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Abstract
When analyzing data, researchers are often less interested in the parameters of statistical models than in
functions of these parameters such as predicted values. Here we show that Bayesian simulation with
Markov-Chain Monte Carlo tools makes it easy to compute these quantities of interest with their uncer-
tainty. We illustrate how to produce customary and relatively new quantities of interest such as variable
importance ranking, posterior predictive data, difficult marginal effects, and model comparison statistics
to allow researchers to report more informative results.
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Answering empirical research questions requires estimating quantities of interest and their uncer-
tainty. For instance, researchers typically would like to know which explanatory variable is the
most important one or whether its effect depends on the value of another variable. While esti-
mating these quantities of interest is analytically straightforward most of the time, it is less
often so for their measures of uncertainty. To address this issue, King et al. (2000) were the
first in political science to explicitly advocate the use of simulation in such situations. In the
same work they also recognized that “[f]ully Bayesian methods, using Markov-Chain Monte
Carlo techniques, are more powerful than our algorithms” (352). Essential criteria for obtaining
reliable inferences with Markov-Chain Monte Carlo (MCMC) tools include convergence and
mixing (Gill, 2014). Assuming that these criteria have been met, below we illustrate how to
use the output of MCMC estimation to easily estimate quantities of interest and their uncertainty,
often by simply sorting saved simulation values for a parameter of interest. Table 1 lists the illu-
strated quantities as well as example research questions for which these quantities are of interest.
Table 2 shows which data and models we use to illustrate each quantity.

1. Estimate level
1.1 Coefficient estimates

Consider the conjoint experiment on candidate ratings from Hainmueller et al. (2014). This
experiment asked respondents to rate their support of hypothetical presidential candidates
who differed in eight attributes: gender, age, race, education, profession, income, religion, and
military service. Since each respondent rated 12 candidate profiles, the experimental data have
a hierarchical structure with profile ratings nested in respondents. We use a hierarchical linear
model with the candidate attributes as profile-level treatments and allow the intercept to vary
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by respondents. (This hierarchical linear model gives tighter credible intervals of the treatment
effects than the linear model with clustered standard errors used by Hainmueller et al. (2014).
The reason is that it captures respondents’ heterogeneity more appropriately in the variation
of the intercepts instead of in the standard errors of the coefficients.)

The posterior densities of the coefficients (or treatment effects in this case) are shown in
Figure 1 with a vertical line at zero. Notice the location and spread of the coefficients. The coeffi-
cients are reliably estimated, though, as expected, the reliability increases with fewer treatment
levels per attribute (more respondents per treatment level). For instance, we see a small bias
against Catholic candidates, whose estimated level of support is 0.005 lower when compared to
a baseline candidate with no stated religion. Despite the relatively diffuse nature of this posterior
distribution, most researchers would still conclude that the effect is negative and statistically reli-
able. The corresponding coefficient has 95 percent of its density to the left of zero.

1.2 Relative explanatory variable importance

In regression a key question that should be asked is actually which explanatory variables are most
influential in affecting variability in the outcome variable (effect size), not which have the smallest
p-values. Fixation with p-values and star-counting is a well-documented disease but remains
prevalent nonetheless. Figure 1 shows that a candidate who attended an Ivy League university
has higher ratings compared to a baseline candidate without a BA, and indeed any college degree.
However, for candidates who attended a small college and candidates who attended a state uni-
versity, the posterior distributions overlap to some degree, showing uncertainty which of them
has higher ratings. To quantify this uncertainty we go beyond Hainmueller et al. (2014) and com-
pute the probability that a variable has a certain rank of importance. For instance, to find the
most important variable, we compute the probability that its absolute coefficient is largest. In
other words, we compute the proportion of times the variable had the largest absolute coefficient
of all variables across simulations. To find the second most important variable, we compute the
proportion of times a variable had the second largest absolute coefficient, and so on. As a result,
the uncertainty of this quantity flows from coefficient to relative variable importance.

Table 1. Quantities of interested illustrated below and example research questions for which these quantities are of
interest.

ID Quantity of interest Example question

Estimate level
1 Coefficient estimates What is the effect?
2 Relative effect size Which effect is largest?
3 Marginal effects How does the marginal effect vary?
Observation level
4 Residuals Does the data meet the normality assumption?
5 Posterior predictive checks Does the model adequately capture key features of the data?
Model level
6 Explained variance How well does the model fit the data?
7 Predictive error How well does the model predict new data?

Table 2. Data and models used to illustrate quantities of interest.

Data Type Model Quantity (ID)

Candidate ratings Experimental Hierarchical linear model 1, 2
Voter turnout Observational Logit model 3, 5, 7
Union density Observational Linear model 4, 6
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Figure 2 shows the posterior probability of importance for each variable. There is a virtually
100 percent probability that the effect of a degree from an Ivy League university compared to
no BA is largest. The effect of a degree from a small college compared to no BA has the highest
probability of being the second most important. The probability is about 74 percent. Further, the
probability that the effect of a degree from a state university compared to no BA is the third most
important is also 74 percent. In other words, the ranks of variables are much more certain than
one would expect from looking at Figure 1 alone. Note that one major advantage of Bayesian
inference is that model results can be analyzed in explicitly probabilistic terms as done here.

1.3 Marginal effects

Marginal effects in regression modeling are well-studied in political science, including possible
misinterpretations. Here we provide some ideas about extracting additional information about

Figure 1. The posterior density for coefficients in the hierarchical linear model of candidate ratings varies in location and
spread. While candidates with a degree from a small college are rated higher than candidates with a degree from a state
university, it is unclear how certain we can be of this statement (but see Figure 2).
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marginal effects. Consider modeling the probability of turning out to vote, πi = P(Yi = 1|Xi), with
a logistic specification. For illustrative purposes, we estimate the same model as King et al. (2000):

PM1 : logit(pi) =b1 + b2 · incomei + b3 · whitei + b4 · agei + b5 · age2i
+ b6 · educatei.

(1)

King et al. (2000, 355) included both age and age-squared “to test the hypothesis that turnout rises
with age until the respondent nears retirement, when the tendency reverses itself.” They tested this
hypothesis by estimating the predicted probability of turnout, and its uncertainty, as a function of
age for two different levels of education, while holding the other variables at their means.

However, estimating probabilities at mean values can be less meaningful when variables are
binary (white) or spread out (income). In addition, the hypothesis can be tested more

Figure 2. Posterior probability of having the k-th largest effect size (“rank”) for each treatment in the hierarchical linear
model of candidate ratings. Most of the first 12 ranks are highly certain. The remaining ranks are much more uncertain.
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directly by looking at the marginal effect of age on turnout, which is defined as how much the
predicted probability of voting changes when age changes. Hence, below we estimate the mar-
ginal effect of age on turnout, and its uncertainty, for each respondent in the data set. We eas-
ily compute the uncertainty in the marginal effects from the MCMC samples of the posterior
density of β.

The top panel of Figure 3 displays the probability of turnout at mean values, the bottom panel
displays the marginal effects at observed values. Comparing both panels, it is clear that marginal
effects at observed values provide more information. First, marginal effects at observed values
unmask substantial heterogeneity in respondents with the same age and level of education.
Consider respondents with a high school degree at the age of 34. At mean values, such a hypothetical
respondent has the most precisely estimated probability of turnout: the credible interval is shortest
among all age groups. However, at observed values, the actual respondents have the highest variation
in marginal effects: their posterior medians have the highest variance among all age groups.

Second, the marginal effects at observed values pinpoint the location of the turnout plateau
more clearly. When looking at the probability of turnout at mean values, King et al. (2000)
see a “plateau between the ages 45 and 65.” However, when looking at the marginal effects of
age at observed values, we see that the plateau begins later, around the age of 52 (credible intervals
begin to include 0), or much later, around the age of 70 (posterior medians begin to equal 0).

Finally, the marginal effects at observed values convey what values of the variables were actu-
ally observed. For instance, they show that there are no 18 or 95 years old with 16 years of edu-
cation. Overall, the marginal effects at observed values, and their uncertainty, add substantial
information relative to predicted probabilities at mean values.

2. Observation level
2.1 Residuals

The most common way to evaluate the properties of a linear model is to inspect its residuals,
ri = yi − ŷi. This includes checking the full distribution of the residuals to see whether they
are distributed as assumed by the model, particularly with regard to skewness and fixed patterns,
as well as fit to specific observations. Our Bayesian simulation approach focuses on the vector of
residuals for each observation with length equal to the number of simulations post-convergence.

To illustrate this approach we rely on a classic example of applying a linear model of union
density in 20 OECD countries (Western and Jackman, 1994) where union density is modeled
with three explanatory variables (government control by leftist parties, size of the labor force,
and economic concentration) whose coefficients are given informative normal priors. In this
case the required choice of prior distribution can actually matter due to the sample size. Our pur-
pose here is not to focus on the influence that priors can have with moderately sized data, but
instead we assume that a reasonable choice has been made and the researcher is interested in pro-
ducing additional revealing posterior quantities such as the distribution of residuals.

Figure 4 assesses whether the distribution of the residuals follows an approximately normal dis-
tribution using a density plot as well as a QQ-plot. Importantly, we not only look at one distribution
of the residuals but at a thousand residual distributions—one for each iteration of the MCMC sam-
pler. The density plot shows that the residual distributions are all roughly symmetric, having no
major deviations. The QQ-plot shows that the distributions of all residual quantiles squarely include
the reference line. Again, we see no clear sign of misfit with the normality assumption.

2.2 Posterior predictive checks

Posterior predictive checks can be used to explore the model fit (e.g., Gelman and Hill, 2006). We
first generate replicated data sets from the posterior predictive distribution of the logit model of
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turnout using the MCMC simulations. We then compare these replicated data sets with the
observed data with regards to an interesting aspect of the data. The functions of the data used
to compare with the model are called test variables T( y). We will compare the T( y) with the

Figure 3. Probability of turnout at mean values (top panel replicated from King et al. (2000, Figure 1 on p. 355)) and mar-
ginal effects at observed values (bottom panel). The marginal effects unmask heterogeneity in respondents with the same
age and level of education, show the location of the turnout plateau more clearly, and convey the observed values. Note:
Dots represent posterior medians. Vertical bars indicate 99 percent credible intervals. In the bottom panels the age values
are jittered slightly to increase readability. The horizontal dashed line indicates a marginal effect of 0.

Figure 4. Posterior distributions of residuals in linear model of union density to check for normality. The distributions look
symmetric and conform with theoretical quantiles. Note: Grey lines/dots are 1000 simulation draws from the posterior, the
black line in the right plot indicates the posterior means.
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test variable in the replications T( yrep). Specifically, we consider the proportion of voters in sub-
populations: the turnout rate at each value of a predictor.

The first and third columns of Figure 5 display the turnout rate among subpopulations
defined by unique values of the predictors. The solid black line shows the data, T( y), and
the grey lines represent 20 simulated replications from the model T( yrep). The second and
fourth columns of Figure 5 show T( y) − T( yrep). Systematic differences from the horizontal
line represent aspects of the data that are not captured by the model. For most subpopulations
the model captures their turnout rate, with one exception: education. A close inspection of
Figure 5 reveals three important features of the data that are not captured by the model.
First, the actual turnout rate is larger than predicted among respondents with fewer years of
education. Second, the actual turnout rate rises more quickly after 12 years of education
than before. Finally, the actual turnout rate rises non-linearly—this is particularly evident
for citizens with more than 12 years of education.

To better model the turnout rate, M1 is augmented by adding four predictors:
education-squared, a dummy variable that indicates whether a citizen at least started a college
degree (more than 12 years), and interactions between the college and education variables:

M2 : logit(pi) = b1 + b2 · incomei + b3 · whitei + b4 · agei + b5 · age2i
+b6 · educatei + b7 · educate2i + b8 · college
+b9 · educatei · college+ b10 · educate2i · college.

(2)

After fitting the model we computed the same posterior predictive checks.
The first two panels of Figure 6 display the turnout rate by years of education in the data and

in 20 simulation replications from model M1. For comparison the last two panels of Figure 6 dis-
play the same for the new modelM2. Figure 6 demonstrates that the new model captures the turn-
out rate much better than the previous one. As we will see in the next section, despite having
more parameters to estimate, model M2 also has a lower expected out-of-sample predictive
error than model M1. Note that the tools in this section could also be used with an out-of-sample
procedure (Vehtari et al., 2017).

3. Model level
A requirement when statistical models are fit is that the researcher provides a suite of measures
demonstrating that the data simplification is sympathetic with the original data. These vary by
modeling approach but often involve building summaries from residuals, theoretical quantities,
and outcome values. In this section we apply our Bayesian simulation approach to some common
measures of fit to show how to easily obtain additional information.

3.1 Explained variance

Linear regression results include the classical R2, which measures the proportion of variance
explained. While this measure has some problems (e.g., adding explanatory variables never
decreases the measure), it can be a handy summary of the model fit. From a Bayesian perspective,
there are, however, two issues with this measure: first, we would like to include the posterior
uncertainty of the coefficients in the computation of the model fit; and, second, with strong priors
and weak data the classical R2 can be larger than 1. To address both issues, Gelman et al. (2019)
propose an alternative Bayesian R2. Its computation is based on the set of posterior simulations
draws θ (s), s = 1, …, S and so it accounts for the posterior uncertainty in the coefficients. They
define the Bayesian R2 as the variance of the predicted values over the variance of the predicted
values plus the expected residual variance. Hence it always ranges from 0 to 1. For a linear
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regression model the proportion of variance explained for new data is:

Bayesian R2
s =

Vn
i=1ŷ

(s)
i

Vn
i=1ŷ

(s)
i + ŝ2

s

, (3)

where Vn
i=1 represents the sample variance, Vn

i=1zi = 1
n−1

∑n
i=1 (zi − �z)2.

We illustrate the Bayesian R2 using the above mentioned linear regression model fit to the
union density data set (Western and Jackman, 1994). Figure 7 shows the posterior distribution
of the R2 from 10,000 MCMC draws post-convergence. We find the posterior mean and median
of R2 = 0.69 and 0.71, respectively, and a 95 percent credible interval between 0.49 and 0.82.

3.2 Expected out-of-sample predictive error

Whereas effect sizes indicate variable importance in causal settings, changes in the expected
out-of-sample error when dropping a variable from a model do so in predictive settings. To

Figure 5. Posterior predictive checks of the logit model of turnout. The model fails to adequately capture the turnout rate
among education subgroups. Note: The solid black line ( ) shows the data and the grey lines ( ) represent
20 simulated replications from the model.

Figure 6. Posterior predictive checks of the original and revised logit models of turnout. The revised model better captures
the turnout rate among education subgroups. Notes as in Figure 5.

630 A. Murr et al.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
02

2.
18

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2022.18


illustrate how to add information from simulation when estimating expected out-of-sample pre-
dictive error, we revisit the two turnout models specified above. We seek to show that model out-
comes that are normally given only as point estimates can reveal more information when
described probabilistically from simulations. Given the four additional predictors in M2, one
may worry about over-fitting the data. Hence, we compare the expected out-of-sample predictive
errors of the two models to gauge the value of these additional predictors. To show how simu-
lation adds information, we assess both models using two popular information criteria: the
Akaike information criterion (AIC), and the Watanabe–Akaike information criterion (WAIC).
Both information criteria estimate a model’s expected out-of-sample-prediction error using a
bias-corrected adjustments of within-sample error. But the computation of the WAIC relies on
simulation, whereas the computation of the AIC does not.

The expression of AIC contains the log likelihood evaluated at the maximum likelihood esti-
mate and the number of parameters to correct for bias due to overfitting:

AIC = −2
∑n
i

log p(yi|ûMLE)+ 2k, (4)

where k is the number of parameters. Two issues with the AIC are that (1) the number of para-
meters is a questionable penalty term for models with informative priors and hierarchical struc-
tures, and (2) inference for θ is summarized by a point estimate not by a full posterior
distribution.

The WAIC addresses both issues: its expression contains the log likelihood evaluated at the
posterior simulations of the parameter values and the effective number of parameters. The
WAIC can be estimated using posterior simulations (Vehtari et al., 2017):

WAIC = −2
∑n
i

log
1
S

∑S
s=1

p(yi|us)
( )

+ 2
∑n
i

VS
s=1 log p(yi|us)

( )
. (5)

The benefit of using simulations to compute the WAIC is that we get approximate standard errors
for both the estimated predictive errors and the estimated difference in predictive errors between
two models.

Table 3 shows estimates of the expected out-of-sample predictive errors and their difference
between models. Note that in contrast to the AIC, for the WAIC we also get standard errors

Figure 7. Posterior distribution and median
of the Bayesian R2 in the linear model of
union density.
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as a measure of uncertainty. Looking at the WAIC, model M2 improves upon M1 with great cer-
tainty. The improvement in WAIC is 79 with a standard error of 19. Because its expected
out-of-sample predictive error is lower, we favor this model M2 over model M1. The Bayesian
simulation approach could also be applied to cross-validation measures of model quality.

4. Conclusion
A common task for empirical researchers is to obtain ancillary quantities of interest from a
regression model, which should be accompanied by measures of uncertainty. Often these mea-
sures of uncertainty are difficult to calculate analytically, but easy to compute from MCMC out-
put. This comes down to simple arithmetic operations and then merely sorting the results. While
this work illustrates this point on a small set of models, it is applicable to a wide range of stat-
istical settings (see online Appendix). Our main message is that researchers are now free to tap
into the full potential of Bayesian stochastic simulation to creatively summarize model results. For
annotated code and data to replicate our approach, visit https://doi.org/10.7910/DVN/ONY6WJ.

Supplementary material. The supplementary material for this article can be found at https://doi.org/10.1017/psrm.2022.18.
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