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Abstract
We examine a class of stochastic mirror descent dynamics in the context of monotone
variational inequalities (including Nash equilibrium and saddle-point problems). The
dynamics under study are formulated as a stochastic differential equation, driven by a
(single-valued) monotone operator and perturbed by a Brownianmotion. The system’s
controllable parameters are two variable weight sequences, that, respectively, pre- and
post-multiply the driver of the process. By carefully tuning these parameters, we
obtain global convergence in the ergodic sense, and we estimate the average rate of
convergence of the process. We also establish a large deviations principle, showing
that individual trajectories exhibit exponential concentration around this average.

Keywords Mirror descent · Variational inequalities · Saddle-point problems ·
Stochastic differential equations

Mathematics Subject Classification 90C25 · 90C33 · 90C47

1 Introduction

Dynamical systems governed by monotone operators play an important role in the
fields of optimization (convex programming), game theory (Nash equilibrium and
generalized Nash equilibrium problems), fixed point theory, partial differential equa-
tions and many other fields of applied mathematics. In particular, the study of the
relationship between continuous- and discrete-time models has given rise to a vigor-
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ous literature at the interface of these fields—see, e.g., [1] for a recent overview and
[2] for connections to accelerated methods.

The starting point of much of this literature is that an iterative algorithm can be
seen as a discretization of a continuous dynamical system. Doing so sheds new light
on the properties of the algorithm, it provides Lyapunov functions, which are useful
for its asymptotic analysis, and often leads to new classes of algorithms altogether. A
classical example of this arises in the study of (projected) gradient descent dynamics
and its connection with Cauchy’s steepest descent algorithm—or, more generally, in
the relation between the mirror descent (MD) class of algorithms [3] and dynamical
systems derived from Bregman projections and Hessian Riemannian metrics [4–6].

2 Problem Formulation and Related Literature

Throughout this paper, X denotes a compact and convex subset of an n-dimensional
real space V ∼= R

n with norm ‖·‖. We will also write Y ≡ V∗ for the dual of V , 〈y, x〉
for the canonical pairing between y ∈ V∗ and x ∈ V , and ‖y‖∗ := sup{〈y, x〉 : ‖x‖ ≤
1} for the dual norm of y in V∗. We denote the relative interior of X by ri(X ), and its
boundary by bd(X ).

In this paper, we are interested in deriving dynamical system approaches to solve
monotone variational inequalities (VIs). To define them, let v : X → Y be a Lipschitz
continuous monotone map, i.e.,

(H1) ‖v(x) − v(x ′)‖∗ ≤ L‖x − x ′‖ and 〈v(x) − v(x ′), x − x ′〉 ≥ 0,

for some L > 0 and all x, x ′ ∈ X .
Throughout this paper, we will be interested in solving the Minty VI:

Find x∗ ∈ X such that 〈v(x), x − x∗〉 ≥ 0 for all x ∈ X . (MVI)

Since v is assumed continuous and monotone, this VI problem is equivalent to the
Stampacchia VI:1

Find x∗ ∈ X such that 〈v(x∗), x − x∗〉 ≥ 0 for all x ∈ X . (SVI)

When we need to keep track ofX and v explicitly, we will refer to (MVI) and/or (SVI)
as VI(X , v). The solution set of VI(X , v) will be denoted as X∗; by standard results,
X∗ is convex, compact and nonempty [9]. Below, we present a selected sample of
examples and applications of VI problems; for a more extensive discussion, see [9–
11].

Example 2.1 (Convex optimization) Consider the problem

min
x∈X

f (x), (Opt)

1 Equivalence is understood in the sense that x∗ ∈ X solves (MVI), if and only if it solves (SVI). See
Proposition 3.1 in [7], andProposition 3 in [8],which treats also extensions toVectorVariational Inequalities.
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where f : X → R is convex and continuously differentiable on X . If x∗ is a solution
of (Opt), first-order optimality gives

〈∇ f (x∗), x − x∗〉 ≥ 0 for all x ∈ X .

Since f is convex, v = ∇ f is monotone, so (Opt) is equivalent to VI(X ,∇ f ) [12].

Example 2.2 (Saddle-point problems) Let X 1 ⊆ R
n1 and X 2 ⊆ R

n2 be compact
and convex, and let U : X 1 × X 2 → R be a smooth convex-concave function (i.e.,
U (x1, x2) is convex in x1 and concave in x2). Then, the associated saddle-point (or
min-max) problem is to determine the value of U , defined here as

val = min
x1∈X 1

max
x2∈X 2

U (x1, x2) = max
x2∈X 2

min
x1∈X 1

U (x1, x2). (Val)

Existence of val follows directly from von Neumann’s minimax theorem. Moreover,
letting

v(x1, x2) := (∇x1U (x1, x2),−∇x2U (x1, x2)
)
, (1)

it is easy to check that v is monotone as a map fromX := X 1×X 2 toR
n1+n2 (because

U is convex in its first argument and concave in the second). Then, as in the case of
(Opt), first-order optimality implies that the saddle-points of (Val) are precisely the
solutions of VI(X , v) [13].

Example 2.3 (Convex games) One of the main motivations for this paper comes from
determiningNash equilibria of gameswith convex cost functions. To state the problem,
let N := {1, . . . , N } be a finite set of players and, for each i ∈ N , let X i ⊆ R

ni

be a compact convex set of actions that can be taken by player i . Given an action
profile x = (x1, . . . , xN ) ∈ X := ∏

i X i , the cost for each player is determined by an
associated cost function ci : X → R. The unilateral minimization of this cost leads to
the notion of Nash equilibrium, defined here as an action profile x∗ = (xi∗)i∈N such
that

ci (x∗) ≤ ci (xi ; x−i∗ ) for all xi ∈ X i , i ∈ N . (NE)

Of particular interest to us is the case, where each ci is smooth and individually
convex in xi . In this case, the profile v(x) = (vi (x))i∈N of individual gradients
vi (x) := ∇xi c

i (x) forms a monotone map and, by first-order optimality, the Nash
equilibrium problem (NE) boils down to solving VI(X , v) [9,14].

In the rest of this paper, we will consider two important special cases of operators
v : X → V∗, namely:

1. Strictly monotone problems, i.e., when

〈v(x ′) − v(x), x ′ − x〉 ≥ 0 with equality if and only if x = x ′.
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2. Strongly monotone problems, i.e., when

〈v(x ′) − v(x), x ′ − x〉 ≥ γ ‖x ′ − x‖2 for some γ > 0.

Clearly, strong monotonicity implies strict monotonicity, which, in turn, implies ordi-
nary monotonicity. In the case of convex optimization, strict (respectively, strong)
monotonicity corresponds to strict (respectively, strong) convexity of the problem’s
objective function. Under either refinement, (MVI) admits a unique solution, which
will be referred to as “the” solution of (MVI).

2.1 Contributions

Building on the above, this paper is concerned with a stochastic dynamical system
resulting fromNesterov’swell-known“dual-averaging”mirror descent algorithm [13],
perturbed by noise, and/or random disturbances. Heuristically, this algorithm aggre-
gates descent steps in the problem’s (unconstrained) dual space, and then “mirrors”
the result back to the problem’s feasible region to obtain a candidate solution at each
iteration. This “mirror step” is performed as in the classical setting of [3,4], but the
dual aggregate is further post-multiplied by a variable parameter (thus turning “dual
aggregates” into “dual averages”). Thanks to this averaging, the resulting algorithm
is particularly suited for problems, where only noisy information is available to the
optimizer, rendering it particularly useful for machine learning and engineering appli-
cations [15], even when the stochastic environment is not stationary [16].2

In more detail, the dynamics under study are formulated as a stochastic differential
equation (SDE) driven by a (single-valued) monotone operator and perturbed by an
Itô martingale noise process. As in Nesterov’s original method [13], the dynamics’
controllable parameters are two variable weight sequences, that, respectively, pre- and
post-multiply the drift of the process: The first acts as a “step-size” of sorts, whereas the
second can be seen as an “inverse temperature” parameter (as in simulated annealing).
By carefully tuning these parameters,we are then able to establish the following results:
First, if the intensity of the noise process decays with time, the dynamics converge to
the (deterministic) solution of the underlying VI (cf. Sect. 4.2). Second, in the spirit
of the ergodic convergence analysis of [13], we establish that this convergence can be
achieved at anO(1/

√
t) rate on average (Sect. 4.3).3 Finally, in Sect. 4.4, we establish

a large deviations principle showing that, as far as ergodic convergence is concerned,
the above convergence rate holds with (exponentially) high probability, not only in
the mean.

Conceptually, our work has close ties to the literature on dynamical systems that
arise in the solution of VIs, see, e.g., [2,4,19–22], and references therein. More specif-
ically, a preliminary version of the dynamics considered in this paper was recently

2 In the deterministic case, similar results are to be contrasted with the use of Gauss–Seidel methods for
solving Variational and (generalized) Nash Equilibrium problems; for a survey, see [17,18].
3 Interestingly, the corresponding rate for the deterministic (noise-free) dynamics is O(1/t), indicating a
substantial drop from the deterministic to the stochastic regime. This drop is consistent with the black-box
convergence rate of Mirror Descent in (stochastic) VIs [13] and is due to the second-order Itô correction
that appears in the stochastic case.

123



842 Journal of Optimization Theory and Applications (2018) 179:838–867

studied in the context of convex programming and gradient-like flows in [23,24]. The
ergodic part of our analysis here extends the results of [24] to saddle-point problems
and monotone variational inequalities, while the use of two variable weight sequences
allows us to obtain almost sure convergence results without needing to rely on a
parallel-sampling mechanism for variance reduction as in [23].

2.2 Stochastic Mirror Descent Dynamics

Mirror descent is an iterative optimization algorithm combining first-order oracle steps
with a “mirror step” generated by a projection-type mapping. For the origins of the
method, see [3]. The key ingredient defining this mirror step is a generalization of the
Euclidean distance known as a “distance-generating” function:

Definition 2.1 We say that h : X → R is a distance-generating function on X , if

(a) h is continuous.
(b) h is strongly convex, i.e., there exists some α > 0 such that

h(λx + (1 − λ)x ′) ≤ λh(x) + (1 − λ)h(x ′) − α

2
λ(1 − λ)‖x − x ′‖2,

for all x, x ′ ∈ X and all λ ∈ [0, 1].
Given a distance-generating function on X , its convex conjugate is given by

h∗(y) := max
x∈X

{〈y, x〉 − h(x)}, y ∈ Y,

and the induced mirror map is defined as

Q(y) := argmax
x∈X

{〈y, x〉 − h(x)}.

Thanks to the strong convexity of h, Q(y) is well-defined and single-valued for all
y ∈ Y . In particular, as illustrated in the examples below, it plays a role similar to that
of a projection mapping:

Example 2.4 (Euclidean distance) If h(x) = 1
2‖x‖22, then the induced mirror map is

the standard Euclidean projector

Q(y) = argmax
x∈X

{∑n

j=1
y j x j − 1

2

∑n

j=1
x2j

}
= argmin

x∈X
‖x − y‖22.

Example 2.5 (Gibbs–Shannon entropy) If X = {x ∈ R
n+ : ∑n

j=1 x j = 1} is the unit
simplex in R

n , then the (negative) Gibbs–Shannon entropy h(x) = ∑n
j=1 x j log x j

gives rise to the so-called logit choice map

Q(y) = (exp(y j ))nj=1∑n
k=1 exp(yk)

.
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Example 2.6 (Fermi–Dirac entropy) If X = [0, 1]n is the unit cube in R
n , then the

(negative) Fermi–Dirac entropy h(x) = ∑n
j=1[x j log(x j ) + (1 − x j ) log(1 − x j )]

induces the so-called logistic map

Q(y) =
(

exp(y j )

1 + exp(y j )

)n

j=1
.

For future reference, some basic properties of mirror maps are collected below:

Proposition 2.1 Let h be a distance-generating function on X . Then, the induced
mirror map Q : Y → X satisfies the following properties:

(a) x = Q(y) if and only if y ∈ ∂h(x), where

∂h(x) := {p ∈ V∗ : h(y) ≥ h(x) + 〈p, y − x〉 ∀y ∈ X },

is the subgradient of h at x. In particular, im Q = dom ∂h = {x ∈ X : ∂h(x) �=
∅}.

(b) h∗ is continuously differentiable on Y and ∇h∗(y) = Q(y) for all y ∈ Y .
(c) Q(·) is (1/α)-Lipschitz continuous.

The properties reported above are fairly standard in convex analysis; for a proof,
see, e.g., [12, Theorem 12.60(b)]. Of particular importance is the identity ∇h∗ = Q,
which provides a quick way of calculating Q in “prox-friendly” geometries (such as
the examples discussed above).

Now, as mentioned above, mirror descent exploits the flexibility provided by a (not
necessarily Euclidean) mirror map by using it to generate first-order steps along v.
For concreteness, we will focus on the so-called “dual averaging” variant of mirror
descent [13], defined here via the recursion

yt+1 = yt − λtv(xt ), xt+1 = Q(ηt+1yt+1), (2)

where:

(1) t = 0, 1, . . . denotes the stage of the process.
(2) yt is an auxiliary dual variable, aggregating first-order steps along v.4

(3) λt is a variable step-size parameter, pre-multiplying the input at each stage.
(4) ηt is a variable weight parameter, post-multiplying the dual aggregate yt .5

Passing to continuous time, we obtain the mirror descent dynamics

dy(t) = −λ(t) v(x(t)) dt, x(t) = Q(η(t)y(t)), (MD)

4 The usual initialization is y0 = 0, x0 = Q(0) = argmin
x∈X

h(x), but other initializations are possible.

5 The name “dual averaging” alludes to the choice λt = 1, ηt = 1/t : under this choice of parameters, xt
is a mirror projection of the “dual average” yt = t−1 ∑t−1

s=0 v(xs ).
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with η(t) and λ(t) serving the same role as before (but now defined over all t ≥ 0). In
particular, our standing assumption for the parameters λ and η of (MD) will be that

(H2) η(t) and λ(t) are positive, C1-smooth and nonincreasing.

Heuristically, the assumptions above guarantee that the dual process y(t) does not
grow too large too fast, so blow-ups in finite time are not possible. Together with the
basic convergence properties of the dynamics (MD), this is discussed in more detail
in Sect. 3 below.

The primary case of interest in our paper is when the oracle information for v(x) in
(MD) is subject to noise, measurement errors and/or other stochastic disturbances. To
account for such perturbations, we will instead focus on the stochastic mirror descent
dynamics

dY (t) = −λ(t) [v(X(t)) dt + dM(t)] , X(t) = Q(η(t)Y (t)) (SMD)

whereM(t) is a continuousmartingalewith respect to someunderlying stochastic basis
(Ω,F , (Ft )t≥0, P).6 In more detail, we assume for concreteness that the stochastic
disturbance term M(t) is an Itô process of the form

dM(t) = σ(X(t), t) · dW (t),

where W (t) is a d-dimensional Wiener process adapted to Ft , and σ(x, t) is an n × d
matrix capturing the volatility of the noise process. Heuristically, the volatility matrix
of M(t) captures the intensity of the noise process, and the possible correlations
between its components.
In terms of regularity, we will be assuming throughout that σ(x, t) is measurable in t ,
as well as bounded, and Lipschitz continuous in x . Formally, we posit that there exists
a constant 	 > 0 such that

(H3) supx,t‖σ(x, t)‖ < ∞ and ‖σ(x ′, t) − σ(x, t)‖ ≤ 	‖x ′ − x‖,

where

‖σ‖ :=
√
tr

[
σσ�] =

√∑n

i=1

∑d

j=1
|σi j |2

denotes the Frobenius (matrix) norm of σ . In particular, (H3) implies that there exists
a positive constant σ∗ ≥ 0 such that

‖σ(x, t)‖2 ≤ σ 2∗ for all x ∈ X , t ≥ 0.

In what follows, it will be convenient to measure the intensity of the noise affect-
ing (SMD) via σ∗; of course, when σ∗ = 0, we recover the noiseless, deterministic
dynamics (MD).

6 We tacitly assume here that the filtration (Ft )t≥0 satisfies the usual conditions of right continuity and
completeness, and carries a standard d-dimensional Wiener process (W (t))t≥0.
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3 Deterministic Analysis

To establish a reference standard, we first focus on the deterministic regime of (MD),
i.e., when M(t) ≡ 0 in (SMD).

3.1 Global Existence

We begin with a basic well-posedness result of (MD).

Proposition 3.1 Under Hypotheses (H1) and (H2), the dynamical system (MD) admits
a unique solution from every initial condition (s, y) ∈ R+ × Y .

Proof Let A(t, y) := −λ(t)v(Q(η(t)y)) for all t ∈ R+, y ∈ Y . Clearly, A(t, y) is
jointly continuous in t and y. Moreover, by (H2), λ(t) has bounded first derivative
and η(t) is nonincreasing, so both λ(t) and η(t) are Lipschitz continuous. Finally, by
(H1), v is L-Lipschitz continuous, implying in turn that

‖A(t, y1) − A(t, y2)‖∗ ≤ Lη(t)λ(t)

α
‖y1 − y2‖∗ for all y1, y2 ∈ Y,

where α is the strong convexity constant of h, and we used Proposition 2.1 to estimate
the Lipschitz constant of Q. This shows that A(t, y) is Lipschitz in y for all t , so
existence and uniqueness of local solutions follows from the Picard–Lindelöf theorem.
Hypothesis (H2) further guarantees that the Lipschitz constant of A(t, ·) can be chosen
uniformly in t , so these solutions can be extended for all t ≥ 0. ��

Let T := {(t, s)|0 ≤ s ≤ t ≤ ∞}. Based on the above, we may define
a nonautonomous semiflow Y : T × Y → Y satisfying (i) Y (s, s, y) = y for
all s ≥ 0, (ii) ∂Y (t,s,y)

∂t = A(t,Y (t, s, y)) for all (t, s, y) ∈ T × Y , and (iii)
Y (t, s,Y (s, r , y)) = Y (t, r , y) for t ≥ s ≥ r ≥ 0. Since the dynamics will usually
be started from an initial condition (0, y) ∈ R+ × Y , we will simplify the notation
by writing φ(t, y) = Y (t, 0, y) for all (t, y) ∈ R+ × Y . The resulting trajectory in
the primal space is denoted by ξ(t, y) = Q(η(t)φ(t, y)). Note that, if λ(t) and η(t)
are constant functions, then the mapping φ(t, y) is the (autonomous) semiflow of the
dynamics (MD).

3.2 Convergence Properties and Performance

Now, to analyze the convergence of (MD), we will consider two “gap functions”
quantifying the distance between the primal trajectory, and the solution set of (MVI):

– In the general case, we will focus on the dual gap function [25]:

g(x) := max
x ′∈X

〈v(x ′), x − x ′〉.

By (H1) and the compactness ofX , it follows that g(x) is continuous, nonnegative
and convex; moreover, we have g(x) = 0 if and only if x is a solution of VI(X , v)

[7, Proposition 3.1].
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– For the saddle-point problem Ex. 2.2, we instead look at the Nikaido–Isoda gap
function [26]:

G(p1, p2) := max
x2∈X 2

U (p1, x2) − min
x1∈X 1

U (x1, p2). (3)

Since U is convex-concave, it is immediate that G(p1, p2) ≥ g(p1, p2), where the
operator involved in the definition of the dual gap function is given by the saddle-
point operator (1). However, it is still true that G(p1, p2) = 0 if and only if the pair
(p1, p2) is a saddle-point. Since both gap functions vanish only at solutions of (MVI),
we will prove trajectory convergence by monitoring the decrease of the relevant gap
over time. This is achieved by introducing the so-called Fenchel coupling [14], an
auxiliary energy function, defined as

F(x, y) := h(x) + h∗(y) − 〈y, x〉 for all x ∈ X , y ∈ Y .

Some key properties of F are summarized in the following proposition:

Proposition 3.2 ([14]) Let h be a distance-generating function on X . Then:

(a) F(x, y) ≥ α
2 ‖Q(y) − x‖2 for all x ∈ X , y ∈ Y .

(b) Viewed as a function of y, F(x, y) is convex, differentiable, and its gradient is
given by

∇y F(x, y) = Q(y) − x .

c) For all x ∈ X and all y, y′ ∈ Y , we have

F(x, y′) ≤ F(x, y) + 〈y′ − y, Q(y) − x〉 + 1

2α
‖y′ − y‖2∗.

In the sequel, if there is no danger of confusion, we will use the more concise notation
x(t) = ξ(t, y) and y(t) = φ(t, y), for the unique solution to (MD) with initial
condition (0, y) ∈ R+ × Y . Consider the averaged trajectory

x̄(t) :=
∫ t
0 λ(s)x(s) ds
∫ t
0 λ(s) ds

= 1

S(t)

∫ t

0
λ(s)x(s) ds, (4)

where S(t) := ∫ t
0 λ(s) ds. We then have the following convergence guarantee:

Proposition 3.3 Suppose that (MD) is initialized at (s, y) = (0, 0), with resulting
trajectories y(t) = φ(t, 0) and x(t) = ξ(t, 0). Then:

g(x̄(t)) ≤ D(h;X )

η(t)S(t)
, (5)

where x̄(t) is the averaged trajectory constructed in (4), and

D(h;X ) := max
x,x ′∈X

{h(x ′) − h(x)} = max h − min h.
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In particular, if (MVI) is associated with a convex-concave saddle-point problem as
in Example 2.2, we have the guarantee:

G(x̄(t)) ≤ D(h1;X 1) + D(h2;X 2)

η(t)S(t)
. (6)

In both cases, whenever limt→∞ η(t)S(t) = ∞, x̄(t) converges to the solution set of
VI(X , v).

Proof Given some p ∈ X , let Hp(t) := 1
η(t) F(p, η(t)y(t)). Then, with Proposi-

tion 3.2, the fundamental theorem of calculus yields

Hp(t) − Hp(0) = −
∫ t

0
λ(s)〈v(x(s)), x(s) − p〉 ds −

∫ t

0

η̇(s)

η(s)2
[h(p) − h(x(s))] ds,

and, after rearranging, we obtain

∫ t

0
λ(s)〈v(x(s)), x(s) − p〉 ds = Hp(0) − Hp(t) −

∫ t

0

η̇(s)

η(s)2
[h(p) − h(x(s))] ds

≤ Hp(0) + D(h;X )

(
1

η(t)
− 1

η(0)

)
. (7)

Now, let xc := argmin{h(x) : x ∈ X } denote the “prox-center” of X . Since η(0) > 0
and y(0) = 0 by assumption, we readily get

Hp(0) = F(p, 0)

η(0)
= h(p) + h∗(0) − 〈0, p〉

η(0)
= h(p) − h(xc)

η(0)
≤ D(h;X )

η(0)
. (8)

From the monotonicity of v, we further deduce that

g(x̄(t)) ≤ 1

S(t)
max
p∈X

∫ t

0
λ(s)〈v(x(s)), x(s) − p〉 ds. (9)

Thus, substituting (8) in (7), maximizing over p ∈ X and plugging the result into (9)
gives (5).

Suppose now that (MVI) is associated to a convex-concave saddle-point problem,
as in Ex. 2.2. In this case, we can replicate the above analysis for each component
xi (t), i = 1, 2, of x(t) to obtain the basic bounds

∫ t

0
λ(s)〈∇x1U (x(s)), x1(s) − p1〉 ds ≤ D(h1;X 1)

η(t)
,

∫ t

0
λ(s)〈−∇x2U (x(s)), x2(s) − p2〉 ds ≤ D(h2;X 2)

η(t)
.
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Using the fact that U is convex-concave, this leads to the value-based bounds

∫ t

0
λ(s)[U (x(s)) −U (p1, x2(s))] ds ≤ D(h1;X 1)

η(t)
,

∫ t

0
λ(s)[U (x1(s), p2) −U (x(s))] ds ≤ D(h2;X 2)

η(t)
.

Summing these inequalities, dividing by S(t), and using Jensen’s inequality gives

U (x̄1(t), p2) −U (p1, x̄2(t)) ≤ D(h1;X 1) + D(h2;X 2)

η(t)S(t)

The bound (6) then follows by taking the supremum over p1 and p2, and using the
definition of the Nikaido– Isoda gap function. ��

The gap-based analysis of Proposition 3.3 can be refined further in the case of
strongly monotone VIs.

Proposition 3.4 Let x∗ denote the (necessarily unique) solution of a γ -strongly mono-
tone VI(X , v). Then, with the same assumptions as in Proposition 3.3, we have

‖x̄(t) − x∗‖2 ≤ D(h;X )

γ

1

η(t)S(t)
. (10)

In particular, x̄(t) converges to x∗ whenever limt→∞ η(t)S(t) = ∞.

Proof By Jensen’s inequality, the strong monotonicity of v and the assumption that x∗
solves VI(X , v), we have:

γ ‖x̄(t) − x∗‖2 ≤ γ
S(t)

∫ t
0 λ(s)‖∗‖x(s) − x∗2 ds (Jensen)

≤ 1
S(t)

∫ t
0 λ(s)〈v(x(s)) − v(x∗), x(s) − x∗〉 ds (γ−monotonicity)

≤ 1
S(t)

∫ t
0 λ(s)〈v(x(s)), x(s) − x∗〉 ds (optimality of x∗)

≤ D(h;X )
η(t)S(t) ,

where the last inequality follows as in the proof of Proposition 3.3. The bound (10) is
then obtained by dividing both sides by γ . ��

The two results above are in the spirit of classical ergodic convergence results for
monotone VIs [13,27,28]. In particular, taking η(t) = √

L/(2α) and λ(t) = 1/(2
√
t)

gives the upper bound g(x̄(t)) ≤ D(h;X )
√
L/(αt), which is of the same order as

the O(1/
√
t) guarantees obtained in the references above. However, the bound (9)

does not have a term which is antagonistic to η(t) or λ(t), so, if (MD) is run with
constant λ and η, we get anO(1/t) bound for g(x̄(t)) (and/or ‖x̄(t) − x∗‖ in the case
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of strongly monotone VIs).7 This suggests an important gap between continuous and
discrete time; for a similar phenomenon in the context of online convex optimization,
see the regret minimization analysis of [29].

We close this section with a (nonergodic) trajectory convergence result for strictly
monotone problems. For any path X(·) : R+ → X , call the limit set

L{X(·)} :=
⋂

t≥0

cl[X([t,∞)].

Proposition 3.5 Let x∗ denote the (necessarily unique) solution of a γ -strongly mono-
tone VI(X , v). Suppose that Hypotheses (H1) and (H2) hold, and the parameters λ

and η of (MD) satisfy

inf t λ(t) > 0 and inf t η(t) > 0.

Then, limt→∞ ξ(t, y) = x∗, for any y ∈ Y .

Proof Let x(t) := ξ(t, y) for t ≥ 0, and assume that x̂ ∈ L{x(·)}, but x̂ �= x∗. Then,
by assumption, there exists an open neighborhood O of x̂ and a positive constant
a > 0 such that

〈v(x), x − x∗〉 ≥ a for all x ∈ O.

Furthermore, since x̂ is an accumulation point of x(t), there exists an increasing
sequence (tk)k∈N such that tk ↑ ∞ and x(tk) → x̂ as k → ∞. Thus, relabeling
indices if necessary, we may assume without loss of generality that x(tk) ∈ O for all
k ∈ N. Now, for all ε > 0, we have

‖x(tk + ε) − x(tk)‖ = ‖Q(Y (tk + ε)) − Q(Y (tk))‖
≤ 1

α
‖Y (tk + ε) − Y (tk)‖∗

≤ 1

α

∫ tk+ε

tk
λ(s)‖v(x(s))‖∗ ds

≤ 1

α
max
x∈X

‖v(x)‖∗
∫ tk+ε

tk
λ(s) ds

≤ ελ̄

α
max
x∈X

‖v(x)‖∗,

where λ̄ := λ(0) denotes the maximum value of λ(t). As this bound does not depend
on k, we can choose ε > 0 small enough so that x(tk + s) ∈ O for all s ∈ [0, ε] and
all k ∈ N. Thus, letting H(t) := η(t)−1F(x∗, η(t)y(t)), and using (7), we obtain

H(tn) − H(t0) = −
n∑

k=1

∫ tk

tk−1

λ(s)〈v(x(s)), x(s) − x∗〉 ds + D(h;X )

(
1

η(tn)
− 1

η(t0)

)

7 In fact, even faster convergence can be guaranteed if (MD) is run with increasing λ(t). In that case
however, well posedness is not immediately guaranteed, so we do not consider increasing λ here.
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≤ −aλ

n∑

k=1

(tk − tk−1) + D(h;X )

(
1

η(tn)
− 1

η(t0)

)

= −aελn + D(h;X )

(
1

η(tn)
− 1

η(t0)

)
,

where we have set λ := inf t λ(t) > 0. Given that inf t η(t) > 0, the above implies that
limn→∞ H(tn) = −∞, contradicting the fact that F(x∗, y) ≥ 0 for all y ∈ Y . This
implies that x̂ = x∗; by compactness, L{x(·)} �= ∅, so our claim follows. ��

4 Analysis of the Stochastic Dynamics

4.1 Global Existence

In this section, we turn to the stochastic system (SMD). As in the noise-free analysis
of the previous section, we begin with a well-posedness result, stated for simplicity
for deterministic initial conditions.

Proposition 4.1 Fix an initial condition (s, y) ∈ R+ × Y . Then, under Hypotheses
(H1)–(H3), and up to a P-null set, the stochastic dynamics (SMD) admit a unique
strong solution (Y (t))t≥s such that Y (s) = y.

Proof Let B(t, y) := −λ(t)σ (Q(η(t)y), t) so (SMD) can be written as

dY (t) = A(t,Y (t)) dt + B(t,Y (t)) dW (t), (11)

with A(t, y) defined as in the proof of Proposition 3.1. By (H2) and (H3), B(t, y)
inherits the boundedness and regularity properties of σ ; in particular, Hypotheses (H2)
and (H3), together with Proposition 2.1c), imply that B(t, y) is uniformly Lipschitz
in y. Under Hypotheses (H1) and (H3), A(t, y) is also uniformly Lipschitz in y (cf.
the proof of Proposition 3.1). Our claim then follows by standard results in the well
posedness of stochastic differential equations [30, Theorem 3.4]. ��

We denote by Y (t, s, y) the unique strong solution of the Itô stochastic differential
equation (11), with initial condition (s, y) ∈ R+ ×Y . As in the deterministic case, we
are mostly interested in the process starting from the initial condition (0, y), in which
case we abuse the notation by writing Y (t, y) = Y (t, 0, y). The corresponding primal
trajectories are generated by applying the mirror map Q to the dual trajectories, so
X(t, y) = Q(η(t)Y (t, y)), for all (t, y) ∈ R+ ×Y . If there is no danger of confusion,
we will consistently suppress the dependence on the initial position y ∈ Y in both
random processes. Clearly, if λ(t) and η(t) are constant function, the solutions of
(SMD) are time-autonomous.

We now give a brief overview of the results we obtain in this section. First, in
Sect. 4.2, we use the theory of asymptotic pseudo-trajectories (APTs), developed by
Benaïm and Hirsch [31], to establish almost sure trajectory convergence of (SMD) to
the solution of VI(X , v), provided that v is strictly monotone and the oracle noise in
(SMD) is vanishing at a rather slow, logarithmic rate. This strong convergence result
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relies heavily on the shadowing property of the dual trajectory, and its deterministic
counterpart φ(t, y) (see Sect. 4.2). On the other hand, if the driving noise process is
persistent, we cannot expect the primal trajectory X(t) to converge—some averaging
has to be done in this case. Thus, following a long tradition on ergodic convergence for
mirror descent, we investigate in Sect. 4.3 the asymptotics of a weighted time-average
of X(t). Finally, we complement our ergodic convergence results with a large devia-
tion principle showing that the ergodic average of X(t) is exponentially concentrated
around its mean (Sect. 4.4).

4.2 The Small Noise Limit

Webeginwith the case, where the oracle noise in (SMD) satisfies the asymptotic decay
condition ‖σ(x, t)‖ ≤ β(t) for some nonincreasing function β : R+ → R+ such that

(H4)
∫ ∞

0
exp

(
− c

β2(t)

)
dt < ∞ for all c > 0.

For instance, this condition is trivially satisfied if σ(x, t) vanishes at a logarithmic
rate, i.e., β(t) = o(1/

√
log(t)). For technical reasons, we will also need the additional

“Fenchel reciprocity” condition

(H5) F(p, yn) → 0 whenever Q(yn) → p.

Under the decay rate requirement (H4), and working for simplicity with constant
η(t) = λ(t) = 1, the results of [31, Proposition 4.1] imply that any strong solution
Y (t) of (SMD) is an (APT) of the deterministic dynamics (MD) in the following sense:

Definition 4.1 Assume that η(t) = λ(t) = 1, for all t ≥ 0. Let φ : R+ × Y → Y ,
(t, y) �→ φ(t, y), denote the semiflow induced by (MD) on Y . A continuous curve
Y : R+ → Y is said to be an asymptotic pseudo-trajectory (APT) of (MD), if

lim
t→∞ sup

0≤s≤T
‖Y (t + s) − φ(s,Y (t))‖∗ = 0 for all T > 0. (APT)

In words, Definition 4.1 states that an APT of (MD) tracks the solutions of (MD) to
arbitrary accuracy over arbitrarily long time windows. Thanks to this property, we are
able to establish the following global convergence theorem for (SMD) with vanishing
oracle noise:

Theorem 4.1 Assume that v is strictly monotone, and let x∗ denote the (necessarily
unique) solution of VI(X , v). If Hypotheses (H1)–(H5) hold, and (SMD) is run with
λ(t) = η(t) = 1, we have

P

(
lim
t→∞‖X(t, y) − x∗‖ = 0

)
= 1 ∀y ∈ Y .
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The proof of Theorem 4.1 requires some auxiliary results, which we provide below.
We begin with a strong recurrence result for neighborhoods of the (unique) solution
x∗ of VI(X , v) under (MD):

Lemma 4.1 With assumptions as in Theorem 4.1, let O be an open neighborhood of
x∗ in X and let ξ(t, y) = Q(η(t)φ(t, y)). Define the stopping time

tO(y) := inf{t ≥ 0 : ξ(t, y) ∈ O}.

Then, tO(y) < ∞ for all y ∈ Y .

Proof Fix the initialization y ∈ Y of (MD), and let y(t) := φ(t, y), x(t) :=
Q(φ(t, y)) denote the induced solutions of (MD), and let H(t) := F(x∗, y(t)). Then,
by Proposition 3.2, and the chain rule applied to (MD), we get

H(t) = H(0) −
∫ t

0
〈v(x(s)), x(s) − x∗〉 ds.

Since v is strictly monotone and x∗ solves VI(X , v), there exists some a ≡ aO > 0
such that

〈v(x), x − x∗〉 ≥ a for all x ∈ X \ O.

Hence, if tO(y) = ∞, we would have

H(t) ≤ H(0) − at for allt ≥ 0,

implying in turn that limt→∞ H(t) = −∞. This contradicts the fact that H(t) ≥ 0,
so we conclude that tO(y) < ∞. ��

Next, we extend this result to the stochastic regime:

Lemma 4.2 With assumptions as in Theorem 4.1, let O be an open neighborhood of
x∗ in X and define the stopping time

τO(y) := inf{t ≥ 0 : X(t, y) ∈ O},

Then, τO(y) is almost surely finite for all y ∈ Y .

Proof Suppose there exists some initial condition y0 ∈ Y , such thatP (τO(y0) = ∞) >

0. Then, there exists a measurable set Ω0 ⊆ Ω , with P (Ω0) > 0, and such that
τO(ω, y0) = ∞ for all ω ∈ Ω0. Now, define H(t) := F(x∗,Y (t, y0)) and set
X(t) = X(t, y0). By the weak Itô lemma (33) proven in Sect. 5, we get

H(t) − H(0) ≤ −
∫ t

0
〈v(X(s)), X(s) − x∗〉 ds + 1

2α

∫ t

0
‖σ(X(s), s)‖2 ds + Ix∗(t)
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where Ix∗(t) := ∫ t
0 〈X(s) − x∗, σ (X(s)) · dW (s)〉 is a continuous local martingale.

Since v is strictly monotone, the same reasoning as in the proof of Lemma 4.1 yields

H(t) ≤ H(0) − at + Ix∗(t) + σ 2∗
2α

for some a ≡ aO > 0 and for all t ∈ [0, τO(y)). Furthermore, by an argument based
on the law of the iterated logarithm and the Dambis–Dubins–Schwarz time-change
theorem for martingales as in the proof of Theorem 4.2, we get

Ix∗(t)/t → 0 almost surely as t → ∞.

Combining this with the estimate for H(t) above, we get limt→∞ H(t) = −∞ for
P-almost all ω ∈ Ω0. This contradicts the fact that H(t) ≥ 0, and our claim follows.

��
The above result shows that the primal process X(t) hits any neighborhood of x∗

in finite time (a.s.). Thanks to this important recurrence property, we are finally in a
position to prove Theorem 4.1:

Proof of Theorem 4.1 Fix some ε > 0, and let Nε := {x = Q(y) : F(x∗, y) < ε}. Let
y ∈ Y be arbitrary. We first claim, that there exists a deterministic time T ≡ T (ε)

such that F(x∗, φ(T , y)) ≤ max{ε, F(x∗, y) + ε}. Indeed, consider the hitting time

tε(y) := inf{t ≥ 0 : x(t) ∈ Nε},

where x(t) := Q(φ(t, y)). By Hypothesis (H5), Nε contains a neighborhood of x∗;
hence, by Lemma 4.1, we have tε(y) < ∞. Moreover, observe that

d

dt
F(x∗, φ(t, y)) = −〈v(x(t)), x(t) − x∗〉 ≤ 0 for all y ∈ Y . (12)

The strict monotonicity of v and the fact that x∗ solves (MVI) imply that there exists a
positive constant κ ≡ κε > 0 such that 〈v(x), x − x∗〉 ≥ κ for all x ∈ X \ Nε. Hence,
combining this with (12), we readily see that

F(x∗, φ(t, y)) − F(x∗, y) ≤ −κt for all t ∈ [0, tε(y)).

Now, set T = ε/κ . If T < tε(y), we immediately conclude that

F(x∗, φ(T , y)) − F(x∗, y) ≤ −ε.

Otherwise, if T ≥ tε(y), we again use the descent property (12) to get

F(x∗, φ(T , y)) ≤ F(x∗, φ(tε(y), y)) ≤ ε.

In both cases we have F(x∗, φ(T , y)) ≤ max{ε, F(x∗, y) − ε}, as claimed.
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To proceed, pick δ ≡ δε > 0 such that

δε diam(X ) + δ2ε

2α
< ε, (13)

where diam(X ) := max{‖x ′ − x‖2 : x, x ′ ∈ X } denotes the Euclidean diameter ofX .
By Proposition 4.1 of [31], the strong solution Y of (11) (viewed as a stochastic flow)
is an APT of the deterministic semiflow φ with probability 1. Hence, we can choose
an (a.s.) finite random time θε such that sups∈[0,T ]‖Y (t + s) − φ(s,Y (t))‖∗ ≤ δε for
all t ≥ θε. Combining this with item (c) of Proposition 3.2, we then get

F(x∗,Y (t + s, y)) ≤ F(x∗, φ(s,Y (t, y)))

+ 〈Y (t + s, y) − φ(s,Y (t, y)), Q(φ(s,Y (t, y))) − x∗〉
+ 1

2α
‖Y (t + s, y) − φ(s,Y (t, y))‖2∗

≤ F(x∗, φ(s,Y (t, y))) + δε diam(X ) + δ2ε

2α
≤ F(x∗, φ(s,Y (t, y))) + ε,

where the last inequality follows from the estimate (13).
Now, choose a random time T0 ≥ max{θε(y), tε(y)} and T = ε/κ as above.

Then, by definition, we have F(x∗,Y (T0, y)) ≤ 2ε with probability 1. Hence, for all
s ∈ [0, T ], we get

F(x∗,Y (T0 + s, y)) ≤ F(x∗, φ(s,Y (T0, y))) + ε ≤ F(x∗,Y (T0, y)) + ε ≤ 3ε.

Since F(x∗, φ(T ,Y (T0, y))) ≤ max{ε, F(x∗,Y (T0, y)) − ε} ≤ ε, we also get

F(x∗,Y (T0 + T + s, y)) ≤ F(x∗, φ(s,Y (T0 + T , y))) + ε

≤ F(x∗,Y (T0 + T , y)) + ε

≤ 3ε,

and hence
F(x∗,Y (T0 + s, y)) ≤ 3ε for all s ∈ [T , 2T ].

Using this as the basis for an induction argument, we readily get

F(x∗,Y (T0 + s, y)) ≤ 3ε for all s ∈ [nT , (n + 1)T ],

with probability 1. Since ε was arbitrary, we obtain F(x∗,Y (t, y)) → 0, implying in
turn that X(t) → x∗ (a.s.) by Proposition 3.2. ��

123



Journal of Optimization Theory and Applications (2018) 179:838–867 855

4.3 Ergodic Convergence

We now proceed with an ergodic convergence result, in the spirit of Proposition 3.3.
The results presented in this section are derived under the assumption that (SMD)
is started with the initial conditions (s, y) = (0, 0). This is only done to make the
presentation clearer; see Remark 4.1.

Set S(t) := ∫ t
0 λ(s) ds, L(t) :=

√∫ t
0 λ2(s) ds, and let

X̄(t) := 1

S(t)

∫ t

0
λ(s)X(s) ds,

denote the “ergodic average” of X(t) = X(t, 0, 0).

Theorem 4.2 Under Hypotheses (H1)–(H3), we have:

g(X̄(t)) = O
(

1

η(t)S(t)

)
+ O

(∫ t
0 λ2(s)η(s) ds

S(t)

)

+ O
(
L(t)

√
log log L(t)

S(t)

)

,

(14)
with probability 1. In particular, X̄(t) converges (a.s.) to the solution set of VI(X , v)

provided that a) limt→∞ η(t)S(t) = ∞; and b) limt→∞ η(t)λ(t) = 0.

Before discussing the proof of Theorem 4.2, it is worth noting the interplay between
the two variable weight parameters, λ(t) and η(t). In particular, if (SMD) is run with
weight sequences of the form 1/tq for some q > 0, we obtain:

Corollary 4.1 Suppose that (SMD) is run with λ(t) = (1+ t)−a and η(t) = (1+ t)−b

for some a, b ∈ [0, 1]. Then, with assumptions as in Theorem 4.2, we have:

g(X̄(t)) = Õ
(
ta+b−1

)
+ Õ

(
t−a−b

)
+ Õ

(
t−1/2

)
. (15)

In the above, the Õ(·) notation signifies “O(·) up to logarithmic factors”.8 Up to
such factors, (15) is optimized when a+b = 1/2; if these factors are to be considered,
any choice with a+b = 1/2 and b > 0 gives the same rate of convergence, indicating
that the role of the post-multiplication factor η(t) is crucial to finetune the convergence
rate of (SMD). We find this observation particularly appealing, as it is reminiscent of
Nesterov’s remark that “running the discrete-time algorithm (2) with the best step-size
strategy λt and fixed η […] gives the same (infinite) constant as the corresponding
strategy for fixed λ and variable ηt” [13, p. 224].

The proof of Theorem 4.2 relies crucially on the following lemma, which provides
an explicit estimate for the decay rate of the employed gap functions.

Lemma 4.3 If (SMD) is initialized at (0, 0), and Hypotheses (H1)–(H3) hold, then:

g(X̄(t)) ≤ D(h;X )

η(t)S(t)
+ σ 2∗

2α

∫ t
0 λ2(s)η(s) ds

S(t)
+ I (t)

S(t)
(16)

8 More precisely, we write f (x) = Õ(g(x)) when f (x) = O(g(x) logk g(x)) for some k > 0.
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where I (t) := supp∈X Ip(t) and

Ip(t) :=
∫ t

0
λ(s)〈p − X(s), σ (X(s), s) · dW (s)〉. (17)

If (MVI) is associated with a convex-concave saddle-point problem as in Example 2.2,
we have

G(X̄1(t), X̄2(t)) ≤ Dsp

η(t)S(t)
+ σ 2∗

2αsp

∫ t
0 λ2(s)η(s) ds

S(t)
+ J (t)

S(t)
,

where we have set Dsp := D(h1;X 1) + D(h2;X 2), 1/αsp := 1/α1 + 1/α2, and
J (t) := supp1∈X 1,p2∈X 2{Ip1(t) + Ip2(t)}.
Remark 4.1 The initialization assumption in Lemma 4.3 is not crucial: We only make
it to simplify the explicit expression (16). If (SMD) is initialized at a different point,
the proof of Lemma 4.3 shows that the bound (16) is correct only up to O(1/S(t)).
Since all terms in (16) are no faster than O(1/S(t)), initialization plays no role in the
proof of Theorem 4.2 below.

Proof of Lemma 4.3 Fix some p ∈ X , and let Hp(t) := η(t)−1F(p, η(t)Y (t)), as in
the proof of Proposition 3.3. Then, by the weak Itô formula (33) in Sect. 5, we have

Hp(t) ≤ Hp(0) −
∫ t

0

η̇(s)

η(s)2
Hp(s) ds + 1

η(t)

∫ t

0
〈X(s) − p, η̇(s)Y (s)〉 ds

+
∫ t

0
〈X(s) − p, dY (s)〉 + 1

2α

∫ t

0
λ2(s)η(s)‖σ(X(s), s)‖2 ds. (18)

To proceed, let

Rp(t) :=
∫ t

0
λ(s)〈v(X(s)), X(s) − p〉 ds, (19)

so
∫ t

0
〈X(s) − p, dY (s)〉 = −

∫ t

0
λ(s)〈X(s) − p, v(X(s)) ds + dM(s)〉

= −Rp(t) + Ip(t),

with Ip(t) given by (17). Then, rearranging and bounding the second term of (18) as
in the proof of Proposition 3.3, we obtain

Rp(t) ≤ Hp(0) − Hp(t) + D(h,X )

(
1

η(t)
− 1

η(0)

)

+ Ip(t) + 1

2α

∫ t

0
λ2(s)η(s)‖σ(X(s), s)‖2 ds

≤ Hp(0) + D(h;X )

(
1

η(t)
− 1

η(0)

)
+ Ip(t) + σ 2∗

2α

∫ t

0
λ2(s)η(s) ds.
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With (SMD) initialized at y = 0, Eq. (8) gives Hp(0) ≤ D(h;X )/η(0). Thus, by
Jensen’s inequality and the monotonicity of v, we get

〈v(p), X̄(t) − p〉 = 1

S(t)

∫ t

0
λ(s)〈v(p), X(s) − p〉 ds

≤ 1

S(t)

∫ t

0
λ(s)〈v(X(s)), X(s) − p〉 ds = Rp(t)

S(t)

≤ D(h;X )

η(t)S(t)
+ σ 2∗

2α

∫ t
0 λ2(s)η(s) ds

S(t)
+ Ip(t)

S(t)
. (20)

The bound (16) then follows by noting that g(X̄(t)) = maxp∈X 〈v(p), X̄(t) − p〉.
Now, assume that (MVI) is associated to a convex-concave saddle-point problem

as in Ex. 2.2. As in the proof of Proposition 3.3, we first replicate the analysis above
for each component of the problem, and we then sum the two components to get an
overall bound for the Nikaido–Isoda gap function G. Specifically, applying (20) to
(1), we readily get

∫ t

0
λ(s)〈vi (X(s)), Xi (s)− pi 〉 ≤ D(hi ;X i )

η(t)S(t)
+ σ 2∗
2αi

∫ t
0 λ2(s)η(s) ds

S(t)
+ Ipi (t)

S(t)
, (21)

where i ∈ {1, 2}. Moreover, Jensen’s inequality yields

U (X̄1(t), p2) −U (p1, X̄2(t)) ≤ 1

S(t)

∫ t

0
λ(s)

[
U (X1(s), p2) −U (p1, X2(s))

]
ds

≤ 1

S(t)

∫ t

0
λ(s)〈∇x1U (X(s)), X1(s) − p1〉 ds

− 1

S(t)

∫ t

0
λ(s)〈∇x2U (X(s)), X2(s) − p2〉 ds

≤ Dsp

η(t)S(t)
+ σ 2∗

2αsp

∫ t
0 λ2(s)η(s) ds

S(t)
+ Ip1(t) + Ip2 (t)

S(t)
,

with the last inequality following from (21). Our claim then follows by maximizing
over (p1, p2) and recalling the definition (3) of the Nikaido–Isoda gap function. ��
Clearly, the crucial unknown in the bound (16) is the stochastic term I (t). To obtain
convergence of X̄(t) to the solution set of VI(X , v), the term I (t) must grow slower
than S(t). As we show now, this is indeed the case:

Proof of Theorem 4.2 By Lemma 4.3 and Remark 4.1, it suffices to show that the term
I (t) grows as O(L(t)

√
log log L(t)) with probability 1. To do so, let κp := [

Ip
]

denote the quadratic variation of Ip.9 Then, the rules of stochastic calculus yield

9 Recall here that the quadratic variation of a stochastic process M(t) is the continuous increasing and
progressively measurable process, defined as [M(t)] = lim|Π |→0

∑
1≤ j≤k (M(t j ) − M(t j−1))

2, where
the limit is taken over all partitions Π = {t0 = 0 < t1 < · · · < tk = t} of [0, t] with mesh |Π | ≡
max j |t j − t j−1| → 0 [32].
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dκp(t) = d Ip(t) · d Ip(t)

= λ2(t)
n∑

i, j=1

d∑

k=1

(Xi (t) − pi )(X j (t) − p j )σik(X(t), t)σ jk(X(t), t) dt

≤ ‖X(t) − p‖22σ 2∗ λ2(t)

≤ diam(X )2σ 2∗ λ2(t),

where diam(X ) := max{‖x ′ − x‖2 : x, x ′ ∈ X } denotes the Euclidean diameter of
X . Hence, for all t ≥ 0, we get the quadratic variation bound

κp(t) ≤ diam(X )2σ 2∗
∫ t

0
λ2(s) ds = O(L2(t)). (22)

Now, let κp(∞) := limt→∞ κp(t) ∈ [0,∞] and set

τp(s) :=
{
inf{t ≥ 0 : κp(t) > s}, if s ≤ κp(∞),

∞, otherwise.

The process τp(s) is finite, nonnegative, nondecreasing and right-continuous on
[0, κp(∞)); moreover, it is easy to check that κp(τp(s)) = s ∧ κp(∞) and
τp(κp(t)) = t [32, Problem 3.4.5]. Therefore, by the Dambis–Dubins–Schwarz time-
change theorem for martingales [32, Theorem. 3.4.6 and Problem. 3.4.7], there exists
a standard, one-dimensional Wiener process (Bp(t))t≥0 adapted to a modified filtra-
tion F̃s = Fτp(s) (possibly defined on an extended probability space), and such that
Bp(κp(t)) = Ip(t) for all t ≥ 0 (except possibly on a P-null set). Hence, for all t > 0,
we have

Ip(t)

S(t)
= Bp(κp(t))

S(t)
= Bp(κp(t))√

κp(t) log log κp(t)
×

√
κp(t) log log κp(t)

S(t)
.

By the law of the iterated logarithm [32], the first factor above is bounded almost
surely; as for the second, (22) gives

√
κp(t) log log κp(t) = O(L(t)

√
log log L(t)).

Thus, combining all of the above, we get

I (t)

S(t)
= maxp∈X Ip(t)

S(t)
= O

(
L(t)

√
log log L(t)

S(t)

)

,

so our claim follows from (16).
To complete our proof, note first that the condition limt→∞ η(t)S(t) = ∞ implies

that limt→∞ S(t) = ∞ (given that η(t) is nonincreasing). Thus, by de l’Hôpital’s rule
and the assumption limt→∞ λ(t)η(t) = 0, we also get S(t)−1

∫ t
0 λ2(s)η(s) ds = 0.

Finally, for the last term of (14), consider the following two cases:

1. If limt→∞ L(t) < ∞, we trivially have limt→∞ L(t)
√
log log L(t)

/
S(t) = 0 as

well.
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2. Otherwise, if limt→∞ L(t) = ∞, de l’Hôpital’s rule readily yields

lim
t→∞

L2(t)

S2(t)
= lim

t→∞
λ2(t)

2λ(t)S(t)
= 1

2
lim
t→∞

λ(t)

S(t)
= 0,

by the boundedness of λ(t). Another application of de l’Hôpital’s rule gives

lim
t→∞

L3(t)

S2(t)
= lim

t→∞
(L2(t))3/2

S2(t)
= 3

4
lim
t→∞

λ2(t)L(t)

λ(t)S(t)
= 3

4
lim
t→∞

λ(t)L(t)

S(t)
= 0,

so

lim sup
t→∞

L(t)
√
log log L(t)

S(t)
≤ lim sup

t→∞

√
L3(t)

S2(t)
= 0.

The above shows that, under the stated assumptions, the RHS of (14) converges to
0 almost surely, implying in turn that X̄(t) converges to the solution set of VI(X , v)

with probability 1. ��

4.4 Large Deviations

In this section, we study the concentration properties of (SMD) in terms of the dual
gap function. As in the previous section, we will assume that (SMD) is issued from
the initial condition (s, y) = (0, 0).

First, recall that for every p ∈ X we have the upper bound

Rp(t) ≤ D(h;X )

η(t)
+ σ 2∗

2α

∫ t

0
λ2(s)η(s) ds + Ip(t).

with Rp(t) and Ip(t) defined as in (19) and (17), respectively. Since Ip(t) is a contin-
uous martingale starting at 0, we have E[Ip(t)] = 0, implying in turn that

E[〈v(p), X̄(t) − p〉] ≤ D(h;X )

S(t)η(t)
+ σ 2∗

2αS(t)

∫ t

0
λ2(s)η(s) ds = K (t)

2S(t)
,

where

K (t) := 2D(h;X )

η(t)
+ σ 2∗

α

∫ t

0
λ2(s)η(s) ds. (23)

Markov’s inequality therefore implies that

P
(〈v(p), X̄(t) − p〉 ≥ δ

) ≤ 1

δ

K (t)

2S(t)
for all δ > 0. (24)

The bound (24) provides a first estimate of the probability of observing a large gap
from the solution of (MVI), but because it relies only on Markov’s inequality, it is
rather crude. To refine it, we provide below a “large deviations” bound that shows that
the ergodic gap process g(X̄(t)) is exponentially concentrated around its mean value:
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Theorem 4.3 Suppose (H1)–(H3) hold, and that (SMD) is started from the initial
condition (s, y) = (0, 0). Then, for all δ > 0 and all t > 0, we have

P
(
g(X̄(t)) ≥ Q0(t) + δQ1(t)

) ≤ exp(−δ2/4), (25)

where

Q0(t) := K (t)

S(t)
, (26a)

and

Q1(t) :=
√

κσ∗ diam(X )L(t)

S(t)
, (26b)

with κ > 0 a positive constant depending only on X and ‖·‖.

The concentration bound (25) can also be formulated as follows:

Corollary 4.2 With notation and assumptions as in Theorem 4.3, we have

g(X̄(t)) ≤ Q0(t) + 2Q1(t)
√
log(1/δ)

= O
(

1

η(t)S(t)

)
+ O

(∫ t
0 λ2(s)η(s) ds

S(t)

)

+ O
(
L(t)

√
log(1/δ)

S(t)

)

,

with probability at least 1 − δ. In particular, if (SMD) is run with parameters λ(t) =
(1 + t)−a and η(t) = (1 + t)−b for some a, b ∈ [0, 1], we have

g(X̄(t)) = O
(
ta+b−1

)
+ O

(
t−a−b

)
+ O

(
t−1/2

)
,

with arbitrarily high probability.

To prove Theorem 4.3, define first the auxiliary processes

Z(t) :=
∫ t

0
λ(s)σ (X(s), s) dW (s) and P(t) := Q(η(t)Z(t)).

We then have:

Lemma 4.4 For all p ∈ X we have

∫ t

0
λ(s)〈p − P(s), σ (X(s), s) dW (s)〉 ≤ D(h;X )

η(t)
+ σ 2∗

2α

∫ t

0
λ2(s)η(s) ds. (27)
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Proof The proof follows the same lines as Lemma 4.3. Specifically, given a reference
point p ∈ X , define the process H̃p(t) := 1

η(t) F(p, η(t)Z(t)). Then, by the weak Itô
formula (33) in Sect. 5, we have

H̃p(t) ≤ H̃p(0)

−
∫ t

0

η̇(s)

η(s)2
H̃p(s) ds + 1

η(t)

∫ t

0
〈ξ(s) − p, η̇(s)Z(s)〉 ds

+
∫ t

0
〈P(s) − p, dZ(s)〉 + 1

2α

∫ t

0
λ2(s)η(s)‖σ(X(s), s)‖2 ds

≤ −
∫ t

0

η̇(s)

η(s)
[h(p) − h(P(s))] ds

+
∫ t

0
λ(s)〈P(s) − p, σ (X(s), s) dW (s)〉 + σ 2∗

2α

∫ t

0
λ2(s)η(s) ds.

We thus get

∫ t

0
λ(s)〈p − P(s), σ (X(s), s) dW (s)〉 ≤ H̃p(0) + D(h;X )

(
1

η(t)
− 1

η(0)

)

+
∫ t

0

λ2(s)η(s)

2α
σ 2∗ ds

≤ D(h;X )

η(t)
+

∫ t

0

λ2(s)η(s)

2α
σ 2∗ ds,

as claimed. ��
We are now ready to establish our large deviations principle for (SMD):

Proof of Theorem 4.3 For p ∈ X and t > 0 fixed, we have

Rp(t) ≤ D(h;X )

η(t)
+ σ 2∗

2α

∫ t

0
λ2(s)η(s) ds +

∫ t

0
λ(s)〈p − X(s), σ (X(s), s) dW (s)〉

= D(h;X )

η(t)
+ σ 2∗

2α

∫ t

0
λ2(s)η(s) ds +

∫ t

0
λ(s)〈p − P(s), σ (X(s), s) dW (s)〉

+
∫ t

0
λ(s)〈P(s) − X(s), σ (X(s), s) dW (s)〉

≤ 2D(h;X )

η(t)
+ σ 2∗

α

∫ t

0
λ2(s)η(s) ds +

∫ t

0
〈P(s) − X(s), σ (X(s), s) dW (s)〉,

where we used (27) to obtain the last inequality. To proceed, let

Δ(t) :=
∫ t

0
λ(s)〈P(s) − X(s), σ (X(s), s) dW (s)〉.
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The process Δ(t) is a continuous martingale starting at 0 which is almost surely
bounded in L2, thus providing an upper bound for Rp(t) which is independent of the
reference point p ∈ X . Indeed, recalling the definition (23) of K (t), we see that

Rp(t) ≤ K (t) + Δ(t),

so

g(X̄(t)) ≤ K (t) + Δ(t)

S(t)
for all t > 0.

In turn, this implies that for all ε, t > 0,

P
(
g(X̄(t)) ≥ ε

) ≤ P (Δ(t) ≥ εS(t) − K (t)) for all ε, t > 0.

To prove the theorem, we are left to bound the right-hand side of the above expres-
sion. To that end, letting ρ(t) := [Δ(t),Δ(t)] denote the quadratic variation of Δ(t),
the Cauchy–Schwarz inequality readily gives

E[exp(θΔ(t))] = E[exp(θΔ(t) − bρ(t)) exp(bρ(t))]
≤ √

E[exp(2θΔ(t) − 2bρ(t))]√E[exp(2bρ(t))].

Setting b = θ2, the expressions inside the first expected value is just the stochastic
exponential of the process 2θΔ(t). Moreover, a straightforward calculation shows that

ρ(t) =
∫ t

0
λ2(s)‖σ(X(s), s) · (P(s) − X(s))‖22 ds

≤ κ

∫ t

0
λ2(s)‖σ(X(s), s)‖2‖P(s) − X(s)‖2 ds

≤ κσ 2∗ diam(X )2L2(t),

where κ > 0 is a universal constant accounting for the equivalence of the Euclidean
norm ‖·‖2 and the primal norm ‖·‖ on X . The above implies that ρ(t) is bounded
over every compact interval, showing that Novikov’s condition is satisfied (see, e.g.,
[32]). We conclude that the process exp(2θΔ(t) − 2θ2ρ(t)) is a true martingale with
expected value 1. Hence, letting ϕ(t) := κσ 2∗ diam(X )2L2(t), we get

E[exp(θΔ(t))] ≤
√

E[exp(2θ2ρ(t)] ≤ exp(θ2ϕ(t)). (28)

Combining all of the above, we see that for all a > 0

P (Δ(t) ≥ a) = P (exp(θΔ(t)) ≥ exp(θa))

≤ exp(−aθ)E[exp(θΔ(t))] (Markov inequality)
= exp(−aθ + θ2ϕ(t)) for all a > 0,
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with the last line following from (28). Minimizing the above with respect to θ then
gives

P (Δ(t) ≥ a) ≤ exp

(
− a2

4ϕ(t)

)
.

Hence, by unrolling Eqs. (26a) and (26b), we finally obtain the bound

P
(
g(X̄(t)) ≥ Q0(t) + δQ1(t)

) ≤ P (Δ(t) ≥ Q0(t)S(t) + δQ1(t)S(t) − K (t))

≤ P

(
Δ(t) ≥ δ

√
ϕ(t)

)

≤ exp(−δ2/4),

for all δ > 0, as claimed. ��

5 Conclusions

This paper examined a continuous-time dynamical system for solving monotone vari-
ational inequality problems with random inputs. The key element of our analysis is the
identification of a energy-type function, which allows us to prove ergodic convergence
of generated trajectories in the deterministic as well as in the stochastic case. Future
research should extend the present work in the following dimensions. First, it is not
clear yet how the continuous-time method will help us in the derivation of a consistent
numerical scheme. A naive Euler discretization might potentially lead to a loss in
speed of convergence (see [2]). Second, it is of great interest to relax the monotonicity
assumption we made on the involved operator. We are currently investigating these
extensions. Third, it is of interest to consider different noise models as well. In partic-
ular, it would be interesting to know how the results derived in this paper change when
the stochastic perturbation comes from a jump Markov process, or more generally, a
Lévy process. This extension would likely need new techniques, and we regard this
as an important contribution for future work.
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Appendix A: Results from Convex Analysis

In this appendix, we collect some simple facts on the analysis of convex differentiable
functions with Lipschitz continuous gradients. Denote byC1,1

L (Rn) the totality of such
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functions, with L being the Lipschitz constant of the gradient mapping ∇ψ :

‖ψ(y + δ) − ψ(y)‖∗ ≤ L‖δ‖∗ ∀y, δ ∈ R
n .

Proposition A.1 Let ψ ∈ C1,1
L (Rn) be convex. Then, ψ is almost everywhere twice

differentiable with Hessian ∇2ψ and

0 ≤ ∇2ψ(y) ≤ L Id . Leb − a.e..

Proof For every ψ ∈ C1,1
L (Rn), the well-known descent lemma ([33], Theorem 2.1.5)

implies that

ψ(y + δ) ≤ ψ(y) + 〈∇ψ(y), δ〉 + L

2
‖δ‖2∗ ∀y, δ ∈ R

n . (29)

By Alexandrov’s theorem (see, e.g., [34], Lemma 6.6), it follows thatψ is Leb-almost
everywhere twice differentiable. Hence, there exists a measurable set Λ such that
Leb(Λ) = 0, and for all ȳ ∈ R

n \ Λ there exists (p, P) ∈ R
n × R

n×n
sym such that

ψ(ȳ + y) = ψ(ȳ) + 〈p, y〉 + 1

2
〈Py, y〉 + θ(ȳ, y), (30)

where lim‖y‖∗→0
θ(ȳ,y)
‖y‖2∗ = 0.We have p = ∇ψ(ȳ) and identify P with the a.e. defined

Hessian ∇2ψ(ȳ). On the other hand, convexity implies

ψ(ȳ + y) ≥ ψ(ȳ) + 〈∇ψ(ȳ), y〉 ∀ȳ, y ∈ R
n . (31)

Choosing y = te, where e ∈ R
n is an arbitrary ‖·‖∗-unit vector and t > 0, it follows

− 1

t2
θ(ȳ, te)

(31)≤ 1

t2
[ψ(ȳ + te) − ψ(ȳ) − 〈∇ψ(ȳ), te〉] − 1

t2
θ(ȳ, te)

(30)= 1

2
〈∇2ψ(ȳ)e, e〉

(29)≤ L

2
− 1

t2
θ(ȳ, te).

Letting t → 0+ we get

0 ≤ 1

2
〈∇2ψ(ȳ)e, e〉 ≤ L

2
∀ȳ ∈ R

n \ Λ, (32)

which implies ∇2ψ(ȳ) ≤ L Id. ��
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Appendix B: Results from Stochastic Analysis

The following result is the generalized Itô formula, used in the main text.

Proposition B.1 Let Y be an Itô process in R
n of the form

Yt = Y0 +
∫ t

0
Fs ds +

∫ t

0
Gs dW (s).

Let ψ ∈ C1,1
L (Rn) be convex. Then, for all t ≥ 0, we have

ψ(Yt ) ≤ ψ(Y0) +
∫ t

0
〈∇ψ(Ys), dYs〉 + L

2

∫ t

0
‖Gs‖2 ds

Proof Since ψ ∈ C1,1
L (Rn) is convex, Proposition A.1 shows that ψ is almost

everywhere twice differentiable with Hessian ∇2ψ . Furthermore, this Hessian matrix
satisfies 0 ≤ ∇2ψ(y) ≤ L Id, for all y ∈ R

n outside a set of Lebesgue measure 0.
Introduce the mollifier

ρ(u) :=
{
c exp

( −1
1−‖u‖2∗

)
, if ‖u‖∗ < 1,

0, if ‖u‖∗ ≥ 1.

Choose the constant c > 0 so that
∫
Rn ρ(u) du = 1. For every ε > 0 define

ρε(u) := ε−nρ(u/ε),

ψε(y) := ψ � ρε(y) :=
∫

Rn
ψ(y − u)ρε(u) du.

Then, ψε ∈ C∞(Rn) and the standard form of Itô’s formula gives us

ψε(Yt ) = ψε(Ys) +
∫ t

s
〈∇ψε(Yr ), dYr 〉 + 1

2

∫ t

s
tr

[
∇2ψε(Yr )GrG

�
r

]
dr

= ψε(Ys) +
∫ t

s

〈∫

Rn
∇ψ(z)ρε(Yr − z) dz, dYr

〉

+ 1

2

∫ t

s

∫

Rn
tr

[
∇2ψ(z)GrG

�
r

]
ρε(Yr − z) dr dz.

Since tr(∇2ψ(z)GrG�
r ) ≤ L‖Gr‖2, we get

ψε(Yt ) ≤ ψε(Ys) +
∫ t

s

〈∫

Rn
∇ψ(z)ρε(Yr − z) dz, dYr

〉
+ L

2

∫ t

s
‖Gr‖2 dr .

Letting ε ↓ 0, using the uniform convergence of the involved data, proves the result.
��
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Applying this result to the dual process of (SMD) and using (32), gives for Fs =
A(s,Y (s, y)) and Gs = B(s,Y (s, y)), the following version of the generalized Itô
rule:

ψ(Yt ) ≤ ψ(Y0) +
∫ t

0
〈∇ψ(Ys), dYs〉 ds + 1

2α

∫ t

0
‖B(s,Y (s, y))‖2 ds (33)
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