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Abstract: In this work we investigate dynamical systems designed to approach the solution sets of inclusion
problems involving the sumof twomaximallymonotone operators. Our aim is to designmethodswhich guar-
antee strong convergence of trajectories towards theminimumnorm solution of the underlyingmonotone in-
clusionproblem. To that end,we investigate indetail the asymptotic behavior of dynamical systemsperturbed
by a Tikhonov regularization where either the maximally monotone operators themselves, or the vector �eld
of the dynamical system is regularized. In both cases we prove strong convergence of the trajectories towards
minimumnorm solutions to an underlyingmonotone inclusion problem, andwe illustrate numerically quali-
tative di�erences between these two complementary regularization strategies. The so-constructed dynamical
systems are either of Krasnoselskǐı-Mann, of forward-backward type or of forward-backward-forward type,
and with the help of injected regularization we demonstrate seminal results on the strong convergence of
Hilbert space valued evolutions designed to solve monotone inclusion and equilibrium problems.
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1 Introduction
In 1974, Bruck showed in [1] that trajectories of the steepest descent system

ẋ(t) + ∂Φ(x(t)) 3 0 (1.1)

minimize the convex, proper, lower semi-continuous potential Φ de�ned on a real Hilbert space H. They
weakly converge towards a minimum of Φ and the potential decreases along the trajectory towards its min-
imal value, provided that Φ attains its minimum. Subsequently, Baillon and Brezis generalized in [2] this
result to di�erential inclusions whose drift is a maximally monotone operator A : H⇒ 2H, and dynamics

ẋ(t) + A(x(t)) 3 0. (1.2)
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Baillon provided in [3] an example where the trajectories of the steepest descent system converge weakly but
not strongly. A key tool in the study of the convergence of the steepest descent method is the association of
Fejér monotonicity with the Opial lemma.

Understanding the asymptotic behavior of continuous systems can be helpful in studying the conver-
gence properties of discrete algorithms as well, although no direct implications between the convergence
properties of trajectories of dynamical systems associated to certain problems and the ones of discrete it-
erative sequences for solving those problems are known yet. Arguments in this direction can be found, for
instance in [4, 5], where continuous versions of Nesterov’s accelerated gradient for the minimization of a
smooth convex function as well as their discrete counterparts are discussed. We want also to mention [6, 7],
where continuous and discrete versions of the same algorithm are combined with Tikhonov regularization
terms, and [8, 9], where second order dynamical systems of Nesterov type with Hessian driven damping and
corresponding inertial proximal point type algorithms are investigated. In the context ofmonotone inclusions
we refer to [10] for a so-called shadow Douglas-Rachford splitting in both continuous and discrete versions,
and to [11] for a forward-backward-forward di�erential equation and its discrete counterpart.

In 1996, Attouch and Cominetti coupled in [12] approximation methods with the steepest descent system
by adding a Tikhonov regularization term

ẋ(t) + ∂Φ(x(t)) + ϵ(t)x(t) 3 0. (1.3)

The time-varying parameter ϵ(t) tends to zero and the potential �eld ∂Φ satis�es the usual assumptions for
strong existence and uniqueness of trajectories. The striking point of their analysis is the strong convergence
of the trajectories when the regularization function t 7→ ϵ(t) tends to zero at a su�ciently slow rate. In par-
ticular, ϵ ∈ ̸ L1(R+;R). Then the strong limit is the point of minimal norm among the minima of the convex
function Φ. This is a rather surprising result since we know that if ϵ = 0 we can only expect weak con-
vergence of the induced trajectories under the standard hypotheses, and suddenly with the regularization
term the convergence is strong without imposing additional demanding assumptions. These papers were the
starting point for a �ourishing line of research in which dynamical systems motivated by solving challeng-
ing optimization and monotone inclusion problems are studied. The formulation of numerical algorithms
as continuous-in-time dynamical systems makes it possible to understand the asymptotic properties of the
algorithms by relating them to their descent properties in terms of energy and/or Lyapunov functions, and
to derive new numerical algorithms via sophisticated numerical discretization techniques (see, for instance,
[13–17]). This paper follows this line of research. In particular, our main aim in this work is to construct dy-
namical systems designed to solve Hilbert space valued monotone inclusions of the form

�nd x* ∈ H such that 0 ∈ Ax* + Bx*, (MIP)

where A : H ⇒ H is a maximally monotone operator and B : H → H a β-cocoercive (respectively a (1/β)-
Lipschitz continuous) operator with β > 0, such that Zer(A+B) is nonempty, and our focus is to designmeth-
ods which guarantee strong convergence of the trajectories towards a solution of (MIP). This is a considerable
advancement when contrastedwith existingmethods, where usually only weak convergence of trajectories is
to be expected, for the strong one additional demanding hypotheses being imposed. Indeed, departing from
the seminal work of Attouch and Cominetti [12] a thriving series of papers on dynamical systems for solving
monotone inclusions of type (MIP) emerged, relating continuous-timemethods to classical operator splitting
iterations. A general overview of this still very active topic is given in [18]. In [19], Bolte studied the weak
convergence of the trajectories of the dynamical system{

ẋ(t) + x(t) = PC(x(t) − γ∇Φ(x(t)),
x(0) = x0

(1.4)

where Φ : H → R is a convex and continuously di�erentiable function de�ned on a real Hilbert space H,
and C ⊆ H is a closed and convex subset with an easy to evaluate orthogonal projector PC. Bolte shows that
the trajectories of the dynamical system converge weakly to a solution of (MIP) with A = NC, the normal cone
mapping of C, and B = ∇Φ, which is actually an optimal solution to the optimization problem

inf
x∈C

Φ(x).
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Moreover, in [19, Section 5] a Tikhonov regularization term is added to the di�erential equation, guarantee-
ing strong convergence of the trajectories of the perturbed dynamical system. More recently, [20] provided a
generalization of Bolte’s work where the authors proposed the dynamical system{

ẋ(t) + x(t) = Jγ∂Φ(x(t) − γB(x(t))),
x(0) = x0,

(1.5)

where Φ : H → R ∪ {+∞} is a proper, convex and lower semi-continuous function de�ned on a real Hilbert
spaceH, and B : H→ H is a cocoercive operator.

This projection-di�erential dynamical system relies on the resolvent operator Jγ∂Φ , (Id +γ∂Φ)−1, and
reduces to the system (1.4) when the function Φ is the indicator function of a closed convex set C ⊆ H. It is
shown that the trajectories of the dynamical system converge weakly to a solution of the associated (MIP) in
which A = ∂Φ. In this paper, we continue this line of research and generalize it in two directions. Our �rst set
of results is concerned with dynamical systems of the form (1.5) involving a nonexpansive mapping. Build-
ing on [21, 22], we perturb such a dynamical system with a Tikhonov regularization term that induces the
strong convergence of the thus generated trajectories. This family of dynamical systems is of Krasnoselskǐı-
Mann type whose explicit or implicit numerical discretizations are well studied (see [23]). Next, we consider
a family of asymptotically autonomous semi-�ows derived from operator splitting algorithms. These splitting
techniques originate from the theoretical analysis of PDEs, and can be traced back to classical work of [24, 25].
In this direction, we generalize recent results of [22] for dynamical systems of forward-backward type, and [11]
for dynamical systems of forward-backward-forward type. In both of these papers the strong convergence of
the trajectories is guaranteed only under demanding additional hypotheses like strong monotonicity of one
of the involved operators. On the other hand, in articles like [21, 26] strong converge of trajectories of dynam-
ical systems involving a single monotone operator or function is achieved by means of a suitable Tikhonov
regularization under mild conditions. They motivated us to perturb the mentioned dynamical systems from
[11, 22] in a similarmanner in order to achieve strong convergence of the trajectories of the resulting Tikhonov
regularized dynamical systems under natural assumptions. To the best of our knowledge the only previous
contribution in the literature in this direction is the very recent preprint [27], where a Tikhonov regularized
dynamical system involving a nonexpansive operator is investigated, whose trajectories strongly converge
towards a �xed point of the latter. All these results are special cases of the analysis provided in this paper.

In the �rst part of our paper we deal with a Tikhonov regularized Krasnoselskǐı-Mann dynamical system
and show that its trajectories strongly converge towards a �xed point of the governing nonexpansive operator.
Afterwards a modi�cation of this dynamical system inspired by [27] is proposed, where the involved opera-
tor maps a closed convex set to itself and a similar result is obtained under a di�erent hypothesis. The main
result of [27] is then recovered as a special case, while another special case concerns a Tikhonov regularized
forward-backward dynamical system whose trajectories strongly converge towards a zero of a sum of a max-
imally monotone operator with a single-valued cocoercive one. Because the regularization term is applied to
the whole di�erential equation, we speak in this case of an outer Tikhonov regularized forward-backward
dynamical system. In the next section another forward-backward dynamical system, this time with dynamic
stepsizes and an inner Tikhonov regularization of the single-valued operator, is investigated andwe show the
strong convergence of its trajectories towards the minimum norm zero of a similar sum of operators. After-
wards we consider an implicit forward-backward-forward dynamical system with a similar inner Tikhonov
regularization of the involved single-valued operator, whose trajectories strongly converge towards the min-
imum norm zero of a sum of a maximally monotone operator with a single-valued Lipschitz continuous one.
In order to illustrate the theoretical results we present some numerical experiments as well, which shed some
light on the role of the regularization parameter on the long-run behavior of trajectories.
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2 Setup and preliminaries
We collect in this section some general concepts from variational and functional analysis.We follow standard
notation, as developed in [23]. LetH be a real Hilbert space. A set-valued operator M : H ⇒ H maps points
inH to subsets ofH. We denote by

dom(M) , {x ∈ H|Mx ≠ ∅},

ran(M) , {y ∈ H|(∃x ∈ H) : y ∈ Mx},
gr(M) , {(x, y) ∈ H ×H|y ∈ Mx},

Zer(M) , {x ∈ H|0 ∈ Mx},

its domain, range, graph and set of zeros, respectively. A set-valued operator M : H ⇒ H is called monotone
if

〈x − y, x* − y*〉 ≥ 0 ∀(x*, x), (y*, y) ∈ gr(M).

The operator M : H ⇒ H is called maximally monotone if it is monotone and there is no monotone operator
M̃ : H⇒ H such that gr(M) ⊆ gr(M̃). M is said to be ρ-strongly monotone if

〈x − y, x* − y*〉 ≥ ρ‖x − y‖2 ∀(x*, x), (y*, y) ∈ gr(M).

If M is maximally monotone and strongly monotone, then Zer(M) is singleton [23, Corollary 23.37].
A single-valued operator T : H → H is called nonexpansive when ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ H,

while, given some β > 0, T is said to be β-cocoercive if 〈x − y, Tx − Ty〉 ≥ β‖Tx − Ty‖2 for all x, y ∈ H.
Let α ∈ (0, 1) be �xed. We say that R : H → H is α-averaged if there exists a nonexpansive operator

T : H → H such that R = (1 − α) Id +αT, where Id is the identity mapping on H. An important instance of
α-averaged operators are �rmly nonexpansive mappings, which we recover for α = 1/2. For further insights
into averaged operators we refer the reader to [23, Section 4.5].

The resolvent of the maximally monotone operator M is de�ned as JM , (Id +M)−1. It is a single-valued
operator with dom(JM) = H and it is �rmly nonexpansive, i.e.

‖JMx − JMy‖2 ≤ 〈JMx − JMy, x − y〉 ∀x, y ∈ H. (2.1)

For all λ, µ > 0 and x ∈ H it holds that (see [23, Proposition 23.28])

‖JλMx − JµMx‖ ≤ |λ − µ|‖Mλx‖, (2.2)

whereMλ , (1/λ)(Id −JλM) is the Yosida approximation of themaximalmonotone operatorM with parameter
λ > 0.

By PC we denote the orthogonal projector onto a closed convex set C ⊆ H, while the normal cone of a set
C ⊆ H is NC , {z ∈ H : 〈z, y − x〉 ≤ 0 ∀y ∈ C} if x ∈ C and NC(x) = ∅ otherwise.

We also need the following basic identity (cf. [23])

‖αx + (1 − α)y‖2 + α(1 − α)‖x − y‖2 = α‖x‖2 + (1 − α)‖y‖2 ∀α ∈ R ∀x, y ∈ H. (2.3)

2.1 Properties of perturbed operators

Let H be a real Hilbert space, A : H ⇒ H a maximally monotone operator and B : H → H a monotone
and (1/β)-Lipschitz continuous operator, for some β > 0. Let ε > 0 and denote Bε , B + ε Id : H → H.
Since B is maximally monotone and (1/β)-Lipschitz, the perturbed operator Bε is ϵ-strongly monotone and
(ε + 1/β)-Lipschitz continuous. In particular, the operator A + Bε is ϵ-strongly monotone. Hence, for every
ϵ > 0 the set Sε , Zer(A + Bε) is a singleton with the unique element denoted xε. Throughout this paper we
consider the following hypothesis valid.
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Assumption 2.1. S0 , Zer(A + B) ≠ ∅.

The following lemma is a classical result due to Bruck [28]. A short proof can be found in [21, Lemma 4].

Lemma 2.2. It holds xε → x* , inf{‖x‖ : x ∈ S0} as ε → 0.

Lemma 2.2 implies that the net (xε)ε>0 ⊂ H is locally bounded. The next result establishes continuity and
di�erentiability properties of the trajectory ε 7→ xϵ. The proof relies on the characterization of zeros of a
monotone operator via its resolvent, and can be found in [12, page 533]. For the reader’s convenience, we
include it here as well.

Lemma 2.3. Let ε1, ε2 > 0. Then

‖xε1 − xε2‖ ≤
‖xε1‖
ε2
|ε1 − ε2|,

i.e. ε 7→ xϵ is locally Lipschitz continuous on (0, +∞), and therefore di�erentiable almost everywhere. Further-
more, ∥∥∥∥ d

dε xε
∥∥∥∥ ≤ ‖xε‖ε ∀ε ∈ (0, +∞).

Proof. First, we observe that, for ε > 0, 0 ∈ Axε + Bxε + εxε is equivalent to

xε =
(

Id + 1
ε (A + B)

)−1
(0) = J 1

ε (A+B)(0).

Using this fact, and combining it with relation (2.2), we obtain

‖xε1 − xε2‖ =
∥∥∥J 1

ε1
(A+B)(0) − J 1

ε2
(A+B)(0)

∥∥∥ ≤ ∣∣∣∣1 − ε1
ε2

∣∣∣∣ · ‖xε1‖,

which is equivalent to

‖xε1 − xε2‖ ≤
‖xε1‖
ε2
|ε1 − ε2|.

This proves the �rst statement.
For the second statement,we note that the previous inequality yields for ϵ = ε1 and ε2 = ϵ+h the estimate

0 ≤ ‖xε − xε+h‖
h ≤ ‖xε‖ϵ + h ∀h ∈ (0, +∞).

Passing to the limit h → 0 completes the proof. �

2.2 Dynamical systems

In our analysis, we will make use of the following standard terminology from dynamical systems theory.
A continuous function f : [0, T]→ H (where T > 0) is said to be absolutely continuouswhen its distribu-

tional derivative is Lebesgue integrable on [0, T].
We remark that this de�nition implies that an absolutely continuous function is di�erentiable almost

everywhere, and its derivative coincides with its distributional derivative almost everywhere. Moreover, one
can recover the function from its derivative via the integration formula f (t) = f (0)+

∫ t
0 g(s)ds for all t ∈ [0, T].

The solutions of the dynamical systems we are considering in this paper are understood in the following
sense.

De�nition 2.4. We say that x : [0, +∞) → H is a strong global solution with initial condition x0 ∈ H of the
dynamical system {

ẋ(t) = f (t, x(t))
x(0) = x0,

(2.4)
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where f : [0, +∞) ×H→ H, if the following properties are satis�ed:
(a) x : [0, +∞)→ H is absolutely continuous on each interval [0, T], 0 < T < +∞;
(b) it holds ẋ(t) = f (t, x(t)) for almost every t ≥ 0;
(c) x(0) = x0.

Existence and strong uniqueness of nonautonomous systems of the form (2.4) can be proven by means of the
classical Cauchy-Lipschitz Theorem (see, for instance, [29, Proposition 6.2.1] or [30, Theorem 54]). To use this,
we need to ensure the following properties enjoyed by the vector �eld f .

Theorem 2.5. Let f : [0, +∞) ×H→ H be a given function satisfying:
(f1) f (·, x) : [0, +∞)→ H is measurable for each x ∈ H;
(f2) f (t, ·) : H→ H is continuous for each t ≥ 0;
(f3) there exists a function `(·) ∈ L1

loc(R+;R) such that

‖f (t, x) − f (t, y)‖ ≤ `(t)‖x − y‖ ∀t ∈ [0, b] ∀b ∈ R+ ∀x, y ∈ H; (2.5)

(f4) for each x ∈ H there exists a function ∆(·) ∈ L1
loc(R+;R) such that

‖f (t, x)‖ ≤ ∆(t) ∀t ∈ [0, b] ∀b ∈ R+. (2.6)

Then, the dynamical system (2.4) admits a unique strong solution t 7→ x(t), t ≥ 0.

3 A Tikhonov regularized Krasnoselskǐı-Mann dynamical system
Let T : H → H be a nonexpansive mapping with Fix(T) ≠ ∅, where Fix(T) denotes the �xed point set of T.
We are interested in investigating the trajectories of the following dynamical system{

ẋ(t) = λ(t)
[
T(x(t)) − x(t)

]
− ϵ(t)x(t)

x(0) = x0.
(3.1)

where x0 ∈ H is a given reference point, and λ(·) and ϵ(·) are user-de�ned functions, satisfying the following
standing assumption:

Assumption 3.1. λ : [0, +∞)→ (0, 1] and ϵ : [0, +∞)→ [0, +∞) are Lebesgue measurable functions.

Motivated by [22], where it is shown that the trajectories of the dynamical system{
ẋ(t) = λ(t)

(
T(x(t)) − x(t)

)
x(0) = x0,

converge weakly towards a �xed point of T, and [21], where the strong convergence of the trajectories of a dy-
namical system involving amaximally monotone operator is induced bymeans of a Tikhonov regularization,
we show that, under mild hypotheses, the trajectories of (3.1) strongly converge to PFix(T)(0), the minimum
norm �xed point of T. Moreover we also address the question about viability of trajectories in case where T
is de�ned on a nonempty, closed and convex set D ⊆ H.

3.1 Existence and uniqueness of global solutions

Existence and uniqueness of solutions to the dynamics (3.1) follow from the general existence statement,
i.e. Theorem 2.5. First, notice that the dynamical system (3.1) can be rewritten in the form of (2.4) where f :
[0, +∞) × H → H is de�ned by f (t, x) , λ(t)[T(x) − x] − ϵ(t)x. This shows that properties (f1) and (f2) in
Theorem 2.5 are satis�ed. It remains to verify properties (f3) and (f4).
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Lemma 3.2. When ϵ ∈ L1
loc(R+;R), then, for each x0 ∈ H, there exists a unique strong global solution of (3.1).

Proof. (i) Let x, y ∈ H, then, since T is nonexpansive, we have

‖f (t, x) − f (t, y)‖ ≤ 2λ(t)‖x − y‖ + ϵ(t)‖x − y‖ = [2λ(t) + ϵ(t)]‖x − y‖.

Since λ is bounded from above and due to the assumptionmade on ϵ, one has `(·) , 2λ(·) +ϵ(·) ∈ L1
loc(R+;R),

so that (f3) holds.
(ii) For x ∈ H and x̄ ∈ Fix(T) one has

‖f (t, x)‖ ≤ ‖f (t, x̄)‖ + ‖f (t, x) − f (t, x̄)‖ ≤ ϵ(t)‖x̄‖ + `(t)‖x − x̄‖ ≡ ∆(t)

for any t ∈ [0, +∞). Existence and uniqueness now follow from Theorem 2.5. �

3.2 Convergence of the trajectories: �rst approach

The following observation, which is based on a time rescaling argument similar to [26, Lemma 4.1], will be
fundamental for the convergence analysis of the trajectories. We give it without proof since it can be derived
as a special case of Theorem 3.6.

Theorem 3.3. Let τ1 : [0, +∞)→ [0, +∞) be the function which is implicitly de�ned by

τ1(t)∫
0

λ(s) ds = t, τ1(0) = 0.

Similarly, let τ2 : [0, +∞)→ [0, +∞) be the function given by

τ2(t) ,
t∫

0

λ(s) ds.

Set ϵ̃ , ϵ ◦ τ1, λ̃ , λ ◦ τ1, and consider the system{
u̇(t) = T(u(t)) − u(t) − ϵ̃(t)

λ̃(t)
u(t)

u(0) = x0,
(3.2)

where x0 ∈ H. If x is a strong solution of (3.1), then u , x ◦τ1 is a strong solution of the system (3.2). Conversely,
if u is a strong solution of (3.2), then x , u ◦ τ2 is a strong solution of the system (3.1).

Theorem 3.3 suggests that one can also study the dynamical system (3.2) instead of (3.1). Moreover, in [21,
Theorem 9] the strong convergence of the trajectories of the di�erential inclusion{

−u̇(t) ∈ A(u(t)) + ϵ(t)u(t)
u(0) = x0,

(3.3)

where A : H⇒ H is a maximally monotone operator such that A−1(0) ≠ ∅, towards the minimum norm zero
ofAwas obtained provided that limt→+∞ ϵ(t) = 0, ϵ ∈ ̸ L1(R+;R) and |ϵ̇| ∈ L1(R+;R). The connection between
(3.3) and (3.1) (as well as (3.2)) is achieved through the fact that the nonexpansiveness of T guarantees that
the operator A , Id −T is maximally monotone and, furthermore, x ∈ A−1(0) holds if and only if x ∈ Fix T.

Now we establish the convergence of the trajectories of the dynamical system (3.1), noting that the em-
ployed hypotheses coincide with those of [21, Theorem 9] when λ(t) = 1 for all t ∈ [0, +∞).
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Theorem 3.4. Let t 7→ x(t), t ≥ 0, be the strong solution of (3.1) with initial condition x0 ∈ H, and assume that

(i)
+∞∫
0

ϵ(t)dt = +∞,

(ii)
+∞∫
0

λ(t)dt = +∞,

(iii) ϵ and λ are absolutely continuous and ϵ(t)
λ(t) → 0 as t → +∞,

(iv)
+∞∫
0

∣∣∣∣ ddt
(
ϵ(t)
λ(t)

)∣∣∣∣ dt < +∞.

Then x(t)→ PFix(T)(0) as t → +∞.

Proof. By Theorem 3.3, the dynamical system (3.2) has a strong solution, too. Since Id −T is maximally mono-
tone, and x ∈ Fix T holds if and only if x ∈ (Id −T)−1(0), we verify �rst that the function ϵ̃

λ̃
= ϵ◦τ1

λ◦τ1
ful�lls the

assumptions of [21, Theorem 9]. First,
+∞∫
0

ϵ̃(t)
λ̃(t)

dt =
+∞∫
0

τ̇1(t)ϵ(τ1(t))dt =
+∞∫
0

ϵ(s)ds = +∞.

Further, for almost all t ≥ 0 it holds, taking into consideration that τ̇1(t)λ(τ1(t)) = 1,

d
dt

(
ϵ̃(t)
λ̃(t)

)
=

˙̃ϵ(t)λ̃(t) − ϵ̃(t) ˙̃λ(t)
λ̃(t)2

= τ̇1(t)ϵ̇(τ1(t))λ̃(t) − ϵ̃(t)τ̇1(t)λ̇(τ1(t))
λ̃(t)2

= ϵ̇(τ1(t))
λ(τ1(t))2 −

ϵ(τ1(t))λ̇(τ1(t))
λ(τ1(t))3 ,

hence
+∞∫
0

∣∣∣∣ ddt
(
ϵ̃(t)
λ̃(t)

)∣∣∣∣ dt =
+∞∫
0

∣∣∣∣ ϵ̇(τ1(t))
λ(τ1(t))2 −

ϵ(τ1(t))λ̇(τ1(t))
λ(τ1(t))3

∣∣∣∣ dt
=

+∞∫
0

∣∣∣∣ ϵ̇(s)
λ(s) −

ϵ(s)λ̇(s)
λ(s)2

∣∣∣∣ ds =
+∞∫
0

∣∣∣∣ ddt
(
ϵ(t)
λ(t)

)∣∣∣∣ dt < +∞,

where we used that τ1(t) → +∞ as t → +∞. Therefore the strong convergence of the strong solution of (3.2)
with initial condition x0 ∈ H towards PFix(T)(0) is proven. The assertion follows by Theorem 3.3. �

3.3 Convergence of the trajectories: second approach

Our second convergence statement concerns a generalization of the system (3.1) where T maps from a closed
and convex set D ⊆ H to D. For such dynamics, a key condition is to ensure invariance with respect to the
domain D of the trajectory t 7→ x(t), t ≥ 0, when issued from an initial condition x0 ∈ D. Such viability results
are key to the control of dynamical systems [31, 32]. To that end, we consider the di�erential equation{

ẋ(t) = λ(t)
(
T(x(t)) − x(t)

)
− ϵ(t)(x(t) − y)

x(0) = x0 ∈ D,
(3.4)
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where y ∈ D is �xed reference point and Fix(T) ≠ ∅. In the very recent note [27] the strong convergence of the
trajectory for the case λ(t) = 1 for all t ∈ [0, +∞) towards PFix(T)(y) has been demonstrated in [27, Theorem
4.1] by assuming that ϵ ∈ L1

loc(R+;R) is absolutely continuous and nonincreasing, ϵ(t) → 0 as t → +∞,∫ +∞
0 ϵ(s)ds = +∞ and limt→+∞ ϵ̇(t)/ϵ2(t) = 0.

First we give the existence and uniqueness statement for the strong global solution of (3.4), whose proof
is skipped as it follows Proposition 3.2 and [27, Proposition 4.1].

Proposition 3.5. Assume that ϵ ∈ L1
loc(R+;R). Then, for any pair (x0, y) ∈ D × D the dynamical system (3.4)

admits a unique strong global solution t 7→ x(t), t ≥ 0 which leaves the domain D forward invariant, i.e. x(t) ∈ D
for all t ∈ [0, +∞).

A result similar to Theorem 3.3 for (3.4) is provided next.

Theorem 3.6. Let τ1 : [0, +∞)→ [0, +∞) be the function implicitly de�ned by

τ1(t)∫
0

λ(s)ds = t, τ1(0) = 0.

Furthermore, let τ2 : [0, +∞)→ [0, +∞) the function given by

τ2(t) ,
t∫

0

λ(s)ds.

Set ϵ̃ , ϵ ◦ τ1, λ̃ , λ ◦ τ1 and consider the system{
u̇(t) = T(u(t)) − u(t) − ϵ̃(t)

λ̃(t)
(u(t) − y)

u(0) = x0,
(3.5)

where (x0, y) ∈ D × D. If t 7→ x(t), t ≥ 0, is the strong solution of (3.4), then u , x ◦ τ1 is a strong solution of the
system (3.5). Conversely, if u is a strong solution of (3.5), then x , u ◦ τ2 is a strong solution of the system (3.4).

Proof. Let t 7→ x(t), t ≥ 0, be a strong solution of (3.4). Since we already know that x(t) ∈ D for all t ≥ 0, the
�rst line of (3.4) written at point T1(t) and multiplied by τ̇1(t) yields

τ̇1(t)ẋ(τ1(t)) = τ̇1(t)λ(τ1(t))[T(x(τ1(t))) − x(τ1(t))] − τ̇1(t)ϵ(τ1(t))[x(τ1(t)) − y].

Since u(t) , x(τ1(t)), u̇(t) = τ̇1(t)ẋ(τ1(t)) and τ̇1(t) = 1/λ(τ1(t)), we obtain from the line above

u̇(t) = T(u(t)) − u(t) − ϵ̃(t)
λ̃(t)

(u(t) − y)

for almost every t ≥ 0. Moreover, u(0) = x(τ1(0)) = x0.
Now, let u be a strong solution of (3.2). From [27, Proposition 4.1] we deduce that that u(t) ∈ D for all t ≥ 0.

The �rst line of (3.5) written at point τ2(t) and multiplied by τ̇2(t) reads

τ̇2(t)u̇(τ2(t)) = τ̇2(t)
(
T(u(τ2(t))) − u(τ2(t))

)
− τ̇2(t) ϵ̃(τ2(t))

λ̃(τ2(t))
[u(τ2(t)) − y] ∀t ≥ 0.

Observing that x(t) = u(τ2(t)), ẋ(t) = τ̇2(t)u̇(τ2(t)), τ̇2(t) = λ(t) and τ1 ◦ τ2 = Id, the previous line becomes for
almost every t ≥ 0

ẋ(t) = λ(t)
(
T(x(t)) − x(t)

)
− ϵ(t)(x(t) − y).

Moreover, x(0) = u(0) = x0. This concludes the proof. �

Employing the time rescaling arguments from Theorem 3.6, we are able to derive the following statement,
which extends [27, Theorem 4.1] that is recovered as special case when λ(t) = 1 for all t ∈ [0, +∞).
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Theorem 3.7. Let t 7→ x(t), t ≥ 0, be the strong solution of (3.4) and assume that
(i)

∫ +∞
0 ϵ(t)dt = +∞,

(ii)
∫ +∞

0 λ(t)dt = +∞,
(iii) ϵ and λ are absolutely continuous, ϵ(·)

λ(·) is nonincreasing and ϵ(t)
λ(t) → 0 as t → +∞,

(iv) ϵ̇(t)
ϵ(t)2 − λ̇(t)

λ(t)ϵ(t) → 0 as t → +∞.

Then x(t)→ PFix(T)(y) as t → +∞.

Proof. In a similarmanner to the proof of Theorem3.4, due to Theorem3.6 it su�ces to check the assumptions
in [27, Theorem 4.1] for the function ϵ̃/λ̃. First, we notice that

+∞∫
0

ϵ̃(t)
λ̃(t)

dt =
+∞∫
0

τ̇1(t)ϵ(τ1(t))dt =
+∞∫
0

ϵ(s)ds = +∞,

where we used that τ1(t)→ +∞ as t → +∞. From the proof of Theorem 3.4 we know that for almost all t ≥ 0
one has

d
dt
ϵ̃(t)
λ̃(t)

= ϵ̇(τ1(t))
λ(τ1(t))2 −

ϵ(τ1(t))λ̇(τ1(t))
λ(τ1(t))3 ,

The last expression divided by
(
ϵ̃(t)
λ̃(t)

)2
gives

ϵ̇(τ1(t))
ϵ(τ1(t))2 −

λ̇(τ1(t))
λ(τ1(t))ϵ(τ1(t)) ,

which, due to the assumptions we made on the functions ϵ and λ, tends to 0 as t → +∞. �

In the following two remarkswe compare the hypotheses of Theorem3.4 andTheorem3.7, noting that, despite
the common assumptions (i) − (ii), they do not fully cover each other.

Remark 3.1. The framework of Theorem 3.7 extends the one of Theorem 3.4 by allowing the involved operator
T to map a closed convex set to itself, the latter being recovered when choosing D = H and y = 0. However,
in this setting, �xing β ∈ (0, 1) and taking ϵ(t) = 1/(0.2 + t)β and λ(t) = 0.5 cos( 1

0.2+t ) + 0.5, t ≥ 0, one notes
that λ(t) ∈ [0, 1] ∀t ≥ 0,

∫ +∞
0 ϵ(t)dt =

∫ +∞
0 λ(t)dt = +∞ and ϵ(t)/λ(t) is converging to 0 as t → +∞, but there

exists an intervall where the function is increasing. Hence assumption (iii) of Theorem 3.7 is violated while
the corresponding assumption in Theorem 3.4 is ful�lled. Moreover,

d
dt

(
ϵ(t)
λ(t)

)
= −β(0.1 + t)−(β+1)

(0.5 cos( 1
0.2+t ) + 0.5)

−
0.5 sin( 1

0.2+t )
(0.5 cos( 1

0.2+t ) + 0.5)2(0.2 + t)β+2
∀t ≥ 0,

that is a function of class L1(R+;R). Hence, for the chosen parameter functions ϵ and λ, the assumptions of
Theorem 3.7 are not satis�ed, while the ones of Theorem 3.4 are.

Remark 3.2. In the situation of Theorem 3.7 we consider again the choice D = H and y = 0. In this case
Theorem 3.4 is a special instance of Theorem 3.7. In fact, since ϵ/λ is assumed to be nonincreasing and
ϵ(t)/λ(t)→ 0 as t → +∞ we conclude that

+∞∫
0

∣∣∣∣ ddt
(
ϵ(t)
λ(t)

)∣∣∣∣ dt = −
+∞∫
0

d
dt

(
ϵ(t)
λ(t)

)
dt = − lim

s→+∞
ϵ(s)
λ(s) + ϵ(0)

λ(0)
< +∞,

i.e. assertion (iv) of Theorem 3.4 is ful�lled.

Remark 3.3. One can also compare the hypotheses imposed in Theorem 3.4 and Theorem 3.7 for guarantee-
ing the strong convergence of the trajectories of a dynamical system towards a �xed point of T with the ones
required in [22, Theorem 6 and Remark 17], the weakest of them being (ii) of any of Theorem 3.4 and Theo-
rem 3.7. Taking also into consideration [21, Proposition 5 and Theorem 9] as well as [27, Proposition 4.1 and
Theorem 4.1], the assumptions of both Theorem 3.4 and Theorem 3.7 turn out to be natural for achieving the
strong convergence of the trajectories of the dynamical system (3.1) towards a �xed point of T.
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Fig. 1: Graph of λ(t) = 0.5 cos( 1
0.2+t ) + 0.5

3.4 Special case: an outer Tikhonov regularized forward-backward dynamical
system

From the analysis of the strong convergence of the trajectories of the Tikhonov regularized Krasnoselskǐı-
Mann dynamical system (3.1) one can deduce similar assertions for determining zeros of a sum of monotone
operators. Let A : H ⇒ H be a maximally monotone operator and B : H → H a β-cocoercive operator
with β > 0 such that Zer(A + B) is nonempty. The dynamical system employed to this end is a Tikhonov
regularized version of [22, equation (14)], namely, when γ ∈ (0, 2β), ϵ : [0, +∞)→ [0, +∞) and λ : [0, +∞)→
[0, (4β − γ)/(2β)] are Lebesgue measurable functions, and x0 ∈ H,{

ẋ(t) = λ(t)
(
JγA
(
x(t) − γB(x(t))

)
− x(t)

)
− ϵ(t)x(t)

x(0) = x0.
(3.6)

Employing either Theorem 3.4 or Theorem 3.7, one can derive the following statement.

Theorem 3.8. Suppose that either the assumptions of Theorem 3.4 or Theorem 3.7 made on the parameter
functions ϵ and λ are ful�lled. Further, let x be the unique strong global solution of the dynamical system (3.6).
Then x(t)→ PZer(A+B)(0) as t → +∞.

Proof. Since the resolvent of a maximally monotone operator is �rmly nonexpansive it is 1/2-averaged, see
[23, Remark 4.34(iii)]. Moreover, by [23, Proposition 4.39] Id −γB is γ/(2β)-averaged. Combining these two
observations with [23, Proposition 4.44] yields that the composed operator T , JγA ◦ (Id −γB) is 2β/(4β − γ)-
averaged. Further, it is immediate that the dynamical system (3.6) can be equivalently written as{

ẋ(t) = λ(t)(T(x(t)) − x(t)) − ϵ(t)x(t)
x(0) = x0.

As T is 2β/(4β − γ)-averaged, there exists a nonexpansive operator T̂ : H → H such that T = (1 −
2β/(4β − γ)) Id +(2β/(4β − γ))T̂. Then the dynamical system (3.6) can be further equivalently written as{

ẋ(t) = λ(t) 2β
4β−γ (T̂(x(t)) − x(t)) − ϵ(t)x(t)

x(0) = x0.

Since Fix T̂ = Fix T = Zer(A + B) (see [23, Proposition 26.1(iv)(a)]) the assertion follows from Theorem 3.4
or Theorem 3.7. �

Remark 3.4. Strong convergence of the trajectories of a forward-backward dynamical system was achieved
in [22, Theorem 12] under the more demanding hypothesis of uniform monotonicity (recall that an operator
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T : H → H is said to be uniformly monotone if there exists an increasing function ΦT : [0, +∞) → [0, +∞]
that vanishes only at 0 such that 〈x − y, u − v〉 ≥ ΦT(‖x − y‖) for every (x, u), (y, v) ∈ gr(T)) imposed on one
of the involved operators.

4 A Tikhonov regularized forward-backward dynamical system
In this section we construct Tikhonov regularized dynamical systems which are strongly converging to solu-
tions of (MIP). The problem formulation involves amaximallymonotone operatorA : H⇒ H and B : H→ H

a β-cocoercive operator with β > 0 such that Zer(A + B) is nonempty. Moreover, for t ∈ [0, +∞) denote
Bϵ(t) , B + ϵ(t) Id : H→ H and Zer(A + Bϵ(t)) = {x̄(ϵ(t))}. We consider the dynamical system ẋ(t) = λ(t)

(
Jγ(t)A

(
x(t) − γ(t)(Bx(t) + ϵ(t)x(t))

)
− x(t)

)
x(0) = x0,

(4.1)

where λ(·), ϵ(·) obey Assumption 3.1, and γ : [0, +∞)→ (0, 2β).

Remark 4.1. Comparing (4.1) with (3.6) one can note two di�erences: First of all, in (4.1) the stepsizes are
provided by the function γ : [0, +∞) → (0, 2β), while in (3.6) γ is a positive constant lying in the interval
(0, 2β) as well. Secondly, to get (3.6) from the forward-backward dynamical system (cf. [22]){

ẋ(t) = λ(t)
(
JγA
(
x(t) − γBx(t)

)
− x(t)

)
x(0) = x0,

(4.2)

an outer perturbation is employed, while for (4.1) an inner one. As illustrated in Section 6, this leads to dif-
ferent performances in concrete applications.

4.1 Existence and uniqueness of strong global solutions

The dynamical system (4.1) can be rewritten as{
ẋ(t) = f (t, x(t))
x(0) = x0,

where f : [0, +∞) × H → H is de�ned by f (t, x) = λ(t)(Tt(x) − x), with Tt , Jγ(t)A(Id −γ(t)Bϵ(t)). Hence,
existence and uniqueness of trajectories follow by verifying the conditions spelled out in Theorem 2.5.

Proposition 4.1. Assume that t 7→ ϵ(t) is of class L1
loc(R+;R). Then, for each x0 ∈ H, there exists a unique

strong global solution t 7→ x(t), t ≥ 0, of (4.1).

Proof. Conditions (f1), (f2) are clearly satis�ed. To show (f3), let x, y ∈ H be arbitrary. Since B is (1/β)-
Lipschitz continuous, the perturbed operator Bϵ(t) is ((1/β) + ϵ(t))-Lipschitz continuous as well. Hence, by
nonexpansiveness of the resolvent, we obtain for all t ∈ [0, +∞)

‖f (t, x) − f (t, y)‖ ≤ λ(t)‖x − y‖ + λ(t)‖Ttx − Tty‖
≤ λ(t)‖x − y‖ + λ(t)‖(x − y) − γ(t)(Bϵ(t)x − Bϵ(t)y)‖

≤ λ(t)
(

2 + γ(t)
[

1
β + ϵ(t)

])
‖x − y‖.

Since λ and γ are bounded and due to the assumption we imposed on ϵ, one has `(·) ,
λ(·)

(
2 + γ(·)[1/β + ϵ(·)]

)
∈ L1

loc(R+;R). Condition (f4) is veri�ed by �rst noting that for x̄ ∈ Zer(A + B), we
have x̄ = Tt(x̄) for all t ≥ 0. Therefore, for all x ∈ H and all t ≥ 0 it holds

‖Tt(x) − x̄‖ =
∥∥Jγ(t)A(x − γ(t)Bϵ(t)x) − Jγ(t)A(x̄ − γ(t)Bx̄)

∥∥
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≤ ‖(x − x̄) − γ(t)(Bϵ(t)x − Bx̄)‖

≤ ‖x − x̄‖ + γ(t)
β ‖x − x̄‖ + γ(t)ϵ(t)‖x‖.

Hence, for all x ∈ H and all t ≥ 0 one has

‖f (t, x)‖ = λ(t)‖Tt(x) − x‖
≤ λ(t)‖Tt(x) − x̄‖ + λ(t)‖x − x̄‖

≤ λ(t)
(

2 + γ(t)
β

)
‖x − x̄‖ + λ(t)γ(t)ϵ(t)‖x‖ ≡ ∆(t).

Therefore, (f4) holds as well. �

4.2 Convergence of the trajectory

As a preliminary step for proving the convergence statement of the trajectories of (4.1) towards PZer(A+B)(0)
we need the following auxiliary result. Recall that Zer(A + Bϵ(t)) = Fix(Tt) = {x̄(ϵ(t))}.

Lemma 4.2. Let t 7→ x(t), t ≥ 0, be the strong global solution of (4.1) and suppose that γ(t) ≤ (2β)/(1 + 2βϵ(t))
for all t ∈ [0, +∞). Then, for almost all t ∈ [0, +∞)

〈ẋ(t), x(t) − x̄(ϵ(t))〉 ≤ λ(t)
2 γ(t)ϵ(t)(γ(t)ϵ(t) − 2)‖x(t) − x̄(ϵ(t))‖2.

Proof. By (2.3) we get for almost all t ∈ [0, +∞)

2〈ẋ(t), x(t) − x̄(ϵ(t))〉 =‖ẋ(t) + x(t) − x̄(ϵ(t))‖2 − ‖ẋ(t)‖2 − ‖x(t) − x̄(ϵ(t))‖2

=‖λ(t)(Tt(x(t)) − x̄(ϵ(t))) + (1 − λ(t))(x(t) − x̄(ϵ(t)))‖2

−‖ẋ(t)‖2 − ‖x(t) − x̄(ϵ(t))‖2

=λ(t)‖Tt(x(t)) − x̄(ϵ(t))‖2 + (1 − λ(t))‖x(t) − x̄(ϵ(t))‖2

−λ(t)(1 − λ(t))‖Tt(x(t)) − x(t)‖2 − ‖ẋ(t)‖2 − ‖x(t)
−x̄(ϵ(t))‖2

=λ(t)‖Tt(x(t)) − x̄(ϵ(t))‖2 − λ(t)‖x(t) − x̄(ϵ(t))‖2

−λ(t)(1 − λ(t))‖Tt(x(t)) − x(t)‖2 − ‖ẋ(t)‖2. (4.3)

On the other hand, for x, y ∈ H and for all t ∈ [0, +∞) we obtain

‖(Id −γ(t)Bϵ(t))x−(Id −γ(t)Bϵ(t))y‖
2 = ‖(1 − γ(t)ϵ(t))(x − y) − γ(t)(Bx − By)‖2

=(1 − γ(t)ϵ(t))2‖x − y‖2 + γ(t)2‖Bx − By‖2

−2γ(t)(1 − γ(t)ϵ(t))〈x − y, Bx − By〉
≤(1 − γ(t)ϵ(t))2‖x − y‖2

+[γ(t)2 − 2γ(t)β(1 − γ(t)ϵ(t))]‖Bx − By‖2, (4.4)

where we used the β-cocoercivity of B in the last step and the observation that γ(t)ϵ(t) ≤ 1 due to the hypoth-
esis.

By assumption, γ(t) ≤ 2β(1 − γ(t)ϵ(t)) for all t ∈ [0, +∞). Therefore relation (4.4) yields

‖(Id −γ(t)Bϵ(t))x − (Id −γ(t)Bϵ(t))y‖
2 ≤ (1 − γ(t)ϵ(t))2‖x − y‖2,

and by the nonexpansiveness of the resolvent

‖Ttx − Tty‖2 ≤ (1 − γ(t)ϵ(t))2‖x − y‖2 ∀t ∈ [0, +∞). (4.5)
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Combining (4.3)with (4.5) by neglecting the twononpositive terms in the last line of (4.3) yields for almost
all t ∈ [0, +∞)

2〈ẋ(t), x(t) − x̄(ϵ(t))〉 ≤ λ(t)(1 − γ(t)ϵ(t))2‖x(t) − x̄(ϵ(t))‖2 − λ(t)‖x(t) − x̄(ϵ(t))‖2

= λ(t)γ(t)ϵ(t)(γ(t)ϵ(t) − 2)‖x(t) − x̄(ϵ(t))‖2.

This completes the proof. �

The convergence statement follows.

Theorem 4.3. Let t 7→ x(t), t ≥ 0, be the strong solution of (4.1). Suppose that γ(t) ≤ 2β
1+2βϵ(t) for all t ∈ [0, +∞)

and that the following properties are ful�lled

(i) ϵ is absolutely continuous and ϵ(t) decreases to 0 as t → +∞,

(ii) ϵ̇(t)
ϵ2(t)λ(t)γ(t) → 0 as t → +∞,

(iii)
+∞∫
0

λ(t)γ(t)ϵ(t)(2 − γ(t)ϵ(t))dt = +∞.

Then x(t)→ PZer(A+B)(0) as t → +∞.

Proof. Set θ(t) , 1
2‖x(t) − x̄(ϵ(t))‖2, t ≥ 0. Then, by using Lemma 4.2

θ̇(t) =
〈
x(t) − x̄(ϵ(t)), ẋ(t) − ϵ̇(t) ddϵ x̄(ϵ(t))

〉
=
〈
x(t) − x̄(ϵ(t)), ẋ(t)

〉
−
〈
x(t) − x̄(ϵ(t)), ϵ̇(t) ddϵ x̄(ϵ(t))

〉
≤ λ(t)

2 γ(t)ϵ(t)(γ(t)ϵ(t) − 2)‖x(t) − x̄(ϵ(t))‖2

−
〈
x(t) − x̄(ϵ(t)), ϵ̇(t) ddϵ x̄(ϵ(t))

〉
.

We denote L(t) , λ(t)
2 γ(t)ϵ(t)(2 − γ(t)ϵ(t)). The previous inequality yields

θ̇(t) ≤ −2L(t)θ(t) − ϵ̇(t)
∥∥∥∥ ddϵ x̄(ϵ(t))

∥∥∥∥√2θ(t),

where we used that ϵ(·) is decreasing. Substituting φ ,
√

2θ yields θ = φ2

2 and θ̇ = φφ̇, hence the previous
inequality becomes

φ̇(t) + L(t)φ(t) ≤ −ϵ̇(t)
∥∥∥∥ ddϵ x̄(ϵ(t))

∥∥∥∥ .
By Lemma 2.3,

φ̇(t) + L(t)φ(t) ≤ − ϵ̇(t)
ϵ(t)‖x̄(ϵ(t))‖.

Now, we de�ne the integrating factor E(t) ,
∫ t

0 L(s) ds, to get

d
dt
(
φ(t) exp(E(t))

)
≤ − ϵ̇(t)

ϵ(t)‖x̄(ϵ(t))‖ exp(E(t)).

Hence

0 ≤ φ(t) ≤ exp(−E(t))

φ(0) −
t∫

0

ϵ̇(s)
ϵ(s)‖x̄(ϵ(s))‖ exp(E(s)) ds

 . (4.6)
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If
∫ t

0
ϵ̇(s)
ϵ(s)‖x̄(ϵ(s))‖ exp(E(s)) ds is bounded, then limt→+∞ φ(t) = 0; otherwise, taking into consideration (iii),

we employ L’Hôspital’s rule and obtain

lim
t→+∞

exp(−E(t))
t∫

0

ϵ̇(s)
ϵ(s)‖x̄(ϵ(s))‖ exp(E(s)) ds

= lim
t→+∞

ϵ̇(t)‖x̄(ϵ(t))‖
ϵ2(t)λ(t)γ(t)(2 − γ(t)ϵ(t)) = 0, (4.7)

where we used assertion (i) with Lemma 2.2 and assertion (ii).
In conclusion, by combining (5.15) and (iii) with (4.6), it follows that φ(t)→ 0 as t → +∞. In particular,

‖x(t) − x̄(ϵ(t))‖ → 0 as t → +∞. (4.8)

Since

‖x(t) − PZer(A+B)(0)‖ ≤ ‖x(t) − x̄(ϵ(t))‖ + ‖x̄(ϵ(t)) − PZer(A+B)(0)‖,

the statement of the theorem follows from Lemma 2.2 and (4.8). �

Remark 4.2. Since ϵ(t) must go to zero as t → +∞, the hypothesis γ(t) ≤ 2β
1+2βϵ(t) in the previous theorem

implies that the stepsize function γ is always bounded from above by 2β. This corresponds to the classical
assumptions in proving (weak) convergence of the discrete time forward-backward algorithmwhere, in order
to guarantee convergence of the generated iterates, the stepsize has to be taken in the interval (0, 2β), see
[23].

Remark 4.3. Comparing the forward-backward dynamical system (4.1) with the Tikhonov regularized Kras-
noselskǐı-Mann dynamical system (3.1) one may observe that the latter needs a constant step size function
γ(t) ≡ γ ∈ (0, 2β). The system (4.1) allows us to vary the stepsizes over time, i.e. we may choose γ(·) as a
function in t.

Remark 4.4. Hypothesis (ii) of Theorem 4.3 is ful�lledwhen choosing the parameter functions ϵ, λ and γ such
that ϵ̇(t)/ϵ2(t) → 0 as t → +∞ and inft→+∞ λ(t) > 0, inft→+∞ γ(t) > 0, while Hypothesis (iii) holds true for
any choice of parameter functions which satisfy λ(·)γ(·)ϵ(·) ∈ ̸ L1(R+;R) and ϵ(·) ∈ L2(R+;R). A particular
instance of parameter β and parameter functions ϵ, λ and γ that satisfy the hypotheses of Theorem 4.3 is
given by the choice β = 1/2, γ(t) = 1/2, λ(t) = cos(1/t) and ϵ(t) = 1/(1 + t)0.6, t ∈ [0, +∞).

5 A Tikhonov regularized forward-backward-forward dynamical
system

The Tikhonov regularized forward-backward dynamical system involved a cocoercive single-valued opera-
tor B : H → H. In order to handle more general monotone inclusion problems with less demanding regu-
larity assumptions, Tseng constructed in [33] a modi�ed forward-backward scheme which shares the same
weak convergence properties as the forward-backward algorithm, but is provably convergent under plain
monotonicity assumptions on the involved operators A and B. Motivated by this signi�cant methodological
improvement, we are interested in investigating a dynamical system whose trajectories strongly converge to-
wards theminimumnorm element of the set Zer(A+B), assumednonempty, where A : H⇒ H is amaximally
monotone operator, while B : H→ H is a monotone and (1/β)-Lipschitz continuous operator. The proposed
dynamical system is derived from forward-backward-forward splitting algorithms coupled with a Tikhonov
regularization of the single-valued operator B. Our starting point is the di�erential system

z(t) = Jγ(t)A
(
x(t) − γ(t)Bx(t)

)
0 = ẋ(t) + x(t) − z(t) − γ(t)

(
Bx(t) − Bz(t)

)
x(0) = x0,

(5.1)
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recently investigated in [11, 34]. We assume that γ : [0, +∞)→ (0, β) is a Lebesgue measurable function and
x0 ∈ H is a given initial condition.

Given a regularizer function ϵ : [0, +∞) → R, we modify the dynamical system (5.1) to obtain the new
dynamical system 

z(t) = Jγ(t)A
(
x(t) − γ(t)(Bx(t) + ϵ(t)x(t))

)
0 = ẋ(t) + x(t) − z(t) − γ(t)

(
Bx(t) − Bz(t) + ϵ(t)(x(t) − z(t))

)
x(0) = x0.

(5.2)

5.1 Existence and uniqueness of strong global solutions

In this subsection we prove the existence and uniqueness of trajectories of the dynamical system (5.2) by
invoking Theorem 2.5.

Let us de�ne the parameterized vector �eld Vϵ,γ : H→ H as

Vϵ,γ(x) , ((Id −γBϵ) ◦ JγA ◦ (Id −γBϵ) − (Id −γBϵ))x, (5.3)

where Bϵ , B + ϵ Id. Notice that the dynamics (5.2) can be equivalently rewritten as{
ẋ(t) = f (t, x(t))
x(0) = x0,

with f : (0, +∞) ×H→ H, given by f (t, x) , Vϵ(t),γ(t)(x). Therefore, measurability in time and local Lipschitz
continuity in the spatial variable follow after we have veri�ed these properties for the vector �eld Vϵ,γ(x).

Lemma 5.1. For �xed ϵ ∈ [0, +∞), let 0 < γ < β
ϵβ+1 . Then, for all x, y ∈ H, it holds

‖Vϵ,γ(x) − Vϵ,γ(y)‖ ≤
√

6‖x − y‖.

Proof. Let x, y ∈ H. For the sake of clarity, we abbreviate Cϵ , Id −γBϵ and J , JγA.
First, by using the binomial formula twice we obtain

‖Vϵ,γ(x) − Vϵ,γ(y)‖2 = ‖Cϵ ◦ J ◦ Cϵx − Cϵx − Cϵ ◦ J ◦ Cϵy + Cϵy‖2

=‖Cϵ ◦ J ◦ Cϵx − Cϵ ◦ J ◦ Cϵy‖2 + ‖Cϵx − Cϵy‖2

−2〈Cϵ ◦ J ◦ Cϵx − Cϵ ◦ J ◦ Cϵy, Cx − Cy〉
=‖J ◦ Cϵx − J ◦ Cϵy‖2 + γ2‖Bϵ ◦ J ◦ Cϵx − Bϵ ◦ J ◦ Cϵy‖2

−2γ〈J ◦ Cϵx − J ◦ Cϵy, Bϵ ◦ J ◦ Cϵx − Bϵ ◦ J ◦ Cϵy〉
+‖Cϵx − Cϵy‖2 − 2〈Cϵ ◦ J ◦ Cϵx − Cϵ ◦ J ◦ Cϵy, Cϵx − Cϵy〉.

By invoking the (ϵ + 1/β)-Lipschitz continuity of Bϵ we conclude further

‖Vϵ,γ(x) − Vϵ,γ(y)‖2

≤

(
1 + γ2

(
ϵ + 1

β

)2
)
〈Cϵx − Cϵy, J ◦ Cϵx − J ◦ Cϵy〉

− 2γ〈J ◦ Cϵx − J ◦ Cϵy, Bϵ ◦ J ◦ Cϵx − Bϵ ◦ J ◦ Cϵy〉 + ‖Cϵx − Cϵy‖2

− 2〈Cϵ ◦ J ◦ Cϵx − Cϵ ◦ J ◦ Cϵy, Cϵx − Cϵy〉

=

(
1 + γ2

(
ϵ + 1

β

)2
− 2

)
〈Cϵx − Cϵy, J ◦ Cϵx − J ◦ Cϵy〉

− 2γ〈J ◦ Cϵx − J ◦ Cϵy, Bϵ ◦ J ◦ Cϵx − Bϵ ◦ J ◦ Cϵy〉 + ‖Cϵx − Cϵy‖2

+ 2γ〈Bϵ ◦ J ◦ Cϵx − Bϵ ◦ J ◦ Cϵy, Cϵx − Cϵy〉. (5.4)
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On the one hand, the ϵ-strong monotonicity of Bϵ yields

−2γ〈J ◦ Cϵx − J ◦ Cϵy, Bϵ ◦ J ◦ Cϵx − Bϵ ◦ J ◦ Cϵy〉 ≤ −2γϵ‖J ◦ Cϵx − J ◦ Cϵy‖2, (5.5)

while on the other hand we deduce from the monotonicity of the resolvent and the choice of the involved
parameters that (

γ2
(
ϵ + 1

β

)2
− 1

)
〈Cϵx − Cϵy, J ◦ Cϵx − J ◦ Cϵy〉 ≤ 0. (5.6)

Taking into account (5.5) and (5.6), using the Cauchy-Schwarz inequality, the �rm nonexpansiveness of the
resolvent, and the ϵ-strong monotonicity and the Lipschitz-continuity of Bϵ again, we obtain from (5.4)

‖Vϵ,γ(x) − Vϵ,γ(y)‖2

≤ − 2γϵ‖J ◦ Cϵx − J ◦ Cy‖2 + ‖Cϵx − Cϵy‖2

+ 2γ‖Bϵ ◦ J ◦ Cϵx − Bϵ ◦ J ◦ Cϵy‖‖Cϵx − Cϵy‖

≤
(

2γ
(
ϵ + 1

β

)
+ 1
)
‖Cϵx − Cϵy‖2

≤
(

2γ
(
ϵ + 1

β

)
+ 1
)

(‖x − y‖2 + γ2‖Bϵx − Bϵy‖2 − 2γ〈x − y, Bϵx − Bϵy〉)

≤
(

2γ
(
ϵ + 1

β

)
+ 1
)[

1 + γ2
(
ϵ + 1

β

)2
− 2γϵ

]
‖x − y‖2.

Further, by the relation imposed on ϵ and γ, we get γϵβ < β − γ, hence

2γ
(
ϵ + 1

β

)
+ 1 ≤ 2 − 2 γβ + 2 γβ + 1 = 3

as well as

1 + γ2
(
ϵ + 1

β

)2
− 2γϵ = (γϵ − 1)2 + γ2

β2 (2ϵβ + 1) < 1 +
(

1 − γβ

)2
+ γ2

β2 (2ϵβ + 1)

= 2 − 2 γβ + 2 γ
2

β2 + 2 γ
2ϵ
β = 1 + 2 γ

β2 (γ − β + γϵβ) < 2.

Consequently ‖Vϵ,γ(x) − Vϵ,γ(y)‖2 ≤ 6‖x − y‖2, which yields the assertion. �

Based on this estimate, we obtain that

‖f (t, x) − f (t, y)‖ ≤ Lf (t)‖x − y‖2 ∀t ≥ 0, x, y ∈ H, (5.7)

where Lf : [0, +∞)→ R is de�ned by

Lf (t) ,
(

2γ(t)
(
ϵ(t) + 1

β

)
+ 1
)(

1 + γ(t)ϵ(t)(γ(t)ϵ(t) + 2 γ(t)
β − 2)

)
.

Hence, by Assumption 3.1 it follows Lf (·) ∈ L1
loc(R+;R). We now show that t 7→ f (t, x) ∈ L1

loc(R+;H) for
all x ∈ H. We �rst establish some continuity estimates of the regularized vector �eld with respect to the
parameters. De�ne the unregularized forward-backward-forward vector �eld

Vγ(x) , (Id −γB) ◦ JγA ◦ (Id −γB)x + γBx − x, (5.8)

and the residual vector �eld

Rϵ,γ(x) ,γ
(
B ◦ JγA(Id −γB) − B ◦ JγA ◦ (Id −γBϵ

)
x

+γϵ
(
x − JγA ◦ (Id −γBϵ)x

)
. (5.9)
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Simple algebra gives the decomposition

Vϵ,γ(x) = Vγ(x) + Rϵ,γ(x).

From [11], we know that the application γ 7→ Vγ(x) is continuous on (0, +∞). Furthermore, [11, Lemma 1] gives

lim
γ→0+

Vγ(x) = 0 ∀x ∈ H. (5.10)

Lemma 5.2. If x ∈ domA, then
lim

(ϵ,γ)→(0,0)+
Rϵ,γ(x) = 0. (5.11)

Proof. Let x ∈ domA. Nonexpansivenes gives

‖JγA(x − γBϵx) − JγA(x − γBx)‖ ≤ ϵγ‖x‖.

Since B is (1/β)-Lipschitz, it follows

‖B ◦ JγA(x − γBx) − B ◦ JγA(x − γBϵx)‖ ≤ ϵγβ ‖x‖.

Furthermore,

‖x − JγA(x − γBϵx)‖ ≤ ‖x − JγA(x − γBx)‖ + ϵ‖x‖.

Summarizing the last two bounds, the triangle inequality yields that

‖Rϵ,γ(x)‖ ≤ γ
2ϵ
β ‖x‖ + γϵ‖x − JγA(x − γBx)‖ + γϵ2‖x‖.

By [35, Proposition 6.4], we know that limγ→0+ JγA(x − γBx) = Pcl dom A(x) = x. From here the result easily
follows. �

Lemma 5.3. For all x ∈ domA, we have

lim
(ϵ,γ)→(0,0)

Vϵ,γ(x) = 0. (5.12)

Proof. We just have to combine (5.10) with the decomposition Vϵ,γ(·) = Vγ(·) + Rϵ,γ(·) and Lemma 5.2. �

De�ne the set
Θ ,

{
(ϵ, γ) ∈ R2

++|γ <
β

ϵβ + 1

}
. (5.13)

Bynonexpansivenes of the resolvent operator JγA and continuity of B, it follows that themap (ϵ, γ) 7→ R(ϵ,γ)(x)
is continuous. Furthermore, we can extend it continuously to the closure of the parameter space Θ, denoted
as Θ̄, as Lemma 5.3 shows. This allows us to prove the local boundedness of the vector �eld.

Lemma 5.4. For all (ϵ, γ) ∈ Θ and all x ∈ H, there exists K > 0 such that

‖Vϵ,γ(x)‖ ≤ K(1 + ‖x‖). (5.14)

Proof. Fix x̄ ∈ domA. By Lemma 5.3, the application (ϵ, γ) 7→ f (ϵ, γ, ·) can be continuously extended to the
set

Θ̄ ,
{

(ϵ, γ) ∈ R2
+|γ ≤

β
ϵβ + 1

}
.

Hence, there exists a constant M > 0 such that ‖f (ϵ, γ, x̄)‖ ≤ M for all (ϵ, γ) ∈ Θ. Furthermore, using Lemma
5.1, we get

‖Vϵ,γ(x)‖ ≤ ‖Vϵ,γ(x̄)‖ + ‖Vϵ,γ(x) − Vϵ,γ(x̄)‖
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≤ M +
√

3‖x − x̄‖
≤ K(1 + ‖x‖)

where we can choose K , max{
√

3,M +
√

3‖x̄‖}. �

All these estimates allow us now to prove existence and uniqueness of solutions to the dynamical system
(5.2).

Theorem 5.5. Let (ϵ, γ) : [0, +∞) → Θ be measurable. Then, for each x0 ∈ H, there exists a unique strong
solution t 7→ x(t), t ≥ 0, of (5.2).

Proof. We verify conditions (f1) − (f4) of Theorem 2.5 for the map f (t, x) = Vϵ(t),γ(t)(x). Conditions (f1), (f2)
follow from the integrability assumptions on the functions ϵ(t), γ(t). For all x, y ∈ H and all t ≥ 0 we have

‖f (t, x) − f (t, y)‖ ≤
√

3‖x − y‖, and

‖f (t, x)‖ ≤ K(1 + ‖x‖).

Hence, (f3), (f4) follow as well. �

5.2 Convergence of the trajectories

In order to show strong convergence of the strong global solution of (5.2) towards theminimumnorm element
of Zer(A + B), we need some additional preparatory results.

Lemma 5.6. For almost all t ∈ [0, +∞), we have

0 ≤‖x(t) − x̄(ϵ(t))‖2 − ‖x(t) − z(t)‖2 − (1 + 2ϵ(t)γ(t))‖z(t) − x̄(ϵ(t))‖2

+ 2γ(t)〈Bϵ(t)z(t) − Bϵ(t)x(t), z(t) − xϵ(t)〉.

Proof. First, we observe that the �rst line in (5.2) can be equivalently rewritten as

x(t) − z(t)
γ(t) − Bϵ(t)x(t) ∈ Az(t), (5.15)

hence

x(t) − z(t)
γ(t) + Bϵ(t)z(t) − Bϵ(t)x(t) = − ẋ(t)

γ(t) ∈ (A + Bϵ(t))z(t).

On the other hand 0 ∈ γ(t)(A + Bϵ(t))x̄(ϵ(t)). Using the ϵ(t)-strong monotonicity of A + Bϵ(t) yields

2ϵ(t)γ(t)‖z(t) − x̄(ϵ(t))‖2 ≤ 2〈x(t) − z(t) + γ(t)Bϵ(t)z(t)
− γ(t)Bϵ(t)x(t), z(t) − x̄(ϵ(t))〉
= ‖x(t) − x̄(ϵ(t))‖2 − ‖x(t) − z(t)‖2 − ‖z(t) − x̄(ϵ(t))‖2

+ 2γ(t)〈Bϵ(t)z(t) − Bϵ(t)x(t), z(t) − x̄(ϵ(t))〉.

This shows the assertion. �

Lemma 5.7. Let t 7→ x(t), t ≥ 0, be the strong global solution of (5.2). Then, for almost all t ∈ [0, +∞)

〈x(t) − x̄(ϵ(t)), ẋ(t)〉 ≤
(
γ(t)ϵ(t) + γ(t) − 1

β

)
‖x(t) − z(t)‖2

− ϵ(t)γ(t)‖z(t) − x̄(ϵ(t))‖.
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Proof. We have for almost all t ∈ [0, +∞)

2〈x(t) − x̄(ϵ(t)), ẋ(t)〉 = 2〈x(t) − x̄(ϵ(t)), z(t) − x(t)〉 + 2γ(t)〈x(t)
− x̄(ϵ(t)), Bϵ(t)x(t) − Bϵ(t)z(t)〉
= ‖z(t) − x̄(ϵ(t))‖2 − ‖x(t) − x̄(ϵ(t))‖2

− ‖z(t) − x(t)‖2 + 2γ(t)〈x(t) − x̄(ϵ(t)), Bϵ(t)x(t) − Bϵ(t)z(t)〉.

By Lemma 5.6, for almost all t ∈ [0, +∞) one has

‖z(t) − x̄(ϵ(t))‖2 − ‖x(t) − x̄(ϵ(t))‖2 ≤ −‖x(t) − z(t)‖2 − 2ϵ(t)γ(t)‖z(t) − x̄(ϵ(t))‖2

+ 2γ(t)〈Bϵ(t)z(t) − Bϵ(t)x(t), z(t) − x̄(ϵ(t))〉,

therefore, by using that Bϵ(t) is (ϵ(t) + 1/β)-Lipschitz continuous it holds for almost all t ∈ [0, +∞)

2〈x(t) − x̄(ϵ(t)), ẋ(t)〉 ≤ −2‖x(t) − z(t)‖2 − 2ϵ(t)γ(t)‖z(t) − x̄(ϵ(t))‖2

+ 2γ(t)〈Bϵ(t)z(t) − Bϵ(t)x(t), z(t) − x(t)〉

≤ −2
(

1 − γ(t)ϵ(t) − γ(t)
β

)
‖x(t) − z(t)‖2 − 2ϵ(t)γ(t)‖z(t) − x̄(ϵ(t))‖2.

�

The convergence statement follows.

Theorem 5.8. Let t 7→ x(t), t ≥ 0, be the strong solution of (5.2). Suppose that γ(t) < β
ϵ(t)β+1 for all t ∈ [0, +∞)

and that the following properties are ful�lled

(i) ϵ is absolutely continuous and ϵ(t) decreases to 0 as t → +∞,

(ii) ϵ̇(t)
ϵ2(t)γ(t)(β(1 − γ(t)ϵ(t)) − γ(t)) → 0 as t → +∞,

(iii)
+∞∫
0

γ(t)ϵ(t)
(
β − βγ(t)ϵ(t) − γ(t)

)
βγ(t)ϵ(t) + β + γ(t) dt = +∞.

Then x(t)→ PZer(A+B)(0) and z(t)→ PZer(A+B)(0) as t → +∞.

Proof. De�ne θ(t) , 1
2‖x(t) − x̄(ϵ(t))‖2, t ≥ 0. Then, by using Lemma 5.7, for almost all t ≥ 0

θ̇(t) =
〈
x(t) − x̄(ϵ(t)), ẋ(t) − ϵ̇(t) ddϵ x̄(ϵ(t))

〉
=
〈
x(t) − x̄(ϵ(t)), ẋ(t)

〉
−
〈
x(t) − x̄(ϵ(t)), ϵ̇(t) ddϵ x̄(ϵ(t))

〉
≤ −
(

1 − γ(t)ϵ(t) − γ(t)
β

)
‖x(t) − z(t)‖2 − ϵ(t)γ(t)‖z(t) − x̄(ϵ(t))‖

−
〈
x(t) − x̄(ϵ(t)), ϵ̇(t) ddϵ x̄(ϵ(t))

〉
. (5.16)

Further, for almost all t ≥ 0, by ϵ(t)-strong monotonicity of A + Bt one has

ϵ(t)‖z(t) − x̄(ϵ(t))‖2 ≤
〈
x(t) − z(t)
γ(t) + Bϵ(t)z(t) − Bϵ(t)x(t), z(t) − x̄(ϵ(t))

〉
,

hence by Cauchy-Schwarz inequality, employing the (ϵ(t) + 1/β)-Lipschitz continuity of Bϵ(t) and rearranging
terms, for almost all t ≥ 0 it holds

‖z(t) − x̄(ϵ(t))‖ ≤
(

1 + 1
γ(t)ϵ(t) + 1

βϵ(t)

)
‖x(t) − z(t)‖.
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In particular, for almost all t ≥ 0 one has

‖x(t) − x̄(ϵ(t))‖ ≤ ‖x(t) − z(t)‖ + ‖z(t) − x̄(ϵ(t))‖

≤
(

2 + 1
γ(t)ϵ(t) + 1

βϵ(t)

)
‖x(t) − z(t)‖,

which is equivalent to

−‖x(t) − z(t)‖ ≤ − βγ(t)ϵ(t)
2βγ(t)ϵ(t) + β + γ(t)‖x(t) − x̄(ϵ(t))‖ (5.17)

for almost all t ≥ 0. Inserting (5.17) in (5.16) and dropping the second (nonpositive) term on the right hand
side yields, after denoting

L(t) ,
(

1 − γ(t)ϵ(t) − γ(t)
β

)
βγ(t)ϵ(t)

2βγ(t)ϵ(t) + β + γ(t) , t ≥ 0,

we see

θ̇(t) ≤ −2L(t)θ(t) −
〈
x(t) − x̄(ϵ(t)), ϵ̇(t) ddϵ x̄(ϵ(t))

〉
≤ −2L(t)θ(t) − ϵ̇(t)

∥∥∥∥ ddϵ x̄(ϵ(t))
∥∥∥∥√2θ(t),

for almost all t ≥ 0, where in the second inequality we used that ϵ(·) is decreasing, thus ϵ̇(·) is nowhere
positive. From here, we can repeat the arguments from the proof of Theorem 4.3, mutatis mutandis, to obtain
the desired result.

Analogously to the proof of [11, Theorem 2] one can show, by replacing in the demonstrations of the
intermediate results B by Bϵ(t) and taking into consideration the absolute continuity of ϵ, that limt→+∞(x(t) −
z(t)) = 0, hence z(t)→ PZer(A+B)(0) as t → +∞ as well. �

Remark 5.1. If supt→+∞ γ(t) < β one can replace assertion (ii) of the previous theorem with

(ii′) ϵ̇(t)
ϵ2(t)γ(t) → 0 as t → +∞.

Remark 5.2. If we choose, for example, ϵ(t) = 1/(1 + t)0.5 and γ(t) ≡ γ ∈ (0, β) constant, symbolic computa-
tion with Mathematica shows that in this case assertion (iii) holds (as well as assertions (i) and (ii) by choice
of ϵ(·)).

Remark 5.3. The strong convergence of the trajectories of a forward-backward-forward dynamical systemwas
achieved in [11, Theorem 3] under more demanding hypothesis involving the strong monotonicity of sum of
the involved operators.

6 Numerical illustrations
In this section we are going to illustrate by some numerical experiments the theoretical results we achieved.
More precisely, we show how adding a Tikhonov regularization term in the considered dynamical systems
in�uences the asymptotic behavior of their trajectories.

6.1 Application to a split feasibility problem

For our �rst example we consider the following split feasibility problem in R2

�nd x ∈ R2 such that x ∈ C and Lx ∈ Q, (SFP)
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where C and Q are nonempty, closed and convex subsets of R2 and L : R2 → R2 a bounded linear operator.
For this purpose, we �rst notice that (SFP) can be equivalently rewritten as

min
x∈C

{
1
2‖Lx − PQ(Lx)‖2

}
.

The necessary and su�cient optimality condition for this problem yields

�nd x ∈ R2 such that 0 ∈ NC(x) + L* ◦ (Id −PQ) ◦ Lx. (6.1)

We approach (SFP) by the two Tikhonov regularized forward-backward dynamical systems we developed in
this paper as well as by an unregularized version and compare the trajectories. In order to apply the forward-
backward dynamical systems to the monotone inclusion problem (6.1), we set A , NC and B , ∇( 1

2‖L(·) −
PQ(L(·))‖2) = L* ◦ (Id −PQ) ◦ L. It holds for x, y ∈ R2

‖Bx − By‖ ≤ ‖L‖2‖x − y‖ + ‖L‖‖PQLx − PQLy‖ ≤ 2‖L‖2‖x − y‖,

i.e. B is Lipschitz continuous with constant 2‖L‖2 and due to the Baillon-Haddad theorem B is (1/(2‖L‖2))-
cocoercive. Hence Theorem 3.8 and Theorem 4.3 as well as the convergence statement [22, Theorem 6] for
the non-regularized forward-backward dynamical system can be employed for (6.1) writen by means of the
operators A and B. By taking into account that JA = PC we obtain the following dynamical systems{

ẋ(t) = λ(t)[PC(x(t) − γB(x(t))) − x(t)]
x(0) = x0,

(FB)

{
ẋ(t) = λ(t)[PC(x(t) − γB(x(t))) − x(t)] − ϵ(t)x(t)
x(0) = x0,

(FBOR)

and {
ẋ(t) = λ(t)[PC[x(t) − γ(B(x(t)) + ϵ(t)x(t))] − x(t)]
x(0) = x0,

(FBIR)

that are special cases of (4.2), (3.6) and (4.1), respectively. For the implementationwe take C , B1(0) the open
ball with center 0 and radius 1 inR2 and Q , {x ∈ R2 : 3x1 − x2 = 0} a linear subspace. Moreover, we de�ne

L ,
(

1 −1
1 1

)

and set x0 = (−3, 3)> ∈ R2 as starting point. Obviously, ‖L‖ =
√

2. According to [23, Proposition 29.10 and
Example 29.18], the projections onto the sets C and Q are given by

PC(x) =

{ x
‖x‖ , ‖x‖ > 1,

x, else,

and
PQ(x) = x + η − 〈x, u〉

‖u‖2 u,

with u = (3, −1)> ∈ R2 and η = 0, respectively. Further, we choose ϵ(t) , 1/((1 + t)0.5) as the Tikhonov
regularization function. For di�erent choices of the parameters λ(t) ≡ λ > 0 and γ > 0 the resulted trajectories
of the dynamical systems (FB), (FBIR) and (FBOR) are displayed in Figures 2 to 5.

One observes the following:while the trajectories of the unregularized system (FB) approach a solution of
(SFP) with positive norm, the regularized dynamical systems (FBIR) and (FBOR) generate trajectories which
converge to the minimum norm solution (0, 0)> ∈ R2 of (SFP). Furthermore, for small parameters λ and
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Fig. 2: Trajectories of (FB), (FBIR) and (FBOR) for λ = 0.5 and γ = 0.15

Fig. 3: Trajectories of (FB), (FBIR) and (FBOR) for λ = 0.5 and γ = 0.3

Fig. 4: Trajectories of (FB), (FBIR) and (FBOR) for λ = 1 and γ = 0.15

Fig. 5: Trajectories of (FB), (FBIR) and (FBOR) for λ = 1 and γ = 0.3
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γ the outer regularization (FBOR) acts more aggressively than the inner regularization (FBIR), leading to a
faster convergence of the trajectories of (FBOR). In contrast, the trajectories of (FBIR) are gently guided to
the minimum norm solution and one can recognize the shape of the unregularized trajectories generated by
(FB). However, for larger λ and γ, the di�erences between the trajectories generated by the two Tikhonov
regularized systems seem to fade.

6.2 Application to a variational inequality

For the second numerical illustration, this time of the forward-backward-forward splitting scheme, we con-
sider the variational inequality

�nd x ∈ R3 such that 〈B(x), y − x〉 ≥ 0 ∀y ∈ C, (VI)

where B : R3 → R3 is a Lipschitz continuous mapping and C ⊆ R3 a nonempty, closed and convex set. To
attach a forward-backward-forward dynamical system to this problem, we note that (VI) can be equivalently
rewritten as the monotone inclusion

�nd x ∈ R3 such that 0 ∈ B(x) + NC(x). (6.2)

Hence, by setting A , NC and taking into consideration that JA = PC, the Tikhonov regularized forward-
backward-forward dynamical system (5.2) associated to problem (6.2) reads as

z(t) = PC[x(t) − γ(t)(Bx(t) + ϵ(t)x(t))]
0 = ẋ(t) + x(t) − z(t) − γ(t)[Bx(t) − Bz(t) + ϵ(t)(x(t) − z(t))]
x(0) = x0.

(FBFR)

For the implementation we specify

B ,

 0 0.1 0.5
−0.1 0 −0.4
−0.5 0.4 0


which de�nes a linear operator and C , {x ∈ R3 : 3x1−x2 +1 = 0}. Since B is skew-symmetric (i.e. B> = −B),
it can not be cocoercive, hence our theoretical results on the forward-backward dynamical systems cannnot
be used for solving (6.2). However, since B is Lipschitz continuouswith constant ‖B‖ ≈ 0.64807 we can apply
Theorem 5.8 for �nding a solution to (6.2). Similarly as in the previous subsection, according to [23, Example
29.18] the projection onto C is given by

PC(x) = x + η − 〈x, u〉
‖u‖2 u,

with u = (3, −1, 1)> ∈ R3 and η = 0. We choose x0 , (−2, 4, −2)> as starting point and ϵ(t) , 1
(1+t)β with

β ∈ [0, 1) as Tikhonov regularization function. We call β the Tikhonov regularization parameter and note
that the choice β = 0 corresponds to the unregularized system (5.1) as investigated in [11]. The trajectories
of (FBFR) for the choices of regularization parameters β ∈ {0, 0.1, 0.5, 0.9} and step sizes γ ∈ {0.2, 0.5}
are pictured in Figures 6 and 7, respectively. One observes that the unregularized trajectories are oscillating
with high frequency and converge slowly to zero. As we employ the Tikhonov regularization, the oscillating
behaviour �attens out and the convergence speed increases. Since the parameter β is the exponent in the
denominator of ϵ, a small value of β corresponds to a stronger impact of the Tikhonov regularization and vice
versa. Hence, the two above mentioned e�ects are most pronounced when β is small. Moreover, comparing
Figures 6 and 7 suggests that increasing the step size γ results in an acceleration of the convergence behaviour
(note the di�erent time scales in Figures 6 and 7).
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Fig. 6: Trajectories of (FBFR) for regularization parameters β ∈ {0, 0.1, 0.5, 0.9} and γ = 0.2

Fig. 7: Trajectories of (FBFR) for regularization parameters β ∈ {0, 0.1, 0.5, 0.9} and γ = 0.5
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7 Conclusions
In this paper we perturb by means of the Tikhonov regularization several dynamical systems in order to
guarantee the strong convergence of their trajectories under reasonable hypotheses. First we investigate a
Tikhonov regularized Krasnoselskǐı-Mann dynamical system and show that its trajectories strongly converge
towards a minimum norm �xed point of the involved nonexpansive operator, slightly extending some recent
results from the literature. As a special case, a perturbed forward-backward dynamical system with an outer
Tikhonov regularization is obtained, whose trajectories strongly converge towards the minimum norm zero
of the sum of a maximally monotone operator and a single-valued cocoercive operator. Making the Tikhonov
regularization an inner one, by perturbing the single-valued operator and not the whole system as above,
another Tikhonov regularized forward-backward dynamical system, this time with dynamic stepsizes (in
contrast to the constant ones considered before) is obtained and its trajectories strongly converge towards
the minimum norm zero of the mentioned sum of operators as well. Afterwards we consider an implicit
forward-backward-forward dynamical system with a similar inner Tikhonov regularization of the involved
single-valued operator, that is taken to be only Lipschitz continuous this time. The trajectories of this
perturbed dynamical system strongly converge towards the minimum norm zero of the sum of a maximally
monotone operator with the mentioned single-valued Lipschitz continuous one. These results improve
previous contributions from the literature where only weak convergence of such trajectories was obtained
under standard assumptions, more demanding hypotheses of uniform monotonicity or strong monotonicity
being employed for deriving strong convergence. In order to illustrate our achievements we present some
numerical experiments performed in Matlab by using the ode15s function for solving ordinary di�erential
equations. In order to deal with the forward-backward dynamical systems we consider a split feasibility
problem, while for the forward-backward-forward dynamical system we use a variational inequality. In
both these situations one can note that adding a Tikhonov regularization term in the considered dynamical
systems signi�cantly in�uences the asymptotic behaviour of their trajectories. More precisely, while the
trajectories of the unregularized dynamical systems are oscillating with high frequency and converge slowly
towards some (random) solutions of the considered problems, the regularized dynamical systems generate
trajectories which converge to the corresponding minimum norm solutions. Moreover, the outer regular-
ization actsmore aggressively than the inner regularization, leading to a faster convergence of the trajectories.
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