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Abstract

In recent years, deep learning with Convolutional Neural Networks has become the key for success
in computer vision tasks. However, designing new architectures is compute-intensive and a
tedious trial-and-error process, which depends on human expert knowledge. Neural Architecture
Search (NAS) builds on this problem by automating the architecture design process to nd high-
performing architectures. Yet, initial approaches in NAS rely on training and evaluating thousands
of networks, resulting in compute-intensive search times.

In this thesis, we introduce ecient search methods which overcome the heavy search time.
First, we focus on presenting a surrogate model to predict the performance of architectures.
Signicantly, this surrogate model is able to predict the performance of architectures with a
topology, which was not seen during training, i.e., our proposed model can extrapolate into
unseen regions.

In the second part, we introduce two generative architecture search approaches. The rst
one is based on a variational autoencoder, which enables to search for architectures directly
in the generated latent space, with the ability to generate the found architectures back to its
discrete architecture topology. The second approach improves on the former and facilitates a
simple generation model, which is furthermore coupled with a surrogate model to search for
architectures directly. In addition, we optimize the latent space itself for a direct generation of
high-performing architectures.

The third part of this thesis analyzes the widely used dierentiable one-shot method DARTS,
with the questions, is this method indeed an ecient search method, and how sensitive is this
method to domain shifts, hyperparameters, and initializations?

Lastly, we pave theway for robustness in NAS research. We introduce a dataset for architecture
design and robustness, which evaluates one complete NAS search space against adversarial attacks
and corruptions and thus allows for an in-depth analysis of the architectural design to improve
its robustness only by its topology.
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Zusammenfassung

In den letzten Jahren hat sich das Deep Learning mit gefalteten neuronalen Netzwerken zum
Schlüssel für den Erfolg bei Computer-Vision-Aufgaben entwickelt. Der Entwurf neuer Architek-
turen ist jedoch rechenintensiv und ein langwieriger Versuch und Irrtum Prozess, der von men-
schlichem Expertenwissen abhängt. Neuronale Netzwerk Suche (NAS) geht dieses Problem an,
indem es den Architekturentwurfsprozess automatisiert, um hochperformante Architekturen zu
nden. Die ersten NAS-Ansätze basieren jedoch auf dem Training und der Evaluierung tausender
Netzwerke, was zu rechenintensiven Suchzeiten führt.

In dieser Arbeit stellen wir eziente Suchmethoden vor, die den hohen Suchaufwand über-
winden. Zunächst konzentrieren wir uns darauf, ein Surrogatmodell vorzustellen um die Per-
formanz von Architekturen vorherzusagen. Bezeichnenderweise ist dieses Ersatzmodell in der
Lage, die Leistung von Architekturen mit einer Topologie vorherzusagen, die beim Training nicht
gesehen wurde, d.h. unser vorgeschlagenes Modell kann in ungesehene Regionen extrapolieren.

Im zweiten Teil stellen wir zwei generative Ansätze zur Architektursuche vor. Der erste
basiert auf einem Variations-Autoencoder, der es ermöglicht, direkt im generierten latenten Raum
nach Architekturen zu suchen und die gefundenen Architekturen in ihre diskrete Architektur-
topologie zurück zu generieren. Der zweite Ansatz verbessert den ersten und ist ein einfaches
Generierungsmodell, das darüber hinaus mit einem Surrogatmodell gekoppelt ist, um direkt
nach Architekturen zu suchen. Darüber hinaus optimieren wir den latenten Raum selbst für eine
direkte Generierung von hochperformanten Architekturen.

Der dritte Teil dieser Arbeit analysiert die weit verbreitete dierenzierbare One-Shot-Methode
DARTS mit den Fragen, ob diese Methode tatsächlich eine eziente Suchmethode ist und wie
empndlich diese Methode auf Domänenverschiebungen, Hyperparameter und Initialisierungen
reagiert.

Schließlich ebnenwir denWeg für die Richtung Robustheit in NAS.Wir führen einen Datensatz
für Architekturdesign und Robustheit ein, der einen kompletten NAS-Suchraum gegen gegnerische
Angrie und Verfälschungen evaluiert und somit eine eingehende Analyse des Architekturdesigns
ermöglicht, um die Robustheit allein durch die Topologie zu verbessern.
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Introduction

1Deep learning with Convolutional Neural Networks is the main driver for success in computer
vision. This success was driven by the unprecedented results of the rst image classication

network (Krizhevsky et al., 2012) on the large-scale visual recognition challenge ImageNet (Deng
et al., 2009). Since then, developing new architecture designs has driven research to nd better
and better networks for various computer vision tasks that ultimately exceed human perfor-
mance (Simonyan and Zisserman, 2014; Szegedy et al., 2015; Szegedy et al., 2016; He et al., 2016).
Consequently, research has shifted from feature engineering to architecture engineering. So far,
architecture engineering requires human expert knowledge and experience and is characterized
by many trial-and-error processes. Each network topology must be individually formed from
various layer types and conguration options. The direct consequence of this is automating the
architecture design process using machine learning techniques. Neural Architecture Search (NAS)
(Elsken et al., 2019; Lindauer and Hutter, 2020; White et al., 2023) is the process that automates
architecture design. It has the potential to overcome the necessary human expert knowledge
and trial-and-error process and has thus gained increasing interest in recent years (Real et al.,
2017; Zoph et al., 2018; Ying et al., 2019; Dong and Yang, 2020; Klyuchnikov et al., 2022; Li et al.,
2021a; White et al., 2023). Well-performing architectures can be found using reinforcement
learning (Zoph and Le, 2017; Zoph et al., 2018), Bayesian optimization (Kandasamy et al., 2018; Ru
et al., 2021; White et al., 2021a), evolutionary algorithms (Real et al., 2017), as well as competitive
baselines approaches such as random search (Li and Talwalkar, 2019) and local search (White
et al., 2021b) in predened discrete search spaces (Zoph et al., 2018; Ying et al., 2019; Dong and
Yang, 2020; Liu et al., 2019; Klyuchnikov et al., 2022). The so-called cell-based search space is
the most popular type of discrete search space (Zoph et al., 2018). The idea behind this type
of search space is based on repeated patterns in well-performing computer vision tasks, such
as ResNet (He et al., 2016). Figure 1.1 illustrates this idea based on the example of a ResNet-18
used for CIFAR-10 image classication (Krizhevsky, 2009). The architecture consists of repeating
blocks (colorized in purple, blue, green, and red) that are each stacked two times to create the
overall network, (Figure 1.1, top). Consequently, the convolution block, (Figure 1.1, bottom) is
the repeating pattern that can be stacked several times to create a larger network, eventually
leading to high performance on the downstream image task. This idea of repetitive blocks, also
called cells, is taken up in the cell-based search space, rstly introduced by Zoph et al. (2018),
with the goal that a NAS method searches for the optimal topology of the cells. These cells can
have dierent topologies and operation layers (e.g., 3x3 convolution, 1x1 convolution, or pooling
operations) (Ying et al., 2019; Dong and Yang, 2020; Liu et al., 2019).

However, the mentioned classical NAS methods rely on training and evaluating myriads
of networks, resulting in impractical search times (Zoph et al., 2018). Recent methods focus
on improving the eciency of the search by avoiding these immense computation costs. Such
methods are based on surrogate prediction models (White et al., 2021c; White et al., 2021a; Wu
et al., 2021a), generative methods (Zhang et al., 2019; Yan et al., 2020) or one-shot models (Liu et al.,
2019). The surrogate models embed the architecture and predict their performance. Generative
models learn a latent architecture representation space and enable optimization-based search
within this latent space, from which architectures are then generated. The one-shot method trains
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Figure 1.1: (top) ResNet-18 (He et al., 2016) on the CIFAR-10 image classication task (Krizhevsky,
2009). (bottom) Repetitive block patterns in ResNets.

and evaluates an overparameterized network from which architectures can be directly drawn
with learned weights. This way, the one-shot methods can approximate the performance of an
architecture. All the mentioned methods aim to improve the query eciency of the architecture
search and to reduce the computation cost. Query eciency is crucial for NAS since each query
implies full training and evaluation of the architecture on its downstream task.

The trade-o between query eciency and nding high-performing architectures is an active
research eld. This thesis focuses on precisely that research eld and proposes several methods to
improve the eciency of NAS search. First, we focus on presenting a surrogate model to predict
the performance of architectures. The importance of using performance prediction models is
furthermore studied in (White et al., 2021c). Our goal is to allow for performance prediction,
especially in areas the surrogate model has not seen during training. This ability is essential for
surrogate benchmarks as our NAS-Bench-301 (Zela et al., 2022), which relies on surrogate models
to predict the performance of architectures in a search space of size 1018. Secondly, we present two
generative architecture search approaches, one based on a variational autoencoder, and the other
facilitates a simple generation model. The former method enables latent space-based architecture
search. In contrast, the latter improves on this model and directly optimizes the latent space
for a direct generation of high-performing architectures. We further analyze the widely-used
dierentiable one-shot method DARTS (Liu et al., 2019) with the question whether this method is
indeed ecient. This is in line with recent work (Zela et al., 2020a; Li et al., 2021b), which analyzes
the stability of this one-shot method. Recently, the NAS research of nding high-performing
architectures is accompanied by searching for robust architectures against adversarial attacks
and corruptions. However, most work (Dong and Yang, 2019b; Devaguptapu et al., 2021; Dong et al.,
2020a; Hosseini et al., 2021; Mok et al., 2021) search for architectures in the wild. In this thesis, we
pave the way for comparability for this NAS research on robustness by introducing a dataset that
evaluates an entire NAS search space on robustness. In total, we aim to improve the eciency of
NAS search using topology learning for performance prediction and generative models, as
well as analyzing one-shot methods and paving the way for robustness in NAS research.

Besides the main focus of NAS topology learning for prediction, generation, and robustness,
we also address discrete graph optimization using correlation clustering (Bansal et al., 2004). We
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Figure 1.2: High-level thesis overview

make use of techniques from operations research (Benders, 1962; Magnanti and Wong, 1981) to
improve the eciency in correlation clustering.

Figure 1.2 gives a high-level overview of the content and structure of this thesis. In Part I, we
introduce a Graph Neural Network (GNN)-based surrogate model for architecture performance
prediction. This proposed method can extrapolate to unseen topological areas. In Part II, we
rst introduce a Graph Neural Network-based variational autoencoder (VAE), which generates a
smooth architecture latent space. Smooth space in a sense, that topologically similar architectures
are also close in the latent space. This smooth latent space facilitates classical NAS approaches
such as Bayesian optimization and simple regression tasks to nd high-performing architectures.
Thereupon, we introduce a simple generative model that does not rely on an encoder model,
which is coupled with a surrogate model in a fully-dierentiable manner for directly generating
high-performing architectures. This is possible since we additionally include a latent space
optimization step, allowing for sample-ecient architecture search. Part III analyzes the widely-
used dierentiable architecture search in a new setting of signal recovery in terms of domain shifts
and hyperparameter sensitivity. In Part IV, we introduce a dataset that evaluates all architectures
in a predened NAS search space on neural architecture robustness. Furthermore, we show
rst initial applications for this dataset, from robustness proxy metrics to architecture search
regarding robustness. Lastly, Part V provides an excursus to discrete graph decomposition using
approaches from operation research to be applied to classical correlation clustering methods for
additional parallelization and speed-ups.

1.1 Contribution Overview

In this thesis, we propose several contributions to improve the eciency of NAS by presenting sur-
rogate models and latent space-based architecture search approaches. Lastly, we present a dataset
that allows for design investigations of architectures and the inuence on their corresponding
robustness against adversarial attacks and corruptions.
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1.1.1 Performance Estimation Strategy

NAS research has been made accessible to researchers without large-scale compute systems
with the introduction of NAS benchmarks. The rst benchmark NAS-Bench-101 (Ying et al.,
2019) trained and evaluated over 423k architectures on the CIFAR-10 (Krizhevsky, 2009) image
classication task. However, this benchmark comes at the cost of a restricted search space since
each architecture in this predened search space introduces an extensive evaluation. This search
space restriction exposes the need for an accurate surrogate model which is able to predict the
performance of architectures of structurally dierent and larger architectures of unseen areas,
i.e., zero-shot prediction. The usage of accurate surrogate models also opened up the introduction
of surrogate NAS benchmarks, with Zela et al. (2022) being the rst surrogate NAS benchmark.
These surrogate benchmarks furthermore allow for less restricted search space and the possibility
of nding novel high-performing architectures. Recent work (White et al., 2021c) evaluates several
performance prediction models for neural architecture search and analyzes the possibility for
substantial prediction improvement in the case of combined prediction models. Our work is a
rst step in this research direction, focusing on the ability to extrapolate to unseen regions.

Contributions In Chapter 3, we introduce a surrogate model for performance prediction on the
NAS-Bench-101 benchmark. This surrogate model is based on Graph Neural Networks (Zhou et al.,
2020), which allows for a successful capturing of local node features and graph substructures.
This capturing is essential to enable architecture mapping into a latent feature representation
that captures the architecture topology. This Graph Neural Network-based surrogate model is
able to accurately predict the performance of architectures in structurally dierent and unseen
regions.

1.1.2 Generative Architecture Search

Classical NAS approaches use black-boxmethods as Bayesian optimization (Kandasamy et al., 2018;
Ru et al., 2021), reinforcement learning (Zoph and Le, 2017; Zoph et al., 2018; Pham et al., 2018) or
evolutionary algorithms (Real et al., 2017; Real et al., 2019) on discrete architecture search spaces.
To circumvent the intrinsic discrete representation of neural architectures, works as Ying et al.
(2019), White et al. (2021a), Ning et al. (2020), and Tang et al. (2020) encode neural architectures us-
ing the adjacency matrix, path encodings, or learned embeddings, which are then further coupled
with black-box searchmethods. Another line of work uses ecient dierentiable approaches (Luo
et al., 2018; Liu et al., 2019), which are often biased to weight-free operations and thus often result
in sub-optimal architectures (Zela et al., 2020a). The disadvantage is that the named approaches
depend on the downstream task, e.g., nding an architecture with high accuracy on the CIFAR-10
image classication task. Therefore, we favor in our work the task of unsupervised learning using
a variational autoencoder to generate a latent space, being independent of the downstream tasks.
Figure 1.3 gives an overview of such a latent space. This latent space is learned in an unsupervised
manner with the target of reconstructing the input architecture, represented by a directed acyclic
graph. This latent space now allows for the architecture search strategy, facilitating black-box
methods such as Bayesian optimization. The success of unsupervised learned representation
for nding high-performing architecture was also shown by Zhang et al. (2019) and Yan et al.
(2020). The stability and predictive power of these autoencoder-based methods rely on their
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Figure 1.3: Overview of architecture latent representation space. (left) The process of learning a
latent representation of a neural network, which can be represented as a directed acyclic graph.
(right) A few architectures are then sampled from this learned latent space and evaluated for
their ground truth information (this can be either the validation/test performance or learning
curve of a downstream task, such as image classication). These architectures are then used to
predict the best possible architecture in an ecient manner.

capacity to reconstruct networks correctly and to generate valid architectures from the latent
space. The overall goal of learned graph representations, using a single encoder or a variational
autoencoder, is to improve the search eciency of the NAS method since each found architecture
involves complete training and evaluation of the architecture on the downstream task of interest.
Therefore, we present the next step, combining both search paradigms by optimizing the learned
latent space. By doing that, we enable a direct generation of promising architectures.

Contributions In Chapter 4, we argue in favor of NAS on learned architecture latent spaces. We
propose a two-sided graph variational autoencoders using Graph Neural Networks on the encoder
and decoder level. This model builds a structurally smooth latent space by learning to reconstruct
the input architecture accurately. Generating an unsupervised latent space allows for dierent
architecture search strategy approaches, such as Bayesian optimization. We show the ability of
competitive search results of our model on three dierent search spaces, ENAS (Pham et al., 2018),
NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong and Yang, 2020). In addition, it allows
for performance prediction of architectures with topologies not observed during training.

In Chapter 5, we propose a simple generative model, which solely uses a decoder model to
generate valid architectures. This generative model is paired with a surrogate model allowing
for performance prediction. In addition, we incorporate a latent space optimization concept,
which further allows us to iteratively reshape the latent space and thus let the model learn to
generate high-performing architectures from only a few data. Instead of learning an expert
prediction model, we aim to learn an expert generator for promising architectures in this work.
This results in a sample-ecient search method, which achieves state-of-the-art results on several
NAS benchmarks. In addition, this method allows for joint optimization in a straightforward
manner.



6 Chapter 1. Introduction

1.1.3 One-Shot Architecture Search

One-shot neural architecture search was introduced to overcome the computational burden using
classical NAS methods (Zoph and Le, 2017; Zoph et al., 2018; Kandasamy et al., 2018). Especially
the dierentiable architecture search approach, DARTS, proposed by Liu et al. (2019), is a widely
researched tool. All possible architectures within a predened search space are jointly optimized
using a supernetwork in this dierentiable setting. Therefore, one single optimization run is also
needed to nd high-performing architectures. However, this dierentiable approach can lead to
sub-optimal results caused by a randomoperation initialization, sensitivity towards the predened
search space as well as sensitivity towards training hyperparameter of the supernetwork (Zela
et al., 2020a; Xu et al., 2020; Chu et al., 2020; Chen and Hsieh, 2020; Li et al., 2021b). An in-depth
analysis of these mentioned causes of errors is hardly aordable in large-scale computer vision
problems such as image classication, which is the primary subject area of DARTS. Therefore,
we tackle in this thesis an analysis of these causes of errors in an aordable setting of inverse
problems.

Contributions We analyze dierentiable architecture search for inverse problems in Chapter 6.
Investigating signal recovery computer vision problems instead of image classication tasks allows
us to analyze the dierentiable search approach w.r.t. domain shifts, training hyperparameters,
network initialization, and even the impact of search space complexity in an aordable setting.
Furthermore, signal recovery has received little attention in NAS, and thus we can approach
this analysis without any bias to known results. This analysis allows us to investigate whether
dierentiable architecture search is truly a one-shot method. And indeed, dierentiable NAS
can nd well-performing architectures in our signal recovery setting if the search space is well-
preconditioned. Also, it improves over a random search baseline, especially in the case where
the search space also contains not only benecial operations but also harmful ones. The latter is
crucial since it cannot always be assumed that the search space is well-preconditioned. However,
this analysis also shows that the architecture reconstruction performance estimated by the
supernetwork trained weights is not well correlated with the nal performance after retraining
the selected architecture.

1.1.4 Robustness of NAS Architectures

The architecture search to nd novel, ever-better high-performing architectures is recently accom-
panied by the search for architectures being robust against adversarial attacks and corruptions.
Although deep neural networks are successful on large-scale computer vision tasks, they are
often highly sensitive to already small perturbations on the input data, not even visible to the
human eye. This sensitivity can lead to incorrect decisions of the network with high condence,
hampering the applicability of these networks to real-world use cases. Therefore, recent NAS
approaches combine the search objectives of high performance and robustness (Dong and Yang,
2019b; Devaguptapu et al., 2021; Dong et al., 2020a; Hosseini et al., 2021; Mok et al., 2021). However,
these approaches use architectures in the wild, and no complete search space is used, making
comparability dicult. We tackle to close this gap in our work.
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Contributions Chapter 7 introduces a dataset, which evaluates an entire NAS search space, i.e.,
the 6 466 unique architectures from NAS-Bench-201 (Dong and Yang, 2020), in terms of robustness.
This proposed dataset allows for benchmarking dierent NAS approaches for robustness, like
classical methods such as Bayesian optimization (Snoek et al., 2015; White et al., 2021a) or random
and local search (Li and Talwalkar, 2019; White et al., 2021b) or robustness proxy measurement
(Mok et al., 2021). Therefore, we introduce better-streamlined research regarding architecture
design for robust architectures. Having the dataset at hand, including all pretrained models with
their robustness evaluations against adversarial attacks and common corruptions, we also show
rst applications. We evaluate all architectures in terms of common training-free measurement
and their correlation to their robustness. Furthermore, we perform NAS itself and, lastly, show
how the architecture design choices aect the architecture’s robustness, keeping the parameter
count xed.

1.1.5 Excursus on Graph Decomposition

In many computer vision tasks, such as image segmentation, it is necessary to partition a set
of observations into unique entities. Correlation clustering Bansal et al. (2004) is a powerful
formulation on sparse graphs that tackles exactly this task. In image segmentation, the nodes
of the graph correspond to superpixels, and the edges describe the adjacency between two
superpixels. In addition, this formulation contains real-valued edge weights, which relate to a
probability, dened by a classication model, that these two superpixels correspond to the same
ground truth entity. Correlation clustering is appealing since, rst, there is no need to determine
the amount of segments beforehand, and second, the size of segments does not matter. However,
correlation clustering is an NP-hard problem. Thus, previous methods (Andres et al., 2011; Andres
et al., 2012b; Nowozin and Jegelka, 2009) are based on linear programming with cutting plane
approaches, which do not scale easily to large problems. In this work, we tackle the eciency
and possibility of parallel computation.

Contributions Chapter 8 treats the correlation clustering formulation as an integer linear
program and reformulates its optimization to use Benders decomposition (Benders, 1962). This
is a classical approach from operations research. Furthermore, this benders decomposition
approach is accelerated using Magnanti-Wong Benders rows (Magnanti and Wong, 1981), also a
technique from operations research. The usage of Benders decomposition together with Magnanti-
Wong Benders rows to tackle the optimization in correlation clustering theoretically allows for
massive parallelization.

1.2 Outline

In the following, we specify the structure of the thesis.

Chapter 2, Related Work and Technical Background: We rst provide an overview of neural
architecture search, including the most commonly used search spaces and search methods in
Section 2.1. Second, we provide an overview of Graph Neural Networks and their corresponding
preliminaries in Section 2.2. Third, we provide technical background on Bayesian optimization as
a search method and variational autoencoder in Section 2.3.
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Chapter 3, Graph Neural Network-based Prediction Model: In this chapter, we propose a
surrogate model with a Graph Neural Network-based encoder, which handles the dierent char-
acteristics of neural architectures. This proposed surrogate model allows not only for classical
supervised performance prediction but also for the performance prediction of architectures with
a topology not seen during training, i.e., zero-shot prediction.
This chapter corresponds to the work Lukasik et al. (2020a), published at the DAGM GCPR 2020.

Chapter 4, Variational Autoencoder-based Graph Embeddings: This chapter introduces a
two-sided graph-based variational autoencoder for neural architecture search. The proposed
method is able to smoothly encode and correctly reconstruct input architectures and generate
valid graphs from the latent space on various search spaces.
This chapter corresponds to the IJCNN 2021 publication Lukasik et al. (2021).

Chapter 5, Generative NAS with Latent Space Optimization: In this chapter, we further im-
prove over the presented autoencoder from the previous chapter by introducing a simple decoder
model, which learns to directly generate promising architectures facilitating an eective and
sample-ecient search model.
This chapter corresponds to the ECCV 2022 publication Lukasik et al. (2020a). This work was
also presented as an extended abstract at the “Third workshop on Neural Architecture Search”
at CVPR 2022. This work is an equal contribution with Steen Jung. Steen and I developed the
idea together. I implemented the generative model, the surrogate models as well as the latent
space optimization for the single objective tasks, including its baselines. Steen implemented the
multi-objective search and its corresponding baselines and trained the architectures on ImageNet.
We both wrote the paper jointly.

Chapter 6, Is Dierentiable Architecture Search truly a One-Shot Method?: This chapter
analyzes dierentiable architecture search for signal recovery in terms of sensitivity towards
domain shifts, hyperparameters, and network initialization. This investigation looks into the
ability of dierentiable architecture search to be a true one-shot method.
This chapter corresponds to Geiping et al. (2021b). Part of this work was presented at the “Work-
shop on Deep Learning and Inverse Problems” at NeurIPS 2021 (Geiping et al., 2021a). This work
is joint work with Jonas Geiping and was jointly supervised by Margret Keuper and Michael
Moeller. Jonas is an expert on signal reconstruction and built the dataset for the signal recovery
experiments. I implemented the hyperparameter optimization part. We all wrote the paper jointly.

Chapter 7, ADataset forNeuralArchitectureDesignandRobustness: We introduce a database
in which one of the most commonly considered search spaces for neural architecture search,
NAS-Bench-201, is evaluated on a range of common adversarial attacks and corruption.
This chapter corresponds to Jung et al. (2023), which is accepted at ICLR 2023. This work is an
equal contribution with Steen Jung. Steen built the dataset framework and implemented the
robustness evaluations. I implemented the training-free measurement use cases and the NAS use
case. We both wrote the paper jointly.
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Chapter 8, Excursus about Clustering on Graphs: In this chapter, we combine two operations
research formulations, i.e., Benders decomposition and Magnanti-Wong Benders rows to refor-
mulate the optimization in classical correlation clustering to improve its eciency and allow for
massive parallelization. This chapter corresponds to Lukasik et al. (2020b), which is published in
the Workshop Proceedings “Machine Learning in High Performance Computing Environments”
at SC 2020.

Chapter 9, Conclusion: We conclude this thesis with a summary and present possible further
research directions.
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1.3 Publications

The following peer-reviewed papers contribute to this thesis:

• Neural Architecture Performance Prediction Using Graph Neural Networks
Lukasik, Jovita and Friede, David and Stuckenschmidt, Heiner and Keuper, Margret
Proc. of the German Conference on Pattern Recognition, GCPR 2020
(Lukasik et al., 2020a)

• Smooth Variational Graph Embeddings for Ecient Neural Architecture Search
Lukasik, Jovita and Friede, David and Zela, Arber and Hutter, Frank and Keuper, Margret
International Joint Conference on Neural Networks, IJCNN 2021
(Lukasik et al., 2021)

• Learning Where to Look - Generative NAS is Surprisingly Ecient
Lukasik, Jovita* and Jung, Steen* and Keuper, Margret
Proc. of the European Conference on Computer Vision, ECCV 2022
(Lukasik et al., 2022)

• DARTS for Inverse Problems: a Study on Stability
Geiping, Jonas* and Lukasik, Jovita* and Keuper, Margret and Moeller, Michael
Advances in Neural Information Processing Systems (NeurIPS), Workshop on Deep Learning
and Inverse Problems., NeurIPS 2021
(Geiping et al., 2021a)

• Neural Architecture Design and Robustness: A Dataset
Jung, Steen* and Lukasik, Jovita* and Keuper, Margret
accepted for publication in Proc. of the International Conference on Learning Representa-
tions, ICLR 2023
(Jung et al., 2023)

• A Benders Decomposition Approach to Correlation Clustering
Lukasik, Jovita and Keuper, Margret and Singh, Maneesh and Yarkony, Julian
Proc. of the IEEE/ACMWorkshop on Machine Learning in High Performance Computing
Environments and Workshop on Articial Intelligence and Machine Learning for Scientic
Applications, MLHPC 2020
(Lukasik et al., 2020b)

Additional publications not being part of this thesis:

• Surrogate NAS Benchmarks: Going Beyond the Limited Search Spaces of Tabular NAS
Benchmarks
Zela, Arber and Siems, Julien Niklas and Zimmer, Lucas and Lukasik, Jovita and Keuper,
Margret and Hutter, Frank
Proc. of the International Conference on Learning Representations, ICLR 2022
(Zela et al., 2022)

* contributed equally



Related Work and Technical Background

2In this chapter, we aim to provide a broad overview of related literature and background
information as preparation for the following chapters in this thesis. We introduce Neural

Architecture Searchwith its foundations and proposed approaches in Section 2.1. In Section 2.2,
we describe preliminaries on Graph Neural Networks as the underlying framework on which
many of the methods presented in this thesis rely on. Section 2.3 provides technical background
on Bayesian optimization and variational autoencoder.

2.1 Neural Architecture Search

Neural architecture search (NAS) is the automative process of neural architecture design for a
given task. NAS has gained substantial attention since its rst improvements over human-designed
neural architectureswith reinforcement learning-based approach, proposed by Zoph and Le (2017).
Since then architectures found by NAS outperform human designed architectures on dierent
tasks and datasets. Several NAS approaches based on reinforcement learning (RL), evolutionary
algorithm (EA), Bayesian optimization (BO) and weight-sharing were introduced. At the same time
as new NAS methods were introduced, NAS benchmarks were also created in order to facilitate
reproducible research (Li and Talwalkar, 2019; Yang et al., 2020). The foundation was laid with
the rst tabular benchmark in NAS, NAS-Bench-101 (Ying et al., 2019), which evaluated thousands
of architectures on the CIFAR-10 (Krizhevsky, 2009) image classication task. Subsequently, many
other benchmarks have been introduced on dierent tasks and not only image classication
(Dong and Yang, 2020; Zela et al., 2022; Mehta et al., 2022; Klyuchnikov et al., 2022; Yan et al., 2021).

2.1.1 Preliminaries

The rst NAS survey by Elsken et al. (2019) introduces NAS as a conjunction of three dierent parts:
search space, search strategy and performance estimation strategy. Nowadays, the demarcation
between search and performance estimation strategies can no longer be clearly set, as methods
based on one-shot approaches directly couple the search and estimation of architectures. In the
following we dene NAS formally as presented in (White et al., 2023).

Denition 1 (Neural Architecture Search). Given a search space X, a dataset 𝐷, a training
pipeline 𝑃 and a predened time budget 𝑇 . In Neural Architecture Search (NAS) the goal is to nd
an architecture 𝑥 ∈ X with the highest validation accuracy when trained on 𝐷 with the training
pipeline 𝑃 within the time budget 𝑇 by approximately solving

min
𝑥∈X
Lval(𝑤∗(𝑥), 𝑥)

where 𝑤∗(𝑥) = arg min
𝑤

Ltrain(𝑤, 𝑥),
(2.1)

with Lval and Ltrain being the validation and training loss on data 𝐷, 𝑤 denotes the trained archi-
tecture weights.

In this thesis we use the term high-performing architectures synonymously to architectures
with a high validation or test accuracy, if not stated otherwise.

11
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2.1.2 Search Spaces

A search space denes the constrained set of architectures. It leads to NAS being intrinsically
a discrete optimization problem seeking the optimal conguration, i.e., an architecture, in this
constrained space and is the rst step in the NAS procedure. The search space design and its
constraints play an important role for the search method itself. Large search spaces introduce less
human knowledge and bias to favored and known architecture structures as for example a ResNet-
Block (He et al., 2016) and thus enable the possibility for NAS methods to nd novel architectures.
However, large search spaces also hamper NAS methods to nd the best architecture. Yet, small
search spaces introduce human knowledge and bias but allow for search speed-ups. The majority
of search spaces are task-specic and indeed introduce human knowledge about state-of-the-art
neural architectures. NAS-Bench-101 (Ying et al., 2019) for example covers relevant architectures
such as ResNet-like (He et al., 2016) and InceptionNet-like (Szegedy et al., 2016) networks.

In the NAS research, there exists dierent types of search spaces (White et al., 2023), such as
macro, chain-structured and hierarchical search spaces, as well as the most popular cell-based
search space. In this thesis, we focus on the latter cell-based search space. For more information
about the former types, we refer to the NAS surveys by Elsken et al. (2019) and White et al. (2023).

Cell-Based Search Space

Cell-based search spaces were initially introduced by Zoph et al. (2018) as a scalable and transfer-
able approach. The motivation for this search space is based on the fact, that human designed
state-of-the-art Convolutional Neural Networks (CNNS) often contain repeated patterns, as the
residual block in ResNets (He et al., 2016; Szegedy et al., 2016). Therefore, Zoph et al. (2018)
proposed to search for so-called cells, i.e., the repeated patterns, instead of the overall neural
network. These cells are stacked several times in series to form the overall neural network, which
is then trained on the task of interest, for example CIFAR-10 image classication (Krizhevsky,
2009). The outer skeleton, also called macro architecture, is predened and themicro architecture,
the cells, are searched. The former macro architecture denes the overall skeleton of how the cells
are stacked, see Figure 2.1 for an example, and can also dene the rst stem layer, intermediate
downsampling layers and the classication head.

NASNet (Zoph et al., 2018) is the rst cell-based search space and consists of two types of
cells in order to allow for scalable architectures: normal cell and reduction cell. The normal cell
returns a feature map of the same dimension as the input feature map, whereas for the reduction
cell, the initial operation has a stride of two in order to halve the height and width of the input
feature map. Each cell in the NASNet search space can be represented by a directed acyclic graph
(DAG). Each node in this graph is a combination of two operations, either convolution or pooling,
whose outputs are combined by either an element-wise addition or a concatenation along the
lter dimension. These normal and reduction cells are then stacked in an iterative manner in
the predened macro architecture, see Figure 2.1. In order to directly allow for transferability to
larger datasets, the macro architecture can be varied by simply increasing the depth by stacking
more normal and reduction cells in sequence.

After the release of the NASNet (Zoph et al., 2018) search space, several other cell-based search
spaces were introduced (Liu et al., 2019; Ying et al., 2019; Dong and Yang, 2020). They dier in the
topology of the macro architecture, as well as the cell topology and possible operations. One of the
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Architecture

Figure 2.1: Macro architecture in the NASNet search space (Zoph et al., 2018). Gray highlighted
cells dier between architectures, while the other components stay xed. (Figure adapted from
Zoph et al. (2018))

most popular search spaces is the DARTS search space (Liu et al., 2019). It also contains the search
for dierent normal and reduction cells, but the dierence to the NASNet search space is the
topology of the DAG. In the DARTS search space the operation choices are on the edges and not on
the nodes, where the latter represents the latent representation. In NASNet the edges represent
the latent representations and the nodes dene the operation choice.

Also, most of the NAS benchmarks are cell-based search spaces, from which the most popular
one is NAS-Bench-101 (Ying et al., 2019). Wewill providemore information about NAS benchmarks
as well as the DARTS search space in Section 2.1.6.

As mentioned, the search for cells instead of a complete network has the benet that it allows
for scalability and transferability to larger datasets, for example to search for cells on the CIFAR-
10 image classication tasks, evaluate a larger macro architecture on ImageNet (Deng et al.,
2009). In spite of the positive aspects, cell-based search spaces also face some negative aspects.
These search spaces need predened macro architectures and cell designs, which require human
expert knowledge, and furthermore limits the possibility to nd novel architectures. In addition,
although the popular DARTS search space (Liu et al., 2019) contains 1018 dierent architecture, the
variance in performance in rather small (Yang et al., 2020; Wan et al., 2022), leading to marginal
improvements of NAS strategies against random search. We discuss the search spaces and its
accuracy distribution in more detail in Section 2.1.6.

As previously described in the cell-based search space the architectures can be represented via
DAGs, 𝐺 = (𝑉, 𝐸), with 𝑉 being the nodes and 𝐸 being the edges in the DAG 𝐺. The operations of a
neural network are either described by the nodes or edges of the DAG, depending on the topology
design in the search space. With the topology of an architecture, the question is now, how to best
encode the architecture’s topology for the search strategies, relying on for example on mutations,
similarity measurement and performance predictions. The most common architecture encoding
is the adjacency matrix. White et al. (2021a) introduce a path-based encoding. Given the natural
graph structure, graph-based encodings (Ning et al., 2020; Tang et al., 2020) are also utilized.
Another line of work introduces learned encodings based on unsupervised learning methods as
autoencoder (Zhang et al., 2019; Yan et al., 2020). Each of these encodings can be coupled with a
search strategy. White et al. (2021a) evaluate the combination of dierent encodings and NAS
search strategies and their eect on nding high-performing architectures.

These cell-based search spaces, and in general search spaces in NAS, are not restricted to
vision tasks. Besides the mentioned image classication search spaces, there exists language-
based search spaces, as NAS-Bench-ASR (Mehrotra et al., 2021) for speech recognition and an
LSTM-based search space NAS-Bench-NLP (Klyuchnikov et al., 2022).
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2.1.3 Search Methods

The search method is the optimization approach to nd high-performing architectures in the
predened search space. Most search methods are either black-box optimization techniques or
weight-sharing approaches.

The black-box approaches follow dierent paradigms: Reinforcement learning (RL) (Zoph and
Le, 2017; Zoph et al., 2018; Pham et al., 2018) as a NAS strategy considers the neural architecture
generation as the agent’s actionwith its reward given in terms of validation accuracy. Evolutionary
algorithm (EA) (Real et al., 2017; Liu et al., 2018b) approaches optimizing the neural architectures
themselves by guiding the mutation of architectures and evaluating their tness given by the
validation accuracy. Early Bayesian optimization (BO) methods (Kandasamy et al., 2018) derive
kernels for architecture similarity measurements to extrapolate the search space.

The initial black-box approaches were computationally heavy since they required to train
and evaluate all found architectures. To overcome these computational drawbacks, faster weight-
sharing approaches, also called one-shot methods, were introduced, which result in faster search
approaches (Pham et al., 2018; Bender et al., 2018) and also dierentiable optimization methods
(Liu et al., 2019; Cai et al., 2019; Xie et al., 2019b; Zela et al., 2020a).

Other approaches map the discrete search space into a continuous architecture representation
space (Luo et al., 2018; Zhang et al., 2019; Yan et al., 2020) and search or optimize within this space
using for example BO (e.g., (Yan et al., 2020)) or gradient-based point operation (Luo et al., 2018). In
addition to these optimization methods, Li and Talwalkar (2019) demonstrate the ecient ability
of random search to nd high-performing architectures and therefore point out the importance
of random search being an important baseline. Also, local search (White et al., 2021b) shows the
ability to nd high-performing architectures in an ecient way.

In the following we will present the related work to Bayesian optimization as a search strategy.

Bayesian Optimization

Bayesian optimization (BO) is an established and powerful strategy for global optimization of
expensive black-box functions (Mockus, 1974; Jones et al., 1998; Brochu et al., 2010) and has been
used with signicant success in NAS (Kandasamy et al., 2018; Zhang et al., 2019; White et al.,
2021a). BO is based on two components: (1) building a probabilistic model to model the objective
black-box function based on already observed data and (2) constructing an acquisition function,
which trades o exploration and exploitation.

For the sake of clarity we will provide more technical background on BO in Section 2.3.1 and
focus here on the related work for BO in NAS itself.

Initial BO approaches as Kandasamy et al. (2018) use a distance metric obtained through
an optimal transport program to enable Gaussian process (GP)-based BO. White et al. (2021a)
encode architectures with a high-dimensional path-based scheme and employ BO on an ensemble
surrogate. Ru et al. (2021) propose a graph kernel with GP-based BO to capture the topological
structure of architecture graphs. However, GP-based BO does not always perform well due to the
high dimension, discrete and graph-like structure of NAS search spaces. Therefore, another line
of NAS work for BO, embeds the discrete architectures into continuous encodings as described in
Section 2.1.2. Shi et al. (2019) and Zhang et al. (2019) used Graph Neural Network (GNN)-based
encodings to t a Bayesian linear regression as a surrogate in BO. Note we will provide more
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information about Graph Neural Networks in Section 2.2. Very recently, Yan et al. (2020) learn
neural architecture representations using the proposed GNN in Xu et al. (2019) in combination
with a multilayer perceptron graph decoder. The model employs a combination of the adjacency
matrix and a one-hot operation encoding matrix as input for the encoder and improves over
previous approaches to NAS. Their results indicate that highly informed encoding is crucial for
the task.

The second component of BO is the acquisition function. However, optimizing it in each round
for all possible architectures in the search space is a computationally expensive and exhaustive
tasks. Therefore, most commonly the set of architectures selected as input for the acquisition
function are either found by random search or local search (Ru et al., 2021; Ying et al., 2019), or
the best architecture queried so far is randomly mutated (Kandasamy et al., 2018; White et al.,
2021a; Ru et al., 2021) to create the input set for the acquisition function.

2.1.4 One-Shot Methods with Supernets

Another line of search methods are so-called one-shotmethods. These methods were introduced
to overcome the computation burden of early NAS methods relying on training and evaluating
thousands of architectures (Zoph and Le, 2017; Zoph et al., 2018). Here, instead of training each
architecture individually, one-shot methods implicitly train all possible architectures in a search
space by training one single supernetwork. A supernetwork is an over-parameterized architecture
that contains all possible architectures in the search space as subnetworks (Bender et al., 2018;
Pham et al., 2018; Liu et al., 2019).

After the supernetwork is trained, each subnetwork can be directly evaluated by drawing its
learned weights from the supernetwork. The underlying assumption in one-shot methods is the
performance ranking similarity of the architectures using the learned supernetwork weights and
the architectures retrained from scratch. There is no consistent answer, if this assumption holds
true, rather some works agree with this assumption (Pham et al., 2018; Li et al., 2021b) and some
show examples where this assumption does not hold true (Zela et al., 2020a). In case the ranking
consistency is not met, we also speak of rank disorder (Li and Talwalkar, 2019; White et al., 2023)

Also in one-shot methods, the question is how to best search for architectures. There exists two
approaches: supernet training in conjunction with a black-box optimization techniques (Bender
et al., 2018; Pham et al., 2018) or dierentiable optimization approaches (Liu et al., 2019).

Supernet methods with Black-Box Optimization

Some methods decouple the supernet training from the search process (Bender et al., 2018; Li and
Talwalkar, 2019; Guo et al., 2020b) whereas others other work combines the supernet training
with the search approach (Pham et al., 2018). For the former, one architecture (subnetwork)
is randomly sampled from the search space in each training step and only the weights for this
architecture are updated in the supernetwork. After the supernetwork is trained, architectures
can be randomly sampled (Bender et al., 2018; Li and Talwalkar, 2019) or searched by evolutionary
approaches (Guo et al., 2020b) and evaluated based on their one-shot performance. The best
found architecture is then trained from scratch.

In contrast to decoupled approaches, Pham et al. (2018) propose ENAS, a two stage approach
based on the reinforcement learning from Zoph and Le (2017). First, an architecture is selected,
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trained and then the weights of the supernetwork are updated. Second, the weights of the
controller are updated by sampling several architectures from the supernetwork with their
corresponding one-shot performance, where the reward for the controller is computed on the
validation set of the downstream task, e.g., CIFAR-10 image classication. We will provide more
detailed information about the ENAS search space in Section 4.4.

Dierentiable Supernet Methods

Dierentiable neural architecture search was rst introduced by Liu et al. (2019) as DARTS. This
approach is based on a continuous relaxation of the discrete architectures in order to allow for
gradient descent to nd high-performing architectures (subnetworks) from the search space
spanned by the supernet. This method optimizes cells and is therefore applicable to any cell-based
search space, which is dened with operations on the edges. Recall here Section 2.1.2.

For the DARTS search space each node 𝑥 (𝑖) in the DAG corresponds to the latent representation
and each directed edge (𝑖, 𝑗) consists of a set of multiple candidate operations 𝑜(𝑖, 𝑗) which trans-
form the node 𝑥 (𝑖) . The candidate operations on the edge (𝑖, 𝑗) are parameterized by architecture
parameters 𝛼(𝑖, 𝑗)𝑜 . Therefore during the supernet training, each operation on the edge (𝑖, 𝑗) is
weighted by its architecture parameter 𝛼(𝑖, 𝑗)𝑜 . The search strategy in DARTS is formulated as a
bilevel optimization problem, which jointly optimizes the architecture parameters 𝛼 = (𝛼(𝑖, 𝑗)𝑜 )
and the network weight parameters 𝑤. Note, the network weight parameters also include the
weights of all candidate operations. The bilevel optimization is approximated by a single step of
gradient descent to overcome the expensive inner optimization. After training the supernet, the
discrete architecture is obtained by selecting the operations 𝑜(𝑖, 𝑗) for each edge as the operation
with the highest architecture parameter 𝛼(𝑖, 𝑗)𝑜 . This architecture is then trained from scratch.

DARTS shows signicant advantages in the search of high-performing neural architectures
within only a few GPU days. Building on this pioneering work NAS research has gained signicant
momentum for further improvements over the original DARTS approach (Dong and Yang, 2019b;
Cai et al., 2019; Xie et al., 2019b; Chen et al., 2019; Akimoto et al., 2019; Xu et al., 2020; He et al.,
2020; Chen and Hsieh, 2020; Wu et al., 2021b; Zhang et al., 2021). For example Chen et al. (2019)
present an algorithm to progressively increase the depth of the searched architecture during
training, bridging the gap between search and evaluation performances.

Stability of DARTS There are only few works investigating the stability of DARTS in terms
of rank disorder or poor test generalization after retraining (Zela et al., 2020a; Xu et al., 2020;
Chu et al., 2020; Chen and Hsieh, 2020; Li et al., 2021b). RobustDARTS (Zela et al., 2020a) tracks
the dominant eigenvalue 𝜆𝛼max of the Hessian during the architecture search and implement a
regularization and early stopping criterion based on this quantity for a more robust DARTS search.
Chen andHsieh (2020) pick up the relationship between theHessian during the architecture search
and the performance gap during search and evaluation time. They propose a perturbation-based
regularization to smooth the validation loss landscape. Xu et al. (2020) nd that only connecting
partial channels into the operation selection leads to a regularized search to improve the stability.
Chu et al. (2020) use a sigmoid activation for the architecture weights instead of softmax to
eliminate unfair optimization regarding the skip-connection operation. Yang et al. (2020) analyze
the contribution of each component in a NAS approach within the search space from Liu et al.
(2019). They highlight that a performance-boosting training pipeline, often a result of expert
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knowledge, is more important for the evaluation of architectures than the search itself. Li et al.
(2021b) use single-level optimization to improve the rank disorder and poor test generalization.
Furthermore, the architecture parameters are re-parameterized over the simplex and updated
using exponentiated gradient, leading to an approach not relying on retraining.

We further investigate this dierentiable supernet method and its stability in Chapter 6.

2.1.5 Performance Estimation Strategy

All NAS approaches are dependent on performance estimation of intermediate architectures. To
avoid the computation-heavy training and evaluation of queries on the target dataset, methods to
approximate the performance have been explored (White et al., 2021c). The motivation behind
using performance estimation models for the architecture search process is given by the fact that
evaluating an estimation model on an architecture in a given search space, which estimation
the accuracy of this architecture, takes less time than fully training this architecture. Ideally, the
correlation of the estimation accuracy is high with the true accuracy. This estimation is done by
using performance prediction models. Predicting the performance of neural networks based on
features such as the network architecture, training hyperparameters or learning curves has been
exploited previously via MCMC methods (Domhan et al., 2015), Bayesian Neural Networks (Klein
et al., 2017) or regressionmodels (Baker et al., 2017). (Long et al., 2020)manually construct features
to regress neural networks or support vector regressors. Liu et al. (2018a) use a performance
predictor in an iterative manner during the search process of NAS. Baker et al. (2018) use features
of a neural architecture, such as the validation accuracy, additionally architecture parameters
such as the number of weights and the number of layers, as well as hyperparameters, to predict
learning curves during the training process by means of a sequential regression models. Luo et al.
(2018) propose a performance prediction model learned in combination with an auto-encoder in
an end-to-end manner. The neural architectures are mapped into a latent feature representations,
which are then used by the predictor for performance prediction and are then further decoded
into neural architectures. Common approaches include neural predictors that take path encodings
(White et al., 2021a) or graph encodings learned by Graph Neural Networks (Shi et al., 2019; Wen et
al., 2020; Ning et al., 2020; Tang et al., 2020) as input. Recently, WeakNAS (Wu et al., 2021a) proposes
to progressively evaluate the search space towards nding high-performing architectures using a
set of weak predictors.

2.1.6 Benchmarks

NAS, as dened in Denition 1, aims to nd an architecture that is high-performing e.g., on image
classication tasks like CIFAR-10 (Krizhevsky, 2009). As a consequence, dierent search spaces
were introduces, with dierent training pipelines and computation costs. This however made it
dicult to compare dierent NAS methods. The rst NAS benchmark, NAS-Bench-101 (Ying et al.,
2019), led to a paradigm shift in the comparability and statistical signicance of NAS methods and
further helped to reduce the computation time of developing and evaluating NAS methods.

Denition 2 (NAS Benchmarks). Following Lindauer and Hutter (2020) a NAS benchmark is de-
ned by containing a dataset with a predened training-test split, a search space and a xed training
pipeline for training the architectures on the dataset (including runnable code).
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Figure 2.2: Visualization of best cells in the tabular benchmarks in terms of mean test accuracy
on CIFAR-10. (left) Best cell in NAS-Bench-101 with a test accuracy of 94.32%. (right) Best cell in
NAS-Bench-201 with a test accuracy of 94.37%

Build on that, a tabular NAS benchmark also gives precomputed metrics (as training and vali-
dation/test performance) for all architectures in the search space of the NAS benchmark.

A surrogate NAS benchmark evaluates a portion of a usually very large search space for pre-
computed performance metrics and furthermore includes a surrogate model which predicts the
performance of any architecture in the search space.

The rst tabular NAS benchmark is NAS-Bench-101 (Ying et al., 2019). The search space is
a cell-based search space and contains 423 624 unique neural networks. Each architecture is
trained on CIFAR-10 (Krizhevsky, 2009) for image classication. The cell topology is limited
to the number of nodes |𝑉 | ≤ 7 (including input and output nodes) and edges |𝐸 | ≤ 9. The
nodes represent the network layers and intermediate nodes can take any operation from the
operation set O = {1 × 1 conv., 3 × 3 conv., 3 × 3 max pooling}. While this search space is limited
it covers relevant architectures such as for example ResNet like (He et al., 2016) and InceptionNet
like (Szegedy et al., 2016) models (Ying et al., 2019). Figure 2.2 (left) visualizes the best cell in NAS-
Bench-101 in terms of mean test accuracy over 3 runs. Zela et al. (2020b) show, that only subspaces
of the architectures in NAS-Bench-101 can be used to evaluate one-shot NAS methods (Liu et al.,
2019; Pham et al., 2018), motivating their proposed variant NAS-Bench-1shot1 (Zela et al., 2020b).

Similarly to NAS-Bench-101, NAS-Bench-201 (Dong and Yang, 2020) uses a restricted, cell-
structured search space, while the employed graph representation allows evaluating discrete and
one-shot NAS algorithms. NAS-Bench-201 consists of 15 625 architectures, from which in total
6 466 architectures are unique. Each architecture is trained for 200 training epochs on CIFAR-10
(Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009), and ImageNet16-120 (Chrabaszcz et al., 2017)
image classication tasks. This benchmark provides validation and test accuracy information
for each of the three datasets. The cell structure is dierent compared to NAS-Bench-101: Each
cell has |𝑉 | = 4 nodes and |𝐸 | = 6 edges, where the former represent feature maps and the latter
denote operations chosen from the set O = {1 × 1 conv., 3 × 3 conv., 3 × 3 avg pooling, skip, zero}.
Figure 2.2 (right) visualizes the best cell in NAS-Bench-201 in terms of mean test accuracy on
CIFAR-10.

In addition to these tabular benchmarks NAS-Bench-301 (Zela et al., 2022) (now called Surr-
NAS-Bench-DARTS) provides the rst surrogate benchmark, which allows for fast evaluation of
NAS methods on the DARTS (Liu et al., 2019) search space by querying the validation accuracy.
NAS-Bench-301 evaluates several surrogate models on in total 60 000 sampled architectures from
the DARTS (Liu et al., 2019) search space on the CIFAR-10 (Krizhevsky, 2009) image classication
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Figure 2.3: Visualization of the normal and reduction cell of the best architecture in the surrogate
benchmark NAS-Bench-301 in terms of validation accuracy on CIFAR-10 94.73%. (top) Normal
cell. (bottom) Reduction cell.

task. The DARTS search space consists of 1018 neural networks, where each network consists
of two cells; a normal cell and a reduction cell. Each cell is limited by the number of nodes
|𝑁 | = 7 and the number of edges |𝐸 | = 12, where 4 of these edges connect the intermediate
nodes (excluding the input nodes) to the output node. Each edge denotes an operation from the
set O = {3 × 3 sep. conv., 5 × 5 sep. conv., 3 × 3 dil. conv., 5 × 5 dil. conv., 3 × 3 avg pooling, 3 ×
3 max pooling, identity, zero}. Each intermediate edge is connected to two predecessor nodes.
Each cell also contains two input nodes, which are the output nodes from the previous two cells.
The overall network is created by stacking the normal and reduction cell. Figure 2.3 visualizes
the normal and reduction cell of the best architecture in NAS-Bench-301 in terms of test accuracy
on CIFAR-10.

In addition to NAS-Bench-301, Zela et al. (2022) also released Surr-NAS-Bench-FBNet evaluated
on the FBNet search space (Wu et al., 2019). Following this surrogate benchmarks, NAS-Bench-x11
(Yan et al., 2021) allows for learning curve predictions, by containing full training information at
each epoch for each architecture in their considered search spaces. TransNAS-Bench-101 (Duan
et al., 2021) introduces a benchmark containing performance and metric information across
dierent vision tasks.

NAS-Bench-NLP (Klyuchnikov et al., 2022) is the rst RNN-derived benchmark for language
modeling tasks. From the total 1053 possible architectures in the complete search space, 14 322
architectures are trained on Penn TreeBank (PTB) (Mikolov et al., 2010) and provided in this
benchmark. The cell search space is constrained by the number of nodes with at most 24, the
number of hidden states less than 3 and the number of linear input vectors to maximally 3. The
nodes represent the architecture operational layer and are chosen from the setO = {linear, element
wise blending, element wise product, element wise sum, Tanh activation, Sigmoid activation,
LeakyReLU activation}.
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Figure 2.4: Random examples from the CIFAR-10 image classication dataset (Krizhevsky, 2009)
for each of the 10 classes.
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Figure 2.5: (left) Test accuracy (in %) on CIFAR-10 by kernel parameters ([0, 45]) for all architec-
tures in NAS-Bench-101. (middle) Test accuracy (in %) on CIFAR-10 by kernel parameters ([0, 54])
for all architectures in NAS-Bench-201. (right) Validation accuracy (in %) on CIFAR-10 by kernel
parameters ([0, 350]) for all sampled architectures in NAS-Bench-301 from the DARTS search
space.

The recently introducedHW-NAS-Bench (Li et al., 2021a) is the rst public dataset for hardware
NAS. It extends two representative NAS search spaces, NAS-Bench-201 (Dong and Yang, 2020)
and FBNet (Wu et al., 2019), by providing measured and estimated hardware costs (i.e., latency
and/or energy) for each device for all architectures in both search spaces. For this, HW-NAS-Bench
considers six hardware devices: Edge GPU (NVIDIA Jetson TX2 ), Raspi 4 (Raspberry Pi Limited ),
Edge TPU (Google LLC. Edge TPU Compiler ), Pixel 3 (Google LLC. Pixel 3 ), ASIC-Eyeriss (Chen et al.,
2017) and FPGA (Xilinx Inc. Vivado High-Level Synthesis ; Xilinx zynq-7000 soc zc706 evaluation
kit ). NAS-Bench-360 (Tu et al., 2022) is a benchmark suite for 10 dierent tasks, from which 3 use
the pretrained architectures provided by NAS-Bench-201. Lastly, NAS-Bench-Suite (Mehta et al.,
2022) combines 28 NAS benchmarks into one interface, allowing for reproducible search on all
these benchmarks.

The image classication-based NAS benchmarks, NAS-Bench-101 (Ying et al., 2019), NAS-Bench-
201 (Dong and Yang, 2020) and NAS-Bench-301 (Zela et al., 2022), evaluate all architectures on
the CIFAR-10 image dataset (Krizhevsky, 2009). This dataset contains images with low resolution,
as can be seen in Figure 2.4, which enables a rather fast training of architectures. However, we
are mostly interested in nding novel high-performing architectures on larger more complex
datasets as ImageNet (Deng et al., 2009). As mentioned in (Zoph et al., 2018; White et al., 2023) for
these larger datasets, the high-performing cells on smaller dataset as CIFAR-10 are mostly used
and are stacked to a larger network for ImageNet training and evaluation. A search approach
on this larger datasets is also recently done by proxy metrics. These are performance estimation
techniques, which assign scores to each architecture based on fast computations such as one
forward and backward pass on a single minibatch. These scores are hoped to be correlated with
the nal accuracy of the architecture (Mellor et al., 2021).
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Finding high-performing architectures on CIFAR-10 in the dierent NAS benchmark search
spaces is also a rather simple tasks, since the variance of the architectures performances is rather
small. We visualize in Figure 2.5 the test accuracy on CIFAR-10 against the architectures’ cell kernel
parameters. We count 1 for each 1 × 1 convolution, 9 for each 3 × 3 convolution in the cell and
additionally 6 for each 3 × 3 separable convolution and 10 for each 5 × 5 separable convolution in
NAS-Bench-301. Overall, we can see for NAS-Bench-201 and NAS-Bench-301 the variance is indeed
rather small and a large portion of the architectures have a high test performance on CIFAR-10.
NAS-Bench-101 is more spread, but also here we can see that the biggest portion of architectures
in this search space have a high test accuracy. Note, the goal for NAS methods in these search
spaces (NAS-Bench-101, NAS-Bench-201) is not to nd only any high-performing architecture but
the rather dicult task, namely nding the global optimum.

2.2 Graph Neural Networks

Combiningmodernmachine learningmethods with graph structured data has increasingly gained
popularity. One can interpret it as an extension of deep learning techniques to non-Euclidean data
(Bronstein et al., 2017) or even as inducing relational biases within deep learning architectures
to enable combinatorial generalization (Battaglia et al., 2018). Because of the discrete nature
of graphs, they can not trivially be optimized in dierentiable learning methods that act on
continuous spaces. The concept of Graph Neural Networks (GNNs) is a remedy to this limitation.
The idea of GNNs as an iterative process which propagates the node states until an equilibrium
is reached, was initially mentioned in 2005 by Gori et al. (2005). Motivated by the increasing
popularity of CNNs, Bruna et al. (2014) and Hena et al. (2015) dened graph convolutions
in the Fourier domain by utilizing the graph Laplacian. The modern interpretation of GNNs
was rst mentioned in Li et al. (2016), Niepert et al. (2016), and Kipf and Welling (2017) where
node information was inductively updated through aggregating information of each node’s
neighborhood. This approach was further specied and generalized by Hamilton et al. (2017)
and Gilmer et al. (2017).

The research in GNNs enabled breakthroughs in multiple areas related to graph analysis
such as computer vision (Xu et al., 2017; Landrieu and Simonovsky, 2018; Yi et al., 2017), natural
language processing (Bastings et al., 2017), recommender systems (Monti et al., 2017), chemistry
(Gilmer et al., 2017) and others.

2.2.1 Preliminaries

In the following, we introduce the notation of GNN models. Note, since we consider neural
networks as graphs, these graphs are directed and acyclic. In the course of the thesis, we retain
this assumption unless stated otherwise. Let 𝐺 = (𝑉, 𝐸) be a directed acyclic graph with nodes
𝑣 ∈ 𝑉 and edges 𝑒 ∈ 𝐸 ⊂ 𝑉 ×𝑉 . GNNs are used to learn node representation vectors h𝑣 for each
node 𝑣 ∈ 𝑉 , and based on these node representations, we can also use GNNs to learn a graph
representation vector h𝐺 .

Standard GNNs can be seen as a two-step procedure. In the rst step the GNN learns a
representation for each node v ∈ 𝑉 , by iteratively aggregating the representations of neighboring
nodes using an aggregation functionA(·). Then it updates the representation with the update
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functionU(·). After 𝐾 rounds of iterations, the nal representation of each node v is computed.
The second step computes a graph representation h𝐺 by aggregating the node representations.

For the next detailed information, we follow the notation in Xu et al. (2019).

Node Representation

The rst step in a GNN is the node information propagation. For that, we rst denote V(𝑣) =
{𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} as a set of adjacent nodes to 𝑣. For each node 𝑣 ∈ 𝑉 , we associate an initial
node embedding h(0)𝑣 ∈ R𝑑𝑛 . GNNs iteratively aggregate node representations of a node’s neighbor,
followed by a representation update for 𝑘 iterations. The 𝑘 iterations of these aggregation-update
steps capture the 𝑘-hop neighborhood information for each node 𝑣. The aggregation and update
step, sometimes also calledmessage passing process, can be written as (Xu et al., 2019):

a(𝑘)𝑣 = A (𝑘)
({
h(𝑘−1)𝑢 : 𝑢 ∈ V(𝑣)

})
, (2.2)

h(𝑘)𝑣 = U (𝑘)
(
h(𝑘−1)𝑣 , a(𝑘)𝑣

)
, (2.3)

with A(·) being dierentiable, permutation invariant aggregation function, U(·) being a
dierentiable update module and h(𝑘)𝑣 the node representation of node 𝑣 after 𝑘 iteration steps.

Graph Representation

After the nal round of message passing, the propagated node representations
(
h(𝐾)𝑣

)
𝑣∈𝑉 are used

to compute the overall graph representation:

h𝐺 = READOUT
({
h(𝐾)𝑣

��𝑣 ∈ 𝑉}) , (2.4)

h𝐺 ∈ R𝑑𝑔 and where READOUT can be a simple summation as in Xu et al. (2019).

2.3 Technical Background

This section provides technical background on Bayesian optimization and variational autoencoder.

2.3.1 Bayesian Optimization

Given a function 𝑓 : X → R, X ⊂ R𝑑 a compact set, we can dene Bayesian optimization (BO) as
an optimization problem to globally solve:

max
x∈X

𝑓 (x). (2.5)

The function 𝑓 is often assumed to be a black-box function, with no known structure and
no simple closed form. Typically 𝑓 is expensive to evaluate and outputs noisy evaluations
𝑦 ∈ R, 𝑦 = 𝑓 (x) + 𝜀, 𝜀 ∼ N(0, 𝜎2), with expected objective function value E[ 𝑦 | 𝑓 (x)] = 𝑓 (x)
(Shahriari et al., 2016).

In the setting of NAS, the optimization problem aims to nd an architecture

x∗ = arg max
x∈X

𝑓 (x),
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Algorithm 1: Bayesian Optimization
Input: (i) data 𝐷𝑁−1 = {(x𝑛, 𝑦𝑛)}𝑁−1𝑛=1
Input: (ii) objective function 𝑓

Input: (iii) probabilistic distribution function P
Input: (iv) acquisition function 𝑎
Input: (v) data query budget 𝑇

1 for 𝑁 ≤ 𝑇 do
2 t posterior distribution P on data 𝐷𝑁−1
3 use acquisition function to sample x𝑁 = argmaxx∈X 𝑎 P( 𝑓 |𝐷𝑁−1) (𝑥)
4 evaluate 𝑦𝑁 = 𝑓 (x𝑁 ) + 𝜀
5 augment data 𝐷𝑁 ← 𝐷𝑁−1 ∪ (x𝑁 , 𝑦𝑁 )
6 𝑁 ← 𝑁 + 1
7 end

where x∗ is the global optimal architecture in X and 𝑓 (x) is the validation performance of x
evaluated on a task of interest with data 𝐷, e.g., image classication on CIFAR-10 (Krizhevsky,
2009), see Denition 1.

BO models the black-box function 𝑓 via a probabilistic surrogate model and exploits this
surrogate model to nd the next location in X for evaluation by means of the objective function 𝑓 .

The prior distribution P( 𝑓 ) captures prior beliefs about the function 𝑓 . Given observed
data 𝐷𝑁 = {(x𝑛, y𝑛)}𝑁𝑛=1 and the likelihood P(𝐷𝑁 | 𝑓 ), the posterior distribution P( 𝑓 |𝐷𝑁 ) can be
calculated based on Bayes’ theorem for tractable probabilistic models. This posterior distribution
represents updated beliefs about 𝑓 .

This posterior distribution is now used to nd the next location in X to be sampled. This is
done by constructing an acquisition function 𝑎P( 𝑓 |𝐷𝑁 ) : X → R based on the current posterior.
The acquisition function trades o exploration and exploitation, where the former introduces
locations, in which the surrogate function is uncertain, and the latter focuses on locations with
high expected objective function values.

Having now both components at hand, the overall Bayesian optimization process is an iterative
process by updating the posterior distribution with new datapoints proposed by the acquisition
function. The iterative process is described in Algorithm 1 (Brochu et al., 2010).

Probabilistic Model

As discussed in the previous part, BO constructs a probabilistic model P( 𝑓 ) of the objective
function 𝑓 . In the following we will give more details about Gaussian processes and its sparse
variant as probabilistic models.

Gaussian Processes The most common choice for the prior probabilistic model P( 𝑓 ) are Gaus-
sian processes (GP) (Rasmussen andWilliams, 2006; Osborne et al., 2008). A GP is a collection of ran-
dom variables, such that any nite number of random variables follows a multivariate Gaussian
distribution (Rasmussen and Williams, 2006). A GP is completely dened by its mean 𝑚 : X → R
and covariance function (also known as kernel) between two points 𝐾 (x, x′) : X×X → R, andmay
be denoted by 𝐺𝑃𝑚,𝐾 = (𝐺𝑃𝑚,𝐾 (x))x∈X . For xed x ∈ X, 𝐺𝑃𝑚,𝐾 (x) returns a normally distributed
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random variable withmean𝑚(x) and variance 𝐾 (x, x) and formultiple x1, . . . , x𝑁 ∈ X, the vector
(𝐺𝑃𝑚,𝐾 (x𝑖))𝑖=1,...,𝑁 is multivariate Gaussian with distributionN((𝑚(x𝑖)𝑖=1,...,𝑁 , (𝐾 (xi, x 𝑗))𝑖, 𝑗=1,...,𝑁 ).
The dependence structure at dierent locations is therefore captured by the covariance kernel 𝐾 .
The mean 𝑚(x) is often set to 0 for all x ∈ X, in which case the GP is said to be centered.

A popular choice for the covariance function 𝐾 (x, x′) is the Radial Basis Function (RBF):

𝐾𝜃(x, x′) = 𝜈 exp
(
− ‖x − x

′‖2
2𝑙

)
, 𝜃 = (𝜈, 𝑙). (2.6)

This covariance functions approaches 𝜈 for close inputs, and quickly converges to 0 as the distance
increases, thus expressing weak dependence between inputs at suciently distinct locations. This
covariance function depends on internal kernel hyperparameter 𝜈 > 0, 𝑙 > 0, where 𝑙 changes
the length-scale and 𝜈 controls the overall variance of the process. For the sake of presentation,
we x this covariance kernel in the following.

Given data 𝐷𝑁 = {(x𝑛, 𝑦𝑛)}𝑁𝑛=1 = (X, y), with 𝑦𝑛 = 𝑓 (x𝑛) + 𝜀𝑛 with (𝜀𝑛) ∼ N (0, 𝜎21) inde-
pendent of f B ( 𝑓 (x𝑛))𝑛=1,...,𝑁 , we aim to model and update the prior model for the function
evaluation f∗ = 𝑓 (x∗) for some new data point x∗ ∈ X by means of Bayes’ rule.

The following is based on Snelson and Ghahramani (2005) and Rasmussen and Williams
(2006). Let K𝜃𝑁 = 𝐾𝜃(X,X) B (𝐾𝜃(x𝑖 , x 𝑗))𝑖, 𝑗=1,...,𝑁 , 𝐾𝜃X∗ B 𝐾𝜃(X, x∗) ∈ R𝑁×1 and 𝐾𝜃∗∗ B 𝐾𝜃(x∗, x∗).
We assume the prior on (f , f∗) to be

P𝜃,𝜎 ((f , f∗) |X, x∗) = N
(
0,
[

K𝜃𝑁 𝐾𝜃X∗
(𝐾𝜃X∗)> 𝐾𝜃∗∗

] )
.

Let the noisy observation 𝑦∗ at location x∗ be given by 𝑦∗ = 𝑓 (x∗)+𝜀with 𝜀 ∼ N(0, 𝜎2) indepen-
dent of (𝜀𝑛). By the noise assumptions the conditional distribution of (y, 𝑦∗) given the noise-free
function evaluations (f , f∗) is Gaussian P((y, 𝑦∗) |f , f∗) = N((f , f∗), 𝜎21), and the marginal likeli-
hood of the noisy observations y is given by

𝑝𝜃,𝜎 (y|X) = N(y|0,K𝜃𝑁 + 𝜎21). (2.7)

Themarginal likelihood as a function of the hyperparameters (𝜃, 𝜎) can be used as amaximization
objective to t the hyperparameters to the data using gradient descent (Snelson and Ghahramani,
2005).

Having determined (locally) optimal values (𝜃★, 𝜎★) for these hyperparameters, we can make
predictions for f∗ by using a closed form expression of the posterior based on Bayes’ rule (Ras-
mussen and Williams, 2006, Eq. 2.22-2.24):

P𝜃★,𝜎★ (f∗ |x∗,X, y) = N((𝐾
𝜃★
X∗)
>(K𝜃★𝑁 + 𝜎

2
★1)−1y, 𝐾

𝜃★
∗∗ − (𝐾𝜃★X∗)

>((K𝜃★𝑁 + 𝜎
2
★1)−1𝐾

𝜃★
X∗). (2.8)

The Gaussian predictive distribution for x∗ is accordingly given by

P𝜃★,𝜎★ ( 𝑦∗ |x∗,X, y) = N((𝐾
𝜃★
X∗)
>(K𝜃★𝑁 + 𝜎

2
★1)−1y, 𝜎2★ + 𝐾

𝜃★
∗∗ − (𝐾𝜃★X∗)

>(K𝜃★𝑁 + 𝜎
2
★1)−1𝐾

𝜃★
X∗). (2.9)

However, the inversion of the covariance matrix leads to training time of a Gaussian process of
order O(𝑁3) for 𝑁 training data (Snelson and Ghahramani, 2005), which is prohibitively large for
many applications. This motivates sparse Gaussian processes, which we introduce next.
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Sparse Gaussian Process Given the cubic training time, Snelson and Ghahramani (2005) in-
troduce sparse Gaussian processes (SGP), which introduce a small noise-free pseudo data set
𝐷𝑀 = {(x̃𝑚, 𝑓 (x̃𝑚))}𝑀𝑚=1 = (X̃, f̃), with 𝑀 � 𝑁 . For now let us assume the pseudo inputs to be
similarly distributed as the real data 𝐷𝑁 and accordingly place the same prior on the pseudo
targets f̃ , that is

P𝜃,𝜎 (̃f |X̃) = N(0,K𝜃𝑀 ), (2.10)

with K𝜃𝑀 = 𝐾𝜃(X̃, X̃). Likewise, the prior on (f , f̃) is given as the distribution of the Gaussian
process 𝐺𝑃0,𝐾𝜃 evaluated at locations (X, X̃). The corresponding likelihood for the target data y
conditioned on X and the complete pseudo data (X̃, f̃) then becomes

𝑝𝜃,𝜎 (y|X, X̃, f̃) = N(y|K𝜃𝑁𝑀 (K𝜃𝑀 )−1̃f ,Λ + 𝜎21), (2.11)

with K𝜃𝑁𝑀 = 𝐾𝜃(X, X̃), Λ = diag((𝜆𝑛)𝑛=1,...,𝑁 ), where

𝜆𝑛 = 𝐾𝜃(x𝑛, x𝑛) − (k𝜃𝑛)>(K𝜃𝑀 )−1k𝜃𝑛, (k𝜃𝑛)> = (𝐾𝜃(x̃𝑚, x𝑛))𝑚=1,...,𝑀 .

The next step now is to nd the posterior distribution given the prior (Equation (2.10)) and
the likelihood (Equation (2.11)). According to Bayes’ rule the pseudo target posterior is given by

P𝜃,𝜎 (̃f |X, y, X̃) = N(K𝜃𝑀 (Q𝜃
𝑀 )−1K𝜃𝑀𝑁 (Λ + 𝜎21)−1y, K𝜃𝑀 (Q𝜃

𝑀 )−1K𝜃𝑀 ), (2.12)

where Q𝜃
𝑀 = K𝜃𝑀 +K𝜃𝑀𝑁 (Λ+ 𝜎21)−1K𝜃𝑁𝑀 . We assume for now, that the pseudo inputs X̃ and (locally

optimized) hyperparameters (𝜃★, 𝜎★) are given. Therefore, we can make predictions for a new
data point x∗ ∈ X, with noisy target 𝑦∗ = 𝑓 (x∗) + 𝜀, with 𝜀 ∼ N(0, 𝜎2★), by using the predictive
distribution

P𝜃★,𝜎★ ( 𝑦∗ |x∗,X, y, X̃) = N(𝜇∗, 𝜍2∗),
𝜇∗ B 𝐾𝜃★ (X̃, x∗)>(Q

𝜃★
𝑀 )
−1K𝜃★𝑀𝑁 (Λ + 𝜎

2
★1)−1y,

𝜍2∗ = 𝐾𝜃★ (x∗, x∗) + 𝐾𝜃★ (X̃, x∗)>((K
𝜃★
𝑀 )
−1 − (Q𝜃★

𝑀 )
−1)𝐾𝜃★ (X̃, x∗) + 𝜎2★.

(2.13)

Since the matrix Λ + 𝜎21 is diagonal its inversion costs are negligible, whereas inversion of
the lower dimensional matrices K𝜃∗𝑀 and Q𝜃★

𝑀 of order O(𝑀3) such that the total costs are now
dominated by the matrix multiplication costs of order O(𝑀𝑁2) that are required to obtain Q★𝑀 .
In total the training time can be reduced from O(𝑁3) to O(𝑀2𝑁), which is a highly signicant
advantage for small 𝑀 compared to standard GP.

As for the standard GP, the marginal likelihood of the noisy observations y can be used to
determine (locally) optimal hyperparameters (𝜃★, 𝜎★). Given Equation (2.10) and Equation (2.11),
the marginal likelihood becomes

𝑝𝜃,𝜎 (y|X, X̃) = N(y|0,K𝜃𝑁𝑀 (K𝜃𝑀 )−1K𝜃𝑀𝑁 + Λ + 𝜎21). (2.14)

In contrast to Equation (2.7), the true kernel is replaced by an approximated pseudo input depen-
dent kernel in Equation (2.14) sharing the same diagonal entries. The inducing points X̃ must
therefore be considered as additional kernel hyperparameters that need to be tted additionally to
the kernel parameters in Equation (2.10). As a result, we need to jointly optimize the much larger
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set of hyperparameters {X̃, 𝜃, 𝜎}. SGP therefore trades o reduced computational complexity for
the determination of the posterior with increased hyperparameter tuning costs, with the latter
being a common source of overtting when simple gradient descent methods are used.

To overcome this issue, for example, Titsias (2009) propose a variational approach tomaximize
an appropriate lower bound of the true marginal likelihood, thereby treating X̃ as variational
hyperparameters instead of additional kernel hyperparameters.

Acquisition Function

The second component for Bayesian optimization is the acquisition function. The acquisition func-
tion trades o exploration of regions where our probabilistic model is uncertain and exploitation
regions, where our probabilistic model expects a high objective function value. The most popular
functions are:

Expected Improvement The expected improvement acquisition function (EI) (Mockus et al.,
1978; Jones et al., 1998) is the most used one and is dened as:

𝑎EIP( 𝑓 |𝐷𝑁 ) (x) = EP( 𝑓 |𝐷𝑁 ) [max( 𝑓 (x) − 𝑦+, 0)], (2.15)

with 𝑦+ = max( 𝑦0, . . . , 𝑦𝑁 ) being the best observed function value at time 𝑁 . In case of a Gaussian
posterior distribution P( 𝑓 |𝐷𝑁 ), for example if the probabilistic function is a Gaussian process,
the expected improvement can be calculated in a closed form (Brochu et al., 2010):

𝑎EIP( 𝑓 |𝐷𝑁 ) (x) = (𝜇(x) − 𝑦
+)Φ(𝑍) + 𝜎(x)𝜙(𝑍),

𝑍 =
𝜇(x) − 𝑦+
𝜎(x)

(2.16)

with 𝜇(x) and 𝜎(x) being the mean and standard deviation of the probabilistic model at x,
and 𝜙(·) and Φ(·) being the PDF and CDF of the standard normal distribution.

Upper Condence Bound Upper condence bound (UCB)(Cox and John, 1992; Brochu et al.,
2010) computes:

𝑎UCBP( 𝑓 |𝐷𝑁 ) (x) = 𝜇(x) + 𝜃𝜎(x), (2.17)

with 𝜃 ≥ 0 being an exploration-exploitation hyperparameter.

Probabilistic Improvement Probabilistic improvement (PI) (Jones et al., 1998) calculates the
probability of exceeding the current best function value 𝑦+:

𝑎PIP( 𝑓 |𝐷𝑁 ) (x) = Φ( 𝑦+). (2.18)

2.3.2 Variational Autoencoder

In this section, wewill provide an in-depth overview of variational autoencoder (VAE) as presented
by Kingma and Welling (2014).

Given i.i.d. data X = {x𝑛}𝑁𝑛=1 ∈ X, we are interested in learning a continuous latent space
Z ∈ R𝐽 , 𝐽 � 𝑑, involving a dimensionality reduction. This process consists of a generative
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model 𝑝𝜃(x|z) implemented as a neural network, given some prior distribution 𝑝𝜃(z) and a
recognition model 𝑝𝜃(z|x), which we also implement as a neural network. Using the Bayes’ rule,
the recognition model (posterior) can be written as:

𝑝𝜃(z|x) =
𝑝𝜃(x|z)𝑝𝜃(z)

𝑝𝜃(x)
, (2.19)

with the margin likelihood 𝑝𝜃(x) =
∫
𝑝𝜃(x|z)𝑝𝜃(z)𝑑𝑧 being intractable in the case of neural

networks. This leads in total to an intractable true posterior.
In order to solve the intractability, Kingma andWelling (2014)make use of variational inference

(see Blei et al. (2017) for a review), which can be posed as the problem of nding a model 𝑞𝜙(z|x)
which approximates the true intractable posterior 𝑝𝜃(z|x):

𝑞𝜙(z|x) = arg min
𝑞

𝐷𝐾𝐿(𝑞𝜙(z|x)‖𝑝𝜃(z|x)), (2.20)

with 𝐷𝐾𝐿 being the Kullback–Leibler divergence (Sullivan, 2015).

Denition 3 (Kullback–Leibler Divergence). The Kullback–Leibler divergence 𝐷𝐾𝐿 between two
densities 𝑞 : R𝑛 → [0,∞) and 𝑝 : R𝑛 → [0,∞) is dened as:

𝐷𝐾𝐿(𝑞‖𝑝) =
∫

𝑞(𝑧)log 𝑝(𝑧)
𝑞(𝑧) 𝑑𝑧

= E𝑞(𝑧)

[
log

𝑝(𝑧)
𝑞(𝑧)

]
,

(2.21)

with E𝑞(𝑧) [ 𝑓 (𝑧)] B
∫
𝑓 (𝑧)𝑞(𝑧)𝑑𝑧.

Rewriting Equation (2.20) using Denition 3 leads to:

𝐷𝐾𝐿(𝑞𝜙(z|x)‖𝑝𝜃(z|x)) = E𝑞𝜙 (z |x)
[
log

𝑞𝜙(z|x)
𝑝𝜃(z|x)

]
= E𝑞𝜙 (z |x) [log 𝑞𝜙(z|x)] − E𝑞𝜙 (z |x) [log 𝑝𝜃(z|x)]
= E𝑞𝜙 (z |x) [log 𝑞𝜙(z|x)] − E𝑞𝜙 (z |x) [log 𝑝𝜃(z, x)] + log𝑝𝜃(x).

(2.22)

Therefore, we can rewrite the Kullback–Leibler divergence in terms of the marginal log-likelihood
log 𝑝𝜃(x), and thus rewrite the latter as following:

log 𝑝𝜃(x) = 𝐷𝐾𝐿(𝑞𝜙(z|x)‖𝑝𝜃(z|x)) − E𝑞𝜙 (z |x) [log 𝑞𝜙(z|x)] + E𝑞𝜙 (z |x) [log 𝑝𝜃(z, x)]
≥ −E𝑞𝜙 (z |x) [log 𝑞𝜙(z|x)] + E𝑞𝜙 (z |x) [log 𝑝𝜃(z, x)]
= −E𝑞𝜙 (z |x) [log 𝑞𝜙(z|x)] + E𝑞𝜙 (z |x) [log 𝑝𝜃(z)] + E𝑞𝜙 (z |x) [log 𝑝𝜃(x|z)]
= E𝑞𝜙 (z |x) [log 𝑝𝜃(x|z)] − 𝐷𝐾𝐿(𝑞𝜙(z|x)‖𝑝𝜃(z)),

(2.23)

with 𝐷𝐾𝐿 ≥ 0 by denition. The right-hand side of the last equation of Equation (2.23) is known
as the variational lower bound (ELBO) on the marginal likelihood. Therefore, the intractable
marginal likelihood can now be approximated by its variational lower bound, which we write as:

L(𝜃, 𝜙;x) = E𝑞𝜙 (z |x) [log 𝑝𝜃(x|z)] − 𝐷𝐾𝐿(𝑞𝜙(z|x)‖𝑝𝜃(z)). (2.24)
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In total, for a variational autoencoder with a probabilistic encoder model 𝑞𝜙(z|x) and a
probabilistic decoder 𝑝𝜃(x|z), the goal is to dierentiate and optimize the variational lower bound
w.r.t both 𝜙 and 𝜃. However, dierentiating the lower bound w.r.t 𝜙 in E𝑞𝜙 (z |x) [log 𝑝𝜃(x|z)] is
problematic since that would involve dierentiation through a sample z ∼ 𝑞𝜙(z|x). Therefore, an
ecient gradient estimator as Monte Carlo is needed:

∇𝜙E𝑞𝜙 (z) [ 𝑓 (z)] = E𝑞𝜙 (z) [ 𝑓 (z)∇𝑞𝜙 (z) log 𝑞𝜙(z)] '
1
𝐿

𝐿∑︁
𝑙=1

𝑓 (z)∇𝑞𝜙 (z𝑙) log 𝑞𝜙(z𝑙), (2.25)

with z𝑙 i.i.d samples from 𝑞𝜙(z|x𝑙). As mentioned in Kingma and Welling (2014), the variance
of this gradient estimator can become very large, which makes it an impractical estimator. As
a result, Kingma and Welling (2014) introduce a so-called reparameterization trick: Instead of
sampling z ∼ 𝑞𝜙(z|x), the random variable z will be expressed as a deterministic variable, using
a vector-valued function 𝑔𝜙(·) parameterized by 𝜙 and an auxiliary variable 𝜀 with independent
marginal 𝑝(𝜀):

z = 𝑔𝜙(𝜀, x). (2.26)

This way, the Monte Carlo estimate of the expectation, 1𝐿
∑𝐿
𝑙=1 𝑓 (𝑔𝜙(𝜀𝑙 , x)), with i.i.d. 𝜀𝑙 ∼ 𝑝(𝜀), is

dierentiable w.r.t 𝜙. Note, 𝐿 = 1 mostly in practice.
After introducing the essential steps in a variational autoencoder, we will describe the most

commonly used example of a Gaussian variational autoencoder. The prior is then dened as a
multivariate Gaussian 𝑝𝜃(z) = N(z|0,1) and the decoder model 𝑝𝜃(x|z) is also assumed to be
a multivariate Gaussian. Furthermore, the probabilistic encoder model 𝑞𝜙(z|x) is assumed to
be approximate Gaussian with a diagonal covariance matrix, i.e., has densityN(z|𝜇(x), 𝜎2(x)1),
where the mean 𝜇 and the variance 𝜎2 are outputs of the neural network. As previously discussed,
we now use the reparameterization trick for a sample zn,l.

zn,l = 𝑔𝜙(𝜀𝑙 , x𝑛) = 𝜇(x𝑛) + 𝜎(x𝑛)𝜀𝑙 ,

with 𝜀𝑙 ∼ N(0,1).
Since both models 𝑞𝜙(z|x𝑛) and 𝑝𝜃(z) are Gaussian, the Kullback–Leibler divergence can be

computed in a closed form. Overall, given a sample x𝑛, the resulting objective from Equation (2.24)
takes the form

L(𝜃, 𝜙;x𝑛) =
1
𝐿

𝐿∑︁
𝑙=1

log 𝑝𝜃(x𝑛 |zn,l) +
1
2

𝐽∑︁
𝑗=1

(
1 + log 𝜎 𝑗 (x𝑛)2 + 𝜇 𝑗 (x𝑛)2 − 𝜎 𝑗 (x𝑛)2

)
, (2.27)

with 𝐽 being the dimensionality of z, and 𝜇(x𝑛) = (𝜇 𝑗 (x𝑛)) 𝑗=1,...,𝐽 and 𝜎(x𝑛) = (𝜎 𝑗 (x𝑛)) 𝑗=1,...,𝐽 denote
the variational mean and standard deviation evaluated at x𝑛, respectively. The parameters 𝜃 and
𝜙 are optimized by maximizing Equation (2.27). Summarize again, the rst term of Equation (2.27)
is the reconstruction loss and enforces high similarity between input data and generated data,
while the second term is the Kullback–Leibler divergence, which regularizes the latent space.
From the trained VAE, new data can be generated by simply decoding latent space variables z
sampled from the prior distribution 𝑝(z).
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Algorithm 2: Bayesian Optimization in the Latent Space
Input: (i) data 𝐷𝑁−1 = {(x𝑛, 𝑓 (x𝑛))}𝑁−1𝑛=1
Input: (ii) objective function 𝑓

Input: (iii) latent objective model ℎ
Input: (iv) acquisition function 𝑎
Input: (v) data query budget 𝑇
Input: (vi) generative and inverse model 𝑝, 𝑞 trained on X = {x𝑛}𝑁𝑛=1

1 for 𝑁 ≤ 𝑇 do
2 compute latent variablesZX = {𝑞(x) = z}x∈𝐷𝑁−1
3 t latent objective model ℎ on dataZX and 𝐷𝑁−1
4 use acquisition function to sample z̃ = argmaxz∈R𝐽 𝑎ℎ(z)
5 obtain x𝑁 = 𝑝(̃z) and evaluate 𝑓 (x𝑁 )
6 augment data 𝐷𝑁 ← 𝐷𝑁−1 ∪ (x𝑁 , 𝑦𝑁 )
7 𝑁 ← 𝑁 + 1
8 end

Optimization in the Latent Space

We now provide more information about how a latent space, especially one generated by a VAE,
can be further used for optimization approaches such as Bayesian optimization.

Optimization in the latent space has emerged in several tasks in recent years, as molecular
designs (Gómez-Bombarelli et al., 2018; Kusner et al., 2017; Jin et al., 2018) and NAS (Luo et al.,
2018; Zhang et al., 2019; Yan et al., 2020). This optimization is a two-step procedure (Tripp et al.,
2020): rst, we learn a mapping from a continuous latent spaceZ ∈ R𝐽 to the original data space
X using a generative model, e.g., the decoder from the previously introduced VAE, 𝑝 : Z → X
Second, we learn a latent objective model ℎ : Z → R, which approximates the black-box-function
𝑓 : X → R as a surrogate model at the output of 𝑝, s.t. 𝑓 (𝑝(z)) ≈ ℎ(z),∀z ∈ Z. This latent
objective model can be learned by using an inverse of the generative model (the encoder model
in a VAE setting), i.e., 𝑞 : X → Z. In the case of applying Bayesian optimization in this setting, the
latter latent objective function ℎ is commonly a Gaussian process, as introduced in Section 2.3.1.
An overview is provided in Algorithm 2.
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Graph Neural Network-based Prediction Model

3The overwhelming success of convolutional neural architectures is due to the increasing avail-
ability of training data and compute resources, which have ultimately allowed the design of

new architectures that surpass human performance. Neural Architecture Search, as introduced
in Section 2.1, is the next step in automating the process of topology design of architectures. Of
particular note is the publication of the benchmark NAS-Bench-101 (Ying et al., 2019), which is
the foundation for this chapter.

In this chapter, we rst tackle the task of learning to predict the accuracy of convolutional
neural architectures in a supervised way, i.e., we learn a surrogate model that enables to predict
the performance of neural architectures on the CIFAR-10 image classication task (Krizhevsky,
2009). Furthermore, we evaluate our proposed model on two dierent zero-shot prediction
scenarios and show its ability to accurately predict performances in previously unseen regions
of the search space. Therefore, this chapter contributes to the NAS research part performance
estimation strategy.

Most current neural architectures for computer vision can be represented as directed acyclic
graphs (DAGs). Thus, using Graph Neural Networks (GNNs) as introduced in Section 2.2 is an
obvious choice. The capability of GNNs to accurately model dependencies between nodes makes
them the foundation of this chapter. We utilize them to move from the discrete graph space to the
continuous space. More precisely, we show the ability of GNNs to encode neural architectures from
NAS-Bench-101 (Ying et al., 2019) such as to allow for a regression of their expected performance.
The ability of GNNs to comprehend local node features and graph substructures makes them a
very useful tool to embed nodes as well as complete graphs like the NAS-Bench-101 architectures
into continuous spaces. Furthermore, the benet of GNNs over Recurrent Neural Networks (RNNs)
has been shown in the context of graph generating models. The model Deep Generative Models of
Graphs (DGMG) (Li et al., 2018b) utilizes GNNs and shows dominance over RNN methods. DGMG
can capture the structure of graph data and its attributes so that probabilistic dependencies within
graph nodes and edges can be expressed, yielding in learning a distribution over any graph. This
makes DGMG a strong tool for mapping neural architectures into a feature representation that
captures the complex relation within the neural architecture. Inspired by the GNN in Li et al.
(2018b), we utilize it as our surrogate model for the performance prediction task.

In summary, in this chapter, we make the following contributions:

• We present a surrogate model– a graph encoder built on GNNs– for neural architecture
performance prediction trained and evaluated on NAS-Bench-101 architectures with the
target to predict the validation and test accuracy.

• We show that this performance predictor accurately predicts architecture performances
in previously structurally dierent and unseen regions of the search space, i.e., our model
enables zero-shot prediction.

The remaining chapter is structured as follows: We present our proposed encoder model in
Section 3.1. In Section 3.2, we present our experiments and results. Finally, we give a conclusion
and outline future directions in Section 3.3.
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READOUT rounds of
propagation

Figure 3.1: Illustration of the graph encoding process. (left) The node-level propagation using 𝑇
rounds of bidirectional message passing. (right) The graph-level aggregation into a single graph
embedding h𝐺 .

This chapter is a slightly modied version of the paper J. Lukasik et al. (2020a). “Neural
Architecture Performance Prediction Using Graph Neural Networks”. In: Proc. of the German
Conference on Pattern Recognition (GCPR). The code for this chapter is available on GitHub1.

3.1 The Graph Encoder

In this section we present our GNN-based model to encode the discrete graph space of NAS-Bench-
101 (Ying et al., 2019) into a continuous vector space. We nd that the settings similar to Li et al.
(2018b) work best for our needs.

3.1.1 Node-Level Propagation

As introduced in Section 2.2.1, we dene a neural network as a DAG 𝐺 = (𝑉, 𝐸). Here, we
furthermore denoteV (𝑜𝑢𝑡) (𝑣) = {𝑢 ∈ 𝑉 | (𝑣, 𝑢) ∈ 𝐸} as an additional set of adjacent nodes to node
𝑣 ∈ 𝑉 with outgoing edges.

For each node 𝑣 ∈ 𝑉 , we associate an initial node embedding h(0)𝑣 ∈ R𝑑𝑛 . Instead of using
one-hot encoded node labels in combination with an additional neural network to learn these
initial node embeddings, we employ a learnable embedding table L𝑒 on the node types (i.e., indices
of the one-hot encoded node labels), which stores embeddings for our initial node embeddings
h(0)𝑣 .

The aggregation module A as presented in Section 2.2.1 Equation (2.2) is in this section
formulated as:

a(𝑘)𝑣 = A (𝑘)
({
h(𝑘−1)𝑢 : 𝑢 ∈ V(𝑣)

})
=

∑︁
𝑢∈V(𝑣)

𝑓
(
h(𝑘−1)𝑢 ,h(𝑘−1)𝑣

)
=

∑︁
𝑢∈V(𝑣)

fc
(
CONCAT

( [
h(𝑘−1)𝑢 ,h(𝑘−1)𝑣

] ))
,

(3.1)

1https://github.com/jovitalukasik/GNN predictor

https://github.com/jovitalukasik/GNN_predictor
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where fc is a single fully connected layer. The message passing is illustrated by the green arrows
in Figure 3.1 (left). In addition, we add a reverse message module:

a(𝑜𝑢𝑡)
(𝑘)
𝑣 =

∑︁
𝑢∈V (𝑜𝑢𝑡) (𝑣)

𝑓 (𝑜𝑢𝑡)
(
h(𝑘−1)𝑢 ,h(𝑘−1)𝑣

)
=

∑︁
𝑢∈V (𝑜𝑢𝑡) (𝑣)

fc(𝑜𝑢𝑡)
(
CONCAT

( [
h(𝑘−1)𝑢 ,h(𝑘−1)𝑣

] ))
,

(3.2)

with fc(𝑜𝑢𝑡) being also a single fully connected layer.
The reverse message passing is outlined in Figure 3.1 (left) by the red arrows and leads to

so-called bidirectional message passing. This step allows us to not only aggregate incoming
node information, but also aggregate outgoing information, thus providing more details on the
information ow in the graph. This ultimately leads to better information aggregation.

Including both directions of aggregations leads to the following update moduleU (𝑘) based on
Equation (2.3):

h(𝑘)𝑣 = U (𝑘)
(
h(𝑘−1)𝑣 , a(𝑘)𝑣 + a(𝑜𝑢𝑡)

(𝑘)
𝑣

)
, (3.3)

where the second term a(𝑘)𝑣 + a(𝑜𝑢𝑡)
(𝑘)
𝑣 aggregates the messages in both directions, forward propa-

gation as in the directed graph as well as the reverse propagation, at each node 𝑣. We setU as a
single gated recurrent unit (GRU) (Cho et al., 2014) where h(𝑘−1)𝑣 is treated as the hidden state.

3.1.2 Graph-Level Aggregation

After the nal round of message passing, the propagated node embeddings h(𝐾)𝑣 are aggregated
into a single graph embedding h𝐺 ∈ R𝑑𝑔 as presented Equation (2.4). We set READOUT as:

h𝐺 =
∑︁
𝑣∈𝑉

fc
(
h(𝐾)𝑣

)
� 𝜎

(
fc
(
h(𝐾)𝑣

))
(3.4)

with fc being a new single fully connected layer, 𝜎(fc(·)) being a separate gating layer, which is a
logistic sigmoid function combined with a fully connected layer, that adjusts each node’s fraction
in the graph embedding, and � denoting the Hadamard product. This graph aggregation layer in
Equation (3.4) is further illustrated in Figure 3.1 (right).

3.2 Experiments

We conduct experiments in three complementary domains. First, we evaluate the performance
prediction ability of the proposed GNN in the traditional supervised setting. Then, we conduct
zero-shot prediction experiments in order to show the performance of the proposed model for
unseen graph structures during training. Both experiments are carried out on the validation
accuracies reported in NAS-Bench-101. Last, we compare our results to the recent publication by
Tang et al. (2020) in terms of test accuracy prediction.

Implementation Details.

We split the architectures in NAS-Bench-101 in 70%/ 20%/ 10% edit-sampled into training-, test-
and validation set. We provide further visualization of the NAS-Bench-101 search space in Ap-
pendix A.1, and further detailed information about the used hyperparameters in Appendix B.1.
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Figure 3.2: (left) The predicted and ground truth validation accuracy (in %) of 100 randomly
sampled graphs from NAS-Bench-101 show a low prediction error for graphs with high accuracy.
For low-accuracy architectures, our model mostly predicts low values. (right) The mean and
variance of the squared error of the test set performance prediction sorted by the ground truth
validation accuracy (in %) in logarithmic scale. Predictions are very reliable for architectures in
the high accuracy domain, while errors are higher for very low-performing architectures.

Surrogate Model Supervised Performance Prediction
(RMSE in 10−2) ↓

Random Forest Width-Depth Feature Encoding 6.10 ± 0.40%
Random Forest One-Hot Encoding 6.32 ± 0.01%

MLP One-Hot Encoding 6.32 ± 0.02%
RNN One-Hot Encoding 6.30 ± 0.01%
GNN Encoder (ours) 4.86 ± 0.10%

Table 3.1: Predictive performance of the GNN encoder in terms of RMSE on supervised validation
performance prediction on NAS-Bench-101.

3.2.1 Performance Prediction

Supervised Performance Prediction.

Here, we evaluate the latent space generated by the encoder with respect to its prediction error
regarding a metric of interest of the NAS-Bench-101 graphs, i.e., the validation accuracy on CIFAR-
10 (Krizhevsky, 2009). For this purpose, we utilize a simple predictor, i.e., a four-layer Multilayer
Perceptron (MLP) with ReLU non-linearities.

We jointly train the encoder and the predictor supervisedly end-to-end. We test for prediction
as well as for zero-shot prediction errors. There are a few outliers in the NAS-Bench-101 graphs
that end up with a low validation accuracy on the CIFAR-10 classication task. Figure 3.2 (left)
visualizes these outliers and shows that our model is able to nd them even if it cannot perfectly
predict their accuracies. One can see that the model very accurately predicts the validation
accuracy of well-performing graphs. To further explore the loss, Figure 3.2 (right) illustrates the
mean and variance of the squared error of the test set partitioned in 9 bins with respect to the
ground truth accuracy of the complete test set. The greater part of the loss arises from graphs
with low accuracy. More importantly, our model is very accurate in predicting graphs of interest,
namely graphs with high accuracy.

The rather bad prediction of graphs with low and intermediate accuracy can be explained
through their low share in the search space, as discussed in Section 2.1.6 and Figure 2.5. Taking a
look at the distribution of the individual accuracies in the overall NAS-Bench-101 search space,
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Figure 3.3: Distinct properties of NAS-Bench-101. (left) The allocation of the architectures sorted
by the ground truth accuracy in % in logarithmic scale ∼98.8% in the two last bins. NAS-Bench-
101 validation and test accuracy behavior on the CIFAR-10 image classication task. (middle)
Validation accuracy in % compared to the test accuracy in % of the neural architectures in NAS-
Bench-101. (right) A more precise look into the areas of interest for neural architectures displays
that the best neural architecture by means of the test accuracy is unequal to the best accuracy by
means of the validation accuracy.

Surrogate Model Zero-Shot Performance Prediction
(RMSE in 10−2) ↓

2, 3, 4, 5, 7 − 6 2, 3, 4, 5, 6 − 7

Random Forest Width-Depth Feature Encoding 6.00 ± 0.20% 7.30 ± 0.5%
Random Forest One-Hot Encoding 7.00 ± 0.04% 6.30 ± 0.1%

MLP One-Hot Encoding 6.47 ± 2.40% 9.40 ± 12.7%
RNN One-Hot Encoding 6.20 ± 4.70% 6.90 ± 3.3%
GNN Encoder (ours) 5.23 ± 3.90% 5.73 ± 1.7%

Table 3.2: Predictive performance of the GNN encoder in terms of RMSE on the two dierent
zero-shot validation performance prediction tasks on NAS-Bench-101.

as shown in Figure 3.3 (left), illustrates the low share of low and intermediate accuracies and
explains, therefore, the rather bad prediction behavior of our surrogate model. Figure 3.3 (middle)
and Figure 3.3 (right) plot the validation accuracy compared to the test accuracy in NAS-Bench-
101. This gure illustrates that predicting the best architecture on the validation set does not
necessarily imply a proper prediction on the test set.

We compare the results of the encoder to several baselines. Our baselines are a random
forest approach and also an MLP regression model with four layers, using one-hot node feature
encodings and graph depth/width feature encodings. In order to compare to an RNN baseline, we
adapted the RNN-surrogate model from Liu et al. (2018a), which only handles cells of equal length.
For the application to NAS-Bench-101 with cell types of dierent lengths, we modify the node
attributes as one-hot vector encodings with 0-padding to ll up to seven nodes and ve operations.

Table 3.1 summarizes the performance prediction results on the supervised performance
prediction task. All experiments are repeated 3 times, and we report the mean and the relative
standard deviation. This experiments show that our surrogate model is able to predict the neural
architecture performances stably and outperforms all baselines in terms of RMSE, which denotes
the square root of the empirical squared loss between the predicted and ground truth data (MSE),
by a signicant margin.
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Zero-shot Performance Prediction.

Next, we consider the task of predicting the validation accuracy of structurally unknown graph
types, i.e., zero-shot prediction. The zero-shot prediction task is furthermore divided into two
subtasks. First, the encoder is trained on all graphs of length 2, 3, 4, 5, 7 and tested on graphs of
length 6. In this scenario, the unseen architectures could be understood as interpolations of seen
architectures. Second, we learn the encoder on graphs of length 2, 3, 4, 5, 6 and test it on graphs
of length 7. This case is expected to be more challenging not only because the graphs of length
7 are the clear majority and have the highest diversity but also because the prediction of their
performance is an extrapolation out of the seen training distribution.

Table 3.2 summarizes the performance prediction results on the zero-shot performance
prediction task. All experiments are repeated 3 times, and we report the mean and the relative
standard deviation. As expected, the resulting RMSE is slightly higher for the extrapolation
to graphs of length 7 than for the zero-shot prediction for graphs of length 6. Yet, the overall
prediction improves over all baselines by a signicant margin. The higher standard deviation
compared to the random forest baselines indicates that the performance of the GNN depends
more strongly on the weight initialization than in the fully supervised case. Yet, please note
that this dependence on the initialization is still signicantly lower than for the MLP and RNN
baselines. The experiments show that our surrogate model is able to accurately predict data that
it has never seen, i.e., that it can predict the accuracies even for architectures not represented by
the training distribution.

3.2.2 Training Behavior

In the following, we analyze the training behavior of ourmodel in the dierent scenarios described
above.

Supervised Performance Prediction.

For visualization aspects of the training behavior of our encoder, we plot the development of
the training loss against the validation loss for the supervised performance prediction from
Section 3.2.1. Figure 3.4 (left) displays this development of training loss against validation loss
measured by means of the RMSE. The smallest achieved RMSE is 0.0487 for training on 70% of all
architectures, i.e., 296 558 samples.

Zero-shot Performance Prediction.

The progress of the training loss and test error for the zero-shot prediction case of our encoder can
be seen in Figure 3.4 (middle, right). The training set containing all graphs of length 2, 3, 4, 5, 7 /
2, 3, 4, 5, 6 has a total amount of 361 614/64 542 samples. Thus, the encoder is tested only on graphs
of length 6/7, corresponding to a total of 62 010/359 082 neural architectures. The experiments
show that our model is able to accurately predict data that it has never seen before. The behavior
of the test error during the second zero-shot prediction task, see Figure 3.4 (right), displays
interesting information. During the rst epochs, the error rises before it starts decreasing and
approaching the training loss asymptotically. One interpretation could be that the model rst
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Figure 3.4: Progress of loss and validation error over 50 epochs regarding performance prediction.
(left) Supervised performance prediction task with best validation RMSE of 0.0487. (middle)
Zero-shot performance prediction with training set containing of all graphs of length 2, 3, 4, 5, 7
with a test set of the graphs of length 6. (right) Zero-shot performance prediction with training
set containing all graphs of length 2, 3, 4, 5, 6 with a test set of the graphs of length 7.

Model Performance Prediction (MSE in 10−3) ↓
1 000 10 000 100 000

Semi-Supervised Assessor (Tang et al., 2020) 3.1 ± 3 × 10−4 2.6 ± 2 × 10−4 1.6 ± 2 × 10−4
GNN Encoder (ours) 4.4 ± 3 × 10−4 2.2 ± 1 × 10−4 1.5 ± 1 × 10−5

Table 3.3: Comparison of the predictive performance of surrogate models in terms of MSE on the
test accuracies in NAS-Bench-101.

learns simple graph properties like the number of nodes before it learns more complex graph
substructures that generalize to the unseen data.

3.2.3 Comparison to State of the Art

This section compares our GNN-surrogate model with the state-of-the-art predictor from Tang et al.
(2020), which evaluates the predictor on the test accuracy of NAS-Bench-101. Since predicting
the validation accuracy does not imply the same proper prediction behavior on the test set, we
evaluate our surrogate model in the same setting. In Tang et al. (2020), an auto-encoder model
is rst trained on the entire NAS-Bench-101 data and then ne-tuned with a graph similarity
metric and test accuracy labels. Because the training relies on unsupervised pretraining, they
refer to the approach as semi-supervised. To enable a direct comparison, we randomly sample
1 000/10 000/100 000 graphs from the training data set and evaluate the performance prediction
ability of the GNN surrogate model on all remaining 431 624/413 624/323 624 graphs in NAS-
Bench-101. Please note that, at training time, the semi-supervised approach from Tang et al. (2020)
actually has access to more data than our fully supervised approach because of the unsupervised
pretraining.

Table 3.3 shows the experimental comparison, where we report an average over three runs for
our approach while the numbers of Tang et al. (2020) are taken from their paper. The proposed
GNN surrogate model surpasses the proposed semi-supervised assessor (Tang et al., 2020) when
10 000 and 100 000 training architectures are available. With only 1 000 randomly drawn training
samples, the results of our approach decrease. Yet, since we do not have access to the exact
training samples used in Tang et al. (2020), the results might become less comparable the lower
the number of samples drawn.
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3.3 Conclusion

In this chapter, we propose a GNN surrogate model for predicting the performance of neural
architectures. Through multiple experiments on NAS-Bench-101, we examine various capabilities
of the encoder. The GNN encoder is a powerful tool for supervised performance prediction,
especially in the zero-shot setup. Further research will mainly review the possibilities of neural
architecture search in accordance with further performance prediction. We tackle this possibility
in the following chapter Chapter 4.



Part II

Generative Architecture Search
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Variational Autoencoder-based Graph Embeddings

4In the previous chapter, we introduced a performance estimation surrogate model that enables
to accurately predict the performance of neural architectures in two distinct settings, classical

prediction and zero-shot prediction. Surrogate models are a powerful tool for the search strategy
in Neural Architecture Search (White et al., 2021c). Initial NAS methods using reinforcement
learning (Zoph and Le, 2017; Zoph et al., 2018), evolutionary algorithm (Elsken et al., 2019; Real et
al., 2019) or Bayesian optimization (BO) (Kandasamy et al., 2018; White et al., 2021a; Ru et al., 2021)
typically required thousands of function evaluations to nd a good solution, which is infeasible
without company-scale compute infrastructure. Therefore, recent research in NAS focuses on
ecient methods via continuous relaxations of the discrete search space and weight-sharing
approaches (Bender et al., 2018; Pham et al., 2018; Liu et al., 2019; Cai et al., 2019), with the possible
drawback of sub-optimal results (Zela et al., 2020a), as discussed in Section 2.1.4. As presented
in Chapter 3, GNNs (Gori et al., 2005; Kipf and Welling, 2017; Wu et al., 2021c) are a very useful
and suitable tool to embed local node features and graph substructures. Therefore, we argue
in this chapter in favor of NAS on learned graph embeddings using GNNs on the encoder and
decoder level, and contribute to the NAS search method research. Zhang et al. (2019) showed
good performance with such a model, called D-VAE, on the ENAS search space (Pham et al., 2018)
for neural architecture performance prediction and BO - proving its ability to learn smooth
continuous graph representations. D-VAE aggregates information in the GNN alternatingly in the
forward and backward directions to encode the neural network information ow. However, the
D-VAE model imposes strong constraints on the graph structure, which limit its applicability to
search spaces beyond ENAS. In addition, it has very long training times.

In this chapter, we propose a two-sided variational GNN encoder-decoder to learn smooth
embeddings in various NAS search spaces, which we call Smooth Variational Graph embedding
(SVGe). In contrast to D-VAE, SVGe aggregates node representations in the forward and backward
direction separately and consequently decodes their joint representation into forward and back-
ward direction separately (see Figure 4.1). This yields a very high reconstruction ability without
imposing any constraints on the search space and allows for more ecient training.

Inheriting from variational autoencoders (Kingma andWelling, 2014) (Section 2.3.2), it focuses
on learning an accurate architecture mapping into a smooth latent space in which structurally
similar graphs are close to one another and thus facilitates ecient black-box optimization to nd
high-performing architectures. The proposed model is not only three times faster than D-VAE but
also shows improved BO results in the ENAS search space. In contrast to D-VAE, it can be directly
applied to other search spaces such as NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong
and Yang, 2020). It also allows competitive performance to highly optimized approaches using BO
(Yan et al., 2020).

Moreover, it allows to learn architecture performance prediction in a supervised way. Due to
its smoothness, it can further directly extrapolate the performance prediction outside the space
of seen architectures. Thus, it proposes high-performing, deeper networks without using BO at
very low costs.

In summary, we make the following contributions:
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Figure 4.1: Architecture of the proposed SVGe model. It takes as input a neural architecture graph.
(left) The encoder uses two GNNmodules, the forward encoder (green) and the backward encoder
(red), to create an informative latent representation h𝐺 . (right) This latent vector is input to the
decoder, which decodes forward (green) and backward (red) directions separately, generating
two graphs in a sequential manner. Their union is the output of SVGe.

• We introduce a novel graph variational autoencoder, SVGe, that builds a structurally smooth
variational graph embedding by learning accurate representations of neural architectures.

• We discuss empirical properties of our approach in terms of isomorphic networks.

• We conduct extensive evaluations on the ENAS (Pham et al., 2018), NAS-Bench-101 (Ying
et al., 2019) and NAS-Bench-201(Dong and Yang, 2020) search spaces and show that our
approach allows for competitive BO results in all three search spaces.

• We show that SVGe is able to extrapolate to larger unseen architectures. It nds an architec-
ture with a best accuracy of 95.18% when learning from the NAS-Bench-101 search space.
This improves over the best architecture within this space.

• Our top-1 found architecture improves over comparable architectures in terms of validation
and test accuracy when transferring to ImageNet16-120 (Chrabaszcz et al., 2017).

The remaining chapter is structured as follows: We briey review related work for graph gen-
erative models in Section 4.1. In Section 4.2, we describe the proposed two-sided GNN variational
autoencoders. Section 4.3 discusses empirical properties of our proposed model about the impact
of isomorphic networks. The experiments are presented in Section 4.4. Lastly, we conclude this
chapter in Section 4.5.

This chapter is a slight modication of the paper J. Lukasik et al. (2021). “Smooth Variational
Graph Embeddings for Ecient Neural Architecture Search”. In: International Joint Conference
on Neural Networks (IJCNN). The code for this chapter is available on GitHub1.

4.1 Related Work

Recent years have shown immense progress in representation learning for graph-based data
with Graph Neural Networks (GNNs) (Li et al., 2016; Kipf and Welling, 2017; Niepert et al., 2016;

1https://github.com/jovitalukasik/SVGe

https://github.com/jovitalukasik/SVGe
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Hamilton et al., 2017). As introduced in Section 2.2, GNNs follow a message passing scheme,
where node feature vectors aggregate information from their neighbors (Gilmer et al., 2017) and
capture local structural information. These feature vectors are pooled to obtain a graph-level
representation (Ying et al., 2018). GNNs dier in their neighborhood node information as well as
in their graph-level aggregation procedure (Scarselli et al., 2009; Hamilton et al., 2017; Kipf and
Welling, 2017; Li et al., 2016; Velickovic et al., 2018; Xu et al., 2018; Xu et al., 2019).

Graph generation can be addressed globally by relaxing the adjacencymatrix (Kipf andWelling,
2016; Simonovsky and Komodakis, 2018) or sequentially by adding nodes and edges alternately
using recurrent networks (Luo et al., 2018; You et al., 2018) or GNNs (Li et al., 2018b; Rezaei et al.,
2021). Most graph generation models, especially in NAS, employ variational autoencoders (VAE)
(Section 2.3.2). Luo et al. (2018) use an LSTM-based VAE, coupled with performance prediction
for gradient-based architecture optimization within the xed latent space. Dierent from the
previous methods, Huang and Chu (2021) combine a generator with a supernet and search for
neural architectures for dierent device information. Recently, Rezaei et al. (2021) facilitate GNNs
in a GAN (Goodfellow et al., 2014) setting using reinforcement learning.

In the aggregation procedure, our decodermodel is similar to Li et al. (2018b). Yet, while Li et al.
(2018b) treat forward and backward directions equally, our model aggregates node information
for both separately to account for the order of network operations and the information ow. Zhang
et al. (2019) propose a less ecient, alternating message passing scheme for this purpose and
reinstall the validity of decoded architectures using a heuristic which employs prior knowledge
on the search space. The proposed method diers in both the encoder and decoder. Our encoder
employs an ecient bi-directional model, and the proposed bi-directional decoding facilitates
highly accurate reconstructions without constraining the search space.

4.2 Structural Smooth Graph Autoencoding

Weaim to learn a structurally smooth latent representation of neural network architectures, which
we cast as directed acyclic graphs (DAGs) with nodes representing operations (like convolution
or pooling) and edges representing information ow. This enables to (1) accurately predict
the accuracy of an unseen graph from training samples and (2) draw new samples which are
structurally similar to previously seen ones. Ourmodel SVGe is a variational autoencoder (Kingma
and Welling, 2014), as presented in Section 2.3.2.

Below, we provide details on the proposed GNN encoder and decoder models. For NAS, we
have to pay particular attention to isomorphic graphs. As they are functionally identical yet
represented via distinct adjacency matrices, it is not obvious to guarantee a correct mapping and
unique decoding. Motivated by Xu et al. (2019) (see Section 4.3), we chose our model to allow for
injective encoding and unique decoding.

4.2.1 Encoder

Here, we describe the encoder of our GNN-based SVGe. As already introduced in Section 2.2.1, we
denote 𝐺 = (𝑉, 𝐸) as a directed acyclic graph, with nodes v ∈ 𝑉 and edges e ∈ 𝐸. Each node v has
an initial node feature embedding h(0)v ∈ R𝑑𝑛 .

Since our objective is to learn a structurally smooth graph representation, we need to capture
the structure and the information ows of the graphs. Thus, our model consists of two encoding
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modules, where the messages are passed in the direction of the network’s forward pass in the
forward encoder (green) and in the direction of the back-propagation in the backward encoder
(red) visualized in Figure 4.1 (left). Our variant of GNN formulates the aggregation functionA(·)
(Equation (2.2)) as the sum of node message passing modules and uses a single gated recurrent
unit (GRU) (Cho et al., 2014) as the update functionU(·) (Equation (2.3)) for both forward and
backward encoder.

The forward message passing module
−→
𝑓
(−→
h (𝑘)u ,

−→
h (𝑘)v

)
computes a message vector from node

u to node v in the 𝑘-th iteration, while
←−
𝑓
(←−
h (𝑘)v ,

←−
h (𝑘)u

)
is the backward message passing module

from node v to u, with h(𝑘)v being a feature vector representation of node v at iteration 𝑘.
Each graph information direction is aggregated individually:

−→a v
(𝑘) =

∑︁
u∈V(v)

−→
𝑓
(−→
h (𝑘−1)u ,

−→
h (𝑘−1)v

)
←−a v
(𝑘) =

∑︁
u∈V (out) (v)

←−
𝑓
(←−
h (𝑘−1)v ,

←−
h (𝑘−1)u

)
.

(4.1)

Recall, V(v) = {u ∈ 𝑉 | (u, v) ∈ 𝐸} is the set of adjacent nodes to v in the DAG, specifying the
network input to v during inference andV (out) (v) = {u ∈ 𝑉 | (v, u) ∈ 𝐸} are the adjacent nodes
to v in the networks backward pass, i.e., in the DAG with reversed edges. Here we also do not
use one-hot encoded node labels, but employ a learnable embedding table Le on the node types,
which stores embeddings (feature vectors) for our initial node embeddings

−→
h (0)v ,

←−
h (0)v , as utilized

in Section 3.1.1. The functions
−→
𝑓 and

←−
𝑓 are implemented using a single fully connected layer (fc).

We update the forward and backward node modules using update functions separately in this
chapter:

−→
h (𝑘)v =

−→
U (𝑘)

(−→
h (𝑘−1)v ,

−→a v
(𝑘)

)
←−
h (𝑘)v =

←−
U (𝑘)

(←−
h (𝑘−1)v ,

←−a v
(𝑘)

)
.

(4.2)

After thenal iteration𝐾 , we combine the forward andbackwardnode embeddings
(−→
h (𝐾)v

)
v∈V ,(←−

h (𝐾)v
)
v∈V of node v by concatenation:(

h(𝐾)v

)
v∈𝑉

=

(
CONCAT

(−→
h (𝐾)v ,

←−
h (𝐾)v

) )
v∈𝑉

. (4.3)

By combining these two information sets, we capture not only the topology but also the information
paths in the graph.

This formulation of aggregation is dierent to the one in Chapter 3. In the previous chapter, the
aggregation module concatenates the forward and backward messages directly at each node and
updates this combined information usingU(·) from Equation (2.3), whereas here we consider the
forward and backward direction individually for the message passing module. This is important
sincewe are able to consider the information ows separately, which is not the case in the previous
chapter.

From the node representations, we compute a graph representation using a gated sum as in
Equation (3.4):

h𝐺 =
∑︁
𝑣∈𝑉

fc
(
h(𝐾)𝑣

)
� 𝜎

(
fc
(
h(𝐾)𝑣

))
, (4.4)
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Algorithm 3: Two-Sided Graph Generation
Input: (i) embedding z ∼ 𝑞𝜙(z|𝐺) of graph 𝐺 = (𝑉, 𝐸)
Input: (ii) 𝐿𝑑 embedding table for node types
Output: reconstructed graph 𝐺 = (𝑉, 𝐸)

1 h−→
𝐺
,h←−
𝐺
← z

2
−→
𝑉 ,
−→
𝐸 ← decodeDirectional(v0, InputType,h−→𝐺 ,@

−→
𝑓 addNodes,@

−→
𝑓 addEdges)

←−
𝑉 ,
←−
𝐸 ← decodeDirectional(vT,OutputType,h←−𝐺 ,@

←−
𝑓 addNodes,@

←−
𝑓 addEdges)

3 𝐺 = {←−𝑉 ∪ −→𝑉 ,←−𝐸 ∪ −→𝐸 }

with a sigmoid activated fc layer 𝜎(fc(·)) as a gating function, a linear activated fc layer, and �
denoting theHadamard product. Sinceweuse this encoder in a variational autoencoder setting, we
add an extra graph aggregation layer equal to Equation (4.4) to obtainhvar𝐺 . Thus, the outputs of our
encoder are the parameters of the approximate posterior distribution 𝑞𝜙(z|𝐺) = N(h𝐺 , 𝚺), with
h𝐺 being the mean and hvar𝐺 the diagonal of the variance-covariance matrix 𝚺 of the multivariate
normal distribution. Section 4.3 discusses the properties of this encoder w.r.t. injectivity and
isomorphic graphs.

4.2.2 Decoder

The SVGe decoder 𝑝𝜃(𝐺 |z) takes a latent point z as input and reconstructs 𝐺 simultaneously from
two directions (start-to-end (−→𝑉 ,−→𝐸 ) and end-to-start node (←−𝑉 ,←−𝐸 )), see Figure 4.1 (right). As in
the encoder, the model explicitly learns a neural architecture’s forward and backward pass,
allowing for highly accurate reconstructions of graphs without “loose ends”. An overview of the
general graph generation process using the two directional graph generations processes is given
in Algorithm 3.

The directional graph generation starts from the input node v0 for forward decoding and the
output node vT for backward decoding. Each graph is built iteratively in a sequence of operations
that add nodes and edges until the end node is generated, similar to Zhang et al. (2019).

The union of both, forward and backward graph, builds the output graph. We will describe
the directional decoding in more detail in the following.

Directional Decoding.

The directional graph generation starts from an initial node with type “InputType” for the forward
decoding andwith type “OutputType” for the backward decoding. The input node and all generated
nodes vt are embedded according to the initNodemodule:

h𝑡 = 𝑓initNode
(
z,h𝐺 (𝑡) , Ld [type]

)
, (4.5)

with 𝑓initNode being a two-layer fc with ReLU activation. It takes as input the sampled point z, the
partial graph embedding h𝐺 (𝑡) and the learned node type embedding Ld [type], If the node vt is
either the input or the output node, Equation (4.5) simplies to h𝑡 = 𝑓initNode(z, Ld [type]).
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Algorithm 4: decodeDirectional
Input: (i) start node v0 with typev0 ∈ {InputType,OutputType}
Input: (ii) graph embedding h𝐺
Input: (iii) @ 𝑓addNodes,@ 𝑓addEdges
Output: node set 𝑉 and edge set 𝐸

1 𝑉 ← {v0}, 𝐸 ← ∅, 𝑡 = 0
2 initialize InputNode v0, with embedding h0 ← 𝑓initNode(z, Ld [typev0]) ; ⊲ Eq. (4.5)
3 while type(vt) ≠ EndNode do
4 𝑉 ← 𝑉 ∪ {vt+1} ; ⊲ add node

5 𝑠addNode ← 𝑓addNode(z,h𝐺) ; ⊲ Eq. (4.7)
6 type(vt+1) ∼ Categorical(𝑠addNode) ; ⊲ get type Eq. (4.6)
7 h𝑡+1 ← 𝑓initNode(z,h𝐺 , Ld [type(vt+1)]) ; ⊲ Eq. (4.5)
8 for vj ∈ 𝑉 \ vt+1 do
9 𝑒( 𝑗,𝑡+1) ∼ Ber( 𝑓addEdges(h𝑡+1,h𝑡 ,h𝐺 , z)) ; ⊲ sample whether to add edge, Eq.

(4.8)
10 if 𝑒( 𝑗,𝑡+1) = 1 then
11 𝐸 ← 𝐸 ∪ {𝑒( 𝑗,𝑡+1) = (vj, vt+1)} ; ⊲ add edge

12 end
13 end
14 h𝑉 ← concat(h𝑡 ,h𝑡+1)
15 h← (h𝑉,𝐺) ; ⊲ update node embeddings Eq. (4.1), (4.2)
16 h𝐺 ← aggregate(h) ; ⊲ update graph embedding Eq. (4.3), (4.4)
17 𝑡 ← 𝑡 + 1
18 end

Given the start node v0, its embeddingh0 and the graph embeddingh𝐺 = z, a graph is generated
by iterating over a sequence of modules whose weights are shared across iterations until an end
node, e.g., of type OutputNode in the forward decoder, is drawn.

In every iteration, a new node is created and added to the graph and its node type (i.e.,
operation in the network architecture) is selected by the addNodemodule. It takes as input the
representation of the partial graph h𝐺 (𝑡) and the sampled point z and determines the next missing
node

NodeType ∼ Categorical
(
𝑠
(𝑡+1)
addNode

)
, (4.6)

where

𝑠
(𝑡+1)
addNode = 𝑓addNode

(
z,h𝐺 (𝑡)

)
. (4.7)

𝑓addNode are two fc layers with ReLU-non-linearities, producing parameters for the categorical
node type distribution from which the next node is sampled. This newly added node is then
initialized with the initNodemodule (Equation (4.5)) and added to the already existing propagated
node embedding, h𝑉 = CONCAT((h 𝑗)0≤ 𝑗≤𝑡 ,h𝑡+1).

To every added node vt+1, the decoder creates edges from already existing nodes according
to a scoring function, where a high value represents a likely edge. This addEdgesmodule takes
as input the partial graph node embeddings h𝑡+1 and h𝑡 = (h 𝑗)0≤ 𝑗≤𝑡 , as well as the partial graph
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embedding h𝐺 (𝑡) and the sampled point z, leading to

𝑒(𝑖,𝑡+1) ∼ Ber
(
𝑓addEdges

(
h𝑡+1,h𝑡 ,h𝐺 (𝑡) , z

) )
, (4.8)

where Ber denotes a Bernoulli distribution. Sampling from this distribution yields the new set of
directed edges ending in vt+1. 𝑓addEdges is again a two-layer fc layer with ReLU activation.

After adding the edges, the concatenated node embeddings h𝑉 are aggregated and updated
in the prop module, similar to the encoder using Equation (4.1) and Equation (4.2), yielding
the updated node embedding h. These node embeddings are aggregated into a single graph
representation h𝐺 according to Equation (4.4). An overview of the directional decoding is given in
Algorithm 4. Note, the encoder and decoder GNNs have distinct weights.

4.2.3 Loss Function and Training

We train the encoder and decoder of SVGe jointly in an unsupervised manner. Given a xed
node ordering of the DAG, which we discuss in Section 4.3, we know the ground truth of the
outputs of AddNode (Equation (4.6)) and AddEdges (Equation (4.8)) during training. We use this
ground truth to compute a node-level loss L𝑡𝑉 , which is a Cross-Entropy loss, and an edge-level
loss L𝑡𝐸, which is a Binary Cross-Entropy loss, at each iteration 𝑡. Additionally, we replace the
model output by the ground truth such that possible errors will not accumulate throughout
iterations.This is also known as teacher forcing (Williams and Zipser, 1989). To compute the
overall reconstruction loss for a graph 𝐺, we sum up node losses and edge losses over all iterations
for both decoding directions; Lrec =

−−→L𝑉 +
−→L𝐸 +

←−−L𝑉 +
←−L𝐸 . Following Kingma andWelling (2014), we

assume 𝑝𝜃(z) ∼ N (z; 0,1) and 𝑝𝜃(𝐺 |z) ∼ N (h𝐺 , 𝚺). Furthermore, we approximate the posterior
by a multivariate Gaussian distribution with diagonal covariance structure. This can be written
as log 𝑞𝜙(z|𝐺) = logN(z;h𝐺 , 𝚺) and ensures a closed form of the KL divergence, as presented in
Section 2.3.2:

DKL = −1
2

𝐽∑︁
𝑗=1

(
1 + log

(
hvar𝐺

)
𝑗 − (h𝐺)

2
𝑗 − (h

var
𝐺 ) 𝑗

)
. (4.9)

Thus, the overall variational autoencoder loss from Equation (2.24) becomes:

L = Lrec + 𝛼DKL, (4.10)

with 𝛼 additionally regularizing the Kullback-Leibler divergence. Following Jin et al. (2018) and
Zhang et al. (2019), we set 𝛼 = 0.005.

Furthermore, for training SVGe jointly with the surrogate model for performance prediction,
we modify the loss Equation (4.10) by including the performance prediction loss Lpred:

L = 𝛽(Lrec + 𝛼DKL) + (1 − 𝛽)Lpred. (4.11)

4.3 Discussion of the Impact of Isomorphisms

In the following, we discuss SVGe in the context of isomorphic input graphs. Intuitively, if isomor-
phic graphs, i.e., graph representations of the same neural architecture, are mapped to distinct
latent points, the latent space is intrinsically redundant. This hampers an ecient embedding of
structural similarity. Conversely, if non-isomorphic graphs are mapped to the same latent point,
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their performance can neither be correctly predicted nor their structure reconstructed. Thus,
a suitable graph encoder has to map any two isomorphic graphs to the same latent point (ISO).
A suitable decoder decodes each latent point to a unique graph and preserves the dierence
between non-isomorphic graphs (INJ).

4.3.1 Unique Latent Space Representation.

Here, we discuss the proposed SVGe encoder w.r.t. properties (ISO) and (INJ).
Theorem 3 in Xu et al. (2019) gives sucient conditions on injectivity (INJ) of the GNN’s node

aggregation module and its update module. However, the required existence of an appropriate
injective aggregation function operating on multisets can only be guaranteed theoretically on
countable input feature spaces. Even then, Xu et al. (2019) give no explicit construction but argue
that it can be approximated via MLPs. Thus, we verify empirically that SVGe maps isomorphic
graphs to the same embedding (ISO) in an experiment on 11 606 isomorphic graph pairs of length
7 from the NAS-Bench-101 search space. 100% of such isomorphic pairs were mapped onto the
same point. Themapping of distinct graphs to distinct latent representations (INJ) is a prerequisite
for accurate reconstruction and therefore validated in the reconstruction ability in Section 4.4.1.

4.3.2 Decoding from the Latent Space.

We now discuss how the decoder handles isomorphic DAGs w.r.t. (INJ). Since isomorphic graphs
are mapped onto the same latent point by the encoder (see above), it suces for the decoder to
decode them uniquely, i.e., deterministically. It can be easily seen that this is the case for SVGe.

Yet, how can the decoder be trained eciently to decode one out of several isomorphic graphs
from the same latent point, when decoding graph 𝐺1 instead of an isomorphic graph 𝐺2 leads to
signicant reconstruction loss? Isomorphic graphs can be created from one another by permuting
nodes in the adjacency matrix. Thus, to ease the decoder into the learning process we bring the
graphs in a unied form. Towards a unique representation, we limit the training data to upper
triangular matrices.

The remaining isomorphic graphs are removed from the training set as in Ying et al. (2019),
since we need a unique representation for each graph. Note, this only removes duplicate archi-
tectures. For the ENAS and the NAS-Bench-201 search space, the adjacency matrices are unique,
given the upper triangular representation.

Given such clean training data, the choice of the VAE decoder is still crucial. For good recon-
struction from the latent space, we introduce a two-sided decoder, which captures the information
ow from the input to the output node and vice versa. Specically, nodes generated in the for-
ward direction that are not connected to the output are connected to their predecessor in the
backward decoder, and vice versa. The union of both forward and backward decoded graphs will
therefore likely contain all missing edges from both single decoders. D-VAE (Zhang et al., 2019)
overcomes this problem of possible trailing nodes by incorporating a heuristic “post-processing”
step employing prior knowledge on the search space: It connects each non-output node with
out-degree zero to the output node.
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Search Space Method Accuracy ↑ Validity ↑ Uniqueness ↑ Novelty ↑

ENAS
D-VAE (Zhang et al., 2019) 99.96 100.00 37.26 100.00
DGMG (Li et al., 2018b) 99.29 100.00 37.55 100.00

SVGe (ours) 99.63 100.00 39.03 100.00

NAS-Bench-101

D-VAE 25.89 82.55 19.84 16.52
arch2vec (Yan et al., 2020) 98.84 43.70 10.00 82.84

DGMG 99.99 89.70 29.24 16.72
SVGe (ours) 99.57 79.16 32.10 16.37

NAS-Bench-201
arch2vec 99.99 95.93 7.33 13.26
DGMG 99.97 100.00 5.35 12.62

SVGe (ours) 99.99 100.00 8.28 10.24

Table 4.1: VAE abilities on ENAS, NAS-Bench-101, and NAS-Bench-201 in %.

4.4 Experiments

We evaluate the proposed SVGe on three dierent, commonly used search spaces from the NAS
literature: the two tabular benchmarks NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201
(Dong and Yang, 2020), as well as architectures from the ENAS (Pham et al., 2018) search space.

ENAS Search Space The ENAS (Pham et al., 2018) search space consists of architectures repre-
sented by a DAG with |𝑉 | = 8 nodes (including the input and output node) and 6 operation choices
on each of the non-input and non-output nodes, O ={ 3× 3 conv., 5 × 5 conv, 3× 3 depthwise-conv,
5× 5 depthwise.conv., 3× 3 max pooling, 3× 3 avg. pooling }. We use the same 19 020 searched
architectures as Zhang et al. (2019) from this space.

While the NAS-Bench-101 benchmark provides the true performance of all fully trained archi-
tectures, ENAS does not provide any such value. Therefore, we use the weights of the optimized
one-shot model as a proxy for the validation/test performance of the sampled architectures during
optimization.

We split the (architecture, accuracy) pairs into 90% training and 10% test examples for each
search space to train our autoencoder model. After testing its autoencoder abilities, we evaluate
SVGe on performance prediction, BO and search space extrapolation. In addition, we show the
transferability of our BO and extrapolation results.

All the algorithms and routines are implemented using PyTorch (Paszke et al., 2019) and
PyTorch Geometric (Fey and Lenssen, 2019). We provide additional information about the used
hyperparameters for this chapter in Appendix B.2 and representations of the NAS-Bench-101 and
NAS-Bench-201 search spaces in Appendix A.1, Appendix A.2.

4.4.1 Autoencoder Abilities.

Following previous work (Zhang et al., 2019; Jin et al., 2018), we evaluate SVGe by means of
reconstruction accuracy, validity, uniqueness and novelty.

We evaluate these abilities on the ENAS, NAS-Bench-101 and NAS-Bench-201 search spaces and
compare to Zhang et al. (2019) and Yan et al. (2020). As an ablation on ENAS, NAS-Bench-101 and
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Figure 4.2: (left) Visualization of the rst two principal components of the latent space for SVGe
using NAS-Bench-101 architectures with a validation accuracy above 75% on CIFAR-10. (right)
Performance prediction of the ne-tuned SVGe on the NAS-Bench-101 test data with a validation
accuracy above 80% on CIFAR-10.

NAS-Bench-201, we also adapted the generative model from Li et al. (2018b), DGMG in conjunction
with our encoder architecture. We train the models on 90% of the dataset and test it on the 10%
held-out data.

Table 4.1 shows the results. D-VAE (Zhang et al., 2019) and all our model variants show
reasonable performance w.r.t. the reconstruction accuracy, on ENAS. On NAS-Bench-101 and NAS-
Bench-201, our approaches perform equally well and are comparable to arch2vec (Yan et al., 2020),
while D-VAE performs poorly on NAS-Bench-101 and diverges on NAS-Bench-201. We hypothesize
that D-VAE’s hard constraints on the graph decoding are not suitable for NAS-Bench-101 and
NAS-Bench-201. The resulting latent space cannot capture all relevant information, without
introducing more model modications.

The validitymeasures how many of the decoded samples are valid DAGs. Note, the validity
is dened in each search space individually by its topology and network constraints. Again, we
see good overall performance on ENAS. On NAS-Bench-101 SVGe, DGMG and D-VAE perform
comparably, while the validity for arch2vec is low, indicating that their decoder is not suited for
graph generation. This trend is less severe yet observable on NAS-Bench-201.

The uniqueness ability measures the unique share of the valid decoded graphs. This measure
is particularly important for any kind of extrapolation from the training data. If the uniqueness is
small, distinct and potentially distant latent points are decoded to the same output. This may hurt
subsequent approaches, such as Bayesian optimization.While all approaches could be improved
w.r.t. uniqueness, SVGe performs better than previous models.

The novelty indicates the portion of graphs from the valid graph set which have not been
observed during training. Here, values on ENAS are high and non-informative since only a small
portion of the search space is covered by training data. On the two NAS-Bench variants, D-VAE and
our models perform on par while the numbers for arch2vec are higher. The direct comparison
of these values is impaired since arch2vec issues an overall lower number of valid graphs. We
conclude that SVGe shows good behaviour in terms of accuracy, validity and uniqueness over all
three search spaces.
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Figure 4.3: Circle in the latent space of NAS-Bench-101 with 14 equidistant sampled points on a
hypersphere. The graphs vary smoothly with increasing distance from the start.

Surrogate Model Performance Prediction(MSE in 10−3) ↓
1 000 10 000 100 000

Semi-Supervised Assessor (Tang et al., 2020) 3.1 ± 3 × 10−4 2.6 ± 2 × 10−4 1.6 ± 2 × 10−4
D-VAE (Zhang et al., 2019) 3.9 ± 3 × 10−4 2.6 ± 2 × 10−4 2.0 ± 9 × 10−5
DGMG (Li et al., 2018b) 3.7 ± 1 × 10−4 2.7 ± 3 × 10−6 2.0 ± 1 × 10−4

GNN Encoder (Chapter 3) 4.4 ± 3 × 10−4 2.2 ± 1 × 10−4 1.5 ± 1 × 10−5
SVGe (ours) 2.8 ± 2 × 10−5 2.3 ± 4 × 10−5 2.0 ± 3 × 10−5

Table 4.2: Comparison of MSE and standard deviation for performance prediction on NAS-Bench-
101.

4.4.2 Latent Space Smoothness Observations

In Figure 4.2 and Figure 4.3, we visualize the smoothness of the SVGe graph embedding in the
NAS-Bench-101 search space. Figure 4.2 (left) visualizes the SVGe embedding. We plot equidistant
points within a [−0.3, 0.3] grid, given a 2D subspace of our training data with a validation accuracy
above 75% spanned by the rst two principal components. Architectures with similar accuracies
are close to each other and high accuracy architectures form clusters. Figure 4.3 shows a unit circle
in a randomly chosen orthogonal direction in the SVGe embedding space. We start from a at net
encoding in the latent space and randomly pick 14 equidistant datapoints along the hypersphere
returning to the start point. These datapoints are decoded and visualized as architectures. As one
can see they change smoothly with changing only few operations and edges at each step.

4.4.3 Performance Prediction from Latent Space

Next, we evaluate SVGe in terms of performance prediction on NAS-Bench-101 architectures.
This allows for direct comparison to the recent work (Tang et al., 2020). We train SVGe on 90%
of all 423 624 datapoints in NAS-Bench-101 for reconstruction to obtain the latent space. Then,
we ne-tune the unsupervisedly trained model for performance prediction using a regression
model, which is a four-layer MLP with ReLU non-linearities. The SVGe model and the regression
model are trained jointly for performance prediction on 1 000/10 000/100 000 randomly sampled
architectures with test accuracies from NAS-Bench-101. For comparison, we also train D-VAE
and DGMG in the same setting. We compare the ability to predict performances accurately on
the validation set (10% of the overall (architecture, accuracy) pairs). Table 4.2 shows the MSE,
which denotes the empirical squared loss between the predicted and ground truth data, and the
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Search Space Method Val Acc.(%) ↑ Test Acc.(%)↑ VAE Training (in GPU days)

ENAS D-VAE (Zhang et al., 2019) - 94.80 0.7
SVGe (ours) - 95.11 0.21

NAS-Bench-101
oracle 95.15 94.09 -

DGMG (Li et al., 2018b) 94.08 93.51 1.65
SVGe (ours) 94.60 93.88 2.01

Table 4.3: Bayesian optimization on the ENAS and NAS-Bench-101 search spaces. SVGe slightly
outperforms D-VAE on ENAS and reduces the runtime (in GPU hours) by a factor of 3.

standard deviation of 3 runs.
Our proposed SVGe has a slightly lower MSE compared to Tang et al. (2020), which focus

precisely on this subproblem, when few annotated datapoints are given. This is important in
particular for NAS, since every training sample corresponds to a fully evaluated architecture
and is thus expensive. D-VAE and DGMG show high MSEs for this small amount of training data.
We expected this behavior for D-VAE because it already showed poor abilities in Section 4.4.1
on NAS-Bench-101. The low prediction accuracy for DGMG hints to potential overtting in the
autoencoder. In Figure 4.2 (right), we plot the performance prediction ability of our model trained
on 1 000 sampled architectures from Table 4.2 for high-performing architectures (above 80% test
accuracy). This gure shows a strong correlation between predicted and true accuracies.

4.4.4 Bayesian Optimization

We have seen in the previous experiments that the proposed SVGe generates a latent space
which enables to interpolate from seen labels/performances and outperforms D-VAE and DGMG
signicantly. Next, we perform NAS via BO in the ENAS search space, in order to allow a fair
comparison to D-VAE (Zhang et al., 2019) by exchanging only the D-VAE generative model with
our SVGe and using exactly the same setup as in Zhang et al. (2019).

We perform 10 iterations of batch BO (with a batch size of 50). See Section 2.3.1 for a general
overview of Bayesian optimization. We average the results across 10 trials based on a sparse
Gaussian process (SGP) (Snelson and Ghahramani, 2005) with 500 inducing points and expected
improvement (Equation (2.15)) (Mockus, 1974) as acquisition function. Following Kusner et al.
(2017) and Zhang et al. (2019), we use the acquisition function to select a new batch of points
in each iteration and assume the target label for each new point in the batch to be the mean of
the predictive distribution of the SGP (Section 2.3.1). Each point in this selected batch is then
decoded to its discrete graph structure using our decoder and evaluated using either the available
ground truth accuracy as in NAS-Bench-101 (Ying et al., 2019) or the weight-sharing accuracy for
ENAS (Pham et al., 2018). These (architecture, accuracy) pairs are then added to the training data,
which is used for the SGP for the next iteration. In the case of an invalid generated DAG, we are
not able to obtain the ground truth accuracy and therefore set the accuracy equal to the worst
performance in the training data.

For the evaluation of BO in ENAS, we select the best found 15 architectures w.r.t. their weight-
sharing accuracies and fully train them from scratch on CIFAR-10. As shown in Table 4.3, SVGe’s
best found architecture achieves an accuracy of 95.11%, which is 0.31 percent points better than
the best found architecture using the D-VAE embedding. Table 4.3 also reports compute times for
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model training on ENAS. It shows that SVGe can be trained more eciently than D-VAE.
Additionally, we perform BO on the NAS-Bench-101 search space with our SVGe model and

optimize on validation accuracies. We train the SGP initially on 1 000 randomly sampled archi-
tectures in each trial. Because of its low performance prediction on NAS-Bench-101, D-VAE is
expected to perform poorly in this setting. To assess our results in Table 4.3, we report as oracle
the best NAS-Bench-101 architecture in terms of validation accuracy and its test accuracy.

BO on SVGe yields a model with 94.60% validation and 93.88% test accuracy, improving over
the best found architecture using DGMG in terms of both validation and test accuracy. When
using all our training data (90% of NAS-Bench-101) to train the SGP, SVGe’s best found architecture
achieves a validation accuracy of 94.67%. This architecture yields a test accuracy of 94.26% on
NAS-Bench-101 which is higher than the test accuracy of the best NAS-Bench-101 architecture
in terms of validation accuracy. Note that the best oracle test accuracy would be 94.45% (at only
94.87% validation accuracy).

Since the D-VAE training diverges on the NAS-Bench-201 search space, we can not conduct
a direct comparison. Yan et al. (2020) perform BO in their latent space, using DNGO (Snoek et
al., 2015) instead of SGP, and dene the current state-of-the-art. DNGO uses a Bayesian linear
regression model in conjunction with a deep neural network and overcomes the cubical scales
of a GP. This problem is also already mentioned in Section 2.3.1. DNGO scales linearly with the
number of training data and cubically with the input dimension, and is therefore suited for
low-dimensional embedding spaces while it performs less well on high dimensional spaces as
ours. Conversely, using SGP on low-dimensional embedding spaces is sub-optimal. Therefore, a
direct comparison to arch2vec in terms of BO should be taken with caution. Performing BO in the
SVGe generated latent space yields a test accuracy of 93.38% on the CIFAR-10 image classication
task on NAS-Bench-201. In comparison, arch2vec yields a mean test accuracy of 94.18%, which
only leaves a small gap. Thus, SVGe is able to nd well-performing architectures in all three
search spaces.

4.4.5 Extrapolation Ability

Finally, we show that our smooth embedding space enables to nd better architectures than the
ones mentioned above even without dedicated optimization approaches by simple extrapolation
from the labeled dataset. We have already seen the ability for extrapolation of the GNN encoder in
Chapter 3. Therefore, we employ the ability of SVGe to predict neural architectures’ performances
on CIFAR-10 with more nodes and edges than seen at training time in both NAS-Bench-101 and
ENAS search spaces here in this chapter.

On the NAS-Bench-101 search space, we generate graphs (cells) containing 8 nodes. Note that
our SVGe model has never seen such architectures during training (NAS-Bench-101 is limited
to cells with up to 7 nodes). To generate these new graphs, we pick the best performing graph
from NAS-Bench-101 based on the validation accuracy and expand it to graphs with 8 nodes,
maintaining the upper triangular matrices structure (1 384 graphs in total). From these graphs,
we select the top-5 architectures with the highest predicted validation accuracy using SVGe with
the surrogate model (see Section 4.4.3, trained on 1 000 graphs). These models are trained from
scratch on CIFAR-10 using the training pipeline from Ying et al. (2019). As shown in Table 4.4, the
architecture found by extrapolating using our SVGe model achieves a top-1 validation accuracy of
95.18% and a test accuracy of 94.92% for graphs of length 8, which improves over 0.83% in test
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Search Space Method Val Acc. (%) ↑ Test Acc. (%) ↑
NAS-Bench-101 7 oracle 95.15 94.09
NAS-Bench-101 8 SVGe (ours) 95.18 94.92

ENAS 14 D-VAE+BO (Zhang et al., 2019) 96.12 -
SVGe (ours) 96.09 -

Table 4.4: Architecture extrapolation experiments.

Method Val Acc.(%) ↑ Test Acc.(%) ↑
NAS-Bench-201 (optimal) (Dong and Yang, 2020) 46.77 47.31

ResNet (Dong and Yang, 2020) 44.53 43.63
SVGe + BO (NB101-7) (ours) 54.70 56.83

SVGe + Zero-Shot (NB101-8) (ours) 55.13 55.53

Table 4.5: Dataset transfer learning to ImageNet16-120 (Chrabaszcz et al., 2017).

accuracy over the best 7-nodes architecture test accuracy.
On the ENAS search space, we evaluate SVGe on the macro architecture containing a total

of 14 nodes (layers, including the input and output node) compared to architectures with 8
nodes used during the SVGe training. See Pham et al. (2018) for more information about the
macro architecture with 14 nodes. We further ne-tune the embedding space by sampling 1 000
architectures from the training set and train the SVGe together with the performance predictor.
Note that this performance predictor uses the weight-sharing accuracies as proxy for the true
accuracy of the fully trained architectures. We select the top-5 architectures based on the predicted
validation performance and again fully train them on CIFAR-10, using the settings from Zhang et al.
(2019). As shown in Table 4.4, the best found architecture in the ENAS 14 search space achieves
a validation accuracy of 96.09% which is close to the one found by D-VAE. Note, D-VAE (Zhang
et al., 2019) used a Bayesian optimization approach on this macro architecture search space
as in Section 4.4.4 to nd this architecture, whereas SVGe can achieve similar results by direct
extrapolation (aka zero-shot prediction).

Last, we test the transferabilty to other datasets of the architectures found by our model. For
that purpose, we train the best found architecture in the BO experiment and the top-1 architecture
found via extrapolation on ImageNet16-120 (Chrabaszcz et al., 2017) in the training scheme from
Dong and Yang (2020). As shown in Table 4.5 both architectures improve over a comparably deep
ResNet architecture (He et al., 2016) and the best NAS-Bench-201 architecture by a signicant
margin.

4.5 Conclusion

In this chapter, we propose SVGe, a Smooth Variational Graph embedding model for NAS. We
give empirical results on SVGe encoding abilities and show that it applies more easily to new
search spaces than previous approaches (Zhang et al., 2019). We present results on the NAS-Bench-
101, NAS-Bench-201 and ENAS search spaces and show good results for performance prediction
surrogate models and Bayesian optimization in the smooth embedding space. Furthermore, we



4.5. Conclusion 57

demonstrate the extrapolation abilities of SVGe to larger unseen graphs to nd high-performing
architectures. Image dataset transfer experiments to ImageNet16-120 also show that the found
high-performing architectures can improve over the performance of comparable architectures
by a signicant margin.





Generative NAS with Latent Space Optimization

5In this thesis, we have already mentioned that classical search methods are inecient, which
ultimately led to new more ecient search methods based on surrogate models, or learned

architecture representations in conjunction with generative models. These methods aim to
further improve the query eciency search in NAS, which is crucial, since each query implies
a full training and evaluation of the neural architecture on the underlying target dataset. In
Chapter 3, we presented a GNN surrogate model that is able to correctly predict architecture’s
performances, especially in the setting of zero-shot prediction. Building on this, we presented in
Chapter 4 a generative NAS model that, using a GNN variational autoencoder, spans a smooth
latent space that facilitates classical search methods such as BO, but also performance prediction
using a surrogate model, which leads to competitive search results. Both presented methods aim
improving the query eciency and nding high-performing architectures.

This trade-o between query eciency and resulting high-performing architectures is an
active research eld. Yet, no attempts were made so far to leverage the advantages of both search
paradigms. Therefore, we propose a model that incorporates the focus of promising architectures
already in the architecture generation process by optimizing the latent space directly: We let
the generator learn in which areas of the data distribution to look for promising architectures.
This way, we reduce the query amount even further, resulting in a query ecient and very
eective NAS search method. Our proposed method is inspired by a latent space optimization
(LSO) technique (Tripp et al., 2020), originally used in the context of variational autoencoders to
optimize generated images or arithmetic expressions using BO. We adapt this concept to NAS and
pair it with an architecture performance predictor in an end-to-end learning setting, such that
it allows us to iteratively reshape the architecture representation space. Thereby, we promote
desired properties of generated architectures in a highly query-ecient way, i.e., by learning
expert generators for promising architectures. Since we couple the generation process with a
surrogate model to predict desired properties such as high accuracy or low latency of generated
architectures, there is no need in our method for BO in the generated latent space, making our
method even more ecient.

In practice, we pretrain a GNN-based generator network on a target space of neural architec-
tures, which does not rely on any architecture evaluation and is therefore fast and query-free. The
generator is trained in a novel generative setting that directly compares generated architectures
to randomly sampled architectures using a reconstruction loss without the need of a discriminator
network as in generative adversarial networks (GANs) (Goodfellow et al., 2014) or an encoder as
in variational autoencoders (VAEs) (Kingma and Welling, 2014) (see also Section 2.3.2). We use an
MLP as a surrogate to rank performances and hardware properties of generated architectures. In
contrast, previous generative methods either rely on training and evaluating supernets (Huang
and Chu, 2021), which are expensive to train and dataset specic, or pretrain a latent space and
search within this space directly using BO (Zhang et al., 2019; Yan et al., 2020), reinforcement
learning (Rezaei et al., 2021) or gradient-based methods (Luo et al., 2018). These methods incor-
porate either GANs, which can be hard to train or VAEs, which are biased by the regularization,
whereas our plain generative model is easy to train. In addition we enable backpropagation from
the performance predictor to the generator. Thereby, the generator can eciently learn which
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Figure 5.1: (left) Our search method generates architectures from points in an architecture
representation space that is iteratively optimized. (right) The architecture representation space
is biased towards better-performing architectures with each search iteration. After only 48
evaluated architectures, our generator produces state-of-the-art performing architectures on
NAS-Bench-101.

part of the architecture search space is promising with only few evaluated architectures.
By extensive experiments on common NAS benchmarks (Ying et al., 2019; Dong and Yang,

2020; Zela et al., 2022; Klyuchnikov et al., 2022; Li et al., 2021a) as well as ImageNet (Deng et al.,
2009), we show that our method, called AG-Net, is eective and sample-ecient. It reinforces the
generator network to produce architectures with improving validation accuracy (see Figure 5.1),
as well as in improving on hardware-dependent latency constraints (see Figure 5.5) while keeping
the number of architecture evaluations small. In summary, we make the following contributions:

• We propose a simple model that learns to focus on promising regions of the architecture
space. It can thus learn to generate high-scoring1 architectures from only a few queries.

• We learn architecture representation spaces via a novel generative design that is able to
generate architectures stochastically while being trained with a simple reconstruction loss.
Unlike VAEs (Kingma and Welling, 2014) or GANs (Goodfellow et al., 2014), neither encoder
network nor discriminator network is necessary.

• Our model allows sample-ecient search and achieves state-of-the-art results on several
NAS benchmarks as well as on ImageNet. It allows joint optimization w.r.t. hardware
properties in a straightforward way.

The remaining chapter is structured as follows: We will provide more information on the
latent space optimization in Section 5.1. Section 5.2 describes the proposed model in detail. The
experiments are presented in Section 5.3 and additional ablation studies in Section 5.4. We
conclude this chapter in Section 5.5.

This chapter is a slightly enhanced version of the paper J. Lukasik et al. (2022). “Learning
Where to Look - Generative NAS is Surprisingly Ecient”. In: Proc. of the European Conference on
Computer Vision (ECCV). The experiments in Section 5.3.4 have been conducted by Steen Jung.
The code for this chapter is available on GitHub2.

1We use scoring here to distinguish that we not only search for high-performing architectures, but also for other
objectives, such as low latency. Therefore, scoring is used in this chapter as a general target variable.

2https://github.com/jovitalukasik/AG-Net

https://github.com/jovitalukasik/AG-Net
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5.1 Latent Space Optimization using Weighted Retraining

5.1.1 Problem Statement

We introduced the variational autoencoder and an optimization example within its generated
latent space by means of BO in Section 2.3.2. The latent space generation and optimization steps
are combined in a two-step approach, since the optimization step is only used post-hoc on the
pretrained latent space. This two-step approach leads therefore to a decoupling of the generation
part and the optimization. Tripp et al. (2020) analyze the inuence of this decoupling and reveals
some shortcomings, which we will discuss in the following.

First, recall that the VAEmodel is trained with a prior 𝑝𝜃(z) and a generative model 𝑝𝜃(x|z) on
the objective of the ELBO Equation (2.24). The reconstruction loss (E𝑞𝜙 (z |x) [log 𝑝𝜃(x|z)]) enforces a
high similarity of input data and generated data. At the same time, the Kullback-Leibler divergence
(𝐷𝐾𝐿(𝑞𝜙(z|x)‖𝑝𝜃(z))) regularizes the latent space such that the encoded input data follow the
prior distribution. Consequently, the VAE is eectively only trained on latent points z ∈ Z with a
high probability 𝑝𝜃(z). Therefore, decoding latent points carrying a low probability can result in
decoded data outside the training data distribution, leading to low-quality or invalid samples (e.g.,
invalid architectures in a predened search space). The region of latent points z, which can be
decoded to data following the training data distribution is denoted in Tripp et al. (2020) as the
feasible regionZ′ ⊂ Z.

Thus, the rst shortcoming in the mentioned two-step approach is that most training data are
low-scoring data (e.g., networks with a low accuracy on a downstream task) and therebyZ′ is
mainly lled by low-scoring points. This hinders the optimization, since many novel, high-scoring
points are outside this feasible region. Another shortcoming is that learning a latent space, which
captures the training data distribution well, has a dierent objective than learning a latent space
in which we can apply ecient optimization to nd high-scoring data. Lastly, information about
new points found during the optimization is not propagated back to the generative model to adjust
the latent space and its feasible region.

5.1.2 Weighted Retraining

In order to solve the mentioned drawbacks of the two-step optimization in the latent space, Tripp
et al. (2020) propose to directly optimize the latent space with weighted retraining and show its
ability exemplary using a VAE w.r.t. a target function to adapt the latent space for the optimization
of images and arithmetic functions using BO.

The intuition of this approach is to place more probability mass on high-scoring latent points
(e.g., high-performing or low latency architectures) and less probability mass on low-scoring
points. The scoring is given by the objective function 𝑓 : X → R. In the settings analyzed so far in
this thesis, this can be the validation performance of architectures x ∈ X as in Section 2.3.1. This
strategy does not discard low-scoring architectures completely, which would be inadequate for
proper learning. The generative model is therefore trained on a data distribution that systemati-
cally increases the probability of high-scoring latent points. This can be done by simply assigning
a weight 𝑤𝑛 to each data point x𝑛 ∈ 𝐷, 𝐷 = {(x𝑛, 𝑓 (x𝑛))}𝑁𝑛=1. This weight indicates the likelihood
of the data point to occur during batch-wise training. Accordingly, the total loss is obtained as
the weighted mean of the local losses for each data point. Note, in the case of a VAE, the loss
corresponds to the ELBO as presented in Section 2.3.2, Equation (2.24). Concerning the weight
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specication, Tripp et al. (2020) propose a rank-based weight function

𝑤(x; 𝐷, 𝑘) ∝ 1
𝑘𝑁 + rank 𝑓 ,𝐷 (x)

rank 𝑓 ,𝐷 (x) = |{x𝑛 ∈ 𝐷 : 𝑓 (x𝑛) > 𝑓 (x)}|.
(5.1)

The weight is always positive with a tunable hyperparameter 𝑘.
The proposed weighted training allows now for a coupling of generation and optimization

objectives. In order to enable for updating the latent space and the feasible region, Tripp et al.
(2020) propose periodic retraining, i.e., retraining the generative model (e.g, VAE) during the
optimization itself.

5.2 Architecture Generative Model

Our proposed model, AG-Nets’s generator, is inspired by the model SVGe, presented in Chap-
ter 4, with the aim to inherit its exible applicability to various search spaces. Yet, similar to
Yan et al. (2020), due to the intrinsic discretization and training setting, SVGe does not allow for
backpropagation. In this chapter, we propose a GNN generator, which circumvents the inter-
mediate architecture discretization and can therefore be trained by a single reconstruction loss
using backpropagation. Its iterative optimization is inspired by Tripp et al. (2020), as presented
in Section 5.1.2. Our model transfers the idea of weighted retraining to NAS. It uses our plain
generator and improves sample eciency by employing a dierentiable surrogate model on the
target function such that, in contrast to Tripp et al. (2020), no further black-box optimization step
is needed. Next, we describe the proposed generator network and surrogate model.

5.2.1 Preliminaries

Recall, we aim to generate neural networks represented as DAGs, 𝐺 = (𝑉, 𝐸), with nodes 𝑣 ∈ 𝑉
and edges 𝑒 ∈ 𝐸. In contrast to chapter 4 the nodes 𝑣 are represented as one-hot vectors of the
node types. The graph representations dier between the various benchmarks in terms of their
labeling of operations. For example in NAS-Bench-101 (Ying et al., 2019) each node is associated
with an operation, whereas in NAS-Bench-201 (Dong and Yang, 2020) each edge is associated with
an operation.

5.2.2 Generative Network

Commonly used graph generative networks are based on VAE. In contrast, our proposed network
is a purely generative network, 𝑝𝐺 (see Figure 5.2). To generate valid graphs, we build our model
similar to the graph decoder from the VAE approach SVGe, Section 4.2.2. The generator takes a
randomly sampled variable z ∼ N(0, 1) as input and reconstructs a randomly sampled graph from
the cell-based search space. The model iteratively builds the graph: it starts with generating the
input node 𝑣0, followed by adding subsequent nodes 𝑣i and their labels and connecting them with
edges 𝑒( 𝑗,𝑖) , 𝑗 < 𝑖, until the end node 𝑣T with the label output is generated. Additionally, we want
to learn a surrogate for performance prediction on the generated data and allow for end-to-end
training of both. To allow for backpropagation, we need to adapt several details of the generator
model. We initialize the node-attributes for each node by one-hot encoded vectors, which are
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Figure 5.2: Representation of the training procedure for our generator in AG-Net. The input is a
randomly sampled latent vector z ∈ R𝑑 . First, the input node is generated, initialized and input
to a GNN to generate a partial graph representation. The learning process iteratively generates
node scores and edge scores using z and the partial graph representation until the output node is
generated. The target for this generated graph is a randomly sampled architecture.

initialized during training using a 2-layer MLP to replace the learnable look-up table proposed in
SVGe (Section 4.2.2). The output of our generator is a vector graph representation consisting of
a concatenation of generated node scores and edge scores. The node score for a node 𝑣 ∈ 𝑉 is a
distribution over all possible node types. Sampling from this (categorical) distribution yields a
one-hot encoding of a specic node type. The edge score is a distribution over the existence of the
edge, which is passed into a Bernoulli distribution at inference time. The sampled node scores for
all nodes in a graph represent the node attribute matrix, while the sampled edge scores represent
the upper triangular adjacency matrix.

It is important to note that the iterative generation process is independent of the ground
truth data, which are only used as a target for the reconstruction loss. Note that the end-to-end
trainability of the proposed generator is a prerequisite for ourmodel: It allows to pair the generator
with a learnable performance predictor such that information on the expected architectures’
scoring target as the accuracy can be learned by the generator. This enables a stronger coupling
with the predictor’s target for the generation process and higher query eciency (see Section 5.4).
In contrast, previous models such as Huang and Chu (2021) and Yan et al. (2020) are not fully
dierentiable and do not allow such optimization. Our generative model is pretrained on the
task of reconstructing neural architectures, where for each randomly drawn latent space sample,
we evaluate the reconstruction loss to a randomly drawn architecture. This simple procedure is
facilitated by the heavily constrained search spaces of neural architectures, making it easy for the
model to learn to generate valid architectures without being supported by a discriminator model
as in generative adversarial networks (GANs) (Goodfellow et al., 2014).

The pseudo algorithm for the graph generation is described in Algorithm 5. The modules
𝑓initNode, 𝑓addNode, 𝑓addEdges, 𝑓Embedding used in this code are two-layer MLPs with ReLU activation
functions. Note, in contrast to SVGe, we don’t sample within the generation process, in order to
allow for end-to-end learning with the prediction model for AG-Net.

5.2.3 Performance Predictor

The presented generativemodel is coupledwith a simple surrogatemodel, a 4-layerMLPwith ReLU
non-linearities, for target predictions 𝐶. The hidden size equals the input size. These targets can be
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Algorithm 5: Graph Generation
Input: z ∼ N(0, 1)
Output: reconstructed graph 𝐺 = (𝑉, 𝐸)

1 initialize one-hot encoded InputNode 𝑣0, with embedding
h0 ← 𝑓initNode(z, 𝑓Embedding) [InputType])

2 𝑠𝑉 ← {𝑣0}, 𝑠𝐸 ← ∅, 𝐸 ← ∅, h𝐺 ← z,
3 while |𝑉 | ≤ Max Number of Nodes do
4 𝑣𝑡+1 ← 𝑓addNode(z,h𝐺)
5 𝑠𝑉 ← 𝑠𝑉 ∪ {𝑣𝑡+1}
6 h𝑡+1 ← 𝑓initNode(z,h𝐺 , 𝑓Embedding(𝑣𝑡+1)])
7 for 𝑣 𝑗 ∈ 𝑉 \ 𝑣𝑡+1 do
8 𝑠addEdges( 𝑗, 𝑡 + 1) ← 𝑓addEdges(h𝑡+1,h𝑡 ,h𝐺 , z)
9 𝑒( 𝑗,𝑡+1) ∼ Eval(𝑠addEdges( 𝑗, 𝑡 + 1)) ; ⊲ evaluate whether to add edge

10 if 𝑒( 𝑗,𝑡+1) = 1 then
11 𝑠𝐸 ← 𝑠𝐸 ∪ {𝑠addEdges( 𝑗, 𝑡 + 1)}
12 𝐸 ← 𝐸 ∪ {𝑒( 𝑗,𝑡+1) = (𝑣 𝑗 , 𝑣𝑡+1)}
13 end
14 end
15 h𝑡 ← concat(h𝑡 ,h𝑡+1)
16 𝐺 ← (𝑠𝑉 , 𝐸)
17 h𝑡 ← (h𝑡 , 𝐺) ; ⊲ update node embeddings Eq. (4.1), (4.2)
18 h𝐺 ← aggregate(h𝑡) ; ⊲ update graph embedding Eq. (4.3), (4.4)
19 𝑡 ← 𝑡 + 1
20 end
21 𝑉 ∼ Categorical(𝑠𝑉 ) ; ⊲ Sample node types

22 𝐸 ∼ Ber(𝑠𝐸) ; ⊲ Sample edges

23 𝐺 = (𝑉, 𝐸)

validation or test accuracy of the generated graph, or the latencywith respect to a certain hardware.
Our AG-Net passes the output of our generator, i.e., a generated vector representation, as the
direct input to our MLP surrogate model. The generated vector representation is a concatenation
of the atted generated node score matrix and atted upper triangular matrix of the adjacency
matrix, presented by the generated edge scores. Note the scores of the generated graph are given
by 𝑠𝑉 , 𝑠𝐸 in Algorithm 5 Line 21 and Line 22 before the sampling.

For comparison, we also include a tree-based method, XGBoost (XGB) (Chen and Guestrin,
2016) as an alternative prediction model. XGB is used as a performance surrogate model in
NAS-Bench-301 (Zela et al., 2022) and shows high prediction abilities. The input to XGB is the
binary vector representation of the architectures, i.e., the one-hot encoded atted node attribute
matrix and the binary upper triangular adjacency matrix. Since this method is non-dierentiable,
we additionally include a gradient estimation for rank-based metrics (Rolı́nek et al., 2020). This
way, we are able to include gradient information to the generator. Yet, it is important to note, that
this approach is not fully dierentiable. This comparison will allow us to measure the trade-o
between using supposedly stronger predictors over the capability to allow for full end-to-end
learning.
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For visualizations of the representations used in this chapter for the dierent search spaces,
see Appendix A. Note, the vector representation dimension diers across the search spaces due to
the dierent maximal amount of nodes.

5.2.4 Training Objectives

The generative model 𝑝𝐺 learns to reconstruct a randomly sampled architecture 𝐺 from search
space 𝑝𝐷 given a randomly sampled latent vector z ∼ N(0, 1). The objective function for this
generation process can be formulated as the sum of node-level loss L𝑉 and edge-level loss L𝐸:

L𝐺 (𝐺, 𝐺) = L𝑉 + L𝐸; 𝐺 ∼ 𝑝𝐺 (z); 𝐺 ∼ 𝑝𝐷, (5.2)

where L𝑉 is the Cross-Entropy loss between the predicted and the ground truth nodes and L𝐸 is
the Binary Cross-Entropy loss, between the predicted and ground truth edges of the generated
graph 𝐺. This training step is completely unsupervised. Figure 5.2 presents an overview of the
training process.

To include the training of the surrogate model, the objective function is reformulated to:

L(𝐺, 𝐺) = (1 − 𝛼)L𝐺 (𝐺, 𝐺) + 𝛼L𝐶 (𝐺, 𝐺), (5.3)

where 𝛼 is a hyperparameter to trade-o generator loss L𝐺 and prediction loss L𝐶 for the predic-
tion targets 𝐶 of graph 𝐺. We set the predictor loss as an MSE. Furthermore, each loss is optimized
using mini-batch gradient descent.

5.2.5 Generative Latent Space Optimization

To facilitate the generation process, we optimize the architecture representation space viaweighted
retraining as presented in Section 5.1.2, resulting in a sample ecient search algorithm. In the
following we describe the weighted retraining again using our generative model.

Given data 𝐺𝑖 ∼ 𝑝𝐷, we can write Equation (5.1) as:

𝑤(𝐺; 𝑝𝐷, 𝑘) ∝
1

𝑘𝑁 + rank 𝑓 ,𝑝𝐷 (𝐺)
rank 𝑓 ,𝑝𝐷 (𝐺) = |{𝐺𝑖 : 𝑓 (𝐺𝑖) > 𝑓 (𝐺), 𝐺𝑖 ∼ 𝑝𝐷}|,

(5.4)

where 𝑓 (·) is the evaluation function of the architecture 𝐺𝑖 ; for NAS-Bench-101 (Ying et al., 2019)
and NAS-Bench-201 (Dong and Yang, 2020) it is the tabular benchmark entry, for NAS-Bench-301
(Zela et al., 2022) and NAS-Bench-NLP (Klyuchnikov et al., 2022) it is the surrogate benchmark
prediction. Similar to Tripp et al. (2020), we set 𝑘 = 10𝑒 − 3. The retraining procedure itself then
consists of ne-tuning the pretrained generative model coupled with the surrogate model, where
loss functions and data points are both weighted by 𝑤(𝐺; 𝑝𝐷, 𝑘).

A more descriptive visualization of this latent space optimization technique is displayed in
Figure 5.3.

5.2.6 AG-Net Search Process

So far, we have presented all the individual components for the search algorithm which we
propose in this chapter. Next, we will describe it in more detail.
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Figure 5.3: The latent space is reshaped in a way that promotes desired properties of generated
architectures (in this example: accuracy). Consequently, it becomes more likely for the generator
to generate architectures satisfying this property.

We rst need to pretrain our generative model on the architecture search space as presented
in Section 5.2.2 and Section 5.2.4. Our NAS algorithm is then initialized by randomly sampling
16 architectures from the architecture search space, which are then weighted by the weighting
functionW = 𝑤(𝐺)𝐺∼𝑝𝐷 . Then, latent space optimized architecture search is performed by
iteratively retraining the generator coupled with the surrogate model for 𝑒 epochs and generating
100 architectures of which the top-16 (according to their target prediction) are evaluated and
added to the training data. This step is repeated until the desired number of queries is reached.
When generating architectures, we sample from a grid z ∼ 𝔘[−3, 3], containing the 99%-quantiles
fromN(0, 1) uniformly distributed. This way, we sample more distributed latent variables for
better latent space coverage. We provide a high-level description of the search in Algorithm 6.

5.3 Experiments

We evaluate the proposed simple architecture generative network (AG-Net) on the two commonly
used tabular benchmarks NAS-Bench-101 (Ying et al., 2019) and NAS-Bench-201 (Dong and Yang,
2020), the surrogate benchmarks NAS-Bench-301 (Zela et al., 2022) evaluated on the DARTS search
space (Liu et al., 2019), NAS-Bench-NLP (Klyuchnikov et al., 2022) and the rst hardware device
induced benchmark Hardware-Aware Benchmark (Li et al., 2021a). Additionally, we perform
experiments on the ImageNet (Deng et al., 2009) classication task and show state-of-the-art
performance on the DARTS search space. In our experiments in Section 5.3.4 for the Hardware-
Aware Benchmark we consider the latency information on the NAS-Bench-201 search space.
Details about all hyperparameters are given Appendix B.3.

5.3.1 Experiments on Tabular Benchmarks

NAS-Bench-101

For our experiments on NAS-Bench-101, we rst pretrain our generator for generating valid
graphs on the NAS-Bench-101 search space. This step does not require information about the
performance of architectures and is therefore inexpensive. The pretrained generator is then used
for all experiments onNAS-Bench-101. We retrain this generator in aweightedmanner jointlywith
the surrogate model for 15 epochs. The search proceeds as described in Section 5.2.6. We compare
our method to the VAE-based searchmethod arch2vec (Yan et al., 2020) and predictor-basedmodel
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Algorithm 6: Unconstrained Search Algorithm
Input: (i) Search space 𝑝𝐷
Input: (ii) Pretrained generator 𝐺
Input: (iii) Untrained performance predictor 𝑃
Input: (iv) Query budget 𝑏
Input: (v) 𝑒 epochs to train 𝐺 and 𝑃
⊲ Initialize training data

1 D← {}
2 while |D| < 16 do
3 D← D ∪ {𝑑 ∼ 𝑝𝐷}
4 end
⊲ Evaluate architectures (get accuracies on target image dataset)

5 D← eval(D)
⊲ Randomly initialize predictor weights

6 𝑃 ← init(𝑃)
⊲ Search loop

7 while |D| < 𝑏 do
⊲ Weight training data by performance

8 Dw ← weight(D)
⊲ Train generator and predictor

9 train(𝐺, 𝑃, Dw, 𝑒)
⊲ Generate 100 candidates

10 Dcand ← {}
11 while |Dcand | < 100 do
12 z ∼ 𝔘[−3, 3]
13 Dcand ← Dcand ∪ 𝐺(z)
14 end

⊲ Select top 16 candidates with P

15 Dcand ← select(Dcand, 𝑃,16)
⊲ Evaluate and add to data

16 D← D ∪ eval(Dcand)
17 end

WeakNAS (Wu et al., 2021a), as well as state-of-the-art methods, such as NAO (Luo et al., 2018)3,
random search (Li and Talwalkar, 2019), local search (White et al., 2021b), Bayesian optimization
with DNGO (Snoek et al., 2015), regularized evolution (Real et al., 2019) and BANANAS (White et al.,
2021a)4. Additionally, we compare the proposed AG-Net to the model using an XGB predictor, as
introduced in Section 5.2.3. The results of this comparison are listed in Table 5.1. Here, we report
the mean over 10 runs. Note, we search for the architecture with the best validation accuracy and
report the corresponding test accuracy. Furthermore, we plot the search progress in Figure 5.4
(top left). As we can see, our model AG-Net improves over all state-of-the-art methods, not only at

3We reran this experiment using the implementation fromWhite et al. (2021c).
4We reran these experiments using the ocial implementation fromWhite et al. (2020), White et al. (2021a), and

White et al. (2021b), with the same initial training data and amount of top k architectures as for AG-Net.
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NAS Method Val. Acc. (%) ↑ Test Acc. (%) ↑ Queries

Optimum* 95.06 94.32

arch2vec + RL (Yan et al., 2020) - 94.10 400
arch2vec + BO (Yan et al., 2020) - 94.05 400

NAO 3 (Luo et al., 2018) 94.66 93.49 192
BANANAS4 (White et al., 2021a) 94.73 94.09 192

Bayesian Optimization4 (Snoek et al., 2015) 94.57 93.96 192
Local Search4 (White et al., 2021b) 94.57 93.97 192

Random Search4 (Li and Talwalkar, 2019) 94.31 93.61 192
Regularized Evolution4 (Real et al., 2019) 94.47 93.89 192

WeakNAS (Wu et al., 2021a) - 94.18 200

XGB (ours) 94.61 94.13 192
XGB + ranking (ours) 94.60 94.14 192

AG-Net (ours) 94.90 94.18 192

Table 5.1: Results on NAS-Bench-101 for the search of the best architecture in terms of validation
accuracy on CIFAR-10 to state-of-the-art methods (mean over 10 trials).

the last query of 300 data points, reaching a top-1 test accuracy of 94.2%, but is also almost any
time better during the search process.

A direct comparison to the recently proposed GANAS (Rezaei et al., 2021) on NAS-Bench-101 is
dicult, since GANAS searches on NAS-Bench-101 until they nd the best architecture in terms of
validation accuracy, whereas we limit our search to a maximal amount of 192 queries and are
able to nd high-performing architectures already in this small query setting. The comparison of
AG-Net to the generator paired with an XGBoost (Chen and Guestrin, 2016) predictor shows that
our end-to-end learnable approach is favorable even over potentially stronger predictors.

NAS-Bench-201

This benchmark contains three dierent image classication tasks: CIFAR-10, CIFAR-100 (Krizhevsky,
2009) and ImageNet16-120 (Chrabaszcz et al., 2017). For the experiments on NAS-Bench-201 we
retrain AG-Net in the weighted manner for 30 epochs (see Section 5.2.6). In this setting, we also
compare AG-Net to two recent generative models (Rezaei et al., 2021; Huang and Chu, 2021).
SGNAS (Huang and Chu, 2021) trains a supernet by uniform sampling, following Dong and Yang
(2019a). Additionally, a CNN-based architecture generator is trained to search architectures on
the supernet. When comparing with Yan et al. (2020), we also adopt their evaluation scheme of
adding only the best-performing architecture found so far (top-1) to the training data instead of
top-16 as in our other experiments.

We report the search results for dierent numbers of queries for the NAS-Bench-201 dataset
in Table 5.2. In addition, we plot the search progress in terms of queries in Figure 5.4 (top right,
middle). Our method provides state-of-the-art results on all datasets for a varying number of
queries. Most importantly, AG-Net shows strong performance in the few-query regime compared
to Yan et al. (2020) except for CIFAR-100, proving its high query eciency.
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NAS Method CIFAR-10 CIFAR-100 ImageNet16-120 Queries Search Method
Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑

Optimum* 91.61 94.37 73.49 73.51 46.77 47.31

SGNAS (Huang and Chu, 2021) 90.18 93.53 70.28 70.31 44.65 44.98 Supernet

arch2vec + BO (Yan et al., 2020) 91.41 94.18 73.35 73.37 46.34 46.27 100 Bayesian Optimization
AG-Net (ours) 91.55 94.24 73.2 73.12 46.31 46.2 96 Generative LSO

AG-Net (ours, topk=1) 91.41 94.16 73.14 73.15 46.42 46.43 100 Generative LSO

BANANAS4 (White et al., 2021a) 91.56 94.3 73.49* 73.50 46.65 46.51 192 Bayesian Optimization
BO4 (Snoek et al., 2015) 91.54 94.22 73.26 73.22 46.43 46.40 192 Bayesian Optimization

RS 4 (Li and Talwalkar, 2019) 91.12 93.89 72.08 72.07 45.87 45.98 192 Random
XGB (ours) 91.54 94.34 73.10 72.93 46.48 46.08 192 Generative LSO

XGB + Ranking (ours) 91.48 94.25 73.20 73.24 46.40 46.16 192 Generative LSO
AG-Net (ours) 91.60 94.37* 73.49* 73.51* 46.64 46.43 192 Generative LSO

GANAS (Rezaei et al., 2021) - 94.34 - 73.28 - 46.80 444 Generative Reinforcement Learning
AG-Net (ours) 91.61* 94.37* 73.49* 73.51* 46.73 46.42 400 Generative LSO

Table 5.2: Architecture Search on NAS-Bench-201. We report the mean over 10 trials for the search
of the architecture with the highest validation accuracy.

5.3.2 Experiments on Surrogate Benchmarks

We furthermore apply our search method on larger search spaces as DARTS and NAS-Bench-NLP
without ground truth evaluations for thewhole search space, making use of surrogate benchmarks
as NAS-Bench-301 (Zela et al., 2022), NAS-Bench-x11 (Yan et al., 2021) and NAS-Bench-Suite (Mehta
et al., 2022).

NAS-Bench-301

Here, we report experiments on the cell-based DARTS search space using the surrogate benchmark
NAS-Bench-301 for the CIFAR-10 image classication task. The results are described in Table 5.3
(left) and visualized in Figure 5.4 (bottom left). Our method is comparable to other state-of-the-art
methods in this search space. Since the DARTS search space is dened by two dierent cells,
normal and reduction cell, we have to modify the search process described in Section 5.2.6. In the
following, we will describe the exact search procedure using the dierent cells individually.

Search Process using NAS-Bench-301 For experiments in the DARTS (Liu et al., 2019) search
space, we rst train our generative model on generating valid cells (see Figure A.3 for a visualiza-
tion). For this we do not distinguish between generating a normal or a reduction cell. Eventually,
having a pretrained generative model for generating valid cell representations in the DARTS
search space allows for searching well-performing architectures. The next step is the search for
architectures by means of the surrogate benchmark NAS-Bench-301 (Zela et al., 2022), which
trained and evaluated 60 000 architectures on CIFAR-10 and provides predicted performances
of architectures in the DARTS search space. We begin the search by randomly sampling 16 ar-
chitectures from NAS-Bench-301. Next, we generate one random normal cell. This cell is used to
search for the best reduction cell, by iteratively generating reduction cells. For that we combine
the generated normal cell and the generated reduction cells for accuracy evaluations using the
surrogate benchmark NAS-Bench-301. This search procedure then follows the same steps as
described in Section 5.2.6 and stops after we reach a query amount of 155. Now, we can use
the best found reduction cell as a xed starting point to search for the best normal cell in the
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NAS Method NAS-Bench-301 NAS-Bench-NLP
Val. Acc.(%) ↑ Queries Val. Perplexity (%) ↑ Queries

BANANAS4 (White et al., 2021a) 94.77 192 95.68 304
Bayesian Optimization4 (Snoek et al., 2015) 94.71 192 - -

Local Search4 (White et al., 2021b) 95.02 192 95.69 304
Random Search4 (Li and Talwalkar, 2019) 94.31 192 95.64 304
Regularized Evolution4 (Real et al., 2019) 94.75 192 95.66 304

XGB (ours) 94.79 192 95.95 304
XGB + Ranking (ours) 94.76 192 95.92 304

AG-Net (ours) 94.79 192 95.86 304

Table 5.3: Results on: (left) NAS-Bench-301 (mean validation accuracy over 50 trials). (right)
NAS-Bench-NLP (mean validation perplexity over 100 trials).

same manner as before. The overall search stops after a maximal amount of 310 queries. The
search outcome diers between starting with a reduction or the normal cell. Note, the search
procedure starting with a random reduction cell is analogous. In this chapter, we start with a
random reduction cell.

NAS-Bench-NLP

Next, we evaluate AG-Net on NAS-Bench-NLP (Klyuchnikov et al., 2022) for the language modeling
task on Penn TreeBank (Mikolov et al., 2010). We retrain AG-Net coupled with the surrogate model
for 30 epochs to predict the validation perplexity. Note, since the search space considered in
NAS-Bench-NLP is too large for a full tabular benchmark evaluation, we make use of the surrogate
benchmark NAS-Bench-x11 (Yan et al., 2021) and NAS-Bench-Suite (Mehta et al., 2022) instead of
tabular entries, which provides surrogate predictions for NAS-Bench-NLP. More information are
presented in Appendix A.4.

We compare our methods to the same state-of-the-art methods as in previous experiments.
The results are reported in Table 5.3 (right) and visualized in Figure 5.4 (bottom right). Our AG-Net
improves over all state-of-the-art methods by a substantial margin and using XGB as a predictor
even improves the search further.

5.3.3 ImageNet Experiments

The previous experiment on NAS-Bench-301 shows the ability of our generator to generate valid
architectures and to perform well in the DARTS search space. This allows for searching for a well-
performing architecture on ImageNet (Deng et al., 2009). Yet evaluating up to 300 dierent found
architectures on ImageNet is extremely expensive. Therefore, we consider two approaches using
predictor-basedmethods and training-freemethods. Our rst approach is to retrain the best found
architectures on the CIFAR-10 from the previous experiment on NAS-Bench-301 (AG-Net and the
XGB adaptions) on ImageNet. Our second approach is based on a training-free neural architecture
search approach. The recently proposed TE-NAS (Chen et al., 2021) provides a training-free neural
architecture search approach, by ranking architectures by analyzing the neural tangent kernel by
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Figure 5.4: Architecture search evaluations on NAS-Bench-101, NAS-Bench-201, NAS-Bench-301
and NAS-Bench-NLP for dierent search methods. Accuracy and perplexity in %.

its condition number (CN) and the number of linear regions (NLR) of each architecture. These
two measurements are training-free and do not need any labels. The intuition between those two
measurements is their implication towards trainability and expressivity of a neural architecture
and also their correlation with the neural architecture’s accuracy; CN is negatively correlated and
NLR positively correlated with the architecture’s test accuracy. We adapt this idea for our search
on ImageNet and search architectures in terms of their CN and NLR instead of their validation
accuracy.

Table 5.4 shows the results. Note that our latter described search method on ImageNet is
training-free (as TE-NAS (Chen et al., 2021)) and the amount of queries displays the amount of
data we evaluated for the training-free measurements. Other query information include the
amount of (partly) trained architectures. Furthermore, the displayed dierentiable methods are
based on training supernets which can lead to expensive training times. For the predictor-based
search approach, the best found architectures on NAS-Bench-301 (CIFAR-10) result in comparable
error rates on ImageNet to former approaches. As a result, our search method approach is highly
ecient and outperforms previous methods in terms of needed GPU days. The result in terms
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NAS Method Top-1↓ Top-5↓ # Queries Search
GPU days

Mixed Methods

NASNET-A (CIFAR-10) (Zoph et al., 2018) 26.0 8.4 20 000 2 000
PNAS (CIFAR-10) (Liu et al., 2018a) 25.8 8.1 1 160 225
NAO (CIFAR-10) (Luo et al., 2018) 24.5 7.8 1 000 200

Dierentiable Methods

DARTS (CIFAR-10) (Liu et al., 2019) 26.7 8.7 - 4.0
SNAS (CIFAR-10)(Xie et al., 2019b) 27.3 9.2 - 1.5

PDARTS (CIFAR-10) (Chen et al., 2019) 24.4 7.4 - 0.3
PC-DARTS (CIFAR-10) (Xu et al., 2020) 25.1 7.8 - 0.1
PC-DARTS (ImageNet) (Xu et al., 2020) 24.2 7.3 - 3.8

Predictor-based Methods

WeakNAS (ImageNet) (Wu et al., 2021a) 23.5 6.8 800 2.5
XGB (NB-301)(CIFAR-10) (ours) 24.1 7.4 304 0.02

XGB + Ranking (NB-301)(CIFAR-10) (ours) 24.1 7.2 304 0.02
AG-Net (NB-301)(CIFAR-10) (ours) 24.3 7.3 304 0.21

Training-Free Methods

TE-NAS (CIFAR-10) (Chen et al., 2021) 26.2 8.3 - 0.05
TE-NAS (ImageNet) (Chen et al., 2021) 24.5 7.5 - 0.17

AG-Net (CIFAR-10) (ours) 23.5 7.1 208 0.02
AG-Net (ImageNet) (ours) 23.5 6.9 208 0.09

Table 5.4: ImageNet error of neural architecture search on DARTS.

of top-1 and top-5 error rates are even improving over the one from previous approaches when
using the training-free approach.

As we described in the previous section, the search in the DARTS search space using NAS-
Bench-301 needs adaptions in the search procedure. We describe the further adaption of using
training-free measurements instead of the NAS-Bench-301 prediction in the following.

Search Process using TE-NAS Concretely, for the search on ImageNet we search for architec-
tures in terms of their CN and NLR instead of their validation accuracy. In the beginning of our
search we generate three random normal cells. These cells are used to search for an optimal
reduction cell optimizing both CN and NLR measurements. In each search iteration we generate
reduction cells and calculate the CN and NLR for each combination of normal cell and reduction
cell. The reduction cells are ranked according to their mean CN and their mean NLR (mean in
terms of all three normal cells). The 16 best ranked reduction cells are then used for the next
iteration of reduction cell search. The reduction cell search stops, when amaximum of 104 queries
is reached. After that we use the best found reduction cell in terms of the lowest CN and the
highest NLR for the next search for a normal cell. The next steps use this best found reduction cell
as a starting point and searches for the best normal cell in the same manner as before. The search
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Settings Best out of 10 runs Mean
Constraint Joint=0 Joint=1 Random Joint=0 Joint=1 Random Optimum*

Device Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Lat.↓ Acc.↑ Feas.↑ Acc.↑ Feas.↑ Acc.↑ Feas.↑ Acc.↑ Lat.↓

Edge GPU 2 0.406* 1.90 0.406* 1.90 0.397 1.78 0.397 0.29 0.391 0.31 0.372 0.05 0.406 1.90
Edge GPU 4 0.448* 3.49 0.448* 3.49 0.437 3.35 0.428 0.29 0.433 0.43 0.417 0.22 0.448 3.49
Edge GPU 6 0.458 5.29 0.464* 5.96 0.458 5.29 0.453 0.64 0.450 0.79 0.449 0.72 0.464 5.96
Edge GPU 8 0.465 6.81 0.468* 6.81 0.464 7.44 0.463 0.98 0.462 0.99 0.457 1.00 0.468 6.81

Raspi 4 2 0.355* 1.58 0.355* 1.58 0.348 1.60 0.346 0.28 0.347 0.30 0.339 0.08 0.355 1.58
Raspi 4 4 0.431 3.83 0.436* 3.79 0.427 3.85 0.420 0.47 0.428 0.50 0.419 0.37 0.436 3.79
Raspi 4 6 0.449 5.95 0.452* 5.29 0.445 5.95 0.440 0.56 0.441 0.57 0.432 0.55 0.452 5.29
Raspi 4 8 0.456 6.33 0.455 7.96 0.457 7.97 0.451 0.69 0.449 0.79 0.447 0.76 0.465 7.43
Raspi 4 10 0.466 8.66 0.465 8.62 0.464 8.72 0.464 0.77 0.454 0.94 0.454 0.90 0.468 8.83
Raspi 4 12 0.468* 8.83 0.463 9.05 0.464 8.72 0.465 0.91 0.457 0.98 0.456 0.96 0.468 8.83

Edge TPU 1 0.468* 0.96 0.466 0.97 0.464 1.00 0.464 0.74 0.457 0.82 0.454 0.79 0.468 0.96

Pixel 3 2 0.413* 1.30 0.413* 1.30 0.400 1.50 0.409 0.48 0.405 0.59 0.388 0.30 0.413 1.30
Pixel 3 4 0.460* 3.55 0.446 3.01 0.447 3.23 0.453 0.69 0.441 0.77 0.438 0.64 0.460 3.55
Pixel 3 6 0.464 5.92 0.465* 5.95 0.458 4.68 0.457 0.77 0.452 0.94 0.451 0.88 0.465 5.57
Pixel 3 8 0.468* 6.65 0.465 7.88 0.461 7.13 0.464 0.87 0.457 0.99 0.454 0.97 0.468 6.65
Pixel 3 10 0.466 6.70 0.461 8.48 0.464 8.01 0.464 0.96 0.455 1.00 0.456 0.99 0.468 6.65

Eyeriss 1 0.452* 0.98 0.449 0.98 0.447 0.98 0.445 0.49 0.436 0.53 0.433 0.23 0.452 0.98
Eyeriss 2 0.465 1.65 0.465 1.65 0.464 1.65 0.463 0.87 0.457 0.99 0.457 0.95 0.468 1.65

FPGA 1 0.440 1.00 0.440 0.97 0.438 0.97 0.433 0.65 0.433 0.80 0.429 0.58 0.444 1.00
FPGA 2 0.465* 1.60 0.460 1.60 0.463 1.97 0.462 0.82 0.451 0.99 0.453 0.97 0.465 1.60

Table 5.5: Results for searches with at most 200 queries on HW-NAS-Bench (Li et al., 2021a) with
varying devices and latency (Lat.) constraints in two multi-objective settings: Joint=0 optimizes
accuracy under latency constraint, while Joint=1 optimizes for accuracy and latency jointly. We
report the best found architecture out of 10 runs with their corresponding latency, as well as
the mean of these runs. We compare to random search as a strong baseline (Li and Talwalkar,
2019). Feasibility (Feas.) is the proportion of evaluated architectures during the search that satisfy
the latency constraint (larger is better). The optimal architecture (*) is the architecture with the
highest accuracy satisfying the latency constraint.

stops after a total of 208 queries and outputs an overall normal and reduction cell combination,
leading to a DARTS architecture, which we train on ImageNet using the same training pipeline as
Chen et al. (2021). Note, we use here three generated random cells as starting point, since only
one single minibatch is used to calculate the CN, which can lead to noisy behavior.

5.3.4 Experiments on Hardware-Aware Benchmark

Next, we apply AG-Net to the Hardware-Aware NAS-Benchmark (Li et al., 2021a). We demonstrate
in two settings that AG-Net can be used for multi-objective learning. The rst setting (Joint=1) is
formulated as constrained joint optimization, for any ℎ ∈ 𝐻 :

max
𝐺∼𝑝𝐷

𝑓 (𝐺) ∧ min
𝐺∼𝑝𝐷

𝑔ℎ(𝐺)

s.t. 𝑔ℎ(𝐺) ≤ 𝐿,
(5.5)

where 𝑓 (·) evaluates architecture 𝐺 for accuracy and 𝑔ℎ(·) evaluates for latency given a hardware
ℎ ∈ 𝐻 and a user-dened latency constraint 𝐿. The second setting (Joint=0) is formulated as
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Figure 5.5: (top left to bottom left) Exemplary searches on HW-NAS-Bench for image classica-
tion on ImageNet16-120 with 192 queries on Pixel 3, Edge GPU, Raspi 4, Eyeriss, FPGA and latency
conditions 𝐿 ∈ {2, 4, 6, 8, 10}, 𝐿 ∈ {2, 4, 6, 8, 10, 12, 14} and 𝐿 ∈ {1, 2} (y-axis zoomed for visibility).
(bottom right) Amount of architectures generated and selected in each search iteration (at most
16) that satisfy the latency constraint. In this example we searched on Edge GPU with 𝐿 = 2.

constraint objective, for any ℎ ∈ 𝐻 :

max
𝐺∼𝑝𝐷

𝑓 (𝐺)

s.t. 𝑔ℎ(𝐺) ≤ 𝐿,
(5.6)

wherewedrop the optimization on latency and only optimize accuracy given the latency constraint.
The loss function to train our generator in these settings is updated from Equation (5.3) to:

L(𝐺, 𝐺) =(1 − 𝛼)L𝐺 (𝐺, 𝐺) + 𝛼
[
𝜆L𝐶1 (𝐺, 𝐺) + (1 − 𝜆)L𝐶2 (𝐺, 𝐺)

]
, (5.7)

where 𝛼 is a hyperparameter trading o generation and prediction loss, and 𝜆 is a hyperparameter
trading o both prediction targets 𝐶1 (accuracy) and 𝐶2 (latency). The risk of including multiple
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Figure 5.6: (left) Optimality for all search parameters in Table 5.5 at any time during the search
progress in terms of the number of evaluated architectures (up to 320). Optimality is the mean
validation accuracy of 10 runs per algorithm, normalized by the optimal value for each parameter
setting (hence, optimum is at 1.0). (right) zoomed y-axis

targets to the training objective is an exploding loss leading to reduced valid generation ability
of our generative network. In order to overcome this problem, we scale each loss term by the
largest one, such that each term is at most 1. This way, we have a more stable training. We
give a detailed overview of the hyperparameter settings in Appendix B.3. To perform LSO in the
joint objective setting from Equation (5.5), we rank the training data 𝐷 for both accuracy and
latency jointly by summing both individual rankings. To fulll the optimization constraint, we
further penalize the ranks via a multiplicative penalty if the latency does not fulll the constraint.
This overall ranking is then used for the weight calculation in Equation (5.4). The LSO for the
constraint objective setting from Equation (5.6) only ranks architectures by accuracy and penalizes
architectures with infeasible latency property. We rst choose random search as a baseline in this
setting as it is generally regarded as a strong baseline in NAS (Li and Talwalkar, 2019). Figure 5.5
depicts searches with our model in both optimization settings on dierent devices (Pixel 3, Edge
GPU, Raspi 4, Eyeriss, and FPGA) with dierent latency conditions in comparison with random
search. These plots show that both methods Joint=1 and Joint=0 outperform the random search
baseline in all dierent device experiments. More results are shown in Table 5.5. We observe
that either optimization setting outperforms the random search baseline in almost all tasks.
Additionally, our method is able to nd the optimal architecture for a task regularly (in 15 out
of 20 tasks), which random search was not able to provide. When considering mean accuracy
and feasibility of the best architectures of all runs, we see that Joint=1 is able to improve the
ratio of feasible architectures found during the search substantially. This is to be expected given
that the latent space is explicitly optimized for latency in this setting. Consequently, Joint=1 is
able to nd better-performing architectures compared to Joint=0 if the constraint restricts the
space of feasible architectures strongly (see results on Raspi 4). The feasibility ratio of random
search is an indicator on how restricted the space is. In most cases, the latency penalization
seems to be sucient to nd enough well-performing and feasible architectures, as can be seen
by the feasibility of Joint=0 which is greatly improved compared to random search. We show the
development of feasibility over time from Table 5.5 in Figure 5.5 (bottom right).

In addition to random search, local search (White et al., 2021b) is considered a strong baseline
in NAS. In the case of constrained searches (as here for Hardware-Aware-NAS-Bench), we notice
that it cannot perform well without adaptation. The vanilla local search algorithm expects as
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input a single randomly drawn architecture from the search space. However, this architecture
is not guaranteed to be feasible in this setting, as its latency can be larger than the latency
constraint 𝐿. To circumvent this, we perform local search in the following settings: (a) local search
vanilla setting with one randomly drawn architecture, and (b) local search initialized with 16
randomly drawn architectures. In each setting, local search continues to search the neighborhood
of the next best architecture in terms of accuracy that satises the latency constraint. We notice
that initializing local search with 16 randomly drawn architectures improves its performance
substantially, however, it is still not on par with random search (Li and Talwalkar, 2019) in this
constrained search space. Consequently, we only show random search as the baseline in Table 5.5
to improve readability. However, in Figure 5.6 we show the progress of our algorithms (Joint=0
and Joint=1) compared to random search and local search in settings (a) and (b).

Constrained Search Algorithm

As already discussed, for this multi-objective search, we also need to modify the search process.
We provide an overview of this adaption to a constrained search process in Algorithm 7.

5.3.5 Generator Evaluation

Here we provide additional generation ability evaluations of our generative model. Based on an
investigation of autoencoder abilities from Yan et al. (2020), we can examine the generation ability
of our generative model. For that we train our generator on 90% of the overall architectures in a
search space, and thus have a hold-out dataset of 10% for the tabular benchmarks. The generative
model training on the surrogate benchmarks is a priori only on a subset of the overall dataset.
Additionally, we sample 10 000 random variables z ∼ N(0, 1) and decode them to graphs. We
report the results of this investigation in Table 5.6. Here, validity describes the ratio of valid
graphs our generator model generates (from this generated 10 000), uniqueness describes the
portion of unique graphs from the valid generated graphs, and novelty is the portion of generated
graphs not in the training set. It is not surprising for the NAS-Bench-301 and NAS-Bench-NLP
search spaces, that our model is able to generate 100% unique and novel graphs, given the large
size of both search spaces.

This demonstrates that our simple generator model is able to generate valid graphs with high
novelty and consequently is able to cover a substantial part of the search space.

Table 5.6 also reports the training costs of the generative model on the complete datasets in
each search space considered so far on a single Tesla V100.

5.4 Ablation Studies

5.4.1 Ablation on LSO and Backpropagation

In this section we analyze the impact of the LSO technique and the backpropagation ability to
the search eciency. Therefore, we compare our AG-Net with the latter named adaptions on
the tabular benchmarks NAS-Bench-101 and NAS-Bench-201- The results of our ablation study
are reported in Table 5.7. As we can see, the lack of weighted retraining decreases the search
substantially. In addition, the results without backpropagation support that the coupling of
the predictor’s target and the generation process enables a more ecient architecture search
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Algorithm 7: Constrained Search Algorithm
Input: (i) Search space 𝑝𝐷
Input: (ii) Pretrained generator 𝐺
Input: (iii) Untrained performance predictor 𝑃𝑎
Input: (iv) Set of constraint predictors 𝑃𝑐
Input: (v) Query budget 𝑏
Input: (vi) 𝑒 epochs to train 𝐺 and 𝑃
Input: (vii) Set of constraints 𝐶
⊲ Initialize training data

1 D← {}
2 while |D| < 16 do
3 D← D ∪ {𝑑 ∼ 𝑝𝐷}
4 end
⊲ Evaluate architectures (get accuracies and constraints on target image

dataset)

5 D← eval(D)
⊲ Randomly initialize predictor weights

6 𝑃𝑎 ← init(𝑃𝑎)
7 foreach 𝑃 ∈ 𝑃𝑐 do
8 𝑃 ← init(𝑃)
9 end
⊲ Search loop

10 while |D| < 𝑏 do
⊲ Weight train data by performance and constraints

11 Dw ← weight(D, 𝐶)
⊲ Train generator and predictors

12 train(𝐺, 𝑃𝑎, 𝑃𝑐, Dw, 𝑒)
⊲ Generate 100 candidates

13 Dcand ← {}
14 while |Dcand | < 100 do
15 z ∼ 𝔘[−3, 3]
16 Dcand ← Dcand ∪ 𝐺(z)
17 end

⊲ Select top16 candidates with 𝑃𝑎 and 𝑃𝑐
18 Dcand ← select(Dcand, 𝑃𝑎, 𝑃𝑐,16)

⊲ Evaluate and add to data

19 D← D ∪ eval(Dcand)
20 end

over dierent search spaces. Thus, the combination of LSO and a fully dierentiable approach
improves the eectiveness of the search the most.
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Search Space Validity (in %) ↑ Uniqueness (in %) ↑ Novelty (in %) ↑ Training (in GPU days)

NAS-Bench-101 71.69 97.92 62.30 0.4
NAS-Bench-201 99.97 73.61 10.03 0.3
NAS-Bench-301 42.27 100 100 0.9
NAS-Bench-NLP 57.95 100 100 0.7

Table 5.6: Generator Abilities and training costs. The proposed generator generates architectures
with high validity and uniqueness scores. The novelty scores are in a similar range as for previous
methods (Zhang et al., 2019; Yan et al., 2020).

NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120

Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑
Optimum* 95.06 94.32 91.61 94.37 73.49 73.51 46.77 47.31

AG-Net (ours) w/o LSO 94.38 93.78 91.15 93.84 71.72 71.83 45.33 45.04
AG-Net (ours) w/o backprop. 94.71 94.12 91.60 94.30 73.38 73.22 46.62 46.13

AG-Net (ours) 94.90 94.18 91.60 94.37* 73.49* 73.51* 46.64 46.43

Table 5.7: Ablation: Search results on NAS-Bench-101 and NAS-Bench-201 using AG-Net (mean
over 10 trials with a maximal query amount of 192).
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Figure 5.7: (left) Architecture search on NAS-Bench-101. Reported is themean over 10 trials for the
search of the best architecture in terms of validation accuracy on the CIFAR-10 image classication
task compared to strong predictor models. (right) Architecture search on NAS-Bench-101 in the
degenerate setting. Reported is the mean over 10 trials.

5.4.2 Oracle Ablation

Aswe have seen in the previous section, ourmodel AG-Net is able to nd high-scoring architectures
in various search spaces of dierent sizes and with dierent objectives. In addition, including
the supposedly stronger predictor XGB leads to improvements for the search on NAS-Bench-NLP
Table 5.3. In this section, we include an even stronger architecture accuracy evaluation model,
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NAS-Bench-101 NAS-Bench-201
CIFAR-10 CIFAR-10 CIFAR-100 ImageNet16-120

Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑ Val. Acc. ↑ Test Acc. ↑
Optimum* 95.06 94.32 91.61 94.37 73.49 73.51 46.77 47.31

Random Search 94.27 93.65 91.37 93.92 72.55 72.49 46.09 46.05
Local Search 94.31 93.66 91.28 94.01 72.52 72.59 45.89 46.07

Bayesian Optimization 94.27 93.62 91.30 93.99 72.23 72.35 46.09 46.01
Random Search + LSO 94.64 94.20 91.61* 94.37* 73.49* 73.51* 46.77* 45.47
Local Search + LSO 94.17 93.50 91.30 93.96 72.43 72.58 45.83 45.95

Bayesian Optimization +LSO 94.50 93.96 91.43 94.17 72.64 72.67 46.30 45.91
SGNAS (Huang and Chu, 2021) + LSO - - 91.61* 94.37* 73.04 73.12 46.56 46.32

AG-Net (ours) 94.96 94.20 91.61* 94.37* 73.49* 73.51* 46.67 46.22

Table 5.8: Ablation: Search results on NAS-Bench-101 and NAS-Bench-201 on the AG-Net latent
space (mean over 10 trials with a maximal query amount of 300).

i.e., the benchmark query input itself (oracle). The comparison of the oracle benchmark to our
AG-Net and XGB modications are visualized in Figure 5.7 (left) for NAS-Bench-101. This gure
demonstrates the high performance of our model in the low query area. The more queries are
evaluated for the search, the better the oracle becomes, outperforming all other methods after
150 queries.

5.4.3 Predictor Ablation – Local Solution

Our proposed search method in Section 5.2.6 makes the architecture search focus on promising
regions in the search space. This method could be trapped in local solutions, which we investigate
experimentally in the following. First, the previous section already points out that our proposed
method AG-Net improves over both local search methods with and without the latent space
optimization approach (Table 5.7). Thus, we assume that the latent space optimization learns
properties of high-scoring architectures without being easily trapped in poor local solutions. The
amount of samples drawn in each search iteration also provides a trade-o between diversity
versus specicity. To investigate further how easily AG-Net could be trapped in a local solution,
we test our method when it only uses in total the best k (predicted) architectures from our test
samples and the training data as a new training set for the next search iteration (degenerative)
and is thereby encouraged to forget about worse performing architectures. Figure 5.7 shows the
search behavior of the degenerative model with 𝑘 = 16 and 𝑘 = 32 on NAS-Bench-101. Even in
this case, AG-Net is not easily trapped in poor solutions.

5.4.4 Latent Space Ablations

As we have seen in Section 5.3.1, AG-Net improves over state-of-the art methods. For additional
comparisons, we rst investigate dierent baseline search methods in the latent space of the
generative model, with samples 𝑧 from a grid, and second, couple these baseline search methods
with our LSO approach. For the rst experiment we use the generator solely as a data sampler
from the generator’s latent space without any retraining, for the latter baseline we retrain the
generator during the search. For the optimization, we use Bayesian optimization, local search
and random search.
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Figure 5.8: Ablation: NAS within the AG-Net generated latent space on NAS-Bench-101 and NAS-
Bench-201 over 10 trials.

Bayesian Optimization We use DNGO (Snoek et al., 2015) as our uncertainty prediction model
for the Bayesian optimization search strategy, with the basis regression network being a one-
layer MLP with a hidden dimensionality of 128, which is trained for 100 epochs and expected
improvement (EI) (Mockus, 1974) as our acquisition function, which is mostly used in NAS. We
set the best function value for the EI evaluation as the highest validation accuracy of the data
used to train DNGO, which is iteratively updated during the search process. We sample 16 initial
random latent space variables z ∼ 𝔘[−3, 3] and decode them to graph data using our pretrained
generative model. These latent space variables and their corresponding validation architecture
performances are then the inputs for the DNGOmodel for training. Again, the best 16 architectures
are selected using EI in each round to be evaluated and added to the training data. This search
ends when the total query amount of 300 is reached.

Random and Local Search In addition to BO as a comparison, we also include a random search
and local search investigation. Local search evaluates samples and their neighborhood uniformly
at random. An option to dene the neighborhood is the set of architectures which dier from a
sampled architecture by one node or edge. This can be done only in the discrete search space,
given for example by the tabular NAS-Benchmarks. We have to adapt the neighborhood denition
in our latent space for local search in this space. We sample a latent space variable z ∼ 𝔘[−3, 3],
decode it and evaluate the generated neural architecture. Here, we dene neighborhood as the
Euclidean space around the sampled latent variable 𝑈𝜖(z) = {y ∼ 𝔘[−3, 3] |𝑑 (z, y) < 𝜖}, with 𝜖
being suciently small. This neighborhood is then investigated until a local optimum in terms of
validation accuracy is reached.

Furthermore, we include a random search and local search comparison using weighted
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retraining. Here, we retrain the generative model in each search iteration for 1 epoch with the
weighted objective function, ceteris paribus. To compare with weight-sharing approaches, we
also compare to the supernet from Huang and Chu (2021) for the NAS-Bench-201 search space.
To compare our AG-Net with SGNAS, we use the supernet as our surrogate model to predict the
architecture’s performance while retraining the generative model in the weighted manner.

The results of our ablation studies are reported in Table 5.8. AG-Net improves over search
methods on the latent space with and without LSO on both benchmarks, demonstrating that our
generator in combination with our MLP surrogate model learns to adapt the distribution shift
constructed by the weighted retraining best.

For further visualizations we also plot this dierent search methods over dierent query
numbers in Figure 5.8 for both benchmarks NAS-Bench-101 and NAS-Bench-201. This gure
demonstrates the high any-time performance of our method on both search spaces. For any
number of available queries, our model is better in nding high-performing architectures from
the latent space than other latent space-based methods.

5.5 Conclusion

We propose a simple architecture generative network (AG-Net), which allows us to directly gener-
ate architectures without any additional encoder or discriminator. AG-Net is fully dierentiable,
allowing to couple it with surrogate models for dierent target predictions. In contrast to former
works, as also presented in Chapter 4, it enables to backpropagate the target information from the
surrogate predictor into the generator. By iteratively optimizing the latent space of the generator,
our model learns to focus on promising regions of the architecture space, so that it can generate
high-scoring architectures directly in a query and sample-ecientmanner. Extensive experiments
on common NAS benchmarks demonstrate that our model outperforms state-of-the-art meth-
ods at almost any time during architecture search and achieves state-of-the-art performance on
ImageNet. It also allows formulti-objective optimization on the Hardware-Aware NAS-Benchmark.
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One-Shot Architecture Search
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Is Differentiable Architecture Search truly a One-Shot Method?

6So far, we investigated in part II the advantages of using generativemodels in NAS to improve on
the search and query eciency. In contrast, dierentiable architecture search, as presented

in section 2.1.4 by Liu et al. (2019), proposes a continuous relaxation of the search problem, i.e., all
candidate architectures within a given search space of operations and their connectivity are
jointly optimized using shared network parameters while the network also learns to weigh these
operations. The nal architecture can then simply be deduced by selecting the highest weighted
operations.

This is appealing as practically good architectures are proposed within a single optimization
run. However, as discussed in Section 2.1.4, previous works such as Zela et al. (2020a) also indicate
that the proposed results are often sub-optimal, especially when the search space is not well-
chosen. Specically, since network weights are randomly initialized, promising operations can
have poor initial weights such that the architecture optimization tends to entirely discard them.
As a result, the practical relevance of dierentiable architecture search proposed architectures
depends heavily on network initialization as well as on training hyperparameters. Yet, in the
context of large-scale computer vision problems such as image classication, a systematic analysis
of dierentiable architecture search with respect to hyperparameter optimization is hardly
aordable.

In this chapter, we apply dierentiable architecture search (DAS) to inverse problems with
the main focus on the analysis of DAS w.r.t. the impact of domain shifts, training hyperparameter
choice and network initialization. Since signal recovery has not received nearly as much attention
in the NAS literature as image classication (Section 2.1), it allows to study a naive choice of
parameters and settings without bias to known results and best practices. We make a clear
distinction here between DARTS (Liu et al., 2019), which includes the proposed search space and
topologies, and the dierentiable architecture search, DAS, itself.

In the signal recovery setting, sequential architectures (Zhang et al., 2017) yield competitive
results when learning to solve inverse problems, such that we can analyze the impact of the
complexity of the search space more easily. Specically, we compare the stability and sensitivity to
hyperparameters of the architecture optimization in a simple, sequential search space as well as in
a non-sequential search space, which we both propose, where the latter is inspired by the search
space proposed in Liu et al. (2019). We investigate two types of one-dimensional inverse problems
which allow for extensive experiments for each setting in order to analyze the robustness of DAS.

We show that DAS can automatically nd well-performing architectures if the search space is
well-preconditioned. Yet, our study also shows that the performance of DAS heavily depends on
hyperparameter choices. Moreover, DAS shows a large variance for any set of hyperparameters,
such that the suitability of parameters as well as the overall performance can only be judged
when considering numerous runs. This nding challenges the understanding of DAS as a one-shot
method for NAS. Equally concerning, we nd that the estimated network performance using
jointly optimized, shared weights is often not well correlated with the reconstruction ability of
the nal model after operation selection and re-training, i.e., the continuous relaxation in DAS
seems to be quite loose. Therefore, we also meet here the problematic of rank disorder and poor
test generalization (Li and Talwalkar, 2019; White et al., 2023; Zela et al., 2020a) (Section 2.1.4). In
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particular, this makes the search for good hyperparameters by optimizing for the DAS training
objective near-impossible. Hyperparameter optimization w.r.t. the nal architecture performance
is even more expensive and seems to increase the variance in the results even further. Yet, overall,
our study also shows that DAS can successfully be applied to inverse problems. Specically, it
improves over the competitive random search baseline by a signicant margin, when the search
space contains a variety of harmful and benecial operations. This nding is crucial, since the
search space can not always be assumed to be well preconditioned in novel applications.

In summary, we make the following contributions:

• We show that applying dierentiable architecture search is able to nd well-performing
architectures in the signal recovery setting to solve inverse problems, if the search space is
well preconditioned

• Wealso nd that DAS induces a large variance for several runs and dierent hyperparameter

• We nd the rank disorder issue in our proposed sequential search space, and a poor test
generalization in our proposed non-sequential search space.

This chapter is structured as following: In Section 6.1, we introduce the dierentiable architec-
ture search used in this chapter. Section 6.2 provides additional information about related work
for reconstruction. We introduce both proposed and used search spaces in Section 6.3, which we
use our experiments in Section 6.4. Lastly, we conclude this chapter in Section 6.5

This chapter a modied version of the paper J. Geiping et al. (2021a). “DARTS for Inverse
Problems: a Study on Stability”. In: Advances in Neural Information Processing Systems (NeurIPS),
Workshop on Deep Learning and Inverse Problems and its extended version J. Geiping et al. (2021b).
“Is Dierentiable Architecture Search truly a One-Shot Method?” In: arXiv.org abs/ 2108.05647.

6.1 Differentiable Architecture Search

We introduce DAS, based on Liu et al. (2019) (Section 2.1.4), in amore detailed way in the following,
as it is the basis of our analysis. While the originally proposed method optimizes so-called cells,
which are stacked in order to dene the overall neural network architecture, and denes each cell
in the form of a directed acyclic graph (DAG), we conduct most parts of our systematic study of the
behavior of DAS on special sequential, and easy-to-interpret meta-architectures to be described
below (Fig. 6.1). To exclude that our ndings are merely due to this special search space, we also
consider experiments resembling the original setup in Liu et al. (2019).

Our sequential architecture consists of 𝑁 nodes 𝑥 (𝑖) , where 𝑥 (0) represents the input data and
the result 𝑥 (𝑖+1) of any layer is computed by applying some operation 𝑜(𝑖) to the predecessor node
𝑥 (𝑖) , i.e.,

𝑥 (𝑖+1) = 𝑜(𝑖) (𝑥𝑖) , 𝜃(𝑖) ), (6.1)

where 𝜃(𝑖) are the (learnable) parameters of operation 𝑜(𝑖) . To determine which operation 𝑜(𝑖) is
most suitable to be applied to the feature 𝑥 (𝑖) , one denes a set of candidate operations 𝑜𝑡 ∈ O,
𝑡 ∈ {1, . . . , | O |C 𝑇 } and set the NAS optimization problem with the objective to select the
optimal (discrete) arrangement of these operations in the neural architecture. DAS searches over
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the continuous relaxation of this discrete problem with

𝑜(𝑖) =
𝑇∑︁
𝑡=1

𝛽
(𝑖)
𝑜𝑡 𝑜𝑡 , 𝛽

(𝑖)
𝑜𝑡 =

exp(𝛼(𝑖)𝑜𝑡 )∑𝑇
𝑡′=1 exp(𝛼

(𝑖)
𝑜𝑡′ )

, (6.2)

where 𝛼 = (𝛼(𝑖)𝑜𝑡 ) are architecture parameters that determine the selection of exactly one candidate
operation in the limit of 𝛽 becoming binary. Instead of looking for binary parameters directly, the
optimization is relaxed to the soft-max of continuous parameters 𝛼.

DAS formulates this search as a bilevel optimization problem in which both, the network
parameters 𝜃 = {𝜃(𝑖) }𝑁

𝑖=1 and the architecture parameters 𝛼, are jointly optimized on the training
and validation set, respectively, via

min
𝛼
L𝑣𝑎𝑙 (𝜃(𝛼), 𝛼) (6.3)

s.t. 𝜃(𝛼) ∈ arg min
𝜃
Ltrain(𝜃, 𝛼), (6.4)

where L𝑣𝑎𝑙 and Ltrain denote suitable loss functions for the validation and training data. The
optimization is done by approximating (6.4) by one (or zero) iterations of gradient descent, and
depends on several hyperparameters such as initial learning rates, learning rate schedules and
weight decays for both architecture and model parameters.

At the end of the search, the discrete architecture is obtained by choosing the most likely
operation �̂�(𝑖) = arg max𝑜𝑡𝛼

(𝑖)
𝑜𝑡 for each node. Subsequently, the nal network is retrained from

scratch. Thus, the fundamental assumption that justies the idea of DAS is that the performance
reached by the nal network architecture on the validation set (the architecture validation) is
highly correlated with the performance of the relaxed DAS approach obtained in Equation (6.3)
(the one-shot validation). Only then, the architecture found during DAS optimization can also be
expected to perform well after retraining.

While previous works (as introduced in Section 2.1.4) have studied a search-to-evaluation
gap, i.e., the eect that the nal network architecture’s performance improves signicantly by
retraining from scratch, we further investigate whether this assumed correlation between one-
shot validation and architecture validation is always given and in how far it depends on the choice
of hyperparameters. This motivates our analysis of the potential benets of DAS in a dierent
setting than image classication.

6.2 Related Work

Previous work on reconstruction of inverse problems via learned approaches has often focused
on unrolled optimization schemes, such as unrolled PDHG in Riegler et al. (2016) and Adler and
Öktem (2018). These architectures, also referred to as variational networks (Klatzer et al., 2016;
Hammernik et al., 2017), are constructed by unrolling existing optimization routines that solve
inverse problems and adding learning components in blocks which are either recurrent, as e.g., in
Aggarwal et al. (2019) or fully independent as in Hammernik et al. (2018). In this investigation we
will focus on parameterized gradient descent layers which can be seen as the most fundamental
building block of these optimization routines.
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Figure 6.1: Investigated sequentialmeta-architecture. This setup is simple, yet it is able to represent
DnCNN-like architectures (Zhang et al., 2017).

6.3 Proposed Search Spaces

The signicant advantages in computational eciency over discrete architecture optimization
methods along with the impressive performances of the nal architectures have made DARTS
and its variants highly attractive for automating the search for well-working neural networks.
This framework itself is generic and thus applicable to any eld of application, such as inverse
problems.

Our following analysis of DAS for inverse problems will deliberately not be targeting settings
that yield good results by design. In contrast, we propose two search spaces with dierent
complexities that allow to analyze the stability and performance of DAS under varying degrees of
diculty, in ascending order:

• nding a good (linear) sequence of operations from meaningful choices of operations,

• nding a good (linear) sequence of operations where the set of operations to choose from
contains good operations as well as harmful operations (the model needs to learn to avoid
these),

• nding a good non-linear, acyclic computational graph of operations from meaningful
choices of operations (this is the conventional DARTS setting),

• nding a good non-linear, acyclic computational graph of operations, where the set of
operations to choose from contains good operations as well as harmful operations (the
model needs to learn to avoid these).

Such search spaces allow to investigate the properties of DAS methods under various and realistic
conditions. Specically, not for all tasks, we can assume that the set of well-performing, benecial
operations is given or even complete. In such setups, one would ideally want to be able to add
new operation candidates to the search space and have the search determine which conguration
will work best. Therefore, it is desirable that methods perform reliable even if poor operation
choices are available.

6.3.1 Sequential Search Space

For the simpler, sequential search space, we propose the meta-architecture shown in Figure 6.1,
which should be specically well-suited for examples of signal recovery from known data forma-
tion processes such as blurring and subsampling with noise. From a pre-dened set of operations,
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Figure 6.2: Investigated meta-architecture in the non-sequential search space.

we choose operations sequentially before adding the output to a residual branch. Image recovery
networks such as DnCNN (Zhang et al., 2017) are contained in this meta-architecture. In practice,
we search for 10 successive layers. A detailed discussion of the proposed operations is given in
Section 6.3.3. As discussed above, the search space deliberately contains benign as well as harmful
operations. This allows the evaluation of the eectiveness of DAS in any setting via the distinction
of two cases: Training on all operations versus training only on benecial operations. A good ar-
chitecture search algorithm should reliably nd the optimal operations, even when presented with
sub-optimal choices.

6.3.2 Non-Sequential Search Space

For the more complex, non-sequential search space, we construct a cell structure with 5 states,
and allow for arbitrary forward connections among the same set of operations as in the sequential
setting, but also allowing for a {zero} operation, resulting in up to 15 operational connections.
The output of the last two states is then concatenated and attened via a 1D convolution. We
utilize two of these cells in succession, so that the depth of this search space with in total 10 nodes
is comparable to the sequential search space from above. Figure 6.2 visualizes an exemplary cell
meta architecture (supernet) during architecture search and the found cell architecture, which is
then retrained. We choose in each cell one operation out of several as a connection between each
node in the cell. This setting is more directly comparable to the original formulation in Liu et al.
(2019), which contains a cell structure with multiple possible connections between sequential
states, allowing for a larger degree of freedom in combining computational results.

The selected architecture for retraining then takes the operation between each node with the
highest probability.

6.3.3 Network Operations for Inverse Problems

In both the sequential and non-sequential setting, we search for the optimal architecture that
can be dened using operations selected from a dened set O𝑙 . Specically, we propose to use
four operations, two of which are benign and potentially benecial by design. The rst benign
operation is motivated from rolled-out-architectures (see e.g., Gregor and LeCun (2010), Schmidt
and Roth (2014), and Kobler et al. (2017)) and tries to embed model-based knowledge about the
recovery problems into the network’s architecture. In this chapter, we consider problems which
can be phrased as linear inverse problems, inwhich the quantity 𝑥 ought to be recovered fromdata
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𝑦 = 𝐴𝑥 + noise for a linear operator 𝐴. While the precise type of algorithm is typically dictated by
(smoothness) properties of the regularization, a partially parameterized network-based approach
has a lot of freedom to choose from template layers based on the mentioned inverse problem
𝑦 = 𝐴𝑥 + noise

arg min
𝑥

𝐷(𝐴𝑥, 𝑦), (6.5)

where 𝐷 is a data formation term arising from the distribution of noise present, i.e.,

𝐷(𝐴𝑥, 𝑦) =
1
2
| |𝐴𝑥 − 𝑦 | |2

for Gaussian noise. This optimization objective yields templates such as a gradient descent layer:

𝑥𝑘+1 = 𝑥𝑘 − 𝜏𝐴𝑇∇𝑥𝐷(𝐴𝑥𝑘 , 𝑦),

for input 𝑥𝑘 and output 𝑥𝑘+1 of a new layer. For suitable chosen 𝜏, the application of this layer
is guaranteed to reduce the objective (6.5). The gradient layer can be turned into a learnable
operation by introducing a learnable mapping F (𝑥, 𝜃) after the gradient step,

𝑥𝑘+1 = 𝑥𝑘 − 𝜏𝐴𝑇∇𝑥𝐷(𝐴𝑥𝑘 , 𝑦) − 𝜏F (𝑥𝑘 , 𝜃), (6.6)

as a learnable gradient descent layer in our operation set O𝑙 . The second benign layer is a
fully-learned neural network layer in our operation set O𝑙 , that learns an appropriate mapping
F (𝑥, 𝜃) without knowledge of the operator 𝐴:

𝑥𝑘+1 = F
(
𝑥𝑘 , 𝜃

)
, (6.7)

For both layers, the learnable mapping F (𝑥, 𝜃) is parameterized by a small convolutional
network, consisting of a convolution layer, followed by batch normalization, ReLU and a sec-
ond convolution layer. These two layers, learnable gradient descent layer and neural network
layer, are by design benecial operations. In contrast to these benecial layers we also in-
clude two negative operations to each operation set; a gradient layer with white Gaussian
noise, noise layer, and a roll layer, which rolls the inputs in all dimensions. In total, we set
O𝑙 = {learnable gradient descent, 2-layer-CNN, roll, noise}.

6.4 Evaluating DAS for Inverse Problems

In the following, we describe the experimental setting in which we evaluate DAS for inverse
problems. Thereby, we focus on small problem instances to be able to evaluate the framework
not once but in several runs such as to evaluate the statistics of the results. This setup also allows
to gain insights on the dependence of DAS’ performance on the chosen hyperparameters.

6.4.1 Experimental Setup

Data Generation.

For a fast synthetic test we generate one-dimensional data sampling cosine waves of varying
magnitude, amplitude and oset, and search for models to recover these samples from distorted
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measurements. We consider two distortion processes with varying diculty: First, Gaussian noise
and blurring and second, in addition to these, a subsampling by a factor of 4.

We generate these synthetic one-dimensional cosine data from 𝑁 = 50 equally spaced points
𝜔𝑖 on the interval [−𝜋2 ,

𝜋
2 ] with the model

𝑥𝑖 = cos( 𝑓 𝜔𝑖 + 𝑂𝑥) + 𝑂𝑦

for a random frequency 𝑓 drawn uniformly from the interval [0, 2𝜋] and osets 𝑂𝑥 and 𝑂𝑦 drawn
from a normal Gaussian distribution. Such random drawn waves comprise our ground truth
training data. We then generate measured data via the linear operation 𝐴 and addition of noise 𝜂,

𝑦 = 𝐴𝑥 + 𝜂, 𝜂 ∈ N (0, 𝜎𝜂).

These pairs ( 𝑦, 𝑥) represent our training data. We sample new examples on-the-y during both
training and validation, so that no confounding eects of dataset size exist. All validation and
training loss evaluations are each based on 2 432 randomly drawn samples. The performance of
all models is evaluated in terms of their average peak signal to noise ratio (PSNR) on validation
data. The PSNR is generally dened as 10 · log10(MAX2/MSE), where MAX2 is the maximal value
of the data, in case of image data, that would be the maximal possible image pixel value. For all
experiments we chose 𝜎𝜂 = 0.01. For the blur experiments, the linear operator 𝐴 is a Gaussian
blur with kernel size 7 and 𝜎𝑏 = 0.2. For the downsampling experiments, this Gaussian blur is
followed by a subsampling by a factor 4.

Hyperparameter Optimization.

Our one-dimensional case study allows us to optimize DAS training hyperparameters with more
granularity than it would be possible for image classication tasks. While we run our rst experi-
ments using manually tuned hyperparameters (see Appendix B.4 for details), we also consider
the behavior and stability of DAS under optimized hyperparameters. We stress that we consider
this mainly as an analysis tool - given that NAS itself is a hyperparameter optimization on which
we stack another, and acknowledge that this optimization is practically intractable when larger
problems are considered. To improve hyperparameters, we apply BOHB (Falkner et al., 2018), a
Bayesian optimization method with hyperband (Li et al., 2018a) and run BOHB for 128 hyperband
iterations, which is an aordable budget in this one-dimensional data setting. It is important to
note that BOHB is not an exhaustive search and thus there are no guarantees for success within
our budget or even in general, in a way that it nds the globally optimal hyperparameters for
the just mentioned objective. The usage of BOHB as such covers the problem of hyperparameter
optimization partially, but in general, there is no simple x of DAS via hyperparameter search -
which is itself a notable statement about the algorithm. In particular, we optimize the hyperparam-
eters with respect to rst the one-shot validation performance, “BOHB-one-shot”, and second the
nal architecture performance, “BOHB”. Note here that hyperparameter search that maximizes
the nal architecture performance instead of the one-shot validation performance is twice as
expensive (on top of the already expensive hyperparameter search) due to the need for retraining.

6.4.2 Results

We rst investigate the performance of DAS on the simplied sequential search space presented
in Section 6.3.1 to validate the one-shot search property of DAS. For our analysis, we are not
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Operations Method Architecture Val. (PSNR) (↑) Runtime
Blur Downsampling

Max. Mean Med. Max. Mean Med. sec.

Good ops.

Learnable Grad. only 17.45 16.36 16.49 14.35 13.24 13.55 0:57
Nets only 21.63 19.45 20.71 16.92 13.13 14.05 0:57

DAS 23.46 21.56 21.60 18.03 16.36 16.66 2:39
Random Sampling 24.04 22.00 22.16 18.10 16.74 16.78 0:57
Random Search 24.04 22.85 22.75 18.10 17.62 17.56 2:55

All DAS 22.86 15.64 18.57 18.01 15.39 16.12 2:53
Random Sampling 20.86 9.45 8.10 13.78 5.08 4.31 0:57
Random Search 20.86 12.39 12.34 13.78 9.61 9.77 2:55

Table 6.1: Architecture validation PSNR values for 1D inverse problems. Shown is the maximal,
mean and median PSNR over 75 trials in the sequential search space.

only interested in the best found architecture but also in the statistics of the search to leverage
the advantages of the proposed ecient setup. We therefore evaluate 75 trials of DAS as well
as several baselines such as (i) setting all operations to Learnable Grad. or Net (i.e., learnable
gradient descent or 2-layer CNN), (ii) picking a random architecture (random sampling), and
(iii) performing a random search within an equal time budget as required by one DAS run. We
summarize the results in Table 6.1. We furthermore distinguish between dierent operation sets:
only good operations (good ops.) and the complete operation set O𝑙 (all ops.).

The rst results for DAS indicate that it works well for inverse problems. It proposes successful
architectures given the complete operation set for both considered data formation methods, blur
and downsampling, resulting in architectures with a median PSNR of 18.57 and 16.12. Thereby, it
also outperforms architectures consisting of only one good operation in both operations set cases,
especially when considering the best found architecture using DAS. Practically, these experiments
thus lead to a rst interesting result for applied inverse problems: The best found architecture
is a hybrid version that mixes both benecial operations, possibly suggesting that the best way
to approach inverse problems are neither plain (convolutional) networks nor pure unrolling
schemes.

Next, we compare DAS to random sampling (random selection of the operation at each layer)
and random search approaches. To allow for comparison at an equal time budget for the latter
(random search in Table 6.1), we evaluate 5 randomly sampled architectures and report the best
for each trial. One random evaluation using only good operations, i.e., the training of one random
architecture, takes on average 57 sec. versus 2 min. 39 sec. for one DAS run. For the sequential
search space that purely consists of benign operations, random search outperforms DAS with a
median PSNR of 22.75 versus 21.6 on blur and 17.56 versus 16.66 on downsampling. Thus, in this
scenario, random search outperforms DAS when used as a one-shot model. In addition, the simple
random sampling approach also outperforms DAS. This is dierent when harmful operations are
added. For a search on the full operations set O𝑙 , DAS can clearly outperform both simple random
baselines.

For further analysis, we additionally investigate howmany random search runs are needed, to
improve over the DASmedian for the set of all operations, i.e., 18.57 PSNR on blur: Random search
needs on average (of 10 runs) 49 random sampling steps to improve over the DAS median. While
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(b) Downsampling.

Figure 6.3: Scatter plot corresponding to Table 6.1 showing architecture PSNR (y-axis) plotted
against 1-shot validation PSNR (i.e., the validation performance on the DAS objective) for blur
(left) and downsampling (right).

this observation is overall motivating, we also observe that the performance of DAS signicantly
drops on average as well as in the median when all operations are considered (compared to only
using benign operations). Especially on the blurred data the PSNR drops in the median from
21.60 to 18.57. This eect is undesired: ideally, DAS should be able to reliably lter out harmful
operations.

We investigate the performance of DAS in the non-sequential search space in Section 6.4.5,
which shows lower performance than in the sequential search space, and thus we consider only
the latter one in the following investigations. From a theoretical perspective, we argue that DAS
should be able to determine which operations are harmful: If we assume that the validation
accuracy during the optimization correlates with the validation accuracy of the nal architecture,
harmful operations should be excluded early on in the optimization process. Therefore, in the
following section, we study this correlation and investigate whether the behavior can be improved
by optimizing training hyperparameters.

6.4.3 Architecture and DAS Performance

Figure 6.3 takes a closer look at the trials considered in Table 6.1, scattering the values of all trials
separately with architecture performance (y-axis), which is computed after retraining the nal
architecture versus the direct validation performance of the one-shot architecture (x-axis). We also
plot a regression line over all trials and report the correlation of all trials in the legend, showing
the linear t has limited expressiveness. As discussed, the correlation of these quantities is a
fundamental assumption of DAS. However, this rst experiment indicates a correlation problem:
The assumption that a better one-shot validation implies a better architecture validation does not
always seem to be true. Therefore, we are faced with the problem of rank disorder here as well,
as introduced in Section 2.1.4.

These plots also show that DAS’ behavior is highly problem-dependent: The downsampling
dataset (right), shows that, although the mean value of DAS can be non-optimal, search perfor-
mance and architecture performance are weakly correlated, even if the best architecture only
has average search performance. The closely related blur dataset (left) shows an entirely dierent
behavior with dierent “failure” cases, from which we can observe with the given hyperparame-
ters that 1) either DAS proposes architectures with low (one-shot) search validation PSNR (i.e., it
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Data Hyperparameters Architecture Val. (PSNR) (↑)
Good Ops. All

Max. Mean Med. Max. Mean Med.

Blur

H1 23.46 21.56 21.60 22.86 15.64 18.57
H2 23.46 21.43 21.63 23.10 16.77 19.88

BOHB-one-shot-Blur 22.83 20.86 20.75 22.47 15.57 18.04
BOHB-one-shot-DS 22.33 20.65 20.96 22.41 14.43 14.41

BOHB-Blur 23.57 22.05 22.38 22.94 12.76 8.21

Downsampling

H1 18.03 16.36 16.66 18.01 15.39 16.12
H2 18.20 16.57 16.78 17.82 15.93 16.21

BOHB-one-shot-Blur 18.42 16.83 16.95 17.73 14.36 14.57
BOHB-one-shot-DS 17.51 15.33 15.84 18.12 12.36 13.65

BOHB-Blur 18.26 14.63 15.93 17.91 15.04 15.44

Table 6.2: Architecture validation PSNR values for 1D inverse problems with dierent hyperpa-
rameter. Shown is the maximal, mean and median PSNR over 75 trials.

fails), or that 2) DAS works but does not predict a useful architecture (low architecture validation
PSNR), or that 3) DAS does predict a useful architecture but is unrelated to its search performance.
Only the best proposed architectures perform well in both. To further analyze the correlation, we
investigate DAS behavior with dierent training hyperparameters.

We evaluate DAS using 5 dierent training hyperparameter sets; two are chosen manually,
H1 and H2 (H1 are the hyperparameters used in the previous Section 6.4.2), whereas the other
three are tuned using BOHB, as described in Section 6.4.1. We use BOHB to tune hyperparameters
for the one-shot validation performance for both blur (BOHB-one-shot-Blur) and downsampling
(BOHB-one-shot-DS), individually, and also to target the nal validation performance for blur
(BOHB-Blur). The DAS search results for dierent training hyperparameters are given in Table 6.2.
For additional visualization, we plot the results for all BOHB found hyperparameter trials in
Figure 6.4. The plot shows that the correlation for both data formation methods increases with
the corresponding BOHB-one-shot tuned hyperparameters, with also a higher range of the search
validation PSNR.

This experiment also shows a rather surprising outcome: In the case of blur, the average
performance (using the dataset associated BOHB ne-tuned hyperparameters) is on par with
the manually chosen hyperparameters H1 and H2, whereas the performance for downsampling
decreases, especially when all operations are considered. In addition, the best architecture PSNR
over 75 trials decreases. Overall, the apparent stabilization via optimization of the search loss
removes not only negative, but also positive outliers. Furthermore, hyperparameters optimized
for one dataset do not transfer well to the other.

Using BOHB to target the nal validation performance for blur (BOHB-Blur) instead of the
one-shot validation performance has also a positive impact on the one-shot validation and archi-
tecture validation correlation (Figure 6.4), compared to the manually chosen hyperparameters
H1 and H2 in Figure 6.3, but not to the same amount as for the BOHB-one-shot hyperparameters.
However, these hyperparameters successfully increase the max. architecture performance. Over-
all, hyperparameters optimized with BOHB on the one-shot validation have to be considered with
caution. This can be seen by cross-checking their performance, i.e., evaluating the BOHB-one-
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(b) Downsampling with BOHB-one-shot-DS.
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(c) Blur with BOHB-Blur.
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(d) Downsampling with BOHB-Blur.

Figure 6.4: Scatter plot corresponding to Table 6.2 with BOHB-optimized hyperparameters, show-
ing architecture PSNR (y-axis) plotted against one-shot validation PSNR (x-axis). (top left) Blur
with hyperparameters BOHB-one-shot-Blur. (top right) Downsampling with hyperparameters
BOHB-one-shot-DS. (bottom left) Blur with hyperparameters BOHB-Blur. (top right) Downsam-
pling with hyperparameters BOHB-Blur.

shot-Blur hyperparameters for downsampling and the BOHB-one-shot-DS hyperparameters for
blur. For the case of blur and all operations in Table 6.2, the dedicated BOHB-one-shot-Blur hyper-
parameters are signicantly more stable (measuring median PSNR) than the BOHB-one-shot-DS
hyperparameters, although their maximal PSNR is very close.

When changing the domain to downsampling, the exact opposite holds: BOHB-one-shot-Blur
hyperparameters improve over BOHB-one-shot-DS hyperparameters in terms of stability. Note that
this could be due to both, the missing correlation between one-shot and architecture validation
as well as the missing guarantee of any Bayesian search to nd the optimal hyperparameters.
In addition, Table 6.2 even demonstrates that the manual hyperparameters H1 and H2 lead to a
better average performance compared with dedicated BOHB tuned hyperparameters, especially
in the case of only good operations.

In conclusion, we nd two schools of thought when evaluating the performance of DAS. For
maximal performance, we should not understand DAS as a one-shot search approach, but as a
component in a larger search that proposes trial architectures. For average performance, and
immediate performance with a single DAS run, we should be optimizing the search performance
and maximize its correlation with architecture performance - although as our experiments show,
this is non-trivial even when searching for these hyperparameters in an automated fashion.
We stress that the two directions are not at odds with each other, yet problems can arise in
the literature when comparing proposed improvements of DAS across both. Some algorithmic
improvements of DAS are more likely to improve best-case performance, whereas others are more
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(b) Blur with respectively BOHB-one-shot opti-
mized hyperparameters.

Figure 6.5: (left) Architecture search with BOHB-searched hyperparameters for DAS with single
level optimization on the blur data formation. (right) Both methods with their own BOHB hyper-
parameters on the blur data formation.

likely to impact single trial stability. If these two are not carefully compared, then best-case results,
which do provide better benchmark numbers, can appear to supersede stability results. Here,
we discuss this eect for a simplied case study, but for large-scale DAS in image classication,
where trials are expensive and xed random seeds tempting, such a dichotomy makes it fairly
dicult to evaluate and classify the manifold improvements of DAS.

6.4.4 Improving the Initialization

Several works, such as Zela et al. (2020a), investigate the instability of the bilevel approximation
of DAS w.r.t. the weight initialization; the random initialization of the network weights can cause
promising operations having poor initialization and thus tend to be entirely discarded during the
architecture search. We evaluate the impact of this initialization by modifying the DAS search,
such that it only has to search for the optimal architecture parameters to build the resulting
architecture. In this section, we only consider the blur data formation and search on the complete
operation set O𝑙 .

For this DAS-single approach, we pretrain the operations {learnable gradient descent} and
{2-layer-CNN} as baseline architectures, compared to Learnable Grad. only and Nets only from
Section 6.4.2, and keep the operation weights xed. This is generally only possible for the feed-
forward architectures that we consider and requires only a weak specialization between layers.
Thereby, we avoid the random initialization of the operationsweights for theDAS search. Figure 6.5
shows the results of DAS-single search with BOHB-optimized hyperparameters for the complete
operation set. Notably, BOHB-optimized hyperparameters for the DAS-single one-shot validation
(Figure 6.5 left) lead to a positive impact on the correlation of the one-shot and architecture
validation PSNR using DAS-single and to a negative impact for DAS. In addition, when comparing
DAS and DAS-single with their hyperparameters being individually optimized with BOHB with
respect to their one-shot validation (Figure 6.5 right), DAS nds a higher architecture validation
PSNR than DAS-single, whereas DAS-single becomes more robust against possible outliers, making
this search less sensitive.
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Operations Method Architecture Val. (PSNR) (↑)
Blur Downsampling

Max. Mean Med. Max. Mean Med.

Good ops.

Learnable Grad. only 13.19 12.41 12.38 11.30 8.89 9.59
Nets only 16.35 14.83 15.82 13.63 13.07 13.06

DAS 15.34 13.08 12.51 13.22 10.22 10.43
Random Sampling 16.20 11.29 11.88 13.15 6.26 5.72

All DAS 16.15 13.56 13.73 13.31 9.47 8.61
Random Sampling 16.05 9.56 8.17 13.39 4.37 3.21

Table 6.3: Architecture validation PSNR values for 1D inverse problems for the non-sequential
search space. Shown is the maximal, mean and median PSNR over 100 trials.

6.4.5 Results Non-sequential Search Space

Since the original formulation in Liu et al. (2019) contains a cell structure with multiple possible
connections between sequential states, allowing for a larger degree of freedom in combining
computational results, it is a priori conceivable that some stability of DAS could be conferred
through this structure. Therefore, we now analyze the DAS performance on the non-sequential
DAS-like search space as presented in Section 6.3.2 and exemplied in Figure 6.2. Table 6.3
shows the results and that this wider search space does not improve the overall performance in
comparison to Table 6.1. Indeed the non-sequential search space hampers not only the DAS search
signicantly but also all other baseline approaches, resulting in lower architecture performances
for both data formations. In this setup, the Nets only baseline, which uses the 2-layer CNN for all
possible operations, performs best.

As in Section 6.4.2, we observe a signicant drop in the performance of DAS for downsampling
when harmful operations are included in the search space. In this case of all operations, DAS can
signicantly outperform the random sampling baseline but not reliably determine the obviously
best operation (neither using all ops. nor using only good ops.).

Hyperparameters

In this section, we additionally investigate the stability of our DAS framework with respect to
hyperparameters within the non-sequential search space from Section 6.3.2 for the blur data
formation.

To investigate the hyperparameter stability further for this non-sequential search space, we
conduct experiments using the same BOHB-optimized hyperparameters as in Section 6.4.3 (Fig-
ure 6.6) and additionally included BOHB-optimized hyperparameters for this non-sequential
search space for rst targeting the one-shot validation performance (BOHB-Non-Seq-one-shot-
Blur) and second targeting the nal architecture performance (BOHB-Non-Seq-Blur) (Figure 6.7).
Table 6.4 shows the overall results, which are similar to Section 6.4.3: changing the hyperparam-
eters in this non-sequential search space does not improve the stability of the search process.
Figure 6.6 shows all trials for the non-sequential search space for all hyperparameters from the
sequential search space H1 (top left) and H2 (top right). These plots clarify further, that the search
space change does not improve the DAS search process. The correlation between the one-shot
validation and the architecture validation even becomes negative. Yet, these plots also show 2
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(a) Non-Sequential Blur with H1.
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(b) Non-Sequential Blur with H2.
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(c) Non-Sequential Blur with BOHB-one-shot-Blur.

14 16 18 20 22

8

10

12

14

16

Operations
Good Operations, c=-0.18
All Operations, c=0.22

Validation PSNR (search)

Va
lid

a
ti
o
n
 P

S
N

R
 (

a
rc

h
.)

(d) Non-Sequential Blur with BOHB-one-shot-DS.
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(e) Non-Sequential Blur with BOHB-Blur.

Figure 6.6: Scatter plot for the non-sequential DAS search space on blur corresponding to Table 6.4
showing architecture PSNR (y-axis) plotted against one-shot validation PSNR (x-axis). (top left)
Hyperparameters H1. (top right) Hyperparameters H2. (middle left) Hyperparameters BOHB-
one-shot-Blur. (middle right) Hyperparameters BOHB-one-shot-DS. (bottom) Hyperparameters
BOHB-Blur.

dierent “failure” cases for both operations sets, only benecial operations and all operations,
and both data formations: The validation PSNR is stable, whereas the architecture validation
performance is clustered in two dierent regions, one being very low and the other being around
15 PSNR. Note, the mean architecture validation PSNR for all operations in the sequential search
space from Section 6.4.3 in Table 6.2 is also around 15 PSNR.

For additional visualization, we also display the results using BOHB found hyperparameters
in the sequential search space in Figure 6.6 (BOHB-one-shot-Blur (middle left), BOHB-one-shot-
DS (middle right), and BOHB-Blur (bottom)), as well as BOHB found hyperparameters tuned
for this non-sequential search space in Figure 6.7. However, hyperparameter search for the
non-sequential search space via BOHB on both the one-shot validation performance and the
architecture performance as a target, does not actually improve the stability of the search for this
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(a) Non-Sequential Blur with BOHB-Non-Seq-one-
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(b) Non-Sequential Blur with BOHB-Non-Seq-Blur.

Figure 6.7: Scatter plot for the non-sequential DAS search space on blur with hyperparameters
searched for this search space, showing architecture PSNR (y-axis) plotted against one-shot vali-
dation PSNR (x-axis). (left) Blur with hyperparameters BOHB-Non-Seq-one-shot-Blur. (right) Blur
with hyperparameters searched for the nal architecture performance BOHB-Non-Seq-Blur.

Data Hyperparameters Architecture Val. (PSNR) (↑)
Good Ops. All

Max. Mean Med. Max. Mean Med.

Blur

H1 15.34 13.08 12.51 16.15 13.56 13.73
H2 15.38 13.17 12.52 16.28 14.11 15.58

BOHB-one-shot-Blur 16.38 13.25 12.76 16.71 11.73 11.8
BOHB-one-shot-DS 14.93 12.73 12.44 15.86 12.37 11.72

BOHB-Blur 16.50 13.83 13.06 16.82 14.07 14.44
BOHB-Non-Seq-one-shot-Blur 16.50 8.84 8.09 16.82 13.96 15.5

BOHB-Non-Seq-Blur 16.74 9.73 8.11 17.03 13.45 15.42

Table 6.4: Architecture validation PSNR values in the non-sequential search space for 1D inverse
problems with cosine data. Shown is the maximal, mean and median PSNR over 75 trials.

new search space, as demonstrated in Figure 6.7. Accordingly we nd on the one hand that the
ndings in the previous Section 6.4.2 regarding non-applicability of DAS as a one-shot model for
inverse problems translate to a cell-based search space and on the other hand (investigating the
overall performance metrics for both search spaces), that the sequential search space appears to
be a helpful prior for architecture search for inverse problems, given that its PSNR scores are
overall higher. Concluding, this non-sequential search space shows not only the problem of rank
disorder as for the sequential search space but also a poor test generalization, which is a common
problem in dierentiable architecture search (see Section 2.1.4).

Visualizations

Here we visualize in Figure 6.8 two found architectures using the H1 hyperparameters for the
operation sets “all operations” and “only good operations” for the data formation blur in the
non-sequential search space from the experiments above.
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Figure 6.8: Found architectures in the non-sequential search space for two dierent operation
sets for the data formation blur. Hyperparameter H1 is used for these searches for all operations
(top) and only benecial operations (bottom).

6.5 Conclusions

In this chapter we analyze DAS in a systematic study on one-dimensional inverse reconstruction
problems. In this setting, we show that DAS improves over a random search baseline by a
signicant margin, if the available set of benecial operation is not determined in advance.
In our analysis, we make the following ndings: While it is possible to nd well-performing
architectures using DAS, multiple runs of the same setting yield a high variance, challenging the
commonunderstanding of DAS as a one-shotmethod. Moreover, the ability to ndwell-performing
architectures is highly dependent on the specic choice of hyperparameters. Unfortunately,
judging the success of any DAS-based model right after the one-shot training is dicult, since a
strong correlation to the actual architecture performance is missing. As such, even automatic
hyperparameter searches such as BOHB cannot faithfully be applied to the one-shot loss. Therefore,
we emphasize for the future the necessity to

1. look at a full statistical evaluation of DAS performances over multiple trials, in all applica-
tions where this is feasible,

2. and show a reasonable correlation between the search and nal architecture performances
for any method that reports improved results based on a more faithful minimization of the
one-shot DAS objective.
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A Dataset for Neural Architecture Design and Robustness

7Innovations in the architecture design led to an ever-improving performance of deep neural
networks, which resulted in the research directionNeural Architecture Search. The goal of NAS

is to automatically nd architectures with high scores. So far, we presented search approaches
(Part II) that successfully tackled exactly this goal and resulted in ecient search approaches to
nd high-scoring architectures.

However, the goal of new architectures and their design is not only high performance but
the increased emphasis is also placed on the robustness of the networks, especially in computer
vision. This led to a shift also in NAS research in which the search for new architecture designs
with ever-better performance is accompanied by the search for architectures that are robust
against adversarial attacks and corruptions. This is important, since image classication networks
can be easily fooled by adversarial attacks crafted by already light perturbations on the image
data, which are invisible for humans. This leads to false predictions of the neural network with
high condence.

Robustness in NAS research combines the objective high-performing and robust architectures
(Devaguptapu et al., 2021; Dong et al., 2020a; Hosseini et al., 2021; Mok et al., 2021). However,
there was no attempt so far to evaluate a full search space on robustness, but rather search for
architectures in the wild using one-shot methods. In this chapter, we present a rst step towards
closing this gap. We are the rst to introduce a robustness dataset based on evaluating a complete
NAS search space, such as to allow benchmarking NAS approaches for the robustness of the
found architectures. This will facilitate better streamlined research on neural architecture design
choices and their robustness. We evaluate all 6 466 unique pretrained architectures from the NAS-
Bench-201 benchmark (Dong and Yang, 2020) on common adversarial attacks (Goodfellow et al.,
2015; Kurakin et al., 2017; Croce and Hein, 2020) and corruption types (Hendrycks and Dietterich,
2019). We thereby follow the argumentation in NAS research that employing one common training
scheme for the entire search space will allow for comparability between architectures. Having the
combination of pretrained models and the evaluation results in our dataset at hand, we further
provide the evaluation of common training-free robustness measurements, such as the Frobenius
norm of the Jacobian matrix (Homan et al., 2019) and the largest eigenvalue of the Hessian
matrix (Zhao et al., 2020), on the full architecture search space and use these measurements as a
method to nd the supposedly most robust architecture.

To prove the promise of our dataset to promote research in NAS for robust models we perform
several common NAS algorithms on the clean as well as on the robust accuracy of dierent image
classication tasks. Additionally, we conduct a rst analysis of how certain architectural design
choices aect robustness with the potential of doubling the robustness of networks with the
same number of parameters. This is only possible, since we evaluate the whole search space of
NAS-Bench-201, enabling us to investigate the eect of small architectural changes.

To our knowledgewe are the rst to introduce a robustness dataset covering a full (widely used)
search space allowing to track the outcome of ne-grained architectural changes. In summary,
we make the following contributions:

• We present the rst robustness dataset evaluating a complete NAS architectural search
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space on robustness.

• We present dierent use cases for this dataset; from training-free measurements for robust-
ness to neural architecture search.

• Lastly, our dataset shows that a model’s robustness against corruptions and adversarial at-
tacks is highly sensitive towards the architectural design, and carefully crafting architectures
can substantially improve their robustness.

This chapter introduces in Section 7.1 robustness in a general way and provides in Section 7.2
relevant related work on corruptions and adversarial attacks, as well as robustness in NAS. We
present the dataset generation in Section 7.3 and show rst use cases in Section 7.4. Further,
Section 7.4.3 provides rst analysis of how the architecture design and topology inuences the
robustness. We conclude this chapter in Section 7.5.

This chapter is a slightly modied version of the paper S. Jung et al. (2023). “Neural Archi-
tecture Design and Robustness: A Dataset”. In: Proc. of the International Conference on Learning
Representations (ICLR). The code for this chapter is available on GitHub1.

7.1 Robustness and Generalization

Although neural networks achieve unprecedented results on image classication tasks (He et al.,
2015), even surpassing human performance, they seem to be easily fooled by small perturbations
and struggle to generalize to out-of-distribution data. In the context of the former the goal of
a so-called adversarial attack is to cause a false prediction of networks with high condence
using perturbations barely visible for humans. Formally, following Croce and Hein (2020), let the
𝐶-class neural network be given by 𝑓𝜃 : R𝐷 → R𝐶 , parameterized by network weights 𝜃, with input
point 𝑥 ∈ R𝐷 and the corresponding true label 𝑦 ∈ R𝐶 . The feasible set of adversarial attacks is
further dened as {𝑥 ′ ∈ R𝐷 |𝑑 (𝑥, 𝑥 ′) ≤ 𝜖}, with 𝑑 (𝑥, 𝑥 ′) B ‖𝑥 − 𝑥 ′‖𝑝, 𝑝 ∈ {2,∞}, and 𝜖 > 0. The
most popular attacks use these 𝐿𝑝-distances. The sample 𝑥 ′ is an adversarial sample for 𝑥 if it
successfully changes the predicted label from the true label to a wrong label. An adversarial
attack 𝑥 ′ can be found by solving the optimization problem in terms of the loss function L

max
𝑥′∈R𝐷

L( 𝑓𝜃(𝑥 ′), 𝑦)

s.t. 𝑑 (𝑥, 𝑥 ′) ≤ 𝜖
(7.1)

We dierentiate here between white-box and black-box attacks; for the former one assumes full
access to the model, whereas the latter only has limited access to the model, such as only the
model’s prediction (Croce and Hein, 2020). We will provide more information for both types of
adversarial attacks in Section 7.3.2.

However, adversarial attacks are only one part to determine the robustness of an architecture.
In addition, neural networks often also fail to generalize under various image corruptions, which
change the image data distribution, such as noise, blurring, and dierent weather conditions
(Hendrycks and Dietterich, 2019) as we will discuss further in Section 7.2 and Section 7.3.3. In this
context of low generalizability, Geirhos et al. (2019) analyze the prediction behavior of popular

1https://github.com/steffen-jung/robustness-dataset

https://github.com/steffen-jung/robustness-dataset
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CNNs and observe a so-called texture-shape cue conict, i.e., they are biased towards texture
recognition (texture bias), which is in contrast to human vision behavior that focuses on shape
information (shape bias). In addition, they observe that increasing the shape-bias comes with the
benet of additional robustness and better generalization behavior.

7.2 Related Work

Common Corruptions

As discussed, common corruptions such as Gaussian noise or blur can cause the performance of
neural architectures to degrade substantially (Dodge and Karam, 2017). For this reason, Hendrycks
and Dietterich (2019) propose a benchmark that enables researchers to evaluate their network
design on several common corruption types.

Adversarial Attacks

Szegedy et al. (2014) showed that image classication networks can be fooled by crafting image
perturbations (adversarial attacks as presented in Section 7.1) that maximize the networks’
prediction towards a class dierent to the image label. Surprisingly, these perturbations can be
small enough such that they are not visible to the human eye. One of the rst adversarial attacks,
called fast gradient sign method (FGSM) (Goodfellow et al., 2015), tries to ip the label of an image
in a single perturbation step of limited size. This is achieved bymaximizing the loss of the network
and requires access to its gradients. Later gradient-based methods, like projected gradient descent
(PGD) (Kurakin et al., 2017), iteratively perturb the image in multiple gradient steps. To evaluate
robustness in a structured manner, Croce and Hein (2020) propose an ensemble of dierent
attacks, including an adaptive version of PGD (APGD) (Croce and Hein, 2020) and a black-box
attack called Square Attack (Andriushchenko et al., 2020) that has no access to network gradients.
Croce et al. (2021) conclude the next step in robustness research by providing an adversarial
robustness benchmark, RobustBench, tracking state-of-the-art models in adversarial robustness.

Robustness in NAS

With the increasing interest in NAS in general, the aspect of robustness of the optimized archi-
tectures has become more and more relevant. Devaguptapu et al. (2021) provide a large-scale
study that investigates how robust architectures found by several NAS methods, such as Liu et al.
(2019), Cai et al. (2019), and Xu et al. (2020), are against several adversarial attacks. They show
that these architectures are vulnerable to various dierent adversarial attacks. Guo et al. (2020a)
rst search directly for a robust neural architecture using one-shot NAS and discover a family of
robust architectures. Dong et al. (2020a) constrain the architectures’ parameters within a supernet
to reduce the Lipschitz constant and therefore increase the resulting networks’ robustness. Few
prior works such as Carlini et al. (2019), Xie et al. (2019a), Pang et al. (2021), and Xie et al. (2020)
propose more in-depth statistical analyses. In particular, Su et al. (2018) evaluate 18 ImageNet
models with respect to their adversarial robustness. Ling et al. (2019) and Dong et al. (2020b)
provide platforms to evaluate adversarial attacks. Recently a new line of dierentiable robust
NAS arose, namely including dierentiable network measurements to the one-shot loss target in
the DARTS search space (Liu et al., 2019) to increase the robustness (Hosseini et al., 2021; Mok
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Figure 7.1: (top)Macro architecture. Gray highlighted cells dier between architectures, while
the other components stay xed. (bottom) Cell structure and the set of possible, predened
operations. (Figure adapted from Dong and Yang (2020))

et al., 2021). Hosseini et al. (2021) dene two dierentiable metrics to measure the robustness of
the architecture, certied lower bound and Jacobian norm bound, and search for architectures
by maximizing these metrics, respectively. Mok et al. (2021) propose a search algorithm using the
intrinsic robustness of a neural network being represented by the smoothness of the network’s
input loss landscape, i.e., the Hessian matrix. In this chapter, we will evaluate these architecture
metrics for the correlation with the architecture’s robustness, i.e., the Jacobian norm as well as the
largest eigenvalue of the Hessianmatrix. This way we are able to investigate if these dierentiable
metrics are indeed good measurements for the robustness.

7.3 Dataset Generation

7.3.1 Architectures in NAS-Bench-201

Recall NAS-Bench-201 is a cell-based architecture search space. Each cell has in total 4 nodes
and 6 edges. The nodes in this search space correspond to the architecture’s feature maps and
the edges represent the architecture’s operations, which are chosen from the operation set O =

{1×1 conv. , 3×3 conv. , 3×3 avg. pooling , skip , zero} (see Figure 7.1). This search space contains
in total 56 = 15 625 architectures, from which only 6 466 are unique, since the operations skip
and zero can cause isomorphic cells (see Figure C.1), where the latter operation zero stands for
dropping the edge. Each architecture is trained on three dierent image datasets for 200 epochs:
CIFAR-10 (Krizhevsky, 2009), CIFAR-100 (Krizhevsky, 2009) and ImageNet16-120 (Chrabaszcz et al.,
2017). For our evaluations, we consider all unique architectures in the search space and test splits
of the corresponding datasets. Hence, we evaluate 3 · 6 466 = 19 398 pretrained networks in total.
In the following, we describe which evaluations we collect.

7.3.2 Robustness to Adversarial Attacks

We start by collecting evaluations on dierent adversarial attacks, namely FGSM, PGD, APGD,
and Square Attack. Following, we describe each attack and the collection of their results in more
detail.
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Figure 7.2: Accuracy boxplots over all 6 466 unique architectures in NAS-Bench-201 for dierent
adversarial attacks (FGSM, PGD, APGD, Square) and perturbation magnitude values 𝜖, evaluated
on CIFAR-10. Red line corresponds to guessing. The large spread indicates towards architectural
inuence on robust performance.

FGSM

FGSM (Goodfellow et al., 2015) nds adversarial examples via

�̃� = 𝑥 + 𝜖 sign(Δ𝑥 𝐽 (𝜃, 𝑥, 𝑦)), (7.2)

where �̃� is the adversarial example, 𝑥 is the input image, 𝑦 the corresponding label, 𝜖 themagnitude
of the perturbation, and 𝜃 the network parameters. 𝐽 (𝜃, 𝑥, 𝑦) is the loss function used to train the
attacked network. In the case of architectures trained for NAS-Bench-201, this is Cross-Entropy
(CE). Since attacks via FGSM can be evaluated fairly eciently, we evaluate all architectures for
𝜖 ∈ 𝐸𝐹𝐺𝑆𝑀 = {.1, .5, 1, 2, . . . , 8, 255}/255, so for a total of |𝐸𝐹𝐺𝑆𝑀 | = 11 times for each architecture.
We use Foolbox (Rauber et al., 2017) to perform the attacks.

PGD

While FGSM perturbs the image in a single step of size 𝜖, PGD (Kurakin et al., 2017) iteratively
perturbs the image via

�̃�𝑛+1 = clip𝜖,𝑥 (�̃�𝑛 − 𝛼 sign(Δ𝑥 𝐽 (𝜃, �̃�𝑛, �̃�))), �̃�0 = 𝑥, (7.3)

where �̃� is the least likely predicted class of the network, and clip𝜖,𝑥 (·) is a function clipping the
range to [𝑥 − 𝜖, 𝑥 + 𝜖]. Due to its iterative nature, PGD is more ecient in nding adversarial
examples, but requires more computation time. Therefore, we nd it sucient to evaluate PGD
for 𝜖 ∈ 𝐸𝑃𝐺𝐷 = {.1, .5, 1, 2, 3, 4, 8}/255, so for a total of |𝐸𝑃𝐺𝐷 | = 7 times for each architecture.
As for FGSM, we use Foolbox (Rauber et al., 2017) to perform the attacks using their 𝐿∞ PGD
implementation (see Section 7.1) and keep the default settings, which are 𝛼 = 0.01/0.3 for 40
attack iterations.

APGD

AutoAttack (Croce and Hein, 2020) oers an adaptive version of PGD that reduces its step size over
time without the need for hyperparameters. We perform this attack using the 𝐿∞ implementation
provided by Croce and Hein (2020) on CE and choose 𝐸𝐴𝑃𝐺𝐷 = 𝐸𝑃𝐺𝐷. We kept the default number
of attack iterations that is 100.
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Figure 7.3: Kendall rank correlation coecient between clean accuracies and robust accura-
cies on dierent attacks and magnitude values 𝜖 on CIFAR-10 for all unique architectures in
NAS-Bench-201. There seem to be architectural distinctions for susceptibility to dierent attacks.

Square Attack

In contrast to the before-mentioned attacks, Square Attack is a black-box attack that has no access
to the networks’ gradients. It solves the following optimization problem using random search:

min
�̃�
{ 𝑓𝜃, 𝑦 (�̃�) −max

𝑐≠𝑦
𝑓𝜃,𝑐 (�̃�)}

s.t. ‖�̃� − 𝑥‖𝑝 ≤ 𝜖,
(7.4)

where 𝑓𝜃,𝑐 (·) are the network predictions for class 𝑐 given an image. We perform this attack using
the 𝐿∞ implementation provided by Croce and Hein (2020) and choose 𝐸𝑆𝑞𝑢𝑎𝑟𝑒 = 𝐸𝑃𝐺𝐷. We kept
the default number of search iterations at 5 000.

We collect for all mentioned adversarial attacks (a) accuracy, (b) average prediction con-
dences, and (c) confusion matrices for each network and 𝜖 combination.

Summary

Figure 7.2 shows aggregated evaluation results on the before-mentioned attacks on CIFAR-10
w.r.t. accuracy. Growing gaps betweenmean andmax accuracies indicate that the architecture has
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Figure 7.4: Accuracy boxplots over all unique architectures in NAS-Bench-201 for dierent corrup-
tion types at dierent severity levels, evaluated on CIFAR-10-C. Red line corresponds to guessing.
All corruptions can be found in Figure C.14. The large spread indicates towards architectural
inuence on robust performance.

an impact on robust performances. Figure 7.3 depicts the correlation of ranking all architectures
based on dierent attack scenarios. While there is larger correlation within the same adversarial
attack and dierent values of 𝜖, there seem to be architectural distinctions for susceptibility to
dierent attacks.

7.3.3 Robustness to Common Corruptions

To evaluate all unique NAS-Bench-201 architectures on common corruptions, we evaluate them
on the benchmark data provided by Hendrycks and Dietterich (2019). Two datasets are available:
CIFAR10-C, which is a corrupted version of CIFAR-10 andCIFAR-100-C, which is a corrupted version
of CIFAR-100. Both datasets are perturbed with a total of 15 corruptions at 5 severity levels (see
Figure C.11 for an example). The training procedure of NAS-Bench-201 only augments the training
data with random ipping and random cropping. Hence, no inuence should be expected of the
training augmentation pipeline on the performance of the networks to those corruptions. We
evaluate each of the 15 ·5 = 75 datasets individually for each network and also collect (a) accuracy,
(b) average prediction condences, and (c) confusion matrices.

Summary

Figure 7.4 depicts the mean accuracies for dierent corruptions at increasing severity levels.
Similar to Figure 7.2, a growing gap between mean and max accuracies for most corruptions can
be observed, indicating architectural inuences on robustness to common corruptions. Figure 7.5
depicts the ranking correlation for all architectures between clean and corrupted accuracies.
Ranking architectures based on accuracy on dierent kinds of corruption is mostly uncorrelated.
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Figure 7.5: Kendall rank correlation coecient between clean accuracies and accuracies on dier-
ent corruptions at severity level 3 on CIFAR-10-C for all unique architectures in NAS-Bench-201.
The mostly uncorrelated ranking indicates towards high diversity of sensitivity to dierent kinds
of corruption based on architectural design.

This indicates a high diversity of sensitivity to dierent kinds of corruption based on architectural
design.

7.4 Use Cases

7.4.1 Training-Free Measurements for Robustness

Recently, a new research focus in dierentiable NAS shifted towards nding not only high-scoring
architectures but also nding adversarial robust architectures against several adversarial attacks
(Hosseini et al., 2021; Mok et al., 2021) using training characteristics of neural networks. On the
one hand, Hosseini et al. (2021) use Jacobian-based dierentiable metrics to measure robustness.
On the other hand, Mok et al. (2021) improve the search for robust architectures by including
the smoothness of the loss landscape of a neural network. In this section, we evaluate these
training-free gradient-based measurements with our dataset. Recall training-free measurements
are performance estimation techniques, assigning scores to each architecture based on fast
computations, which are supposedly correlated with the nal accuracy of the architecture (Mellor
et al., 2021).

Background: Jacobian

To improve the robustness of neural architectures, Homan et al. (2019) introduce an ecient
Jacobian regularization method with the goal to minimize the network’s output change in case of
perturbed input data, byminimizing the Frobenius norm of the network’s Jacobianmatrix, J . The
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(a) Adversarial attacks.

cle
an

, s
=3

br
ig

ht
ne

ss
, s

=3
co

nt
ra

st
, s

=3
de

fo
cu

s_
bl

ur
, s

=3
el

as
tic

_t
ra

ns
fo

rm
, s

=3
fo

g,
 s=

3
fro

st
, s

=3
ga

us
sia

n_
no

ise
, s

=3
gl

as
s_

bl
ur

, s
=3

im
pu

lse
_n

oi
se

, s
=3

jp
eg

_c
om

pr
es

sio
n,

 s=
3

m
ot

io
n_

bl
ur

, s
=3

pi
xe

la
te

, s
=3

sh
ot

_n
oi

se
, s

=3
sn

ow
, s

=3
zo

om
_b

lu
r, 

s=
3

hessian_test, pretrained
hessian_test, random

hessian_train, pretrained
hessian_train, random

jacobian_test, pretrained
jacobian_test, random

jacobian_train, pretrained
jacobian_train, random 1.0

0.5

0.0

0.5

1.0

(b) Common corruptions.

Figure 7.6: Kendall rank correlation coecient between Jacobian- and Hessian-based robustness
measurements computed on all unique NAS-Bench-201 architectures to corresponding rankings
given by (top) dierent adversarial attacks and (bottom) dierent common corruptions. Mea-
surements and accuracies are computed on CIFAR-10 / CIFAR-10-C. Measurements are computed
on randomly initialized and pretrained networks contained in NAS-Bench-201. Jacobian-based
and Hessian-based measurements correlate well for smaller 𝜖 values, but not for larger 𝜖 values.

Frobenius norm is dened as ‖J (𝑥)‖𝐹 =

√︃∑
𝜃,𝑐 |J𝜃,𝑐 (𝑥) |2. Let 𝑓𝜃 : R𝐷 → R𝐶 be a neural network

with weights denoted by 𝜃 and let 𝑥 ∈ R𝐷 be the input data and 𝑧 ∈ R𝐶 be the output score. Let
�̃� = 𝑥 + 𝜀 be a perturbed input, with 𝜀 ∈ R𝐷 being a perturbation vector. The 𝑐-th component of the
output of the neural network shifts then to 𝑓𝜃,𝑐 (𝑥 + 𝜀) − 𝑓𝜃,𝑐 (𝑥). The input-output Jacobian matrix
can be used as a measurement for the network’s stability against input perturbations (Homan
et al., 2019):

𝑓𝜃,𝑐 (𝑥 + 𝜀) − 𝑓𝜃,𝑐 (𝑥) ≈
𝐷∑︁
𝑑=1

𝜀𝑑 ·
𝜕 𝑓𝜃,𝑐

𝜕𝑥𝑑
(𝑥) =

𝐷∑︁
𝑑=1
J𝜃,𝑐;𝑑 (𝑥) · 𝜀𝑑 , (7.5)

according to Taylor-expansion. FromEquation (7.5), we can directly see that the larger the Jacobian
components, the larger is the output change and thus the more unstable is the neural network
against perturbed input data. In order to increase the stability of the network, Homan et al.
(2019) propose to decrease the Jacobian components by minimizing the square of the Frobenius
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norm of the Jacobian. Following Hosseini et al. (2021), we use the ecient algorithm presented
in Homan et al. (2019) to compute the Frobenius norm based on random projection for each
neural network in the NAS-Bench-201 benchmark.

Benchmarking Results: Jacobian

The smaller the Frobenius norm of the Jacobian of a network, the more robust the network is
supposed to be. Our dataset allows for a direct evaluation of this statement on all 6 466 unique
architectures. We use 10 mini-batches of size 256 of the training as well as test dataset for both
randomly initialized and pretrained networks and compute themean Frobenius norm. The results
in terms of ranking correlation to adversarial robustness is shown in Figure 7.6 (top), and in terms
of ranking correlation to robustness towards common corruptions in Figure 7.6 (bottom). We
can observe that the Jacobian-based measurement correlates well with rankings after attacks by
FGSM and smaller 𝜖 values for other attacks. However, this is not true anymore when 𝜖 increases,
especially in the case of APGD.

Background: Hessian

Zhao et al. (2020) investigate the loss landscape of a regular neural network and robust neural
network against adversarial attacks. Let L( 𝑓𝜃(𝑥)) denote the standard classication loss of a
neural network 𝑓𝜃 for clean input data 𝑥 ∈ R𝐷 and L( 𝑓𝜃(𝑥 + 𝜀)) be the adversarial loss with
perturbed input data 𝑥 + 𝜀, 𝜀 ∈ R𝐷. Zhao et al. (2020) provide theoretical justication that the
latter adversarial loss is highly correlated with the largest eigenvalue of the input Hessian matrix
𝐻 (𝑥) of the clean input data 𝑥, denoted by 𝜆max. Therefore the eigenspectrum of the Hessian
matrix of the regular network can be used for quantifying the robustness: large Hessian spectrum
implies a sharp minimum resulting in a more vulnerable neural network against adversarial
attacks. Whereas in the case of a neural network with small Hessian spectrum, implying a at
minimum, more perturbation on the input is needed to leave the minimum. We make use of
Chatzimichailidis et al. (2019) to compute the largest eigenvalue 𝜆max for each neural network in
the NAS-Bench-201 benchmark.

Benchmarking Results: Hessian

For this measurement, we calculate the largest eigenvalues of all unique architectures using the
Hessian approximation in Chatzimichailidis et al. (2019). We use 10 mini-batches of size 256 of
the training as well as test dataset for both randomly initialized and pretrained networks and
compute the mean largest eigenvalue. These results are also shown in Figure 7.6. We can observe
that the Hessian-based measurement, especially using pretrained weights, correlates well with
the rankings after attacks by FGSM and smaller 𝜖 values for other attacks.

7.4.2 NAS on Robustness

In this section, we perform dierent state-of-the-art NAS algorithms on the clean accuracy and
the FGSM (𝜖 = 1) robust accuracy in the NAS-Bench-201 search space, and evaluate the best found
architectures on all provided introduced adversarial attacks. We apply random search (Li and
Talwalkar, 2019), local search (White et al., 2021b), regularized evolution (Real et al., 2019) and
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Test Accuracy (𝜖 = 1) ↑
Method Clean FGSM PGD APGD Squares Clean ↑

CIFAR-10 CF-10-C

Optimum 94.68 69.24 58.85 54.02 73.61 58.55

Cl
ea
n

BANANAS (White et al., 2021a) 94.21 64.25 41.10 18.62 68.69 55.52
Local Search (White et al., 2021b) 94.65 63.95 41.17 18.74 69.59 56.90

Random Search (Li and Talwalkar, 2019) 94.22 63.38 40.09 17.84 68.40 55.60
Regularized Evolution (Real et al., 2019) 94.53 63.30 40.23 18.11 68.92 56.21

FG
SM

BANANAS (White et al., 2021a) 93.52 66.35 45.59 20.72 68.01 54.88
Local Search (White et al., 2021b) 93.86 69.10 48.27 23.18 69.47 56.57

Random Search (Li and Talwalkar, 2019) 93.57 67.25 46.15 20.93 68.44 55.10
Regularized Evolution (Real et al., 2019) 93.77 68.82 47.99 22.59 69.20 56.11

Table 7.1: Neural Architecture Search on the clean test accuracy and the FGSM (𝜖 = 1) robust test
accuracy for dierent state of the art methods on CIFAR-10 in the NAS-Bench-201 search space
(mean over 100 runs). Results are the mean accuracies of the best architectures found on dierent
adversarial attacks and the mean accuracy over all corruptions and severity levels in CIFAR-10-C.

BANANAS (White et al., 2021a) with a maximal query amount of 300. The results are shown in
Table 7.1. Although clean accuracy is reduced, the overall robustness to all adversarial attacks
improves when the search is performed on FGSM (𝜖 = 1) accuracy. Local search achieves the best
performance, which indicates that localized changes to an architecture design seem to be able to
improve network robustness.

7.4.3 Analyzing the Eect of Architecture Design on Robustness

In this section, we rst depict the best architectures in NAS-Bench-201, then show the eect of
parameter count on robustness and the magnitude of potential gains in robustness in a limited
parameter count setting, and lastly show the eect of single changes to the best performing
architecture according to clean accuracy.

Best Architectures

Figure 7.7 visualizes the best architectures in the NAS-Bench-201 search space in terms of clean
accuracy, mean adversarial accuracy (over all attacks and 𝜖 values described in Section 7.3.2),
and mean common corruption accuracy (over all corruptions and severities) on CIFAR-10 and
their respective edit distances. The edit distance is dened by the number of changes, either
node or edge, to change the graph to the target graph. In the case of NAS-Bench-201 architectures,
an edit distance of 1 means that exactly one operation diers between two architectures. So in
order to modify the best performing architecture in terms of clean accuracy (#13714) into the best
performing architecture according tomean corruption accuracy (#3456), we need to exchange two
(out of six) operations: (i) exchange operation 2 from 3 × 3 convolution to zero and (ii) exchange
operation 5 from 1 × 1 convolution to 3 × 3 convolution.
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Figure 7.7: Best architectures in NAS-Bench-201 according to (left) clean accuracy, (middle) mean
adversarial accuracy, and (right) mean common corruption accuracy on CIFAR-10. See Figure 7.1
for cell connectivity and operations.

Figure 7.8: (left) Mean adversarial robustness accuracies and (right) mean corruption robustness
accuracies vs. clean accuracies on CIFAR-10 for all unique architectures in NAS-Bench-201. Scatter
points are colored based on the number of kernel parameters of a single cell (1 for each 1 × 1
convolution, 9 for each 3 × 3 convolution).

Cell Kernel Parameter Count

Figure 7.8 displays the mean adversarial robustness accuracies (left) and the mean corruption
robustness accuracies (right) against the clean accuracy, color-coded by the number of cell kernel
parameters. We count 1 for each 1 × 1 convolution and 9 for each 3 × 3 convolution contained
in the cell, hence, their number ranges in [0, 54]. Since these are multipliers for the parameter
count of the whole network, we coin these cell kernel parameters. Overall, we can see that the
cell kernel parameter count matters in terms of robustness, hence, that networks with large
parameter counts are more robust in general. We can also see that the number of cell kernel
parameters are more essential for robustness against common corruptions, where the correlation
between clean and corruption accuracy is more linear. Also in terms of adversarial robustness,
there seems to be a large magnitude of possible improvements that can be gained by optimizing
architecture design.

Limited Cell Parameter Count To further investigate the magnitude of possible improvements
via architectural design optimization, we look into the scenario of limited cell parameter count.

In Figure 7.9, we depict all unique architectures in NAS-Bench-201 by their mean adversarial



7.4. Use Cases 115

0 10 20 30 40 50
Cell Kernel Parameters

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
ea

n 
Ad

ve
rs

ar
ia

l A
cc

ur
ac

y

Figure 7.9: Mean robust accuracy on CIFAR-10 by kernel parameters ∈ [0, 54] for all unique archi-
tectures in NAS-Bench-201. Orange scatter points depict all architectures with kernel parameter
count 18, hence, architectures with exactly 2 times 3 × 3 convolutions. Although having exactly the
same parameter count, the mean adversarial robustness of these networks ranges in [0.21, 0.40].

robustness accuracy over all attacks and 𝜖 values as described in Section 7.3.2 and cell kernel
parameter count. Networks with parameter count 18 (408 instances in total) are highlighted in
orange. As we can see, there is a large range of mean adversarial accuracies [0.21, 0.4] for the
parameter count 18 showing the potential of doubling the robustness of a network with the same
parameter count by carefully crafting its topology.

In Figure 7.10 we show the top-20 performing architectures (color-coded, one operation for
each edge) in the mentioned scenario of a parameter count of 18, i.e., exactly 2 times 3 × 3
convolutions and no 1 × 1 convolutions, according to mean adversarial accuracy over all attacks
and 𝜖 values (top) and mean corruption accuracy over all corruptions and severities (bottom) on
CIFAR-10. It is interesting to see that in both cases, there are (almost) no convolutions on edges 2
and 4, and additionally no dropping (operation zeroize) or skipping (operation skip-connect) of
edge 1. In the case of edge 4, it seems that a single convolution layer connecting input and output
of the cell increases sensitivity of the network. Hence, most of the top-20 robust architectures
stack convolutions (via edge 1, followed by either edge 3 or 5), from which we hypothesize that
stacking convolutions operations might improve robustness when designing architectures. At the
same time, skipping input to output via edge 4 seems not to aect the robustness negatively, as
long as the input feature map is combined with stacked convolutions. We nd that optimizing
architecture design can have a substantial impact on the robustness of a network. Important
to note here is that this potential of doubling the robustness by careful topology crafting is a
rst observation, which can be made by using our provided dataset. This observation functions
as a motivation for how this dataset can be used to analyze robustness in combination with
architecture design.

Gains and Losses by Single Changes

The fact that our dataset contains evaluations for all unique architectures in NAS-Bench-201
enables us to analyze the eect of small architectural changes. In Figure 7.11, we depict again all
unique architectures by their clean and robust accuracies on CIFAR-10. The red data point in both
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Figure 7.10: Top-20 architectures (out of 408) with cell kernel parameter count 18 (hence, archi-
tectures with exactly 2 times 3 × 3 convolutions and no 1 × 1 convolutions) according to (top)
mean adversarial accuracy and (bottom) mean corruption accuracy on CIFAR-10. The operation
number (1-6) corresponds to the edge in the cell, see Figure 7.1 for cell connectivity and operations.
Stacking convolutions seems to be an important part of robust architectural design.

plots shows the best performing architecture in terms of clean accuracy (#13714, see Figure 7.7),
while the orange points are its neighboring architectures with edit distance 1. The operation
changed for each point is shown in the legend. As we can see in the case of adversarial attacks,
we can trade o more robust accuracy for less clean accuracy by changing only one operation.
While some changes seem obvious (adding more parameters as with 13 and 14), it is interesting
to see that exchanging the 3 × 3 convolution on edge 3 with average pooling (and hence, reducing
the amount of parameters) also improves adversarial robustness. In terms of robustness towards
common corruptions, each architectural change leads to worse clean and robust accuracy in this
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Figure 7.11: (top) Scatter plot clean accuracy vs. mean adversarial accuracy on CIFAR-10. (bottom)
Scatter plot clean accuracy vs. mean common corruption accuracy on CIFAR-10. The red data point
shows the best performing architecture according to clean accuracy on CIFAR-10. The orange
data points are neighboring architectures, where exactly one operation diers. The change of
operation is depicted in the legend. The number in brackets refers to the edge where the operation
was changed. See Figure 7.1 for cell connectivity and operations (1-6).

case. Changing more than one operation is necessary to improve common corruption accuracy of
this network (as we have seen in Figure 7.7).

7.5 Conclusion

We introduce a dataset for neural architecture design and robustness to provide the research
community with more resources for analyzing what constitutes robust networks. We have
evaluated all 6 466 unique architectures from the commonly used NAS-Bench-201 benchmark
against several adversarial attacks and image dataset corruptions. With this full evaluation at
hand, we present three use cases for this dataset: First, the correlation between the robustness
of the architectures and two dierentiable architecture measurements. We show that these
measurements are a good rst approach for the architecture’s robustness, but have to be taken
with caution when the perturbation increases. Second, neural architecture search directly on
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the robust accuracies, which indeed nds more robust architectures for dierent adversarial
attacks. And last, an initial analysis of architectural design, where we show that it is possible to
improve robustness of networks with the same number of parameters by carefully designing
their topology.
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Excursus about Clustering on Graphs

8In this thesis, we introduced several approaches and contributions to NAS search and estimation
strategies, with the goal of more ecient search for not only high-performing (Part II, Part III)

but also robust architectures (Part IV), especially with the focus of computer vision tasks and in
detail image classication.

Another direction in computer vision tasks involve partitioning (clustering) a set of observa-
tions into unique entities. A powerful formulation for such tasks is that of (weighted) correlation
clustering (CC). CC is dened on a sparse graph with real valued edge weights, where nodes
correspond to observations and weighted edges describe the anity between pairs of nodes.

For example, in image segmentation (on superpixel graphs), nodes correspond to superpixels
and edges indicate adjacency between superpixels. The weight of the edge between a pair of
superpixels relates to the probability, as dened by a classier, that the two superpixels belong
to the same ground truth entity. This weight is positive, if the probability is greater than 1

2 and
negative if it is less than 1

2 . The magnitude of the weight is a function of the condence of the
classier.

The CC cost function sums up the weights of the edges separating connected components
(referred to as entities) in a proposed partitioning of the graph. Optimization in CC partitions the
graph into entities to minimize the CC cost. CC is appealing, since the optimal number of entities
emerges naturally as a function of the edge weights, rather than requiring an additional search
over some model order parameter describing the number of clusters (entities) (Yarkony et al.,
2012). Optimization in CC is NP-hard for general graphs (Bansal et al., 2004). Previous methods
for the optimization of CC problems such as described in Andres et al. (2011) and Andres et al.
(2012b) and Nowozin and Jegelka (2009) are based on linear programming with cutting planes.
They do not scale easily to large CC problem instances and are not easily parallelizable. The goal
of this chapter is to introduce an ecient mechanism for optimization in CC for domains, where
massively parallel computation could be employed.

In this chapter, we apply the classic Benders decomposition from operations research (Benders,
1962) to CC for computer vision. Benders decomposition is commonly applied in operations
research to solve mixed integer linear programs (MILP) that have a special but common block
structure. Benders decomposition partitions the variables in the MILP between a master problem
and a set of subproblems. The block structure requires that no row of the constraint matrix of
the MILP contains variables from more than one subproblem. Variables explicitly enforced to be
integral lie only in the master problem.

Optimization in Benders decomposition is achieved using a cutting plane algorithm. Optimiza-
tion proceeds with the master problem solving optimization over its variables. The subsequent
solution of the subproblems can be done in parallel and provides primal/dual solutions over
their variables conditioned on the solution to the master problem. The dual solutions to the
subproblems provide constraints to the master problem. Optimization continues until no further
constraints are added to the master problem.

Benders decomposition is an exact MILP programming solver, but can be intuitively un-
derstood as a coordinate descent procedure, iterating between the master problem and the
subproblems. Here, solving the subproblems not only provides a solution for their variables, but
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also a lower bound in the form of a hyper-plane over the master problem’s variables. This lower
bound is tight at the current solution to the master problem.

Benders decomposition is accelerated using the seminal operations research technique of
Magnanti-Wong Benders rows (MWR) (Magnanti and Wong, 1981). MWR are generated by solving
the Benders subproblems with an alternative (often random) objective under the hard constraint
of optimality (possibly within a factor) regarding the original objective of the subproblem.

Our contribution is the use of Benders decomposition with MWR to tackle optimization in CC.
This allows for massive parallelization, in contrast to classic approaches to CC such as in Andres
et al. (2011).

The remaining chapter is structured as follows: We review the related work in Section 8.1.
We provide the standard correlation clustering formulation in Section 8.2 and introduce the
formulation of Benders decomposition for correlation clustering in Section 8.3. In Section 8.4
we further derive the Magnanti-Wong Benders rows used in this chapter. The experiments are
presented in Section 8.4. Lastly, in Section 8.6 we conclude this chapter.

This chapter presents the paper J. Lukasik et al. (2020b). “A Benders Decomposition Approach
to Correlation Clustering”. In: Proc. of the IEEE/ACMWorkshop on Machine Learning in High Per-
formance Computing Environments (MLHPC) andWorkshop on Articial Intelligence andMachine
Learning for Scientic Applications (AI4S).

8.1 Related Work

Correlation clustering (CC) has been successfully applied to multiple problems in computer vision
including image segmentation, multi-object tracking, instance segmentation and multi-person
pose estimation. The classical work of Andres et al. (2011) models image segmentation as CC,
where nodes correspond to superpixels. Andres et al. (2011) optimize CC using an integer linear
programming (ILP) branch-and-cut strategy which precludes parallel execution. Kim et al. (2011)
extend CC to include higher-order cost terms over sets of nodes, which they solve using an
approach similar to Andres et al. (2011). A parallel optimization scheme for complete, unweighted
graphs has been proposed by Pan et al. (2015). This approach relies on random sampling and only
provides optimality bounds.

Yarkony et al. (2012) tackle CC in the planar graph structured problems commonly found in
computer vision. They introduce a column generation (Gilmore and Gomory, 1961; Barnhart
et al., 1996) approach, where the pricing problem corresponds to nding the lowest reduced cost
2-colorable partition of the graph, via a reduction to minimum cost perfect matching (Fisher,
1966; Shih et al., 1990; Kolmogorov, 2009). This approach has been extended to hierarchical image
segmentation (Yarkony and Fowlkes, 2015) and to specic cases of non-planar graphs (Yarkony,
2015; Zhang et al., 2014; Andres et al., 2013).

Large CC problem instances such as dened in Keuper et al. (2015b) and Keuper et al. (2015a)
and Beier et al. (2016) are usually addressed by primal feasible heuristics (Beier et al., 2014; Beier
et al., 2015; Kardoost and Keuper, 2018; Keuper et al., 2015b; Swoboda and Andres, 2017). Such
approaches are highly relevant in practice whenever the optimal solution is out of reach, but they
do not provide any guarantees on the quality of the solution.

Tang et al. (2015) tackle multi-object tracking using a formulation closely related to CC, where
nodes correspond to detections of objects and edges are associated with probabilities of co-
association. The work of Insafutdinov et al. (2016) and Pishchulin et al. (2016) build on Tang et al.
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(2015) in order to formulate multi-person pose estimation using CC augmented with node labeling.
Our proposed approach is derived from the classical work in operations research on Benders

decomposition (Benders, 1962; Birge, 1985; Georion and Graves, 1974). Specically, we are
inspired by the xed charge formulations of Cordeau et al. (2001), which solves a mixed integer
linear program over a set of xed charge variables (opening links) and a larger set of fractional
variables (ows of commodities from facilities to customers in a network) associated with con-
straints. Benders decomposition reformulates optimization to use only the integer variables and
converts the fractional variables into constraints. These constraints are referred to as Benders
rows. Optimization is then tackled using a cutting plane approach. Optimization is accelerated by
the use of MWR (Magnanti and Wong, 1981), which are more binding than the standard Benders
rows.

Benders decomposition has recently been introduced to computer vision (though not for CC),
for the purpose of multi-person pose estimation (Wang et al., 2017; Wang et al., 2018; Yarkony
and Wang, 2018). In these works, multi-person pose estimation is modeled to admit ecient
optimization, using column generation and Benders decomposition jointly. The application of
Benders decomposition in our chapter is distinct regarding the problem domain, the underlying
integer program and the structure of the Benders subproblems.

8.2 Standard Correlation Clustering Formulation

In this section, we review the standard optimization formulation for CC (Andres et al., 2011),
which corresponds to a graph partitioning problem w.r.t. the graph G = (V , E). This problem is
dened by the following binary edge labeling problem.

Denition 4 (Correlation Clustering). Given a graph G = (V , E) with nodes 𝑣 ∈ V and undi-
rected edges (𝑣𝑖 , 𝑣 𝑗) ∈ E. A label 𝑥𝑣𝑖𝑣 𝑗 ∈ {0, 1} indicates with 𝑥𝑣𝑖𝑣 𝑗 = 1 that the nodes 𝑣𝑖 , 𝑣 𝑗 are
in separate components and is zero otherwise. Given the edge weight 𝜙𝑣𝑖𝑣 𝑗 ∈ R, the binary edge
labeling problem is to nd an edge label x = (𝑥𝑣𝑖𝑣 𝑗 ) ∈ {0, 1} |E | , for which the total weight of the cut
edges is minimized:

min
x∈{0,1} |E |

∑︁
(𝑣𝑖 ,𝑣 𝑗 ) ∈E−

−𝜙𝑣𝑖𝑣 𝑗 (1 − 𝑥𝑣𝑖𝑣 𝑗 ) +
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈E+
𝜙𝑣𝑖𝑣 𝑗𝑥𝑣𝑖𝑣 𝑗 (CC1)

s.t.
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈E+𝑐

𝑥𝑣𝑖𝑣 𝑗 ≥ 𝑥𝑣𝑐𝑖 𝑣𝑐𝑗 ∀𝑐 ∈ C, (8.1)

where E−, E+ denote the subsets of E, for which the weight 𝜙𝑣𝑖𝑣 𝑗 is negative and non-negative,
respectively, C is the set of undirected cycles in E containing exactly one member of E−, (𝑣𝑐

𝑖
, 𝑣𝑐

𝑗
) is

the edge in E− associated with cycle 𝑐 and E+𝑐 ⊂ E+ is the subset of E+ associated with cycle 𝑐.

Note that the graph G dened by E is very sparse for real problems (Yarkony et al., 2012). Also
we refer to an edge (𝑣𝑖 , 𝑣 𝑗) with 𝑥𝑣𝑖𝑣 𝑗 = 1 as a cut edge.

The objective in Equation (CC1) is to minimize the total weight of the cut edges. The constraints
in Equation (8.1) ensure that, within every cycle of G, the number of cut edges can not be exactly
one. This enforces the labeling x to decompose G such that cut edges are exactly those edges that
straddle distinct components. We refer to the constraints in Equation (8.1) as cycle inequalities.
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Solving Equation (CC1) is intractable due to the large number of cycle inequalities. Andres et al.
(2011) generate solutions by alternating between solving the ILP over a nascent set of constraints Ĉ
(initialized empty) and adding new constraints from the set of currently violated cycle inequalities.
Generating constraints corresponds to iterating over (𝑣𝑖 , 𝑣 𝑗) ∈ E− and identifying the shortest
path between the nodes 𝑣𝑖 , 𝑣 𝑗 in the graph with edges E \ (𝑣𝑖 , 𝑣 𝑗) and weights equal to x. If the
corresponding path has total weight less than 𝑥𝑣𝑖𝑣 𝑗 , the corresponding constraint is added to Ĉ.
The LP relaxation of Equation (CC1)-Equation (8.1) can be solved instead of the ILP in each iteration
until no violated cycle inequalities exist, after which the ILP must be solved in each iteration.

We should note that earlier work in CC for computer vision did not require that cycle inequal-
ities contain exactly one member of E−, which is on the right-hand side of Equation (8.1). It is
established with Lemma(1) in Yarkony et al. (2014), that the addition of cycle inequalities, that
contain edges in E−, E+ on the left-hand side, right-hand side of Equation (8.1), respectively, do
not tighten the ILP in Equation (CC1)-Equation (8.1) or its LP relaxation.

In this section, we reviewed the baseline approach for solving CC in the computer vision
community. In the subsequent sections, we rely on the characterization of CC in Equation (CC1)-
Equation (8.1), though not on the specic solver of Andres et al. (2011).

8.3 Benders Decomposition for Correlation Clustering

In this section, we introduce a novel approach to CC using Benders decomposition (referred to as
BDCC).

Our proposed decomposition is dened by a minimal vertex cover on E− with members
S ⊂ V indexed by 𝑣𝑠. Each 𝑠 ∈ S is associated with a Benders subproblem and 𝑣𝑠 is referred
to as the root of that Benders subproblem. Edges in E− are partitioned arbitrarily between the
subproblems, such that each (𝑣𝑖 , 𝑣 𝑗) ∈ E− is associated with either the subproblem with root 𝑣𝑖
or the subproblem with root 𝑣 𝑗 . Here, E−𝑠 is the subset of E− associated with subproblem 𝑠. The
subproblem with root 𝑣𝑠 enforces the cycle inequalities C𝑠, where C𝑠 is the subset of C containing
edges in E−𝑠 . We use E+𝑠 to denote the subset of E+ adjacent to 𝑣𝑠. In this section, we assume that
we are provided with S, which can be produced greedily or using an LP/ILP solver.

Below, we rewrite Equation (CC1) using an auxiliary function 𝑄(𝜙, 𝑠, x). Here 𝑄(𝜙, 𝑠, x) pro-
vides the cost to alter x to satisfy all cycle inequalities in C𝑠, by increasing/decreasing 𝑥𝑣𝑖𝑣 𝑗 for
(𝑣𝑖 , 𝑣 𝑗) in E+/E−𝑠 , respectively. Below we describe the changes of the master’s problem edge la-
beling x, which is based on the edge labeling of each Benders subproblem x𝑠 = (𝑥𝑠𝑣𝑖𝑣 𝑗 ) ∈ {0, 1}

|𝑠 | ,
where |𝑠| is the number of edges in the subproblem 𝑠:

(CC1) (CC2) : min
x∈{0,1} |E |

∑︁
(𝑣𝑖 ,𝑣 𝑗 ) ∈E−

−𝜙𝑣𝑖𝑣 𝑗 (1 − 𝑥𝑣𝑖𝑣 𝑗 ) +
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈E+
𝜙𝑣𝑖𝑣 𝑗𝑥𝑣𝑖𝑣 𝑗 +

∑︁
𝑠∈S

𝑄(𝜙, 𝑠, x), (CC2)

where 𝑄(𝜙, 𝑠, x) is dened as follows:

𝑄(𝜙, 𝑠, x = min
x𝑠∈{0,1} |𝑠|

∑︁
(𝑣𝑖 ,𝑣 𝑗 ) ∈E−𝑠

−𝜙𝑣𝑖𝑣 𝑗 (1 − 𝑥𝑠𝑣𝑖𝑣 𝑗 ) +
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈E+
𝜙𝑣𝑖𝑣 𝑗𝑥

𝑠
𝑣𝑖𝑣 𝑗

s.t.
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈E+𝑐

𝑥𝑣𝑖𝑣 𝑗 + 𝑥𝑠𝑣𝑖𝑣 𝑗 ≥ 𝑥𝑣𝑐𝑖 𝑣𝑐𝑗 − (1 − 𝑥
𝑠
𝑣𝑐
𝑖
𝑣𝑐
𝑗
) ∀𝑐 ∈ C𝑠 .

(8.2)

We now construct a solution x∗ = {𝑥∗𝑣𝑖𝑣 𝑗 , (𝑥
𝑠∗
𝑣𝑖𝑣 𝑗
)𝑠∈S} for which Equation (CC2) is minimized,

and all cycle inequalities are satised. We start from a given solution x = {𝑥𝑣𝑖𝑣 𝑗 , (𝑥𝑠𝑣𝑖𝑣 𝑗 )𝑠∈S} and
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proceed as follows:

𝑥∗𝑣𝑖𝑣 𝑗
M
= min(𝑥𝑣𝑖𝑣 𝑗 , 𝑥𝑠𝑣𝑖𝑣 𝑗 ) ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

−
𝑠 , 𝑠 ∈ S (8.3)

𝑥∗𝑣𝑖𝑣 𝑗
M
= 𝑥𝑣𝑖𝑣 𝑗 +max

𝑠∈S
𝑥𝑠𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

+. (8.4)

The right-hand side of Equation (8.4) cannot exceed 1 at optimality because of the constraint in
Equation (8.2). Given the solution 𝑥∗𝑣𝑖𝑣 𝑗 , the optimizing solution to each Benders subproblem 𝑠 is
denoted 𝑥𝑠∗𝑣𝑖𝑣 𝑗 and is dened as follows:

𝑥𝑠∗𝑣𝑖𝑣 𝑗 =

{
1, if (𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠
0, otherwise.

(8.5)

InAppendixD.1, we show that the cost of {𝑥∗𝑣𝑖𝑣 𝑗 , (𝑥
𝑠∗
𝑣𝑖𝑣 𝑗
)𝑠∈S} is no greater than that of {𝑥𝑣𝑖𝑣 𝑗 , (𝑥𝑠𝑣𝑖𝑣 𝑗 )𝑠∈S},

with regard to the objective in Equation (CC2) and that 𝑄(𝜙, 𝑠, x∗) = 0 holds for all 𝑠 ∈ S.
It follows that there always exists an optimizing solutionx to Equation (CC2) such that𝑄(𝜙, 𝑠, x) = 0
for all 𝑠 ∈ S.

Observe, that there exists an optimal partition x𝑠 of the nodes of the graph , in Equation (8.2),
which is 2-colorable. This is because any partition x𝑠 can be altered without increasing its cost,
by merging connected components that are adjacent to one another, not including the root node
𝑣𝑠. Note, that merging any pair of such components, does not increase the cost, since those
components are not separated by negative weight edges in subproblem 𝑠 and so the result is still
a partition.

Given this observation, we rewrite the optimization Equation (CC2) regarding 𝑄(𝜙, 𝑠, x), using
the node labeling formulation of min-cut, with the notation below.

We indicate with 𝑚𝑣 = 1 that node 𝑣 ∈ V is not in the component associated with the root of
subproblem 𝑠 and 𝑚𝑣 = 0 otherwise. To avoid extra notation 𝑚𝑣𝑠 is replaced by 0. Let

𝑓 𝑠𝑣𝑖𝑣 𝑗 =

{
1, for (𝑣𝑖 , 𝑣 𝑗) ∈ E+, if (𝑣𝑖 , 𝑣 𝑗) is cut in x𝑠, but is not cut in x
1, for (𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠 , if (𝑣𝑖 , 𝑣 𝑗) is not cut in x𝑠, but is cut in x.

(8.6)

Thus, the denition for the rst/second case implies a penalty of 𝜙𝑣𝑖𝑣 𝑗 / - 𝜙𝑣𝑖𝑣 𝑗 , which is added to
𝑄(𝜙, 𝑠, x). Note moreover that 𝑥𝑠𝑣𝑖𝑣 𝑗 = 𝑓 𝑠𝑣𝑖𝑣 𝑗 for all (𝑣𝑖 , 𝑣 𝑗) ∈ E

+ and that 𝑥𝑠𝑣𝑖𝑣 𝑗 = 1 − 𝑓 𝑠𝑣𝑖𝑣 𝑗 for all
(𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠 .

Below we write 𝑄(𝜙, 𝑠, x) as primal/dual LP, with primal constraints associated with dual
variables 𝜓, 𝜆, which are noted in the primal. Given binary x, we only need to enforce that
𝑓 , 𝑚 are non-negative to ensure that there exists an optimizing solution for 𝑓 , 𝑚 which is binary.
This is a consequence of the optimization being totally unimodular, given that x is binary. Total
unimodularity is a known property of the min-cut/max ow LP (Ford and Fulkerson, 1956). The
primal subproblem is therefore given by the following:
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𝑄(𝜙, 𝑠, x) = min
𝑓 𝑠𝑣𝑖 𝑣 𝑗
≥0

𝑚𝑣≥0

∑︁
(𝑣𝑖 ,𝑣 𝑗 ) ∈E+

𝜙𝑣𝑖𝑣 𝑗 𝑓
𝑠
𝑣𝑖𝑣 𝑗
−

∑︁
(𝑣𝑠 ,𝑣) ∈E−𝑠

𝜙𝑣𝑠𝑣 𝑓
𝑠
𝑣𝑠𝑣

𝜆−𝑣𝑖𝑣 𝑗 : 𝑚𝑣𝑖 −𝑚𝑣 𝑗 ≤ 𝑥𝑣𝑖𝑣 𝑗 + 𝑓 𝑠𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ (E+ \ E+𝑠 ),
𝜆+𝑣𝑖𝑣 𝑗 : 𝑚𝑣 𝑗 −𝑚𝑣𝑖 ≤ 𝑥𝑣𝑖𝑣 𝑗 + 𝑓 𝑠𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ (E+ \ E+𝑠 ),
𝜓−𝑣 : 𝑥𝑣𝑠𝑣 − 𝑓 𝑠𝑣𝑠𝑣 ≤ 𝑚𝑣 ∀(𝑣𝑠, 𝑣) ∈ E−𝑠 ,
𝜓+𝑣 : 𝑚𝑣 ≤ 𝑥𝑣𝑠𝑣 + 𝑓 𝑠𝑣𝑠𝑣 ∀(𝑣𝑠, 𝑣) ∈ E

+
𝑠 .

(8.7)

This yields to the corresponding dual subproblem:

max
𝜆≥0
𝜓≥0

−
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈(E+\E+𝑠 )
(𝜆−𝑣𝑖𝑣 𝑗 + 𝜆

+
𝑣𝑖𝑣 𝑗
)𝑥𝑣𝑖𝑣 𝑗 +

∑︁
(𝑣𝑠 ,𝑣) ∈E−𝑠

𝜓−𝑣 𝑥𝑣𝑠𝑣 −
∑︁

(𝑣𝑠 ,𝑣) ∈E+𝑠

𝜓+𝑣𝑥𝑣𝑠𝑣

s.t. 𝜓+𝑣𝑖 1E+𝑠 (𝑣𝑠, 𝑣𝑖) − 𝜓
−
𝑣𝑖
1E−𝑠 (𝑣𝑠, 𝑣𝑖) +

∑︁
𝑣 𝑗

(𝑣𝑖 ,𝑣 𝑗 ) ∈(E+\E+𝑠 )

(𝜆−𝑣𝑖𝑣 𝑗 − 𝜆
+
𝑣𝑖𝑣 𝑗
)+

∑︁
𝑣 𝑗

(𝑣 𝑗 ,𝑣𝑖 ) ∈(E+\E+𝑠 )

(𝜆+𝑣 𝑗𝑣𝑖 − 𝜆
−
𝑣 𝑗𝑣𝑖
) ≥ 0 ∀𝑣𝑖 ∈ V − 𝑣𝑠

(8.8)

−𝜙𝑣𝑠𝑣 − 𝜓−𝑣 ≥ 0 ∀(𝑣𝑠, 𝑣) ∈ E−𝑠
𝜙𝑣𝑠𝑣 − 𝜓+𝑣 ≥ 0 ∀(𝑣𝑠, 𝑣) ∈ E+𝑠

𝜙𝑣𝑖𝑣 𝑗 − (𝜆−𝑣𝑖𝑣 𝑗 + 𝜆
+
𝑣𝑖𝑣 𝑗
) ≥ 0 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ (E+ \ E+𝑠 ).

In Equation (8.8) and subsequently 1Λ (𝑥) denotes the binary indicator function for some
set Λ, which returns one if (𝑥 ∈ Λ) and zero otherwise. We now consider the constraint that
𝑄(𝜙, 𝑠, x) = 0. Note that any dual feasible solution for the dual problem Equation (8.8) describes
an ane function of x, which is a tight lower bound on 𝑄(𝜙, 𝑠, x). We compact the terms 𝜆, 𝜓 into
𝜔𝑧, where 𝜔𝑧

𝑣𝑖𝑣 𝑗
is associated with the 𝑥𝑣𝑖𝑣 𝑗 term.

𝜔𝑧
𝑣𝑖𝑣 𝑗

=



−(𝜆−𝑣𝑖𝑣 𝑗 + 𝜆
+
𝑣𝑖𝑣 𝑗
), if (𝑣𝑖 , 𝑣 𝑗) ∈ (E+ \ E+𝑠 )

−𝜓+𝑣 𝑗 , if (𝑣𝑖 , 𝑣 𝑗) ∈ E+𝑠
𝜓−𝑣 𝑗 , if (𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠
0, if (𝑣𝑖 , 𝑣 𝑗) ∈ (E− \ E−𝑠 ).

We denote the set of all dual feasible solutions across 𝑠 ∈ S asZ, with 𝑧 ∈ Z. Observe, that to
enforce that 𝑄(𝜙, 𝑠, x) = 0, it is sucient to require that

∑
(𝑣𝑖 ,𝑣 𝑗 ) ∈E 𝑥𝑣𝑖𝑣 𝑗𝜔

𝑧
𝑣𝑖𝑣 𝑗
≤ 0, for all 𝑧 ∈ Z. We

formulate CC as optimization usingZ below.

(CC2) (CC3) : min
x∈{0,1} |E |

∑︁
(𝑣𝑖 ,𝑣 𝑗 ) ∈E+

𝜙𝑣𝑖𝑣 𝑗𝑥𝑣𝑖𝑣 𝑗 −
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈E−
(1 − 𝑥𝑣𝑖𝑣 𝑗 )𝜙𝑣𝑖𝑣 𝑗 (CC3)

s.t.
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈E
𝑥𝑣𝑖𝑣 𝑗𝜔

𝑧
𝑣𝑖𝑣 𝑗
≤ 0 ∀𝑧 ∈ Z
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8.3.1 Cutting Plane Optimization

Optimization in Equation (CC3) is intractable since |Z| equals the number of dual feasible solutions
across subproblems, which is innite. Since we cannot consider the entire setZ, we use a cutting
plane approach to construct a set Ẑ ⊂ Z, that is sucient to solve Equation (CC3) exactly. We
initialize Ẑ as the empty set. We iterate between solving the LP relaxation of Equation (CC3)
over Ẑ (referred to as the master problem) and generating new Benders rows until no violated
constraints exist.

This ensures that no violated cycle inequalities exist but may not ensure that x is integral.
To enforce integrality, we iterate between solving the ILP in Equation (CC3) over Ẑ and adding
Benders rows to Ẑ. By solving the LP relaxation rst, we avoid unnecessary and expensive calls
to the ILP solver.

To generate Benders rows given x, we iterate over S and generate one Benders row using
Equation (8.8), if 𝑠 is associated with a violated cycle inequality, which we determine as follows.
Given 𝑠, xwe iterate over (𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠 . We nd the shortest path from 𝑣𝑖 to 𝑣 𝑗 on graph G with
edges E, with weights equal to the vector x. If the length of this path, denoted as 𝑑 (𝑣𝑖 , 𝑣 𝑗), is strictly
less than 𝑥𝑣𝑖𝑣 𝑗 , then we have identied a violated cycle inequality associated with 𝑠.

We describe our cutting plane approach in Line 8, with line by line description in Appendix D.2.
To accelerate optimization, we addMWR in addition to standard Benders rows, which we describe
in the following Section 8.4.

Prior to termination of Line 8, one can produce a feasible integer solution x∗ from any solution
x, provided by the master problem, as follows. First, for each (𝑣𝑖 , 𝑣 𝑗) ∈ E, set 𝑥∗∗𝑣𝑖𝑣 𝑗 = 1, if 𝑥𝑣𝑖𝑣 𝑗 >

1
2

and otherwise set 𝑥∗∗𝑣𝑖𝑣 𝑗 = 0. Second, for each (𝑣𝑖 , 𝑣 𝑗) ∈ E, set 𝑥∗𝑣𝑖𝑣 𝑗 = 1, if 𝑣𝑖 , 𝑣 𝑗 are in separate
connected components of the solution described by x∗∗ and otherwise set 𝑥∗𝑣𝑖𝑣 𝑗 = 0. The cost of
the feasible integer solution x∗ provides an upper bound on the cost of the optimal solution. In
Appendix D.3, we provide a more involved approach to produce feasible integer solutions.

In this section, we characterized CC using Benders decomposition and provided a cutting
plane algorithm to solve the corresponding optimization.

8.4 Magnanti-Wong Benders Rows

We accelerate Benders decomposition (see Section 8.3) using the classic operations research
technique of Magnanti-Wong Benders Rows (MWR) (Magnanti and Wong, 1981). The Benders row,
given in Equation (8.8), provides a tight bound at x∗, where x∗ is the master problem solution
used to generate the Benders row. However, ideally, we want our Benders row to provide good
lower bounds for a large set of x dierent from x∗, while being tight (or perhaps very active) at
x∗. To achieve this, we use a modied version of Equation (8.8), where we replace the objective
and add one additional constraint.

We follow the tradition of the operations research literature and use a random negative valued
vector (with unit norm) in place of the objective Equation (8.8). This random vector is unique each
time a Benders subproblem is solved. We experimented with using as an objective −1

.0001+|𝜙𝑣𝑖 𝑣 𝑗 |
,

which encourages the cutting of edges with large positive weight, but it works as well as the
random negative objective. Here .0001 is a tiny positive number. It prevents the terms in the
objective from becoming innite.

Below, we enforce the new Benders row to be active at x∗, by requiring that the dual cost is
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Algorithm 8: Benders Decomposition for Correlation Clustering

Input: (i) Ẑ = {}
Input: (ii) done LP = False
Output: x

1 repeat
2 x = Solve Equation (CC3) over Ẑ enforcing integrality if and only if done LP=True
3 did add = False
4 for 𝑠 ∈ S do
5 if ∃(𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠 s.t. 𝑑 (𝑣𝑖 , 𝑣 𝑗) < 𝑥𝑣𝑖𝑣 𝑗 then
6 𝑧1 = Get Benders row via Equation (8.8)
7 𝑧2 = Get MWR via Section 8.4
8 Ẑ = Ẑ ∪ 𝑧1 ∪ 𝑧2
9 did add = True

10 end
11 end
12 if did add=False then
13 done LP = True
14 end
15 until did add=False AND 𝑥𝑣𝑖𝑣 𝑗 ∈ {0, 1} ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E;

within a tolerance 𝜏 ∈ (0, 1) of the optimum w.r.t. the objective in Equation (8.8).

𝜏𝑄(𝜙, 𝑠, x) ≤ −
∑︁

(𝑣𝑖 ,𝑣 𝑗 ) ∈(E+\E+𝑠 )
(𝜆−𝑣𝑖𝑣 𝑗 + 𝜆

+
𝑣𝑖𝑣 𝑗
)𝑥𝑣𝑖𝑣 𝑗 +

∑︁
(𝑣𝑠 ,𝑣) ∈E−𝑠

𝜓−𝑣 𝑥𝑣𝑠𝑣 −
∑︁

(𝑣𝑠 ,𝑣) ∈E+𝑠

𝜓+𝑣𝑥𝑣𝑠𝑣. (8.9)

Here, 𝜏 = 1 requires optimality w.r.t. the objective in Equation (8.8), while 𝜏 = 0 ignores
optimality. In our experiments, we found that 𝜏 = 1

2 provides strong performance.

8.5 Experiments: Image Segmentation

In this section, we demonstrate the value of our algorithm BDCC on CC problem instances for
image segmentation on the benchmark Berkeley Segmentation Data Set (BSDS) (Martin et al., 2001).
Our experiments demonstrate the following three ndings. (1) BDCC solves CC instances for image
segmentation; (2) BDCC successfully exploits parallelization; (3) the use of MWR dramatically
accelerates optimization.

To benchmark performance, we employ cost terms provided by the OpenGM2 dataset (Andres
et al., 2012a) for BSDS. This allows for a direct comparison of our results to the ones from Andres
et al. (2011). We use the random unit norm negative valued objective when generating MWR.
We use CPLEX to solve all linear and integer linear programming problems considered during
the course of optimization. We use a maximum total CPU time of 600 seconds, for each problem
instance (regardless of parallelization).

We formulate the selection of S, as a minimum vertex cover problem, where for every edge
(𝑣𝑖 , 𝑣 𝑗) ∈ E−, at least one of 𝑣𝑖 , 𝑣 𝑗 is in S. We solve for the minimum vertex cover exactly as
an ILP. Given S, we assign edges in E− to a connected selected node in S arbitrarily. We found
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Figure 8.1: We plot the gap between the upper and lower bounds as a function of time for
various values of 𝜏 on selected problem instances. We use red, green, blue for 𝜏 = [0.5, 0.99, .01]
respectively, and black for not using Magnanti-Wong rows. We show both the computation time
(in seconds) with and without exploiting parallelization of subproblems with dotted and solid
lines, respectively. We use titles to indicate the approximate diculty of the problem as ranked
by input le size of 100 les.

experimentally that solving for the minimum vertex cover consumed negligible CPU time for our
dataset. We attribute this fact to the structure of our problem domain, since the minimum vertex
cover is an NP-hard problem. For problem instances where solving for the minimum vertex cover
exactly is dicult, the minimum vertex cover problem can be solved approximately or greedily.

In Figure 8.1 we demonstrate the eectiveness of BDCC with various 𝜏 for dierent problem
diculties. We observe that the presence ofMWRdramatically accelerates optimization. However,
the exact value of 𝜏 does not aect the speed of optimization dramatically. We show performance
with and without relying on parallel processing. Our parallel processing times assume that we
have one CPU for each subproblem. For the problem instances in our application the number
of subproblems is under one thousand, each of which are very easy to solve. The parallel and
non-parallel time comparisons share only the time to solve the master problem. We observe large
benets of parallelization for all settings of 𝜏. However, when MWR are not used, we observe
diminished improvement, since the master problem consumes a larger proportion of total CPU
time.

In Figure 8.2, we demonstrate the speed-up induced by the use of parallelization. For most
problem instances, the total CPU time required when using no MWR was prohibitively large,
which is not the case when MWR are employed. Thus, most problem instances are solved without
MWR being terminated early.

In Table 8.1, we consider the convergence of the bounds for 𝜏 = {0, 12 }; ( 𝜏 = 0 means that
no MWR are generated). We consider a set of tolerances on convergence regarding the duality
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Figure 8.2: We compare the benets of parallelization andMWRacross our data set. We scatter plot
the total running time (in seconds) versus the total running time when solving each subproblem is
done on its own CPU across problem instances. We use red to indicate 𝜏 = 0.5 and black to indicate
that MWR are not used. We draw a line with slope=1 in magenta to better enable appreciation of
the red and black points. Note, the time spent generating Benders rows, in a given iteration of
BDCC when using parallel processing, is the maximum time spent to solve any sub-problem for
that iteration.

Tolerance MWR 𝜏 Parallelization (par) Time in Sec.
10 50 100 300

𝜖=0.1

0.5 0 0.149 0.372 0.585 0.894
0 0 0.0106 0.0532 0.0745 0.106
0.5 1 0.266 0.777 0.904 0.968
0 1 0.0426 0.0745 0.0745 0.138

𝜖=1

0.5 0 0.149 0.394 0.606 0.904
0 0 0.0106 0.0638 0.0745 0.16
0.5 1 0.319 0.819 0.947 0.979
0 1 0.0532 0.0745 0.106 0.17

𝜖=10

0.5 0 0.202 0.426 0.628 0.915
0 0 0.0532 0.0957 0.128 0.223
0.5 1 0.447 0.936 0.979 0.989
0 1 0.0638 0.128 0.181 0.287

Table 8.1: We show the percentage of problems solved that have a duality gap of up to tolerance 𝜖,
within a certain amount of time (10, 50, 100, 00) seconds, with and without MWR/parallelization.
We use par=1 to indicate the use of parallelization and par=0 otherwise. Here 𝜏 = 0 means that no
MWR are generated.

gap, which is the dierence between the anytime solution (upper bound) and the lower bound
on the objective. For each such tolerance 𝜖, we compute the percentage of instances, for which
the duality gap is less than 𝜖, after various amounts of time. We observe that the performance
of optimization without MWR, but exploiting parallelization performs worse than using MWR,
but without paralleliziation. This demonstrates that, across the dataset, MWR are of greater
importance than parallelization.
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8.6 Conclusions

We present a novel methodology for nding optimal correlation clustering in arbitrary graphs.
Our method exploits the Benders decomposition to avoid the enumeration of a large number of
cycle inequalities. This oers a new technique in the toolkit of linear programming relaxations,
that we expect will nd further use in the application of combinatorial optimization to problems
in computer vision. The exploitation of results from the domain of operations research may lead
to improved variants of BDCC. For example, one can intelligently select the subproblems to solve
instead of solving all subproblems in each iteration. This strategy is referred to as partial pricing
in the operations research literature. Similarly one can devote a minimum amount of time in
each iteration to solve the master problem to enforce integrality on a subset of the variables of
the master problem.





Conclusion

9This thesis introduces several approaches and contributions to Neural Architecture Search. For
that, we provide an overviewofNeural Architecture Search research in Section 2.1. Sincemost

of our approaches in this thesis rely on Graph Neural Networks, we introduce these in Section 2.2,
followed by technical background on Bayesian optimization and variational autoencoder in
Section 2.3. In Chapter 3, we introduce an estimation strategy for NAS. Chapter 4 and Chapter 5
present approaches using generative models to improve on the eciency of NAS methods. In
Chapter 6, we analyze the commonly used dierentiable architecture search for its ability of a one-
shot model. Chapter 7 presents the last chapter for NAS and introduces a dataset for robustness.
We furthermore present an excursus to graph decomposition in Chapter 8. In this chapter, we
will rst summarize this thesis in Section 9.1 in more detail. Secondly, we will provide an outlook
on possible future work directions in Section 9.2.

9.1 Summary

Performance Estimation Strategy In Chapter 3, we introduce a surrogate model for perfor-
mance prediction of neural architectures. This surrogate model is based on Graph Neural Net-
works, which allows to comprehend and aggregate local node features and graph substructures
into one architectural graph representation, resulting in a powerful tool for predicting the perfor-
mances of architectures, especially for zero-shot prediction.

Generative Architecture Search Chapter 4 and Chapter 5 change the focus towards learned
architecture latent space representations, which are then further used for the architecture search.
In Chapter 4, we present a variational autoencoder based on Graph Neural Networks to learn a
latent space in an unsupervised manner. The proposed “Smooth Variational Graph embedding”
model builds a structurally smooth latent space, which allows for competitive search results using
Bayesian optimization and surrogate models. The proposed search approach extrapolates from
a predened search space to unseen architectures and can transfer to dierent datasets with
improved accuracy on both tasks.

Inspired by this success of searching for high-performing architectures in learned latent
spaces, we take the next step in Chapter 5 and optimize the latent space to directly incorporate
the focus of generating high-performing architectures. Therefore, we adapt the decoder from
Chapter 4 as a single generative model and couple it with a surrogate model in an end-to-end
learning setting. Furthermore, we optimize the latent space, allowing us to reshape the latent
space so that high-performing architectures are generated. Therefore, this model does not need
classical search approaches as Bayesian optimization and is very ecient. We show this eciency
and ability to nd high-performing architectures on several NAS benchmarks and ImageNet.
Lastly, this model is extended to allow for joint optimization of architecture performance and
hardware properties in a straightforward manner.

One-Shot Architecture Search One-shot methods for architecture search were introduced to
improve the search eciency, with DARTS being the most known. In Chapter 6, we analyze this
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widely used dierentiable architecture search (DAS) approach in a setting dierent from image
classication, i.e., signal recovery, for its ability as an actual one-shot model. The analysis focuses
on domain shifts, hyperparameters sensitivity, the impact of initialization on the search itself,
and the problem of rank disorder and poor test generalization. We found that, on the one hand,
DAS is able to nd well-performing architectures for inverse problems. However, on the other
hand, the search outcome depends highly on the hyperparameters, and the rank disorder issue
still persists in a well-preconditioned search space. Introducing a dierent search space even lead
to poor test generalization, hampering the search for high-performing architectures.

Robustness in NAS In Chapter 7, we present a dataset for architecture design and robustness
to allow for better research of robust network topologies. We evaluate a complete NAS architec-
ture search space against adversarial attacks and corruptions and present several use cases for
robustness research. This dataset shows that carefully crafting the architecture design enables
the possibility to improve the robustness of architectures substantially and allows for easy access
to robustness values to support NAS research in this direction.

Graph Clustering Lastly, we introduce in Chapter 8 an approach for correlation clustering
using benders decomposition, known in operations research, which allows for theoretical paral-
lelization.

9.2 Outlook and Future Work

Despite the enormous success that NAS has achieved in recent years, especially in the area of
image classication, we are still a long way from entirely omitting the human component. In the
following, we will address some open problems.

Handcrafted Search Spaces As we have seen in this thesis, especially in Part II, many search
spaces exist in the NAS literature. Each is carefully handcrafted to contain well-performing
architectures on specic downstream tasks (see Figure 2.5). However, Mehta et al. (2022) already
pointed out that popular, supposedly eective search methods do not perform well in all their
considered search spaces (28 in total) using the method’s default hyperparameters. Therefore,
so far, there exists no one best NAS method. The ability of the NAS method to perform well and
nd high-performing architectures rely heavily on the search space. However, popular existing
search spaces are small, like NAS-Bench-101, or constrained in their performance distribution, like
DARTS, and limit the possibility of NAS’s actual goal: nding novel well-performing architectures.

Search space optimization approaches, as presented in Radosavovic et al. (2020), which starts
with a large search space and prunes low-performing areas, are a step towards automating the
search space design for NAS.

However, at the same time, it can be benecial to use the already given handcrafted search
spaces, into whose designs a lot of knowledge and computation has already own, by interpolating
between them. A possible approach could be to learn a combined latent space, and a generative
model that optimizes the latent space as presented in Chapter 5 or a search method within this
latent space using classical methods as Bayesian optimization.
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Furthermore, these handcrafted search spaces limit NAS research to domains with several
popular and robust search spaces, especially image classication with Convolutional Neural
Networks.

Lastly, building such a search space contains many design choices, predominantly introduced
by human expert knowledge and focusing on the downstream task. This hinders the possibility
of transferring to other domains. A search space should be as generic as possible to allow for
transferability. This would eventually lead to larger search spaces, which would, on the one hand,
allow for novel architectures but, on the other hand, introduce more enormous search costs.

Hyperparameter Optimization and Architecture Search As we have seen in Chapter 6, the
widely used DARTS search approach is quite vulnerable to hyperparameters and the selected
predened search space. In line with related work (Zela et al., 2020a), we have seen that a well-
predened search space is needed to overcome the poor test generalization. At the same time,
the original DARTS search space is constrained such that it contains mainly well-performing
architectures (see Figure 2.5). However, as discussed, this contradicts the idea of NAS to nd new
architectures without including much expert knowledge.

Furthermore, the sensitivity to dierent hyperparameters was also shown in Yang et al. (2020),
who tuned hyperparameters and exceeded the performance of NAS found models in the DARTS
search space. To overcome the challenge of the two-step procedure of architecture search and
hyperparameter optimization, work as Dai et al. (2021) and Zela et al. (2018) seek to combine NAS
and hyperparameter optimization. It is important to note that combining these elds is far more
challenging than only using either NAS or hyperparameter optimization. The overall search space
increases substantially, and each hyperparameter combination can have a dierent inuence on
the performance of an architecture, which is, therefore, hard to evaluate.

The ultimate goal is to end up with a fully automated learning approach, which nds a
combination of varying architectures along with its optimal hyperparameters to outperform
human-found architectures and existing methods.

Robust vs. Task-Oriented Search One-shot models are very popular in NAS, as they allow
one to search for a subnetwork from an overparameterized network and also give access to its
associated one-shot weights. The rst one-shot approach assumed a close correlation between the
ranking of the one-shot networks (with their one-shot weight) and the ranking after retraining
the architecture from scratch on the downstream task. However, as discussed in this thesis
(Section 2.1.4, Chapter 6), this does not hold in general and is also often accompanied by a poor
test generalization after retraining. This should result in the careful use of one-shot methods.

In addition, DARTS is based on an approximation of a bilevel optimization problem. Recently,
Vicol et al. (2022) investigated bilevel optimization problems in more depth regarding their
convergence behavior, especially with the focus of warm-starting the inner level optimization
parameter, e.g., the network weights in DARTS, and the question whether to retrain. Popular one-
shot models (Pham et al., 2018; Liu et al., 2019; Zela et al., 2020a; Li et al., 2020) rely on retraining
the found architecture from scratch to evaluate the found architecture on the downstream tasks
correctly due to a possible rank disorder. Single-level optimization, as used in Li et al. (2021b)
and Roberts et al. (2021), treats architecture parameters as architecture weights and shows better
generalization to dierent search spaces and downstream tasks without the need for retraining.
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However, the goal for NAS using bilevel optimization is to overcome the rank disorder and poor
test generalization and nd high-performing architectures without retraining.

In general, we can take bilevel optimization one step further in terms of the actual goal we
want to pursue. If we want a good-performing architecture on a particular downstream task,
retraining of the architecture should not be needed. However, if we want an architecture that
is robust, transferable, and generalizable, we want to search for one that does not inherit any
performance drop after retraining. Thus, in the long run, using bilevel optimization in architecture
search could help nd robust and generalizable architectures.

Network biases As we have seen in Chapter 7, designing robust architectures is important for
computer vision tasks and should be even further researched in NAS. As already discussed in
Section 7.1, the recent research by Geirhos et al. (2019) observed a texture-shape cue-conict
of standard CNNs by analyzing the network’s classication behavior. This analysis underlines
the importance of understanding and explaining how neural networks behave and how this
understanding can further improve the performance of architectures, especially their robustness.
Consequently this goal should also be added to the architecture search itself. This way any
unwanted bias, as the texture bias, can be reduced, by considering them directly in the search
setting, starting with the search space.

Therefore, the next step in NAS is to improve the search for architectures without any un-
wanted bias and eventually search for more robust and explainable architectures.

So far, we have already takenmany steps to search for well-performing architectures on specic
downstream tasks in an automated way. However, in the long run, we want NAS to be able to
nd robust, explainable, and even transferable new architectures with a reduction of the human
aspect.
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Search Space Representation

AIn this section we give more details about the search spaces representations for Part I and Part II.

A.1 NAS-Bench-101

For visualization purposes, we present in Figure A.1 exemplary a DAG from the NAS-Bench-101
(Ying et al., 2019) search space, with its corresponding node attribute matrix and its adjacency
matrix. Note, a concatenation of the atted node attribute matrix and the atted upper triangular
adjacency matrix is the representation our generator model is trained to learn; this holds for all
search spaces.

A.2 NAS-Bench-201

Figure A.2 visualizes a DAG in the true variant in the NAS-Bench-201 (Dong and Yang, 2020) space
with edge attributes, as well as our adapted representation, where the edge attributes are changed
to node attributes. This is similar to the representation in Yan et al. (2020).

A.3 DARTS Search Space

In order to train our generative model to generate valid cells, we additionally randomly sample
500 000 architectures from the DARTS search space. We train our generative model to learn to
generate valid cells independently of being a normal or reduction cell. In Figure A.3 we visualize
the adapted node attribute matrix and the adapted adjacency matrix to an exemplary DAG in the
DARTS search space (Liu et al., 2019). This is similar to the representation in Yan et al. (2020).

Figure A.1: Exemplary cell representation from the NAS-Bench-101 search space. (left) DAG
representation of a graph with 7 nodes. (right) The top part shows the node attribute matrix to
the DAG and the bottom part shows its adjacency matrix.
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Figure A.2: Exemplary cell representation from the NAS-Bench-201 search space. (top) The left
part visualizes the DAG representation with node attributes instead of edge attributes. The right
part shows the true DAG representation in the NAS-Bench-201 search space. (bottom) The left
part shows the node attribute matrix to the DAG and the right part shows its adjacency matrix.

Figure A.3: Exemplary cell representation from the DARTS search space. (top) Visualization of the
DAG representation in the DARTS search space. (bottom) The left part shows the node attribute
matrix to the DAG and the right part shows its adjacency matrix.
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Figure A.4: Exemplary cell representation from the NAS-Bench-NLP search space. (left) DAG
representation of a graph with 12 nodes. (right) The top part shows the node attribute matrix to
the DAG and the bottom part shows its adjacency matrix.

A.4 NAS-Bench-NLP

For the experiments on NAS-Bench-NLP (Klyuchnikov et al., 2022) we make use of the surrogate
benchmark NAS-Bench-x11 (Yan et al., 2021) and the additional implementation in NAS-Bench-
Suite (Mehta et al., 2022). Note, for the NAS-Bench-x11 evaluations, each architecture from the NAS-
Bench-NLP search spacemust be trained for three epochs to use the surrogatemodel, whereas NAS-
Bench-Suite provides the surrogatemodel for NAS-Bench-NLPwithout learning curve information,
but also accompanying a lower Kendall Tau rank correlation. For fast evaluations we use the
latter surrogate for our experiments. In order to use the surrogate benchmark, the architecture
representation is the same used in Yan et al. (2021) with the modication that each hidden node is
connected to the output node. An exemplary architecture representation is visualized in Figure A.4.
A next step is to analyze the 14 332 provided architectures on uniqueness, which leads to 12 107
unique architectures. Furthermore, since Yan et al. (2021) and Mehta et al. (2022) only provide
a surrogate model, which only considers architectures with up to 12 nodes, we also restrict our
training data to this subset leading to a total of 7 258 architectures.

A.5 Hardware-Aware-NAS-Bench

In our experiments in Section 5.3.4 we consider the latency information on the NAS-Bench-201
search space.





Hyperparameter

BIn this chapter we provide additional hyperparameter information not mentioned so far in the
main part.

B.1 Graph Neural Network-based Prediction Model

In this section we give an overview about the hyperparameters for the surrogate model in Chap-
ter 3.

The default hyperparameters are summarized in Table B.1. All our experiments are imple-
mented using PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey and Lenssen, 2019).

The hyperparameters were tuned with BOHB (Falkner et al., 2018),

Hyperparameter Default Value

Node Embedding (𝑑𝑛) 250
Graph Embedding (𝑑𝑔 ) 56

GNN layer 2
MLP Regression layer 4
MLP hidden layer {28,14,7}

Batch Size 128
Optimizer Adam (Kingma and Ba, 2015)

Learning Rate 0.00005
Epochs 100

Table B.1: Hyperparameters of the GNN surrogate model.

B.2 Variational Autoencoder-based Graph Embeddings

This section provides detailed information about the hyperparameters used in Chapter 4. Also
here, we use PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey and Lenssen, 2019).

B.2.1 Variational Autoencoder

The SVGe model is a two-sided GNN-based variational autoencoder. The hyperparameters are
described in Table B.2. Note, whenever the loss does not decrease for 10 epochs we multiply the
learning rate with 0.1 for both experiments, training the VAE and the surrogate model.

B.2.2 Surrogate Model

The overall surrogate is an MLP with ReLU activation functions with hyperparameters listed in
Table B.3.
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Hyperparameter Default Value
ENAS NB101 NB201

Node Embedding (one-direction of encoder) 125
Node Embedding (concatenated) 250

Graph Embedding 56
GNN layer 2
Batch Size 32 128 32
Optimizer Adam (Kingma and Ba, 2015)

Learning Rate 0.001
VAE loss 𝛼 Equation (4.10) 0.005

Epochs 300

Table B.2: Hyperparameters of the autoencoder model.

Hyperparameter Default Value

MLP Regression layer 4
MLP hidden layer {28,14,7}

Optimizer Adam (Kingma and Ba, 2015)
Learning Rate 0.001

Loss proportion 𝛽 Equation (4.11) 0.1
Epochs 100

Table B.3: Hyperparameters of the latent space surrogate model.

B.3 Generative NAS with Latent Space Optimization

In this section we give a detailed overview about the hyperparameters for our generative network
from Chapter 5. Also here, we use PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey and
Lenssen, 2019) for all our implementations.

B.3.1 Generator

Table B.4 presents all used hyperparameters for the generation training. We train our generator
in a ticked manner; after every 5 000 training data, we evaluate our generator for validity ability
(see Section 5.3.5). The used pretrained state dict for our search in Section 5.3 is then the one
with the highest validation measurement, which is dened by the amount of valid graphs from
randomly sampled 10 000 latent vectors z ∈ R32 generated to architectures. The training is the
same for all dierent search spaces.

B.3.2 Surrogate Model

The overall surrogate is an MLP with ReLU activation functions. Table B.5 and Table B.6 list all
hyperparameters for the search experiments in Section 5.3 for the simple performance surro-
gate model and the multi-objective surrogate model for the additional hardware objective. The
hyperparameters for XGB (Chen and Guestrin, 2016) are the same as in Mehta et al. (2022).

For the experiments on the Hardware-Aware Benchmark Section 5.3.4, we implement 𝑔 (·)
equally to the performance predictor 𝑓 (·), whereas both predictors share weights in our experi-
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Hyperparameter Default Value

Node Embedding 32
Latent Vector 32

MLP Node Embedding layer 2
GNN layer 2
Batch Size 32
Optimizer Adam (Kingma and Ba, 2015)

Learning Rate 0.0002
Betas (0.5, 0.999)
Ticks 500

Tick Size 5 000

Table B.4: Hyperparameters of the generator model.

Hyperparameter Dataset

NB101 NB201 NB301 NBNLP

𝛼 0.9
MLP Layers 4
MLP Hidden 56 84 176 559

Epochs 15 30 15 30
Optimizer Adam (Kingma and Ba, 2015)

LR 0.001
Betas (0.5, 0.999)

weight factor 10 e-3
batch size 16

loss L2

Table B.5: Hyperparameters for the performance surrogate model 𝑓 (·).

ments.

B.4 Is Differentiable Architecture Search truly a One-Shot Method?

In this section, we present the hyperparameters used for our experiments in Chapter 6. Table B.8
lists the manually chosen hyperparameters H1 and H2 from Table 6.2. In addition Table B.9 lists
all BOHB optimized hyperparameters for the data formations blur and downsampling as well as
the hyperparameters optimized for the nal architecture performance and also for the DAS-single
method; the search range for the BOHB search is given in the second column. In Table B.10 the
BOHB search hyperparameters for the non-sequential search space from Section 6.4.5 are listed.
Table B.7 lists all other general hyperparameters used for our experiments in Chapter 6.

B.4.1 Computational Setup

All experiments in in Chapter 6 were run on a single Nvidia GTX 2080ti graphics card of which
two were utilized. The hyperparameter tuning with BOHB was conducted on a single Nvidia GTX

1080 Ti graphics card.
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Hyperparameter Hardware-Aware NAS-Bench

𝛼 0.95
𝜆 0.5

MLP Layers 4
MLP Hidden 82

Epochs 30
Optimizer Adam (Kingma and Ba, 2015)

LR 0.002
Betas (0.5, 0.999)

weight factor 10 e-3
penalty term 1000
batch size 16

loss L2

Table B.6: Hyperparameters for both surrogate models 𝑓 (·) and 𝑔 (·) for the multi-objective search
in the Hardware-Aware Benchmark.

Hyperparameter Default Value
Epochs 50
Batch size 128
Noise Level 0.10

Table B.7: General hyperparameters for DAS.

Hyperparameter H1 H2

Param. learning rate 0.001 0.001
Param. weight decay 1𝑒 − 8 1𝑒 − 8
Param. warm up False False
Alpha learning rate 0.001 0.0001
Alpha weight decay 0.001 0.0001
Alpha warm up True True
Alpha scheduler Linear Linear
Alpha optimizer Gradient Descent Gradient Descent

Table B.8: Manually chosen hyperparameters H1 and H2.

B.5 A Dataset for Neural Architecture Design and Robustness

We use the trained architectures from NAS-Bench-201 (Dong and Yang, 2020) with seed 777. The
hyperparameter settings for the adversarial attacks from Section 7.3.2 are listed in Table C.1.
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Hyperparameter Search Range BOHB-one-shot-Blur BOHB-one-shot-DS BOHB-Blur BOHB-DAS-single

Param. learn. rate [1𝑒 − 05, 1] 0.0014232405 0.0020448382 0.0020882283 0.0014232405
Param. weight decay [1𝑒 − 08, 0.1] 8.616𝑒 − 07 5.04𝑒 − 08 4.4𝑒 − 08 8.616𝑒 − 07
Param. warm up [True,False] False True False False
Alpha learn. rate [1𝑒 − 05, 0.1] 0.0836808765 0.0100063746 8.43195𝑒 − 05 0.025012337102395577
Alpha weight decay [1𝑒 − 05, 0.1] 5.05099𝑒 − 05 0.0058022776 0.0127425783 1.390640076980444𝑒 − 05
Alpha warm up [True, False ] False True True False
Alpha scheduler [None, Linear] Linear Linear Linear None
Alpha optimizer [Adam, Gradient Descent] Adam Gradient Descent Adam Adam

Table B.9: BOHB optimized hyperparameters for dierent data formations, objectives andmethods.

Hyperparameter Search Range BOHB-Non-Seq-one-shot-Blur BOHB-Non-Seq-Blur

Param. learn. rate [1𝑒 − 05, 1] 0.0050969066 0.0037014752
Param. weight decay [1𝑒 − 08, 0.1] 2.423𝑒 − 07 1.4573𝑒 − 06
Param. warm up [True,False] False False
Alpha learn. rate [1𝑒 − 05, 0.1] 1.32499𝑒 − 05 0.0012395056
Alpha weight decay [1𝑒 − 05, 0.1] 0.0010171142 0.0002855732
Alpha warm up [True, False ] False False
Alpha scheduler [None, Linear] None None
Alpha optimizer [Adam, Gradient Descent] Adam Adam

Table B.10: BOHB optimized hyperparameters for the non-sequential search space for data forma-
tion blur and dierent objectives.
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CIn order to ensure reproducibility, we build our dataset on architectures from a common NAS-
Benchmark, which we will describe in the following in more detail. In addition, a complete

description of the dataset itself is provided in the following. Further, we describe all hyperparam-
eters for reproducing the robustness results. Lastly, a complete description of the dataset itself is
in the following. We also provide additional information about mean condences and confusion
matrices for each network in this dataset. Lastly, we provide additional results on other image
datasets than CIFAR-10, i.e. CIFAR-100 and ImageNet16-120.

C.1 NAS-Bench-201

We base our evaluations on the NAS-Bench-201 (Dong and Yang, 2020) search space. It is a cell-
based architecture search space. Each cell has in total 4 nodes and 6 edges. The nodes in this
search space correspond to the architecture’s feature maps and the edges represent the archi-
tecture’s operations, which are chosen from the operation set O = {1 × 1 conv. , 3 × 3 conv. , 3 ×
3 avg. pooling , skip , zero} (see Figure 7.1). This search space contains in total 56 = 15 625 architec-
tures, from which only 6 466 are unique since the operations skip and zero can cause isomorphic
cells (see Figure C.1), where the latter operation zero stands for dropping the edge. Each archi-
tecture is trained on three dierent image datasets for 200 epochs: CIFAR-10 (Krizhevsky, 2009),
CIFAR-100 (Krizhevsky, 2009) and ImageNet16-120 (Chrabaszcz et al., 2017). For our evaluations,
we consider all unique architectures in the search space and test splits of the corresponding
datasets. Hence, we evaluate 3 · 6 466 = 19 398 pretrained networks in total.

in

1

2 out3x3

3x3

avg
1x1

1x1

# 991

in

1

2 out1x1

avg

3x3
3x3

1x1

# 3365

Figure C.1: Example of two isomorphic graphs in NAS-Bench-201. Due to the skip connection
from node in to node 1, both computational graphs are equivalent, but their identication in
the search space is dierent. For this dataset, we evaluated all non-isomorphic graphs (#991 was
evaluated and #3365 was not).

C.2 Dataset Gathering

We collect evaluations for our dataset for dierent corruptions and adversarial attacks (as dis-
cussed in Section 7.3.2 and Section 7.3.3) following Algorithm 9. This process is also depicted in
Figure C.2. Hyperparameter settings for adversarial attacks are listed in Table C.1. Due to the
heavy load of running all these evaluations, they are performed on several clusters. These clusters
are comprised of either (i) compute nodes with Nvidia A100 GPUs, 512 GB RAM, and Intel Xeon
IceLake-SP processors, (ii) compute nodes with NVIDIA Quadro RTX 8000 GPUs, 1024 GB RAM, and
AMD EPYC 7502P processors, (iii) NVIDIA Tesla A100 GPUs, 2048 GB RAM, Intel Xeon Platinum
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8360Y processors, and (iv) NVIDIA Tesla A40 GPUs, 2048 GB RAM, Intel Xeon Platinum 8360Y
processors.

Attack Hyperparameters

FGSM 𝜖 ∈ {.1, .5., 1, 2, 3, 4, 5, 6, 7, 8, 255}/255
PGD 𝜖 ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255

𝛼 = 0.01/0.3
40 attack iterations

APGD 𝜖 ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255
100 attack iterations

Square 𝜖 ∈ {.1, .5., 1, 2, 3, 4, 8, 255}/255
5 000 search iterations

Table C.1: Hyperparameter settings of adversarial attacks evaluated.

Algorithm 9: Robustness Dataset Gathering.
Input: (i) Architecture space 𝐴 (NAS-Bench-201).
Input: (ii) Test datasets 𝐷 (CIFAR-10, CIFAR-100, ImageNet16-120).
Input: (iii) Set of attacks and/or corruptions 𝐶.
Input: (iv) Robustness Dataset 𝑅.

1 for 𝑎 ∈ 𝐴 do
⊲ Load pretrained weights for 𝑎.

2 𝑎.load weights(𝑑)
3 for 𝑑 ∈ 𝐷 do
4 for 𝑐(·, ·) ∈ 𝐶 do

⊲ Corrupt dataset 𝑑.

5 𝑑𝑐 ← 𝑐(𝑎, 𝑑)
⊲ Evaluate architecture 𝑎 with 𝑑𝑐.

6 Accuracy, Condence, ConfusionMatrix← 𝑒𝑣𝑎𝑙(𝑎, 𝑑𝑐)
⊲ Extend robustness dataset with evaluations.

7 𝑅[𝑑] [𝑐] [”accuracy”] [𝑎] ← Accuracy
8 𝑅[𝑑] [𝑐] [”condence”] [𝑎] ← Condence
9 𝑅[𝑑] [𝑐] [”cm”] [𝑎] ← ConfusionMatrix

10 end
11 end
12 end

C.3 Dataset Structure, Distribution, and License

Files are provided in json format to ensure platform independence and to reduce the dependency
on external libraries (e.g., Python has built-in json-support).
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NAS-Bench-201

Robustness 
Dataset

Evaluation

Dataset 
Corruption

Accuracy 
Confidence 

Confusion Matrix

Corrupted Data

Architecture 
(trained)

Load 
Parameters

Architecture 
(untrained)

CIFAR-10

CIFAR-100

ImageNet16-120

Common 
Corruptions

Adversarial
Attacks

Data

Attack

Figure C.2: Diagram showing the gathering process for our robustness dataset. (i) An non-
isomorphic architecture contained in NAS-Bench-201 is created and its parameters are loaded
from a provided checkpoint, dependent on the dataset evaluated. (ii) Given the evaluation dataset,
an attack or corruption, and the trained network, the evaluation dataset is corrupted and (iii) the
resulting corrupted data is used to evaluate the network. (iv) The evaluation results are stored in
our robustness dataset.

C.4 Structure

The dataset consists of 3 folders, one for each dataset evaluated (cifar10, cifar100, ImageNet16-
120). Each folder contains one json le for each combination of key and measurement. Keys
refer to the sort of attack or corruption used (Table C.2 lists all keys). Measurements refer to
the collected evaluation type (accuracy, confidence, cm). Clean and adversarial evaluations are
performed on all datasets, while common corruptions are evaluated on cifar10 and cifar100.
Additionally, the dataset contains one metadata le (meta.json).

Metadata The meta.json le contains information about each architecture in NAS-Bench-201.
This includes, for each architecture identier, the corresponding string dening the network
design (as per Dong and Yang (2020)) as well as the identier of the corresponding non-isomorphic
architecture from Dong and Yang (2020) that we evaluated. The le also contains all 𝜖 values that
we evaluated for each adversarial attack. An excerpt of this le is shown in Figure C.3.
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Clean Adversarial Common Corruptions

clean aa apgd-ce brightness
aa square contrast
fgsm defocus blur
pgd elastic transform

fog
frost
gaussian noise
glass blur
impulse noise
jpeg compression
motion blur
pixelate
shot noise
snow
zoom blur

Table C.2: Keys for attacks and corruptions evaluated.

{
” ids ” : {

. . . ,
”21” : {
”nb201−str ing ” : ” |nor conv 1x1 ˜0 |+ |none˜0|none˜1 |+ |nor conv 1x1 ˜0|nor conv 3x3 ˜1|none˜2| ” ,
”isomorph” : ”21”

} ,
. . . ,
”1832” : {
”nb201−str ing ” : ” |nor conv 1x1 ˜0 |+ |nor conv 1x1 ˜0|none˜1 |+ |nor conv 1x1 ˜0| skip connect ˜1|none˜2| ” ,
”isomorph” : ”309”

} ,
. . .

} ,
” epsilons ” : {

”aa apgd−ce” : [ 0 . 1 , 0 .5 , 1 .0 , 2 .0 , 3 .0 , 4 .0 , 8 . 0 ] ,
”aa square” : [ 0 . 1 , 0 .5 , 1 .0 , 2 .0 , 3 .0 , 4 .0 , 8 . 0 ] ,
”fgsm” : [ 0 . 1 , 0 .5 , 1 .0 , 2 .0 , 3 .0 , 4 .0 , 5 .0 , 6 .0 , 7 .0 , 8 .0 , 255 .0] ,
”pgd” : [ 0 . 1 , 0 .5 , 1 .0 , 2 .0 , 3 .0 , 4 .0 , 8 .0 ]

}
}

Figure C.3: Excerpt of meta.json showing meta information of architectures #21 and #1832, as
well as 𝜖 values for each attack. Architecture #21 is non-isomorphic and points to itself, while
architecture #1832 is an isomorphic instance of #309.

Files All les are named according to "{key} {measurement}.json". Hence, the path to all
clean accuracies on cifar10 is "./cifar10/clean accuracy.json". An excerpt of this le is
shown in Figure C.4. Each le contains nested dictionaries stating the dataset, evaluation key and
measurement type. For evaluations with multiple measurements, e.g., in the case of adversarial
attacks for multiple 𝜖 values, the results are concatenated into a list. Files and their possible
contents are described in Table C.3.

We showed some analysis and possible use-cases on accuracies in the main paper. In the
following, we elaborate on and show confidence and confusion matrix (cm) measurements.
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{
” cifar10 ” : {
” clean” : {
”accuracy” : {
”0” : 0.856 ,
. . .

}
}

}

{
” cifar10 ” : {
”pgd” : {

”accuracy” : {
”0” : [0 .812 , 0.582 , 0.295 , 0.034 , 0.002 , 0 .0 , 0 . 0 ] ,
. . .

}
}

}

Figure C.4: Excerpt of (left) clean accuracy.json and (right) pgd accuracy.json for dataset
cifar10 for the architecture #0. Numbers are rounded to improve readability.

File Description

clean accuracy one accuracy value for each evaluated network
clean condence one condence matrix for each evaluated net-

work and collection scheme
clean cm one confusion matrix for each evaluated net-

work

{attack} accuracy list of accuracies, where each element corre-
sponds to the respective 𝜖 value

{attack} condence list of condence matrices, where each ele-
ment corresponds to the respective 𝜖 value

{attack} cm list of confusion matrices, where each element
corresponds to the respective 𝜖 value

{corruption} accuracy list of accuracies, where each element corre-
sponds to the respective corruption severity

{corruption} condence list of condence matrices, where each ele-
ment corresponds to the respective corruption
severity

{corruption} cm list of confusion matrices, where each element
corresponds to the respective corruption sever-
ity

Table C.3: Files and their possible content.

C.5 Confidence

We collect the mean condence after softmax for each network over the whole (attacked) test
dataset evaluated. We used 3 schemes to collect condences (see Figure C.6). First, condences
for each class are given by true labels (called label). In case of cifar10, this results in a 10 × 10
condence matrix, for cifar100 a 100× 100 condence matrix, and ImageNet16-120 a 120× 120
condence matrix. Second, condences for each class are given by the class predicted by the
network (called argmax). This again results in matrices of sizes as mentioned. Third, condences
for correctly classied images as well as condences for incorrectly classied images (called
prediction). For all image datasets, this results in a vector with 2 dimensions. Each result is
saved as a list (or list of list), see Figure C.5.

Figure C.7 shows a progression of label condence values for class label 0 on cifar10 from
clean to fgsm with increasing values of 𝜖. Figure C.8 shows how prediction condences of



154 Appendix C. A Dataset for Neural Architecture Design and Robustness

correctly and incorrectly classied images correlate with increasing values of 𝜖when attacked
with fgsm.

{
” cifar10 ” : {

” clean” : {
” confidence” : {

”0” : {
” label ” : [ [ . . . ] ] ,
”argmax” : [ [ . . . ] ] ,
” prediction ” : [ . . . ]

}
}

}
}

Figure C.5: Excerpt of clean confidence.json for cifar10. Numbers are not shown to improve
readability.
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label. (bottom: prediction) For correct and incorrect classications.
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Figure C.8: Mean prediction condence scores on FGSM-attacked CIFAR-10 images for dierent
𝜖 (on top of points) for all non-isomorphic networks in NAS-Bench-201. Networks become less
condent in their prediction if their prediction is correct when 𝜖 increases. Networks become
more condent in their prediction if their prediction is incorrect, however, only up to a certain 𝜖
value. When 𝜖 further increases, condence drops again.

C.6 Confusion Matrix

For each evaluated network, we collect the confusion matrix (key: cm) for the corresponding
(attacked) test dataset. The result is a 10× 10 matrix in case of cifar10, a 100× 100 matrix in case
of cifar100, and a 120 × 120 matrix in case of ImageNet16-120. See Figure C.9 for an example,
where we summed up confusion matrices for all networks on cifar10.
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Figure C.9: Aggregated confusion matrices on clean CIFAR-10 images for all non-isomorphic
networks in NAS-Bench-201.
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C.7 Correlations between Image Datasets

In Figure C.10 we show the correlation between all clean and adversarial accuracies over all
datasets collected. This plot shows a positive correlation between the image datasets for the
one-step FGSM attack, whereas for all other multi-step attacks, the correlation becomes close to
zero or even negative.
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Figure C.10: Kendall rank correlation coecient between all clean and adversarial accuracies
that are evaluated in our dataset.
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C.8 Example image of corruptions in CIFAR-10-C
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Figure C.11: An example image of CIFAR-10-C with dierent corruption types at dierent severity
levels. CIFAR-100-C consists of images with the same corruption types and severity levels.

C.9 Main Figures for other Image Datasets

C.9.1 CIFAR-100 Adversarial Attack Accuracies (Figure 7.2)

Figure C.12: Accuracy boxplots over all unique architectures in NAS-Bench-201 for dierent
adversarial attacks (FGSM, PGD, APGD, Square) and perturbation magnitude values 𝜖, evaluated
on CIFAR-100. Red line corresponds to guessing.
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C.9.2 ImageNet16-120 Adversarial Attack Accuracies (Figure 7.2)

Figure C.13: Accuracy boxplots over all unique architectures in NAS-Bench-201 for dierent
adversarial attacks (FGSM, PGD, APGD, Square) and perturbation magnitude values 𝜖, evaluated
on ImageNet16-120. Red line corresponds to guessing.
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C.9.3 CIFAR-10-C Common Corruption Accuracies (Figure 7.4)

Figure C.14: Accuracy boxplots over all unique architectures in NAS-Bench-201 for dierent
corruption types at dierent severity levels, evaluated on CIFAR-10-C. Red line corresponds to
guessing.
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C.9.4 CIFAR-100-C Common Corruption Accuracies (Figure 7.4)

Figure C.15: Accuracy boxplots over all unique architectures in NAS-Bench-201 for dierent
corruption types at dierent severity levels, evaluated on CIFAR-100-C. Red line corresponds to
guessing.
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C.9.5 CIFAR-100 Adversarial Attack Correlations (Figure 7.3)
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Figure C.16: Kendall rank correlation coecient between clean accuracies and robust accura-
cies on dierent attacks and magnitude values 𝜖 on CIFAR-100 for all unique architectures in
NAS-Bench-201.
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C.9.6 ImageNet16-120 Adversarial Attack Correlations (Figure 7.3)
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Figure C.17: Kendall rank correlation coecient between clean accuracies and robust accuracies
on dierent attacks and magnitude values 𝜖 on ImageNet16-120 for all unique architectures in
NAS-Bench-201.
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C.9.7 CIFAR-100-C Common Corruption Correlations (Figure 7.5)
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Figure C.18: Kendall rank correlation coecient between clean accuracies and accuracies on dier-
ent corruptions at severity level 4 on CIFAR-100-C for all unique architectures in NAS-Bench-201.





Excursus about Clustering on Graphs

DIn this section we will provide additional information about the optimality of the auxiliary
function, and more descriptions about the algorithms used in Chapter 8.

D.1 Auxiliary Function at Optimality

In this section, we demonstrate that there exists an x∗, that minimizes Equation (CC2), for which
𝑄(𝜙, 𝑠, x∗) = 0. Given an arbitrary solution {𝑥𝑣𝑖𝑣 𝑗 , (𝑥𝑠𝑣𝑖𝑣 𝑗 )𝑠∈S} another solution {𝑥

∗
𝑣𝑖𝑣 𝑗

, (𝑥𝑠∗𝑣𝑖𝑣 𝑗 )𝑠∈S} is
constructed, for which 𝑄(𝜙, 𝑠, x∗) = 0 holds, without increasing the objective in Equation (CC2).
We write the updates below in terms of x𝑠

𝑥∗𝑣𝑖𝑣 𝑗
M
= 𝑥𝑣𝑖𝑣 𝑗 +max

𝑠∈S
𝑥𝑠𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

+

𝑥∗𝑣𝑖𝑣 𝑗
M
= 𝑥𝑣𝑖𝑣 𝑗 + 𝑥𝑠𝑣𝑖𝑣 𝑗 − 1 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

−
𝑠 , 𝑠 ∈ S

𝑥𝑠∗𝑣𝑖𝑣 𝑗
M
= 0 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E+

𝑥𝑠∗𝑣𝑖𝑣 𝑗
M
= 1 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠 , 𝑠 ∈ S.

(D.1)

The updates in Equation (D.1) are equivalent to the following updates using 𝑓 𝑠, 𝑓 𝑠∗. Here 𝑓 𝑠, 𝑓 𝑠∗

correspond to the optimizing solution for 𝑓 in subproblem 𝑠, given x, x∗ respectively:

𝑥∗𝑣𝑖𝑣 𝑗 = 𝑥𝑣𝑖𝑣 𝑗 +max
𝑠∈S

𝑓 𝑠𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E
+

𝑥∗𝑣𝑖𝑣 𝑗 = 𝑥𝑣𝑖𝑣 𝑗 − 𝑓
𝑠
𝑣𝑖𝑣 𝑗

∀(𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠 , 𝑠 ∈ S
𝑓 𝑠∗𝑣𝑖𝑣 𝑗 = 0 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E+

𝑓 𝑠∗𝑣𝑖𝑣 𝑗 = 0 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠

(D.2)

These updates in Equation (D.1) and Equation (D.2) preserve the feasibility of the primal LP in
Equation (8.7). Also notice, that since 𝑓 𝑠∗ is a zero valued vector for all 𝑠 ∈ S, then 𝑄(𝜙, 𝑠, 𝑥∗) = 0
for all 𝑠 ∈ S.

We now consider, the total change in Equation (CC2) corresponding to edge (𝑣𝑖 , 𝑣 𝑗) ∈ E+,
induced by Equation (D.1), which is non-positive. The objective of the master problem increases
by𝜙𝑣𝑖𝑣 𝑗 max𝑠∈S 𝑥𝑠𝑣𝑖𝑣 𝑗 , while the total decrease in the objectives of the subproblems is𝜙𝑣𝑖𝑣 𝑗

∑
𝑠∈S 𝑥

𝑠
𝑣𝑖𝑣 𝑗

.
Since the latter value is greater than the former value, the total change in problem Equation (CC2)
decreases more than it increases. Considering on the other hand the total change of Equation (CC2)
corresponding to edge (𝑣𝑖 , 𝑣 𝑗) ∈ E−, induced by Equation (D.1), which is zero, yields in an increase
of the objective of the master problem by −𝜙𝑣𝑖𝑣 𝑗 (1 − 𝑥𝑛𝑣𝑖𝑣 𝑗 ), while the objective of subproblem 𝑠

decreases by −𝜙𝑣𝑖𝑣 𝑗 (1 − 𝑥𝑠𝑣𝑖𝑣 𝑗 ). This shows that the objective of Equation (CC2) is minimized for x∗.

D.2 Line by Line Description of BDCC

We provide a line by line description of Algorithm 8.

• Input (i) in Algorithm 8: Initialize the nascent set of Benders rows Ẑ to the empty set.
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• Input (ii) in Algorithm 8: Indicate that we have not solved the LP relaxation yet.

• Line 1-15: Alternate between solving the master problem and generating Benders rows,
until a feasible integral solution is produced.

1. Line 2: Solve the master problem providing a solution x, which may not satisfy all
cycle inequalities. We enforce integrality if we have nished solving the LP relaxation,
which is indicated by done lp=True.

2. Line 3: Indicate that we have not yet added any Benders rows to this iteration.

3. Line 4-11: Add Benders rows by iterating over subproblems and adding Benders rows
corresponding to subproblems, associated with violated cycle inequalities.

– Line 5: Check if there exists a violated cycle inequality associated with E−𝑠 . This is
done by iterating over (𝑣𝑖 , 𝑣 𝑗) ∈ E−𝑠 and checking if the shortest path from 𝑣𝑖 to
𝑣 𝑗 is less than 𝑥𝑣𝑖𝑣 𝑗 . This distance is dened on the graph’s edges E with weights
equal to x.

– Lines 6-8: Generate Benders rows associated with subproblem 𝑠 and add them to
nascent set Ẑ.

– Line 9: Indicate that a Benders row was added this iteration.

4. Lines 12-13: If no Benders rows were added to this iteration, we enforce integrality on
x, when solving the master problem for the remainder of the algorithm.

• Output in Algorithm 8: Return solution x.

D.3 Generating Feasible Integer Solutions Prior to Convergence

Prior to the termination of optimization, it is valuable to provide feasible integer solutions on
demand. This is so that a practitioner can terminate optimization, when the gap between the
objectives of the integral solution and the relaxation is small. Here, we consider the production of
feasible integer solutions, given the current solution x∗ to the master problem, which may neither
obey cycle inequalities nor be integral. We refer to this procedure as rounding.

Rounding is a coordinate descent approach dened on the graph G and its edges E with
weights 𝜅, determined using x∗ below.

𝜅𝑣𝑖𝑣 𝑗 = 𝜙𝑣𝑖𝑣 𝑗 (1 − 𝑥∗𝑣𝑖𝑣 𝑗 ) ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E
+ (D.3)

𝜅𝑣𝑖𝑣 𝑗 = 𝜙𝑣𝑖𝑣 𝑗𝑥
∗
𝑣𝑖𝑣 𝑗

∀(𝑣𝑖 , 𝑣 𝑗) ∈ E−

Consider that x∗ is integral and feasible (where feasibility indicates that x∗ satises all cycle
inequalities). Let x𝑠∗ dene the boundaries in partition x∗, of the connected component containing
𝑠. Here 𝑥𝑠∗𝑣𝑖𝑣 𝑗 = 1 if exactly one of 𝑣𝑖 , 𝑣 𝑗 is in the connected component containing 𝑠 under cut x∗.
Observe, that 𝑄(𝜅, 𝑠, x0𝑠) = 0, where 𝑥0𝑠𝑣𝑖𝑣 𝑗 = 1E−𝑠 (𝑣𝑖 , 𝑣 𝑗), is achieved using x𝑠∗ as the solution to
Equation (8.7). Thus x𝑠∗ is the minimizer of Equation (8.7). The union of the edges cut in x𝑠∗ across
𝑠 ∈ S is identical to x∗. Note that when x∗ is integral and feasible then the solution produced
below has cost equal to that of x∗.

x𝑠∗ M= minimizer of 𝑄(𝜅, 𝑠, x0𝑠) ∀𝑠 ∈ S
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Algorithm 10: Generating an Integral and Feasible Solution Given Infeasible and or
Non-Integral Input x∗

Input: (i) 𝑥+𝑣𝑖𝑣 𝑗 = 0 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E
Input: (ii) 𝜅𝑣𝑖𝑣 𝑗 = 𝜙𝑣𝑖𝑣 𝑗𝑥∗𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

−

Input: (iii) 𝜅𝑣𝑖𝑣 𝑗 = 𝜙𝑣𝑖𝑣 𝑗 (1 − 𝑥∗𝑣𝑖𝑣 𝑗 ) ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E
+

Output: x+
1 for 𝑠 ∈ S do
2 x𝑠 =minimizer for 𝑄(𝜅, 𝑠, x0𝑠) given xed 𝜅, 𝑠
3 𝑥+𝑣𝑖𝑣 𝑗 = max(𝑥+𝑣𝑖𝑣 𝑗 , 𝑥

𝑠
𝑣𝑖𝑣 𝑗
) ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

4 𝜅𝑣𝑖𝑣 𝑗 = 𝜅𝑣𝑖𝑣 𝑗 (1 − 𝑥+𝑣𝑖𝑣 𝑗 ) ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E
5 end

𝑥+𝑣𝑖𝑣 𝑗
M
= max

𝑠∈S
𝑥𝑠∗𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

+ (D.4)

𝑥+𝑣𝑖𝑣 𝑗
M
= 𝑥𝑠∗𝑣𝑖𝑣 𝑗 ∀(𝑣𝑖 , 𝑣 𝑗) ∈ E

−
𝑠 , 𝑠 ∈ S

The procedure of Equation (D.4) can be used regardless of whether x∗ is integral or feasible.
Note that if x∗ is close to integral and close to feasible, then Equation (D.4) is biased to produce a
solution that is similar to x∗ by design of 𝜅. We now consider a serial version of Equation (D.4),
which may provide improved results. We construct a partition x+ by iterating over 𝑠 ∈ S,
producing component partitions as in Equation (D.4). We alter 𝜅 by allowing for the cutting of
edges previously cut with cost zero. We formally describe this serial rounding procedure below
in Algorithm 10.

• Input (i) in Algorithm 10: Initialize x+ as the zero vector.

• Input (ii)- input(iii) in Algorithm 10: Set 𝜅 according to Equation (D.3)

• Line 1-5: Iterate over 𝑠 ∈ S to construct x+ by cutting edges cut in the subproblem.

1. Line 2: Produce the lowest cost cut x𝑠 given altered edge weights 𝜅 for subproblem 𝑠.

2. Line 3: Cut edges in x+ that are cut in x𝑠.

3. Line 4: Set 𝜙𝑣𝑖𝑣 𝑗 to zero for cut edges in x+.

• Output in 10: Return the solution x+

When solving for the fast minimizer of 𝑄(𝜅, 𝑠, x0𝑠), we rely on the network ow solver of Rother
et al. (2007), though we do not exploit its capacity to tackle non-submodular problems.
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Roberts, N., M. Khodak, T. Dao, L. Li, C. Ré, and A. Talwalkar (2021). “Rethinking Neural Operations
for Diverse Tasks”. In: Advances in Neural Information Processing Systems (NeurIPS).

Rolı́nek, M., V. Musil, A. Paulus, M. V. P., C. Michaelis, and G.Martius (2020). “Optimizing Rank-Based
Metrics With Blackbox Dierentiation”. In: Proc. of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

Rother, C., V. Kolmogorov, V. Lempitsky, and M. Szummer (2007). “Optimizing Binary MRFs via
Extended Roof Duality”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

Ru, B., X. Wan, X. Dong, and M. Osborne (2021). “Interpretable Neural Architecture Search via
Bayesian Optimisation with Weisfeiler-Lehman Kernels”. In: Proc. of the International Confer-
ence on Learning Representations (ICLR).

Scarselli, F., M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini (2009). “The Graph Neural
Network Model”. In: IEEE Trans. Neural Networks 20.1, pp. 61–80.

Schmidt, U. and S. Roth (2014). “Shrinkage Fields for Eective Image Restoration”. In: Proc. of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas (2016). “Taking the Human Out
of the Loop: A Review of Bayesian Optimization”. In: Proc. of the IEEE 104.1, pp. 148–175.

Shi, H., R. Pi, H. Xu, Z. Li, J. T. Kwok, and T. Zhang (2019). “Multi-objective Neural Architecture
Search via Predictive Network Performance Optimization”. In: arXiv.org abs/1911.09336.

Shih, W.-K., S. Wu, and Y. Kuo (1990). “Unifying maximum cut andminimum cut of a planar graph”.
In: IEEE Transactions on Computers 39.5, pp. 694–697.



186 Bibliography

Simonovsky, M. and N. Komodakis (2018). “Graphvae: Towards generation of small graphs using
variational autoencoders”. In: International Conference on Articial Neural Networks (ICANN).

Simonyan, K. and A. Zisserman (2014). “Very Deep Convolutional Networks for Large-Scale Image
Recognition”. In: Proc. of the International Conference on Learning Representations (ICLR).

Snelson, E. and Z. Ghahramani (2005). “Sparse Gaussian Processes using Pseudo-inputs”. In:
Advances in Neural Information Processing Systems (NeurIPS).

Snoek, J., O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. M. A. Patwary, Prabhat, and
R. P. Adams (2015). “Scalable Bayesian Optimization Using Deep Neural Networks”. In: Proc. of
the International Conference on Machine Learning (ICML).

Su, D., H. Zhang, H. Chen, J. Yi, P.-Y. Chen, and Y. Gao (2018). “Is Robustness the Cost of Accuracy? -
A Comprehensive Study on the Robustness of 18 Deep Image Classication Models”. In: Proc.
of the European Conference on Computer Vision (ECCV).

Sullivan, T. (2015). Introduction to Uncertainty Quantication.
Swoboda, P. and B. Andres (2017). “A Message Passing Algorithm for the Minimum Cost Multicut

Problem”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.

Rabinovich (2015). “Going deeper with convolutions”. In: Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Szegedy, C., V. Vanhoucke, S. Ioe, J. Shlens, and Z. Wojna (2016). “Rethinking the Inception
Architecture for Computer Vision”. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus (2014). “In-
triguing properties of neural networks”. In: Proc. of the International Conference on Learning
Representations (ICLR).

Tang, S., B. Andres, M. Andriluka, and B. Schiele (2015). “Subgraph Decomposition for Multi-Target
Tracking”. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Tang, Y., Y. Wang, Y. Xu, H. Chen, B. Shi, C. Xu, C. Xu, Q. Tian, and C. Xu (2020). “A Semi-Supervised
Assessor of Neural Architectures”. In: Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Titsias, M. (2009). “Variational Learning of Inducing Variables in Sparse Gaussian Processes”. In:
Proc. of the International Conference on Articial Intelligence and Statistics.

Tripp, A., E. Daxberger, and J. M. Hernández-Lobato (2020). “Sample-Ecient Optimization in
the Latent Space of Deep Generative Models via Weighted Retraining”. In: Advances in Neural
Information Processing Systems (NeurIPS).

Tu, R., N. Roberts, M. Khodak, J. Shen, F. Sala, and A. Talwalkar (2022). “NAS-Bench-360: Bench-
marking Neural Architecture Search on Diverse Tasks”. In: Advances in Neural Information
Processing Systems (NeurIPS), Datasets and Benchmarks Track.

Velickovic, P., G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio (2018). “Graph Attention
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