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Abstract

Diagrams are an essential tool in any organization. They are used to create concep-
tual models of anything ranging from business processes to software architectures.
Despite the abundance of diagram modeling tools available, the creation of concep-
tual models often starts by sketching on a whiteboard or paper. However, starting
with a hand-drawn diagram introduces the need to eventually digitize it, so that it
can be further edited in modeling tools. To reduce the effort associated with the
manual digitization of diagrams, research in hand-drawn diagram recognition aims
to automate this task. While there is a large body of methods for recognizing dia-
grams drawn on tablets, there is a notable gap for recognizing diagrams sketched
on paper or whiteboard. To close this research gap, this doctoral thesis addresses
the problem of recognizing hand-drawn diagrams in images. In particular, it pro-
vides the following five main contributions. First, we collect and publish a dataset
of business process diagrams sketched on paper. Given that the dataset originates
from conceptual modeling tasks solved by 107 participants, it has a high degree
of diversity, as reflected in various drawing styles, paper types, pens, and image-
capturing methods. Second, we provide an overview of the challenges in recog-
nizing conceptual diagrams sketched on paper. We find that conceptual modeling
leads to diagrams with chaotic layouts, making the recognition of edges and labels
especially challenging. Third, we propose an end-to-end system for recognizing
diagrams modeled with BPMN, the standard language for modeling business pro-
cesses. Given an image of a hand-drawn BPMN diagram, our system produces
a BPMN XML file that can be imported into process modeling tools. The sys-
tem consists of an object detection neural network, which we extend with network
components for recognizing edges and labels. The following two contributions are
related to these components. Fourth, we present several deep learning methods for
edge recognition, which recognize the drawn path and connected shapes of each
arrow. Last, we describe a label recognition method that consists of three steps,
one of which features a network that predicts whether a label belongs to a spe-
cific shape or edge. To demonstrate the performance of the proposed methods, we
evaluate them on both our collected and the existing diagram datasets.



Zusammenfassung

Diagramme sind ein unverzichtbares Werkzeug in jedem Unternehmen. Sie werden
zur konzeptionellen Modellierung von Geschéftsprozessen bis hin zu Software-
Architekturen verwendet. Trotz der groBBen Auswahl an Software zur Modellie-
rung von Diagrammen werden sie zundchst oft auf Whiteboard oder Papier skiz-
ziert. Zur Weiterverwendung handgezeichneter Diagramme in Modellierungssoft-
ware miissen diese jedoch digitalisiert werden. Um den mit der manuellen Digi-
talisierung verbundenen Aufwand zu reduzieren, werden automatisierte Metho-
den zur Erkennung von handgezeichneten Diagramme entwickelt. Wahrend es
eine Vielzahl von Methoden zur Erkennung von auf Tablets gezeichneten Dia-
grammen gibt, existieren deutlich weniger Ansdtze zur Erkennung von auf Pa-
pier oder Whiteboards skizzierten Diagrammen. Um diese Forschungsliicke zu
schlieBen, befasst sich diese Dissertation mit der Erkennung von handgezeichne-
ten Diagrammen in Bildern, und liefert hierbei die folgenden fiinf Forschungs-
beitrdge. Erstens veroffentlichen wir einen Datensatz von auf Papier skizzierten
Geschiftsprozessdiagrammen. Der Datensatz stammt aus von 107 Personen bear-
beiteten Modellierungsaufgaben. Er weist daher ein hohes Maf} an Diversitit auf,
was sich in unterschiedlichen Modellierungsstilen, Papiertypen, Stiften und Di-
gitalisierungsmethoden widerspiegelt. Zweitens geben wir einen Uberblick iiber
die Herausforderungen bei der Erkennung von auf Papier modellierten Diagram-
men. Unter anderem stellen wir fest, dass die konzeptionelle Modellierung zu
Diagrammen mit chaotischen Layouts fiihrt, was insbesondere die Erkennung von
Pfeilverbindungen und Beschriftungen erschwert. Drittens stellen wir ein System
zur Erkennung von mit BPMN, der Standardsprache fiir die Modellierung von
Geschiftsprozessen, modellierten Diagrammen vor. Basierend auf einem Bild ei-
nes handgezeichneten BPMN Diagramms erzeugt unser System eine BPMN XML
Datei die in gidngige Prozessmodellierungssoftware importiert werden kann. Das
System besteht aus einem neuronalen Netz zur Objekterkennung, welches wir um
Komponenten fiir die Erkennung von Pfeilverbindungen und Beschriftungen er-
weitern. Die nichsten beiden Forschungsbeitrige beziehen sich auf diese Kompo-
nenten. Viertens beschreiben wir mehrere Deep Learning Ansétze zur Erkennung
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der Pfade und verbundenen Knoten von Pfeilverbindungen. Zuletzt stellen wir eine
aus drei Schritten bestehende Methode zur Erkennung von Beschriftungen vor. Ei-
nes dieser Schritte beeinhaltet ein neuronales Netz, welches prognostiziert, ob eine
Beschriftung zu einem ausgewdhlten Symbol oder einer Pfeilverbindung gehort.
Um die Genauigkeit der vorgeschlagenen Methoden zu demonstrieren, evaluieren
wir sie sowohl auf dem von uns verdffentlichten, als auch auf anderen Diagramm-
datensétzen.
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Chapter 1

Introduction

This chapter serves as an introduction to this doctoral thesis. Section 1.1 motivates
the research topic that this doctoral thesis addresses. Section 1.2 describes the
specifics of the diagram recognition problem that this thesis is concerned with.
Section 1.3 presents the research contributions of this thesis, and Section 1.4 the
publications that have been created in this context. Finally, Section 1.5 provides an
overview of the remaining chapters of this thesis.

1.1 Motivation

To motivate the research topic, we first provide some background on why diagrams
are ubiquitous in a large number of disciplines. Next, we discuss why diagrams are
often drawn by hand, and why this introduces the need for a hand-drawn diagram
recognition system. Finally, we briefly summarize existing research in diagram
recognition and highlight the main research gaps that need to be addressed to turn
the idea of an automated system for recognizing hand-drawn diagrams into reality.

Diagrams. Larkin and Simon’s seminal cognitive science paper [49] with the ti-
tle “Why a Diagram is (Sometimes) Worth Ten Thousand Words” provided critical
insights into the benefits of diagrams. The authors found that diagrams are eas-
ier to comprehend than informationally equivalent textual representations because
the information is not provided sequentially. Instead, information in diagrams is
organized (in a two-dimensional layout) by location, where items of information
that are likely to be processed together are often spatially co-located. A follow-up
work by Cheng [16] found that diagrams are even superior to tabular representa-
tions, even though both organize information in a two-dimensional layout.
Considering these advantages, diagrams are nowadays an important tool in all
business, design, and engineering disciplines [17,24]. In the field of software en-
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Diagram
—> —»| recognition
= system

Take a picture
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Figure 1.1: Exemplary use case for a diagram recognition system that is able to recognize
hand-drawn diagrams in camera-captured images.

gineering, for instance, the design of a system is commonly modeled using the
Unified Modeling Language (UML), which offers many diagram types to model
the structure and behavior of software components. For modeling business pro-
cesses there is also an established diagram type, the Business Process Model and
Notation (BPMN), which provides a comprehensive graphical notation to model
everything from simple linear processes to complex process semantics. In both do-
mains, a comprehensive body of diagram modeling tools has been developed over
the last decades, providing support for all stages of the modeling lifecycle [4,24].

Hand-drawn diagrams. Even though there is a plethora of available modeling
tools, the creation of conceptual models often starts by sketching on a whiteboard
or paper [17,24]. One reason is that digital modeling tools have been found to not
effectively support activities that involve communication and collaboration with
others [4]. In this regard, drawing on a whiteboard or paper has been found to
have great advantages. Whiteboards are not only ubiquitous and easy to use [17],
but also immediate [100]. This aspect of immediacy is of great importance since
it allows people involved in the model creation to continue their thought process
or conversation without interruption [100]. In addition, it has been shown that
drawing a diagram by hand only takes about 10% of the time that it takes to create
the same diagram with a tool like Microsoft Visio [76]. However, starting with
a hand-drawn model introduces the need to eventually digitize it so that it can
be further used in modeling tools. This transformation is very time-consuming
if done manually, creating undesirable friction in the modeling process. To reduce
the effort associated with the manual digitization of diagrams, hand-drawn diagram
recognition aims to automate this transformation task.

Recognition of hand-drawn diagrams. Figure 1.1 depicts how a diagram recog-
nition system could be used to enable a seamless transition from whiteboard to
digital modeling. After sketching the diagram on a paper or whiteboard, the user
takes a picture with a camera (e.g., a smartphone). The resulting image is provided
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Figure 1.2: Exemplary pen-on-paper diagram. Recognition challenges include partially
drawn shapes (1), bleed-through ink (2), multiple sheets and paper warping (3), crossed-
out elements (4), interrupted lines (5), missing arrowheads (6), and crossing lines (7).

as input to a diagram recognition system, after which the recognized diagram is
uploaded into a modeling tool for further editing. The usefulness of such an appli-
cation depends on the accuracy of the recognition method. If the user only needs
to manually correct some minor recognition errors, the semi-automated process
depicted in Figure 1.1 is much faster than manually recreating the entire model
from scratch. However, if the number of errors is very large, the overall time of
the semi-automated process might exceed the time of the manual process. There-
fore, an accurate hand-drawn diagram recognition method is needed to overcome
the recognition challenges associated with camera-captured drawings on paper or
whiteboard. Figure 1.2 illustrates some of these challenges for a business process
diagram sketched on paper. This leads to the question of to what extent current
methods are suited to recognize diagrams in such a challenging scenario, which
we address next.

Research in hand-drawn diagram recognition. Most methods for recognizing
hand-drawn diagrams have been developed specifically for diagrams that resemble
the ones in existing datasets. However, the existing datasets, of which four have
been published to this date [3,6,11,27], differ in the following aspects from camera-
captured diagrams modeled on paper or whiteboard:

1. Online datasets: All existing diagram datasets are online datasets, in which each
diagram has been drawn using a digital device (e.g., a tablet). These datasets
promote research in online diagram recognition, where the drawing is provided
as a temporal sequence of strokes. However, online methods are not applicable
in our so-called offline scenario, where the input is an image. The lack of offline
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Figure 1.3: Example template and diagram from the FC_B [11] online flowchart dataset.

datasets resulted in comparatively little attention towards offline methods.

2. Template-based diagrams: In existing diagram datasets, each participant was
asked to copy a set of computer-generated flowchart [3, 11, 27] or finite au-
tomata [6] templates, resulting in well-organized sketches. This is illustrated
in Figure 1.3, where the drawing closely follows the tidy layout of the template.
Yet, in practice, diagrams are often sketched to solve a modeling task, such as
graphically modeling software architectures or business processes [17,24]. The
iterative nature of conceptual modeling results in diagrams with chaotic layouts
and arrows [70]. This is also illustrated in Figure 1.2, where the process model
was sketched from a given textual process description.

3. Modeling language: Existing datasets use rather simple modeling languages
with a small number of element types, including flowcharts, with five shape and
one arrow type, and finite automata diagrams, with two shape and two arrow
types. In comparison, a modeling language such as BPMN has a much larger
vocabulary, differentiating between more than 70 shapes and four arrow types.

4. Diagram labels: In existing datasets, it is straightforward to identify the shape
or edge that each label is associated with. This is shown in Figure 1.3, where
shape labels are located within their associated shape, and edge labels are only
used as binary indicators to define the control flow for a decision shape. In com-
parison, label recognition is much more challenging in modeling languages such
as BPMN, where shape labels can be located outside of shapes, as observed for
BPMN events and data elements in Figure 1.2. Moreover, there can be multiple
shape or edge candidates close to a label, which makes it difficult to identify the
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Figure 1.4: An arrow-connected diagram consists of shapes (blue), edges (orange), and
labels (green). Each shape is defined by its type and bounding box, and each edge by its
type, its source and target shape, and its drawn arrow path. Finally, each label is defined by
its textual content, the shape or edge it is associated with, and its optional bounding box.

correct candidate. Presumably due to the less complex appearance of labels in
existing datasets, existing works mostly focused on textblock detection, which
is concerned with identifying the bounding box of each label. In fact, there is no
existing method that fully addresses label recognition for camera-based images,
even though the semantics of diagrams cannot be inferred without labels.

To summarize, there is a need for more research from both the dataset and
method perspective. Regarding datasets, more realistic and challenging publicly
available datasets of hand-drawn diagrams are needed, which originate from con-
ceptual modeling tasks, and which have been captured by commodity cameras.
In addition, methods are needed that can overcome the recognition challenges as-
sociated with such diagrams, and which can recognize diagrams in their entirety,
including diagram labels.

1.2 Problem Description

This doctoral thesis is primarily concerned with the development of recognition
methods for arrow-connected, hand-drawn, and camera-captured diagrams. Fig-
ure 1.4 shows an exemplary arrow-connected diagram that corresponds to this def-
inition. In the following, we detail each of these three aspects.

Arrow-connected. The term diagram has a broad meaning and can refer to quanti-
tative (e.g., a bar chart) and conceptual (e.g., a Venn diagram) diagrams. We follow
related work [11] and use the term arrow-connected diagram to refer to the diagram
type that this thesis focuses on. The BPMN diagram in Figure 1.4 illustrates that
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an arrow-connected diagram consists of shapes (blue), edges (orange), and labels
(green). Each shape is defined by a bounding box to denote its location and size,
and a type that specifies its graphical notation. For example, the circular shape
with the blank envelope in Figure 1.4 has the type start message event. Regarding
edges, each edge is defined by the two shapes it connects, an arrow type, and the
drawn path of the arrow. Figure 1.4 contains two arrow types, a solid and a dashed
arrow, which both have different semantics in BPMN. In addition, the arrow path
is specified through a sequence of waypoints located on the path from the source
to the target shape. Finally, each diagram label is defined by its textual content,
the shape or edge it is associated with, and a bounding box. In most modeling
tools, labels located within their enclosed shape do not have their own bounding
box but instead are automatically positioned in the center of the box. We consider
the detection of the bounding box for such labels as optional, as it is not required
for converting a hand-drawn diagram into its digital counterpart.

Overall, an arrow-connected diagram consists of shapes, edges, and labels,
each of which have multiple components. For a diagram recognition system to be
useful in practice, it needs to be able to recognize all these components.

Hand-drawn. Diagram recognition methods are usually developed specifically
for either computer-generated or hand-drawn diagrams. A computer-generated di-
agram is a diagram that has been produced with a digital modeling tool, such as a
flowchart modeled in Microsoft Visio. Such diagrams have been targeted by ex-
isting works with the goal of recognizing flowcharts in patents [63, 72,78,91] or
BPMN diagrams created with a modeling tool [1,43]. While the recognition of
computer-generated diagrams is important, this doctoral thesis focuses on hand-
drawn diagrams, i.e., diagrams drawn on a surface with a writing instrument, such
as a pen on paper or a marker on whiteboard. However, the methods we develop
for hand-drawn diagrams can also be used to recognize computer-generated dia-
grams. We demonstrate this in Chapter 8, where our approach outperforms the
state-of-the-art method in computer-generated BPMN recognition.

Camera-captured. Handwritten documents are commonly converted into images
using scanners or digital cameras, among which the analysis of camera-captured
documents has proven to be much more difficult [5,21]. Unlike scanned docu-
ment images, which have a high resolution and fairly simple structure (black text
on white background), camera-captured images come with a large number of ad-
ditional recognition challenges, including varying resolution, uneven lighting, per-
spective distortion, and complex backgrounds [21]. This thesis focuses on the more
challenging scenario of camera-captured images that depict hand-drawn diagrams.
Compared to digitization with scanners, this enables a broader application sce-
nario, since cameras can also be used to capture diagrams on other surfaces, such
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as brown paper or whiteboards.

In summary, this thesis addresses the problem of recognizing diagrams that are
arrow-connected, hand-drawn, and camera-captured. This combined scenario is
more challenging than the scenarios addressed in most existing works and has so far
received little attention. As we demonstrate in experiments, the methods proposed
in this thesis not only perform well in our target domain but can also be applied
to other scenarios, including computer-generated diagrams and images obtained
from online datasets, where they outperform state-of-the-art methods. In the next
section, we list the five main contributions of this thesis.

1.3 Contributions

This doctoral thesis is concerned with the automated recognition of hand-drawn
diagrams contained in a given image. To this end, we collect a dataset of hand-
drawn BPMN models, and we develop several methods that we not only evaluate
on this dataset, but also on datasets of flowcharts and finite automata diagrams. In
particular, the five main contributions of this thesis are the following:

1. Collection and publication of a dataset that consists of diagrams sketched on
paper: The publication of the first online flowchart dataset by Awal et al. [3]
achieved widespread attention and led to the development of numerous online
recognition methods. In comparison, the lack of offline datasets has resulted in
little attention being paid to offline methods. This is problematic, as in practice
diagrams are often modeled on whiteboard or paper, which can only be recog-
nized using offline methods. In Chapter 4, we address this issue by presenting
the hdBPMN dataset, which consists of 702 business process models drawn on
paper that we collected from 107 participants. hdBPMN contains over 70,000
manually annotated elements and covers more than 25 different types of shapes,
edges, and labels. In addition, it has a high degree of diversity, as reflected in
various drawing styles, paper types, pens, and digitization methods.

2. Overview of challenges in recognizing camera-captured diagrams sketched on
paper: To enable users to seamlessly digitize their paper-based diagrams, it
is important to develop diagram recognition methods that can work directly
with the diagram images that users capture after their modeling session. For
the design of such methods, it is important to know the key characteristics of
camera-captured diagrams obtained from pen-and-paper sketching. Due to the
lack of offline datasets, the recognition challenges associated with such dia-
grams are largely unexplored. We address this shortcoming in Chapter 4, where
we analyze the hdBPMN dataset to identify the key challenges in recognizing
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each diagram component. For example, we observe that the iterative nature of
conceptual modeling results in diagrams with chaotic layouts, which leads to
long-range arrows that cross other elements, and artifacts such as crossed-out
diagram fragments. In addition, we identify general challenges related to paper
types, pens, and camera-captured images.

. Development of an end-to-end system for recognizing business process dia-
grams: Business process modeling is an integral activity in many organizations,
with BPMN as the standard modeling language. As mentioned in Section 1.1,
process models are often sketched on paper or whiteboard, which introduces the
need for an automated diagram recognition system. In Chapter 8, we alleviate
this problem by introducing Sketch2Process, the first approach for end-to-
end recognition of sketched BPMN diagrams. Given an image of a hand-drawn
BPMN diagram, our approach produces a BPMN XML file that can be im-
ported into process modeling tools. Sketch2Process extends an object detector
with neural network components for edge and label recognition. The next two
points describe the major contributions related to these two components.

. Recognition of diagram edges using keypoint and visual relationship detection
methods: In the context of flowcharts and BPMN diagrams, the edges define
the control flow, i.e., they indicate the execution order of the steps. Despite
their importance, the recognition of hand-drawn diagram edges in images has
received little attention. In fact, most existing methods are not applicable to
camera-captured diagrams with complex backgrounds, or they are not able to
identify the shapes that each arrow connects. This thesis addresses this research
gap by proposing several edge recognition methods that are applicable in the
mentioned scenario. Chapter 5 introduces a neural network for detecting arrow
keypoints, which it combines with a heuristic to identify the connected shapes
of an arrow. Chapter 6 adapts this approach to the specifics of BPMN and pro-
poses rules to identify invalid edges. Chapter 7 addresses the inflexibility of the
rule-based method by introducing an edge prediction network, which directly
predicts whether two given shapes are connected through an edge. Finally,
Chapter 8 improves the edge prediction network such that it can also recognize
arrows that connect two shapes with a large detour.

. Recognition of diagram labels using a three-step approach: Recognizing dia-
gram labels can be decomposed into three subtasks: identifying the bounding
box of each label (textblock detection), recognizing the handwritten text within
each textblock (textblock handwriting recognition), and identifying the shape
or edge that each textblock labels (textblock relation detection). As we detail in
Chapter 3, the recognition of labels is hardly considered in existing works. In
fact, no existing work that targets hand-drawn diagrams goes beyond textblock
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detection. This is problematic, as the semantics of diagrams cannot be inferred
without labels. In Chapter 8, we address this issue by proposing the first method
that fully addresses the recognition of diagram labels. To this end, we formulate
textblock relation detection as a visual relationship detection task and design a
network architecture that learns to identify the shape or edge that each textblock
labels. In addition, we propose a textual content decoding method that alleviates
the shortcomings of off-the-shelf OCR services, which are mostly designed for
handwritten documents.

1.4 Publications

The research conducted as part of this doctoral thesis has led to the publication of
two journal, two conference, and one workshop paper, which are all concerned with
the recognition of hand-drawn diagrams. The following list gives a chronological
overview of the publications:

* B. Schifer and H. Stuckenschmidt, “Arrow R-CNN for Flowchart Recognition,”
2019 International Conference on Document Analysis and Recognition Work-
shops (ICDARW), 2019, pp. 7-13.

* B. Schifer, M. Keuper, and H. Stuckenschmidt, “Arrow R-CNN for handwritten
diagram recognition,” International Journal on Document Analysis and Recog-
nition (IJDAR), 2021.

* B. Schifer, H. van der Aa, H. Leopold, and H. Stuckenschmidt, “Sketch2BPMN:
Automatic Recognition of Hand-Drawn BPMN Models,” Advanced Information
Systems Engineering (CAiSE), 2021, pp. 344-360.

* B. Schifer and H. Stuckenschmidt, “DiagramNet: Hand-Drawn Diagram Recog-
nition Using Visual Arrow-Relation Detection,” International Conference on
Document Analysis and Recognition (ICDAR), 2021, pp. 614-630.

* B. Schiifer, H. van der Aa, H. Leopold, and H. Stuckenschmidt, “Sketch2Process:
End-to-end BPMN Sketch Recognition Based on Neural Networks,” IEEE Trans-
actions on Software Engineering (TSE), 2022.

1.5 Outline

The remainder of this thesis is organized into eight chapters. As illustrated in
Figure 1.5, the first chapters cover relevant existing datasets and methods, and
subsequent chapters detail the dataset and methods that we propose in the context
of this thesis. In particular, the eight chapters cover the following subjects:
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Figure 1.5: Thesis outline: we first cover relevant existing datasets and methods (first row),
before we detail the dataset and methods proposed as part of this thesis (second row).

* Chapter 2: Deep Learning for Computer Vision. Deep learning methods have
become the dominant approach for almost all computer vision tasks. They also
form the basis of our proposed diagram recognition approaches and the ones of
related works. Our research draws inspiration from three main computer vision
tasks: object detection, keypoint detection, and visual relationship detection.
Therefore, this chapter explains the deep learning methods that are commonly
used to address each of these tasks.

* Chapter 3: Diagram Recognition. This chapter gives an overview of research in
diagram recognition. After a general overview of the field itself, we detail the
existing diagram datasets. Next, we survey related work that addresses offline di-
agram recognition. We conclude this chapter by summarizing the main research
gaps that we identified.

* Chapter 4: The hdBPMN Dataset. This chapter presents the hdBPMN dataset
that we created as part of our work. We first explain the collection procedure and
the annotation process. Next, we provide various dataset statistics and elaborate
on how we split the dataset into a training, validation, and test set. Finally, we
detail the main recognition challenges that we identified for this dataset.

* Chapter 5: Arrow R-CNN. This chapter presents Arrow R-CNN, the first deep
learning system for recognizing offline hand-drawn diagrams. Arrow R-CNN
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extends a deep learning object detector with an arrow keypoint detector. For a
given image, the object detector aims to locate the arrows, shapes, and textblocks.
The detected arrow keypoints are then used to identify the shapes that each arrow
connects. We evaluate Arrow R-CNN on the existing diagram datasets, for each
of which it considerably outperforms the state of the art. Figure 1.5 shows a
diagram from one of these datasets and the recognized diagram that Arrow R-
CNN produces.

* Chapter 6: Sketch2BPMN. This chapter uses Arrow R-CNN to develop a first
shape and edge recognition baseline for a preliminary version of the hdBPMN
dataset with 502 images. The evaluation results indicate that hdBPMN is much
more challenging than existing datasets, especially with respect to edge recog-
nition. We also propose Sketch2BPMN, which improves Arrow R-CNN with a
rule-based method that prevents invalid edges, and an extended data augmenta-
tion pipeline that simulates the varying properties of camera-based documents.

* Chapter 7: DiagramNet. In this chapter, we present DiagramNet, our first ap-
proach that recognizes edges using a learning-based method inspired by visual
relationship detection research. Sketch2BPMN uses a rule-based method to iden-
tify the source and target shape of each edge. Even though this approach outper-
forms Arrow R-CNN, it still accounts for a large proportion of edge recognition
errors. Against this background, DiagramNet introduces an edge prediction net-
work, which directly predicts whether two given shapes are connected through
an edge. We evaluate DiagramNet on the preliminary hdBPMN dataset, where it
considerably outperforms Sketch2BPMN in edge recognition.

* Chapter 8: Sketch2Process. In this chapter, we present Sketch2Process, the
first approach that provides end-to-end recognition of hand-drawn BPMN mod-
els from images. Unlike Sketch2BPMN and DiagramNet, Sketch2Process also
targets label recognition, which is illustrated in Figure 1.5. Apart from the ex-
panded scope, Sketch2Process improves the edge recognition component of Dia-
gramNet in a way that it can also recognize arrows that connect two shapes with
a large detour. We evaluate Sketch2Process on the final hdBPMN dataset with
704 images, where it outperforms related work and our previous works.

* Chapter 9: Conclusion. In this chapter, we summarize the main findings of this
thesis, and we discuss the implications of the findings for research and practice.
Finally, we give an outlook on directions for future research.

As mentioned in Section 1.4, some parts of this thesis have been published in re-
search papers. This especially concerns the proposed hdBPMN dataset (Chapter 4)
and diagram recognition methods (Chapters 5-8). For that reason, we refer to the
respective publications in the introduction of each mentioned chapter.



Chapter 2

Deep Learning for Computer
Vision

This chapter covers the computer vision fundamentals that our diagram recognition
approaches, and the ones of some related works, build on. Section 2.1 introduces
the field of computer vision by discussing the advancements in image classification,
a classical problem in computer vision. This section also explains the function-
ing of a convolutional neural network, which is an essential component of most
computer vision solutions today. Given this groundwork, the next three sections
focus on the main computer vision tasks that our research draws inspiration from.
Section 2.2 gives an overview of object detection. In particular, it details Faster
R-CNN, the detector that we use in our methods. Section 2.3 introduces the field
of (human) keypoint detection and describes popular methods used in this domain.
Our research is also inspired by this domain, as we use a keypoint detection method
to predict the drawn path of an arrow. Last, Section 2.4 explains visual relationship
detection (VRD), where the task is to predict the relationship between objects in
natural images. In our research, we use approaches inspired by VRD as part of our
edge and label recognition components.

2.1 Image Classification

A classical problem in computer vision is image classification, where the task is
to predict a class for an entire image. This task assumes that each image can be
assigned to exactly one class out of a set of predefined classes. A key challenge in
image classification (and computer vision in general) is that images of a particular
class (e.g., a person) are highly variable. One source of variation is the actual
image-capturing process. Changes in aspects such as brightness or camera position

12



CHAPTER 2. DEEP LEARNING FOR COMPUTER VISION 13

(a) Input image (b) Histogram of oriented gradients

Figure 2.1: Histogram of oriented gradients (HOG) example

all produce significant variations in image appearance, even in a static scene. A
second source of variation is the variability in the intrinsic appearance of a class.
For example, the pose of people can vary substantially, and on top, people can wear
a large variety of clothes. The challenge is to develop computationally efficient
algorithms that are invariant concerning these variations.

In the following, we first describe the traditional vision pipeline, which ad-
dresses this challenge by manually designing low-level features that are invariant
to certain variations. Next, we describe the deep learning approach, which learns
the whole pipeline, from raw pixels to outputs, using end-to-end training. In par-
ticular, we detail convolutional neural networks and transformers, which form the
basis of most computer vision solutions.

Traditional vision pipeline. A popular example of a traditional vision approach
uses the histogram of oriented gradients (HOG) [18]. In the HOG approach, the
image is divided into small spatial regions. Next, a histogram of oriented gradient
directions is computed per region. Figure 2.1 visualizes the HOG descriptors for a
given image, which we have computed using the scikit-image [97] library. Finally,
the HOG descriptors from all regions are combined into a feature descriptor. Given
the feature descriptors, Dalal and Triggs [18] use a linear SVM classifier to predict
if an image contains a person or not. A similar approach was proposed by Lin et
al. [59] in 2010, which uses a linear SVM based on HOG and other feature de-
scriptors. With a top-5 error rate of 28.2%, their approach won the 2010 ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [79], an annual challenge to
track progress in image classification and other object recognition tasks.

As mentioned, an alternative approach to the traditional pipeline is the deep
learning approach. This idea, which is typically implemented with convolutional
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Figure 2.2: Architecture of LeNet-5 (Figure from LeCun et al. [51])

neural networks, dramatically reduced the ILSVRC error rates in 2012 at beyond,
which we describe next.

Convolutional neural network. The convolutional neural network (CNN) was
popularized in 1998, when LeCun et al. [51] introduced the LeNet-5 network for
recognizing handwritten digits, which is shown in Figure 2.2. As illustrated, a CNN
is composed of a hierarchy of layers. In the context of images, the input to the first
layer is the raw pixels of the input image. Each subsequent layer learns a feature
representation, typically using large annotated datasets. The first layers learn low-
level features, which often resemble the features extracted by hand-crafted edge
detectors, whereas the upper layer combines the local features to produce more
semantically meaningful high-level features. In standard feedforward neural net-
works, all units in a layer are connected to all units in the preceding layer. In com-
parison, a CNN organizes each layer into feature maps, as indicated in Figure 2.2.
Unlike a color channel in an RGB image, which represents the color intensity of
one of the three primary colors red, green, and blue, each feature map represents
to what extent a feature is present at a certain image location.

In a convolutional layer, a feature map is computed by sliding a filter with
learned weights over the feature maps of the previous layer. Here, a filter contains
different convolution kernels for each feature map of the previous layer. The output
of a kernel at a given position is computed as the weighted sum of the pixel values
within a small window (the kernel size), and the filter output is obtained by sum-
ming over the kernel results. Because the weights in a convolution kernel are the
same for all of the pixels within a given layer and channel, there are much fewer
weights to learn than in fully-connected layers. For example, as illustrated in Fig-
ure 2.2, the first convolutional layer of LeNet-5 consists of six filters, each of which
produces a 28 x 28 feature map by sliding a 5 x 5 kernel over the (grayscale) input
image. If the input image was an RGB image, as is standard in modern CNNss,
each filter of the first convolutional layer would have three kernels.

As mentioned, the weights of the convolutional and fully-connected layers of a
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CNN are trainable. The training is done through stochastic gradient descent (SGD),
an iterative method, where, at each step, k£ images are sampled from the training
set [S1]. Here, k is referred to as the batch size, and the set of sampled images
is called a mini-batch. During each SGD iteration, a loss function quantifies the
difference between the outputs and the ground-truth labels in an annotated dataset.
For a comprehensive introduction to CNNs and how they are trained, we refer the
reader to Goodfellow et al. [29] and Szeliski [93].

Despite their successful application, CNNs were rather unpopular until 2012,
when a CNN called AlexNet [47] achieved spectacular results in the ILSVRC, win-
ning with almost half the error rate of the second-best method. This success came
from the efficient use of GPUs and some innovations in the network architecture. In
the following years, CNNs became the dominant approach for almost all recogni-
tion and detection tasks [52]. Further developments on CNNs resulted in additional
performance improvements in subsequent ILSVRC. One notable improvement is
the introduction of the Residual Network (ResNet) [36] in 2015, which won the
2015 ILSVRC with a top-5 error rate of just 3.6%. The main innovation of ResNets
was the introduction of skip connections, which significantly increased the number
of layers that could successfully be trained. For example, the ResNet that won the
competition had 152 layers, which is much deeper than AlexNet, the winner from
2012, which has just eight layers.

Besides CNNs, other network architectures are used in image classification
and related domains. The most notable architecture is the transformer, which we
describe next.

Transformer. The Transformer [99] is a sequence-to-sequence network based on
an attention mechanism, which became the dominant approach in natural language
processing soon after its introduction in 2017. With the introduction of the Vision
Transformer (ViT) [22] in 2021, approaches based on transformers also started
to outperform CNNs in vision tasks such as image classification. As shown in a
follow-up work by Zhai et al. [115], transformers achieve excellent results when
pretrained on very large datasets with more than 10 million images. However, the
authors also mention that they do not generalize well when trained on insufficient
amounts of data, as transformers lack some of the inductive biases inherent to
CNN, such as translation equivariance and locality.

Unlike images of natural scenes, which can be collected in abundance on the
Internet, images of hand-drawn diagrams are comparatively rare. As our work
targets this domain with limited data, our methods proposed in subsequent chapters
all rely on CNNss to learn image features. In particular, we use a ResNet variant in
all experiments, given that they are easy to train and provide a good performance.
The next section describes object detection, where CNNs play an essential role.
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Figure 2.3: Object detection example: The visualized instances have been detected by a
Faster R-CNN [77] system that has been trained on the COCO dataset [58].

2.2 Object Detection

In this section, we first provide an introduction to object detection, and then explain
the details of Faster R-CNN, the detector that our approaches build on.

2.2.1 Overview of Object Detection

The goal of object detection is to detect all object instances from one or more
known classes in an image. The most popular benchmark for object detection is the
COCO dataset [58], where the goal is to detect objects from 80 common categories
such as people, cars, and dogs, in photographs. The COCO dataset consists of 328k
images, with a total of 2.5 million manually annotated instances. Figure 2.3 gives
an example of the detected instances of an object detector trained on COCO.

In object detection, each detected instance can be defined by a tuple (b, ¢, s),
with b as its bounding box, i.e., a rectangle encompassing the predicted area of
the instance, c as the predicted class of the instance, and s as the classification
score. The main challenge in object detection is that although an image usually
contains a small number of objects, they can appear at a very large number of
possible locations and in various scales. The most common approaches to object
detection use the concept of a sliding window, which reduces the problem to one
of image classification. In the sliding-window approach, the image is divided into
a grid. If the center of an object is located within a grid cell, the cell is responsible
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for detecting that object. Unlike networks for image classification, which have a
relatively simple design due to their single classification output, networks for object
detection have additional components to address the more complex nature of the
task. There are two dominant approaches to object detection: one stage (e.g., [73])
and two stage (e.g., [77]).

In the one-stage approach, a classification model predicts K objects for each
grid cell, where the prediction encompasses the class, bounding box, and score of
each object. There are two reasons to predict multiple objects per grid cell. First,
there might be more than one object whose center is located within this grid cell.
Second, each object slot has a different bounding box prior, such that each slot
learns to predict boxes relative to a specific scale and aspect ratio, which leads to
a better performance [56,75]. During postprocessing, one-stage detectors remove
instances whose score is below a threshold, and they apply non-maximum sup-
pression (NMS), in which object duplicates, i.e., multiple instances with a large
bounding box overlap and the same predicted class, are resolved by only keeping
the instance with the highest score.

In the two-stage approach, the first stage generates a set of so-called region of
interests (Rols), where each Rol is defined by a bounding box and an objectness
score. The second stage classifies each Rol and predicts a refined bounding box.
Due to their flexibility, two-stage systems are extended for various computer vision
tasks beyond object detection. They also form the basis of most approaches that tar-
get the tasks also discussed in this chapter: human keypoint detection (Section 2.3)
and visual relationship detection (Section 2.4). In particular, most extensions build
on Faster R-CNN [77], a popular two-stage system. As our approaches also extend
Faster R-CNN, the next section explains this system in detail.

2.2.2 Faster R-CNN

Faster R-CNN is the successor of R-CNN [28], which has popularized a two-stage
approach in object detection, and consists of three sub-networks: A CNN backbone
network, a region proposal network (RPN), and a box-head network.

CNN backbone network. As in image classification, Faster R-CNN uses a CNN
to learn a feature representation of the image. The CNN is commonly initialized
by pre-training an image classification model on a large dataset (e.g., ImageNet),
of which the weights of all layers up until the last convolutional layer are used.
The fully-connected hidden layers and the output layer of the image classification
model are not considered, as these are specific to the task at hand. During ob-
ject detection training, the CNN is jointly trained with the other networks, as we
elaborate at the end of the section. Given an image, the CNN extracts a feature
representation with a smaller spatial resolution w X h than the original image, but
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a much higher number of channels. The leading example image in Figure 2.3 has
a size of 970 x 728 x 3, where the third dimension represents the three RGB chan-
nels. Using a standard ResNet with 50 layers, this image is transformed into a
67 x 50 x 1024 feature representation.’

One of the limitations of Faster R-CNN is that it has difficulties with datasets
where objects have a large scale variance. Lin et al. [57] addressed this issue by
incorporating Feature Pyramid Networks (FPN) into Faster R-CNN. In this exten-
sion, the backbone network generates a pyramid of features at different scales. The
image feature pyramid is a multi-scale feature representation in which all levels are
semantically strong, including the high-resolution levels. As the FPN extension is
both faster and more accurate, we use such a backbone in all our approaches. Dur-
ing the description of the box-head network, we explain how and why this pyramid
structure increases the accuracy of the box-head network. In the leading example,
the ResNet-50-FPN backbone transforms the image into a pyramid with five levels,
where each level has 256 channels, and the spatial dimensions range from 17 x 13
to 272 x 200.

Region proposal network. Given the image feature pyramid, the region proposal
network (RPN) predicts a large set of Rols, i.e., locations in the image that might
contain an object. In image classification, the final layer produces a fixed-size
output, whose size corresponds to the number of classes. This is different in object
detection, where the number of objects per image, and thus also the number of
meaningful Rols, varies greatly. To predict a varying number of Rols, the RPN
uses the concept of reference bounding boxes, also referred to as anchors.

At each pixel position in an image feature map, Faster R-CNN creates K an-
chors, which vary in terms of size and aspect ratio. For example, the Faster R-CNN
implementation with the FPN extension uses K = 3 anchors with aspect ratios of
{1:2,1:1, 2:1}, and it assigns a different anchor size to each pyramid level. Specif-
ically, the anchor sizes are defined as {322, 642,1282, 2562, 5122}, where 322 is
used for the highest-resolution, and 5122 for the lowest-resolution level. For each
anchor, the RPN predicts an objectness score and a refined bounding box. The RPN
is trained to predict an objectness score of 1 for each anchor that has the highest
bounding box overlap with a ground-truth object, and O for all other anchors. The
bounding box overlap is quantified using the Intersection-over-Union (IoU), which
is measured as the intersection area divided by the union area of both bounding
boxes.

For the leading example in Figure 2.3, Faster R-CNN generates more than 200k
anchors, of which 163,200 (272200 3) stem from the highest-resolution pyramid
level. During training, Faster R-CNN computes the RPN loss on a fixed number

"'Specifically, we have used the R50—C4 configuration from the Detectron2 Model Zoo.


https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md#coco-object-detection-baselines

CHAPTER 2. DEEP LEARNING FOR COMPUTER VISION 19

Figure 2.4: Faster R-CNN top-100 region of interest (Rol) ranked by objectness score.

of sampled anchors. As the class imbalance between positive and negative anchors
is very large, the anchors are sampled such that the positive and negative anchors
have a ratio of 1:1. During inference, Faster R-CNN eliminates Rol duplicates
using NMS, after which it keeps the top 1000 Rols ranked by objectness score. For
the leading example, Figure 2.4 illustrates the top-100 Rols. Given the Rols, the
box-head network predicts the final object instances, which we describe next.

Box-head network. In the second stage of Faster R-CNN, the box-head network
predicts the object class and final bounding box of each Rol, which is illustrated in
Figure 2.5.

For each Rol, Faster R-CNN uses the RolAlign [35] method to generate a fea-
ture representation that is used as input for the network. RolAlign uses the size of
the Rol bounding box to match it to a pyramid level. Next, it cuts out the feature
map positions that are (partially) located within the bounding box. Finally, it ap-
plies a pooling mechanism to reduce the Rol feature maps to a fixed spatial size of
7 x 7. In the original Faster R-CNN implementation without feature pyramids, the
single feature map has a much lower resolution than the highest-resolution pyra-
mid level, which leads to very low-resolution representations for small bounding
boxes. The key advantage of FPN is that the varying-resolution feature maps can
be much better aligned with the varying-size bounding boxes.

Given the 7 x 7 x 256 Rol features, the structure of the box-head network
is relatively straightforward: two 1024-d fully-connected layers (each followed
by ReLLU) process the input, before a classification and a bounding box regres-
sion layer predict the outputs. For the classification task, the object classes are
extended with an additional background class, so that the network can recognize
false-positive Rols. During inference, Faster R-CNN removes these background
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Figure 2.5: Faster R-CNN box-head network: Given the Rol bounding box, RolAlign
extracts the Rol features from the image feature pyramid. The box-head network pro-
cesses the features using two 1024-d fully-connected layers (FC) with ReLu activation.
A classification and a bounding-box regression layer predict the class and bounding-box
refinements, which get transformed into a detected object during post-processing.

Rols. Further, it applies a score threshold and runs NMS for each class to ob-
tain the final detected objects. In addition, the encoded bounding boxes, which
have been predicted relative to the Rol boxes, are converted into absolute bound-
ing boxes. During training, the loss of the box-head network is computed on a
sample of Rols, again with a positive ratio of 50%.

For the overall training, the Faster R-CNN loss is defined as the sum of the
RPN and the box-head network losses. During backpropagation, the weights of
all networks are updated, including the CNN backbone. In this multi-task training
setup, the CNN backbone learns features specific to the tasks in both stages.

2.3 Keypoint Detection

Keypoint detection methods are commonly used for pose estimation tasks in nat-
ural images. In human pose estimation (HPE), the task is to predict human body
keypoint locations. Figure 2.6 shows the human keypoints predicted by a model
that has been trained on the COCO keypoint dataset [58], a prominent benchmark
for keypoint detection methods. The dataset contains over 200k images with more
than 250k annotated persons, each with 17 annotated keypoints.

Most HPE systems approach multi-person keypoint estimation in a top-down
process. In the first stage, person instances are detected with an object detector.
In the second stage, the person instances are cropped from the image, resized
to a fixed resolution, and fed into a dedicated single-person pose estimation net-
work. The only notable exception to this strategy is Mask R-CNN [35], which
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Figure 2.6: Human pose estimation example: The human keypoints have been predicted
by a Mask R-CNN [35] model trained on the COCO keypoint dataset [58].

directly extends Faster R-CNN with a keypoint-detection network. This keypoint
network predicts a 56 x 56 heatmap per person and keypoint, where each heatmap
is transformed into a keypoint by determining the position with the highest heat
value. Overall, the heatmap approach has become very popular in recent years,
and it has been used by winning systems in the COCO keypoint detection chal-
lenge [35,90, 105, 116]. Apart from the heatmap approach, a second popular ap-
proach is to directly regress the position of keypoints [92,96]. In this approach, a
regression layer predicts the keypoints relative to the person bounding box, which
is conceptually similar to bounding box regression in Faster R-CNN.

As shown in Chapter 5, we formulate arrow path prediction as a keypoint detec-
tion problem. While the HPE domain can serve as inspiration for arrow keypoint
detection, there are substantial differences in dataset size and task characteristics.

Dataset size. Unlike the COCO keypoint dataset, which contains more than 200k
images with 250k persons, existing diagram datasets have less than 1,000 images,
which contain between 2,800 and 4,500 arrows. Given the larger dataset, HPE
methods can use much deeper and more complex network architectures.

Task characteristics. Human keypoint detection comes with several challenges
that are not present in arrow keypoint detection. Person keypoints can be occluded,
under-exposed, and blurry, and keypoints are often either not visible or there is
some visual ambiguity. This forces the models to consider spatial and contex-
tual relationships. Popular architectures for HPE, such as stacked hourglass net-
works [66], try to enable such contextual reasoning with complex CNN architec-
tures. In contrast to person keypoints, arrow keypoints are typically clearly visible.
Further, there is a task overlap between arrow keypoint detection and bounding
box detection: arrow head and tail keypoints are often the outermost arrow pixel
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Figure 2.7: Scene graph generation: Figure from Yang et al. [110]

in one spatial direction, in which case they define a border of the bounding box.
This suggests that it might be beneficial to learn both tasks together, and use shared
feature extraction layers.

To conclude, although HPE is dominated by deep networks that rely on heatmap
methods, this does not mean such approaches work best for recognizing arrow key-
points. As shown in Chapter 5, we instead opt for a lightweight keypoint regression
method, which shares its features with the object detector network. We find this
approach is effective in the diagram domain, where most datasets are small, and
head and tail keypoints are typically located at the bounding box border.

2.4 Visual Relationship Detection

In visual relationship detection (VRD), the task is to predict the relationship be-
tween objects in natural images [60]. In our research, we frame two diagram
recognition subtasks as VRD problems. In particular, we define two visual rela-
tions, one to identify the source and target shape of each arrow (edge relation),
and one to identify the shape or edge that each label is associated with (label rela-
tion). A popular application of VRD is scene graph generation, which we describe
next. Given the popularity of scene graph methods for natural images, similar ap-
proaches have also been developed in the document domain, which we also discuss
in a dedicated paragraph.

Scene graph generation. In scene graph generation, a graph models the objects
(nodes) and their relationships (edges) in a scene image, as illustrated in Figure 2.7.
There are several ways to formulate hand-drawn diagram recognition as an image-
conditioned graph generation task. For example, the diagram shapes and labels
could be defined as the nodes of the graph, and the edge-relation and label-relation
form the edges of the graph. Existing methods decompose scene graph generation
into a sequence of multiple steps [106,110,114,117]. First, they use Faster R-CNN
to generate a set of object proposals. Given that reasoning over the quadratic num-
ber of potential relationships in the scene graph is intractable, existing methods use
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heuristics or learning-based approaches to come up with a set of candidate object
pairs. For a given object pair, the common approach is to extract the visual features
from the union of both object bounding boxes using RolAlign [35]. For our base-
line approach in Chapter 7, we also extract the relation features for edge recognition
using the union bounding box of a candidate shape pair. However, we observed that
this simple strategy is only partially suited for edge recognition, as an arrow can be
partially located outside the union bounding box when it connects two shapes with
a detour. After extracting the node and edge features of the graph, these features
are enriched with global context using recurrent or graph neural networks, before
predicting the final set of relations. Scene graph methods are commonly evaluated
on datasets with more than 100k images [45]. Given that we target a domain with
small datasets, we opt not to update local shape and edge features based on the
global context, in order to prevent our method from simply memorizing the graphs
in the training set. However, from a conceptual view, our approaches presented in
Chapter 7 and Chapter 8 follow a similar multi-stage approach.

VRD for Documents. In the document domain, VRD approaches have been de-
veloped to relate different kinds of textblocks [19, 20]. Davis et al. [19] use a
VRD approach to detect and associate pre-printed and input texts in historical
form images. To detect the pre-printed and input text lines in the image, they
use a one-stage object detector similar to YOLOV2 [74]. Next, the relationship
candidates are generated using a line-of-sight approach, which considers spatially
close objects whose direct connection path does not cross the bounding box of
other objects. This spatial heuristic for candidate generation works well for forms,
where associated pre-printed texts are typically located next to or below the input
text. But it is not suitable for arrows, which also connect shapes far away from
each other. To classify object pairs, Davis et al. propose a relationship classifier
network, which receives visual and spatial features as input. Further, a neighbor
prediction network predicts the number of associated objects for each text object.
To determine the final set of relations, a global optimization step combines the re-
lationship probabilities and the predicted number of neighbors. This is similar to
our edge optimization procedure in Chapter 7, except that our edge relations are
directed, and that we predict the in- and out-degree of each object, instead of the
(undirected) number of neighbors.

The next chapter covers related work in diagram recognition, of which many build
on the computer vision fundamentals introduced in this chapter.



Chapter 3

Diagram Recognition

This chapter gives an overview of research in diagram recognition. Section 3.1 pro-
vides a short historical outline and explains the difference between online and of-
fline recognition methods. Section 3.2 details the datasets that are commonly used
to evaluate offline methods. This lays the foundation for Section 3.3, which sur-
veys related work that addresses offline diagram recognition. Finally, Section 3.4
summarizes this chapter, and it also discusses the research gaps that we identified
in the area of diagram recognition.

3.1 Overview of Diagram Recognition

Research in diagram recognition dates back to the early days of artificial intelli-
gence and computer vision. In the 1960s and 1970s, researchers developed screens
that can record the drawing of a user as a sequence of strokes, and they pro-
posed algorithms that can recognize simple geometric shapes from the recorded
strokes [40, 65]. In the decades that followed, researchers continued to build on
these early ideas. For example, in the 1990s, researchers began using devices that
consist of a digitizing tablet and a pen for input, and from a recognition perspec-
tive, they started developing template-based methods to recognize diagram ele-
ments such as arrows, rectangles, and circles [31,32,48]. Overall, research before
2000 was focused on developing recognition methods for digital sketching tools.
These recognition methods, where the input consists of a temporal sequence of
strokes, are commonly referred to as online recognition methods. In the context
of a digital pen, each stroke is captured as a sequence of points between pen-down
and pen-up events. Each stroke point is then defined by its x and y coordinates
on the drawing canvas, and by an associated time stamp. In addition, a pressure
value may be provided by the input device. Online recognition methods typically

24
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leverage the richness of this data. For example, early approaches detected stroke
corners by identifying a group of spatially close points where the pen slowed down
and afterward accelerated again [31].

Complementary to online recognition, there is also offline recognition, where
the input is represented by a picture. This picture is commonly obtained by scan-
ning a piece of paper or taking a photo of a whiteboard or paper. In this context,
all the stroke information is missing and recognition is thus more difficult [71].
Research in offline diagram recognition can be divided into two subtypes based
on how the diagram was created. Besides hand-drawn diagrams, there are also
computer-generated diagrams, i.e., diagrams created through digital tools such as
Microsoft Visio. The recognition of computer-generated diagrams is much eas-
ier, as, e.g., it is straightforward to distinguish the white background from col-
ored (foreground) diagram pixels. Early research in offline diagram recognition
focused on computer-generated diagrams, presumably as these are easier from a
recognition perspective. In the 1990s, researchers worked on methods for recog-
nizing flowcharts scanned from books [111]. In the next decades, methods were
also developed to recognize other types of computer-generated diagrams, such as
flowcharts in patents [63] and process flowcharts in the telecom domain [98]. In
Section 3.3, we review recent works in offline diagram recognition in more detail.

While this doctoral thesis focuses on the offline scenario, there is an over-
lap with online recognition concerning the utilized methods and datasets. From a
method perspective, online methods that only operate on spatial coordinates, i.e.,
that require neither temporal nor pressure information, can be adjusted for offline
recognition. To this end, a stroke reconstruction preprocessing step can extract a
set of strokes from an image. From a dataset perspective, the recorded diagram
strokes in an online dataset can be converted into an image by rendering them on
a white canvas. Due to the lack of public datasets that are offline by nature, this
strategy is commonly used to evaluate offline systems [9, 26,41, 103]. In the next
section, we give an overview of the diagram datasets that are commonly used to
evaluate offline methods, which also includes online datasets.

3.2 Diagram Datasets

In 2011, Awal et al. published a paper with an accompanying online hand-drawn
flowchart dataset, which is commonly referred to as FC_A [3]. FC_A consists of 419
flowchart drawings, one of which is illustrated in Figure 3.1. The flowcharts are
composed of arrows, textblocks, and five different shape types (data, terminator,
process, decision, and connection). As mentioned in Section 1.1, the flowcharts
are template-based, which means that each participant was asked to copy a set of
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Figure 3.1: Exemplary flowchart from the FC_A dataset

predefined computer-generated flowcharts, which results in well-organized draw-
ings. The FC_A dataset sparked a lot of interest in online flowchart recognition
in the years after 2011, which led to the development of a large number of online
methods [6-8,10,11,14,42,53,101,102, 112].

A significant number of papers on online flowchart recognition have been pub-
lished by Bresler et al. [6-8, 10, 11] Accompanying some of these papers, the au-
thors introduced two datasets, one of which consists of flowcharts (FC_B dataset),
and the other which contains finite automata diagrams (FA dataset). The FC_B
dataset contains 672 flowchart drawings and is highly inspired by the FC_A dataset.
For example, it uses the same symbols and the flowchart templates of FC_A, one of
which is depicted in Figure 1.3. The FA dataset contains 300 finite automata dia-
grams, where each diagram consists of an initial arrow (an arrow without a source
shape), a plurality of state (a circle) and final state (two concentric circles) shapes,
and regular arrows and textblocks. A large number of textblocks consist of just one
character. In addition, unlike the arrows in the flowchart datasets, the arrows can
have the same source and target shape, and there can be two edges that connect the
same shapes in opposite directions, both of which are illustrated in Figure 3.2.

The most recent public dataset is the DIDI online flowchart dataset, which has
been published as part of a paper by Gervais et al. in 2020 [27]. DIDT is the first
large-scale diagram dataset and consists of two parts: 22,287 diagrams with tex-
tual labels (DIDIiqyt) and 36,368 diagrams without textual labels (DIDT o text)-
Each hand-drawn diagram has been collected by showing an image of a computer-
generated flowchart to the participant, who was then asked to copy the flowchart by
drawing over it. The computer-generated flowchart images were randomly gener-
ated using GraphViz. In particular, the authors randomly generated files in the dot
format, a textual graph description language. Overall, the dataset features 6,555
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Figure 3.3: Exemplary FC_B diagrams from the training and test set

flowchart templates generated using GraphViz. Unlike other online datasets, the
drawings are not manually annotated, neither on stroke level nor using bounding
boxes. While the position and size of all elements of a flowchart template can be
obtained from the corresponding dot file, these positions are only meaningful if the
participant accurately copied the hand-drawn diagram over the template. Unfortu-
nately, though, the dataset contains a lot of drawing errors, such as drawings with
missing elements, or drawings where the diagram was drawn next to the flowchart
template. Chapter 5 provides an in-depth analysis of these errors.

Table 3.1 provides some statistics for all mentioned datasets, with a special
emphasis on how the datasets were split into training, validation, and test set. As
depicted, all datasets were split either by writers (FC_B, FA, DIDI) or by tem-
plates (FC_A). In the former case, the sets of writers in the training, validation, and
test splits are disjoint. This means that experimental results show to what extent
the model generalizes to unseen writers. However, this also means that the same
template can appear in multiple splits. As indicated in Table 3.1, in the FC_B and
FA datasets, each template is present in all three splits. Figure 3.3 shows that the
diagrams from one template can look very similar. This means that very good
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Table 3.1: Overview of existing public diagram datasets: Before this thesis, all existing
public datasets were online datasets. The writer and template counts are provided per split
and overall, which reveals how the dataset was split into its parts.

Dataset Splits Writers Templates Diagrams Symbols
rC A Train 31/35 14/28 248 5,540
- Test 15/35 14/28 171 3,791
Train 10/24 28/28 280 6,195

FCB Validation ~ 7/24 28/28 196 4,342
Test 724 28/28 196 4,343

Train 11/25 12/12 132 3,631

FA Validation ~ 7/25 12/12 84 2,307
Test 7/25 12/12 84 2,323

Train /364" 940/940 27,278 193,939

DIDI,o texe Validation /364" 916/940 4,545 34,464
Test 2/364" 919/940 4,545 34,139

Train 2364 5,300/5,629 16,717 173,070

DIDTtext Validation /364" 2,131/5,629 2,785 30,468
Test 2/364°  2,090/5,629 2,785 34,052

* DIDI is split by writer, but the distribution is unknown as the writer identifiers are not public.

evaluation results might simply indicate that the model has memorized the training
diagrams, and can recognize them when the writing style slightly varies. In other
words, very good evaluation results could still mean that the model might perform
poorly on similar diagrams with unseen layouts.

Unlike the three other datasets, the FC_A dataset was split by template in a way
that 14 templates are used in the training set and another 14 templates in the test
set. However, most participants that appear in the test set are also present in the
training set. This means that experimental results show to what extent the model
generalizes to unseen layouts, but not to unseen writing styles. As discussed in
Chapter 5, we find that the template-based split is slightly more challenging for
deep learning methods, though, as the diagrams of each template are very similar
in existing datasets.

In summary, we observe that all four public datasets of hand-drawn diagrams
are online datasets. Due to the lack of offline datasets, offline methods commonly
evaluate their methods on these datasets, which we describe in the next section.
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3.3 Offline Diagram Recognition Methods

In this section, we review existing offline diagram recognition methods and discuss
their applicability to the domain this doctoral thesis addresses, namely camera-
captured hand-drawn diagrams with non-uniform backgrounds. Existing approaches
for offline diagram recognition can be further subdivided into stroke-based and
object-based approaches, which we detail in the following.

3.3.1 Stroke-based Methods

The more traditional stroke-based methods try to first reconstruct the strokes in an
image in a preprocessing step, after which they apply a recognition pipeline that
eventually identifies the set of strokes that corresponds to each symbol.

To our knowledge, the paper by Notowidigdo and Miller [67] from 2004 pro-
poses the first offline recognition method for hand-drawn diagrams. In the paper,
the authors present a recognition system, which they evaluate on scanned grayscale
images of pencil-based diagrams, and a graphics editor, where the user can iter-
atively correct recognition errors. To reconstruct the strokes, they first apply a
Gaussian filter to smooth out the noise in the image. Next, an image thresholding
method converts the image into a binary image. To this end, each grayscale pixel
is converted to either black or white based on a constant pixel threshold. Given
the binary image, they apply standard algorithms for line detection, contour fol-
lowing, line splitting, and segment merging [39]. The output of this procedure is a
set of line segments, which we refer to as strokes. Given the extracted strokes, the
authors use standard algorithms to detect geometric shapes, including rectangles,
diamonds, and circles. For detecting textblocks, they develop an algorithm that it-
eratively merges small line segments in proximity. Finally, for recognizing arrows,
they use a modified version of an algorithm originally proposed as part of an online
method [34].

Another early approach was proposed by Refaat et al. [76] in 2008, which
leverages machine learning to recognize shapes. For image preprocessing, the au-
thors use an adaptive image thresholding method [81], which performs better than
thresholding with a constant pixel value. To classify candidate shapes, Refaat et
al. extract a large number of features, most of which are computed as the ratio of
two areas, e.g., the area of the convex hull divided by its perimeter. Next, they
train a support vector machine on these features, which classifies the type of shape.
Finally, they evaluate their system on hand-drawn diagrams that consists of five
standard geometrical shapes, including circle, triangle, rectangle, diamond, and
ellipse, which are interconnected through lines.

As mentioned in Section 3.1, due to the lack of public datasets that are offline
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by nature, offline methods have also been evaluated on online datasets. The first
paper in this line has been published by Wu et al. [103] in 2015. Wu et al. develop
a recognition pipeline that receives the ground-truth strokes of the FC_A dataset as
input, hereby excluding the temporal information of each stroke. From a method
perspective, the main contribution of the work is a shapeness estimation algorithm,
which figures out if a stroke grouping has a regular appearance. This algorithm
leverages the fact that shapes of one class, e.g., a decision shape, look very sim-
ilar throughout the dataset. To detect text phrases, they group all strokes inside
a recognized shape as one detected text phrase. For text outside shapes, after ar-
row recognition, they form clusters of the remaining strokes based on a predefined
distance threshold. On the FC_A dataset, their method achieves a symbol recogni-
tion accuracy of 83.2%. However, these evaluation results are not comparable with
image-based recognition methods, as their evaluation does not account for stroke
reconstruction errors.

In 2016, Bresler et al. published a paper with an offline diagram recognition
method [9], for which they extended their previously proposed online system [11].
To this end, they use a standard image binarization step, after which they apply
their online method, which they modified such that it does not require any temporal
stroke information. To evaluate their method on more realistic offline images, they
printed out and scanned the flowcharts from the FC_B dataset, which results in
images with noise from the scanning procedure. We refer to this scan dataset as
FC_Bscan. The adapted recognizer was also tested on the unordered FC_A strokes,
where it achieved a symbol recognition recall of 84.2%.

In addition to the mentioned two works that have been evaluated on online
datasets, two papers have been evaluated on private datasets. In 2017, Herrera-
Camara and Hammond [37] proposed a mobile phone app that allows users to
take a photo of a flowchart drawn on paper, and combine this with a flowchart
recognition component and a user interface where users can correct recognition
errors. To reconstruct the strokes they propose a semi-automated process, where
the user first crops the image to remove unrelated parts, after which a standard pre-
processing pipeline identifies the strokes in the cropped image. To evaluate their
approach, they performed a study with 20 subjects, where each participant solved
three flowchart exercises using pen and paper.

Finally, in the business process modeling domain, Zapp et al. [113] presented a
prototype to recognize shapes in EPC diagram images in 2017. Their shape recog-
nition pipeline is based on the shapeness estimation method proposed by Wu et
al. [103]. To overcome errors introduced during stroke reconstruction, the authors
manually preprocessed each image to remove artifacts. The evaluation was con-
ducted on a dataset of 108 sketched EPC diagrams.

Overall, stroke-based methods require that the strokes can be reliably extracted
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(a) Input image (b) Otsu’s thresholding method [68]

Figure 3.4: Image thresholding example: Otsu’s method identifies the majority of back-
ground pixels, but struggles with the squared paper and the varying lighting conditions.

from a given image. A critical step in this procedure is thresholding, which gen-
erates a binary image. Thresholding has been shown to work well on online
datasets [9, 103] or scanned drawings with a simple structure (black strokes on
white background) [9, 67]. However, reliable stroke reconstruction from camera-
based images of pen-and-paper drawings with complex backgrounds is still an un-
solved research topic [5,21]. This is illustrated in Figure 3.4, which applies the
popular Otsu’s method [68] to an image from the diagram dataset introduced in
Chapter 4. The next section reviews object-based methods, which do not require
an explicit stroke reconstruction step.

3.3.2 Object-based Methods

Given the success of deep learning methods in computer vision (cf. Chapter 2), in
recent years such methods have also been applied in the diagram domain. We refer
to these methods as object-based methods, as they commonly use object detectors
to detect the diagram elements in a given image.

The first object-based method has been published by Julca-Aguilar and Hirata
in 2018 [41]. In their paper, the authors evaluate object detectors as a general
method to detect symbols in hand-drawn graphics. As part of their work, they train
Faster R-CNN [77] to detect diagram shapes, arrows, and textblocks in rendered
images of the FC_A dataset. The evaluation results reported in the paper are very
impressive and indicate the potential of using object detectors for recognizing dia-
grams. In particular, the detector achieved a mAP@0.5 of 97.7%, where mAP@0.5
corresponds to the mean average precision (mAP) at a ground-truth bounding box
overlap of at least 50%. Due to differing evaluation metrics, the results in the pa-
per are not comparable to the stroke-based approaches mentioned in the previous
section, though. In general, while object detectors can localize arrows through
bounding boxes, they are not able to identify the shapes that each arrow connects.
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We address this research gap in Chapter 5 and the chapters beyond, where we pro-
pose several methods that can properly recognize edges.

In 2022, Fang et al. [26] proposed DrawnNet, a CNN-based keypoint detec-
tor, which improves our Arrow R-CNN method proposed in Chapter 5. DrawnNet
is based on CornerNet [50], which detects an object bounding box as a pair of
keypoints, the top-left corner, and the bottom-right corner, using a single CNN.
In the paper, Fang et al. extend CornerNet with a network branch for arrow ori-
entation prediction, which predicts the head and tail keypoints of each arrow. In
addition, they propose two new keypoint pooling modules, which take into ac-
count the geometrics aspects within diagrams. During training, Fang et al. reuse
the Arrow R-CNN image augmentation pipeline. In addition, they use the same
post-processing as Arrow R-CNN, which employs an NMS configuration tailored
to hand-drawn diagrams, and which identifies the shapes that each arrow connects
as the shapes closest to the respective arrow keypoints. Fang et al. evaluate their
method on the FC_A, FC_B, and FA datasets, for which they use the rendered di-
agrams and corresponding annotations that we have made publicly available.! On
the mentioned datasets, they consistently improve over the previous state-of-the-art
Arrow R-CNN method. However, as mentioned in Section 1.1 and Section 3.2, the
existing online datasets are not particularly challenging for modern deep learning
methods. On all three datasets, Arrow R-CNN achieves mean symbol recognition
precision and recall scores in the range of 97.9% to 99.3%. The results show that
there is little room for improvement on the existing datasets, as the marginal pre-
cision and recall improvements obtained by DrawnNet also indicate, which are in
the range between 0.1% and 0.5%.

Finally, two more methods that target the recognition of computer-generated
diagrams have been proposed in 2022. First, Sun et al. [91] published the flowchart
recognition method FR-DETR. FR-DETR is based on DETR [13], a transformer-
based object detection approach. In addition, it is inspired by LETR [108], which
extends DETR for line segment detection to predict wireframes of indoor and out-
door environments. FR-DETR fuses both DETR and LETR into a network with a
joint CNN backbone. In this architecture, the shapes of each flowchart are detected
with the DETR object detector, and the line segments of each edge are detected
with the LETR line segment predictor. Sun et al. evaluate their approach on the
FR-DETR dataset, which combines patent flowcharts from the CLEF-IP dataset
with flowcharts collected through image search engines. The FR-DETR approach
assumes that each edge can be decomposed into a sequence of line segments. This
is the case for computer-generated diagrams, where edges are typically composed
of vertical and horizontal line segments that are parallel to an axis. However, the

lhttps ://github.com/bernhardschaefer/handwritten-diagram-datasets
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Table 3.2: Related work in offline diagram recognition: For each approach, we show the
method type, the targeted diagram type, and its recognition scope with respect to diagram
shapes and edges. For diagram labels, we indicate the subtasks that each approach targets.

. Labels”

Method Type / Authors Diagram Type Shapes Edges L1 12 13
Stroke-based approaches

Notowidigdo & Miller [67]  Generic geometric shapes v v

Refaat et al. [76] Generic geometric shapes v v

Wu et al. [103] Online flowcharts v v

Bresler et al. [9] Online flowcharts v v v

Herrera-C. & Hammond [37] Flowcharts v v v

Zapp et al. [113] EPC process models v
Object-based approaches

Julca-Aguilar & Hirata [41]  Online flowcharts v v

Fang et al. [26] Online flowch., finite autom. v v v

Sun et al. [91] Comp.-gen. flowcharts v v

Antinori et al. [1] Comp.-gen. BPMN models v v v v Y

* L1 = Textblock detection (identifies which parts of the image contain text)
L2 = Textblock handwriting recognition (recognizes the handwritten text contained within each textblock)
L3 = Textblock relation detection (identifies the shape or edge that each textblock labels)

edges of hand-drawn diagrams often consist of curves, which can not be effectively
modeled through line segments. Thus, it is unclear to what extent the FR-DETR
approach can be applied to hand-drawn diagrams.

Second, Antinori et al. [1] proposed the BPMN-Redrawer method for recogniz-
ing computer-generated BPMN diagrams in 2022. From an architectural perspec-
tive, BPMN-Redrawer is very similar to Arrow R-CNN [82] but builds on two dif-
ferent neural networks, one to recognize shapes, and one to recognize arrows. The
shapes are recognized using the Faster R-CNN object detector. For recognizing
edges, they first detect arrow objects and their keypoints using the Mask R-CNN
keypoint detector [35]. Next, they use the heuristic of Arrow R-CNN to identify the
shapes that each arrow connects. For textblock detection and handwriting recogni-
tion, they build on the Tesseract OCR engine, which can only recognize machine-
printed characters. Last, for textblock relation detection, they simply assign each
label to the closest shape or edge. Antinori et al. evaluate their method using two
off-the-shelf networks from the Detectron2 library [104], which they train on a
dataset of computer-generated BPMN model images. Given that they use off-the-
shelf networks, it is very straightforward to reimplement their approach. Therefore,
in Chapter 8, we evaluate the BPMN-Redrawer approach on hand-drawn diagrams
and compare the results to the performance of our Sket ch2Process approach.
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3.4 Summary

This chapter reviewed related work in diagram recognition. We first provided an
overview of diagram recognition and explained the difference between online and
offline methods. Next, we discussed the existing diagram datasets. Finally, we
surveyed related work that addresses offline diagram recognition, which we sum-
marize in Table 3.2. Overall, we identify the following research gaps:

Dataset limitations. From a dataset perspective, we observe that there are no
offline datasets of hand-drawn diagrams. The existing works, therefore, out of
necessity, evaluate their methods on images generated from online datasets. How-
ever, the generated images do not capture the challenges associated with recog-
nizing camera-captured diagrams sketched on paper. In fact, the images have a
very simple structure (black strokes on white background), and as the drawings
are template-based, they do not have the chaotic structure of diagrams that stem
from conceptual modeling tasks. As another issue, we find that the training and
test set diagrams look very similar in most existing datasets, which we illustrated
in Figure 3.3. This means that the evaluation results obtained on these datasets
are biased, and do not indicate how the model performs on unseen data. In sum-
mary, we argue that more realistic datasets are needed to advance offline diagram
recognition research.

Method limitations. From a method perspective, we observe that existing works
are limited in several aspects. For stroke-based methods, we find that these are not
applicable to camera-based images of drawings with complex backgrounds, due
to the lack of accurate stroke reconstruction methods for this domain. For object-
based methods, we observe that most approaches either target the recognition of
computer-generated diagrams [1,91] or that they evaluate their method on online
datasets [26,41]. Therefore, it remains unclear to what extent these methods can
recognize camera-captured images of pen-and-paper drawings. In addition, we ob-
serve that no approach, neither stroke-based nor object-based, fully addresses the
recognition of hand-drawn diagram labels. In fact, except the BPMN-Redrawer by
Antinori et al. [1], no method goes beyond textblock detection. As for the BPMN-
Redrawer, this approach uses the Tesseract OCR engine, which does not recognize
handwriting, and it uses a very simple heuristic for textblock relation detection. As
the corresponding paper does not evaluate the performance of the label recognition
component, it is unclear how this part performs, even for computer-generated di-
agrams. In summary, this means that, from a practical point of view, the existing
approaches are only of limited use.



Chapter 4

The hdBPMN Dataset

This chapter discusses hdBPMN, the dataset that we established as part of our
work. Overall, the dataset contains 704 annotated images of hand-drawn BPMN
models, corresponding to 11 modeling tasks, and containing over 70,000 anno-
tated elements which cover 25 different types of shapes, edges, and labels. The
images and BPMN annotations are publicly available at https://github.
com/dwslab/hdBPMN. Furthermore, we provide a Python library to convert
the images and BPMN annotations into a dataset that uses the COCO format [58]:
https://github.com/dwslab/pybpmn-parser. COCO is a popular se-
rialization format for object and keypoint detection datasets in computer vision
research and is thus supported by common object detection libraries.

The chapter is structured as follows. Section 4.1 discusses the collection pro-
cedure of the dataset, i.e., how we obtained the 704 images of diagram sketches.
Section 4.2 explains how we annotated each image in the dataset. Given the im-
ages and annotations, we dive into various dataset characteristics in Section 4.3,
and detail how we split the dataset into a training, a validation, and a test set in
Section 4.4. Finally, Section 4.5 illustrates the recognition challenges associated
with camera-captured BPMN sketches.

4.1 Collection Procedure

We collected 704 images of hand-drawn BPMN models from 107 participants, all
students at the University of Mannheim who participated in a lecture on business
process modeling and agreed to the use of their drawings. Each image corresponds
to a solution that was submitted by a student for a graded assignment in an exercise
sheet or exam. The obtained models stem from 11 modeling tasks, 10 of which
involved the establishment of a BPMN model based on a textual process descrip-
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(a) ex01_writer0073 (b) ex06_writer0045

Figure 4.1: hdBPMN images where the diagram only covers a small portion of the image.

tion, while the other involved the conversion of a Petri net into a BPMN model.
All modeling tasks and accompanying instructions are available in Appendix B.

The students were asked to solve the exercise sheets and the exams on paper,
and then upload a solution PDF that contains a scan or photograph of each hand-
written page, with the only constraint that the models should be readable. For
each received submission, we used the pdfimages command-line utility to ex-
tract the images from the PDFs. Next, we split images manually into multiple ones
when they spanned different modeling tasks. Note that, aside from splitting pages
that covered multiple modeling tasks, we deliberately did not crop images, which
means that the drawn diagram sometimes only covers a small fraction of the image.
Two such cases are shown in Figure 4.1, where the percentage of the image area
that is covered by the diagram is the lowest among the entire dataset.

Finally, we used an image editor to conceal personal details (e.g., names and
student IDs) and task-related meta information (e.g., exercise number). The re-
sulting images were assigned names that follow a taskID_participantID
convention to recognize drawings by the same participant.

Table 4.1 shows the number of collected images per modeling task and some
basic task properties. ex00 and ex01 are easy modeling tasks that stem from the first
exercise sheet, where the students received a short textual process description and
were instructed to only use some basic BPMN elements to model the corresponding
process. The tasks ex02 to ex(05 also originate from the first exercise sheet and
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Table 4.1: Modeling task characteristics

Task ID Images  Difficulty Source Collab. Shapes Data Shapes

ex00 68 Easy Sheet 1

ex01 69 Easy Sheet 1

ex02 69 Intermediate  Sheet 1 v v
ex03 65 Hard Sheet 1 v v
ex04 18 Intermediate  Sheet 1 v v
ex05 22 Hard Sheet 1 v v
ex06 98 Intermediate  Sheet 2 v v
ex(07 98 Hard Sheet 2 v

ex08 85 Hard Exam 1 v

ex09 16 Hard Exam 2 v

ex10 96 Hard Sheet 2 v

include the modeling of collaboration shapes (pools and lanes) and data shapes
(data objects and data stores). Among those, ex04 and ex05 were optional tasks,
which explains the smaller number of collected images. For the first exercise sheet,
about a third of the submitted solutions were drawn on a tablet, which we excluded
from the dataset. Therefore, the collected number of images for each modeling task
from ex00 to ex03 is substantially lower than the number of total participants. This
is not the case for the second exercise sheet and the exam, where only diagrams
drawn on paper were allowed.

In the lecture before the second exercise sheet, the students were introduced
to more advanced BPMN elements such as timer events, terminate end events,
and event-based gateways. This was reflected in the second exercise sheet, where
the students were required to use a larger subset of the BPMN vocabulary. In
ex006, the task was to translate a Petri net into a BPMN model, and ex07 and ex10
were among the most difficult modeling tasks with a relatively long textual process
description. Finally, we also collected hand-drawn diagrams from the two exam
questions ex08 and ex09. As the exam modeling tasks come with a severe time
constraint, we noticed that the hand-drawn diagrams are much more chaotic than
their exercise sheet counterparts. As illustrated in Figure 4.2, the exam images
contain many elements that have been crossed-out and often contain long-range
arrows that cross other elements. Thus, the exam modeling tasks can be considered
the most challenging from a recognition perspective.
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(a) ex08_writer0037 (b) ex08_writer0100

Figure 4.2: hdBPMN exam images with crossed-out elements and long-range arrows.

4.2 Annotation

In order to train and evaluate diagram recognition approaches, we need to annotate
the hand-drawn elements in each collected image. In the following, we present
the image annotation tool that we developed to annotate the BPMN elements in
each image. We also outline our strategy to reduce the number of annotation mis-
takes. Finally, we outline how we annotated all handwritten words in each image
to evaluate the handwriting recognition accuracy of our approaches.

BPMN image annotation tool. To annotate the BPMN elements in each image, we
developed an image annotation tool based on the open-source bpmn—js BPMN
viewer and editor!, which we have made publicly available: https://github.
com/dwslab/bpmn-image—annotator. Figure 4.3 depicts the annotation
tool in action. The annotation workflow for each collected image works as follows.
First, the image is uploaded into the annotation tool, where it is resized to a user-
defined image width. Next, the annotator needs to manually model the process on
top of the image, hereby ensuring that the shapes, edges, and labels match their
hand-drawn counterpart. Note that to allow us to also annotate images that contain

'https://github.com/bpmn-io/bpmn-js
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Figure 4.3: Example of an annotated sketch in the BPMN image annotator. Shapes are
sized and positioned to match their hand-drawn counterparts, while edges are modeled
using waypoints to resemble the drawn arrows.

modeling errors, we allow our annotation tool to violate certain correctness rules
enforced by bpmn—-7js, e.g., an end event with an outgoing sequence flow. Upon
completion, the annotations can be downloaded as a BPMN 2.0 XML file, which
follows the standard serialization format for BPMN models. The BPMN XML
format specifies the bounding box of each shape and label. For edges, the path
is annotated using at least two waypoints, where the first waypoint intersects with
the source shape, and the last waypoint intersects with the target shape. Since the
image width during annotation is exported as a comment into this file, the location
and size of each element in the BPMN model can be linked back to the location
and size in the image.

Quality assurance. Due to budget and time constraints, each image was annotated
by only one annotator. When analyzing the errors of the first trained models, we
observed two main sources of annotation errors: missing edges and incorrect event
types. To detect such errors, we compiled a large list of syntactical checks and
inspected each image manually in case a syntax check was violated. Concerning
missing edges, the syntactical rules that we inspected upon violation include:

» Sequence flow: Activities, gateways, and intermediate events should have at
least one incoming and one outgoing sequence flow. Start events should have
no incoming and one outgoing sequence flow, and vice versa for end events.

* Message flow: Catching message events should have an incoming message
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Figure 4.4: Modeling task annotation statistics

flow, and throwing message events should have an outgoing message flow.

* Data association: Data object and data stores should have at least one in-
coming or outgoing data association.

We found that these rules are not just effective for detecting missing or incorrect
edges, but also to identify events where an incorrect subtype was used, e.g., an
intermediate event annotated as a start event. For message events, we additionally
checked for inconsistencies between the label and the existence of in- and outgo-
ing message flow. For example, we inspected message events with an outgoing
message flow whose label contained the word “receive”.

Word annotation. To evaluate the handwriting recognition accuracy of our ap-
proaches, we also annotated all handwritten words in each image. To bootstrap the
annotation process, we obtained a first set of words per image using the Microsoft
Azure OCR service? version 2021-04-12. Next, we imported the initial word an-
notations into the Label Studio [95] annotation tool, where an annotator went over
each image and corrected the mistakes of the OCR service. To reduce word anno-
tation errors, we generated a text phrase from all words located within a label and
compared this extracted text phrase to the annotated text of the label. We then man-
ually inspected the word and label annotations in case of mismatches. Note that we
did not resolve all mismatch cases, as sometimes the handwriting was so difficult
to decipher that multiple word annotations were plausible. Finally, we exported the
annotated words of each image using the Pascal VOC annotation format [25].

2 . . . .
https://docs.microsoft.com/azure/cognitive-services/
computer-vision/overview—-ocr
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Table 4.2: BPMN elements in the 704 annotated images

Type  Group Elements and their frequencies
Activity task (4,094), subprocess (collapsed) (135),
subprocess (expanded) (5), call activity (15)
Event start (424), intermediate throw (7), end (936), terminate (62)

message start (508), message intermediate catch (507),

message intermediate throw (291), message end (199),

timer start (86), timer intermediate catch (289)
Gateway exclusive (1,347), parallel (661), inclusive (3), event-based (171)
Resource pool (1,103), lane (688)
Data element data object (887), data store (219)

Shape

sequence flow (9,893), message flow (1,821),

Edge data association (1,773), annotation association (170)

Label textblock (12,498), word (31,997), text annotation (176)

4.3 Dataset Characteristics

Overall, the 704 images in the hdBPMN dataset contain more than 70,000 annotated
elements. On average, each image has more than 100 annotations, including 18.2
shape, 19.4 edge, 17.8 label, and 45.5 word annotations. As shown in Table 4.2, the
models in the dataset are highly expressive, spanning 22 types of shapes and 4 types
of edges. The different shape types can be further categorized by groups, which
include 4 types of activity shapes, 10 types of events, and 4 types of gateways.

Largely owing to the different modeling tasks from which they stem, the indi-
vidual BPMN models differ in terms of their size, complexity, and expressiveness
(i.e., the number of types covered). The models resulting from the 11 different
modeling tasks have up to 15 activities and 26 events, 0 to 10 gateways, 0 to 8
resources, and 0 to 15 data elements. As illustrated in Figure 4.4, some tasks result
in simpler models (e.g., ex01: 11.0 shapes and 11.9 edges on average) and others
in more complex ones (e.g., ex03: 25.8 shapes and 27.3 edges). To illustrate the
model variety in the dataset, Figure 4.5 shows the images with the smallest and
largest number of annotated BPMN elements, respectively.

Aside from the complexity of a particular process, the recognition difficulty of
an image is affected by various other aspects, mainly corresponding to the gen-
eral challenges highlighted in Section 4.5, such as the use of different paper types
(blank, lined, or squared) and drawing implements (pen versus pencil), image-
capturing issues (such as background objects, cut-off parts, and blurriness), the
inclusion of crossed-out parts, and the presence of modeling errors.

As a result, the 704 images in the publicly-available hdBPMN dataset thus de-
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Figure 4.5: hdBPMN images with the smallest and largest number of annotated BPMN
elements, respectively.

pict BPMN models that span a broad range of BPMN elements and have a high
degree of diversity. Figure 4.6 visualizes this by showcasing some of the different
manners in which various kinds of shapes were drawn.

4.4 Dataset Splits

Following existing datasets of hand-drawn diagrams [11,27], we split up the dataset
into training, validation, and test parts, which we release together with the dataset.
As illustrated in Figure 4.7, each participant in

the dataset contributed between one and ten di- 30
agrams. While the variability of factors such
as writing style, writing medium and image- §’
capturing method is high between participants,
there are substantial similarities between the di- 0

agrams of one participant. Therefore, we split ! Nuzmbjr ofi,iagsrami pezpa:icipgntlo
the dataset by participants, such that the par-
ticipants in the training, validation, and test set
are disjoint. Specifically, we created a random
60%/20%/20% split over the participants and assigned each diagram to the respec-
tive part. The resulting training/validation/test set contain 432/144/128 diagrams
from 65/21/21 participants, respectively.

Figure 4.7: hdBPMN diagrams per
participant
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Figure 4.6: Examples of hand-drawn events (start 4.6a, intermediate 4.6b, end 4.6¢c, mes-
sage start 4.6d, message intermediate catch 4.6e, message intermediate throw 4.6f, message
end 4.6g, timer start 4.6h, timer intermediate 4.61), gateways (exclusive 4.6j, parallel 4.6k,
event-based 4.61) and data elements (data object 4.6m, data store 4.6n).

4.5 Recognition Challenges

This section illustrates the challenges associated with the recognition of hand-
drawn BPMN models in detail, which we have already briefly touched upon in
Section 1.1. We discuss challenges specifically related to shapes, edges, and la-
bels, as well as general challenges that occur when dealing with images of physical
drawings. We will use the exemplary drawing in Figure 4.8, stemming from our
hdBPMN dataset, to illustrate the challenges where applicable.

Shape recognition challenges. Shape recognition targets the identification of the
nodes in a BPMN model, such as activities, events, gateways, resource pools, and
data objects. From a recognition perspective, shapes are defined through a bound-
ing box, capturing the location of the shape in the drawing, and a shape type, cap-
turing its type. Compared to the recognition of other types of conceptual models
(see Chapter 3), BPMN models have a considerably higher number of different
node types, which increases the complexity of the recognition task.

The recognition of shapes and their types in hand-drawn diagrams can be
highly complex due to a variety of challenges. From a conceptual point of view,
shape recognition in BPMN is complex because of the high similarity between cer-
tain types. Clear examples of this are events, which are depicted as circles, where
the circle’s line determines whether it is a start (single line), intermediate (double),
or end (bold) event of a certain type. Similarly, activities, sub-processes, pools, and



CHAPTER 4. THE HDBPMN DATASET 44

5 L] IRE - } [ ],ij g ‘ | ‘ ‘ 1 Htgr (1| Depicted shape recognition issues:
k) ‘:LA - ol ol Ll e ‘F o \sj i | ||| sl) Shape drawn incompletely;
- el _—=-—~— - - { 2] ‘ ; ! a | s2) Shape drawn using curved and interrupted lines.
il g : in | 7‘7:':7‘: e ] e e 2 —+ ' Depicted edge recognition issues
v f - O I L ] I Y ]| lf_' il L | | | el) Edge interrupted by another model element;
) | NPT o P Al e | | | e2) Edge not connected to corresponding nodes;
e _'; 1% e 4 _‘l‘m}_ww{ s 5’:“ n [ TT KX T'& Uj(re( mw‘u\#ﬂh‘@ e3) Data association drawn using dashes rather than
Boa 7—>EA;¢E‘ T P.-U‘J“ ]w | dots.
= Ced IPER= AR || Depicted label recognition issues
e I SN E S T S O I 11) Rotated pool and lane labels;
| AR <ia eIl e - ib + |y | 12) Textblock words that appear disconnected.
| 3 | 148 T 108 Rotiotes | [k Cliaw T “ T Depicted general issues:
i I A 7‘>71 — [ ﬂ]‘ a AQ gl) Additional lines due to paper type;
| L == e | | Yow | 59 B [ g2) Punch-holes in paper obscuring the model;
B = |0~~ — 1 23) Ink on other side of paper bleeding through;
H i o 8 A 1EE <J‘H\/‘H=} b f" r 1’}; T 4W g4) Crossed out part of the drawing.

Figure 4.8: Exemplary hand-drawn BPMN model with various recognition challenges.

lanes are all depicted as rectangles, where the specific node type follows from the
node’s context, e.g., a lane encompassing several activities, or subtle differences,
e.g., a small plus symbol in a square indicates that a node represents a sub-process.
While challenging in itself, differentiating among such similar node types be-
comes more complex due to the characteristics of hand-drawn models, such as
drawn lines being incomplete, curved (when they should be straight), or inter-
rupted, such as e.g., seen for issues sl and s2 in Figure 4.8. Furthermore, shapes
in general are drawn in a broad range of styles, especially more complex ones such
as events, databases, and certain gateways. This is, for instance, evidenced by the
examples of intermediate (throwing) message events depicted in Figure 4.6f.

Edge recognition challenges. The edges in BPMN models indicate the connec-
tions between nodes. There are three types of edges, which have different drawing
styles and are used to connect different node types. Solid edges indicate the con-
trol flow of a process by connecting nodes such as activities, events, and gateways,
as e.g., seen in Figure 4.8 to indicate that the Examine claim activity occurs af-
ter Register claim. Dashed edges capture the message flow across organizational
boundaries, as seen by the Customer sending a claim to the Insurer in the example.
Finally, dotted edges capture data associations, showing the creation or retrieval
of data, such as Register claim storing information in the Claim DB.

Each edge is defined through a sequence of waypoints (indicating the path of
the edge), the edge type, and the source and target shape that the edge connects.
The proper recognition of edges and their characteristics in an automated manner
is complex, though. This complexity, for instance, results from edges commonly
crossing each other or intersecting with other model elements, as e.g., seen for issue
el in Figure 4.8, where just a single dash appears before the edge intersects with
the Insurer pool. Such edge interruptions make it hard for a recognition approach
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to identify which drawn lines belong to the same edge and which lines are actually
separate ones. Furthermore, drawn edges are often not properly connected to model
nodes, as seen for issue €2 in Figure 4.8, which makes it harder to recognize the
source and target of an edge.

This recognition is particularly complex when there are
multiple candidate shapes, such as seen in Figure 4.9, where
two pool boundaries and a task are very close to the starting
point of a message flow. Finally, the differentiation of mes-
sage flows and data associations can be difficult since they
are often drawn in a similar or even equal manner. For ex-
ample, in Figure 4.8 we observe that also data associations
are drawn using dashes, rather than dots (see issue €3). Figure 4.9: Multiple

Label recognition challenges. Labels are associated with —candidate shapes
shapes and edges in BPMN models. Some types, e.g., activities, require a label,
whereas for others, e.g., control flow edges, labels are optional. Each label, in con-
trast, should be associated with a specific shape or edge. As described in Chapter 3,
label recognition can be decomposed into a sequence of three steps.

Textblock detection strives to locate the labels in BPMN models through bound-
ing boxes. These boxes are referred to as textblocks in diagram recognition [9, 11].
The primary challenge here is to appropriately recognize which pieces of text in a
diagram belong together, i.e., which form a single textblock. This can be highly
complex, since it may be hard to discern which words actually belong together, for
instance, because they are apart from each other in the drawing (see e.g., issue 12)
or even separated by (parts of) model shapes. The exception to this are activity
labels, where we know that the label consists of the words located within the ac-
tivity bounding box. Therefore, activity labels do not need to be detected through
dedicated textblocks.

Textblock handwriting recognition aims to recognize the exact text that is con-
tained within a textblock, i.e., to interpret the handwritten text. While handwriting
recognition (HWR) methods for handwritten documents have been developed for
decades, HWR for hand-drawn diagrams is largely unexplored and much more
challenging [5], as textblocks can be rotated (see issue 11), in front of complex
backgrounds, and with overlapping model element strokes.

Finally, textblock relation detection is con- 4+ - -

i i
i

cerned with finding the shape or edge that the . .sc 22
textblock labels. This can be challenging when |(t:m ““!"""* i
multiple shape or edge candidates are in close H‘ ,,Jx"-"J:

proximity to a textblock, which makes it hard
to recognize the correct relation between the  Figure 4.10: Label candidates
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textblock and the model element. To give an example, the textblock in Figure 4.10
has three shapes and four edges nearby.

General challenges. The complexity of detecting shapes, edges, and labels due
to the aforementioned issues is amplified by various general challenges related to
sketch recognition for hand-drawn models, such as:

* The paper on which a hand-drawn model was drawn may be lined, squared,
or dotted. For instance, the graph paper in Figure 4.8 adds numerous addi-
tional lines to the drawing, which may appear similar to lines used to denote
model elements, such as resource pools (consider the thicker line denoted by
issue gl).

* The image might contain additional contents that are visually similar to
model elements. For example, Figure 4.8 has punched holes (g2), which
look similar to events, and visible model elements from the back side of the
paper (g3).

* Drawing implements, such as pencils, may affect the clarity, consistency,
and thickness of drawn lines, which can negatively affect the interpretability
of a sketch. While Figure 4.8 was drawn using a clear pen, a pencil would
yield lines that look very similar to the lines that are already part of the paper
(e.g., as indicated by g1).

* When hand-drawn models are captured using a camera, rather than a ded-
icated scanner, additional quality issues may be introduced [21]. This in-
cludes images that are rotated or blurry, as well as those that include content
beyond the paper or where part of it has been cut off (e.g., the right-hand
side of Figure 4.8).

* Finally, it is important to recognize that establishing BPMN models is noto-
riously difficult [15], which means that it is not uncommon for modelers to
make mistakes [54]. On the one hand, this can result in parts of a drawing
being crossed out (issue g4), on the other hand, there is no guarantee that
the final drawing is free of errors, which means that a recognition approach
cannot depend on the syntactic correctness of the drawing.

In the next chapters, we propose several methods that aim to address the afore-
mentioned challenges, which we develop to accurately detect hand-drawn BPMN
models in images.



Chapter 5

Arrow R-CNN

In the diagram domain, Julca-Aguilar and Hirata were the first to use an object
detector to detect the symbols (shapes, arrows, textblocks) of hand-drawn dia-
grams [41]. In their work, the authors demonstrate that Faster R-CNN can be
effectively trained to detect symbols in a small flowchart dataset. Even though the
utilized dataset has only 200 training images, the evaluation shows near-perfect
shape recognition results, and the model also performs well in recognizing arrow
and textblock objects, which are more challenging due to their varying form and
size. However, object detectors are severely limited concerning edge recognition:
while a detector can localize arrow objects in a diagram through bounding boxes,
it can not identify the source and target shape of an arrow. Recognizing the bene-
fits and limitations of using object detectors for hand-drawn diagram recognition,
in this chapter we propose the Arrow R—CNN method for recognizing arrow-
connected diagrams. Arrow R-CNN extends the Faster R-CNN object detector
with an arrow keypoint detector, and it uses a structure recognition method to form
the final diagram from the detected objects and keypoints. As part of structure
recognition, the detected objects and keypoints are used to identify the shapes that
each arrow connects. In addition, we propose an image augmentation pipeline tai-
lored to hand-drawn diagrams, and we demonstrate that this greatly improves the
object detection results.

The research presented in this chapter is based on a paper titled “Arrow R-CNN
for handwritten diagram recognition” by Bernhard Schifer, Margret Keuper, and
Heiner Stuckenschmidt [82].

The remainder of this chapter is organized as follows. Section 5.1 describes the
Arrow R-CNN method and its training procedure. Section 5.2 details the datasets
that we use to evaluate our approach. Section 5.3 describes the evaluation setup and
the experimental results. Finally, Section 5.4 presents conclusions and limitations.

47
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Figure 5.1: Arrow R-CNN overview: Given an image, Faster R-CNN detects arrow,
shape, and textblock objects. The arrow-head network uses the arrow bounding boxes and
image features to predict the arrow head and tail keypoints. Last, the structure recognition
pipeline constructs the final diagram given the predicted objects and arrow keypoints.

5.1 The Arrow R-CNN Method

This section introduces Arrow R—CNN, our method for recognizing the shapes,
edges, and textblocks in a given diagram image. As visualized in Figure 5.1,
Arrow R-CNN consists of three components. In the first step, we use Faster
R-CNN [77] to detect the arrow, shape, and textblock objects in an image. Next,
we extend Faster R-CNN with an arrow-head network, which detects the head
and tail keypoints of each arrow. Last, our structure recognition method identi-
fies the shapes that each arrow connects and creates the final recognized diagram.
In the following, we provide details on the individual steps of our approach (Sec-
tion 5.1.1 to 5.1.3). Finally, Section 5.1.4 details how we jointly train all network
components.

5.1.1 Faster R-CNN

We use Faster R-CNN to detect all diagram objects (shapes, arrows, and textblocks)
in a given image. Specifically, we use Faster R-CNN with the Feature Pyramid
Network (FPN) [57] extension, as our initial experiments showed that this leads to
consistently better results. A detailed description of Faster R-CNN, including its
different components and the mentioned FPN extension, can be found in Chapter 2.

Figure 5.2 shows the output of the trained Faster R-CNN object detector. As
indicated, the object detector has detected the shape, arrow, and textblock instances
in the image. The detected bounding boxes and predicted classes are sufficient to
define the diagram shapes. However, the bounding box of an arrow does not always
indicate which shapes the arrow connects, as there can be more than two shapes
in proximity to an arrow. In addition, the bounding box does not indicate the
direction of the arrow. For example, the bounding box of the detected arrow in the
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Figure 5.3: Arrow-head network architecture

top-right corner of Figure 5.2 does not indicate if the arrow connects the data to
the terminator shape or vice versa. To identify the source and target shapes of each
arrow, we extend Faster R-CNN with an arrow-head network, which we describe
in the next section.

5.1.2 Arrow-head Network

Figure 5.3 shows the arrow-head network, which predicts the head and tail key-
points of each detected arrow. Given the Faster R-CNN image features, the head
network uses RolAlign to extract the arrow features that correspond to the arrow
bounding box. Next, two fully-connected layers (FC) with ReLu activation func-
tion project the features to a vector. Last, a final regression layer predicts the head
and tail keypoints relative to the bounding box. The network architecture of the
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arrow-head network is identical to the box-head network of Faster R-CNN, ex-
cept for the last layer. In fact, we implement Arrow R-CNN such that both head
networks share the weights of the intermediate fully-connected layers, which in-
troduces an additional regularization effect.

Given the predicted bounding box of each arrow, the arrow network regresses

both arrow keypoints as a vector (kheadT ) Ktail" )—r of size 4 from the intermediate
arrow feature representation of size 1024. In theory, we could directly use the ab-
solute arrow keypoint pixel coordinates as regression targets. However, this would
require the arrow features to capture the global image context, since the network
would have to predict not only where the keypoints are located relative to the pro-
posal bounding box, but also where they are located within the overall image. The
Faster R-CNN bounding box regression thus encodes the bounding box regression
targets relative to the proposal box. For arrow keypoint regression, we follow a
similar strategy and encode the arrow keypoint targets relative to the arrow bound-
ing box. Suppose we have an arrow bounding box b = (¢, ¢y, w, h)T with center
point ¢ = (cg, cy)T, width w and height h, where 4wh measures the area of b. For
a ground truth arrow keypoint k = (&, k:y)T, we define bounding box normalized
keypoints as

e (b 2T = ke —co ky —cy T

= (kasky) = (== (5.1)
Thus, k. and ]_ﬂy are within the range [—1.0, 1.0], for keypoints k contained in
bounding box b. During training, our arrow regression target is then the 4-d vector

- T .07 T . . B .
t= (khead  Ktail ) , representing the relative coordinates of the two keypoints

per arrow. Section 5.1.4 details how we compute an arrow loss from the predicted
and ground-truth encoded keypoints. During inference, we compute the absolute
keypoint location of each arrow by applying the inverse encoding operation.

The next section explains how we use the detected objects and arrow keypoints
to form the final recognized diagram.

5.1.3 Structure recognition

The standard Faster R-CNN post-processing method has a major downside for rec-
ognizing symbols in diagrams: it does not consider any domain knowledge about
the structure of diagrams. In this work we design a post-processing structure recog-
nition method that takes into account the following spatial and structural observa-
tions about hand-drawn arrow-connected diagrams:

1. Shapes in diagrams are typically drawn in a way that the bounding boxes of
any two shapes have little overlap.
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Figure 5.4: Structure recognition pipeline

2. There is at most one textblock within a shape that labels this shape.

3. Most graphical languages, including flowcharts and finite automata, allow at
most one edge per direction between two shapes.

4. The bounding boxes of arrows can have a large overlap, especially for oppo-
site arrows that join the same shapes.

Based on these observations, Figure 5.4 shows our structure recognition method.
Given the detected objects and arrow keypoints, we employ a pipeline to obtain
the final set of shapes, edges, and textblocks. We opt for a rule-based sequential
method that starts by filtering object candidates based on a classification score
threshold. Next, we use three dedicated post-processing procedures that take into
account the specifics of shapes, arrows, and textblocks.

Shape Post-processing. For shapes, we propose a Shape NMS procedure, which
is based on the observation that shape bounding boxes typically have little overlap.
More concretely, we want to ensure that our model does not generate two detections
for different shape classes with almost identical bounding boxes. While allowing
multiple detections for the same shape would increase recall, it is unrealistic to
assume such a scenario in practice, and it merely shows that the model is not sure
about which class to assign. To prevent those duplicate detections, we perform
NMS over all shape classes jointly.

Arrow Post-processing. Regarding arrows, we observe that arrows can have a
large bounding box overlap. Figure 5.5 shows an exemplary diagram with two
arrows that have close to 70% IoU. Even with a perfect model, the NMS post-
processing in standard Faster R-CNN with a 50% IoU threshold would eliminate
one of both arrows (the one with the lower score). Therefore, we use a dedi-
cated Arrow NMS procedure, where we increase the IoU threshold for arrows to
80%. The Edge recognition step computes the distance of each arrow keypoint to
its closest shape and creates a candidate edge between the two respective closest



CHAPTER 5. ARROW R-CNN 52

Figure 5.5: Arrow bounding box overlap: The two highlighted arrows have a large IoU.
Faster R-CNN with standard NMS will always suppress the one with the lower score.

shapes. For the FA dataset, where initial arrows have no predecessor shape, we
use a heuristic and only connect an arrow to a predecessor shape if the spatial dis-
tance between the arrow tail keypoint and the shape bounding box is lower than
50px. Increasing the arrow NMS IoU threshold generates a lot more arrow can-
didate detections, and often multiple candidates per ground truth arrow. To filter
those duplicates, we employ an Edge-duplicate suppression step, which eliminates
duplicate candidate edges that connect the same two shapes in the same direction.
Duplicates are resolved by choosing the edge with the highest classification score.

Textblock post-processing. For textblocks, we propose a Textblocks NMS step
with a reduced IoU threshold of 30%. This is based on the finding that the axis-
aligned bounding boxes typically enclose the textblocks very well, and it is un-
common to have textblocks that largely overlap. Last, we Merge textblocks within
shapes. Specifically, in case the model detects multiple textblocks within a shape
bounding box, we merge those into a unified textblock during post-processing. The
unified textblock is created with a union bounding box and maximum classifica-
tion score over all textblocks in question. Fig. 5.6 illustrates this merging procedure
with a concrete flowchart example.

The structure recognition method concludes our Arrow R—CNN inference
pipeline. As illustrated in Figure 5.1, we use the final edges, shapes, and textblocks
to create the recognized diagram as the output of our method. The next section de-
tails how we train the network components of Arrow R-CNN.
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Figure 5.6: Merge textblocks within shapes example

5.1.4 Training

We follow the multi-task learning approach of Faster R-CNN and train all Arrow
R-CNN networks jointly. Figure 5.7 gives an overview of how we compute a loss
for a given image. First, we apply an image augmentation pipeline to obtain a
randomly augmented version of a given diagram image. Given the augmented
image, we use Faster R-CNN to generate a large set of object proposals. In arrow
proposal generation, we identify the object proposals that sufficiently overlap with
a ground-truth arrow bounding box. Finally, we use the arrow proposals to compute
the arrow loss L, and obtain an image loss £ by combining this loss term with the
Faster R-CNN loss L. In the following, we introduce each step in more detail.

Image augmentation. We use the following image augmentation pipeline to im-
prove the generalization capabilities of our model:

1. LongestMaxSize: Resize image to a longer side of 1333px while preserving
aspect ratio (p = 1.0)

2. IAMWordAugmentation: Augment diagram with up to three random word
images of size (w, h) from the words in the [AM-database [61], where 5 <
w < 300and 12 < h < 150 (p = 1.0)
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Figure 5.7: Arrow R-CNN training overview

3. ShiftScaleRotate: Use uniformly sampled ranges for shifting image by a fac-
tor [—0.01,0.01], scaling image by factor [—0.2,0.0], and rotating image
[—5°,5°] (p =0.3)

4. RandomRotate90: Rotate image by 90 degrees zero or more times (p = 0.3)

5. HorizontalFlip: Flip image horizontally (p = 0.3)

6. VerticalFlip: Flip image vertically (p = 0.3)

This pipeline is applied as a sequence, and each step is applied with probability
p. We use the Albumentations library [12] for all augmentations except IJAMWor-
dAugmentation. For IAMWordAugmentation, we augment the diagram with words
from an external dataset, as outlined in the following.

Due to the limited size of most datasets and the varying size and forms of ar-
row and text objects, we noticed that the model frequently confuses arrows with
textblocks and vice versa. As an example, we noticed several cases where the de-
tector falsely predicted an arrow within a textblock, e.g. a handwritten “I” within
the term “false”. To increase the robustness of arrow and text detection, we aug-
ment the training diagrams with handwritten words from the IAM-database [61].
The corpus consists of 1,066 forms written in English and produced by about 400
different writers, resulting in more than 80k word instances out of a vocabulary of
roughly 11k words. Out of these word instances, we randomly sample words with
a minimum word image height to exclude words that consist solely of punctuation
marks and restrict the word image width to exclude overly long words. Unlike the
online hand-drawn diagrams, the forms have been scanned and contain document
noise. To assure our detector does not learn to classify those textblocks solely
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Figure 5.9: Exemplary FC_Bg ., flowchart augmented with three JAM words

due to their document noise, we preprocess the IAM words to increase the visual
similarity to the diagram textblocks. To derive a stroke-based representation, we
binarize the image using Otsu’s method and skeletonize it to a one pixel wide rep-
resentation. Afterward, we use a procedure similar to the diagram rendering pro-
cess described in Section 5.2 to create words with uniform 3 pixel wide smoothed
strokes. Figure 5.8 shows an exemplary input IAM word and its preprocessed word
image, along with intermediate word image representations.

During training, we augment each diagram by inserting up to three random
IAM words into background regions. In the diagram datasets, textblocks are lo-
cated quite close to the symbol or arrow that they annotate. To imitate this close-
ness, we place each IAM word close to an existing symbol while ensuring that the
pixels of both objects do not overlap. Concretely, we ensure that the distance to
the closest flowchart pixel is in the range [5,50]. Figure 5.9 shows an exemplary
flowchart augmented with IAM words.

The augmented image produced in this step is used as input for the next step in
the training procedure (cf. Figure 5.7), in which we use Faster R-CNN to generate
a large number of object proposals. In the following, we describe how we identify
suitable object proposals to train our arrow keypoint detector.

Arrow proposal generation. In Faster R-CNN, the first RPN stage generates a set
of proposals and then performs non-maximum suppression (NMS). For any two
proposals that have an IoU of at least 70%, NMS iteratively removes the proposal
with the lower objectness score. In order to train the Rol box network, Faster R-
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Figure 5.10: Arrow proposal example: the left image shows the 72 proposals with at least
70% IoU to a ground truth arrow, the right image shows the 19 proposals that additionally
have both arrow keypoints located within their proposal box.

CNN considers the top 2000 proposals ranked by their objectness score (cf. Chap-
ter 2). For training our arrow network, we use a subset of these 2000 proposals.
Concretely, we define an arrow proposal as a proposal that fulfills two criteria:

(a) The proposal bounding box has an IoU of at least 70% with the bounding
box of a ground-truth arrow.

(b) Both arrow keypoints of the matched ground-truth arrow are located within
the proposal bounding box.

Figure 5.10 shows exemplary arrow proposals that fulfill either criterion (a), or
both (a) and (b). We use the identified arrow proposals to compute the arrow loss
term, as we outline next.

Arrow Loss. Given the bounding box of each arrow proposal b, the arrow-head
network (cf. Figure 5.3) predicts two keypoints kP24 and k!, which are encoded
against the proposal bounding box. In the following, we discuss how we combine
the predicted arrow keypoints into an overall arrow loss £,. Given our set of NV

T
o . head T itail” .
arrow proposal pairs with the regression targets t; = (k?ead , kgaﬂ ) € T with

the k; as defined in equation (5.1) for arrows i = 1... N and corresponding pre-
dictions t; € 7. The arrow loss is computed as the mean squared error over all
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Finally, we obtain the image loss £ = L + AL,, where L is the combined
Faster R-CNN loss. The hyperparameter A\ balances the arrow and the other task
losses. We found that A = 1 sufficiently balances the loss terms and thus did not
treat A\ as another hyperparameter to tune. Figure 5.11 shows the individual loss
terms throughout the first 2000 iterations on the FC_Bg.a, database.

5.2 Datasets

We evaluate our method on four hand-drawn diagram datasets, three depicting
flowcharts (FC_A [3], FC_B [11], and DIDI [27]), and one finite automata dataset
(FA [6]). In the remainder of this section, we discuss how each dataset has been
split into training, validation, and test set, how we render the online strokes as im-
ages, and how we obtain the ground-truth bounding boxes and arrow keypoints of
each diagram image.

5.2.1 Dataset splits

As mentioned in Chapter 3, the DIDT dataset consists of two parts, one that con-
tains diagrams with textual labels (DIDItcxt), and one that contains diagrams
without labels (DIDI, text). Throughout the experiments, we train on the entire
DIDI dataset, but report the results for both parts separately. All datasets were
split either by writers (FC_B, FA, DIDI) or by templates (FC_A), such that the sets
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Figure 5.12: Exemplary DIDI diagrams with overlaid drawings

of writers (or respectively templates) in the training, validation, and test splits are
disjoint. This means that the experimental results either show to what extent the
model generalizes to unseen writers or unseen layouts, but not both at the same
time. As another difference, FC_A has no dedicated validation set. To avoid over-
fitting to the test set, we conduct all hyperparameter tuning on the FC_B training
and validation set and train a model on FC_A using the same configuration.

5.2.2 Stroke rendering

All four diagram datasets are online datasets, where each diagram has been cap-
tured as a sequence of strokes. In order to generate an image from the stroke
sequence, we render the strokes as anti-aliased polylines with a stroke width of 3.
The only exception is the FC_B dataset, where we use the offline FC_Bs.,, dataset
introduced in [9], which contains scans of printed FC_B diagrams. For the FC_A
and FA datasets, after rendering the strokes, we pad each image by 10 pixels on
each side to ensure that border-touching strokes are fully visible. This padding
strategy is not required for the DIDI dataset, as it contains the dimensions of the
drawing area that was shown to the user. Here, we create a white image with the
dimension of the drawing area and then plot the strokes at their corresponding po-
sitions. During data collection of the DIDI dataset, the generated flowcharts were
rescaled to fill the drawing area. The size of this drawing area varies, with a maxi-
mum of 3600 x 2232 pixels. To avoid overly large images, we rescale each image
to the initial scale of the flowchart.
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Table 5.1: Excluded DIDI diagrams with drawing errors

DIDIno text DIDItext
Split Count Percentage Count Percentage
Train 404 1.48 1,303 7.79
Validation 12 0.26 50 1.80
Test 12 0.26 867 31.13
Total 428 1.18 2,220 9.96

5.2.3 Bounding boxes

In the following, we outline how we generate the ground-truth bounding boxes for
the datasets. For the offline FC_B.4, dataset, we use the bounding box annotations
provided with the dataset. For FC_A and FA, we define the bounding box of each
symbol as the union bounding box of all its strokes. As mentioned in Chapter 3, the
DIDT dataset is not annotated on stroke level. Therefore, we instead use the symbol
bounding boxes of the corresponding GraphViz diagram. Since the participants did
not draw precisely over the diagrams, the extracted bounding boxes do not perfectly
fit the hand-drawn symbols. To quantify this difference, we manually annotate 100
hand-drawn diagrams (50 without and 50 with textual labels), and compare the
extracted GraphViz and the annotated hand-drawn bounding boxes.

Figure 5.12 shows some drawings from this sample and illustrates two major
drawing issues that we identified: diagrams where a user did not draw over the
flowchart as instructed (5.12a), and diagrams where a user forgot to draw some or
all of the shapes (5.12b). Since the evaluation metrics described in Section 5.3.1 are
based on bounding box IoU, we try to exclude these erroneous diagrams in order to
get a meaningful assessment of our method. As a heuristic, we exclude a drawing
if at least one bounding box contains no stroke pixels. This heuristic correctly
identifies 8 diagrams with drawing errors out of the sample of 100 diagrams, but
it misses one diagram where the user forgot to draw an arrow. Table 5.1 shows
the proportion of excluded diagrams using mentioned heuristic, and it reveals that
drawing mistakes occur very frequently in the DID Iy train and test set.

Besides excluding drawings, we also account for inaccurate drawings such
as Figure 5.12¢ and 5.12d in the evaluation procedure. Specifically, we use an
IoU threshold of 50% instead of 80% for the evaluation metrics described in Sec-
tion 5.3.1. Within the sample of 92 diagrams without drawing mistakes, 0 out of
325 annotated shapes, 19 out of 271 arrows (i.e., 7%), and 40 out of 188 (i.e., 21%)
textblocks have less than 50% IoU between handwritten and GraphViz bound-
ing box. Two of those textblocks and two arrows can be found in Figure 5.12c
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Figure 5.13: FC_A ground-truth arrow keypoint heuristic: The detected corner peaks
(blue) are used to compute the head (green triangle) and tail (green circle) arrow key-
points.

and 5.12d. Overall, this means that a bounding box that perfectly encloses a hand-
drawn symbol can still be evaluated as incorrect, even with the relaxed IoU thresh-
old. Instead, for a positive evaluation result the model is required to predict the
location and size of the corresponding GraphViz symbol.

5.2.4 Arrow keypoints

For training our arrow keypoint detector, we need to specify the ground-truth ar-
row head and tail points. The head and tail points are explicitly annotated in the
FA and FC_Bg.., dataset. For the DIDI dataset, we extract the head and tail
keypoints from the arrow control points in the GraphViz dot file of the generated
flowchart. For the FC_A dataset, we use a heuristic to extract the keypoints from
the stroke data. For each arrow, we compute the Harris corner measure response
image, and then identify corner peaks with a minimum distance of 5. We use the
scikit-image [97] library implementations of the respective algorithms. We set the
arrow head and tail keypoints as the corner points closest to the source and target
shape, respectively. Figure 5.13 illustrates this heuristic using a flowchart from
FC_A, including the detected corner peaks and extracted keypoints.

We also quantitatively evaluate the accuracy of our heuristic on the FC_B dataset,
where the head and tail points have been annotated. For the flowcharts in the
training split, we compute the mean absolute error (mae) based on the euclidean
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distance between each approximated and annotated arrow keypoint. We find that
the approximated arrow tail (mae=1.38) and arrow head (mae=5.82) keypoints are
sufficiently close to the human annotations.

5.3 Evaluation

In this section, we describe the evaluation setup (Section 5.3.1) before we present
the experimental results (Section 5.3.2). We complete the experiments with an
error analysis (Section 5.3.3), where we also outline how future work could address
common sources of error.

5.3.1 Evaluation Setup

Below we elaborate on the implementation details and the metrics that we use to
evaluate our approach.

Implementation details. Our Arrow R-CNN implementation is based on the
maskrcnn-benchmark [62] R-CNN framework and uses PyTorch [69]. As CNN
backbone we use ResNet-101 with FPN. For training, we adopt the recommended
framework parameters for our CNN backbone. We use SGD with a weight decay
of 0.0001 and momentum of 0.9. Each model is trained on a Tesla V100 GPU with
16GB memory for 90k mini-batches, while reducing the learning rate after 60k and
80k iterations by a factor of 10. On the Tesla V100 GPU the training takes between
25 and 30 hours. We use a batch size of 4, and decrease the learning rate from the
recommended value of 0.02 for a batch size of 16 to 0.005 according to the linear
scaling rule [30]. To decrease memory usage during training, we use the default
framework configuration and group images with similar aspect ratios in one batch.

To demonstrate the general applicability of our approach, we use identical con-
figurations to train and evaluate models for all datasets, except for two exceptions:
as discussed in Section 5.1.3, we use an arrow distance threshold to account for
arrows without a predecessor shape in the FA dataset. For the DIDT dataset, we do
not use augmentation methods since the dataset is very large.

Metrics. We evaluate our method using recognition metrics on symbol and dia-
gram level. Regarding symbol recognition, Bresler, Prisa, and Hlavac [9] compute
the symbol recognition recall at an IoU threshold of 80%. Additionally, arrows
are required to be connected to the correct shapes. When using an object detector
framework, the recall negatively correlates with the utilized detection score thresh-
old. Without using NMS and a detection score threshold, a Faster R-CNN system
generates one detection per object proposal, which would result in more than 1000
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Table 5.2: Diagram recognition rate: Comparison of our method with other online and
offline methods. For FC_B, the offline results are based on FC_Bgcap.

FC.A FCB FA DIDInotext DIDItext

Online methods

Wang et al. [102] 5.8 — — — —

Julca-Aguilar et al. [42] 34.0 — — — —

Bresler et al. [11] 59.1 679 798 — —

Offline methods

Bresler et al. [9] — 37.7 — — —

Arrow R-CNN 684 78.6 833 83.9 85.1

detections per image. Therefore, recall on its own does not possess much infor-
mative value for evaluating object detectors, since any detector can be configured
to achieve very high recall. This is an important distinction between related work
that uses algorithms based on reconstructed strokes. Here, this trade-off is less se-
vere, since each reconstructed stroke is assigned to at most one symbol. However,
false-positive reconstructed strokes, such as noise patterns that stem from the scan-
ning process, might still lead to false-positive symbols, which affect the precision
of the system. In [9] symbol recognition precision is not reported. To make the
symbol recognition recall comparison somewhat fair, we use a score threshold of
0.7 throughout all our experiments, which corresponds to the default threshold of
our object detector framework. Moreover, with our Shape NMS post-processing,
we also ensure that we do not have multiple predictions for one symbol.

On a more aggregate level, the diagram recognition metric intuitively assesses
the performance of a diagram recognition system as the ratio of correctly recog-
nized diagrams in a test set. In this setting, a diagram has been recognized if
the number of detected symbols equals the number of ground truth symbols, each
symbol has been correctly classified and localized with at least 80% IoU, and each
arrow predecessor and successor shape has been correctly identified.

5.3.2 Results

Diagram recognition. Table 5.2 shows that Arrow R-CNN achieves state-of-
the-art performance in offline recognition. Even though our method uses no stroke
information, the diagram recognition rates are also higher than online systems.
Further, we conduct two ablation studies to quantify the effect of each aug-
mentation and post-processing method. Table 5.3 shows that the augmentation
methods substantially improve the diagram recognition rate for small datasets, es-
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Table 5.3: Augmentation ablation study: augmentation increases the diagram recognition
rate for the small datasets substantially, but lowers the rate on the large DIDT dataset. All
results use standard Faster R-CNN post-processing and are based on the test set.

FC.A FCBgecan FA DIDIpotext DIDIiext

No Augmentation 23.4 70.4 524 82.5 83.7
ShiftScaleRotate 339 73.0 60.7 82.6 83.5
+ Rotate90 & Flip 57.3 77.0 79.8 80.9 83.7
+ IAMWordAug.  66.7 76.0 81.0 80.8 83.5

Table 5.4: Structure recognition ablation study: the post-processing methods increase the
diagram recognition rate on all test sets.

FC_A FC.Bgcan FA DIDI,notext DIDIiext

Standard NMS (IoU < 0.5) 66.7 76.0 81.0 82.5 83.7
+ Shape post-processing 66.7 78.6 82.1 83.5 83.8
+ Arrow post-processing 67.8 78.6 83.3 83.9 85.1
+ Textblock post-processing 68.4 78.6 83.3 83.9 85.1

pecially for FC_A, where the model has to generalize to unseen layouts. For the
large DIDT dataset, the augmentation methods slightly lower the recognition rate.
To demonstrate the general applicability of our method, we used the same number
of training iterations for all datasets. However, the combination of a large dataset
size and multiple augmentation methods might require more training iterations. We
leave the investigation of the interplay between augmentation methods and dataset
size to future work.

Table 5.4 shows the results of the post-processing ablation study and reveals
that Shape NMS improves the diagram recognition rate on four out of five datasets.
Increasing the Arrow NMS IoU threshold and introducing edge suppression leads
to further improvements on all datasets except FC_Bscan, Where the rate stays the
same. Also, merging textblocks within a shape is a straightforward method to
improve the results on FC_A.

Symbol recognition. Table 5.5 — 5.8 show the symbol recognition results for the
evaluated datasets. Overall, Arrow R-CNN achieves perfect recognition results
for several shapes, which can be explained by the fact that the appearance and the
scale of shapes have a much lower variance than for arrows and textblocks.

On the FC_A dataset (Table 5.5), where related works report 83.2% [103] and
84.2% [9] symbol recognition recall, Arrow R-CNN has a much higher recall
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Table 5.5: FC_A symbol recognition at loU 80% on test set

Class Arrow R-CNN Wu et al. [103]
Precision Recall Recally,yso
Arrow 94.7/97.3"  96.0/98.5" 80.3
Connection 99.2 100 73.4
Data 100 99.7 78.5
Decision 100 99.5 78.9
Process 99.8 100 88.3
Terminator 100 100 90.6
Text 99.3 99.1 86.0
Micro avg.  97.9/98.8"  98.3/99.1" 83.2

* does not consider if arrows have been correctly matched to shapes

Table 5.6: FC_B..., symbol recognition at 80% IoU on test set

Class Arrow R-CNN Bresler et al. [9]
Precision Recall Recall
Arrow 98.0/98.0°  98.0/98.0" 84.3
Connection 100 100 86.6
Data 100 94.9 94.4
Decision 100 100 96.9
Process 95.5 100 98.8
Terminator 100 100 93.6
Text 99.2 99.3 93.7
Micro avg.  98.7/98.7° 98.7/98.7" 91.3

* does not consider if arrows have been correctly matched to shapes

Table 5.7: FA symbol recognition at 80% IoU on test set

Class Precision Recall
Arrow 98.4/99.0°  98.4/99.0"
Final state 100 100
State 100 100
Text 99.6 99.7
Micro avg.  99.3/99.5"  99.3/99.5"

* does not consider if arrows have been correctly matched to shapes

64
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Table 5.8: DIDI symbol recognition at 50% IoU on test set

Class DIDI . text DIDI;cxt
Precision Recall Precision Recall

Arrow 95.6/97.5° 94.7/96.5" 96.6/99.2° 95.2/98.0"
Box 97.1 96.5 99.9 99.8
Diamond 99.2 97.5 99.9 99.9
Octagon 96.3 92.2 100 99.7
Oval 92.6 97.2 99.7 99.4
Parallelogram 97.9 97.0 99.9 99.8
Text — — 98.5 97.7

Micro avg. 96.1/97.0°  95.4/96.3"  98.4/99.1° 97.6/98.4"

* does not consider if arrows have been correctly matched to shapes

(98.3%). The largest source of error of our method is in the arrow class, where
arrows have either not been detected with at least 80% bounding box overlap, or
the arrow has not been joined to the correct shapes. On the FC_A training set, we
noticed that our model fails to recognize diagrams of templates 5 and 7. In these
layouts, shapes are sometimes connected through a sequence of two arrows. Yet,
our current post-processing logic assumes that an arrow always points to a shape,
and thus connects the arrow to the shape closest to its head keypoint. We leave the
development of appropriate methods for the arrow-after-arrow scenario to future
work.

Table 5.6 shows that Arrow R-CNN can accurately recognize symbols in
scanned flowcharts. In the FC_Bg.an, test set, all arrows that have been detected cor-
rectly are also connected to their ground truth shapes. This demonstrates the effec-
tiveness of the Arrow R-CNN arrow keypoint mechanism and post-processing.
Arrow R-CNN is also applicable to diagrams other than flowcharts. As Table 5.7
illustrates, the model perfectly recognizes the state and final state shapes in the FA
finite automata test set, and also achieves very good results for arrows and text.
For the DIDI dataset, the symbol recognition results in Table 5.8 are all above
90%, but slightly lower than the results on the other dataset, even though a lower
IoU threshold of 50% is used. As discussed in Section 5.2, this has to do with the
discrepancy between the ground truth bounding boxes extracted from the diagram
and the actual drawings. In Section 5.3.3 we further discuss the implications of this
discrepancy and show some error cases.

Finally, Table 5.9 shows that our system recognizes a diagram in less than
100ms on average, and is two orders of magnitude faster than related work.
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Table 5.9: FC_Bs.., runtime in milliseconds per image: Arrow R—CNN timings are
taken using a Tesla V100 GPU, with the image already resized and loaded to memory.

Method Min Mean Std Max
Arrow R-CNN 59 91 15 119
Bresleretal. [9] 2,623 10,970 — 37,972
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Figure 5.14: FC_B.., flowchart with most missing symbols in validation set: highlighted
in red are (1) an arrow with only 74% IoU, (2) a process symbol confused as data, and (3)
a data symbol confused as a process.

5.3.3 Error Analysis and Future Work

Figure 5.14 shows the predicted symbols and arrow keypoints of a flowchart from
the FC_Bg.an dataset. For textblocks and straight arrows, where one bounding box
side is often very short, a prediction off by a few pixels can result in less than
80% IoU. This raises the question of whether an 80% IoU threshold for all symbol
types is too strict. From an end-user perspective, it might only matter that the
arrow has been correctly identified as an edge between two shapes. To this end,
future research could investigate graph similarity measures to evaluate diagram
recognition systems. The two confusions between process and data are likely due
to the fact that the writer in question draws very uneven lines. These uneven lines
are typically caused by uncontrolled oscillations of the hand muscles, dampened by
inertia [88]. In handwriting recognition, elastic distortion augmentation is a way
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Figure 5.15: FA diagram with arrow-match errors: The highlighted arrows have not been
correctly matched to their source shape since the distance between predicted tail keypoint
and shape bounding box exceeds the threshold.

to simulate these oscillations [46, 88]. We found that although elastic distortion
augmentation improves classification results, it has a negative effect on localization
accuracy. This is due to the fact that the distortions cause the annotated bounding
box and keypoints to be inaccurate, e.g. by distorting a line close to a bounding
box such that it surpasses the bounding box. Future work could investigate elastic
distortion methods that also adapt ground truth annotations accordingly.

Figure 5.15 shows a finite automata diagram. The diagram has two arrows with
overlapping bounding boxes, and the model does not accurately predict the key-
points for the larger arrow. This suggests that the model is not sure which arrow
head it should attend to. The example shows that localizing arrows through axis-
aligned bounding boxes has its limitations when their bounding boxes overlap. A
ground-truth arrow bounding box can contain multiple arrow heads, which forces
the model to not just recognize arrow heads in a local context. Instead, the model is
required to consider a wider context to identify the relevant arrow. Future research
could investigate more robust methods to detect arrows and their keypoints. In
scene text detection, it is common to predict rotated instead of axis-aligned bound-
ing boxes [119]. These rotated bounding boxes would capture arrows in a more
compact way and lead to fewer overlapping bounding boxes. As another approach,
edge recognition could be framed as visual relationship detection [45]. Instead of
detecting arrow instances, a classifier could directly predict if two given shapes are
connected through an arrow. Alternatively, a classifier could predict which arrow
head and tail keypoint belong together.
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(a) GraphViz diagram and drawing (b) Drawing and predictions

Figure 5.16: DIDI. . diagram example: 5.16a shows how severely the drawn shapes
and texts differ from their corresponding GraphViz symbols. The errors highlighted in red
in 5.16b are (1) a missing arrow due to confusion between two crossing arrows, (2) an
arrow with only 0.48 ground-truth IoU, and (3) — (8) texts with insufficient IoU.

For the DIDT dataset, Fig. 5.16 shows that the model is not only required to
recognize the hand-drawn diagram but also to predict the GraphViz diagram it
originates from. As illustrated, the model correctly predicts shape bounding boxes
which are smaller than the hand-drawn shapes, i.e., it recognizes that the shapes
have been drawn excessively large. However, when the position and size of the
hand-drawn and GraphViz symbols differ too much, this task becomes nearly im-
possible. This is indicated by the numerous text localization errors in the example,
where e.g., the handwritten “Back” arrow labels have a very small intersection
with the corresponding GraphViz labels. Future work could propose evaluation
methods that better disentangle handwriting and GraphViz diagram recognition
performance for DIDT.

5.4 Conclusion

We propose Arrow R—CNN, the first deep learning system for offline hand-drawn
diagram recognition. Our system correctly recognizes more than 68% of all di-
agrams in four diagram datasets and also improves the symbol recognition state
of the art in all symbol classes. We show that we can train highly accurate deep
R-CNN models on small datasets when using data augmentation methods tailored
to hand-drawn diagrams. Since standard Faster R-CNN post-processing is not well
suited for diagram symbol recognition, we propose a post-processing method that
takes into the specifics of shapes, edges, and textblocks. On average, Arrow
R-CNN recognizes arrow-connected diagrams in less than 100 ms, which allows
it to be used in environments that require quick response times.

Naturally, this work is subject to several limitations. First, Arrow R-CNN
does not integrate with a handwriting recognition system for recognizing the tex-
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tual content of the detected textblocks. We address this limitation in Chapter 8.

Second, Arrow R-CNN uses a heuristic for edge recognition, where the source
and target shape are defined as the shapes that are closest to the tail and head
keypoint, respectively. In Section 5.3.3, we observe that this heuristic sometimes
connects an arrow to an incorrect shape, especially when the respective predicted
arrow keypoint is inaccurate. One way to prevent such invalid edges is to leverage
the syntactical rules of the modeling language. We investigate such an approach
in the next chapter. In Section 5.3.3, we also hypothesize that edge recognition
could be framed as a visual relationship detection task, where the model directly
predicts the source and target shape that each arrow connects. We follow up on this
in Chapter 7 and Chapter 8, where we propose two such approaches.

Third, we observe that Arrow R-CNN has a symbol recognition recall of at
least 98% on all datasets except DIDI, which indicates the need for more challeng-
ing datasets. For the DIDT dataset, we find that the ground-truth bounding boxes in
the dataset significantly deviate from the corresponding drawn symbols and that the
drawings often contain misplaced or missing symbols. We conclude that DIDT is
only partially suited for developing and evaluating diagram recognition methods, as
neither approaches (e.g., object detectors) nor evaluation metrics (e.g., loU-based
metrics) based on bounding boxes can be effectively applied. Given the limitations
of the existing datasets, we proposed hdBPMN in Chapter 4.

In the next chapter, we use Arrow R-CNN to develop a first baseline for
hdBPMN and propose several shape and edge recognition improvements specific
to BPMN models.
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Sketch2BPMN

In the previous chapter, we presented Arrow R-CNN, which we have trained and
evaluated on several online diagram datasets. As pointed out in Chapter 3, the
diagrams in existing online datasets do not resemble the characteristics of offline
diagrams encountered in practice, as they are drawn on a digital device and copied
from a diagram template. To address these limitations, we have collected and an-
notated the hdBPMN dataset, which we presented in Chapter 4. While Chapter 4
details the recognition challenges associated with hdBPMN, it does not answer how
state-of-the-art methods perform on this dataset. This chapter addresses this gap
by developing a first hdBPMN baseline. To this end, we train Arrow R-CNN on a
preliminary version of hdBPMN and evaluate its shape and edge recognition perfor-
mance.! Further, we propose the Sket ch2BPMN method, which improves Arrow
R-CNN with an edge post-processing method that prevents invalid BPMN edges,
and an extended data augmentation pipeline that simulates the varying properties
of camera-based documents. Sketch2BPMN takes an image of a hand-drawn
BPMN model as input and produces a respective BPMN XML file, which can be
imported into process modeling tools.

The research presented in this chapter is based on a paper titled “Sketch2BPMN:
Automatic Recognition of Hand-Drawn BPMN Models” by Bernhard Schifer, Han
van der Aa, Henrik Leopold, and Heiner Stuckenschmidt [85].

The remainder of this chapter is organized as follows. Section 6.1 describes
the Sket ch2BPMN approach. Section 6.2 describes the evaluation procedure and
discusses the experimental results. Finally, Section 6.3 concludes the chapter.

!The preliminary version has 502 instead of 704 images and does not have annotated labels. The
full dataset was published as part of Sketch2Process [86], which we cover in Chapter 8.
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Figure 6.1: Sket ch2BPMN: overview of the main steps

6.1 The Sketch2BPMN Method

This section introduces Sket ch2BPMN, our method for recognizing a hand-drawn
BPMN model from an image. As visualized in Figure 6.1, Sket ch2BPMN con-
sists of three main steps: 1) shape and edge detection, 2) BPMN structure recogni-
tion, and 3) output generation. Below we introduce each step in detail.

6.1.1 Shape and Edge Detection

This step of our approach generates sets of candidate BPMN shapes S¢ and edges
FE¢ for a provided hand-drawn image. Each candidate shape s € S¢ is formalized
as a tuple s = (b, ¢, 1), where b refers to the coordinates of a bounding box, i.e.,
a rectangle encompassing the predicted area of a drawn element, c the predicted
BPMN element category, and [ the likelihood that the shape s corresponds to cate-
gory c. Furthermore, each candidate edge e € E¢ is atuple e = (b, ¢, 1, src, tgt),
where b, ¢, and [ are the respective shape counterparts, and src and tgt correspond
to the keypoint coordinates of the edge, reflecting the points at which e is predicted
to connect to shapes in S¢. Figure 6.2 visualizes such predicted candidates for the
running example, showing, for example, that the upper bounding box is determined
to have a 99.2% likelihood of being a pool.

To predict S¢ and E¢, we build on Arrow R-CNN [82], an approach we es-
tablished in earlier work for the recognition of hand-drawn diagrams, and adapt it
to the specific characteristics of hand-drawn BPMN models. Particularly, we ex-
pand upon existing work through improved keypoint detection and extended data
augmentation.

Arrow R-CNN. Arrow R-CNN detects objects in an image through the aforemen-
tioned bounding boxes, depicted in Figure 6.2. For each bounding box, Arrow
R-CNN assigns a predicted class (from a set of predefined classes) and a likeli-
hood between 0 and 1. Given its general applicability for the recognition of arrow-
connected diagrams, we train Arrow R-CNN on the 21 different BPMN shape and
three edge classes we consider in this work. However, we do this while also incor-
porating the following two key adaptations, which support the improved recogni-
tion of BPMN models in our scenario.
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Figure 6.2: Step 1: Candidate shapes and edges have been classified and localized through
bounding boxes, in addition, edges have predicted arrow head (>) and tail (o) keypoints.

Improved keypoint detection. A key
challenge when dealing with hand-drawn
BPMN models is the correct recogni-
tion of edges that are not properly con-
nected to their respective source and tar-
get shapes. To account for this issue, we
adapt the manner in which edge keypoints
are encoded and predicted. For this, we
first change the way edges are annotated
in the training data. In particular, instead
of using the drawn tail and head of the

time rtEvent
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Figure 6.3: Improved keypoint detection
due to annotating edge intersection (blue
) instead of drawn arrow head (green ).

edge, we annotate the points where the edge intersects with its source and target,
as illustrated in Figure 6.3. Then, the Arrow R-CNN model trained on these an-
notations will strive to predict where an edge should have ended (or started) if it
had been drawn properly, rather than predicting the point where the edge ends (or
starts) in the drawing. While this adapted method requires the keypoint predictor
to perform reasoning beyond the recognition of a drawn arrowhead, this additional
burden on the prediction model improves the accuracy of our approach. In par-
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ticular, since this improved method considers the direction of a drawn edge when
making predictions, it enables the approach to even properly recognize a shape to
which an edge should connect, even when it is not the shape that is closest to the
end of a drawn edge. For the example in Figure 6.3, our approach then correctly
recognizes that the edge should connect to the 48 hours event, rather than the can-
cel order activity, despite the latter shape being closer to the drawn arrowhead.

Extended data augmentation. Aside from BPMN specifics, we also have to ac-
count for a second particularity of the hdBPMN dataset, namely its diversity in
terms of the means used to create and digitize the hand-drawn models, such as the
type of paper and drawing implement (see also Section 4.3). Since Arrow R-CNN
was designed to deal with much more uniform input (e.g., black drawing on white
background), we need to adapt the training approach to the more difficult charac-
teristics of our setting. To do this, we develop an image augmentation pipeline
tailored to camera-based hand-drawn diagrams with varying backgrounds. Such
augmentations have become a common regularization technique to combat overfit-
ting in deep learning models for various image recognition scenarios [12]. They
have been shown to be particularly valuable when training an approach on a dataset
with only a few hundred images [82], such as in our case. Therefore, we add aug-
mentation methods to simulate the varying properties of camera-based documents.
Specifically, we randomly add gaussian noise, change the brightness and contrast
of the image, and shift the hue, saturation, and value (HSV) color scale.

6.1.2 BPMN Structure Recognition

In the structure recognition step, Sket ch2BPMN turns the sets of candidates S¢
and E¢ into filtered sets S C S¢ and E C E¢. In addition, each edge e € F
is extended to a tuple €' = (b, c,l, sre,tgt, Sere, Stgt), Where sgr. specifies the
source shape that e connects, and s;4; the target shape. The resulting BPMN model
obtained over S and F is connected and resembles the drawn model as closely as
possible. We achieve this through shape disambiguation and edge post-processing.

Shape disambiguation. To turn a set of candidate shapes S¢ into a set of predicted
shapes S, we primarily need to disambiguate cases in which multiple candidates
in Sc relate to the same drawn shape, i.e., duplicate detection and resolution. Al-
though Faster R-CNN inherently resolves these issues for bounding boxes with the
same predicted category, this is not the case when it comes to boxes with differ-
ent categories. As a result, it may generate two candidate shapes, with different
classes, for the same object in an image, as shown in Figure 6.4 for two categories
of timer events.
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However, determining that two candidates sy, s2 €
Sc truly relate to the same drawn object is not triv-
ial, especially in the context of BPMN models, whose
hierarchical structure naturally leads to overlap be-
tween resource shapes (i.e., pools and lanes) and other
shapes, such as activities and events. Therefore, we
employ so-called non-maximum suppression (NMS)
over all shape categories. NMS first determines if the
bounding boxes of s; and s9 have an overlap of at least
80%. We quantify this as the Intersection over Union
(IoU), i.e., the ratio between the intersection area and the union area of s1.b and
s9.b. If this ratio exceeds 80%, NMS suppresses the shape with the lower classifi-
cation score, i.e., it keeps the candidate that is predicted to be most suitable. In the
case of Figure 6.4, the two candidates clearly have such significant overlap, which
is why after employing NMS, we retain the blue shape corresponding to the more
likely timerStartEvent, while omitting the other candidate from S.

Figure 6.4: Duplicate shape
candidates

Edge post-processing. To finalize the set of edges E to be included in a BPMN
model we use a two-stage approach. First, we associate each edge candidate
e € Ec with a source s, € S and a target s;4; € .S, which are the shapes that are
closest to the edge’s predicted keypoints, e.src and e.tgt, and also correspond to a
valid category with respect to the given edge. For instance, if e.c = sequenceFlow,
edge e will only be connected to shapes that are predicted to be activities, events,
or gateways. To determine the closest shape, we compute the minimum Euclidean
distance between a keypoint and all sides of a shape’s bounding box. After identi-
fying the closest, valid shapes, we turn a candidate edge e € E¢ into a connected
edge ¢/ = (b,t,1, src,tgt, Sere, Stgt)-

Once each edge candidate is connected to source and target shapes, we omit all
connected edges that correspond to highly unlikely or invalid constructs, such as
self-loops (e.ssrc = €.5¢4¢) and invalid data associations (neither e.sg.. nor e.s;4
is a data store or pool). Finally, we also apply the same approach employed for
shape disambiguation to detect and remove duplicate edge candidates.

Note that it is important to consider that this post-processing phase is intended
to omit faulty predictions from our generated BPMN model, rather than to cor-
rect syntactic mistakes from the hand-drawn image. As such, the employed post-
processing rules do not reflect cases that are observed in our training data but repre-
sent a design choice to improve the output of our approach. Figure 6.5 depicts the
outcome of this step for the running example, highlighting that each drawn shape
is associated with a single predicted shape in S and that each edge in E properly
connects a valid source and target.
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Figure 6.5: Recognized BPMN Model: the recognized BPMN model has been converted
to an image and overlaid over the hand-drawn sketch. The entire process from the input
image to the final BPMN model is automated.

6.1.3 Output Generation

The last step in our approach takes the final shapes and edges after structure recog-
nition to create a BPMN process model in the BPMN 2.0 XML format. The
XML consists of two main schemata: the actual process model and the BPMN
DI schema, which defines the shape bounding boxes and the waypoints of edges.
Given the output from the previous step, the creation of the XML format is
mostly trivial. For each predicted shape s € S, we create a respective element
in the XML file. When creating a BPMN DI edge element for each e € E, we
follow the typical convention and define the first and last waypoint as the points
that intersect with the edge’s source (e.ss;.) and target (e.s;4¢) shapes, respectively.
To that end, we shift each predicted keypoint (i.e., e.src and e.tgt) to the nearest
point on the bounding box boundary of the connecting shapes, except for gateways,
where we shift the keypoint to the closest of the four diamond corner points.

6.2 Evaluation

To evaluate our approach, we trained and optimized it using the training and vali-
dation set of hdBPMN, and measured its performance on the test set.
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6.2.1 Evaluation Setup

Below we elaborate on the details of our employed implementation, as well as the
metrics, baselines, and configurations used to evaluate our approach.

Implementation. Our neural network implementation of the shape and edge recog-
nition system Arrow R-CNN (Step 1 of our approach) is based on the Detec-
tron2 [104] object detection framework. To operationalize our extended augmen-
tations, we use the Albumentations library [12]. For training, we use stochastic
gradient descent with a batch size of 4 and a learning rate of 0.002. As the CNN
backbone, we use ResNet-50 with FPN. We keep the remaining configurations
originally used to train Arrow R-CNN [82].

Metrics. To evaluate our approach, we compare the sets of shapes and edges ex-
tracted by our approach to those in the manually annotated image (see Chapter 4),
referred to as the ground truth. To quantify the performance, we follow related
work in diagram recognition [9, 11, 103] and use different metrics to assess shape
and edge recognition. A detected shape is considered a true positive if it is assigned
the correct class and its bounding box overlaps sufficiently with its counterpart in
the ground truth. Particularly, following [103], we consider this overlap sufficient
if the bounding boxes have an overlap that exceeds an IoU threshold of 50%, which
accounts for annotation inaccuracies in the bounding boxes of the ground truth. To
quantify shape-recognition performance, we then use this notion of true positives
to match the ground truth to the predicted shapes and compute the standard preci-
sion, recall, and F; scores. For edge recognition, a true positive requires that, as
for shapes, the predicted class is correct and that its bounding box exceeds a 50%
IoU threshold. However, we also require that a detected edge is associated with the
correct source and target shapes, s and s;4;. This means that edge recognition
is indirectly affected by the shape-recognition quality: if a shape was not properly
detected, all edges that connect to that shape result in false positives as well.?

Baselines and configurations. To demonstrate the efficacy of our approach, we
compare its performance to two baselines: Baseline BL1 uses the Faster R-CNN
object detector with the standard image augmentations coming with Detectron2.
Since a standard object detector cannot recognize edges and their keypoints, BL2
corresponds to the original Arrow R-CNN system with its default image augmen-
tation methods. To highlight the relevance of its individual components, we eval-
uate two configurations of our approach: Configuration C1 corresponds to the
Arrow R-CNN system, enhanced with the extended augmentation (EA) of Sec-
tion 6.1.1. Configuration C2 reflects our full-fledged approach, including the pro-
posed BPMN-specific processing components. Note that we employ the same

Note that an edge is still considered correct if its associated shapes are incorrectly classified.
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Table 6.1: Overall approach results

Shape Edge
Configuration Micro F; Macro F; Micro F; Macro F;
BL1: Faster R-CNN [77] 92.7 77.5 — —
BL2: Arrow R-CNN [82] 93.2 80.8 85.5 76.0
C1: Arrow R-CNN + Ext. augm. (EA) 95.7 86.2 90.0 84.8
C2: Arrow R-CNN + EA + BPMN pp. 95.7 86.2 91.8 87.4

shape disambiguation procedure (proposed in Section 6.1.2) for all four systems,
in order to ensure a fair comparison in terms of recall.

6.2.2 Results

This section presents the results of our evaluation for the hdBPMN test set, first
in terms of overall results, before taking a detailed look at the results per BPMN
element class.

Overall Results. The overall results presented in Table 6.1 reveal that the two con-
figurations of Sketch2BPMN both outperform the baselines, achieving a micro
F; score of 95.7 for shape recognition and 91.8 for edge recognition. Note that
micro and macro measures differ because certain classes (e.g., Tasks) are much
more common than others (e.g., specific events). However, the overall trends are
consistent across the two.

Since each configuration in the table represents an extension of its predecessor,
a closer look at the results reveals that the desired improvements associated with
the gradual development from BL1 to C2 are achieved. In particular, we observe
that Faster R-CNN (BL1), a general-purpose object detector, already recognizes
more than 90% of all shapes, though it is unable to detect edges. The Arrow R-
CNN approach (BL2), designed for the recognition of hand-drawn flowcharts, im-
proves these results since it can also detect edges, achieving a macro Fy of 76.0
for those, while also performing better in terms of shape recognition (80.8 versus
77.5). From BL2 to C1, we observe the improvements achieved by our extended
augmentation step, which makes the recognition system more suitable to the di-
versity in the hdBPMN dataset, boosting the shape recognition from 80.8 to 86.2
and edge recognition from 76.0 to 84.8. Finally, we observe that the additional
inclusion of BPMN-specific edge processing in C2 further improves the ability to
recognize edges, achieving a macro F; of 87.4 and micro F; of 91.8.

Shape recognition. Table 6.2 provides detailed insights into the performance of
our approach (with configuration C2), by depicting the results obtained per shape
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Table 6.2: Shape and edge recognition results per class obtained for the test set
Group Class Precision Recall F, Count

Task 96.7 99.6 98.2 560

Activit Subprocess (collapsed) 100.0 72.2 83.9 18
y Subprocess (expanded) n/a 0.0 n/a 2

Call Activity 100.0 100.0 100.0 1

Start Event 92.3 95.2 93.8 63

End Event 94.5 96.3 95.4 107

Message Start Event 94.2 94.2 94.2 52

Event Message Interm. Catch Event 90.9 93.0 92.0 43
Message Interm. Throw Event 78.3 94.7 85.7 19

Message End Event 87.5 58.3 70.0 12

Timer Start Event 83.3 83.3 83.3 12

Timer Intermediate Event 90.0 75.0 81.8 12

Exclusive Gateway 98.1 98.1 98.1 156

Gatewa Parallel Gateway 93.7 97.5 95.6 122
y Inclusive Gateway n/a 0.0 n/a 1
Event-based Gateway 90.0 81.8 85.7 11

Collaboration Pool 95.3 96.8 96.0 125
Lane 94.7 93.0 93.9 100

Data element Data Object 96.3 96.9 96.6 161
Data Store 95.5 84.0 89.4 25

Sequence Flow 95.7 94.0 949 1,216

Edges Message Flow 86.5 79.7 82.9 177
Data Association 92.3 77.2 84.1 311

Overall Macro avg. 92.7 80.9 86.4 3,307
Micro avg. 94.8 92.7 93.7 3,307




CHAPTER 6. SKETCH2BPMN 79

and edge class. The table shows that our approach correctly recognizes the vast
majority of shapes for most of the classes, achieving an F; score of at least 83.9
for the 13 classes that occur more than a dozen times. For other shape types, the
number of data points is too low (in both the training and the test set), to sufficiently
cover the spectrum of factors such as drawing styles and, therefore, to provide
reliable evaluation results.

A posthoc analysis of the results reveals that the most difficult task for our ap-
proach is the correct classification of certain kinds of events. This comes as no
surprise, though, the difference between some of the 8 kinds of events may only
be due to marginal differences, such as a change in line thickness (start events),
as well as different kinds of tiny envelopes (message events) and clocks (timer
events). Especially in light of the diversity of shapes in our dataset, as highlighted
in Figure 4.6, identifying such differences in hand-drawn models can already be
highly complex for humans, let alone for an automated approach that lacks suffi-
cient training examples for some of the rarer classes.

Edge recognition. The edge-levels results in Table 6.2 again demonstrate the over-
all strong performance of our approach, as well as that sequence flows (F; of 94.9)
are easier to recognize than message flows (82.9) and data associations (84.1). To
some extent, this can be attributed to the commonality of sequence flows and the
fact that the latter two classes use dashed rather than continuous lines. However,
it is also interesting to consider the different roles of these edges from a process
modeling perspective. In particular, message flows connect (elements in) different
pools, which are often placed relatively far from each other. This results in longer
edges, which may also cross more nodes, and are, therefore, harder to analyze for
an automated approach. For example, we observe that the distance between the
head and tail keypoint is more than twice as high for message flows (499 pixels)
as for sequence flows (216). For data associations, it is important to consider that
elements related to the data perspective are often drawn last [24, p.177], whereas
they also often are connected to numerous shapes, scattered throughout a model.
These two factors thus commonly result in data associations that cross other edges
or even shapes, which complicates their recognition.

6.3 Conclusion

In this chapter, we have developed a first shape and edge recognition baseline for
hdBPMN. The evaluation results indicate that hdBPMN is much more challenging
than existing datasets, which can be attributed to several aspects. As for shapes,
hdBPMN features 21 different shape types, whereas existing datasets, in compar-
ison, have between two and five different shape types. In addition, our analysis



CHAPTER 6. SKETCH2BPMN 80

reveals that the classification of the exact event type is very challenging, as the dif-
ference between two event types can be marginal, e.g., a change in line thickness
to distinguish between a start and an end event. Concerning edges, we find that
message flows and data associations are the most difficult to recognize, as they are
often long-range, cross other arrows, and are drawn with dashed or dotted lines.

Besides providing a first baseline, we have also proposed the Sket ch2BPMN
method in this chapter. Sketch2BPMN improves Arrow R-CNN with an edge
post-processing method that prevents invalid BPMN edges, and an extended data
augmentation pipeline that simulates the varying properties of camera-based doc-
uments. We find that the extended data augmentations considerably improve the
shape and edge recognition performance of Arrow R-CNN. We also observe that
our rule-based approach to detect and identify invalid edges improves both the mi-
cro and macro edge F; score. However, even with these improvements, the Fy score
of both message flow and data association is still below 85%, which motivates the
need for research on other edge recognition approaches. We take up this topic in
the next chapter, where we present our first edge recognition approach inspired by
visual relationship detection methods.



Chapter 7

DiagramNet

A limitation of the Arrow R-CNN method proposed in Chapter 5 is that it uses
a heuristic for edge recognition, where the source and target shape are defined
as the shapes that are closest to the tail and head keypoint, respectively. In the
previous chapter, we presented Sketch2BPMN which improves this heuristic by
identifying and correcting invalid BPMN edges. It, however, builds on a rule-based
component for the identification of edges, which affects both the performance as
well as the flexibility of the approach. Against this background, in this chapter,
we propose DiagramNet, our first attempt to recognize edges using a learning-
based approach inspired by research on visual relationship detection. DiagramNet
includes a shape degree prediction network and an edge prediction network. The
generated predictions of both networks are used to formulate edge recognition as a
global optimization problem.

The research presented in this chapter is based on a paper with the title “Di-
agramNet: Hand-drawn Diagram Recognition using Visual Arrow-relation De-
tection” by Bernhard Schéfer and Heiner Stuckenschmidt [84]. We have devel-
oped this research in parallel to the Sket ch2BPMN work presented in the previ-
ous chapter. Therefore, in their evaluation, both methods compare to the Arrow
R~-CNN method proposed in Chapter 5.

The remainder of this chapter is organized as the previous chapter. We first
describe the DiagramNet method in Section 7.1. Next, we evaluate our approach
in Section 7.2, and finally, we conclude this chapter in Section 7.3.

7.1 The DiagramNet Method

This section introduces DiagramNet, our proposed model for recognizing hand-
drawn diagrams. As Figure 7.1 illustrates, DiagramNet decomposes diagram

81
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Figure 7.1: DiagramNet overview: Given an image, our approach first detects shapes.
The local shape context (green) is then used to predict in- and out-degrees for each direc-
tion. Next, a pruned graph of edge candidates is generated. The edge prediction network
classifies each candidate and predicts the drawn arrow path. Last, the edge optimization
procedure uses the predicted shape degrees and edge scores to determine the final diagram.

recognition into a sequence of five stages. Below we introduce each stage in detail.

7.1.1 Shape Detection

We frame shape detection as an object detection task and use the Faster R-CNN [77]
framework to detect the set of shapes V' in an image. Each detected shape v € V'
is associated with a predicted bounding box b, € R*, probability p,, and class
¢y € C, where C is the set of shape types of a modeling language. Our definition of
C also includes shape types that are not connected to other shapes through arrows,
such as the lane element in BPMN.

We follow prior work [82] and use Faster R-CNN with the feature pyramid
network (FPN) extension [57]. During inference, we keep all shapes with p, >
0.7. To eliminate duplicate detections, we also apply non-maximum suppression
(NMS) with an intersection over union (IoU) threshold of 0.8 over all shape classes
except lane. We exclude lanes since we observe a large bounding box overlap
between lanes and their enclosing pools. During training, Faster R-CNN uses a
multi-task loss, where the bounding box regression loss Lj,. is weighted higher
than the classification loss Ljs. Since we consider accurate classification equally
important for shape detection, we decrease the weight for Ly, by a factor of 2.5.
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As a result, the localization and classification losses are in the same range during
training.

7.1.2 Shape Degree Prediction

Given the set of detected shapes V' from the previous step, we predict the out-
degrees df € R* and in-degrees d, € R* for each shape v. The vector d;f
represents the predicted number of outgoing edges for shape v in directions left,
top, right, and bottom. Figure 7.1 conceptually shows the predicted in- and out-
degrees for significant shape directions. We use the predicted shape degrees in all
three subsequent edge-centric steps:

1. Edge candidate generation: prune edge candidates whose source or target
shape has an insignificant shape degree in the corresponding direction

2. Edge prediction: generate more targeted arrow-relation bounding boxes
3. Edge optimization: use shape degrees to create a globally coherent solution

We formulate degree prediction as a regression task and propose a degree predic-
tion network that predicts the degrees for each shape given the visual shape fea-
tures. Arrows are not always properly connected to their source and target shapes,
i.e. sometimes there is some distance between the drawn arrow and the shapes
they connect. Therefore, we pad each shape bounding box with 50px local con-
text. Given the padded shape bounding box, we use RolAlign [35] to extract a
28x28x256 feature from the image features. We concatenate a 2828 binary
mask that encodes the location of the shape bounding box within the padded box.
The resulting 28 x28x257 context-enriched shape representation is used as input
for the degree prediction network.

Our degree prediction network is inspired by the MobileNet [38] architecture
and contains a sequence of 6 depthwise separable convolutions. The spatial res-
olution of each feature map is downsampled twice by a factor of 2 using strided
convolutions in the third and last depthwise convolution. An average pooling layer
projects the resulting 7x7x256 feature to a 256-d vector. After two fully con-
nected layers with 256 dimensions each, two linear heads predict the direction
out-degrees d € R* and in-degrees d;; € R*. As in [38], each network layer is
followed by batch normalization and ReL.U nonlinearity, with the exception of the
final fully connected layer. Subsequent steps of our approach also require the total
shape out- and in-degree. We define this as the sum over all directions, and denote
itas df = [[d; |, and dy = ;|

We train the degree prediction network using mean squared error loss. During
training, we randomly shift each side of the ground-truth shape bounding box and
vary the context padding to improve generalization.
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7.1.3 Edge Candidate Generation

Given the set of detected shapes V/, the fully-connected graph V' x V has O(|V|?)
directed edge candidates. To avoid considering all shape pairs, we prune edges by
leveraging (1) syntactical rules of the modeling language and (2) predicted shape
degrees. The syntactical rules in a modeling language govern how elements of the
language can be combined. As we want to recognize unfinished diagrams or dia-
grams with modeling errors as drawn, we do not apply all syntactical rules of the
modeling language. Instead, we empirically only consider rules that are not vio-
lated in the training set, which correspond to edges that are very unintuitive to be
modeled as such. As an exemplary rule for the BPMN language, we prune all edge
candidates between gateway (diamond) and business object (file and database)
shapes, as illustrated in Figure 7.1. Given the initial fully-connected graphs of
the hdBPMN test set, syntactical pruning eliminates 31.8% of all candidate edges,
and the resulting graphs have a mean graph density of 0.75.

We further prune the candidate graph using the predicted shape degrees from
the previous step. We prune each edge (u,v) where df < a ord;, < q, ie.
we prune edges where the degree of at least one shape is below a threshold. We
find that @ = 0.05 sufficiently balances precision and recall. Our degree-based
pruning approach is also illustrated in Figure 7.1, where the outgoing edges for the
data object (file icon) have been pruned. On the hdBPMN test set, degree pruning
eliminates an additional 11.3% of all candidate edges and further reduces the mean
graph density to 0.62.

7.1.4 Edge Prediction

Given the set of candidate edges from the previous step, our edge prediction ap-
proach is concerned with three major aspects: First, we identify the arrow region
for each shape pair, which we refer to as arrow-relation bounding box. Second,
during edge classification, we classify each candidate into one of the edge classes
(including a background class). Third, we predict the arrow path as a sequence of
k equidistant points, which we refer to as path prediction. In the following, we
present the details of each aspect.

Arrow-relation bounding box. As discussed in Section 2.4, visual relationship
detection methods commonly define the relation region for an object pair as the
union of their bounding boxes. This approach is not well suited for arrow-relation
recognition since (1) the respective arrow is not necessarily located within this re-
gion and (2) the shape bounding boxes in their entirety are not required to recognize
the arrow. Therefore, we propose an approach that leverages the predicted shape
degrees introduced in Section 7.1.2. For each edge (u,v), we use the predicted
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Figure 7.2: Arrow-relation bounding box. (a) shows the arrow-relation bounding box
generated as the union of both diamond shape boxes. In (b), the bottom side of the box
has been padded, and the left side has been shrunk. The box of our approach captures the
hand-drawn arrow more closely.

shape out-degrees d;} and in-degrees d, to (1) pad shape boxes on sides with pre-
dicted arrows and (2) shorten shape boxes on irrelevant sides. We then generate the
arrow-relation bounding box as the union of the transformed shape boxes. Before
we go into further detail, Figure 7.2 shows an example of this approach.

An in- or outgoing arrow of a shape that does not point toward its opposing
shape is a strong indicator that the edge is not drawn as a straight arrow. There-
fore, we pad the shape bounding box on sides with a predicted arrow. Since we
are only interested in the existence of in- and outgoing arrows in each direction,
we binarize the predicted shape degrees using a threshold 7' = 0.3. Given an edge
candidate (u,v), we pad u with local context on sides where d;7 > T and pad v
on sides where d;; > 7. We find that a local context of 50px sufficiently covers
the distribution of diverse arrow types such as curved and elbow arrows. In Fig-
ure 7.2, the arrow between the two diamond gateway shapes exits the source shape
in the bottom direction. After padding the source shape in the bottom direction, the
arrow-relation box fully contains the drawn arrow.

Further, we shorten the shape bounding boxes on sides where there is no pre-
dicted arrow on the side itself and its adjacent sides. The left diamond gateway in
Figure 7.2 has only one incoming edge from the right side. Thus, we shorten its left
side for arrow relations with this shape as target. As a result, the arrow-relation box
in the right image does not contain the target shape. We also shorten BPMN pool
shape boxes, which differ from other arrow-connected shapes in that their larger
side usually spans most of the diagram. To avoid overly large arrow-relation boxes
for shape pairs that involve a pool, we limit the longer side of pools to 100px.

Edge classification and path prediction. We propose an edge prediction network
that classifies each edge candidate and predicts the drawn arrow path. The network
is similar to the shape degree prediction network introduced in Section 7.1.2. We
extract a 28 x28x256 feature representation using the previously defined arrow-
relation bounding box. Next, we concatenate two 28 x28 binary masks, one for
the source and one for the target shape. These binary masks indicate the spa-
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tial proximity in which to expect the arrowhead and tail. For shapes that are not
contained in the arrow-relation box, we set the border pixels closest to the shape
to one. We use the same MobileNet-inspired architecture to project the resulting
28x28x258 feature to a 256-d visual feature vector. The predicted shape classes
are then concatenated as one-hot encoded vectors. This semantic information is
added so that the network predicts edge classes consistent with the source and tar-
get shape classes. After two fully connected layers, a linear layer with a softmax
function predicts the edge probability p. and edge class c. € R, where the set of
edge classes R includes a negative “background” class. A second linear layer pre-
dicts the encoded coordinates of k arrow keypoints. Following our Arrow R-CNN
method presented in Chapter 4, we encode arrow keypoints relative to the relation
bounding box.

We train the edge classifier using cross-entropy and train the arrow keypoint
predictor using smooth L; loss as in [83]. Since our model requires a constant
number of arrow keypoints, we sample k equidistant keypoint targets from the
ground-truth arrow path. We find that £ = 5 captures the majority of arrow drawing
styles, and use this configuration throughout all experiments. We average the loss
over all keypoints and multiply the keypoint loss by a factor of 10 to ensure that
the classification and keypoint losses are in the same range. During training, we
randomly sample 80% of the ground-truth edges as positive edge candidates and
add twice as many negative candidates from the set of candidate edges from the
previous step. As in Section 7.1.2, we randomly shift each side of the ground-truth
shape bounding boxes and the generated arrow-relation bounding box to improve
generalization.

7.1.5 Edge Optimization

Given the predicted probability p. for each edge candidate e € E from the previ-
ous step, a standard postprocessing method is to use a score threshold 7" and keep
each edge e where p. > T'. However, we can improve upon this baseline by also
considering the predicted shape degrees d;f and d; introduced in Section 7.1.2.
Consequently, we employ a global optimization that minimizes the difference be-
tween predicted shape degrees and the number of accepted edges that connect to
each shape. We denote E(v) as the outgoing and £~ (v) as the incoming edges
of shape v. Let x € {0, 1}|E| be a binary vector where . = 1 indicates that edge
e is accepted. We define the degree penalty terms deg™ (v) and deg™ (v) as

2 2

deg®(v) = [ df — Z Te deg” (v) = | d, — Z Te (7.1)

ecE+(v) ecE—(v)
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Each term measures the squared difference between the predicted degree of v and
the number of accepted edges that connect to v. We formulate the optimization
problem as

x* = argmax Z (pe —T)xe — A Z deg™(v) — A Z deg™ (v) (7.2)

eck veV veV

The score threshold 7" is now a soft threshold, and A is a hyperparameter for
weighting the degree terms. We set 7' = 0.4 and A = 0.4 after experimenting
on the hdBPMN validation set and use these in our evaluation. To reduce the num-
ber of edge candidates, we already reject all candidates with p. < 0.05 prior to
optimization. We obtain three sets of disjunct edges from our proposed edge op-
timization procedure: the accepted edges E[x*], the rejected edges F[—x*], and
the edges rejected before optimization E[p. < 0.05]. The bottom-left diagram in
Figure 7.1 conceptually shows the final recognition result with the accepted edges
after optimization.

7.2 Evaluation

In this section, we evaluate the performance of DiagramNet on several datasets.
We describe the evaluation setup in Section 7.2.1, before presenting the results in
Section 7.2.2.

7.2.1 Evaluation Setup

Datasets. As in the previous chapter, we use a preliminary version of hdBPMN with
502 instead of 704 images. In the experiments of the previous chapter, we found
that the classification of the exact event type is a major challenge in hdBPMN. As
this work focuses on edge recognition, we mitigate this recognition challenge by
reducing the set of event categories. Specifically, we only distinguish between
untyped-, message-, and timer events. To demonstrate the general applicability
of DiagramNet, we also compare its performance to existing methods on two
popular online flowchart datasets, FC_A and FC_B.

Implementation Details. We implement DiagramNet using the detectron2 [104]
framework. We use a ResNet50 with FPN [57] as the backbone network and use
models pretrained on the COCO dataset. We sum the losses of all DiagramNet
components and jointly train the network. We use the same training procedure
as in [82], except that we multiply the learning rate with 0.4 after iterations 50k
and 70k. Our augmentation pipeline is also similar to [82], we resize images to a
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longer size of 1333px and randomly shift, scale, rotate and flip the image. As in
the previous chapter, in order to simulate the properties of camera-based images,
we randomly add Gaussian noise, change brightness and contrast, and randomly
shift hue, saturation, and value.

Arrow R-CNN Baselines. We compare our approach to the state-of-the-art method
Arrow R-CNN [82]. To that end, we reimplemented Arrow R-CNN using the de-
tectron2 framework. The image augmentation methods in [82] target online dia-
gram datasets. Thus, we use two Arrow R-CNN baselines, one with the original
augmentations and backbone used in [82], and one with our proposed augmenta-
tions and backbone for fair comparison. The edges in hdBPMN are annotated as
a sequence of waypoints. Since Arrow R-CNN requires edge bounding boxes, we
define the edge bounding box as the smallest possible box that includes all way-
points. For straight arrows drawn parallel to an axis, this results in bounding boxes
with a width or height of 1. In early experiments, we noticed that this bounding box
definition has a large negative effect on Arrow R-CNN’s recognition performance.
We thus introduce a minimum arrow bounding box width and height of 20px for
an image resized to a longer side of 1000px.

Metrics. Prior works use bounding-box centric methods to evaluate shape and edge
recognition in hand-drawn diagrams and require at least 80% bounding box overlap
between predicted and ground-truth objects for both shapes and edges. In addition,
edges need to be matched to the correct source and target shapes, which we refer to
as the shape-match criterion. The problem with evaluating arrows based on bound-
ing boxes becomes clear when considering a straight horizontal arrow with a height
of e.g. 4 pixels. Using the common metric, a predicted arrow bounding box that is
off by 1 pixel would be considered false positive. We argue that it is more intuitive
to evaluate edge recognition only based on the shape-match criterion, and thus do
not consider the arrow bounding box. The shape-match criterion has one disad-
vantage, though: consider a shape with 5 connected edges that has been accurately
localized but misclassified. With the shape-match criterion, all edges connected to
this shape are inevitably evaluated as false positives. To separate edge and shape
recognition performance, we also report the edge recognition metrics when using
ground-truth shapes instead of predicted shapes.

For measuring precision, recall, and F;-score, we keep all shapes with p, <
0.7, and use the set of accepted edges from the edge optimization procedure. Since
both shape and edge classes are imbalanced, we report macro scores by taking the
average over the individual class scores. We also measure mean average precision
(mAP) for shape and edges. Since average precision requires a consolidated edge
ranking, we concatenate the sets F[x*|, E[-x*], and E[p. < 0.05] introduced
in Section 7.1.5 in that order.
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Table 7.1: Overall results on the hdBPMN test set.

Shape Edge
Method Prec. Rec. F; mAP Prec. Rec. F; mAP
Faster R-CNN [77] 93.1 895 909 88.7 - - - -
Arrow R-CNN [82] 96.6 90.1 929 898 86.1 833 84.6 79.0

Arrow R-CNNT [82] 964 920 940 91.7 872 837 854 80.1
DiagramNet (ours) 96.1 937 947 948 922 889 905 90.8

Evaluation with ground-truth shapes

Arrow R-CNN [82] - - - - 91.0 88.1 895 877
Arrow R-CNN' [82] - - - - 92.1 883 90.1 89.5
DiagramNet (ours) - - - - 96.0 920 939 958

TUses our proposed image augmentations and backbone for fair comparison

Table 7.2: Edge prediction ablation study to quantify the impact of syntax pruning (SP),
keypoint prediction (KP), degree prediction (DEG), and direction prediction (DIR).

Shape Edge
SP KP DEG DIR Precc. Rec. F; mAP Prec. Rec. F; mAP

- - 96.0 93.1 944 955 749 69.0 716 752
- - 96.2 940 950 958 84.6 80.6 825 85.1
v - 96.0 94.6 952 950 909 854 880 883
- v 96.1 93.7 947 948 922 889 905 90.8
- v 957 93.0 942 96.1 921 877 89.8 89.2

ASENENEN
NENENENE

7.2.2 Results

Overall results. Table 7.1 shows that DiagramNet has a slightly better shape
recognition performance than the Arrow R-CNN baselines, and significantly out-
performs Arrow R-CNN in edge recognition. The edge evaluation using ground-
truth shapes confirms this finding. For comparison, we also include the shape
recognition results of a Faster R-CNN object detector that uses our backbone and
standard image augmentations (horizontal flipping and random resizing). For a
qualitative assessment of our method, Figure 7.3 shows the recognized diagram for
a test set image. As demonstrated, DiagramNet is able to recognize a diagram from
a camera-based image that includes background objects. The total inference time
per image is 319ms on average, measured on a Tesla V100 GPU with 16GB mem-

ory. This includes the proposed edge optimization procedure, which takes 129ms
on average.
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Figure 7.3: hdBPMN test set image with predicted diagram overlay (orange). All shapes
and edges have been correctly recognized. The BPMN shapes are rendered using the pre-
dicted shape classes and bounding boxes. The line segments of each edge are visualized
by connecting the predicted arrow keypoints.

The ablation study in Table 7.2 shows how each edge component contributes
to the end result. Since we only vary edge-related components, the shape recog-
nition performance is similar in all settings. In the first experiment, we create the
arrow-relation bounding boxes as the union of both shape boxes, which is stan-
dard in visual relationship detection. Also, we predict neither arrow keypoints nor
shape degrees. We observe that this results in a relatively low edge F; score (71.6).
Training with arrow keypoint prediction (KP) improves edge F; considerably from
71.6 to 82.5, even though the edge metric only takes edge classification into ac-
count. This indicates that the edge predictor greatly benefits from the keypoints as
additional supervision targets. We also conduct a degree ablation study (DEG) in
which the shape degree predictor only predicts the overall shape in- and outdegree,
instead of predicting the degree for each direction. Like in our proposed method,
we use these predicted degrees to prune candidate edges and perform global edge
optimization. As a result, we observe that edge F; improves from 82.5 to 88.0.
Next, our proposed shape direction predictor (DIR) allows us to generate more tar-
geted arrow-relation bounding boxes. We observe that this further boosts edge F;
from 88.0 to 90.5. In the final experiment, we disable syntax pruning. As expected,
we observe that this leads to a small decrease in shape and edge F;.

To demonstrate the general applicability of our method, we also trained and
evaluated DiagramNet and Arrow R-CNN on two popular online flowchart datasets.
The results in Table 7.3 show that DiagramNet slightly outperforms the state-of-
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Table 7.3: Overall results on the online flowchart datasets FC_A [3] and FC_B [11].

FCA FCB
Method Shape F; EdgeF; ShapeF; EdgeF;
Arrow R-CNN [82] 99.8 96.1 98.8 96.7
DiagramNet (ours) 99.8 96.7 99.2 97.5

Table 7.4: Shape and edge recognition results

Group Class Precision Recall F; AP  Count
Activit Task 97.7 99.5 98.6  99.6 560
y Subprocess 93.8 714 811 793 21
Untyped Event 96.6 99.4 98.0 99.9 170
Event Message Event 96.2 99.2 977  98.8 126
Timer Event 100.0 91.7 95.7 95.8 24
Exclusive Gateway 98.7 98.7 98.7 99.9 157
Gateway Parallel Gateway 95.2 97.5 964 97.7 122
Event-based Gateway 90.9 90.9 909 82.6 11
Collaboration Pool 99.2 99.2  99.2 100.0 125
O Lane 91.9 910 915 942 100
Data el ) Data Object 96.9 97.5 972  98.6 161
AN Data Store 95.7 880 917 910 25
Sequence Flow 92.9 94.6 93.7 943 1,216
Edges Message Flow 89.8 84.7 872 874 177
Data Association 93.9 87.3 90.5 90.6 315

the-art method Arrow R-CNN on flowcharts. However, the near-perfect shape re-
sults and the edge F; scores of at least 96.7 also motivate the need for more difficult
datasets such as hdBPMN.

Shape and edge recognition. Table 7.4 provides detailed results per shape and
edge class. For 8 out of 12 shape classes, DiagramNet achieves an F; score of at
least 95. For three out of the remaining shape classes, the number of data points
is very low (Subprocess, Event-based Gateway, Data Store). For lanes, we observe
that the rectangle shapes are often not fully drawn, as illustrated in Figure 1.2. The
edge class results show that sequence flows (F; of 93.7) are easier to recognize than
data associations (90.5) and message flows (87.2). For message flows, besides the
smaller number of training data points, the challenge is that they often connect
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shapes far from each other, as illustrated in Figure 7.3. Also, message flows and
data associations are both dashed arrows, and we observe a large variety of drawing
styles for the dashed lines.

We also measure the accuracy of our shape degree prediction network. To this
end, we compare the four ground-truth degrees of each correctly detected shape
with the rounded predicted degrees. On the test set, we observe a higher accuracy
for ingoing edges (97.8%) than for outgoing edges (96.9%), which suggests that
arrow heads are easier to recognize than arrow tails.

7.3 Conclusion

In this chapter, we proposed DiagramNet, a new method for recognizing the shapes
and edges of hand-drawn diagrams. DiagramNet includes a shape degree predic-
tion and an edge prediction network. The generated predictions are used to 1) prune
the candidate graph, 2) generate informed arrow-relation boxes, and 3) formulate
edge recognition as a global optimization problem. We also propose a new met-
ric to assess edge recognition performance independent of arrow bounding boxes.
The experimental results demonstrate that DiagramNet considerably outperforms
Arrow R-CNN in edge recognition on the challenging hdBPMN dataset. The ab-
lation study shows that this is partially due to our direction-based approach for
creating arrow-relation bounding boxes. This approach allows us to also capture
arrows that connect their respective shapes with a detour.

DiagramNet has also been used by Schumacher in 2021 to recognize hand-
drawn UML diagrams [87]. In his bachelor thesis, Schumacher modified Diagram-
Net such that it can recognize undirected edges and conducted an evaluation on a
small dataset of UML class diagrams. The fact that DiagramNet can be applied to
other types of arrow-connected diagrams with minimal changes demonstrates its
general applicability.

Of course, our work is subject to several limitations. First, the edge recognition
approach of DiagramNet reaches its limits when the aforementioned detour is too
large, and it also creates overly large relation boxes for arrows that directly con-
nect two shapes. This leads to the research question of whether a complementary
approach, which combines the strengths of Arrow R-CNN and DiagramNet, would
provide even better results. In such an approach, the object detector would detect
arrow instances, and the bounding box of an arrow could then be used to create a
more fitting arrow-relation box, which is then provided as input to an edge predic-
tion network. Second, this chapter leaves aside the text modality to focus on the
challenges associated with shape and edge recognition. Here, the research ques-
tion is how to design a method that can effectively detect and recognize textblocks,
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and relate textblocks with shapes and arrows. We address both research questions
in the next chapter, where we present Sketch2Process, our unified diagram
recognition method that combines the strengths of the methods presented in this
and previous chapters.



Chapter 8

Sketch2Process

This chapter introduces Sketch2Process, the first approach that provides end-
to-end recognition of hand-drawn BPMN models from images. Unlike the meth-
ods presented in the last two chapters, which focus on recognizing shapes and
edges, Sketch2Process also targets label recognition. Apart from the ex-
panded scope, Sketch2Process also achieves a better performance in recog-
nizing shapes and edges. For edge recognition, we improve the visual relationship
detection component presented in the last chapter. Specifically, the component pro-
posed in this chapter is designed such that it can also recognize arrows that connect
two shapes with a large detour. In addition, we improve the overall recognition per-
formance through a crop augmentation procedure, which allows our approach to
better handle model layouts not encountered during training.

The research presented in this chapter is based on the paper “Sketch2Process:
End-to-end BPMN Sketch Recognition Based on Neural Networks” by Bernhard
Schifer, Han van der Aa, Henrik Leopold, and Heiner Stuckenschmidt [86]. As
part of this research, we also substantially extended the hdBPMN dataset. In par-
ticular, we manually annotated all labels and individual words in the dataset, and
also increased the size of the dataset from 502 to 704 images.

The remainder of this chapter is organized as follows. Section 8.1 presents our
Sketch2Process approach. Section 8.2 describes the evaluation procedure and
the experimental results, and we conclude this chapter in Section 8.3.

8.1 The Sketch2Process Method

This section introduces Sket ch2Process, our approach for recognizing a hand-
drawn BPMN model from an image. As visualized in Figure 8.1, our approach con-
sists of three main steps: object detection, edge recognition, and label recognition.

94



CHAPTER 8. SKETCH2PROCESS 95

» Sketch2Process »I

BPMN 2.0 XML
( )
SF:_Sequence flow MF: Message flow
Receive XML
= = Upload photo N
o= = F@=0 | [fo O| |0 &0
----- r== / \ i \
ME MF » Jd '+ [Text e
/' “ l’ l\
= - Recognize
{@= = 1@ & @ e —@
Text Send generated XML
L Object detection Edge recognition Label recognition )

Figure 8.1: Sketch2Process overview: Given an image, we first detect shapes, ar-
rows, and textblocks (object detection). Then, we identify the drawn arrow path and the
shapes that each arrow connects (edge recognition). Next, we decode the textual content
within each textblock and identify the shape or edge that each textblock labels (label recog-
nition). Finally, we generate a BPMN 2.0 XML file suitable for process modeling tools.

The object detection step aims to detect all objects (shapes, arrows, and textblocks)
that are part of the input image, characterizing each object as a bounding box and
a predicted object class. While this step completes the recognition of shapes in
the drawing, detected arrow objects are further processed in the edge recognition
step. In this step, we identify the source and target shapes that each arrow con-
nects, along with the drawn path of the arrow. Afterward, the label recognition
step decodes the textual content of each textblock and assigns it as a label to a
corresponding shape or edge. Finally, Sketch2Process generates and returns
a BPMN 2.0 XML file that captures the detected BPMN model.

In the following, we provide details on the individual approach steps (Sec-
tions 8.1.1 to 8.1.3) and the subsequent output generation (Section 8.1.4). Finally,
given that we employ three neural networks throughout our approach, we show
how these networks are connected and jointly trained (Section 8.1.5).

8.1.1 Object Detection

In this first step, our approach aims to detect all objects (shapes, arrows, and
textblocks) contained in a given image. As in the previous chapters, we use Faster
R-CNN [77] as our object detector of choice. During inference, we divide the de-
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Figure 8.2: Object detection output: the network has detected shape (blue), arrow (or-
ange), and textblock (brown) objects.

tected objects into the (disjoint) sets of shapes S, arrow objects A, and textblocks
T', based on their predicted object classes. Note that concerning shapes, set S only
includes those objects with a classification score s equal to or above a score thresh-
old for shapes, 75 (we use 0.5 as default and test further values in our evaluation
experiments).

Figure 8.2 shows the outcome of this step. As can be seen, the object detector
aims to detect bounding boxes that as closely encompass shapes and textblocks as
possible. For example, the bounding boxes of the Check Recommendation activity
and Costumer [sic] textblock leave little space between the box and the actually
drawn element. In contrast, for arrow objects in A, the object detector is trained
to establish bounding boxes so that the box connects the actual source and target
shapes of the arrow, rather than just encompassing the arrow’s drawn path. We
describe the ground truth used for this purpose in Section 8.1.5. As, e.g., can be
seen for the sequence flow arrows surrounding the XOR choices in Figure 8.2, this
can result in a bounding box that is considerably larger than the drawn arrow. By
detecting arrow objects in this manner, it is considerably easier to turn them into
edges that connect shapes, as done next.
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Figure 8.3: Edge recognition: Given the objects detected by Faster R-CNN, edge candi-
date generation produces a set of edge candidates for every arrow. For each edge candidate
src = tgt, the edge relation scoring procedure predicts the relation score and arrow key-
points from the features extracted by three modules. Finally, the edge inference procedure
identifies the most likely edge candidate for each arrow and eliminates duplicate edges.

8.1.2 Edge Recognition

In this step, our approach aims to recognize the BPMN edges indicated by the
drawn arrows detected in the previous step. The input for this step consists of the
detected shapes S and arrow objects A, and the image features feat, capturing the
image representation learned by Faster R-CNN. For each arrow object a € A, our
approach strives to recognize the two shapes that the edge connects and the edge’s
drawn arrow path. This is captured in the form of a tuple e = (a, sre, tgt, s, K),
where src,tgt € S are the source and target shapes that the arrow connects, s its
score, and K the drawn path of the arrow, represented as a sequence of keypoints.
The output of this step, then, is a set of recognized edges E.

As visualized in Figure 8.3, we decompose edge recognition into three stages.
First, edge candidate generation produces a set of edge candidates for every de-
tected arrow a € A. Each edge candidate src = tgt relates an arrow a to a pair of
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Figure 8.4: Edge candidate generation: Given an arrow (green), each shape that inter-
sects with the arrow region (red) is considered a candidate. After, we create O(n?) edge
candidates (blue arrows) for the arrow and its n candidate shapes.

possible source and target shapes in its proximity. Second, we use a trained edge
relation network to process each edge candidate src — tgt and predict the likeli-
hood s that arrow a indeed connects src and tgt, as well as the arrow path K that
was drawn to connect src and tgt. Lastly, given the set of edge candidates detected
for all arrows E¢, the edge inference procedure determines the final set of edges
E C E¢. This procedure involves finding the most likely edge candidate for each
arrow and eliminating duplicate edges. In the following, we introduce each stage
in detail.

Edge candidate generation. Given an arrow a € A, we first identify all potential
pairs of source and target shapes that the arrow might connect. To that end, we
take all shapes that are considered to be in proximity to the arrow’s bounding box.
Although the object detector already aims to connect an arrow’s bounding box to
its source and target shapes (see Section 8.1.1), we still need to account for minor
prediction inaccuracies that could result in an arrow’s bounding box not being fully
connected to its corresponding shapes.

Therefore, we determine if an arrow a and a shape s are in proximity to each
other by expanding the arrow’s bounding box a.b in a manner relative to its width
and height. Specifically, we pad each side of a.b by an arrow padding percentage
pad,, of the box’s weight and height, respectively.! We refer to this extended arrow
bounding box as the (context-enriched) arrow region, a.r. Figure 8.4 shows an
example, with the arrow’s bounding box in green and the arrow region in red.
Based on the experiments reported on in Section 8.2.2, we found that a padding of
pad, = 10% is best suited for this purpose.

The set of candidate shapes for an arrow a then includes all shapes that overlap
with the arrow region, i.e., it contains any shape s € .S of which its bounding box
s.b intersects with the arrow’s region a.r. For instance, in Figure 8.4, the arrow
region overlaps with the bounding boxes of all shapes, thus resulting in four shape

'To account for overly small or large arrows, we enforce a minimum padding value of 15px and
a maximum of 100px.
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candidates for the arrow. There are two exceptions to this procedure, related to the
specifics of collaboration shapes in BPMN. First, we only consider pool shapes as
candidates for arrows classified as message flow, as the other edge types do not
connect to pools in BPMN. Second, we do not consider lane shapes, given that no
edge type connects to these shapes at all. Removing invalid collaboration shape
candidates greatly reduces the total number of candidates to evaluate, as, in the
example of sequence flows, we would otherwise create a candidate shape for both
the lane and pool that the arrow belongs to.

Given n candidate shapes, we create n * (n — 1) directed edge candidates of
the form src = tgt, with src # tgt, i.e., we consider all pair-wise combinations
as the potential source and target shapes for arrow a, as illustrated in Figure 8.4.
We intentionally do not apply any heuristics to further prune the set of shape pair
candidates. For example, in Figure 8.4, it seems unlikely that the predicted arrow
bounding box connects the two leftmost shapes. However, in some cases, arrows
are drawn in such a way that they connect two shapes with a large detour. Instead
of applying heuristics to detect such scenarios, we, therefore, opt for a learning-
based approach that can exploit these spatial bounding box correlations to decide
if an arrow connects a shape pair, as detailed in the second stage below.

While the number of edge candidates is quadratic with respect to the number
of shape candidates, this is generally not problematic in practice. In particular, we
observe that the majority of arrows (e.g., 71% in the training split of hdBPMN) have
two candidate shapes, which results in only two edge candidates, one per direction.
This is, e.g., seen for the two short sequence flow arrows in Figure 8.4.

Edge relation scoring. In the second stage, we use an edge relation network to
predict the likelihood that an edge candidate src — tgt indeed connects shape
src to tgt, and to predict the drawn path of the arrow (captured as a sequence of
keypoints K). As shown in Figure 8.3, the network is provided an edge candidate
as input, comprising the bounding boxes and class predictions of the three objects,
and the arrow region a.r. As depicted, the edge relation scoring procedure uses
three modules to analyze different kinds of features. This modular approach is
inspired by existing works [19,118], where relationships between objects in images
are also detected using a spatial, a semantic, and a visual module. In the following,
we describe the three modules in detail and explain how the edge relation network
predicts the edge relation score and keypoints given the encoded features.

Spatial module. The spatial module encodes spatial features for each edge candi-
date, i.e., the (relative) locations of the bounding boxes of the arrow and the two
associated shapes. For each predicted box of the three objects, the spatial mod-
ule generates a 28 x28 binary mask that indicates the location of the box within
the arrow region a.r, as illustrated in Figure 8.3. Each binary mask is initialized
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with zeros and then filled with ones for each bounding box pixel that is located
within a.r. Specifically, we first compute the intersection bounding box of each
shape and a.r. Next, we normalize the intersection boxes by dividing their x and y
coordinates by the width and height, respectively, of a.r. Then, we multiply each
coordinate by 28 and obtain boxes in the range [0, 28], which we finally convert
into binary masks.

The binary masks instruct the network which task it is supposed to solve, i.e.,
they indicate the source and target shape between which the network should try
to recognize an edge. In addition, the spatial features can be used by the network
to assess the likelihood that arrow a connects the source and target shapes, src
and tgt. For instance, spatial features capture that corresponding source and target
shapes are typically located on opposite sides of an arrow’s bounding box, as seen
for the example in Figure 8.3. However, to actually recognize an edge, the network
also needs the visual features of the arrow region. These features are generated by
the visual module, as we describe next.

Visual module. The visual module generates a learned 28 x28x256 visual feature
representation of the arrow region a.r. These visual features can be used to assess
the likelihood that an arrow connects to particular shapes, e.g., by considering the
proximity and direction of a drawn arrow, whereas they are also used to identify the
keypoints in the drawing, i.e., an arrow’s start, end, and notable points in between.
As discussed in Section 2.2.2, Faster R-CNN uses the RolAlign mechanism to cut
out the part of the image features that correspond to the bounding box of an object
proposal. Figure 8.3 shows that the visual module uses the same mechanism to
extract the features for a.r.

As discussed in the previous section, the network needs both spatial and visual
features to solve the edge recognition task. Given just the visual features, the net-
work lacks information about the shape pair it should evaluate. With both features,
the network can learn to figure out if there is an arrow whose tail is in proximity
to the source shape, whose head is in proximity to the target shape, and whose
bounding box equals the provided arrow bounding box. Both the spatial and vi-
sual modules rely on the bounding boxes of the edge candidate objects but do not
take into account the predicted classes. The next section, therefore, presents the
semantic module, which leverages the predicted classes.

Semantic module. The semantic module provides the network with an encoded rep-
resentation of the predicted classes of an edge. The network can use these features
to learn class-specific modeling rules and conventions, e.g., that control-flow edges
connect activities, events, and gateways, whereas data associations involve at least
one data element. Given the large number of shape classes, many combinations of
source and target shape classes have only a few training samples, and we observed
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Figure 8.5: Edge relation network: The concatenated visual and spatial features are pro-
cessed by a convolutional neural network (CNN). Next, the feature vector obtained from
the global average pooling (GAP) layer is fused with the semantic features. After two
fully-connected layers (FCs), a network branch with a sigmoid function (S) predicts the
edge relation score s, and a second branch predicts the arrow keypoints K.

that this leads to overfitting during training. Therefore, instead of directly using
the predicted shape classes, we map the 21 shape classes into five more general
shape groups: activity, event, gateway, collaboration, and data elements. From a
process modeling perspective, this is reasonable, as the majority of modeling rules
are applied on the level of shape groups. For example, the rule that a data associa-
tion always connects a data store or data object can be simplified to a rule on data
element level.

The predicted arrow class and the mapped shape groups are converted into
vectors using one-hot encodings, which results in a vector of size 3 for the arrow,
and two vectors of size 5 for the shapes. Finally, the three vectors are concatenated
into a semantic feature vector of size 13.

Edge relation network. Given the input stemming from the three aforementioned
modules, we use a neural network to predict the edge relation score and arrow
path, as illustrated in Figure 8.5. The architecture of our network largely follows
our earlier work [84], which is in turn based on a network designed to predict rela-
tionships between form elements in a small document image dataset [19]. We first
combine the visual and spatial features by concatenating the three binary masks as
additional channels to the visual features and obtain a 28 x28x259 feature repre-
sentation. The combined visual and spatial features are processed by a convolu-
tional neural network (CNN). We use the same CNN architecture as in our earlier
work [84], which consists of six depth-wise separable convolutional layers [38].
The spatial resolution of the features is downsampled twice by a factor of two, us-
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ing strided convolutions in the third and last depth-wise convolution. This results
in features of size 7x7x256. Next, we convert the three-dimensional features to
a vector using global average pooling (GAP), which computes the mean over each
of the 256 channels. We then concatenate the semantic vector, leading to an in-
termediate vector of size 269. We subsequently integrate these semantic features
by applying two fully-connected layers (FCs), resulting in a final feature vector of
size 256.

Given the final feature vector, the network predicts two outputs. First, a binary
classification layer with a sigmoid function predicts the edge relation score s. A
second linear layer predicts the arrow path as a sequence of arrow keypoints K,
where each (z,y) € K represents a point within the image. Following our earlier
work [84], we choose | K| = 5, and encode the arrow keypoint coordinates relative
to the arrow region. The first and last keypoints in K indicate the arrow tail and
head positions, and the three intermediate points capture the drawn path. The num-
ber of intermediate keypoints required to describe an arrow varies, e.g., an elbow
arrow can be described with just one intermediate keypoint. Therefore, we remove
superfluous intermediate keypoints in the last step of our approach, as we describe
in Section 8.1.4.

Given the edge relation score s and the arrow keypoints K, we obtain a tuple
e = (a,sre,tgt,l, K) € E¢ for each edge candidate. The next section details how
we use the set of edge tuples E¢ to determine the final set of edges.

Edge inference. The edge inference procedure determines the final set of edges
E C E¢. For each arrow a, we choose the edge candidate e with the highest edge
score e.s. In other words, we reduce the number of edge candidates to the number
of arrows by only keeping the most likely edge per arrow. Next, we aggregate the
edge score e.s with the object detector score e.a.s by taking the minimum of both,
i.e., we set e.s = min(e.s, e.a.s).

Next, we remove all edges whose aggregated score is lower than a threshold
Te (we use 0.5 as default and test further values in our evaluation experiments),
which results in Ef, C E¢. Last, we identify edges with the same connection, i.e.,
edges e1,e2 € E’C with e.src = es.src and ej.tgt = ea.tgt. We resolve these
duplicates by only keeping the edge with the higher aggregated score e.s. As a
result, we obtain the final set of edges E.

8.1.3 Label Recognition

In this step, our approach aims to recognize the BPMN labels indicated by the
previously detected textblocks 7" (Section 8.1.1). The input for this step consists of
the sets of shapes .5, edges F, and textblocks 7', as well as the image features feat.
The output of this step is a set of labels L, where each label | = (t, tgt, s, txt) € L
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Figure 8.6: Textblock handwriting recognition: For each textblock (blue), the label is
obtained by detecting the reading order of its contained words (green), except for notation
words (yellow).

relates a textblock t, to a target shape or edge tgt € S U E. Further, s represents
the consolidated label score, and txt the textual content.

To achieve this, we decompose label recognition into two main parts. First,
textblock handwriting recognition decodes the textual content within each textblock.
Second, textblock relation detection strives to identify the shape or edge that each
textblock labels, and, to eliminate duplicate textblocks that both relate to the same
shape or edge. Besides the textblocks in T, our approach also decodes the tex-
tual content within the activities that are part of S. Therefore, we create a pseudo
textblock for each activity. The pseudo textblock receives the same bounding box
as its associated activity shape but does not participate in textblock relation de-
tection since its target shape is already known. We refer to the set of regular and
pseudo textblocks as T”.

Below, we introduce the two parts to obtain L in detail.

Textblock handwriting recognition. Given a textblock ¢ € T’, the textblock
handwriting recognition procedure tries to decode the textual content {xt within
the textblock. We decompose textblock handwriting recognition into two stages.
First, in image word recognition, we use an off-the-shelf OCR service to recognize
all words in an image. Second, the fextual content decoding procedure identifies the
words that belong to each textblock and combines the words into a word sequence
that represents the textual content of the textblock.

Image word recognition. In this stage, we try to identify all handwritten word ob-
jects w = (b,d,txt) € W within a given image. Each word w is defined by a
bounding box b, the degree of its rotation angle d, and the word’s textual content
txt. To accomplish this, we leverage an off-the-shelf OCR service that supports
handwritten text. Given a raw image as input, the OCR service returns a set of text
lines, where each line consists of a sequence of words. As words can be arbitrarily
rotated, the word bounding boxes also indicate the angle d. Since OCR services are
commonly optimized towards handwritten documents, we observe that the returned
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text lines often combine lines of multiple textblocks, e.g., when two textblocks are
next to each other. In Figure 8.6, the service might recognize the text line “inter-
view expertise”, even though both words belong to different textblocks. Therefore,
we discard the text line information and only keep the returned words W. Next, we
describe our approach for identifying the word sequences that represent the textual
content of each textblock.

Textual content decoding. Given the textblocks O/, and words W, we propose a
procedure that decodes the textual content of each textblock. To this end, we first
identify the words Wt C W that belong to each textblock ¢, and, then, combine
the words W to obtain the textual content tat.

To identify the words that belong to a textblock, we first compute the inter-
section over area (IoA) between all words and textblocks in the image. The IoA
quantifies to what fraction of a word w is contained in a textblock ¢, and is defined
as the overlap area of w.b and ¢.b divided by the area of w.b. We match each word to
the textblock with the highest IoA, while only keeping words whose textblock IoA
exceeds 50%. We use this threshold to account for minor word and textblock lo-
calization errors. In Figure 8.6, the green boxes illustrate the words that have been
assigned to their enclosing textblock. Further, the red boxes show that the OCR
service returns many (false positive) words that actually are part of drawn shapes
or edges. Among others, we frequently observe recognized “X” characters for ex-
clusive gateway symbols, or multiple returned “-” or “I”’ characters for horizontal
and vertical arrows. These false positives are discarded by only keeping words
within textblocks. However, we also observe false positive words located within
textblocks that often correspond to notational elements of BPMN, as illustrated by
the yellow box in Figure 8.6. We try to eliminate these with a filter list of com-
mon notation words, which includes recognized words for parallel task (e.g., “III”,
“111”) and collapsed sub-process markers (e.g., “+”). Applying both the matching
and filtering procedure yields the final set of words W for each textblock t.

In the second stage, a reading order detection algorithm decodes the textual
content txt of each textblock t. Given the words W?, the algorithm uses the bound-
ing box and rotation angle d of each word to identify which words form a line, and
in which order the lines should be read. The algorithm details can be found in
Appendix A.

Textblock relation detection. Similar to edge recognition (Section 8.1.2), we
formulate textblock relation detection as a relationship detection problem and de-
compose it into three stages. First, relation candidate generation produces a set
of shape and edge candidates for every textblock ¢ € T'. Second, relation scor-
ing predicts the score for each candidate pair, where a candidate pair consists of a
textblock and a related shape or edge. Last, the relation inference procedure tries
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to find the most likely shape or edge for each textblock and to eliminate duplicate
labels, i.e., multiple textblocks that have been related to the same shape or edge.

Relation candidate generation. Given a textblock ¢, we first identify all shapes
and edges that the textblock might label. In edge candidate generation (cf. Sec-
tion 8.1.2), the set of candidates includes all shapes that overlap with the arrow
region. Here, the arrow region corresponds to the arrow bounding box extended
proportionally to its width and height. We follow a similar procedure to generate
textblock relation candidates but also account for the following specifics of BPMN
labels. First, we observe a large variance in textblock bounding box sizes, since
the textual content can range from single-digit to multi-line text phrases. There-
fore, we do not pad each textblock relative to its dimensions. Instead, we compute
the median size of all textblocks in the image, which we refer to as M. Here, the
size of a textblock is defined as the mean of its width and height. To obtain the
textblock region, we then pad the side of each textblock by a factor pad; * M.
Based on our experimental results described in Section 8.2.2, we set pad; = 1.

In order to reduce the number of false positive candidates to evaluate, we also
leverage two patterns regarding the positions of textblocks relative to the shape
or edge that they label. First, we observe that edge bounding boxes often do not
closely capture the drawn path of the arrow, especially for diagonal or elbow ar-
rows. For example, even though the drawn path of the sequence flow in the center
of Figure 4.8 is far away from the “Not Okay” textblock, their two bounding boxes
are in proximity. Therefore, we only consider an edge as a relation target if its
drawn path, identified by its keypoints K, intersects the textblock region. Second,
we observe that pool and lane labels are commonly located near the boundary of
the detected shape, as illustrated in Figure 8.2. Therefore, we only consider a pool
or lane as a relation target if its border intersects the (extended) textblock region.
This way, we avoid creating a candidate for every textblock that actually labels a
shape or edge within the pool.

Figure 8.7 shows an exemplary textblock in
an image, along with the related candidate shapes
(blue) and edges (orange) that intersect with the
textblock region (red). As indicated, we do not con-
sider activity shapes as relation targets, since we
know the relation targets of the (pseudo) textblocks
that we created for each activity. Further, we ex-
clude data association arrows, as not a single such
arrow is labeled in the hdBPMN dataset. In the next
step, we use a network to evaluate each textblock Figure 8.7: Relation candidate
relation candidate (¢, tgt). generation
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Relation scoring. In this second stage, we use a textblock relation network to
determine the score of a relation candidate (¢, tgt), i.e., the likelihood that textblock
t labels a shape or edge, tgt. As in edge recognition, the network consists of three
modules and outputs a relation score. The main difference is that the textblock
relation network operates on object pairs instead of triplets. As a consequence,
the spatial module generates two instead of three binary masks. Further, since the
source object of the textblock relation is always a textblock, the semantic module
only encodes the predicted class of one object, namely the target shape or edge.
Finally, the visual module extracts the features from the textblock region using
RolAlign, and thus works in the same way as with edge recognition. The network
details can be found in Appendix A.

Relation inference. The relation inference procedure determines the final set of
textblock relations, and as part of this, also eliminates textblocks that have been
identified as duplicates. This procedure is, again, performed in a similar manner as
its corresponding part in the edge recognition step. For each textblock ¢, we choose
the relation candidate (¢, ¢gt) with the highest relation score s. We then aggregate
the relation and the object detector score by taking their minimum and remove all
textblocks whose aggregated score is lower than a threshold 7; (we use 0.5 as a
default and test further values in our evaluation experiments). Last, we identify
textblock duplicates, i.e., multiple textblocks that have been matched to the same
shape or edge, and we resolve these cases by only keeping the textblock with the
highest score.

8.1.4 Approach Output

The last step in our approach takes the final shapes S, edges F, and labels L to
create a process model in the BPMN 2.0 XML format. The XML format consists
of two main schemata: the actual process model and the BPMN DI schema, which
defines the shape and label bounding boxes and the waypoints of edges. For each
predicted shape, edge, and label, we create a respective element in the XML file.
When creating a BPMN DI edge element for each e € E, we follow the typical
convention and define the first and last waypoint as the points that intersect with
the edge’s source (e.src) and target (e.tgt) shapes, respectively. To that end, we
shift the first and last predicted keypoint of e. K to the nearest point on the bounding
box boundary of the connecting shapes, except for gateways, where we connect the
keypoint to the closest of the four diamond corner points. For the intermediate key-
points, we remove superfluous points with the Douglas-Peucker line-simplification
algorithm [23]. Concretely, we remove every point where the distance between
the original and induced simplified path is less than 5% of the total arrow length,
resulting in a smoother representation as the final output of Sketch2Process.
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8.1.5 Training

To operationalize Sketch2Process, we need to train and validate all neural
network components on a dataset with accompanying ground truth, which we split
into a training and validation set. In this section, we describe the format of this
ground truth, the overall training procedure, and details on our employed image
augmentation pipeline.

Ground truth. Given an image containing a hand-drawn BPMN model, our ap-
proach uses a ground-truth annotation that captures the shapes, edges, and labels
contained in it. The formats for shapes and labels are straightforward and follow
directly from the annotation procedure. Specifically, each ground-truth shape is
a tuple (c,b), with ¢ as the shape’s class and b its bounding box, whereas each
ground-truth label is a tuple (tzt, tgt,b), with tzt as the label’s text, tgt its target
shape or edge, and b its bounding box.

The ground truth of edges is slightly more intricate. Particularly, each ground-
truth edge is a tuple (src,tgt, K,b), where src and tgt are the source and target
shapes that the edge connects, K a sequence of keypoints (x and y coordinates,
corresponding to BPMN waypoints) that are used to capture the edge’s drawn path,
and b the edge’s bounding box. The first and last keypoints of K, respectively,
correspond to the tail and head of the edge, whereas additional keypoints may be
used to indicate an edge’s bending points. Here, it is important to note that the tail
and head keypoints should correspond to the points where the edge intersects or is
supposed to intersect with its source and target shapes, rather than to the actually
drawn start and endpoints of the edge. In this manner, we account for incompletely
drawn edges that do not connect with their corresponding shapes (see issue e2 in
Figure 4.8). Then, the object detector trained on these annotations will strive to
predict where an arrow bounding box should have ended (or started) if the edge
had been drawn properly, rather than predicting the point where the edge ends (or
starts) in the drawing (see also Section 8.1.1). Finally, an edge’s bounding box b is
automatically computed as the smallest box that contains all keypoints in K.

Training procedure. In the context of deep learning, which encompasses the neu-
ral networks we employ, the goal of model training is to find network parameters
(i.e., weights) that maximize the performance on the validation set. We follow the
de facto standard in deep learning and train the networks with stochastic gradient
descent (SGD) [29]. SGD is an iterative method, where, at each step, k examples
(images in our case) are randomly sampled from the training set. Here, k is re-
ferred to as the batch size, and the set of sampled examples is called a mini-batch.
During each SGD iteration, a loss function quantifies the difference between the
ground truth and the predicted outputs of the neural networks. We apply the loss
function per image and obtain a mini-batch loss by averaging over the k£ image
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Figure 8.8: Training overview: Given the augmented image, Faster R-CNN produces a
set of object proposals. Edge candidate generation identifies all proposals that sufficiently
overlap with a ground-truth shape or edge. It then generates 64 edge candidates, for which
the edge loss L. is computed by comparing the relation network outputs to the respective
ground truths. The textblock relation loss £, is computed on 64 relation candidates using
a similar procedure. Finally, the image loss £ combines the losses of all networks.

losses. Although we defer the technical details to Appendix A, the intuition of how
we compute an image loss is as follows.

As depicted in Figure 8.8, we first apply an image augmentation pipeline (de-
scribed below) and obtain a randomly augmented version of the input image. As
mentioned in Section 2.2.2, Faster R-CNN uses the (augmented) image to pro-
duce the image features feat. Given these features, it generates a set of object
proposals in the first stage. In the second stage, a box-head network uses the pro-
posals and image features to predict the detected objects. Following the standard
training procedure of this object detector [77], we compute the aggregated Faster
R-CNN loss L7 by comparing both the proposals and the detected objects against
the ground-truth objects. Concretely, this means that Faster R-CNN uses a ground
truth consisting of all shapes, as well as the bounding boxes and classes of edges
and labels (representing arrow and textblock objects, as described in Section 8.1.1).

As Figure 8.8 illustrates, we use the object proposals to train our edge and
textblock relation networks, which follows related work that extends Faster R-
CNN [35]. To this end, we randomly sample 64 edge candidates (for edge recogni-
tion) and 64 relation candidates (for label recognition) from the object proposals.
We then compute an edge loss L., which consists of a relation loss and a keypoint
loss. For the relation loss, we use the ground-truth information on both shapes
and edges to assess if an edge candidate is considered true positive or not, which
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results in a binary ground-truth relation score. We then compare the predicted and
the ground-truth relation score using binary cross entropy. For the keypoint loss,
we compute the mean squared error between the predicted and ground-truth key-
points K of an edge (though the latter are resampled in an equidistant manner).
The label relation loss £; is calculated in the same manner as for edge relations,
except that we are using the entire ground truth, as textblocks can be used to label
both shapes and edges. Finally, we compute the image loss, £ = L; + L. + £;, as
a weighted combination of the losses of the three networks.

Image augmentation pipeline. During training, we have to account for the par-
ticularities of the hdBPMN dataset in terms of its size (hundreds rather than many
thousands of images) and diversity with respect to the means used to create and
digitize the hand-drawn models, such as the type of paper and drawing implement
(see also Section 4.3).

Therefore, given a mini-batch image, we apply a randomly selected set of aug-
mentation methods that are specifically suited to the data at hand. A code list-
ing capturing the exact pipeline we use for this, based on the Albumentations li-
brary [12], is provided in the supplementary material, whereas we here focus on a
description of the augmentation methods and their relevance.

In particular, we employ augmentation methods that randomly rotate, flip, and
scale training images, as well as add Gaussian noise. These methods have been
shown to work well for smaller datasets used in flowchart recognition [82]. On top
of those, we also employ methods that are particularly aimed at the camera-based
images in our dataset, which we introduced in a previous work [85]. This involves
altering varying properties to reflect different kinds of camera-based images, for
which we randomly change the brightness and contrast of the image, and shift the
hue, saturation, and value color scale.

Finally, to improve generalization, we further introduce a new crop augmenta-
tion in this work, which cuts out a random part of the diagram and then enlarges
the crop to the scale of the original diagram. Concretely, we crop an image patch
whose scale compared to the original image is between 0.2 and 1.0, and whose ra-
tio is between 0.5 and 1.5. Then, we keep all objects from the ground truth where
at least 70% of the bounding box is located within the cropped image. To avoid
having empty (cropped) images, we reapply the entire augmentation pipeline until
the augmented image contains at least 3 objects. Overall, we observe that random
cropping improves our recognition results, as during training the object detector
sees variations of the same image that have been (1) stretched in horizontal or ver-
tical direction and (2) where only a subset of the diagram symbols are visible.

Figure 8.9 shows some augmented images obtained by applying our proposed
pipeline on the running example.
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Figure 8.9: Image Augmentation Example: Our augmentation pipeline produces different
variations of the same input image

8.2 Evaluation

To demonstrate the capability of our approach, we trained and optimized it using
the training and validation set of hdBPMN, and conducted an evaluation using its
test set. The evaluation results clearly demonstrate that our approach can reliably
recognize hand-drawn BPMN models from images and, hence, remove undesirable
friction in the modeling workflow.

8.2.1 Evaluation Setup

Below we elaborate on the details of our employed implementation and parameter
settings, as well as the metrics and baselines used to evaluate our approach.

Implementation. Our neural network implementation is based on the Detec-
tron2 [104] framework, which provides an extensible Faster R-CNN implementa-
tion based on PyTorch [69]. For OCR, we use the Microsoft Azure OCR service,?
version v3.2. The service is asynchronous, i.e., we submit the image via a pro-

https://docs.microsoft.com/azure/cognitive-services/
computer-vision/overview—-ocr
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cessing request, and then periodically check if the results are available. In order to
optimize the overall runtime of our approach, we perform network inference while
waiting for the OCR results. Readers are invited to try out their own sketches using
our public demo:
http://sketch2bpmn.informatik.uni-mannheim.de/.

Parameter settings. Sketch2Process has several parameters, for which we
analyze the effect of different choices. During inference, we use three score thresh-
olds, one for shapes (75), one for edges (7.), and one for labels (7;), to decide which
elements to keep. For each score threshold, we explored choices in the range from
0.05 to 0.95. In addition, both our edge and label recognition components have
a region size parameter, which we consider the most important parameter of the
respective components, as they are used to identify elements in proximity during
candidate generation, and to extract the visual features in the scoring procedures.
For the arrow region size, we explored arrow padding percentages pad, in the
range from 0% to 50%, with a step size of 10%, and also evaluated 5% when we
found that 10% performs best. For the textblock region size, we explored textblock
padding factors pad; in the range from 0.0 to 2.0, with a step size of 0.25. Finally,
the textual content decoding step, which is part of the label recognition component,
has two additional parameters. For matching words to textblocks, we explore IoA
thresholds ;.4 in the range from 0.001 to 1.0. For determining which words be-
long to the same line as part of our reading order detection algorithm, we explore
line distance thresholds 74 in the range from 0.0 to 1.0.

Besides the mentioned parameters, Detectron2 has several training configura-
tions, for which we apply the settings from previous works [82, 84]. Faster R-
CNN can be equipped with different backbone networks. We use the ResNet-50-
FPN [57] backbone throughout the experiments, which is relatively fast and pro-
vides a good speed-accuracy trade-off. For training, we largely follow the default
Detectron2 configuration for training Faster R-CNN with a ResNet-50-FPN back-
bone. We use stochastic gradient descent with a batch size of 4, and a learning rate
of 0.005. We train the model for 90k iterations, which means that the model sees
360k augmented images (90k batches of size 4). This takes about 32 hours on a
Tesla V100 GPU with 16GB memory. During training, we multiply the learning
rate after 50k and 70k iterations by a factor of 0.4. Here, we follow our previous
work [84], where we found that the default factor of 0.1 decreases the learning rate
too much. We initialize the model weights with models pretrained on the COCO
dataset, which we obtain from the Detectron2 model zoo. Although the COCO
dataset consists of images from a different domain than our target one, i.e., images
of everyday scenes, we observed minor improvements with this transfer learning
strategy in our previous works.
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Finally, another important part of the training procedure is the image augmen-
tation pipeline. To understand its impact on the overall results, we conducted an
ablation study in which we compare a model trained using our full augmentation
pipeline to two additional models: one with no augmentation at all, and one with
just the default augmentations from the Detectron2 library (random resizing and
horizontal flipping).

Metrics. To evaluate our approach, we compare a process model extracted by our
approach to the one in the manually annotated image (see Section 4.2), i.e., the
ground truth.

Object detection metrics. To quantify the object detection performance, we fol-
low related work in diagram recognition [9, 11, 103]. A detected shape, edge, or
textblock is considered a true positive if it has the correct class and its bounding
box overlaps sufficiently with its ground-truth counterpart. Particularly, following
other work [103], we consider this overlap sufficient if the bounding boxes have
an overlap that exceeds an IoU threshold of 50%, which accounts for annotation
inaccuracies in the ground-truth bounding boxes. To quantify object detection per-
formance, we then use this notion of true positives to match the ground truth to
the predicted objects and compute the standard precision, recall, and F; scores.
For infrequent shape classes, there can be zero predicted objects, in which case the
recall is zero. As this leads to a division by zero in the calculation of the precision
score, we handle this edge case by reporting n/a for both precision and F; scores.
Similarly, we report a recall of n/a for classes that appear in the training, but not in
the test set.

As the object detection step completes the recognition of shapes, we compute
the macro shape F; score as the mean F; over all shape classes. Similarly, the
micro shape F; score is computed as the F; over all shape predictions. This means
that the micro score weights each class according to its relative frequency, and thus
the score is biased towards more frequent classes.

Edge recognition metrics. To quantify the performance for edge recognition, we
follow related work by determining if our approach is able to relate detected arrow
objects to the correct (i.e., ground-truth) source and target shapes [9, 11]. We,
again, compute precision, recall, and F; scores for this, where we consider an edge
to be a true positive if both the source and target shapes are correctly identified.

Note that this means that edge recognition is affected by object detection accu-
racy for arrows, as well as for shapes: if an arrow object was not correctly detected,
we cannot relate it to any shapes, whereas if a shape was not correctly detected, we
cannot relate any edges to it, either.?

3Note that an edge is still considered correct if its associated shapes are incorrectly classified.
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Label recognition metrics. We consider label recognition performance with respect
to its two parts: textblock relation detection, for which we assess how well our
approach relates textblocks to their corresponding shapes and edges, and textblock
handwriting recognition, for which we evaluate the actual textual content detected
in these textblocks.

For textblock relation detection, we follow the same evaluation procedure as
for edge recognition, i.e., a label is a true positive if its textblock has been correctly
detected and the associated shape or edge has been correctly identified. Note that,
our conceptual contributions focus on this part of label recognition, whereas the
rest primarily depends on an employed OCR service. Therefore, the overall label
recognition performance that we report for our approach only includes these non-
textual aspects.

For textblock handwriting recognition, we assess its two steps. We evaluate the
image word recognition step by comparing the OCR performance to the ground-
truth words annotated in an image. We consider a predicted word a true positive
if its IoU score exceeds 50%, allowing us to report on precision, recall, and F;
scores for the OCR service. In addition, we compare the predicted and ground-truth
texts of the true positive words using the character error rate (CER), a common
metric to evaluate HWR methods [80]. The CER is defined as the Levenshtein
distance at character level between the prediction and ground truth, normalized
by the ground-truth length. Prior to computing the CER, we lowercase the texts
and replace line breaks with whitespaces, as we observe inconsistent annotations
for both. Finally, for the textual content decoding step, we assess how accurately
our approach assigns words to the textblocks (and thus to labels). We evaluate
this based on the ground-truth words, reflecting the accuracy of the decoding step
in isolation, and based on the actually detected words, reflecting the end-to-end
performance of the textblock handwriting recognition procedure.

Baselines. To demonstrate the efficacy of our approach, we compare its perfor-
mance to related works. To this end, we train and evaluate the following systems
on the hdBPMN dataset: BPMN-Redrawer [1], Arrow R-CNN [82], Sketch2BPMN
[85], and DiagramNet [84] (see also Chapter 3). For the BPMN-Redrawer com-
parison, we use the training configurations provided in the open-source implemen-
tation. For Arrow R-CNN, we use its default image augmentation methods, which
are targeted at diagrams drawn on a white background. We also compare to the
Sketch2BPMN approach, which extended Arrow R-CNN with additional augmen-
tation methods and an improved rule-based edge relation procedure. Last, we com-
pare to the DiagramNet [84] approach. DiagramNet does not predict arrow bound-
ing boxes. Instead, the arrow bounding box is generated as the smallest bounding
box that contains all predicted arrow keypoints. In the paper, the edge recognition
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Table 8.1: Overall approach results

Shape Edge Label
Approach Micro F; Macro F; Micro F; Macro F; F;
BPMN-Redrawer [1] 89.2 73.7 63.1 47.5 —
Arrow R-CNN [82] 94.4 86.5 87.7 82.9 —
Sketch2BPMN [85] 94.8 87.3 90.7 86.2 —
DiagramNet [84] 95.6 88.5 85.5 78.8 —
Sketch2Process 95.8 88.3 93.0 90.5 92.6

evaluation metric considers neither arrow bounding boxes nor keypoints, and in-
stead only considers if an arrow has been matched to the correct source and target
shape. Our hypothesis is that, while DiagramNet is comparable to our approach
in edge relation detection performance, it produces less accurate keypoints and
bounding boxes. To verify this hypothesis, we compare our approach to Diagram-
Net using both evaluation procedures, the one proposed in our work, and the one
used to evaluate DiagramNet originally [84].

8.2.2 Results

This section presents the results of our evaluation for the hdBPMN test set, first
in terms of overall results, before taking a detailed look at the results per BPMN
element class. In addition, we present a sensitivity analysis of the major parameters
and the measured runtime of Sket ch2Process and its major components.

Overall results and baselines. The overall results are presented in Table 8.1. As
the cells with missing label F; scores indicate, our approach is the first work that
addresses the recognition of all three diagram components. The results reveal that,
for shape recognition, our approach is on par with DiagramNet, and outperforms
all other approaches, especially on macro F;. Note that micro and macro measures
differ because certain classes (e.g., Tasks) are much more common and easier to
recognize than others (e.g., specific kinds of events). However, the overall trends
are consistent across the two. For edge recognition, our approach considerably out-
performs all other approaches, achieving both a micro and a macro F; score above
90. The rather low performance of the BPMN-Redrawer approach highlights that,
especially for the recognition of hand-drawn edges, a dedicated network architec-
ture is required.

As mentioned above, we also compared our edge recognition performance
against DiagramNet [84] using the true positive definition from that work. Here,
we observe that our approach has the highest macro F; (85.4), followed by Dia-
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gramNet (83.8) and Sketch2BPMN (80.8). These results indicate that, while Dia-
gramNet underperforms all other approaches in edge recognition with our bound-
ing box-based evaluation, it performs much better when only considering whether
an edge actually exists between two shapes.

Regarding label recognition, we observe that our approach achieves an Fy score
of 92.6 (as indicated in Section 8.2.1, this corresponds to performance on textblock
relation detection). Given that, to our knowledge, we are the first approach that
addresses label recognition, we do not have prior work to compare to.

Object detection. Table 8.2 provides detailed insights into the performance of
our object detector, by depicting the results obtained per shape, arrow, and text
class. The table shows that our approach correctly recognizes the vast majority of
objects, achieving an F; score of at least 90 for all arrow, text, and 14 out of 21
shape classes. For some shape types, the number of data points is too low (in both
the training and the test set) to sufficiently cover the spectrum of factors such as
drawing styles and, therefore, too low to provide reliable evaluation results.

A post hoc analysis of the results reveals that the most difficult task for our
object detector is the correct classification of certain kinds of events. This comes
as no surprise, though, since the difference between some of the eight kinds of
events may only be due to marginal differences, such as a change in line thickness
(start events), as well as different kinds of tiny envelopes (message events) and
clocks (timer events). Especially in light of the diverse shapes in our dataset, as
highlighted in Figure 4.6, identifying such differences in hand-drawn models can
already be highly complex for humans, let alone for an automated approach that
lacks sufficient training examples for some of the rarer classes.

Edge recognition. The edge recognition results in Table 8.3 again demonstrate
the overall strong performance of our approach, as well as that sequence flows (Fq
of 94.7) are easier to recognize than message flows (88.1) and data associations
(88.8). To some extent, this can be attributed to the commonality of sequence
flows and the fact that the latter two classes use dashed rather than continuous
lines. However, it is also highly interesting to consider the different roles of these
edges from a process modeling perspective. Particularly, message flows connect
(elements in) different pools, which are often placed relatively far from each other.
This results in longer edges, which may also cross more nodes, and are, therefore,
harder to analyze for an automated approach. For example, we observe that the
median arrow path length is more than twice as high for message flows (447 pixels)
as for sequence flows (152). For data associations, it is important to consider that
elements related to the data perspective are often drawn last [24, p.177], whereas
they also often are connected to multiple shapes, scattered throughout a model.
These two factors thus commonly result in data associations that cross other edges
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Table 8.2: Object detection results per class obtained for the test set

116

Group Class Prec. Rec. F;  Count
Task 97.8 99.6 98.7 763

Activit Subprocess (collapsed) 96.2 80.6 87.7 31
y Subprocess (expanded) n/a 0.0 n/a 3

Call Activity 100.0 100.0 100.0 1

Start Event 944 971 958 70

Intermediate Event n/a n/a n/a 0

End Event 974 974 974 190

Message Start Event 939 86.8 90.2 106

Event Message Interm. Catch Event 84.0 943 889 106
Message Interm. Throw Event  79.6 709  75.0 55

Message End Event 81.1 769 789 39

Timer Start Event 100.0 933 96.6 15

Timer Intermediate Event 93.1 947 939 57

Exclusive Gateway 976 980 978 247

Gatewa Parallel Gateway 96.1 96.8 964 126
Y Inclusive Gateway n/a 0.0 n/a 1
Event-based Gateway 919 944 932 36

Collaboration Pool 96.6 990 978 203
Lane 919 946 932 111

Data Elements Data Object 989 973 98.1 185
Data Store 100.0 943 97.1 35

Sequence Flow 97.6 956 96.6 1,887

Arrow Message Flow 944 893 9138 346
Data Association 96.7 869 915 367

Text Textblock 96.8 94.0 954 1,538
Overall Macro avg. 94.3 84.8 89.3 6,518
Micro avg. 95.9 95.1 95.5 6,518
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Table 8.3: Edge recognition results per class obtained for the test set

Class Precision Recall F; Count
Sequence Flow 95.9 93.5 947 1,887
Message Flow 91.0 853 88.1 346
Data Association 93.9 84.2 88.8 367
Macro avg. 93.6 87.7 90.5 2,600
Micro avg. 95.0 91.1 93.0 2,600

Table 8.4: Textblock handwriting recognition results obtained for the test set

Recognition task Mean CER
Image word recognition 5.5
Textual content decoding (GT Words) 0.5
Textual content decoding (OCR Words) 8.8

or even shapes, which complicates their recognition.

By comparing the arrow object detection results in Table 8.2 with the edge
recognition results in Table 8.3, we can quantify the effectiveness of our edge re-
lation detection procedure. Concretely, the difference between the object detection
and the edge recognition measures are arrows that were correctly detected, but
where either the source or target shape was not correctly identified. Here, we ob-
serve that the F; delta is lowest for sequence flows (-1.9), and increases slightly for
data associations (-2.7) and message flows (-3.7). For comparison, we also com-
puted these differences for our rule-based approach in Sketch2BPMN [85]. Here,
we find that the F; delta is much higher for sequence flows (-3.5) and message
flows (-10.4), and slightly lower for data associations (-2.5). Overall, this shows
the effectiveness of our improved edge recognition method, especially for complex
arrows such as message flows.

Label recognition. In the following, we report the evaluation results of both parts
of our label recognition procedure.

Textblock relation detection. Table 8.5 shows how well our approach is able to re-
late textblocks to corresponding shapes and edges, for each of the element groups.
The table shows that event labels (F; of 96.6) and data element labels (F; of 96.3)
are easier to detect and relate than collaboration labels (F; of 90.7) and edge labels
(F1 of 87.6). Since we do not (need to) detect activity labels through dedicated
textblocks, we do not report results for activities.
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Table 8.5: Textblock relation detection results per group obtained for the test set

Predicted objects Ground-truth objects
Group Prec. Rec. F; Prec. Rec. F; Count
Event 972 96.1 96.6 99.2 98.7 99.0 536
Gateway nfa 00 n/a nfa 00 n/a 3

Dataelement  98.1 945 963 100.0 98.6 993 220
Collaboration  93.8 87.8 90.7 100.0 98.7 994 312

Edge 924 833 876 97.5 927 95.1 467
Macro avg. 954 904 92.8 99.2 972 98.2 1,538
Micro avg. 953 90.1 926 99.0 967 978 1,538

To assess the accuracy of the relation detector independent of object detection
errors, we also evaluate it against the ground-truth objects. Here, the table shows
near-perfect results for four out of five category groups, which demonstrates the
effectiveness of our textblock relation detector. Overall, the recognition of edge
labels is the most difficult task for our approach, which can be attributed to the fact
that there are often multiple arrows in proximity to a textblock. For collaboration
shapes (pools and lanes), the near-perfect results when using the ground-truth ob-
jects indicate that the errors are largely due to textblock and collaboration object
detection errors. Here, a post-hoc analysis shows that the most difficult task is the
detection of nested lanes and their labels, where the bounding boxes of parent and
child lane are very similar (IoU of up to 97%).

Textblock handwriting recognition. Turning to the textual content within the de-
tected textblocks, we assess both steps of the handwriting recognition part:

For the image word recognition step, the OCR service achieves a precision of
69.6% and a recall of 90.0% when it comes to detecting words in images (irrespec-
tive of their textual content). The low precision is largely due to single-character,
false positive “words” that actually correspond to parts of drawn shapes or edges
(e.g., “X” characters stemming from exclusive gateway symbols and dashes from
dashed arrows), as mentioned in Section 8.1.3. Such false positives are not an issue
for our approach, though, since they are eliminated during the textual content de-
coding step, given that they are not located within a textblock. For the true positive
words identified by the OCR service, we observe a mean CER of 5.5%, as shown
in Table 8.4.

For the textual content decoding step, the mean CER of 0.5% obtained when
using the ground-truth words (GT words) shows that this step is very accurate in
isolation. This means that if the OCR service would be perfect, the labels of the
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Figure 8.10: Score threshold analyses conducted on the validation set
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Figure 8.11: Region size analyses conducted on the validation set

detected textblocks would be near-perfect as well. In terms of end-to-end per-
formance of textblock handwriting recognition, we observe a CER of 8.8% when
using the actually detected OCR words as input for textual content decoding. On
top of character recognition errors made by the OCR service in true positive words
(captured in the 5.5% CER for image word recognition), the 8.8% CER is also
caused by words that the OCR service failed to detect, i.e., false negatives.

In summary, the vast majority of errors that happen during textblock handwrit-
ing recognition directly or indirectly stem from errors of the OCR service. It is,
furthermore, worth highlighting that this does not imply that major corrections to
the generated models are required. For instance, in the running example (cf. Fig-
ure 4.3), only 18 of the 31 shapes and edges actually have labels, and among those,
the median edit distance is 1, which means that only minor edits are required to fix
the labels in the recognized model.

Sensitivity analysis. As mentioned, we analyze the sensitivity of the main param-
eters of Sketch2Process, including the settings for the different score thresh-
olds, the arrow and textblock region sizes, the textual content decoding, and the
image augmentation methods.

Score thresholds. Figure 8.10 shows the results for the score thresholds 75, 7e,
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Figure 8.12: Textual content decoding analyses conducted on the valid. set

and 7;, of which we apply each in one component. We find that each threshold
obtains similar results in the range from 0.4 to 0.7, where the difference between
the highest and lowest F; score is at most 0.6. The performance only degrades
substantially when using a very small or a very large threshold. This shows that
our approach is very robust to minor score threshold changes. Given the analysis,
we decided to simply set all three thresholds to 0.5.

Region sizes. Figure 8.11 shows the results for the region size configurations. For
the arrow pad percentage pad,, we observe that the edge F; scores are substantially
lower when applying only the minimum padding, are almost identical in the range
from 10% to 30%, and then slightly drop at 40% and 50%. As the number of edge
candidates increases with the arrow region size, which leads to increased inference
time, we use pad, = 10% in our approach. Regarding the textblock region size,
we observe that the results for the pad factor pad; are very similar in the range
from 0.75 to 2.0, with an F; between 90.5 and 91.1. As expected, the F; drops
substantially when using no padding (pad; = 0), as the majority of textblocks
(53% in the training set) do not intersect with the shape or edge that they label.
Similar to the arrow region size, the number of relation candidates increases with
the textblock region size. Therefore, we employ pad; = 1.0 for our approach.

Textual content decoding. Figure 8.12 shows the results for the IoA and line dis-
tance threshold configurations. For the IoA threshold 7;,, that we apply when
assigning the OCR words to textblocks, we observe that the CER is lowest for
Tioa = 0.5, which is why we use this as a default value in our approach. Overall,
we observe very similar results for 7;,, in the range from 0.3 to 0.6, though. As ex-
pected, the CER increases dramatically when 7;,, approaches 1.0. In the extreme
case of ;4 = 1.0, only words are matched whose bounding box is fully contained
within the corresponding textblock. When matching the ground-truth words to the
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Table 8.6: Image augmentation ablation study conducted on the validation set

Shape Edge Label
Augmentation Mi.F; Ma.F; Mi.F; Ma.F, F;
No augmentation 92.2 81.8 86.1 78.2 86.0
Detectron?2 (resize & hor. flip)  94.2 85.3 89.3 83.1 88.5
Sketch2Process (ours) 95.7 87.9 92.8 88.0 90.6
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Figure 8.13: Median runtime measures obtained for the validation set

textblocks, the CER is below 0.5% for 7;,, in the range from 0.1 to 0.6, which
demonstrates the effectiveness of our simple IoA-based procedure.

For the line distance threshold 7;4 that we apply in our word reading order
detection algorithm, we observe the lowest CER for both the OCR and ground-
truth word evaluation at 74 = 0.4, which is why we employ this configuration in
our approach. In addition, the results are similar for 7;4 in the range from 0.3 to
0.5. Outside of that range, the CER increases the further 74 deviates from 0.4, as
the words tend to be grouped in either too few lines (754 < 0.3) or too many lines
(114 > 0.5).

Image augmentation. The results of our ablation study in Table 8.6 show the
benefits of using image augmentation. Compared to using no augmentation, the
performance of our approach consistently improves when using the default object
detection augmentations provided by the Detectron?2 library (random resizing and
horizontal flipping), leading to F;-score increases between 2.0 and 4.9. A further
performance improvement of the same magnitude can be observed with the full
Sketch2Process image augmentation pipeline, leading to further F;-score im-
provements between 1.5 and 4.9. Notably, the recognition of the challenging edge
categories (message flow and data association) benefits most from augmentation,
which leads to the large edge macro Fi-score improvements (from 78.2 to 88.0).

Runtime. Finally, Figure 8.13 shows the median runtime of Sketch2Process
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for both the individual components and the system end-to-end. Given an image
to be processed, we first send the image to the OCR service (220 ms). We find
that the time until the OCR results are available (1,125 ms) always exceeds the
network inference time. Therefore, while waiting for the OCR results, we compute
the results of all networks, i.e., the object detection, edge relation detection, and
textblock relation detection networks, which on average takes 308 ms on a Tesla
V100 GPU. After network inference, we periodically check for the OCR results,
which on average takes 695 ms. Once the OCR results are available, we run the
textual content decoding procedure (17 ms) to identify the textual content of each
textblock and create the final BPMN XML as described in Section 8.1.4 (17 ms).
On average, our approach processes an image in 1.3 seconds, most of which is
spent waiting for the OCR results.

8.3 Conclusion

In this chapter, we presented Sketch2Process, a comprehensive approach for
the recognition of hand-drawn BPMN models. Sketch2Process takes an image of
a hand-drawn BPMN model as input and automatically transforms it into a format
compatible with existing process modeling tools. Our approach is the first method
that addresses all three subtasks of diagram label recognition: textblock detection,
textblock handwriting recognition, and textblock relation detection. For its training
and evaluation, we extended the hdBPMN dataset, which now consists of 704 hand-
drawn and manually annotated BPMN models. Experiments conducted on this
dataset demonstrated that Sket ch2Process consistently outperforms all shape
and edge recognition methods proposed in previous chapters.

Naturally, our work is subject to limitations. For example, our label recogni-
tion component relies on an off-the-shelf OCR service, which can lead to errors
when dealing with handwriting (as seen in Section 6.2.2). However, this is not a
critical issue for the conceptual validity or practical usefulness of our approach.
Specifically, our work is independent of a particular service, which means that
the employed OCR service can be replaced with improved versions in the future.
Furthermore, the mistakes from this component can be quickly fixed manually or
through a post-processing step that, for instance, builds on a dictionary. We provide
additional conclusions in the next chapter, where we summarize the main results
and highlight directions for future research.



Chapter 9

Conclusion

This chapter concludes the doctoral thesis. Section 9.1 summarizes the main find-
ings and Section 9.2 gives an outlook on directions for future research.

9.1 Summary of Results

This thesis addressed the automated recognition of hand-drawn diagrams contained
in images. In particular, we focused on the recognition of business process dia-
grams drawn on paper. To this end, we collected a dataset of hand-drawn BPMN
models, and we developed several methods that we evaluated on this dataset. To
show the general applicability of our methods, we also evaluated them on existing
diagram datasets, which depict either flowcharts or finite automata diagrams. We
can summarize the main results of this thesis as follows:

1. Collection and publication of a dataset that consists of diagrams sketched on
paper: In Chapter 3, we surveyed existing work in diagram recognition. One
finding in this chapter is that prior to our work, there were no existing offline
datasets of hand-drawn diagrams. Therefore, the few existing offline works
evaluated their methods on images generated from online datasets, which are
much easier to recognize. In Chapter 4, we addressed this gap by presenting the
hdBPMN dataset, which consists of 702 business process diagrams drawn on
paper that we collected from 107 participants. In order to facilitate research in
offline hand-drawn diagram recognition, we have made the images and BPMN
annotations publicly available.! In addition, we have published a Python library
to convert the images and annotations into a common computer vision format.?

"https://github.com/dwslab/hdBPMN
https://github.com/dwslab/pybpmn-parser
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Finally, we have open-sourced a tool that we developed to manually annotate
images of hand-drawn BPMN diagrams.?

. Overview of challenges in recognizing camera-captured diagrams sketched on
paper: The diagrams in all existing datasets were collected by providing par-
ticipants with computer-generated diagram templates and asking them to draw
these diagrams on a tablet. As illustrated in Chapter 3, this procedure results in
well-organized drawings, with black strokes on a white background. In Chap-
ter 4, we identified the key challenges in recognizing diagrams obtained from
conceptual pen-on-paper modeling sessions, as found in the hdBPMN dataset.
We found that solving a conceptual modeling task on paper not only leads to
diagrams with chaotic layouts, but also results in a wide variety of paper types,
pens, and image-capturing methods. Overall, we outlined a large number of
recognition challenges in Chapter 4, most of which are not present in existing
datasets. For shapes, these challenges include incompletely drawn shapes, dif-
ferent shape types with a similar graphical notation, and multiple shapes with a
significant bounding box overlap. For edges, among others, we observed long-
range arrows with frequent direction changes, arrows that cross each other, and
arrows drawn with an incorrect notation (e.g., using a dashed instead of a solid
line). Finally, for labels, the challenges include illegible handwriting, nearby
textblocks that are difficult to distinguish, and textblocks with multiple shapes
or edges in proximity.

. Development of an end-to-end system for recognizing business process dia-
grams: In Chapter 8, we introduced Sketch2Process, the first end-to-end sys-
tem for recognizing sketched BPMN diagrams. Sketch2Process consists of the
following steps. Given an image of a hand-drawn BPMN model, we first de-
tect shape, arrow, and textblock object instances (object detection). Then, we
identify the drawn path and the shapes that each arrow connects (edge recogni-
tion). Next, we decode the textual content within each textblock and identify the
shape or edge that each textblock labels (label recognition). Finally, we generate
a BPMN XML file suitable for process modeling tools. The system is imple-
mented by extending an object detector with neural network components for
edge and label recognition. The evaluation showed that Sketch2Process outper-
forms existing methods not only on hand-drawn but also on computer-generated
BPMN datasets. We have created a public demo of Sketch2Process,* which has
been showcased to several customers of SAP Signavio, a major vendor of busi-
ness process modeling software.

Shttps://github.com/dwslab/bpmn-image-annotator
*nttps://sketch2bpmn.informatik.uni-mannheim.de/
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. Recognition of diagram edges using keypoint and visual relationship detection
methods: Even though edges are a crucial component of arrow-connected dia-
grams, their recognition in hand-drawn diagram images has received little at-
tention in research. The edge recognition methods presented in this thesis ad-
dressed this gap. Chapter 5 introduced Arrow R-CNN, which extends Faster R-
CNN with a network branch for detecting each arrow’s head and tail keypoints.
The keypoints are used to identify the connected shapes of an arrow. Chap-
ter 6 presented Sketch2BPMN, which adapts Arrow R-CNN to the specifics of
BPMN and proposes rules to identify invalid edges. Both methods only require
a minor modification to the underlying Faster R-CNN object detector, and thus,
incur only a negligible overhead to the inference time of the object detector. To
address the inflexibility of the rule-based method, Chapter 7 proposed Diagram-
Net. DiagramNet introduces an edge prediction network that directly predicts
whether two given shapes are connected through an edge. Finally, Chapter 8
presented Sketch2Process, which improves the edge prediction network such
that it can also recognize arrows that connect two shapes with a large detour.
The evaluation results showed that Sketch2Process considerably outperforms
existing methods in edge recognition, at the cost of an increased inference time
compared to the approaches based on Arrow R-CNN. However, we observed
that the higher inference time has no effect on the overall system runtime, which
is dominated by the response time of the external OCR service.

. Recognition of diagram labels using a three-step approach: In Chapter 3, we
found that the recognition of diagram labels is hardly considered in existing
works. In Chapter 8, we thus proposed the first method that addresses all three
subtasks of diagram label recognition: textblock detection, textblock handwrit-
ing recognition, and textblock relation detection. For textblock detection, we
train an object detector to identify textblocks outside of activities. For textblock
handwriting recognition, we use an off-the-shelf OCR service to recognize all
words in an image. We found that the OCR service returns many false-positive
words that are actually part of drawn shapes or edges, e.g., recognized “X” char-
acters for exclusive gateway symbols or multiple returned “-” or “I”” characters
for horizontal and vertical arrows. These false-positive words are eliminated
as part of our textual content decoding procedure, which, given the textblock
bounding boxes and the recognized words, identifies the words that belong to
each textblock and combines the words into the actual label. For textblock rela-
tion detection, we proposed a network that predicts whether a textblock belongs
to a candidate shape or edge. An evaluation on the hdBPMN dataset demon-
strated that our approach achieves promising results. In particular, it correctly
detects and relates more than 90% of the textblocks.
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9.2 Future Research

This thesis primarily focused on the recognition of BPMN diagrams sketched on
paper. Future work could expand on our work in two directions. First, the scope of
our recognition methods could be extended, e.g., by adapting them to other types
of arrow-connected diagrams. Second, options to further improve the performance
of our proposed recognition methods could be explored.

9.2.1 Recognition Scope

With respect to the recognition scope, future research could focus on (i) process
models sketched on surfaces other than paper, (ii) process models generated with
digital diagramming tools, and (iii) other modeling notations that can be expressed
as arrow-connected diagrams.

(i) The hdBPMN dataset presented in Chapter 4 contains BPMN models sketched
on paper. In practice, process models are also sketched on other physical
surfaces, including whiteboard or brown paper. In addition, haptic tools, i.e.,
tools that rely on physical objects, might be used to make the modeling ex-
perience more engaging [24, p. 85]. Such haptic tools can range from simple
post-its to magnetic BPMN elements out of a tool box [33]. In future work, it
would be interesting to investigate the characteristics of process models ob-
tained in such scenarios. Such an effort could result in a dataset of process
model images sourced from organizations.

(i1) In Chapter 8, we have shown that our Sketch2Process approach is also highly
accurate on computer-generated BPMN diagrams, as evaluated on the BPMN-
Redrawer dataset [1]. However, this dataset has two limitations. First, it is
limited in size. To improve the validity of our study, the recently published
SAP-SAM dataset [89], which contains more than 100,000 BPMN models,
could be used for an additional evaluation. Second, the images of the dataset
have been generated by a single BPMN editor. As BPMN editors use dif-
ferent ways to graphically represent the same BPMN element, it would be
interesting to collect a dataset of images produced by various editors. From
an application perspective, a model trained on a more diverse dataset could
be used in cases where only an image of a process model is available and the
recreation of an editable BPMN model is requested. To support standard-
ization efforts, another possible direction for future work is the recognition
of process models created using free-form diagramming tools, such as Mi-
crosoft PowerPoint and Visio [64].

(iii) Last, it would be interesting to explore how well our approaches can be
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adapted to other modeling notations. For example, the bachelor thesis by
Schumacher [87] showed that DiagramNet can also be applied to recognize
hand-drawn UML class diagrams. To improve the results and the validity of
this study, it would be interesting to collect a larger UML dataset. Besides
adapting our approaches to other diagram types, it would be interesting to
explore to what extent generic aspects (e.g., recognizing arrowheads) can be
learned and transferred from the hdBPMN dataset.

9.2.2 Recognition Method

Our evaluation in Chapter 8 showed very promising results for Sketch2Process.
However, it is reasonable to explore other recognition methods to further improve
the results. In the following, we conclude this thesis by providing three possible
directions for future work, which involve (i) introducing a diagram detector, (ii)
addressing the limitations of two-stage object detectors, and (iii) using a model
that does not rely on an external OCR service.

®

(i)

In Chapter 4, we have shown that the hdBPMN diagrams have a wide variety
in terms of how they were captured as images. Most of the diagrams were
photographed from a short distance and thus take up most of the image.
However, some diagrams were photographed at a greater distance, which
means that they occupy only a small part of the image. As common in object
detection, our methods operate on images that have been resized to a longer
side of 1,333px. For diagrams photographed from a distance, each element
in the resized images becomes very small, which makes their recognition
difficult. This problem could be addressed by decomposing diagram recog-
nition into two steps. In the first step, an object detector could be trained to
detect the diagrams in a given image. Given the detected bounding boxes,
each diagram could then be cropped from the raw image, resulting in an im-
age that tightly encloses the diagram. In the second step, each cropped image
could be used as input for the actual diagram recognition model.

An inherent assumption of two-stage object detectors such as Faster R-CNN
is that objects of the same class do not significantly overlap. This assump-
tion plays a key role in the design of many components, such as the anchor
generation procedure, the heuristic that assigns target boxes to anchors, and
the non-maximum suppression procedure (cf. Section 2.2). However, this
assumption does not always hold in diagrams, where two shapes or arrows
can significantly overlap. In BPMN, this particularly affects nested lanes,
where we observe an IoU of up to 97% (cf. Section 8.2.2). In the last years,
transformer-based object detectors [13] have gained popularity, which do
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(1i1)

not rely on hand-designed components that encode prior knowledge. These
approaches have also been adapted to scene graph generation [55]. As men-
tioned in Section 2.4, there is a task overlap between recognizing scene
graphs and diagrams in images. Therefore, it would be interesting to ex-
plore if transformer-based methods can be adapted to diagram recognition.

Finally, the exploration of diagram recognition approaches that do not rely
on an external OCR service could be an interesting direction for future re-
search. In the domain of visual document understanding (VDU), there has
been arecent trend of pre-training multi-modal transformers on a large dataset
and then fine-tuning them for downstream tasks such as invoice information
extraction [2, 44,94, 107, 109]. Most of these VDU approaches rely on an
off-the-shelf OCR service. As the OCR results are part of the model input,
the OCR service needs to run first, resulting in a slow end-to-end inference
speed. To address this shortcoming, Kim et al. [44] propose the Donut ap-
proach, which does not require an OCR service but still achieves state-of-the-
art performance on various VDU tasks in terms of both speed and accuracy.
It would be interesting to explore if Donut can be fine-tuned for diagram
recognition. As Donut formulates all downstream tasks as a JSON predic-
tion problem, this would require designing a JSON-based representation for
arrow-connected diagrams.
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Appendix A

Sketch2Process Supplementary
Material

This chapter contains the supplementary material of our Sketch2Process ap-
proach described in Chapter 8. Section A.1 details the training procedure of the
edge relation network. Section A.2 gives a detailed overview of the textblock re-
lation network architecture and training procedure. Section A.3 elaborates on the
word reading order detection algorithm that we use as part of the procedure that
decodes the textual content of each textblock. Section A.4 details the image aug-
mentation pipeline that we apply in our work. Last, Section A.5 reports on an
experiment that we conducted to evaluate our approach on computer-generated
BPMN models.

A.1 [Edge Relation Network Training

This section provides the details of our training procedure for the edge relation
network. Given an augmented image, Faster R-CNN produces a set of object pro-
posals, which is illustrated in Figure 8.8. As shown in Figure 8.8, edge relation
network training involves generating the input (sampled edge candidates) and com-
puting the output (edge loss) of the network. During inference, the edge candidate
generation procedure receives the set of detected shapes and arrows. During train-
ing, we use a modified sampling-based edge candidate generation procedure that
generates the input by sampling edge candidates from the set of object proposals.
Regarding the output, we compute an aggregated edge loss over the sampled edge
candidates. In the following, we explain these two steps in more detail.
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A.1.1 Edge Candidate Generation

For sampling the edge candidates, we first identify all proposal candidates, i.e., all
object proposals that sufficiently overlap with a ground-truth shape or edge. Con-
cretely, a proposal is considered a candidate and assigned to a ground-truth shape
or edge if the IoU between both boxes exceeds a threshold of 0.7. By default, Faster
R-CNN keeps the top 1000 object proposals ranked by their objectness score. Fur-
ther, it uses an IoU threshold of 0.5 to match proposals to ground-truth objects.
We use a more strict IoU threshold to identify proposal candidates for our edge
recognition use case, as we find that an IoU threshold of 0.5 leads to unstable train-
ing. This might be due to the specifics of our use case, where two arrow objects
in proximity can have a large bounding box overlap. To ensure that the number of
proposal candidates is still sufficiently high, we increase the number of Faster R-
CNN object proposals from 1,000 to 2,000. Since the number of proposals is very
large, the number of identified proposal candidates is typically much larger than the
number of ground-truth objects. To give an example, the augmented image in Fig-
ure 8.8 contains 13 relevant ground-truth shape and 11 arrow objects, for which we
identify 45 shape and 41 arrow proposal candidates. After identifying the proposal
candidates, we use them as input for the edge candidate generation procedure to
obtain the set of edge candidates. In the given example, edge candidate generation
produces 2,019 edge candidates, of which 467 are positive and 1,552 are negative.
Here, an edge candidate is considered positive if the ground-truth arrow associ-
ated with the arrow proposal indeed connects the ground-truth shapes associated
with the shape proposals. Finally, we sample 64 edge candidates per image, with
a positive ratio of 50%. In the rare case that the image has less than 32 positive
candidates, the remaining slots are filled up with additional negative candidates.

Overall, our proposal-based sampling procedure has several advantages com-
pared to directly using the set of ground-truth shapes and edges. First, as men-
tioned, the number of generated edge candidates is much larger, which means that
we can sample from a much larger set. Second, the network learns to predict edges
even in the presence of bounding box localization errors, which increases robust-
ness. As the proposal boxes are also used to extract the spatial and visual features
of the edge relation network, this greatly reduces overfitting, as it is much harder
for the network to simply memorize an edge given the three bounding boxes of
the edge candidate. Third, the sampling ratio effectively addresses the class imbal-
ance problem. As most edge candidates are negative, the classifier would be biased
without a sampling mechanism, which would make it more challenging to find a
suitable score threshold during inference.
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Figure A.1: Textblock relation network

A.1.2 Edge Loss

For each sampled edge candidate, the edge relation network predicts a relation
score and arrow keypoints. We compute the edge relation loss using binary cross
entropy. For the keypoint loss, we use the same keypoint encoding, loss method,
and ground-truth keypoint formulation as in [84]. The keypoint loss is computed as
the mean squared error between the encoded predicted and ground-truth keypoints,
which we average over the number of keypoints. Further, the intermediate ground-
truth keypoints are sampled in an equidistant manner from the annotated arrow
path, i.e. the keypoints are chosen such that the distance between all successive
keypoint pairs is the same. Since the network should learn to predict keypoints
consistent with the source and target shape, we only compute the keypoint loss
for positive edge candidates. Given the relation and keypoint loss, we compute
the edge loss for a candidate as a weighted combination of the two. We find that
a relation loss weight of 2 and a keypoint loss weight of 5 sufficiently balances
these loss terms with the other losses. As mentioned, the keypoint loss is only
defined for positive candidates, which is equivalent to setting it to O for negative
candidates. Finally, we obtain the edge loss L. as the mean loss over all sampled
edge candidates.

A.2 Textblock Relation Network Training

This section provides the details of our proposed textblock relation network and
addresses both its architecture and its training procedure.

A.2.1 Network Architecture

The architecture of our proposed textblock relation network is illustrated in Fig-
ure A.1. The network is very similar to the edge relation network but operates
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on object pairs instead of triplets. As in edge recognition, the visual module uses
the textblock region bounding box to extract a visual feature representation. The
spatial module generates two binary masks that encode the bounding boxes of the
textblock and the target shape or edge. The semantic module only one-hot encodes
the predicted target shape or edge class, as the source of the relation is always a
textblock. We combine the features of the different modules in the same way as in
the edge relation network. Further, we use an almost identical network architec-
ture. The network only differs in the dimensionality of the first CNN and the first
FC layer, to account for the different number of binary masks and semantic fea-
tures. The last layer of the network is a binary classification layer, which predicts
the textblock relation score.

A.2.2 Network Training

The training procedures of the textblock and the edge relation network are very
similar. Therefore, this section focuses on the differences between both.

Relation candidate generation. As in edge candidate generation, we sample pro-
posal candidates from the Faster R-CNN object proposals. In edge candidate gen-
eration, we use a more strict IoU threshold to identify proposals candidates, in
order to prevent unstable training. We find that this is not required for generating
textblock relation candidates. Therefore, we match proposals to ground-truth ob-
jects using the standard IoU threshold of 0.5. Given the proposal candidates, we
run the relation candidate generation procedure to produce a set of relation candi-
dates. As in edge candidate generation, we sample 64 candidates per image, with
a positive ratio of 50%.

Textblock relation loss. We compute the textblock relation loss £; in the same
way as the edge relation loss, and also use a relation loss weight of 2.

A.3 Word Reading Order Detection

Our Sketch2Process approach contains a two-stage fextual content decoding
step. In the first stage, we identify the words W that belong to each textblock
t. In the second stage, given the words W' assigned to a textblock ¢, we use a
word reading order detection algorithm to determine the textual content {xt of the
textblock, which we detail in the following.

The convention in BPMN is to only use rotated text for pool and lane labels,
where the text is rotated by 90° counter-clockwise, i.e., the reading direction is
bottom-to-top. The exception to this convention are collapsed pools, where the
textblock is commonly located in the center of the pool and not rotated. We observe
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that textblocks in the hdBPMN dataset also largely adhere to this convention. Of the
textblocks that label neither pools nor lanes, around 99% are written in the standard
left-to-right direction. Overall, except for some rare cases, the textual content of
the textblocks in the hdBPMN has three orientations: not rotated, 90° counter-
clockwise, and 90° clockwise. Our word reading method, therefore, assumes that
the text is rotated by a multiple of 90°. To this end, we discretize the word rotation
angle w.d to the nearest of the three orientations.

Given the bounding box, orientation, and textual content of all words associated
with a textblock, our word reading order algorithm works as follows: First, we
define the textblock orientation as the most common orientation among all words
assigned to a textblock. Next, we compute an average word height W), as the
median word height of all words in the image that have the same orientation as the
textblock. We find that averaging over all words in the image reduces variance and
is thus more robust than only considering the textblock words. In order to separate
words into lines, we compute a word distance matrix A, where each entry A;; is
defined by the absolute difference of the y-center coordinates (x-center for rotated
textblocks) of the bounding boxes of the words w; and w;. We then consider two
words w; and w; on the same line if their distance A;; is lower than 754 % W,. Based
on our experimental findings, we set the line distance threshold 754 to 0.4. After
applying the criterion, we obtain a binary matrix A’ of the matrix A. Next, we
obtain the textblock lines by computing the connected components of A’. Finally,
we obtain the textual content of the line by arranging the words by their x-center
coordinate (y-center for rotated textblocks).

A.4 Image Augmentation

We use the Albumentations library to implement our augmentation pipeline [12].
Albumentations offers existing implementations for all image augmentation meth-
ods that we use in our approach. The code listing in Listing A.1 shows how to
implement our proposed image augmentation pipeline in Albumentations.

A.5 Performance on Computer-generated BPMN Models

While Sketch2Process was designed to recognize hand-drawn BPMN mod-
els, it naturally can also be used to recognize computer-generated BPMN models.
In this section, we report on an experiment we conducted to demonstrate the per-
formance of Sketch2Process on computer-generated BPMN models.

Baseline. We compare Sketch2Process against BPMN-Redrawer [1], the
state-of-the-art approach for computer-generated BPMN model recognition. From
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from albumentations import =

transforms = [
OneOf ([
LongestMaxSize (p=0.7, max_size=1333),
RandomResizedCrop (
p=0.3, height=1333, width=1333,
scale=(0.2, 1.0), ratio=(0.5, 2.0)
)I
1, p=1.0),
RandomRotate90 (p
HorizontalFlip (p
VerticalFlip (p=0.
ShiftScaleRotate (
p=0.3, shift_1imit=0.03,
scale_limit=(-0.2, 0.0), rotate_limit=5,
border_mode=cv2.BORDER_CONSTANT, value= (255, 255, 255)

23
-3),
)y

0
0
3

)I
GaussNoise (p=0.3),
OneOf ([
CLAHE (),
Sharpen(),
RandomBrightnessContrast ()
1, p=0.3),
HueSaturationValue (p=0.3, val_shift_1imit=0),

aug = Compose (
transforms=transforms,
bbox_params=BboxParams (
format="coco", min_area=10.0,
min_visibility=0.7
) 14
keypoint_params=KeypointParams (format="xy")

Listing A.1: Albumentations image augmentation pipeline
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Table A.1: Average precision (AP) results for bounding boxes and keypoints obtained for
the test set of the BPMN-Redrawer dataset

Shape Edge
Approach AP-box AP-box AP-keypoints
BPMN-Redrawer 96.0 73.9 89.9
Sketch2Process 98.5 95.5 95.7

an architectural perspective, the BPMN-Redrawer approach is very similar to Ar-
row R-CNN [82], but builds on two different neural networks, one to recognize
shapes, and one to recognize arrows. For the recognition of shapes, they train
the Faster R-CNN object detector. For recognizing edges, they first detect arrow
objects and their keypoints by training the Mask R-CNN keypoint detector [35].
Then, they use the heuristics-based procedure of Arrow R-CNN to identify the
shapes that each arrow connects. For the recognition of labels, they build on the
Tesseract OCR engine, which can only recognize machine-printed characters.

Dataset. We use the publicly available dataset from the BPMN-Redrawer ap-
proach [1]. It consists of 828 BPMN models and corresponding computer-generated
images. However, the BPMN-Redrawer approach does not use all these models
for their evaluation. While the shape recognition performance is evaluated on all
models, edge recognition is only evaluated on 492 models due to labeling issues.
Therefore, we also limit ourselves to the same 492 models for evaluating edge
recognition.

Metrics. To provide a fair comparison, we use the performance metrics of the
BPMN-Redrawer approach. For shape recognition, they use average precision
(AP), a popular metric in computer vision to assess object detection, which they
report for each shape category. As we want to boil down the object detection per-
formance to a single metric, we follow the common practice and compute the mean
AP over all categories. For edge recognition, they also use AP to evaluate the arrow
objects and use the keypoint AP to evaluate arrow keypoint detection. However,
they do not evaluate edge recognition end-to-end. Concretely, they do not evalu-
ate if the shapes that connect each arrow have been correctly identified. Since label
recognition is not evaluated at all, we consider this out of scope for this experiment.

Results. Table A.1 shows the results of our conducted experiment. As indicated,
Sketch2Process performs slightly better in shape recognition and outperforms
BPMN-Redrawer substantially in both edge recognition metrics.



Appendix B

hdBPMN Modeling Tasks and
Instructions

The following provides the modeling tasks and instructions from the exercise sheet
and exam questions that were used to collect the hdBPMN dataset. The modeling
instructions have been translated from German to English for clarity.

Exercise ex00

Model the following business process for opening a bank account:

When the bank receives a new online application for opening a bank account, the
application is evaluated. If the application is rejected, the customer is notified by
email and the process ends. If the application is approved, a new bank account is
created. Before the process ends, the bank sends a welcome pack, a bank card, and
a PIN number in separate letters to the customer.

Instructions:

* Only use the following BPMN elements: task, events, gateways, sequence
flow

Exercise ex(01

Model the following business process for assessing credit risks:

When a new credit request is received, the risk is assessed. If the risk is above a
threshold, an advanced risk assessment needs to be carried out, otherwise a simple
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risk assessment will suffice. Once the assessment has been completed, the customer
is notified with the result of the assessment, and in the meantime the disbursement
is organized.

For simplicity, you can assume that the result of an assessment is always positive.
Instructions:

* Only use the following BPMN elements: task, events, gateways, sequence
flow

Exercise ex(2

Model the following fragment of a business process for insurance claims.

When the insurer receives a claim of a customer, it is registered and examined by a
claims officer who then writes a settlement recommendation. This recommendation
is then checked by a senior claims officer who may mark the claim as “OK” or “Not
OK”. If the claim is marked as “Not OK”, it is sent back to the claims officer and
the recommendation is repeated. If the claim is “OK”, the claim handling process
proceeds.

Instructions:

* Model the relevant resources (pools, lanes) and business objects (data object,
data store).

Exercise ex03

Model the following business process of an insurer for handling a claim. The claim
is submitted by a claimant.

When a claim is received, a claims officer first checks if the claimant is insured. If
not, the claimant is informed that the claim must be rejected by sending an auto-
matic notification via an SAP system. Otherwise, a senior claims officer evaluates
the severity of the claim. Based on the outcome (simple or complex claims), the
relevant forms are sent to the claimant, again using the SAP system. Once the
forms are returned, they are checked for completeness by the claims officer. If the
forms provide all relevant details, the claim is registered in the claims management
system, and the process ends. Otherwise, the claimant is informed to update the
forms via the SAP system. Upon reception of the updated forms, they are checked
again by the claims officer to see if the details have been provided.
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Instructions:

* Model the relevant resources (pools, lanes) and business objects (data object,
data store).

Exercise ex(04

Model the following business process for damage compensation at rental proper-
ties:

If a tenant is evicted because of damages to the premises, a process needs to be
started by the tribunal in order to hold a hearing to assess the amount of compen-
sation the tenant owes to the owner of the premises. This process starts when a
cashier of the tribunal receives a request for compensation from the owner. The
cashier then retrieves the file for those particular premises and checks that the
request is both acceptable for filing and compliant with the description of the
premises on file. After these checks, the cashier needs to set a hearing date. Set-
ting a hearing date incurs fees to the owner. It may be that the owner has already
paid the fees with the request, in which case the cashier allocates a hearing date
and the process completes. If the owner has not paid the required fees, the cashier
produces a fees notice and waits for the owner to pay the fees before reassessing
the document compliance.

For simplicity, you can assume that the request always passes the checks.

Instructions:

* Model the relevant resources (pools, lanes) and business objects (data object,
data store).

Exercise ex05

Model the following business process for processing car damage claims:

The motor claim handling process starts when a customer submits a claim with
the relevant documentation. The notification department at the car insurer checks
the documents upon completeness and registers the claim. Next, the Handling
department picks up the claim and checks the insurance. Then, an assessment is
performed. If the assessment is positive, a garage is phoned to authorize the repairs
and the payment is scheduled (in this order). Otherwise, the claim is rejected. The
claim is also immediately rejected if any of the previous checks fail. In any case
(whether the outcome is positive or negative), a letter is sent to the customer and
the process is considered to be complete.
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Instructions:

* Model the relevant resources (pools, lanes) and business objects (data object,
data store).

Exercise ex06

In a pizzeria, one person centrally records all incoming orders and attaches them to
a pinboard. Translate the following Petri net of this process into a BPMN model:

| Receive order Confirm
* by Lieferando order
Receive order Print out
by Website order

- Attach
| Take order by Write down order note
gl phone order note to pinboard

Instructions:

* Use Business Objects where needed.

Exercise ex(7

Model the following business process for rating doctors in a hospital:

The doctor rating workflow at a hospital is carried out by two different roles. The
first one is a quality assurance (QA) specialist from the quality assurance depart-
ment, while the second one represents the managing director of the hospital.

The QA specialist starts a new case regarding a certain doctor by interviewing
patients. Since a patient interview workflow is already established, it is simply
integrated in the new workflow. Meanwhile, the director asks an external expert
to review the work of the doctor under rating. Unfortunately, since the expert
only gets a low expenses fee, it can happen that the expert is not responding in
time. If that happens, another expert has to be asked (who could also not respond
in time, i.e. the procedure repeats). If an expert finally sends an expertise, it is
received by the director and forwarded to the QA specialist. The QA specialist
then files the results containing the patient interviews as well as the expertise and
afterwards creates a report. While the QA specialist is doing this, the manager
pays the expenses of the expert by filling a cheque and sending it to the expert.
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Instructions:

* Model the relevant resources (pools, lanes)

* Modeling the relevant business objects (data object, data store) is not required.

Exercise ex(08

Model the following process which describes the selection and allocation of elec-
tive courses at a school:
Version a):

Students must book two elective courses from the 5th school year onwards. Each
year ten teachers are responsible for offering elective courses (each teacher one
course). A course description is given by each teacher to the secretary’s office at
least one month before the start of the school year. The secretary collects all ten
descriptions and enters the information into the course booking system (CBS). One
week before the start of the school year, all responsible teachers receive a list of
students who have registered for their course from the secretary. The teachers who
have too many registered students choose which students can participate in the
course. As a general rule, students in a higher year have priority. The (potentially
empty) list of students who have not been accepted is handed over by each teacher
to the secretary’s office. The secretary then assigns these students to courses in
which there are still free places and rebooks the students in the CBS.

Version b):

Students must book two elective courses from the 5th school year onwards. Each
year twelve teachers are responsible for offering elective courses (each teacher
one course). A course description is given by each teacher to the secretary’s office
at least two months before the start of the school year. The secretary collects all
twelve descriptions and enters the information into the course information system
(CIS). Two weeks before the start of the school year, all responsible teachers re-
ceive a list of students who have registered for their course from the secretary. The
teachers who have too many registered students choose which students can partic-
ipate in the course. As a general rule, students in a lower year have priority. The
(potentially empty) list of students who have not been accepted is handed over by
each teacher to the secretary’s office. The secretary then assigns these students to
courses in which there are still free places and rebooks the students in the CIS.

Instructions:
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1. Model each resource as white-box pool, i.e. do not use black-box pools nor
pools with more than one lane.

2. Modeling business objects is not required.

Exercise ex(09

Model the following business process which describes the admission process of a
PhD program at a university:
Version a):

To apply for the PhD program, students first fill in an online application form with
their personal data. Online applications are recorded in an admission information
system to which all staff members involved in the process have access. After a stu-
dent has submitted the online form, a PDF document is generated and the student
is requested to download it, sign it, and send it by post together with a transcript
of grades and a letter of motivation. When these documents are received by the
admissions office, the officer makes an initial assessment and rejects the applica-
tion if the student has insufficient grades (such notifications of rejection are sent
by email). In case of sufficient grades, the admissions office forwards the student
documents by internal mail to the academic committee, which is responsible for de-
ciding whether to offer admission or not. The committee meets once every month to
examine all applications that are ready for academic assessment at the time of the
meeting. At the end of the committee meeting, the chair of the committee notifies
the admissions office of the selection outcomes. A few days later, the admissions
office checks the selection outcomes and sends a rejection or admission email to
each candidate.

Version b):

To apply for the PhD program, students first fill in an online application form with
their personal data. Online applications are recorded in an application informa-
tion system to which all members involved in the process have access. After a stu-
dent has submitted the online form, a PDF document is generated and the student
is requested to download it, sign it, and send it by post together with their diploma
and a letter of motivation. When these documents are received by the adminis-
tration office, the officer makes an initial assessment and rejects the application
if the student’s motivation letter is not convincing (such notifications of rejection
are sent by letter). In case of a convincing letter of motivation, the administration
office forwards the student documents by internal mail to the academic committee,
which is responsible for deciding whether to offer admission or not. The committee
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meets once every two months to examine all applications that are ready for aca-
demic assessment at the time of the meeting. At the end of the committee meeting,
the committee notifies the administration office of the outcomes. A few weeks later,
the administration office checks the outcomes and sends a rejection or admission
letter to each candidate.

Instructions:

1. Model the relevant resources (pools, lanes). The process should be modeled
from the university point of view, i.e. the student can be modeled as a black
box.

2. Modeling business objects is not required.

Exercise ex10

Model the following business process between a supplier and a retailer:

After a retailer requests an offer from a supplier, the supplier prepares an offer
and sends it to the retailer. Next, the supplier can receive an order confirmation,
an order change, or an order cancellation from the retailer. It may happen that
no response is received at all. If no response is received after 48 hours, or if
an order cancellation is received, the supplier will cancel the order. If an order
confirmation is received within 48h, the supplier will process the order normally.
If an order change is received within 48h, the supplier will update the order and
ask again the retailer for confirmation. The retailer is allowed to change an order
at most three times. Afterwards, the supplier will automatically cancel the order.

Instructions:

* Model the relevant resources (pools, lanes)

* Modeling the relevant business objects (data object, data store) is not required.
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