of MIVI (i.e., 𝑀𝐼𝑉𝐼– 𝐿, 𝑀𝐼𝑉𝐼– 𝐼, 𝑀𝐼𝑉𝐼– 𝑈) 

to each other and conclude, for instance, that 𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 is larger than 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒. Loadings, intercepts, and uniquenesses are entirely different 

parameters, and so are the associated effect sizes. However (and more importantly), the 

different types of MIVI can be compared across items of an item set. Thus, one can conclude, 

for instance, that 𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 is larger than 𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗+1|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 . 

Signed Effect Size Measures  

Violations of measurement invariance in factor loadings, intercepts, or uniquenesses across 

groups manifest as interaction effects of the respective parameter and group membership (e.g., 

Bauer, 2017), quantified through MIVIs. Such an interaction term can favor one or the other 

group (i.e., group 1 or group 2 has a larger non-invariant parameter). So far, 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 

always has a positive sign; it cannot disentangle settings where group 1 has a larger parameter 

than group 2 from those where group 2 has a larger parameter than group 1. Without loss of 

generality, we can define a signed variant, 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑, that traces the mathematical signs 

of the non-invariant loading, intercept, or unique standard deviation differences back to the 

groups, 

𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑 = 
𝜆2𝑗 – 𝜆1𝑗

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
,     (9a) 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑 = 
𝜏2𝑗 – 𝜏1𝑗

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
,     (9b) 

𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑 = 
√𝜃2𝑗 – √𝜃1𝑗

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
.     (9c) 

Different from 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑗|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 estimates, 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑗|𝑠𝑖𝑔𝑛𝑒𝑑 estimates are unbounded.  

Item-level MIVIs allow quantifying the size of parameter differences for a single item. 

Knowing the size of loading, intercept, or uniqueness differences for a single item is highly 

informative in the scale development process when researchers face the question of retaining 

or discarding items in an item set. However, in applications with fixed item sets, one usually 

wants to know whether non-invariance substantially impacts group comparisons, especially 

when the goal is to compare observed summary statistics. Next, we present MIVI variants that 

consider multiple items in tandem and can answer this question.   
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Effect Size Measures for Item Sets  

Absolute Effect Size Measures  

Let us extend the logic of MIVIs for single items to the aggregate level, that is, calculating 

average MIVIs by considering all items of an item set simultaneously. Evaluating the bias by 

average MIVIs across all items of an item set is useful when the goal is to compare summative 

indices such as observed mean scores or when the goal is to use MIVIs as a rough, overall 

indicator of non-invariance bias at the level of item sets. As with item-level MIVIs, we define 

absolute and signed versions.  

Suppose we have a partial metric invariance model if we want to quantify loading 

differences, a partial scalar invariance model if we want to quantify intercept differences, and 

a partial uniqueness invariance model if we want to quantify differences in unique standard 

deviations. For absolute MIVIs at the level of item sets, numerators summarize all biases of 

single items; once again, they do so in terms of absolute parameter differences (i.e., invariant 

parameters do not contribute to aggregate MIVIs). Again, denominators contain the pooled 

standard deviation of the latent variable. Dividing the fraction by the number of items serves 

as the average amount of bias introduced per item: 

𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒= 
|𝜆21 – 𝜆11| + |𝜆22 – 𝜆12| + … + |𝜆2𝑝 – 𝜆1𝑝|

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 =  

∑  |𝜆2𝑗 − 𝜆1𝑗|
𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝,        (10a) 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 
|𝜏21 – 𝜏11| + |𝜏22 – 𝜏12| + … + |𝜏2𝑝 – 𝜏1𝑝|

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 =  

∑  |𝜏2𝑗 − 𝜏1𝑗|
𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝,         (10b) 

𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒= 
|√𝜃21 – √𝜃11| + |√𝜃22 – √𝜃12| + … + |√𝜃2𝑝 – √𝜃1𝑝|

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 =

∑ |√𝜃2𝑗 – √𝜃1𝑗|
𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝.             (10c) 

𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 indicates the average between-group difference in factor loadings, 

intercepts, or unique standard deviations for a set of items in units of the pooled standard 

deviation of the latent variable. 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 quantifies the average amount of bias that 

arises from all cross-group differences in factor loadings, intercepts, or unique standard 

deviations in the latent representation of the item set, and it does so in the same metric as all 

MIVI versions.  

Given the absolute values of constituents in the numerator, 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 is 

restricted to values ≥ 0. 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 gives an overall, absolute impression and 

quantifies how biased an item set is on average. Crucially, by dividing the fraction by the 

number of items, 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 takes the length of an item set into account. Thereby, it 
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considers that, for instance, two non-invariant items are more problematic in an item set of four 

rather than eight items. 

From an applied perspective, bias due to non-invariant parameters may cancel out (at 

least in part). Thus, despite biased items in an item set, the overall between-group differences 

in the total variance or total mean score of the item set may remain unbiased (for a formula-

based definition, see Nye & Drasgow, 2011). This is reminiscent of Chen (2007; see also 

Robitzsch & Lüdtke, 2020, for the context of item response theory), who distinguished between 

two patterns of non-invariance: uniform (i.e., one group has higher parameter values, such as 

intercepts, on all non-invariant items) and mixed (i.e., one group has higher parameter values 

on some non-invariant items but lower parameter values on other non-invariant items). 

Crucially, any such non-compensatory aggregation or compensatory cancelation effects 

may be evaluated for intercepts (Equation 3) or unique variances (Equation 2). Factor loadings 

work as amplifiers; they result in multiplicative effects (Equations 2 and 3). They multiply with 

the latent variances/means when producing observed variances/means of the items (or item 

sets). Thus, factor loadings ultimately connect to the variances and means of the latent variable, 

which can differ across groups in partial invariance models. Compensation across groups is, 

thus, not immediately conceivable for loading differences. 

Signed Effect Size Measures  

A variant of 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 with each summand keeping its direction (i.e., sign), 

𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑, allows for complete (or incomplete) compensation of parameter 

differences of intercepts and unique standard deviations, 

𝑀𝐼𝑉𝐼– 𝐿𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 = not applicable,               (11a) 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 = 
(𝜏21 − 𝜏11) + (𝜏22 − 𝜏12) + … + (𝜏2𝑝 − 𝜏1𝑝)

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 = 

∑  (𝜏2𝑗 − 𝜏1𝑗)
𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝,         (11b) 

𝑀𝐼𝑉𝐼– 𝑈𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑= 
√𝜃21 – √𝜃11 + √𝜃22 – √𝜃12+ … + √𝜃2𝑝 – √𝜃1𝑝

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝 =

∑ √𝜃2𝑗 – √𝜃1𝑗
𝑝
𝑗=1

𝑆𝐷𝐿𝑉,   𝑝𝑜𝑜𝑙𝑒𝑑
/𝑝.            (11c) 

Given signed differences as constituents in the numerator, estimates of 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 are 

unbounded. 

Although MIVIs might show that non-invariance bias is negligible or cancels out 

completely, one should always be aware that the invariance assumption is violated to a certain 

degree in the item set. MIVIs are no legitimation to ignore non-invariance bias but rather a tool 

to assess its size and impact, depending on the research focus. 
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How Much of a Non-Invariant Parameter Difference is Too Large? 

We have not yet outlined which parameter differences in units of the pooled latent standard 

deviation can be considered either negligible or substantial, although some preliminary 

guidance for applied settings may be helpful. Our goal is not to prescribe a single fixed rule. 

Many components, such as the substantive research question, type of analysis, empirical 

context, and, especially, the parameter of interest (i.e., factor loading, intercept, or uniqueness), 

may influence what is considered a critical value (e.g., Steinmetz, 2013).  

Although Cohen’s (1988, 1992) effect size guideline has recently come under scrutiny 

for not being applicable in all research contexts (e.g., Schäfer & Schwarz, 2019), researchers 

are well-acquainted with his cutoffs and their meanings. For his d, a difference measure 

between independent means relative to the pooled standard deviation, he suggested that |d| = 

0.2 may indicate a substantial but small, |d| = 0.5 a medium, and |d| = 0.8 a large effect. These 

values may serve as initial thresholds (especially for 𝑀𝐼𝑉𝐼 − 𝐼 quantifying intercept 

differences) that, when surpassed, alert researchers to become cautious about biased group 

comparisons in their substantive analyses. We reiterate that this guideline is extremely rough; 

an appropriate guideline must be tailored to substantive considerations, different parameters, 

and the specific research context of interest.  

Applications 

Example Setup 

We simulated data to exemplify the applicability of the MIVI versions. The advantage of 

simulations is that we can specify beforehand all model, data, and estimation characteristics, 

such as the magnitude of the model parameters and, accordingly, the magnitude of bias due to 

non-invariance. We conducted all analyses with Mplus (version 8.4; Muthén & Muthén, 1998-

2017). We estimated bootstrap confidence intervals around the point estimate of all MIVIs. We 

supplied the Mplus code for the Simulated Examples 1 and 2 in the Supplementary Materials 

(see Additional Files 2 and 3). Additional File 4 includes R code for a MIVI application similar 

to Example 1 (i.e., using the same population model for data generation). Some intercepts were 

non-invariant in both examples; all factor loadings were invariant. Thus, full metric and partial 

scalar invariance held. In empirical reality, this is not always the case. As we also derived 

MIVIs to quantify loading non-invariance, MIVIs can also be applied when only partial metric 

invariance holds. Further, MIVIs can also be applied when partial uniqueness invariance holds, 
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as we also derived MIVIs for uniqueness invariance. The logic of applying MIVIs in different 

empirical settings is analogous to the exemplary one. 

Simulated Example 1 

To demonstrate the utility of the MIVI versions, we simulated data for a hypothetical item set 

that conforms to a partial scalar invariance model across two groups. We simulated data for 

four continuous indicator variables underlying a single latent variable. We set the number of 

observations to 1,000 per group. The intercepts of Items 1 and 2 in Group A equaled those in 

Group B. The intercepts of Items 3 and 4 differed across groups. We fit the partial scalar 

invariance model with the maximum likelihood (ML) estimator. Figure 1 shows the 

predetermined coefficients from the population model. Further, it shows the empirical 

coefficients resulting from the partial scalar analysis model. Apart from sampling variation, the 

empirical coefficients mirrored the predetermined ones. We identified the partial scalar 

analysis model by fixing the latent variance in Group A to 1 and the latent mean in Group A to 

0. The latent variance and latent mean in Group B are freely estimated. Table 2 includes the 

resulting estimates of the MIVI versions (item- or item-set-level × absolute or signed) and 

accompanying bootstrap confidence intervals. 
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Figure 1: Population and Analysis Models (Example 1) 

 
Note. Non-invariant parameters are colored in red, invariant parameters in green. 

 

 

Table 2: MIVIs for Item and Item Set Levels (Example 1) 

 Absolute Signed 

It
em
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em

 3
 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 3|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (Eq. 8b) 

= 
|0.95 – 0.47| 

√(0.60+ 1.00) / 2  
 

= 0.54    CI95%[0.45; 0.63] 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 3|𝑠𝑖𝑔𝑛𝑒𝑑 (Eq. 9b) 

= 
0.95 – 0.47 

√(0.60+ 1.00) / 2  
 

= 0.54    CI95%[0.45; 0.63] 

It
em

 4
 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 4|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (Eq. 8b) 

= 
|0.87 – 0.47| 

√(0.60+ 1.00) / 2  
          

= 0.46    CI95%[0.37; 0.54] 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 4|𝑠𝑖𝑔𝑛𝑒𝑑 (Eq. 9b) 

= 
0.87 – 0.47

√(0.60+ 1.00) / 2  
          

= 0.46    CI95%[0.37; 0.54] 

It
em

 s
et

 

le
v
el

 

 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (Eq. 10b) 

= 
|0.95 – 0.47| +|0.87 – 0.47|  

√(0.60+ 1.00) / 2  
/4 

= 0.25    CI95%[0.21; 0.29] 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 (Eq. 11b) 

= 
0.95 – 0.47 + 0.87 – 0.47 

√(0.60+ 1.00) / 2  
/4  

= 0.25    CI95%[0.21; 0.29] 
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We first inspected the (relative) size of the bias due to non-invariant intercepts by 

looking at the absolute MIVIs on the item level. As intended, bias was more substantial in Item 

3 than in Item 4. Whereas Item 3 had a non-invariant intercept difference of 0.54 pooled 

standard deviations of the latent variable, Item 4 had a non-invariant intercept difference of 

0.46 pooled standard deviations. Both corresponded to a substantial medium effect, following 

Cohen’s guidelines. The signed MIVIs on the item level were equal to the absolute ones, 

indicating that intercept bias was larger in Group B than in Group A for both items. 

As a next step, we took a closer look at the size and shape of the total non-invariance 

bias of the complete item set. The absolute bias due to all non-invariant intercept differences 

adding up in the item set was non-negligible according to 𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒: The average 

intercept difference was as large as 0.25 pooled standard deviations per item of the item set. 

The signed version of 𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡 equaled the absolute one and, thus, showed that intercept 

differences did not cancel out but accumulated at the level of the item set. 

Considering all MIVI values, we would not consider the bias due to non-invariant 

intercepts negligible. Especially the absolute and signed versions of 𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡 clearly 

demonstrated that non-invariance bias added up and substantially contaminated the item set in 

total (and, accordingly, simplified statistics of the item set such as observed mean scores). 

Simulated Example 2 

The following example illustrates the applicability of MIVIs in scenarios with compensatory 

non-invariance bias. We simulated data in the same way as in Example 1. The crucial difference 

was the opposite direction of intercept differences across Items 3 and 4. Figure 2 shows the 

predetermined coefficients from the population model and the estimated coefficients from the 

partial scalar analysis model. Table 3 includes the resulting estimates of the MIVI versions and 

accompanying bootstrap confidence intervals. 
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Figure 2: Population and Analysis Models (Example 2) 

 
Note. Non-invariant parameters are colored in red, invariant parameters in green.  

 

 

Table 3: MIVIs for Item and Item Set Levels (Example 2) 

 Absolute Signed 

It
em
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𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 3|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (Eq. 8b) 

= 
|0.45 – 0.97| 

√(0.60+ 1.00) / 2  
 

= 0.58    CI95%[0.49; 0.67] 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 3|𝑠𝑖𝑔𝑛𝑒𝑑 (Eq. 9b) 

= 
 0.45 – 0.97

√(0.60+ 1.00) / 2  
 

= −0.58  CI95%[−0.67; −0.49] 

It
em

 4
 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 4|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (Eq. 8b) 

= 
|0.88 – 0.47| 

√(0.60+ 1.00) / 2  
          

= 0.46    CI95%[0.37; 0.54] 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 4|𝑠𝑖𝑔𝑛𝑒𝑑 (Eq. 9b) 

= 
0.88 – 0.47

√(0.60+ 1.00) / 2  
          

= 0.46    CI95%[0.37; 0.54] 

It
em
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𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 (Eq. 10b) 

= 
|0.45 – 0.97| +|0.88 – 0.47|  

√(0.60+ 1.00) / 2  
/4 

= 0.26    CI95%[0.24; 0.28] 

𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 (Eq. 11b) 

= 
0.45 – 0.97 + 0.88 – 0.47 

√(0.60+ 1.00) / 2  
/4  

= −0.03  CI95%[−0.07; 0.01] 
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Again, the absolute non-invariance bias of each item was relatively substantial, with the 

intercept difference of Item 3 (𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 3|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 0.58) being larger than that of Item 4 

(𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 4|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 0.46). However, 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 3|𝑠𝑖𝑔𝑛𝑒𝑑 had a negative sign for the 

intercept non-invariance bias (𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 3|𝑠𝑖𝑔𝑛𝑒𝑑 = −0.58), whereas 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 4|𝑠𝑖𝑔𝑛𝑒𝑑 had a 

positive sign (𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 4|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 = 0.46). The non-invariance bias of Items 3 and 4 operated 

differently: Item 3 had a larger intercept in Group B, Item 4 had a larger intercept in Group A. 

To further investigate the mutual compensation of intercept differences, we considered 

the average non-invariance bias of the whole item set. The absolute biasing effect was non-

negligible for intercepts (𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒) and resulted in an average difference of 0.26 

pooled standard deviations per item. Given this non-negligible effect size at first inspection, 

one might refrain from treating the item set as invariant. However, calculating 

𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 provides further information on possible compensatory differences (e.g., 

non-invariant intercepts canceling each other out), which are relevant for valid cross-group 

comparisons of total mean scores (in the case of non-invariant intercepts). 𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 

showed that the two intercept differences accounted for an average non-invariance bias per 

item of |0.03| latent standard deviations (𝑀𝐼𝑉𝐼– 𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑 = −0.03). The confidence 

interval was compatible even with the notion of the total absence of any biasing effect (CI95% 

= [−0.07; 0.01]). The non-negligible amount of (absolute) bias present in all items was 

negligible when considering the direction of item-specific bias.  

The relatively small values of the signed MIVI at the item set level suggested that non-

invariant intercept differences compensated for each other. Some researchers may conclude 

that the item set is practically invariant in this example to justify the comparison of observed 

group statistics, especially if one favors treating the items as a fixed item set without the 

possibility to further select items before running substantive analyses. In different words, 

applied researchers might conclude from the analysis of all MIVIs (and especially 

𝑀𝐼𝑉𝐼𝐼𝑡𝑒𝑚 𝑠𝑒𝑡|𝑠𝑖𝑔𝑛𝑒𝑑) that the non-invariant intercepts did not substantially impact the difference 

in observed mean scores of the item set. 
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Discussion and Conclusion 

The Usefulness of Measurement Invariance Violation Indices 

Research questions involving numerical between-group comparisons of constructs are 

ubiquitous in psychological research and beyond. However, for group comparisons to be valid, 

researchers must first establish the measurement invariance of the constructs in question. 

Unfortunately, as any experienced analyst can testify, measurement non-invariance is a 

frequently encountered problem. The question then becomes: How wrong are assumptions of 

invariance? Stated differently: How much non-invariance bias is present?  

This paper provided a novel set of tools to answer this essential question. Specifically, 

we proposed an effect size approach called MIVI that quantifies the non-invariance of factor 

loadings, intercepts, and uniquenesses in a unified and principled way. MIVIs are handy effect 

size measures that overcome the limitations of existing approaches. Specifically, MIVIs 

provide a common metric for different parameters (i.e., factor loadings, intercepts, and 

uniquenesses) that is comparable across all items of an item set. At the item level, MIVIs relate 

each item’s cross-group difference in factor loadings, intercepts, or uniquenesses to the pooled 

standard deviation of the latent variable. At the item set level, MIVIs reflect the average cross-

group difference in factor loadings, intercepts, or uniquenesses in units of the pooled latent 

standard deviation across all items. Deriving absolute and directional MIVI versions, we can 

inspect the cancelation of non-invariance bias. Confidence intervals display the accuracy of the 

MIVI estimates. MIVI estimates and confidence intervals can easily be computed by adding a 

few code lines for standard SEM software such as Mplus or R.  

MIVIs are especially helpful for scale development as well as in settings with fixed 

item sets: In scale development, MIVIs can support the decision on keeping non-invariant items 

or dropping them from the item set—depending on the size of the specific parameter non-

invariance MIVIs identify on the level of single items and item sets. By quantifying the non-

invariance bias in a fixed item set, MIVIs can help evaluate the quality of a questionnaire, for 

instance, in a new context. Further, MIVIs allow evaluation of the amount of bias in cross-

group comparisons of simple proxies such as observed mean scores. 
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Preconditions of Measurement Invariance Violation Indices 

Without loss of generality, we have sketched MIVIs as useful for quantifying non-invariance 

bias when comparing two groups. Researchers can legitimately apply MIVI variants to 

scenarios with more than two groups: They may pick a reference group and compare all non-

invariant parameters against this reference group, yielding multiple reference-group 

comparisons.  

MIVIs also rest on other assumptions or preconditions that must be fulfilled. The 

analysis model should be unidimensional (without cross-loadings) to employ MIVIs correctly. 

If analysis models are multidimensional (assuming no cross-loadings), separate MIVIs should 

be calculated for each dimension. Alternatively, one might estimate how proximate the 

multidimensional model is to a unidimensional one, indicating whether the multidimensional 

model can be treated as essentially unidimensional (Raykov & Bluemke, 2020).  

Further, the multi-group measurement model, which is the basis for all MIVI versions, 

must be correctly identified. Multi-group measurement models are commonly identified by 

constraining the latent variance or a factor loading to a fixed value (commonly to 1). 

Additionally, to identify the mean structure, either the latent mean or an intercept must be 

constrained to a fixed value (commonly to 0). The crucial assumption for measurement 

invariance tests to be valid is that those fixed parameters are equal (or invariant) across groups 

(Putnick & Bornstein, 2016). If the fixed parameters are not invariant, measurement invariance 

tests might be misleading. Whereas one can only assume that latent variances and latent means 

are equal across groups, several approaches guide identifying so-called reference indicators or 

anchor items (e.g., Kopf et al., 2015, Schulze & Pohl, 2021; Thompson et al., 2021). Raykov 

et al.’s (2013) approach to measurement invariance, which we outlined in Additional File 1 of 

the Supplementary Information, does not require identifying a reference item (as it constrains 

multiple items at once). It is specifically suitable for detecting non-invariant intercepts 

(Thompson et al., 2021).   

To properly quantify bias due to non-invariant parameters (i.e., factor loadings, 

intercepts, or uniquenesses) and, thus, to estimate MIVIs, one needs a common, congeneric 

factor model (i.e., configural invariance) as the starting point. Otherwise, one cannot compare 

parameters at all. Furthermore, partial metric invariance must hold. Otherwise, one cannot 

compare and pool latent variances for the computation of the MIVI denominators.  

For MIVIs to be interpretable for intercepts and unique variances, the non-invariant 

items should also have equal loadings. If the units (i.e., loadings) differ across groups, unit 
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shifts (i.e., intercepts) or variances of unique scores are barely comparable (theoretically and, 

often, empirically; e.g., Millsap & Olivera-Aguilar, 2012). Then, MIVIs should only be 

estimated for loadings—although a rough estimate of intercept non-invariance (i.e., 𝑀𝐼𝑉𝐼– 𝐼) 

or uniqueness non-invariance (i.e., 𝑀𝐼𝑉𝐼– 𝑈) might be helpful in some cases.  

Further, MIVIs rely on raw parameters (i.e., factor loadings, intercepts, and 

uniquenesses), partially standardized by the pooled standard deviation of the latent variable. 

Thus, the method of model identification influences the MIVI estimates. Either constraining 

the latent variance or a factor loading to a fixed value, commonly to 1, identifies the 

(co)variance structure of the model. Either the latent mean or an intercept constrained to a fixed 

value, commonly to 0, identifies the mean structure of the model. The way to identify the model 

influences the estimates of model parameters (such as cross-group estimates of latent variances, 

factor loadings, or intercepts) and, in turn, MIVI estimates. To have a common ground for 

MIVIs, we propose identifying the final partial invariance model by fixing the latent variance 

to 1 and the latent mean to 0. As MIVIs are estimated from partial invariance models, the latent 

variance (and the latent mean if at least partial scalar invariance holds) must only be fixed in a 

reference group. Still, it can be freely estimated in the other group(s).   

Limitations and Future Directions 

Although MIVIs might show that non-invariance is non-substantial or cancels out at the level 

of the item set, one should always be aware that non-invariance is present. One should not use 

MIVI as a legitimation to completely ignore non-invariance but rather as a tool to quantify non-

invariance or assess its impact on simple statistics (e.g., observed mean scores). Theoretical 

considerations and empirical models, such as multiple-indicators multiple-causes models (or 

even more flexible variations of it, e.g., Bauer, 2017), can help explain the non-invariance and 

should still be reflected in addition to applying MIVIs. 

Specific heuristics help evaluate whether an effect is small, medium, or large (e.g., 

Cohen, 1988, 1992). In this paper, we tentatively recommended Cohen’s effect size guidelines 

as initial thresholds to evaluate MIVI values. However, Cohen’s guidelines are no more than 

starting points. One needs to understand what constitutes small, medium, or large effects in the 

specific setting of interest. Unless enough empirical evidence is gathered to understand how 

non-invariant parameter differences distribute in empirical data (e.g., Gignac & Szodorai, 

2016), simulations may aid in evaluating the impact of non-invariant parameter differences on 

summary statistics (e.g., Nye et al., 2019).  
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Conclusion 

MIVIs are tools for quantifying measurement non-invariance in an easy-to-apply and 

continuous manner. They are available by adding only a few lines of code in standard statistical 

programs. MIVIs quantify non-invariance bias from partial metric, scalar, or uniqueness 

invariance models. They help overcome the practice of merely accepting or rejecting an 

invariance model in a binary accept-or-reject logic. Their advantages are manifold: MIVIs can 

support the group-fair item selection by quantifying the item non-invariance during the scale 

development process. In settings with fixed item sets, MIVIs can help evaluate the quality of a 

questionnaire in a new context or evaluate the amount of non-invariance bias in cross-group 

comparisons of simple index scores. Taken together, MIVIs advance researchers’ focus and 

alert them to the practical consequences of measurement non-invariance. 
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Additional File 1: How to Test for Measurement Invariance? 

Researchers often test measurement invariance in a bottom-up manner, though a preferable 

top-down approach exists. In the standard bottom-up procedure of measurement invariance 

testing, researchers test three levels of invariance: configural, metric, and scalar invariance 

(e.g., Meredith, 1993; Millsap, 2011; Steenkamp & Baumgartner, 1998). The levels are nested 

such that metric invariance cannot exist without configural invariance, and scalar invariance 

cannot (meaningfully) exist without metric invariance. Thus, after testing (and possibly 

accepting) the invariance of the basic item-factor structure without any parameter constraints 

(configural invariance) across the k = 1, 2, …, K tested groups, one proceeds to test the 

invariance of factor loadings (metric invariance; 𝛌1 = … = 𝛌𝐾). Only after accepting metric 

invariance, one can proceed to test the invariance of intercepts (scalar invariance; 𝛕1 = … = 

𝛕𝐾). Depending on the research question, researchers may finally test the invariance of 

uniqueness terms (residual invariance, 𝚯1 = … = 𝚯𝐾).  

Metric invariance implies identical scaling and unbiased comparisons of latent 

(co)variances across groups. Scalar invariance implies equivalent locations of measurement 

indicators and unbiased comparisons of mean structures across groups. Uniqueness invariance 

implies that the observed error variances impact each group alike. The invariance levels 

obtained from sequential tests of metric, scalar, and uniqueness invariance are also known as 

weak, strong, and strict invariance tests. In short, measurement invariance holds if the K 

groups’ parameters are identical for the k = 1, 2, …, K tested groups; hence k might be dropped 

as an index from the formulae without losing information.   

Whether a specific level of measurement invariance is accepted may be decided upon 

inspection of the (significance of the) chi-square test statistic (Bollen, 1989) or the difference 

in chi-square test statistics when comparing a more restrictive model to a less restrictive model 

with the former being nested in the latter. Additionally, or alternatively, researchers rely on 

information criteria (such as the Akaike information criterion, AIC, and the Bayesian 

information criterion, BIC) or fit indices, such as the comparative fit index (CFI), the root mean 

square error of approximation (RMSEA), or the standardized root mean squared residual 

(SRMR). Fit indices are commonly compared against cutoffs, such as those suggested by Hu 

and Bentler (1999) for overall model fit and those suggested by Chen (2007) for relative model 

fit. If values exceed those critical thresholds, the stricter model is rejected, resulting in a binary 

logic for accepting or rejecting the invariance assumption. 
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As an alternative to the classic bottom-up testing procedure, Raykov et al. (2013) 

developed a top-down procedure for measurement invariance testing. The approach proceeds 

in seven major steps: (1) The researcher starts on a fully constrained invariance model, Model 

M0. (2) Irrespective of obtaining sufficient model fit for M0, each constrained item parameter 

is released individually (and fixed afterward), while all other parameters remain equal across 

groups. Each inspected model Ms, for s = 1, 2, …, S tested parameters, differs only by one 

degree of freedom from the initial model M0. (3) For each tested model, Ms, a p-value results 

that correspond to the chi-square difference test between Model Ms and Model M0. (4) Ranking 

the p-values in ascending order first, (5) one next addresses multiple testing and estimates so-

called l-values that correspond to the order of p-values, in line with the Benjamini-Hochberg 

procedure (Benjamini & Hochberg, 1995). The first l-value (for the model with the lowest p-

value) is obtained by dividing the p-value cutoff, commonly controlling the Type I error rate 

at α = .05, through a series of m (= number of models) ratios times m, 

    𝑙1 = 
𝛼

𝑚∗(1+ 
1

2 
+  

1

3 
 + … +  

1

𝑚
)
.    (1) 

The second l-value is obtained by multiplying l1 with 2, followed by 3 until m. After estimating 

the l-values, (6) the largest p-value, which is below its corresponding l-value, p*, is identified. 

(7) All coefficients with p-values below p* are flagged as non-invariant. See Raykov et al. 

(2013) for more details on the procedure. 
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Additional File 2: Mplus Code for the Simulated Example 1 

Data Simulation (Mplus Input File) 

TITLE: SIMULATING DATA IN GROUP 1 AND GROUP 2 FOR THE SIMULATED EXAMPLE 1; 

 

MONTECARLO:  

NAMES = y1-y4; ! FOUR ITEMS 

NOBSERVATIONS = 1000 1000; ! 1000 OBSERVATIONS PER GROUP 

NGROUPS = 2 ! TWO GROUPS 

NREPS = 1; 

SEED = 53487; ! SET SEED FOR REPLICATION 

SAVE = DAT_G12_EX1.DAT; 

 

MODEL POPULATION: ! POPULATION MODEL FROM WHICH DATA IN GROUP 1 IS GENERATED  

f1 BY y1*1 y2*0.9 y3*1.5 y4*1.6; ! LOADINGS RANGING FROM 0.9 TO 1.6 

f1@1; ! LATENT VARIANCE FIXED TO 1 

[f1@0]; ! LATENT MEAN FIXED TO 0 

y1-y4*0.3; ! RESIDUALS ARE 0.3 IN THE POPULATION 

[y1-y4*0.5]; ! INTERCEPTS ARE ALL 0.5 IN THE POPULATION IN GROUP 1 

 

MODEL POPULATION-g2: ! POPULATION MODEL FROM WHICH DATA IN GROUP 2 IS GENERATED  

f1 BY y1*1 y2*0.9 y3*1.5 y4*1.5; ! LOADINGS RANGING FROM 0.9 TO 1.6 

f1@0.6; ! LATENT VARIANCE FIXED TO 0.6 

[f1@0]; ! LATENT MEAN FIXED TO 0 

y1-y4*0.3; ! RESIDUALS ARE 0.3 IN THE POPULATION 

[y1-y2*0.5]; ! INTERCEPTS ARE 0.5 FOR ITEMS 1-2 IN THE POPULATION 

[y3*1.0]; ! INTERCEPT IS 1.0 FOR ITEM 3 IN GROUP 2 IN THE POPULATION 

[y4*0.9]; ! INTERCEPT IS 0.9 FOR ITEM 4 IN GROUP 2 IN THE POPULATION 

 

MODEL: ! ANALYSIS MODEL FIT TO THE DATA OF GROUP 1 

       ! (EQUALS RESPECTIVE POPULATION MODEL) 

f1 BY y1*1 y2*.9 y3*1.5 y4*1.6; 

f1@1; 

[f1@0]; 

y1-y4*0.3; 

[y1-y4*0.5]; 

  

MODEL g2: ! ANALYSIS MODEL FIT TO THE DATA OF GROUP 2 

          ! (EQUALS RESPECTIVE POPULATION MODEL) 

f1 BY y1*1 y2*.9 y3*1.5 y4*1.6; 

f1@0.6; 

[f1@0]; 

y1-y2*.3; 

[y1-y2*0.5]; 

[y3*1.0]; 

[y4*0.9]; 

 

OUTPUT: TECH9; 
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Data Analysis (Mplus Input File) 

TITLE:      ESTIMATING PROPOSED MEASUREMENT INVARIANCE VIOLATION  

            INDICES USING DATA SIMULATED WITH A CFA MODEL  

            NON-INVARIANT INTERCEPTS FOR ITEMS Y3 AND Y4 

            EXAMPLE 1; 

 

DATA:       FILE = DAT_G12_EX1.DAT; !("FULL" DATA SET); 

 

VARIABLE:   NAMES = Y1-Y4 GROUP; 

            GROUPING = GROUP(1 = G1, 2 = G2); 

 

ANALYSIS:   ESTIMATOR = ML; 

            BOOTSTRAP = 1000; 

 

MODEL:      f1 BY Y1* (L1)  

                 Y2-Y4 (L2-L4); ! LABELED FACTOR LOADINGS; 

            f1@1; ! FIXED LATENT VARIANCE IN GROUP 1;  

            [f1@0]; ! FIXED LATENT MEAN IN GROUP 1;  

            [y1-y4] (TAU11-TAU14); 

             

 

            MODEL G2: 

            f1 (LV_G2); ! FREE LATENT VARIANCE IN GROUP 2;                

            [f1] (LM_G2); ! FREE LATENT MEAN IN GROUP 2; 

            [y1-y2] (TAU11-TAU12); ! FIXED INTERCEPTS ACROSS GROUPS 1&2;  

            [y3*] (TAU23); ! FREE INTERCEPT ACROSS GROUPS 1&2; 

            [y4*] (TAU24); ! FREE INTERCEPT ACROSS GROUPS 1&2; 

 

MODEL CONSTRAINT:  

            NEW(M3_A, M3_S, M4_A, M4_S, M_A, M_S); 

  

            ! M3_A = MIVI - ITEM 3, ABSOLUTE  

              M3_A = SQRT((TAU23-TAU13)^2)/SQRT((LV_G2+1)/2); 

            ! M3_S = MIVI - ITEM 3, SIGNED 

              M3_S = (TAU23-TAU13)/SQRT((LV_G2+1)/2); 

            ! M4_A = MIVI - ITEM 4, ABSOLUTE 

              M4_A = SQRT((TAU24-TAU14)^2)/SQRT((LV_G2+1)/2); 

            ! M4_S = MIVI - ITEM 4, SIGNED 

              M4_S = (TAU24-TAU14)/SQRT((LV_G2+1)/2); 

            ! M_A = MIVI - ITEM SET, ABSOLUTE 

              M_A = ((SQRT((TAU24-TAU14)^2)+SQRT((TAU23-TAU13)^2))/ 

                    SQRT((LV_G2+1)/2))/4; 

            ! MSCALE_S = MIVI - ITEM SET, SIGNED 

              M_S = ((TAU24-TAU14+TAU23-TAU13)/ 

                    SQRT((LV_G2+1)/2))/4; 

 

OUTPUT:     CINTERVAL(BOOTSTRAP) STDYX; 

  



248   

 

 

Additional File 3: Mplus Code for the Simulated Example 2 

Data Simulation (Mplus Input File) 

TITLE: SIMULATING DATA IN GROUP 1 AND GROUP 2 FOR THE SIMULATED EXAMPLE 2; 

 

MONTECARLO:  

NAMES = y1-y4; ! FOUR ITEMS 

NOBSERVATIONS = 1000 1000; ! 1000 OBSERVATIONS PER GROUP 

NGROUPS = 2 ! TWO GROUPS 

NREPS = 1; 

SEED = 53487; ! SET SEED FOR REPLICATION 

SAVE = DAT_G12_EX2.DAT; 

 

MODEL POPULATION: ! POPULATION MODEL FROM WHICH DATA IN GROUP 1 IS GENERATED  

f1 BY y1*1 y2*0.9 y3*1.5 y4*1.6; ! LOADINGS RANGING FROM 0.9 TO 1.6 

f1@1; ! LATENT VARIANCE FIXED TO 1 

[f1@0]; ! LATENT MEAN FIXED TO 0 

y1-y4*0.3; ! RESIDUALS ARE 0.3 IN THE POPULATION 

[y1-y2*0.5]; ! INTERCEPTS ARE 0.5 FOR ITEMS 1-2 IN THE POPULATION 

[y3*1.0]; ! INTERCEPT IS 1.0 FOR ITEM 3 IN GROUP 1 IN THE POPULATION 

[y4*0.5]; ! INTERCEPT IS 0.5 FOR ITEM 4 IN GROUP 1 IN THE POPULATION 

 

MODEL POPULATION-g2: ! POPULATION MODEL FROM WHICH DATA IN GROUP 2 IS GENERATED  

f1 BY y1*1 y2*0.9 y3*1.5 y4*1.5; ! LOADINGS RANGING FROM 0.9 TO 1.6 

f1@0.6; ! LATENT VARIANCE FIXED TO 0.6 

[f1@0]; ! LATENT MEAN FIXED TO 0 

y1-y4*0.3; ! RESIDUALS ARE 0.3 IN THE POPULATION 

[y1-y2*0.5]; ! INTERCEPTS ARE 0.5 FOR ITEMS 1-2 IN THE POPULATION 

[y3*0.5]; ! INTERCEPT IS 0.5 FOR ITEM 3 IN GROUP 2 IN THE POPULATION 

[y4*0.9]; ! INTERCEPT IS 0.9 FOR ITEM 4 IN GROUP 2 IN THE POPULATION 

 

MODEL: ! ANALYSIS MODEL FIT TO THE DATA OF GROUP 1 

       ! (EQUALS RESPECTIVE POPULATION MODEL) 

f1 BY y1*1 y2*.9 y3*1.5 y4*1.6; 

f1@1; 

[f1@0]; 

y1-y4*.3; 

[y1-y2*0.5];  

[y3*1.0];  

[y4*0.5]; 

  

MODEL g2: ! ANALYSIS MODEL FIT TO THE DATA OF GROUP 2 

          ! (EQUALS RESPECTIVE POPULATION MODEL) 

f1 BY y1*1 y2*.9 y3*1.5 y4*1.6; 

f1@0.6; 

[f1@0]; 

y1-y2*.3; 

[y1-y2*0.5]; 

[y3*0.5]; 

[y4*0.9]; 

 

OUTPUT: TECH9; 
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Data Analysis (Mplus Input File) 

TITLE:      ESTIMATING PROPOSED MEASUREMENT INVARIANCE VIOLATION  

            INDICES USING DATA SIMULATED WITH A CFA MODEL  

            NON-INVARIANT INTERCEPTS FOR ITEMS Y3 AND Y4 

            EXAMPLE 2; 

 

DATA:       FILE = DAT_G12_EX2.DAT; !("FULL" DATA SET); 

 

VARIABLE:   NAMES = Y1-Y4 GROUP; 

            GROUPING = GROUP(1 = G1, 2 = G2); 

 

ANALYSIS:   ESTIMATOR = ML; 

            BOOTSTRAP = 1000; 

 

MODEL:      f1 BY Y1* (L1)  

                 Y2-Y4 (L2-L4); ! LABELED FACTOR LOADINGS; 

            f1@1; ! FIXED LATENT VARIANCE IN GROUP 1;  

            [f1@0]; ! FIXED LATENT MEAN IN GROUP 1;  

            [y1-y4] (TAU11-TAU14); 

             

 

            MODEL G2: 

            f1 (LV_G2); ! FREE LATENT VARIANCE IN GROUP 2;                

            [f1] (LM_G2); ! FREE LATENT MEAN IN GROUP 2; 

            [y1-y2] (TAU11-TAU12); ! FIXED INTERCEPTS ACROSS GROUPS 1&2;  

            [y3*] (TAU23); ! FREE INTERCEPT ACROSS GROUPS 1&2; 

            [y4*] (TAU24); ! FREE INTERCEPT ACROSS GROUPS 1&2; 

 

MODEL CONSTRAINT:  

            NEW(M3_A, M3_S, M4_A, M4_S, M_A, M_S); 

  

            ! M3_A = MIVI - ITEM 3, ABSOLUTE  

              M3_A = SQRT((TAU23-TAU13)^2)/SQRT((LV_G2+1)/2); 

            ! M3_S = MIVI - ITEM 3, SIGNED 

              M3_S = (TAU23-TAU13)/SQRT((LV_G2+1)/2); 

            ! M4_A = MIVI - ITEM 4, ABSOLUTE 

              M4_A = SQRT((TAU24-TAU14)^2)/SQRT((LV_G2+1)/2); 

            ! M4_S = MIVI - ITEM 4, SIGNED 

              M4_S = (TAU24-TAU14)/SQRT((LV_G2+1)/2); 

            ! M_A = MIVI - ITEM SET, ABSOLUTE 

              M_A = ((SQRT((TAU24-TAU14)^2)+SQRT((TAU23-TAU13)^2))/ 

                    SQRT((LV_G2+1)/2))/4; 

            ! MSCALE_S = MIVI - ITEM SET, SIGNED 

              M_S = ((TAU24-TAU14+TAU23-TAU13)/ 

                    SQRT((LV_G2+1)/2))/4; 

 

OUTPUT:     CINTERVAL(BOOTSTRAP) STDYX; 
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Additional File 4: R Code for the Simulated Example 1 

################################# 
#EXAMPLE TO QUANTIFY NON-INVARIANCE VIA MIVIS 
################################# 
 
#R version 4.1.1 
R.Version()$version.string 
 
#clear working space 
rm(list = ls()) 
 
#load relevant packages 
if (!require(simsem)) { install.packages("simsem"); require(simsem) } 
packageVersion("simsem") #version 0.5-16 
if (!require(lavaan)) { install.packages("lavaan"); require(lavaan) } 
packageVersion("lavaan") #version 0.6-11 
if (!require(psych)) { install.packages("psych"); require(psych) }  
packageVersion("psych") #version 2.1.9 
 
#specify population model 
populationModel <- " 
f1 =~ 1*y1 + 0.9*y2 + 1.5*y3 + 1.6*y4 
f1 ~~ c(1, 0.6)*f1 
f1 ~ 0*1 
y1 + y2 ~ 0.50*1 
y3 ~ c(0.50, 1.0)*1 
y4 ~ c(0.50, 0.9)*1 
y1 ~~ 0.30*y1 
y2 ~~ 0.30*y2 
y3 ~~ 0.30*y3 
y4 ~~ 0.30*y4 
" 
 
RNGkind(sample.kind = "Rounding") 
set.seed(1234) 
 
#sample data from population model 
data <- simsem::generate(model=populationModel,n=c(1000,1000), group=group, seed = 1234) 
 
#specify model including MIVIs for items and item sets 
 
#cave: up to the newest lavaan version (0.6-11) it was not possible  
#to identify the model via the latent variance in Group 1 while freely estimating 
#and labeling the latent variance of Group 2.  
#Until this bug persists, one must freely estimate the latent variance  
#and plug it, in a second step, into the MIVI formulae. 
#This also leads to a bootstrapped confidence interval,  
#which is smaller than anticipated (as the standard error of the latent variance in Group 2 
is not included).  
cfa.MIVI <- " 
f1 =~ c(a1,a1)*y1 + c(a2,a2)*y2 + c(a3,a3)*y3 + c(a4,a4)*y4 
f1 ~~ c(1,NA)*f1 
f1 ~ c(M1,M2)*1 
y1 ~ c(b1,b1)*1  
y2 ~ c(b2,b2)*1  
y3 ~ c(b31,b32)*1  
y4 ~ c(b41,b42)*1 
y1 ~~ NA*y1 
y2 ~~ NA*y2 
y3 ~~ NA*y3 
y4 ~~ NA*y4 
 
M1 == 0 
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#MIVIs - ITEM      
MIVI3_Intercept_Absolute := abs(b32-b31)/sqrt((1+0.648)/2) 
MIVI3_Intercept_Signed := (b32-b31)/sqrt((1+0.648)/2) 
 
MIVI4_Intercept_Absolute := abs(b42-b41)/sqrt((1+0.648)/2) 
MIVI4_Intercept_Signed := (b42-b41)/sqrt((1+0.648)/2) 
 
#MIVIs - ITEM SET      
MIVI_Intercept_Absolute := ((abs(b32-b31)+abs(b42-b41))/sqrt((1+0.648)/2))/4 
MIVI_Intercept_Signed := ((b32-b31+b42-b41)/sqrt((1+0.648)/2))/4 
" 
 
#calculate MIVIs for items and item sets 
cfa.MIVI.fit <- lavaan::cfa(cfa.MIVI, data = data, group = "group", estimator = "ml", 
missing = "fiml", std.lv=TRUE, se = "bootstrap", bootstrap = 1000) 
summary(cfa.MIVI.fit, fit.measures = T) 
 
#bootstrap confidence intervals for MIVIs 
lavaan::parameterEstimates(cfa.MIVI.fit) 

 
 



 



 

 

 


