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Abstract

Projection-free optimization via different variants of the Frank—Wolfe method has
become one of the cornerstones of large scale optimization for machine learning
and computational statistics. Numerous applications within these fields involve the
minimization of functions with self-concordance like properties. Such generalized
self-concordant functions do not necessarily feature a Lipschitz continuous gradi-
ent, nor are they strongly convex, making them a challenging class of functions for
first-order methods. Indeed, in a number of applications, such as inverse covariance
estimation or distance-weighted discrimination problems in binary classification, the
loss is given by a generalized self-concordant function having potentially unbounded
curvature. For such problems projection-free minimization methods have no theoret-
ical convergence guarantee. This paper closes this apparent gap in the literature by
developing provably convergent Frank—Wolfe algorithms with standard O(1/k) con-
vergence rate guarantees. Based on these new insights, we show how these sublinearly
convergent methods can be accelerated to yield linearly convergent projection-free
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methods, by either relying on the availability of a local liner minimization oracle, or
a suitable modification of the away-step Frank—Wolfe method.

Keywords Generalized self-concordant functions - Frank—Wolfe algorithm - Convex
programming

Mathematics Subject Classification 90C25 - 65K05 - 90C06

1 Introduction

Statistical analysis using generalized self-concordant (GSC) functions as a loss func-
tion is gaining increasing attention in the machine learning community [2,45,46,50].
Beyond machine learning, GSC loss functions are also used in image analysis [44]
and quantum state tomography [33]. This class of loss functions allows to obtain
faster statistical rates similar to least-squares [37]. At the same time, the minimiza-
tion of empirical risk in this setting is a challenging optimization problem in high
dimensions. Thus, without knowledge of specific structure, interior point, or other
polynomial time methods, are unappealing. Moreover, large-scale optimization mod-
els in machine learning often depend on noisy data and thus high-accuracy solutions
are not really needed, or obtainable. All these features make simple optimization algo-
rithms, with low implementation costs, the preferred methods of choice. In this paper
we focus on projection-free methods which rely on the availability of a Linear Mini-
mization Oracle (LMO). Such algorithms are known as Conditional Gradient (CG) or
Frank—Wolfe (FW) methods. These classes of gradient-based algorithms belong to the
oldest convex optimization tools, and their origins can be traced back to [22,32]. For
a given convex compact set X C R", and a convex objective function f, FW methods
solve the smooth convex optimization problem

min f(x), P)
xeX
by sequential calls of a LMO, returning at point x the target state

$(x) € arg min(V [ (x). d). (1)

The selection s (x) is determined via some pre-defined tie breaking rule, whose specific
form is of no importance for the moment. Computing this target state is the only
computational bottleneck of the method. Progress of the algorithm is monitored via a
merit function. The standard merit function in this setting is the Frank—Wolfe (dual) gap

Gap(x) £ ma))(((Vf(x), x —s). 2)

It is easy to see that Gap(x) > O for all x € X, with equality if and only if x is
a solution to (P). The vanilla implementation of FW (Algorithm 1) aims to reduce
the gap function by sequentially solving linear minimization subproblems to obtain
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Generalized self-concordant analysis of Frank—Wolfe algorithms 257

Algorithm 1: FW-Standard and FW-Line Search

Input: x0 € dom f N X initial state; ¢ > 0 tolerance level
fork=1,...do
if Gap(xk) > ¢ then
Obtain sk = s(xk)
Chose oy = kzﬂ (FW-Standard), or via exact line search (FW-Line Search)

ay = argmin, o, 17 f((1 — x4+ 155). 3)

Update kL = xk 4 ak(sk —xky.
end if
end for

the target point s(x). As always, the general performance of an algorithm depends
heavily on the availability of practical step-size policies {oy }ren. Two popular choices
are either oy = ﬁ (FW-Standard), or an exact line-search (FW-Line Search).
Under either choice, the algorithm exhibits an O(1/k) rate of convergence for solving
(P) in case where f is convex and either possess a Lipschitz continuous gradient, or a
bounded curvature constant. The latter concept is a slight weakening of the classical
Lipschitz gradient assumption, and is the key quantity in the modern analysis of FW
due to Jaggi [28]. The curvature constant is defined as

N 2
Kf= sup S fx+1s—x) — fx) —t{(Vfx),s —x)].
x,5€X,1€[0,1]

Assuming that ky < oo, [28] estimated the iteration complexity of Algorithm 1 to
be O(I)M. This iteration complexity is in fact optimal [30], even when f is
strongly convex. This is quite surprising, since gradient methods are known to display
linear convergence on well-conditioned optimization problems, i.e. when the objective
function is strongly convex with a Lipschitz continuous gradient [41].

Frank-Wolfe for ill-conditioned functions. In this paper we are interested in func-
tions which are possibly ill-conditioned: f is neither assumed to be globally strongly
convex, nor to posses a Lipschitz continuous gradient over the feasible set. Recently,
many empirical risk minimization problems have been identified to be ill-conditioned,
or at least nearly so [36,37,45]. This explains why the study of algorithms for this
challenging class of problems received a lot of attention recently. The role of self-
concordance-like properties of loss functions has been clarified in the influential
seminal work by Bach [2]. Since then, numerous papers at the intersection between
statistics, machine learning and optimization, exploited the self-concordance like
behavior of typical statistical loss function to improve existing statistical rate esti-
mates [37,45,46], or to improve the practical performance and theoretical guarantees
of optimization algorithms [8,16,19,20,51-53]. Besides applications in statistics, gen-
eralized self-concordant functions are of some importance in scientific computing.
[54] construct self-concordant barriers for a class of polytopes arising naturally in
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combinatorial optimization. [50] show that the well-known matrix balancing problem
minimizes a GSC function. We believe that our results are going to be useful in such
problems as well.

The main difficulties one faces in minimizing functions with self-concordance like
properties can be easily illustrated with a basic, in some sense minimal, example:

Example 1 Consider the function f(x, y) = —In(x) — In(y) where x, y > 0 satisfy
x + y = 1. This function is the standard self-concordant barrier for the positive
orthant (the log-barrier) and thus (2, 3)-generalized self-concordant (see Definition
1). Its Bregman divergence is easily calculated as

2

Dy(u,v) = Z [—1n (%) + % - 1} u = (uy,uz),v=(vy, v2).
i— i i

Neither the function f, nor its gradient, is Lipschitz continuous over the set of interest.
In particular the curvature constant is unbounded, i.e. k y = 0o. Moreover, if we start
from u® = (1/4, 3/4) and apply the standard 2/(k + 2)-step size policy, then ag = 1,
which leads to u! = s(u®) = (1, 0) ¢ dom f. Clearly, the standard method fails. 4

The logarithm is one of the canonical members of (generalized) self-concordant func-
tions, and thus the above example is quite representative for the class of optimization
problems of interest in this paper. It is therefore clear that the standard analysis of
[28], and all subsequent investigations relying on estimates of the Lipschitz constant
of the gradient or the curvature, cannot be applied straightforwardly to the problem of
minimizing a GSC function via projection-free methods.

1.1 Related literature

The development of FW methods for ill-conditioned problems has received quite some
attention recently. [40] requires the gradient of the objective function to be Holder con-
tinuous and similar results for this setting are obtained in [7,49]. Implicitly it is assumed
that X € dom f. This would also not be satisfied in important GSC minimization
problems, and hence we do notimpose it (e.g. 0 € X, but0 ¢ dom f in the Covariance
Estimation problem in Sect. 6.4). Specialized to solving a quadratic Poisson inverse
problem in phase retrieval, [44] provided a globally convergent FW method using
the convex and self-concordant (SC) reformulation, based on the PhaseLift approach
[9]. They constructed a provably convergent FW variant using a new step size pol-
icy derived from estimate sequence techniques [3,39], in order to match the proof
technique of [40].

Very recently, two other FW-methods for ill-conditioned problems appeared. [34]
employed a FW-subroutine for computing the Newton step in a proximal Newton
framework for minimizing self-concordant (SC)-functions over a convex compact set.
After the first submission of this work, Professor Robert M. Freund sent us the preprint
[57], in which the SC-FW method from our previous conference paper [17] is refined to
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minimize a logarithmically homogeneous barrier [42] over a convex compact set. They
also propose new stepsizes for FW for minimizing functions with Holder continuous
gradient. None of these recent contributions develop FW methods for the much larger
class of GSC-functions, nor do they consider linearly convergent variants.

Linearly convergent Frank-Wolfe methods Given their slow convergence, it is clear
that the application of projection-free methods can only be interesting if projections
onto the feasible set are computationally expensive. Various previous papers worked
out conditions under which the iteration complexity of projection-free methods can
be potentially improved. [25] obtained linear convergence rates in well conditioned
problems under the a-priori assumption that the solution lies in the relative interior of
the feasible set, and the rate of convergence explicitly depends on the distance of the
solution from the boundary (see also [5,21]). If no a-priori information on the location
of the solution is available, there are essentially two known twists of the vanilla FW to
boost the convergence rates. One twist is to modify the search directions via corrective,
or away search directions [23,25,26,48,55]. The Away-Step Frank Wolfe (ASFW)
method can remove weight from "bad" atoms in the active set. These drop steps have
the potential to circumvent the well-known zig-zagging phenomenon of FW when the
solution lies on the boundary of the feasible set. When the feasible set X is a polytope,
[29] derived linear convergence rates for ASFW using the "pyramidal width constant"
in the well-conditioned optimization case. Unfortunately, the pyramidal width is the
optimal value of a complicated combinatorial optimization problem, whose value is
unknown even on simple sets such as the unit simplex. [4] improved their construction
by replacing the pyramidal width with a much more tractable gradient bound condition,
involving the "vertex-facet distance". In many instances, including the unit simplex,
the £1-ball and the ¢,.-ball, the vertex-facet distance can be computed (see Section
3.4 in [4]). In this paper we develop a corresponding away-step FW variant for the
minimization of a GSC function (Algorithm 8 (ASFWGSC)), extending [4] to ill-
conditioned problems.

While we were working on the revision of this paper, Professor Sebastian
Pokutta shared with us the recent preprint [10], where a monotone modification of
FW-Standard applied to GSC-minimization problems is proposed. They derive
a O(1/k) convergence rate guarantee for minimizing GSC functions. Moreover,
they exhibit a linearly convergent variant using away-steps. These results have been
achieved independently from our work, and they give a nice complementary view on
our away-step variant ASFWGSC. The basic difference between our analysis and [10]
is that we exploit the vertex-facet distance instead of the pyramidal width. As already
said, this gives explicit and efficiently computable error bounds for some important
geometries, and thus allows for a more in-depth complexity assessment.

The alternative twist to obtain linear convergence is to change the design of the
LMO [24,27,30] via a well-calibrated localization procedure. Extending the work by
Garber and Hazan [24], we construct another linearly convergent FW-variant based
on local linear minimization oracles (Algorithm 7, FWLLOO).
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1.2 Main contributions and outline of the paper

In this paper, we demonstrate that projection-free methods extend to a large class of
potentially ill-conditioned convex programming problems, featuring self-concordant
like properties. Our main contributions can be succinctly summarized as follows:

(i) Ill-Conditioned problems We construct a set of globally convergent projection-
free methods for minimizing generalized self-concordant functions over convex
compact domains.

(ii) Detailed Complexity analysis Algorithms with sublinear and linear convergence
rate guarantees are derived.

(iii) Adaptivity We develop new backtracking variants in order to come up with new
step size policies which are adaptive with respect to local estimates of the gra-
dient’s Lipschitz constant, or basic parameters related to the self-concordance
properties of the objective function. The construction of these backtracking
schemes fully exploits the basic properties of GSC-functions. Specifically, Algo-
rithm 3 (LBTFWGSC) builds on a standard quadratic upper model over which a
local search for the Lipschtiz modulus of the gradient, restricted to level sets, can
be performed. This local search method is inspired by [47], but our convergence
proof is much simpler and direct. Our second backtracking variant (Algorithm 5,
MBTFWGSC) performs a local search for the generalized self-concordance con-
stant. To the best of our knowledge this is the first algorithm which adaptively
adjusts the self-concordance parameters on-the-fly. We thus present three new
sublinearly converging FW-variants which are all adaptive, and share the stan-
dard sublinear O(1/¢) complexity bound which is proved in Sect. 4. On top of
that, we derive two new linearly converging schemes, either building on the avail-
ability of Local Linear Optimization Oracle (LLOO) (Algorithm 7 (FWLLOO)),
or suitably defined Away-Steps (Algorithm 8 (ASFWGSC)).

(iv) Detailed Numerical experiments We test the performance of our method on a set
of challenging test problems, spanning all possible GSC parameters over which
our algorithms are provably convergent.

This paper builds on, and significantly extends, our conference paper [17]. This
previous work exclusively focused on the minimization of standard self-concordant
functions. The extension to generalized self-concordant functions requires some care-
ful additional steps and a detailed case-by-case analysis that are not simple corollaries
of [17]. On top of that, in this paper we derive two completely new projection-free
algorithms, and new proofs of existing algorithms we already introduced in our first
publication. In light of these contributions, this paper significantly extends the results
reported in [17].

Outline  Section 2 contains necessary definitions and properties for the class of
GSC functions in a self-contained way. Our algorithmic analysis starts in Sect. 3
where a new FW variant with an analytic step-size rule is presented (Algorithm 2,
FWGSC). This algorithm can be seen as the basic template from which the other
methods are subsequently derived. Section 4 presents the convergence analysis for
the three sublinearly convergent variants presented in Sect. 3. Section 5 presents the
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two linearly convergent variants and their convergence analysis. Section 6 reports
results from extensive numerical experiments using the proposed algorithms and their
comparison with the baselines. Section 7 concludes the paper.

Notation Given a proper, closed, and convex function f : R" — (—o0, c0], we
denote by dom f £ {x € R"| f(x) < oo} the (effective) domain of f.For a set X, we
define the indicator function §x (x) = oo if x ¢ X, and §x (x) = 0 otherwise. We use
C*(dom f) to denote the class of functions f : R* — (—oo, co] which are k-times
continuously differentiable on their effective domain. We denote by V f the gradient
map, and V2 f the Hessian map.

Let R4 and R4 denote the set of nonnegative, and positive real numbers, respec-
tively. We use S” £ {x € R"*"|x T = x} the set of symmetric matrices, and ", St
to denote the set of symmetric positive semi-definite and positive definite matrices,
respectively. Given Q € S’ | we define the weighted inner product (i, v) o 2 (Qu,v)
for u, v € R", and the corresponding norm [|ul o £ [u, u)o. The associated dual

norm is |[v|%, £ /{v, v)o-1. For O € §", we let Amin(Q) and Amax(Q) denote the
smallest and largest eigenvalues of the matrix Q, respectively.

2 Generalized self-concordant functions

Following [50], we briefly introduce the basic properties of the class of GSC functions.
Letp : R — R be a three-times continuously differentiable function on dom ¢. Recall
that ¢ is convex if and only if ¢”(¢) > 0 for all € dom ¢.

Definition 1 [50] Let ¢ € C(dom ¢) be a convex function with dom ¢ open. Given
v > 0 and M, > 0 some constants, we call ¢ (M, v) generalized self-concordant
(GSO) if

" ()] < Mpg” (1)2 V¥t € domg. “)

If () = %tz + bt + ¢ for any constant a > 0 we get a (0, v)-generalized self-
concordant function. Hence, any convex quadratic function is GSC for any v > 0.
Standard one-dimensional examples are summarized in Table 1 (based on [50]).
This definition generalizes to multivariate functions by requiring GSC along every
straight line. Specifically, let f : R" — (—o00, 400] be a closed convex, lower

Table 1 Examples of univariate GSC functions (based on [50])

Function name Form of ¢(t) v My dom ¢ Lipschitz smooth
Burg entropy —In(t) 3 2 (0, 00) No
Logistic In(1+4e77) 2 1 (—00, 00) Yes
Exponential et 2 1 (—00, 00) No
. _ 2(g+3) q+2
Negative power t7,4 >0 ) e (0, 00) No
Arcsine distribution ll 5 % <3.25 -1, 1 No
—t
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262 P. Dvurechensky

semi-continuous function with effective domain dom f which is an open nonempty
subset of R”. For x € dom f and u, v € R", define the real-valued function ¢(¢) :=
(V2 f(x + tv)u,u). For t € dom g, one sees that ¢'(r) = (D3 f(x + tv)[v]u, u),
where D3 f(x)[v] denotes the third-derivative tensor at (x, v), viewed as a bilinear
mapping R” x R” — R. The Hessian of the function f defines a semi-norm ||u||, £

(u, u)y2 f(y) forall x € dom f, with dual norm lla|l% = SUpycrn12(d, a) — ||d||)%}.

IfV2f(x) e Sh4 then ||-|ly is a true norm, and ||d I = \/(d, d)v2 (x)-1-

Definition 2 [50] A closed convex function f € C3(dom f), with dom f open, is
called (M y, v) generalized self-concordant of the order v € [2, 3] and with constant
My > 0,if for all x € dom f

(D3 £ () [wlu, u)] < Myllul2vll2 2 vl3™"  Yu,v e R". 5)
We denote this class of functions as F, My,v-

In the extreme case v = 2 we recover the definition |(D3f(x)[v]u,u)| <
Myllu ||)2C llv]l2, which is the generalized self-concordance definition proposed by Bach
[2]. If v = 3 and u = v the definition becomes (D> f (x)[ulu, u)| < Mf||u||)3c, which
is the standard self-concordance definition due to [42].

Givenv € [2,3]and f € Fy v, WE define the distance-like function

Melly —xll2 ifv=2,
d(x, ) = v—2 3—v v=2 : ©)
SEMplly = xlly " - lly — x|y ifv € (2, 3],
and the Dikin Ellipsoid
Wi(x;r) & {yeR":d,(x,y) <r} V(x,r) €dom f x R. 7

Since f € fo,u are closed convex functions with open domain, it follows that
they are barrier functions for dom f: Along any sequence {x,},en C dom f with
dist (x,, bd(dom f)) — 0 we have f(x,) — oo. This fact allows us to use the Dikin
Ellipsoid as a safeguard region within which we can perturb the current position x
without falling off dom f.

Lemma 1 ([50], Prop.7) Let f € fM_f,U withv € (2, 3]. We have W(x; 1) C dom f
forall x € dom f.

The inclusion W(x; 1) C dom f for v € (2, 3] is a generalization of a well-known
classical property of self-concordant functions [42]. It gains relevance for the case
v > 2, since when v = 2, we have dom f = R", making the statement trivial.

The next Lemma gives a-priori local bounds on the function values.

Lemma 2 ([50], Prop. 10) Let x, y € dom f for f € FMf,V and v € (2, 3]. Then

fO) = f@) 4+ (V). y = x) + ou(—dy(x, ) ly — x|3, and ®)
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FO) < F@+ V), y = x) + ou(d e, )y = x5, (C))

where, if v > 2, the right-hand side of (9) holds if and only if d,(x,y) < 1. Here
wy (+) is defined as
L —r=1) ifv=2
12 ’
—ft—In(1— .
wy () & | = ifv =3, (10)
_ _ 26-v) ,
(522) [ -0 —n—-1]ive .
The function w, (-) is strictly convex and one can check that w,(#) > 0 for all ¢ €
dom(w,). These bounds on the function values can be seen as local versions of the
standard approximations valid for strongly convex functions, respectively for functions
with a Lipschitz continuous gradient (see e.g. [41], Def. 2.1.3 and Lemma 1.2.3). In
particular, the upper bound (9) corresponds to a local version of the celebrated descent

lemma, a fundamental tool in the analysis of first-order methods [18]. To emphasize
this analogy, we will also refer to (9) as the GSC-descent lemma.

3 Frank-Wolfe works for generalized self-concordant functions

In this section we describe three provably convergent modifications of Algorithm 1,
displaying sublinear convergence rates.

3.1 Preliminaries

Assumption 1 The following assumptions shall be in place throughout this paper:

e The function f in (P) belongs to the class F, My with v € [2, 3].

e The solution set X* of (P) is nonempty, with x* € A™ representing a solution and
f* = f(x*) the corresponding objective function value.

e X is convex compact and the search direction (1) can be computed efficiently and
accurately.

e V2 f is continuous and positive definite on X N dom f.

Define the Frank—Wolfe search direction as
vEw (¥) £ s(x) — x. (11)

We also declare the functions e(x) £ |vpw (x)|lx and B(x) 2 |lvpw (x)]|2 for all
x € dom f.

3.2 A Frank-Wolfe method with analytical step-size

Our first Frank—Wolfe method (Algorithm 2, FWGSC) for minimizing generalized self-
concordant functions builds on a new adaptive step-size rule, which we derive from
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Algorithm 2: FWGSC

Input: x0 € dom f N X initial state, ¢ > 0 error tolerance, and f € Fyy .
fork =0,...do
if Gap(xk) > ¢ then
Obtain sk = s(xk) from (1) and define vk = vo(xk);
Obtain o, = au(xk) from (15);
Set xk+1 = xk 4 akvk
end if
end for

a judicious application of the GSC-descent Lemma (9). An attractive feature of this
new step size policy is that it is available in analytical form, which allows us to do
away with any globalization strategy (e.g. line search). This has significant practical
impact when function evaluations are expensive.

Given x € X, set xf £ x + tvpw(x), and assume that e(x) # 0. Moving from the
current position x to the point x,+ , we know that d,, (x, x,+ ) =tMy6,(x), where

B(x) ifv=2,

8y(x) £
) S2B(x)3 Ve(x)" 2 if v > 2.

12)

Choosing ¢ € (0, m), the GSC-descent lemma (9) gives us the upper bound

FOD) < £+ (V) 57— x) + oo (dy (e, x,)) Ix,T — x)12
= f)+H V@), xT —x) +w, (1M 8, (x)) t2e(x)?
= f(x) —t Gap(x) + w, (tMf8,(x)) t2e(x)?.

For x € dom f N X, define ny p., : Ry — (—o00, +00] by

2
e } . (13)

) 2 Ga r—wy, IMS 2
Nx,M,v(F) p(x) [ wy (tM3,(x)) Gap()
Note that 1, ., (¢) is strictly concave on dom(nx a7.») < [0, m]. This leads to
the per-iteration change in the objective function value as

1
FOD) = f@) < —mempn(@®) V€, m)

Since nx,Mf,v(t) > (0 fort € (0, m), we are ensured that we make progress in
reducing the objective function value when choosing a step size within the indicated
range. Given the triple (x, M, v), we search for a value 7 such that the per-iteration
decrease is as big as possible. Hence, we aim to find ¢ > 0 which solves the concave
maximization problem

SUP 1,1, (1). (14)

t>0
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Call tjs,,(x) a solution of this program. Since we have to stay within the feasible
set, we cannot simply use the number t 7, (x) as our step size as it might lead to an
infeasible point. Consequently, we propose the truncated step-size

ap,y(x) £ min {1, ty,,(x)} Vx € dom f. (15)

In Sect. 4 we show that this step-size policy guarantees feasibility and a sufficient
decrease.

Remark 1 We emphasize that the basic step-size rule is derived by identifying a suitable
local majorizing model f(x) — 1y m,,v (7). Minimization with respect to 7 aligns the
model as close as possible to the effective progress we are making in reducing the
objective function value. This upper model holds for all GSC functions with the same
characteristic parameter (M ¢, v). Thus, our derived step size strategy is universally
applicable to all functions within the class ]—"Mf,v. Therefore, akin to [50,52], the
derived adaptive step size policy can be regarded as an optimal choice in the analytic
worst-case sense.

3.3 Backtracking Frank-Wolfe variants

Algorithm FWGSC comes with several drawbacks. First, it relies on the minimization of
a universal upper model derived from the GSC-descent Lemma. This over-estimation
strategy leads to a worst-case performance estimate, relying on various state-dependent
quantities, such as the local norm e(x%), and the GSC parameters (M 7, v). Evaluating
the local norm requires the computation of the matrix-vector product between the
Hessian V2 f (x), and the FW search direction vgw (x¥).! The GSC parameter M y is
a global quantity, relating the second and third derivative over the entire domain of the
function f. Additionally, it restricts the interval of admissible step sizes (0, m).
Consequently, a local search for this parameter could lead to larger step-sizes, which
may improve the performance. Motivated by these facts, this section presents two
backtracking variants of the basic Frank—Wolfe method. Both methods are based on
the assumption that we can easily answer the question whether a given candidate
search point x belongs to the domain of the function f, or not.

Assumption 2 (Domain Oracle) Given a point x, it is easy to decide if x € dom f, or
not.

Remark 2 For many problems such domain oracles are easy to construct. As a concrete
example, consider the problem of minimizing the log-barrier function over a compact
domain in R}, which is a standard routine in interior-point methods (e.g. the com-
putation of the analytic center). For this problem, a simple domain oracle is a single
pass through all the coordinates of the vector x and checking if each entry is positive.
The complexity of such an oracle is linear in the number of variables.

U In fact, evaluating the local norm requires the Hessian matrix v2 f(x), and thus FWGSC is actually
second-order method. At the same time, no inversion of the Hessian is needed. For instance, the matrix-
vector product can be efficiently computed when the objective belongs to the class of generalized linear
models, where the Hessian is given as a sum of rank 1 matrices.
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266 P. Dvurechensky

Algorithm 3: FWGSC with backtracking over the Lipschitz parameter
(LBTFWGSC)

Input: x9 € dom f N X initial state, f € Fp ,, £_1 > O initial Lipschitz estimate,
vu > 1, yq < 1 fixed scaling parameters for the backtracking routine.
fork =0,...do
if Gap(xk) > ¢ then
Obtain sk = s(xk) and set vk = va(xk)
Obtain (g, L) = stepp (f, v5, xX, Lr_1)
Update k= kg ozkvk
end if
end for

Algorithm 4: Function step; (f, v, x, £)

Choose L € [vaLl, L]

GNap(X)}

Livi3

if x + av ¢ dom f or f(x +av) > Qr (x,a, L) then
L <yl

o = min{1,

. Gap(x)

o < min{-—= 1
{Luuu% J

end if

Return «, L

3.3.1 Backtracking over the Lipschitz constant

Our first backtracking variant of FWGSC preforms a local search over the Lipschitz
modulus of the gradient over level sets. From the previous analysis we know that under
an appropriate choice of the stepsize the algorithm is guaranteed to stay in the level set
on which the function has Lipschitz gradient. Thus, we can appropriately modify and
apply the Backtracking FW algorithm proposed in [47] for functions with Lipschitz-
continuous gradient. The main difference is that we additionally check that the step
is feasible w.r.t. dom f. Also our proof is both simpler and much more direct. We
also remark that our algorithm is not only applicable to generalized self-concordant
minimization, but also for other settings with locally Lipschitz gradient.
Consider the quadratic model
1’L 1’L
QL(x,1,£) & f(x) = 1 Gap(x) + —= [opw () I3 = f (x) — 1 Gap(x) + —=B(x)?,
(16)
where x € X is the current position of the algorithm, and ¢, £ > 0 are parameters.
From the complexity analysis of FWGSC, we know that there exists a range of step-size
parameters t > 0 that guarantee decrease in the objective function value. Denote by
S(x) 2 {x' € X|f(x') < f(x)}, and set y 2 sup{r > 0[xF 4 r(s¥ — x¥) € S(x¥)}
aswellas Ly = max ¢ 5k krzllax(sz(x)). Then, for all ¢ € [0, yx], it holds true that
f (xk + t(sk — xk)) <f (xk). Therefore, by the mean-value-theorem

IV FR 15— x5 = VA < Larllst = xK)l2 Ve € 0, mo).
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Algorithm 5: FWGSC with backtracking over the GSC parameter My
(MBTFWGSC)

Input: x9 € dom f N X initial state, f € ]:Mf-‘)’ n—1 > 0 initial GSC parameter. y, > 1,y < 1
fixed scaling parameters for the backtracking routine.
fork =0,...do
if Gap(xk) > ¢ then
Obtain 5% = s(x¥) and set vk = vpw (x¥)
Obtain (ag, ) = stepy (f, V¥, X, 1)
Update kL = k4 o vk
end if
end for

Algorithm 6: Function stepy (f, v, x, 1)

Choose M € [vam, il

o= aM’v(x) defined in (15)

if x + v ¢ dom f or f(x +av) > Qu(x, o, M) then
M« VMM
o <« on’v(x)

end if

Return o, M

Hence, for all t € (0, yx),

2

fe (st =2 =" < —rGap(x")+L"T’||s"—xk I3 = Qe 1, Ly—f ("),

a7
The idea is to dispense with the computation of the local Lipschitz estimate Ly over the
level set S(x¥), and replace it by the backtracking procedure step; (f, vk XK L))
(Algorithm 4) as an inner-loop within Algorithm 3 (LBTFWGSC). In particular, using
Assumption 2, the implementation of LBTFWGSC does not require the evaluation
of the Hessian matrix V2 f(x¥), and simultaneously determines a step size which
minimizes the quadratic model under the prevailing local Lipschitz estimate.

3.3.2 Backtracking over the GSC parameter My

Our second backtracking variant performs a local search for the GSC parameter M .
Our goal is to construct a backtracking procedure for the constant M ¢ such that for a
given candidate GSC parameter i > 0 and search point x;” = x + rvpw (x), we have
feasibility: x;“ € dom f, and sufficient decrease:

) < f(x) —1Gap(x) + Pe(x)’w, (tpndy(x)) £ Qu(x, 1, 10).  (18)

Optimizing the new upper model Qs (x, t, ;) with respect to ¢ > 0 yields a step-size
ty,v(x), whose definition is just like the maximizer in (14), but using the parameters
(x, i, v) as input. This approach allows us to define a localized step-size, exploiting
the analytic structure of the step-size policy associated with the base algorithm FWGSC.
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The main merit of this backtracking method can be seen by revisiting the analytical
step-size criterion attached with FWGSC, defined ineq. (15). Inspection of the definition
of the function orps ,(x) that a larger M cannot lead to a larger step size. Hence, a
precise local estimate of the GSC parameter M opens up possibilities to make larger
steps and thus improve the practical performance of the method. We will see in our
numerical experiments in Sect. 6 that this claim has some substance in important
machine learning problems.

4 Complexity analysis
4.1 Complexity analysis of FWGSC

Based on the preliminary discussion of Sect. 3.2, our strategy to determine the step-
size policy is to first compute t s f,v(x), defined as the solution to program (14), and
then clip the value accordingly. A technical analysis of the optimization problem (14),
relegated to “Appendix B”, yields the following explicit expression for ts ., (x).

Proposition 1 The unique solution to program (14) is given by

! Gap(x)M 75, (x) S
e In (1 e ) ifv =2,
v—2
M8, (x) Gap(x) 4\~ 55 | .
Eamp(x) = m |:1 — (1 + %%) ] ifve(2,3), (19
Gap(x) H —
M 63(x) Gap(x) Te(x)? ifv=3.

where §,(x), v € [2, 3], is defined in eq. (12).
Next we show that FWGSC is well-defined using the step size policy (15).

Proposition 2 Let {xk}kzo be generated by FWGSC with step size policy
{aMf!,,(xk)}kzo defined in (15). Then x* e X Ndom f forallk > 0.

Proof The proof proceeds by induction. By assumption, x° € dom f N X' To perform
the induction step, assume that x¥ € X Nndom f for some k > 0. We consider two
cases:

e Ifv =2, thensince oy f,z(xk) < 1, feasibility follows immediately from convexity
of X (recall that dom f = R” in this case).
e If v € (2, 3], then, whenever xk e X, we deduce from (19) that tM/.,U(xk)

M8, (x*) < 1 If £y, (xF) > 1, then apg, o ()M 58, (%) = Mps,(xF) <
ty;.0(xF)M 8, (x*) < 1. The claim then follows thanks to Lemma 1.

O

In order to simplify the notation, let us introduce the sequences o = oy fyv(xk)

and Ay = T)xkny’v(Ole’U(xk)). Along the sequence {xk}kzo, we have d, (x, xk1)

@ Springer



Generalized self-concordant analysis of Frank-Wolfe algorithms 269

=M fozk&,(xk ) < 1, and we know that we reduce the objective function value by at
least the quantity Ax > 0. Whence,

FORY < F65 — A < FG5, (20)

sothat £ (x*) < £(x°), orequivalently, {x*};>0 C S(x°) £ {x € dom fNX|f(x) <
0.

Lemma 3 The set S(x°) is compact.

Proof S(x°) € X and therefore it is bounded. Moreover, since x € dom f N X, f
is closed and convex and X’ is also closed. S(x?) is closed as the intersection of two
closed sets, and therefore compact. O
Accordingly, S(x% ¢ dom(f) and the numbers Lyy = max , ¢ 5,0 Amax (V2 £ (x))
ando £ min xeS(x0) Amin (V2 f (x)) are well defined and finite. Furthermore, since the

level set S(x°) is compact, Assumption 1 guarantees V2 £ (x) > 0 for all x € S(x?),
and hence oy > 0. By [41, Thm.2.1.11], for any x € S(xo) it holds that

) = f* = %fnx — x| @1)

Proposition 3 below shows asymptotic convergence to a solution along subsequences.
We omit the proof, as it follows from [17].

Proposition 3 Suppose Assumption 1| holds. Then, the following assertions hold for
FWGSC:

(@) {f(x")}i=0 is non-increasing;
(b) > k=0 Ak < 00, and hence the sequence {Ay}i=0 converges to 0;
(c) Forall K > 1 we have ming<x<x Ay < %(f(xo) — ).

In order to assess the iteration complexity of FWGSC, we need a lower bound on the
sequence {Ay}x>0. We start with a bound at iterations satisfying th,v(xk) > 1.

Lemma 4 Ifth,,)(xk) > 1, we have Ay > % Gap(x©).
Proof See “Appendix C.17. O

Next, we turn to iterates for which t Mf’v(xk) < 1. In this case, the per-iteration
progress reads as Ay = T]xk’Mf’v(thyv(xk)), and enjoys the following lower bound:

Lemma5 Ifth,v(xk) < 1, we have

21In(2)—1
diam(X)

k k2
min [Gap(x ) Gap(x¥) } ifv =2,

My > diam(X)va

~ 2 . Gap(x*) —1_ Gap(x*)? .
Ap > A 2 ] Tameoy MIN { (%71)MJ-L(VV;2)/2’ b Ly diam(X) ifve?3), (22)

2(1-1n(2)) in { Gap(x¥) Gap(xk)? } ifv =3.

m
JLv diam(X) My 2 /Ly diam(X)

where )71) N 1+ 2?3*_1;) (1 _ 22(3—V)/(4—U)) and b L i%:
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Proof See “Appendix C.2”. O

Remark 3 1t can be checked that lim, 3 7, = 1 — In(2), so that the lower bound A
is continuous in the parameter range v € (2, 3].

Combining Lemma 4 together with Lemma 5 and estimates summarized in “Appendix
C.2”, we get the next fundamental relation.

Proposition 4 Suppose Assumption 1 holds. Let {x* }k=0 be generated by FWGSC.
Then, for all k > 0, we have

Ag = min{ci (M, v) Gap(x"), c2(My, v) Gap(x*)?},

where, for (M, v) € (0, 00) x [2, 3], we define

: 1 2In2)—1 . _
mimn {7’ Mdiam(X)} ifv=2,
inll o .
C1 (M9 V) é min {2 ’ dlam(X)(v/Z—l)ML(vv;D/z } lf‘U € (27 3)7 (23)

)1 2(1-1n2) e
mm{z’M\/mdiam(X)} ifv =3

and 2In(2)-1
n — . _
Iy, damxy? V=2
—1 Vv .
ca(M,v) £ ?m ifve?3), (24)

2(1-1n2) —
Ly, damp? SV =3

Proof We only illustrate the lower bound for the case v = 2. All other claims can

be verified in exactly the same way. From Lemma 4, we know that Ay > % Gap(xk )

whenever t Mf,g(xk) > 1. Moreover, from Lemma 5 we have that t Mf’z(xk) <1,
then

2In2—1 . [Gap(x¥) Gap(x¥)?
k= = mi , .
diam (X)) My diam(X)Lv

Consequently,

1 2In@) -1 }G o 2In(2) — 1

Ay > min {min{ -, ———— T Gap(xk)z .
2" My diam(X) diam(X)?Lvy s
O

With the help of the lower bound in Proposition 4, we are now able to establish the
O(1/¢) convergence rate in terms of the approximation error hy = f(x*) — f*.
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Theorem 1 Suppose that Assumption 1 holds. Let {x* }k=0 be generated by FWGSC.
For x% € X Ndom f and ¢ > 0, define Ny(x°) £ inf{k > O|hy < €}. Then, for all

e >0,
n ci(My,v)
hoca (M f,v) 1

N: () < :
In(1 — c1(My, v)) co(My, v)e

(25)

Proof To simplify the notation, let us set c; = c;(My,v) and c; = ca(My,v).
By convexity, we have Gap(xk) > hy. Therefore, Proposition 4 shows that Ay >
min{cyhg, coh?}. This implies

his1 < hg — min{cihy, cohi} Yk > 0.

From this inequality we see that A is decreasing and there are two potential phases
of convergence:

Phase L. c1hy < czhi, which is equivalent to iy > 2—;

Phase II. c 1/ > czhi, which is equivalent to i < %

For fixed initial condition x° € dom f N X, we can thus subdivide the time domain
into the set K1 (x%) £ {k > O|hy > b} (Phase I) and Ko(x%) £ {k > Olhy < =
(Phase II). Since in Phase I {/x}icc, (10) is decreasing and bounded from below by the
positive constant c/c», the set Ky (xo) is bounded. Let us set

T (x°) £ inf {k > 0lhy < ﬂ} , (26)
C2

the first time at which the process {hj}; enters Phase II. To get a worst-case esti-
mate on this quantity, we assume without loss of generality that 0 € K1(x?), so that
Ki(x% = {0,1,..., T1(x°) — 1}. Then, using the definition of the Phase I, for all
k=1,...,T1(x% — 1 we have

C1 . 2
o < hi < hg—y —min{cihi_1, cohj_1} = hg—1 — crhi_1.
2

Notethatc; < 1/2,so we make progressions like a geometric series, i.e. we have linear

convergence in this phase. Hence, h; < (1 — ckhg forallk =0, ..., T1(x% — 1.
By the definition of the Phase I, /7, ,0)_; > 2—;, so we get % < ho(1 —cp)h @)1
i (T (x%) — 1) In(1 — 1) > In <h§é2>. Hence,
)
C
7" < [——"21+ 1 27)
In(1 — cy)
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After these number of iterations, the process will enter Phase II, at which #; < g—;

holds. Therefore, iy > hyi + Czh%, or equivalently,

1 1 hy 1
— > —+cp— > — 4. (28)
hiy1 = hg hiy1 — hg

Pick N > T3 (xY%) an arbitrary integer. Summing (28) fromk = T x%) uptok = N—1,
we arrive at

1

— =

+ (N = T1(x% +1).
hN hT|(x0)

By definition A, 0 =< %, so that for all N > T; (xY), we see

1 C2 0
— > —+cN-Tx")+1).
hN C1

Consequently,

1 1
hy < = ’
" 24N =TI+ ~ caN -=T1x) + 1)

(29)

By definition of the stopping time N (x?), it is true that & N.(x0)—1 > €. Consequently,
evaluating (29) at N = N, (x% — 1, we obtain

1 0 oy, 1
= c2(Ng (x0) — T1(x9)) © Ne@) =T + cre’

Combining this upper bound with (27) shows the claim. O

Remark 4 Combining the result of Theorem 1 and the definitions of the constants
c1(M,v) in (23) and c2(M, v) in (24), we can see that, neglecting the logarithmic
terms and using that —m“%x) < % for x € [0, 1], the iteration complexity of FWGSC
can be bounded as

_ Ly s diam(X)?
max {er, 2M LY diam ()| + w (30)

where c1, ¢, ¢3 are numerical constants. The first term corresponds to Phase I where
one observes the linear convergence, the second term corresponds to the Phase 11
with sublinear convergence. Interestingly, the second term has the same form as the
standard complexity bound for FW methods. The only difference is that the global
Lipschitz constant of the gradient is changed to the Lipschitz constant over the level
set defined by the starting point.
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4.2 Complexity analysis of backtracking versions

The complexity analysis of both backtracking-based algorithms (LBTFWGSC and
MBTFWGSC) use similar ideas, which all essentially rest on the specific form of the
employed upper model Q and Q yy, respectively. We will first derive a uniform bound
on the per-iteration decrease of the objective function value, and then deduce the com-
plexity analysis from Theorem 1. In both algorithms we use a generic bound on the
backtracking parameter.

Lemma 6 Let {Lilren be the sequence of Lipschitz estimates produced by the
procedure stepy (f, vk, xk, Ek_l) and {uilkeN the sequence of GSC-parameter
estimates produced by stepy(f, vk, x%, uk=1), respectively. We have L; <
max{L_1, yuLv s} and p* < max{p_1, yuMy}.

Proof We proof the statement only for the sequence {L}r. The claim for {u}ren
can be shown in the same way. By construction of the backtracking procedure, we
know that if the sufficient decrease condition is evaluated successfully at the first
run, then Lx—1 > Ly > yqLy—1. If not, then it is clear that £y < y;Lv . Hence,
for all k > 0, £y < max{ysLvy, Lr—1}. By backwards induction, it follows then
Ly <max{L_1, yyLvy}. o

4.2.1 Analysis of LBTFWGSC

Calling Algorithm LBTFWGSC at position x* generates a step size o and a local Lip-
schitz estimate Ly via (g, L) = step (f, vFw (x%), x*, £x_1). The thus produced
new search point satisfies xktl = xk 4 o v* € dom fNAX, and

2
FOM < £M) — o Gap(xh) + %ﬂ% where i = B(x").

Gap(x¥)
Lip?
of this step size, we will provide a lower bound of the achieved reduction in the

objective function value.

Case 1 If oy = 1, then Lip? < Gap(x¥) and x**! = xk 4+ ok € dom f N X.
Hence,

The reported step size is oy = min { 1, } . For each of these possible realizations

k
FERY) < f(b) — Gapk) + —Ezk B2 < Fb) — —Gapz(x )
__ Gap(xb)
Case 2 If o = —5k51§ , then
Gap(x©)?
K1y« pocky
Pt = by = 2T
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Since Ly < max{y,Lvy, L_1} = L (Lemma 6), we obtain the performance guarantee

Gap(x¥) Gap(xk)?
27 2LipE

{Gap(x") Gap(x©)? }
2 "2Ldiam(X)? )’

FGR = fkth > min{

> min

Setc) = % and cp = it therefore follows that

G5 = £ = min { ey Gap(h), 2 Gap(x*y?}
In terms of the approximation error, this implies
hi — hiy1 = min{cihy, cahi}.

Thus, we can use a similar analysis as in the one in the proof of Theorem 1, and obtain
the following O(1/¢) iteration complexity guarantee for method LBTFWGSC.

Theorem 2 Suppose that Assumptions 1 and 2 hold. Let {x* }k=0 be generated by
LBTFWGSC. For x° € X Ndom f and ¢ > 0, define Ne(x°) £ inf{k > O|h; < €}.
Then, for all ¢ > 0,

In(L diam(X)%/ho) 2L diam(X)?2
In(1/2) e

N:(x%) < : 31)

where L = max{y,Lvy, L_1}.

4.2.2 Analysis of MBTFWGSC

The complexity analysis of this algorithm is completely analogous to the one corre-

sponding to Algorithm LBTFWGSC. The main difference between the two variants

is the upper model employed in the local search. Calling MBTFWGSC at position x¥,

generates the pair (ak, ux) = stepy (f, vFW(xk), xk, Ik—1) such that
A < £ (5 — ax Gap(x¥) + e efo, (ke (x1),

where e, = e(x*). The step size parameter o satisfies oy = min{1, tmﬁv(xk)}. We
can thus apply Proposition 4 in order to obtain the recursion

his1 < hg — min{cy (g, v)hg, ca (g, v)hi),
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involving the constants defined in (23) and (24). By construction of the backtracking
step, we know that i < max{y, My, u—1} = M (Lemma 6). Hence, after setting
ci=ci(M,v),cr =co(M,v), we arrive at

hiy1 < hy —min{cihg, cohl} Yk > 0.

From here the complexity analysis proceeds as in Theorem 1. The only change that
has to be made is to replace the expressions ¢ (Mg, v) and c2(M ¢, v) by the numbers
c1(M,v) and ca(M, v), respectively.

Theorem 3 Suppose that Assumption 1 and 2 hold. Let {xk}kzo be generated by
MBTFWGSC. For x° € X Ndom f and & > 0, define N;(x*) £ inf{k > O|h; < ¢}.
Then, for all ¢ > 0,

c1(M,v)
In (hoczuﬂ,v)) L !

Ne(x%) < - —,
In(1 —c1(M,v)) c2(M,v)e

(32)

where M = max{y, My, t—1}.
Note that a similar remark to Remark 4 can be made in this case.

Remark 5 While the proofs of Theorem 2 and Theorem 3 follow the same steps, the
underlying models are different. LBTFWGSC is based on the observation that since
the algorithm is monotone, it stays in the level set on which the objective function
has Lipschitz-continuous gradient. This allows us to use the quadratic upper bound
(16) to find the corresponding stepsize. On the contrary, MBTFWGSC is based on the
upper bound (18) that is specific to generalized self-concordant functions. Moreover,
these two different models lead to different stepsize definitions, different estimates for
the per-iteration progress, and slightly different complexity results, yet with similar
dependence on ¢.

5 Linearly convergent variants of Frank-Wolfe for GSC functions

In the development of all our linearly convergent variants, we assume that the feasible
set is a polytope described by a system of linear inequalities.

Assumption 3 The feasible set X admits the explicit representation
X £ (x e R"|Bx < b}, (33)

where B € R™*" and b € R™.
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Algorithm 7: FWLLOO

Input: A(x,r, c)-LLOO with parameter p > 1 for polytope X, f € -7:Mf,v~ oy > 0 convexity
parameter.
1% edom fFN A, andlethg = f(x9) — f* and cg = 1.
0
o= ZGE:Tpf(x )
fork=0,1,...do
if Gap(x¥) > & then
Set rl% = rgck;
Obtain u* = u(xk, Tk, Vf(xk)) by querying procedure A(xk, Tk, Vf(xk));
Set . = a,, (x¥) by evaluating (37);
Set xkt1 = xk 4 ak(uk — xk);
Set cx41 = ¢k exp(—%ak).
end if
end for

5.1 Local linear minimization oracles

In this section we show how the local linear minimization oracle of [24] can be adapted
to accelerate the convergence of FW-methods for minimizing GSC functions. In partic-
ular, we work out an analytic step-size criterion which guarantees linear convergence
towards a solution of (P). The construction is a non-trivial modification of [24], as it
exploits the local descent properties of GSC functions. In particular, we neither assume
global Lipschitz continuity, nor strong convexity of the objective function. Instead,
our working assumption in this section is the availability of a local linear minimization
oracle, defined as follows:

Definition 3 ([24], Def. 2.5) A procedure A(x, r, ¢), where x € X, r > 0,c € R", is
a Local Linear Optimization Oracle (LLOO) with parameter p > 1 for the polytope
X if A(x, r, ¢) returns a point u(x, r, ¢) = u € X such that

Vy e B(x,r)NX :{c,y) > {(c,u), and ||x — ullz < pr. (34)

We refer to [24] for illustrative examples for oracles A(x, r, ¢). In particular, [24]
provide an explicit construction of the LLOO for a simplex and for general polytopes.
We further redefine the local norm as

e(x) = lu(x,r, Vf(x)) — x|y  Vx €dom f.
With an obvious abuse of notation, we also redefine
lux,r, Vf(x) —xl2 ifv =2,

Y2 lux, r, V) = x 3V lluCe, v, VFG) = x[272 i v € (2,31,
(35)

Su(x) =
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As in the previous sections, our goal is to come up with a step-size policy guaranteeing
feasibility and a sufficient decrease. As will become clear in a moment, our construction
relies on a careful analysis of the function

Uo(t) 21— Ew, (1)1 1 €10,1/8),

where £,8 > 0 are free parameters. This function is also used in the complexity
analysis of FWGSC, and thoroughly discussed in “Appendix B”. In particular, the
analysis in “Appendix B” shows that# — v, (¢) is concave, unimodal with ¥, (0) = 0,
increasing on the interval [0, ¢;) and decreasing on [, 00), where the cut-off value #;f
is defined in eq. (62). Moreover, v, (1) > 0 for ¢ € [0, ¢]. To facilitate the discussion,
let us redefine this cut-off value in a way which emphasizes its dependence on structural
parameters. We call

1 3 H —
5 n( _|_§> ifv=2,
-2
= 116,5) 2 é[ (1+248) } ifve@3), (36)
5 if v=3.

We construct our step size policy iteratively. Suppose we are given the current
iterate x* € dom f N X, produced by k sequential calls of FWLLOO, using a finite

sequence {o; }k of step-sizes and search radii {r,} “LoSeter = exp( Zf;(} ai).

Call the LLOO to obtain the target state u¥ = u(x*, ry, V £ (x¥)), using the updated
search radius r; = rocy. We define the next step size oy = o, (xF) by setting

A . 2e(xk)?
@, (x*) £ min {1, tv (Mfav(xk), m)} . (37)

Update the sequence of search points to x**! = x* + o (u* — x¥). By construction of

kN2
th=rr (Mf(S,, (xky, Gi‘;go)m ), this point lies in dom f N X’ To see this, consider first

the case in which oy = 1 < t{f. Then, d, (x¥*1, xk) = otkaév(xk) = MfBV(xk) <
tf Mys, (xk ) < 1. On the other hand, if oy = t{j, then it follows from the definition of
the involved quantities that d, (x**1, x%) = ax M 8, (x*) < 1.

Repeating this procedure iteratively yields a sequence {x*};cn, whose performance
guarantees in terms of the approximation error i = f (x¥) — f* are described in the
Theorem below.

Theorem 4 Suppose Assumption 1 holds. Let {x* }k>0 be generated by FWLLOO. Then,
forallk > 0, we have x* € B(xk, ry) and

k—1
hy. < Gap(x°) exp (—% Zm) (38)

i=0

where the sequence {ay )i is constructed as in (37).
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Proof Let us define P(x%) £ {x € X|f(x) < f* + Gap(x?)}. We proceed by induc-
tion. Fork = 0, we have x° € dom fNX by assumption and x° € P(x?) by definition.
(21) gives
o
PO = f* = ho = T - x5, (39)

Letu® = u(x?, rg, V £ (x2)), 8 = 8,(x%), & = éjgzif) and &g = () obtained by

evaluating (37) with the cut-off value ¢, (M r 8o, &). Since rop = ZGaa—p/_(xO) > /%f’—}’,
(39) implies that x* € B(xY, r). The definition of the LLOO gives us

(V) u® = 2% < (VFED), x* = x0). (40)
Setx! = x0+ o (uo — xo) € dom f N X. The GSC-descent lemma (9) gives then

FaN < FOO) 4+ ap(VFE®), u® — x0) + adex®)’w, (@oM 80)

D10 + ao(V G0, 1 — 20 + aZe(x®) 2wy (@oM £ 50)
< £ +ao(f* — FO) + adex®)w, (oM 80)

Hence, writing the above in terms of the approximation error hy = f(x¥) — f*, we
obtain

hy < ho(1 —ap) + Ol%e(xo)za)v(o(OMfSO)
< (1 — ) Gap(x?) + ade(x%)?w, (oM £80)

o0 Gap(x?) 2e(x%)?
_ (1 - 7) Gap(x*) — = ((xo - aémwu(amfao)) .

We see that the second summand in the right-hand side above is just the value of the
0\2
function v, (ap), with the parameters § = M 8p and & = &y = %.

construction, the second summand is nonnegative, which gives us the bound

Hence, by

hy<(1— %) Gap(x”) < exp(—ao/2) Gap(x).

To perform the induction step, assume that for some k£ > 1 it holds

k—1
1
hi < Gap(x)ex, cx £ exp (—5 Zw) : (41)

i=0
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Since i k 0 = k = 2ot
cr € (0, 1), wereadily see that x* € P(x").Call§; = §,(x*)and & = Gap0) -
(21) leads to

0
% - 2 Gap(x”) 2

k= x*3 < o ek =rger =17 = x* e B, ). (42)

Call the LLOO to obtain the target point u* = A(x¥, r¢, V £ (x¥)). Using the definition
of the LLOO, (42) implies

(V) ub —x%y < (VR x* — x5). (43)

Define the step size ax = «, (x¥), and declare the next search point x**! = x* 4+
o (uF — x¥) € dom f N X. By the discussion preceeding the Theorem, it is clear that
xf*1 e X Ndom f. Via the GSC-descent lemma and the induction hypothesis we
arrive in exactly the same way as for the case k = 0 to the inequality

o Gap(x%)¢ 2e(xk)?
it = (1= %) Gap(ayey — P ( 2 2ot

-, ————— M 6 .
> k akGap(xO)ckw”(ak fk))

The construction of the step size aj ensures that the expression in the brackets
on the right-hand-side is non-negative. Consequently, we obtain hzxy; < (1 —
ar/2) Gap(x¥)cr < Gap(x®)cr exp(—ax/2) = Gap(x®)cii1, which finishes the
induction proof. O

To obtain the final linear convergence rate, it remains to lower bound the step size
sequence oy = o, (x%). Note that for all values v € [2, 3], t¥(8, €) is an increasing
function of % and g Thus, our next steps are to lower bound the values of the non-

ky2
negative sequences {m}k and {Msfkak }x, where 8¢ = 8, (x*) and & = 2807 g

Gap(x0)cy
all k > 0. We have

1 : _
1 My TF = ifv=2,
— ifv e (2,3].

v
X<k

Mok | Sy k=R 13 k=R
By definition of the LLOO, we have ||u* —xK|l, < min{pry, diam(X)}. Thus,if v = 2,
we have

1 1 1
> >
Mg, — My min{prg, diam(X)} — prrk’
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while if v > 2, we observe

1 1

>
M¢br — — _ ot
PO My luk — k5T ”va ek — k572 EEM LG luk — xk

1 1
=

| —

N‘

v

v=2 —
U%szvaf min{pry, diam(X’)} U%ZMfLsz o

0 2
Furthermore, from the identity 263’37# = r,f, we conclude Gap(x®)c, = %
Hence,
k_ .k "f“l%
Mg ||u*—x"|lp 5% e
Mysi _ Myo,h) Gap e |~y ifv=2,
3 2e(xk)? V=2 pp 1k kp3ev k-2 Ok
My llut =xt |l e(xt)Y T A
7 ;e(ik)fx 2 ifve (23]
If v = 2, we see that
M 6 - Mf||uk —xkllzofr,? . Mfafr,g - Mfofr,?
& T ALysllub —xK|3 T 4Lvyluk —xKll2 T 4Ly s min{pry, diam(X)}
- Mgoyry
~ 4dpLvy

while if v > 2, we have in turn

My _ 0 =Myt —xHI3 Moy v - 2)Mf||u’< — M3 o pr?

& 8e () -

8Ly a7 ||uk—xk||4 v

(v —2)Myosr} . v —2)Msosr?

8Ly 2 ||uk — xK||» SLVTf min{pry, diam(X)}

v=2
- v —=2)Mysoyrri . (V_Z)MfLVZf Ofrk
- 4—v .

4—v - 8oLv ¢
8pLV2f PLVf

=2
Denoting y, = ”T_ZM vazf forv > 2 and y, = My for v = 2, and substituting
these lower bounds to the expression for ¢, we obtain
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b In (14 J7t) | ifv=2,
sy a1 (e s) T invees,
WW if v =3.

For all v € [2, 3], the minorizing sequence {f;}r has a limit as rp — 0.

of
4p2Ly g
Moreover, as the search radii sequence {ry}ren is decreasing, basic calculus shows
that the sequence {z, }x is monotonically increasing. Whence, we get a uniform lower

bound of the cut-off values {t,]f }k as

1 YvOfro : —
i (14 ) itv=2,
1 YO fro 4— =
tl])( >t 2 T |:1 — <1 mr_;) :| ifv e (2, 3) (44)

1 1 . _
Toore —l+4vaf if v = 3.
V\;(rfro

Corollary 1 Suppose Assumption 1 holds. Algorithm FWLLOO guarantees linear con-
vergence in terms of the approximation error:

hi < Gap(x®) exp(—ka/2)  Vk >0,
where & = min{t, 1} with t defined in (44).

Proof 1t is clear that oy > @ = min{z, 1} for all k > 0. Hence exp (—% f-:(} a,-)
exp(—ka/2), and the claim follows.

m A

The obtained bound can be quite conservative since we used a uniform bound for
the sequence 7,. At the same time, since r; geometrically converges to 0 and for
all v € [2,3], the minorizing sequence {z;}; has a limit M);—Zw as rp — O,
we may expect that after some burn-in phase, the sequence o can be bounded
from below by zap;—zv,' This lower bound leads to the linear convergence as h; <
Gap(x9) exp(—koa/2)) exp(—(k — ko)mp(;—QVf) for k > ko, where the length of the
burn-in phase ko is up to logarithmic factors equal to é This corresponds to the
iteration complexity

N 16p°Lyy | Gap(x") exp(—ko@/2))
Gf &

ko

Interestingly, the second term has the same form as the complexity bound for FW

2
method under the LLOO proved in [24] with L JLfo playing the role of condition
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number. The only difference is that the global Lipschitz constant of the gradient is
changed to the Lipschitz constant over the level set defined by the starting point.

5.2 Away-step Frank-Wolfe (ASFW)

We start with some preparatory remarks. Recall that in this section Assumption 3 is in
place. Hence, X’ is a polytope of the form (33). By compactness and the Krein-Milman
theorem, we know that X is the convex hull of finitely many vertices (extreme points)
U= {u1, ..., uqy}. Let A(U) denote the set of discrete measures u L (uyiueld)
with o, > Oforallu € U and ), pu = 1,y = 0. A measure u* € AU)
is a vertex representation of x if x = Y, 4, uru. Given u € AU), we define
supp(u) = {u € Ulu, > 0} and the set of active vertices U(x) £ {u € Ulu €
supp(u*)} of point x € X under the vertex representation u* € AU). We use
I(x) 2 {i € {1,...,m}|B;x = b;} to denote the set of binding constraints at x. For a
givenset V. Cc U, welet I(V) = (,cy I (w).

For the linear minimization oracle generating the target point s(x), we invoke an
explicit tie-breaking rule in the definition of the linear minimization oracle.

Assumption 4 The linear minimization procedure

s(x) € argming v (V f(x), d)

returns a vertex solution, i.e. s(x) € U for all x € X.

Remark 6 [4] refer to this as a vertex linear oracle.

ASFW needs also a target vertex which is as much aligned as possible with the same
direction of the gradient vector at the current position x. Such a target vertex is defined
as

u(x) e argmaxueu(x)(Vf(x), u) 45)

At each iteration, we assume that the iterate x* is represented as a convex combination
of active vertices x* = D oueld ;Lllju, where ¥ € AU). In this case, the sets UX =

U (x¥) and the carrying measure u* = ;ka provide a compact representation of x.
The ASFW scheme updates the thus described representation (U¥, ) via the vertex
representation updating (VRU) scheme, as defined in [4]. A single iteration of ASFW
can perform two different updating steps:

1. Forward Step This update is constructed in the same way as FWGSC.

2. Away Step This is a correction step in which the weight of a single vertex is reduced,
or even nullified. Specifically, the away step regime builds on the following ideas:
Let x € X be the current position of the algorithm with vertex representation
X =) ey Myu. Pick u(x) as in (45). Define the away direction

vA(X) £ x —ux), (46)
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and apply the step size ¢ > 0 to produce the new point

)c;'r =x + tva(x)

= Y A+omu+t (ujj(x)(l ) — t) w(x).
ueld (x)\{u(x)}

Ko

Choosing ¢ = 1(x) £ [ eliminates the vertex u = u(x) from the sup-
u(x)
port of the current point x and leaves us with the new position x* = X;Ex) =

2w\ fu (o)} #%mu This vertex removal is called a drop step.

For the complexity analysis of ASFWGSC, we introduce some convenient notation.
Define the vector field v : X — R” by

(47)

o(x) 2 vpw (x) if a Forward Step is performed,
Y7 va) ifan Away Step is performed.

The modified gap function is

G(x) = —~(Vf(x), v(x) = max{{V f(x), x —s(x)), (Vf(x), u(x) —x)}.  (48)

Algorithm 8: ASFWGSC

x% e dom f NU where u} = 0forallu e\ {x!'}and U! = {x!}.
fork=0,1,...do
Set sk = s(xk), uk = u(xk), and vA(xk) =xk—u
if (V£(x5), sk — xky < (VFch), x5 — uk) then
Set vk = UFw(xk)
else
Set vk = vA(xk)
end if
Set B = [[v¥ 12, ex = VK| k. ik = 7(x¥) defined in (49)
Find o = argmin,e[o,;k] I(Vf(xk), vk) + t2e%a)v Mgy (xk))
Update Xkt = kg
if vk = UFW (xk) then
Update UK+ = Uk U (5K}
else
if vF = vo (x%) and o = 7 then
Update U¥*! = UK\ {u*} and ¥+ via the VRU of [4].
else
Update Ukt = gk
end if
end if
end for

k k

L upw (F) = 5K — x
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One observes that G(x) > 0 forall x € dom f NAX. To construct a feasible method,
we need to impose bounds on the step-size. To that end, define

L0 if an Away Step is performed, (49)

— A 1 if a Forward Step is performed,
tx) =
l_ﬂu(x)

where {1, }uers € AU) is a given vertex representation of the current point x, and
u(x) is the target state identified under the away-step regime (45).
The construction of our step size policy is based on an optimization argument, similar
to the one used in the construction of FWGSC. In order to avoid unnecessary repetitions,
we thus only spell out the main steps.

Recall that if d,(x,x + fv(x)) < 1, then we can apply the generalized self-
concordant descent lemma (9):

FO+ 1)) < ) + 1V F), v(0) + Pl [Fo, (1M £8,(x)),

where §,(x) is defined as in (12), modulo the change f(x) = ||[v(x)|2 and e(x) =
lv(x)]|lx. Using the modified gap function (48), this gives the upper model for the
objective function

e(x)?
G(x)

fx+1tvx) = fx) —Gx) [t - wv(th3u(X))] ;

provided that G(x) > 0. This upper model is structurally equivalent to the one
employed in the step-size analysis of FWGSC. Hence, to obtain an adaptive step-size
rule in Algorithm 8, we solve the concave program

2
2 e(x:) Wy (LM £8,(x)). (50)

max 7y, (1) Lt
>0

As in Sect. 3.2, and with some deliberate abuse of notation, let us denote the unique
solution to this maximization problem by t, (x) (dependence on M is suppressed
here, since we consider this parameter as given and fixed in this regime). Building
on the insights we gained from proving Proposition 1, we thus obtain the familiarly
looking characterization of the unique maximizer of the concave program (50):

Theorem 5 The unique solution to program (50) is given by

1 GO)Ms8(x) L
T In (1 G ) ifv =2,
v=2
— M¢§,(x)G(x) 4—p\ 4= .
80 = [1 — (1+f#472) } ifve(2,3), (51)
G(X) l'fl) — 3’

M£83(x)G (x)+e(x)?

where §,(x) is defined in eq. (12), with B(x) = ||lv(x)]l2 and e(x) = ||v(x)||x consid-
ering the vector field (47).
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Analogously to Proposition 2, we see that when applying the step-size policy
ay (x) £ min{7(x), £, (x0)}, (52)

we can guarantee that x¥ € X for all k > 0. Indeed, inspecting the expression (51) for
eachvalue v € [2, 3],itis easy to see that M y6, (x)t, (x) < 1.Hence, if7(x) < t,(x),
itis immediate that 7(x) M ¢8,(x) < 1. Consequently, x +a, (x)v(x) € X Ndom f for
allx € X Ndom f. Therefore, the sequence generated by Algorithm 8 is always well
defined. In terms of the thus constructed process {x*};>0, we can quantify the per-
iteration progress Ay = F]xk’v(()[k), setting oy = «, (x%), via the following modified
version of Lemma 5:

Lemma7 Ift,(x) < 1(x), we have

2In(2)—1
diam (X)

L [eeh _ Gahy? P
MY 7 Tam(D) Ly, ifv=2,

~ 2 . Gk —1_ G@uM? .
Ar > Ay 2 { Tamey TN { G-, 1077 B Ty, dam) ifve(23), (53

2(1-In(2)) in { G(h G(x*)? } ifv=3

m s .
JLv s diam(X) My > /Ly diam(X)

where 7, = 1 + —2?3:”]}) (1 — 22(3_")/(4_”)) andb £ 31%:'

This means that at each iteration of Algorithm 8 in which o = tu(xk ), we succeed
in reducing the objective function value by at least

FOR < £ — Ag.

To proceed further with the complexity analysis of ASFWGSC, we need the following
technical angle condition, valid for polytope domains:

Lemma8 (Corollary 3.1, [4]) For any x € X \ X™* with support U(x), we have

Qy (Vf(x),x —x™*)

max VIix),u—w)> max ———, 54
ueL{(x),weu< Fx) = |U(x)| xxex* lx — x*|| 54
where
= min (b —Biu), 92 max  |B;|, and Qx = £
ueld,ie{l,....m}:b;>Bu); ie{l,...mN\I(x) %)

To assess the overall iteration complexity of Algorithm 8 we consider separately the
following cases:

(a) If the step size regime a; = t,(x¥) applies, then from Proposition 4 we deduce
that £ (x*¥t1) — F(x¥) < — Ay, were

AF > min{c (M7, v)G (), ca(M 7, v)G(x5)?).
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The multiplicative constants c{ (M s, v), ca2(Mr, v) are the ones defined in (23)
and (24). Hence,

FOEY — £(xF) < —min{e (M f, )G (x5, ca(Mf, v)G (x5)?).

(b) Else, we apply the step size ay = 7. Then, there are two cases to consider:

(b.i) If a Forward Step is applied, then we know that 7z = 1. Since 1 < £y (x5),
we can apply Lemma 4, but now evaluating the function 7, ,(¢) at ¢ = 1, to
obtain the bound

Mk v (Tk) - 1
Gk —2

This gives the per-iteration progress

FORY — b < —%G(x’%.

(b.ii) If an Away Step is applied, then we do not have a lower bound on 7. However,
we know that f(x**1) — f(x*) < f(x*) — f(x*). As in [4], we know that
such drop steps can happen at most half of the iterations.

Collecting these cases, we are ready to state and prove the main result of this section.

Theorem 6 Let {x* }k>0 be the trajectory generated by Algorithm 8 (ASFWGSC). Sup-
pose that Assumptions 1, 3 and 4 are in place. Then, for all k > 0 we have

k2 k
hie = (1 =60)""ho < exp —95 ho. (55
A 1 Mg ca(Myv)Q20y _Q
whereefmln{i, 3 dam () S }’Q:_IUI'

Proof We say that iteration k is productive if it is either a Forward step or an Away
step, which is not a drop step. Based on the estimates developed by inspecting thes
cases (a) and (b.i) above, we see that at all productive steps we reduce the objective
function value according to

FEY — £(f) < —min {min{%, c1(M s, )G, er(My, v)G(xk)z} )

We now develop a uniform bound for this decrease.
First, we recall that on the level set S(x?), we have the strong convexity estimate

o
f6R = = 7f||x" —x*|I3.
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Using Lemma 8 and the definition of an Away-Step, we obtain the bound

(V5 ub — 5% (V x5y, xF —x%),

>
Tk = x|

Qx

. At the same time,

(VR uk — 55y = (VR b — x5y + (V£ 5, xF = 55
< 2max {(Vf(xk), uk — xk), (Vf(xk), xk = sk)}

=2G(x").
Consequently,
G 2 %Wf(xk)s uk =), (56)
and
GG = %<Vf(xk)’ b —s*) > m(Vf(xk), xK— x*)
= (P = ) 2 (£ — 1)
T 2k — x| = 2 diam(X) :
Furthermore,
2 2 ky _ f#)\2
T L —p G S €A e
4| xk — x*)2

4 (R =

QZ
%(f(xk) — ).

Hence, in the cases (a) and (b.i), we can lower bound the per-iteration progress in
terms of the approximation error iy = f(x) — f* as

[l ci(Mp)Q co(My,v)Q%0
Rkt —hy < — = : h = —0hy.
kel = Ak = mm{z 2 diam(X) 8 k k

Since we are making a full drop step in at most k /2 iterations (recall that we initialize
the algorithm from a vertex), we conclude from this that

k
hi < (1 —6)?hy < exp <—95) ho.

]

Remark7 We would like to point out that Algorithm ASFWGSC does not need to
know the constants o s, Ly y which may be hard to estimate. Moreover, the constants
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in Lemma 8 are also used only in the analysis and are not required to run the algorithm.
Compared to [10], our ASFW does not rely on the backtracking line search, but requires
to evaluate the Hessian, yet without its inversion. Furthermore, our method does not
involve the pyramidal width of the feasible set, which is in general extremely difficult
to evaluate.

6 Numerical results

We provide four examples to compare our methods with existing methods in the liter-
ature. As competitors we take Algorithm 1, with its specific versions Fiw-Standard
and FW-Line Search.? As further benchmarks, we implement the self-concordant
Proximal-Newton (PN) and the Proximal-Gradient (PG) of [50,52], as available in the
SCOPT package.? All codes are written in Python 3, with packages for scientific com-
puting NumPy 1.18.1 and SciPy 1.4.1. The experiments were conducted on a Intel(R)
Xeon(R) Gold 6254 CPU @ 3.10 GHz server with a total of 300 GB RAM and 72
threads, where each method was allowed to run on a maximum of two threads.

We ran all first order methods for a maximum 50,000 iterations and PN, which
is more computationally expensive, for a maximum of 1000 iterations. FiWw-Line
Search is run with a tolerance of 107!°. In order to ensure that Fii-standard
generates feasible iterates for v > 2, we check if the next iterate is inside the domain;
If not we replace the step-size by 0, as suggested in [10]. PG was only used in instances
where v = 3 as this method has been developed for standard self-concordant functions
only [52]. Within PN we use monotone FISTA [6], with at most 100 iterations and a
tolerance of 1073 to find the Newton direction. The step size used in PG is determined
by the Barzilai-Borwein method [43] with a limit of 100 iterations, similar to [52].
FWLLOO was only implemented for experiments where the feasible set is the sim-
plex, for which [24] provide an explicit LLOO, since the LLOO implementation for
general polytopes suggested in [24] is non-trivial and involves calculating barycentric
coordinates of the iterates.

Our comparison is made by the construction of performance profiles [15]. In order
to present the result, we first estimate f* by the best function value achieved by any
of the algorithms, and compute the relative error attained by each of the methods at
iteration k. More precisely, given the set of methods S, test problems P and initial
points 7, denote by F;; the function value attained by method j € & on problemi € P
starting from point / € 7. We define the estimate of the optimal value of problem j
by f j* = min{F;;|j € S, € I}. Denoting {xll‘j 1}k the sequence produced by method
k _ f(x,kjl)*fjle
=

Now, for all methods j € S and any relative error €, we compute the proportion of
data sets that achieve a relative error of at most & (successful instances). We construct
this statistic as follows: Let N; denote the maximum allowed number of iterations for

Jj on problem i starting from point /, we define the relative error as r

2 At the time of writing this paper, there did not exist a general convergence proof for FW-standard in
the generalized self-concordance setting. In the meantime, in the related paper [10], a modified version of
FW-standard admitting a sublinear convergence rate similar to the methods in this paper was developed.

3 https://www.epfl.ch/labs/lions/technology/scopt/.
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method j € S (i.e for first-order methods 50,000 and for PN 1000). Define Z; (¢) e
{lel:3k <Ny, r,.kjl < ¢}. Then, the proportion of successful instances is

1
pje) £ W Z'Zij (¢)| (average success ratio).
ieP

We are also interested in comparing the iteration complexity and CPU time. For that
purpose, we define N;j;(e) £ min{0 < k < ]\_/j|rl.kj[ < &} as the first iteration in
which method j € S achieves a relative error € on problem i € P starting from point
I € Z. Analogously, T;j;(¢) measures the minimal CPU time in which method j € S
achieves a relative error € on problem i € P starting from point / € 7. For comparing
the iteration complexity and the CPU time across methods we construct the following
statistics:

1 1 N;j
0;j(€) £ __ Z - ij1(€) (average iteration ratio),
' [P s | Zije)l 1T (o min{N;g ()]s € S}
ij
. 1 1 Tiji(e) . .
pi(e) & — - (average time ratio).
TP ZP 1Zij (e)] l; min{T;s ()]s € S)
ij

Besides average performance, we also report the mean and standard deviation of
Niji(¢) and T;j;(¢) across starting points, for specific values of relative error ¢ for all
tested methods and data sets.

6.1 Logistic regression

Starting with [2], the logistic regression problem has been the main motivation from
the perspective of statistical theory to analyze self-concordant functions in detail. The
objective function involved in this standard classification problem is given by

p
£ == Y In 1+ exp (i, 1) 00 + S vl 57)

i=1

Here p is a given intercept, y; € {—1, 1} is the label attached to the i-th observation,
and a; € R" are predictors given as input data fori = 1, 2, ..., p. The regularization
parameter y > 0 is usually calibrated via cross-validation. The task is to learn a
linear hypothesis x € R”". According to [50], we can treat (57) as a (M?), 3)-GSC

function minimization problem with M?) e \Lﬁ max{|laill2|]1 < i < p}. On the

other hand, we can also consider it as a (M (fZ), 2)-GSC minimization problem with
M}z) £ max{|la;||2]1 < i < p}. It is important to observe that the regularization

parameter y > 0 affects the self-concordant parameter M ;3) but not M. This gains
relevance, since usually the regularization parameter is negatively correlated with the
sample size p. Hence, for p > 1, the GSC constant My could differ by orders of
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magnitude, which suggests considerable differences in the performance of numerical
algorithms.

We consider the elastic net formulation of the logistic regression problems [58], by
enforcing sparsity of the estimators via an added £; penalty. The resulting optimization
problem reads as

min f(x) st x| <R
xeRn?

This introduces another free parameter R > 0, which can be treated as another hyper-
parameter just like y.

We test our algorithms using R = 10, u = 0 and y = 1/p, where a; and y;
are based on data sets ala—a9a from the LIBSVM library [12], where the predictors
are normalized so that ||a;|| = 1. Hence, Mj(,z)/M](?) = p~ /2. For each data set, the
methods were ran for 10 randomly generated starting points, where each starting point
was chosen as a random vertex of the £; ball with radius 10.

We first compare the methods that are affected by the value of v € {2, 3} and
My e {M}Z), MJ(?)}, i.e. FWGSC, MBTFWGSC, ASFWGSC, and PN. We display the
comparison of the average relative error over the starting points versus iteration and
time for data set a9a in Fig. 1. Note that for this data set we have p = 32,561. It
is apparent that the linearly convergent methods ASFWGSC and PN gain the most
benefit from the lower My associated with the shift from v = 3 to v = 2, reducing
both iteration complexity and time. Moreover, for FWGSC and MBTFWGSC the change
of v only seems to benefit the method in earlier iteration, but does not create any
asymptotic speedup. Specifically, the benefit for MBTFWGSC is very small, probably
since the backtracking procedure already takes advantage of the possible increase in
the step-size that is partially responsible for the improved performance in the other
methods. We observed the same behavior for all other data sets considered. Thus,
we next compare these methods with v = 2 to the MBTFWGSC, FW-standard,
FW-Line Search,and PG and display the performance of all tested methods using
the aggregate statistics p(e), p(¢g), o(¢), in Fig. 2. Table 2 reports statistics for N (&)
and T (¢) for each individual data set. PG has the best performance in terms of time
to reach a certain value of relative error, followed by FW-standard and ASFWGSC.
FiWi-standard is slightly better for relative error higher than 10~> but becomes

102

10%

Iteration

Fig. 1 Comparison between v = 3 and v = 2 for data set a9a
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Fig.2 Performance profile for the logistic regression problem (57) obtained after averaging over 9 binary
classification problems

inferior to ASFWGSC for lower error values. From this example we conclude that
given a choice using the FW algorithms with lower parameter v is preferable since
the upper bound obtained by this choice is tighter. The fact that we want to use the
GSC setting with v = 2 even when the problem can be formulated in the standard self
concordant setting v = 3 provides motivation for developing methods and analyses
for the GSC case. Moreover, the advantage of ASFWGSC over other FW methods is
in its ability to achieve higher accuracy in lower iteration complexity, however, this
may be hindered by its higher computational complexity per iteration.

6.2 Portfolio optimization with logarithmic utility

We study high-dimensional portfolio optimization problems with logarithmic utility
[13]. In this problem there are n assets withreturns 7, € R’} in period  of the investment
horizon. More precisely, r; measures the return as the ratio between the closing price
of the current day R, ; and the previous day R;—j ;,i.e.r;; = R, i/Ri—1,i,1 <i <n.
The utility function of the investor is given as

p
fx) == log(r, x).

=1
Based on historical observations ry, t € {1, ..., p}, our task is to design a portfolio x
solving the problem
n
min f(0) st:x; > 0, > xi=1. (58)

i=1

Since f is the sum of n standard self-concordant functions, we know that f € F>3
with effective domaindom f = {x € R”|r,T x > Oforall 1 <t < p}. We remark that
this self-concordant minimization problem gains relevance when trying to find the best
constant rebalanced portfolio. Moreover, this problem has connections to the universal
prediction problem in information theory [38] and online portfolio optimization [11]
for which the performance of problem (58) can serve as a benchmark.

For this example, computing a LLOO with p = /n is simple and a complete
description can be found in [24]. Therefore, we also ran algorithm FWLLOO, where

@ Springer
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Fig. 3 Performance profile for the portfolio selection problem (58) obtained after averaging over 12 syn-
thetically generated data sets

or is evaluated by the lowest eigenvalue of the Hessian observed at the initial point.
If due to numerical errors, this number is nonpositive, we take oy = 10~10,

For conducting numerical experiments, we generated synthetic data, as in Section
6.4 in [50]. We generate a matrix [r; ;l1</<p,1<i<n € RP*" with given price ratios
as:r;; = 1+ N(0,0.1) forany i € {I,...,n} and ¢t € {l,..., p}, which allows
the closing price to vary by about 10% between two consecutive periods. We used
(p, n) = (1000, 800), (1000, 1200), and (1000, 1500) with 4 samples for each size.
Hence, there are 12 data sets in total. For each data set, all methods were initialized
from 10 randomly chosen vertices of the unit simplex.

Figure 3 collects results on the average performance of our methods and Table
3 reports numerical values obtained for each individual data set. MBTFWGSC and
ASFWGSC outperforms all other methods considered in terms of time to reach a certain
relative error, including PN and PG. Moreover, the advantage of ASFWGSC becomes
more significant as the relative error decreases. Interestingly the iteration complex-
ity of MBTFWGSC is almost identical to FW-Line Search while having superior
time complexity. Additionally, despite its theoretical linear convergence, FWLLOO has
inferior performance to both MBTFWGSC and ASFWGSC, indicating that the use of the
strong convexity parameter oy within the algorithm may be detrimental to its perfor-
mance, since a small estimation for oy leads to a large convergence coefficient. We
attribute the competitive performance of MBTFWGSC to two causes: (1) the adaptive
choice of M allows MBTFWGSC to imitate the steps of FWw-Line Search closely
but has lower computational complexity per iteration, (2) FW-Line Search effec-
tively has a linear convergence rate for these examples, possibly due to the location of
the optimal solution. We note that while ASFWGSC is inferior to MBTFWGSC in some
instances, its linear rate of convergence is independent of the problem instance.

6.3 Distance weighted discrimination
In the context of binary classification, an interesting modification of the classical

support-vector machine is the distance weighted discrimination (DWD) problem,
introduced in [35]. In that problem, the classification loss attains the form

_] d T . N4 T
f(X)—;lz:;(ainruyHréz) +c'g,
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Fig.4 Performance profile for the DWD problem averaged over binary classification problems

over the convex compact set
X={x=w, 1ol lwl*<1,uel-uullél* <R &ecR)

where R > 0 is a hyperparameter that has to be learned via cross-validation.

The parameter g > 1 calibrates the statistical loss function, and (a;, y;) € R? x
{—1,1}, ( = 1,2, ..., p)isthe observed sample. The decision variable is decoded as
x = (w, u, &) € R", wheren = d + 1+ p, corresponding to a normal vector w € R4,
anintercept © € Randaslack variable & € R?.Since () =t~ %, g > 1isgeneralized

self-concordant with parameters M, = #ﬁ and v = 2(;1;;3 ) € (2,3) (cf. Table

1) we get a GSC minimization problem over the compact set X', with parameters:

2(g +3)
V= —a
q+2

"Jqlg +1)

The special case ¢ = 1 corresponds to the loss function of [35], who solved this
problem via a second-order cone reformulation. We test our algorithms using g = 2,
and the observations a; and y; are based on data sets ala—a9a from the LIBSVM
library [12], where a; are normalized. For each data set, the methods were ran 10
times, one for each randomly generated starting point of the structure (0, 0, &) where
& is sampled uniformly from its domain. The results presented are averages across
these realizations. We set¢; = 1 foralli =1,..., p,u =5,and R = 10.

PG cannot be applied to this problem, since 2 < v < 3. We also do not apply
ASFWGSC, since X is not a polyhedral set. Figure 4 collects results on the average
performance of our methods and Table 4 shows the results obtained for each individ-
ual data set. Here we see that for all data sets and all starting points all FW based
methods reach a minimal relative error 103, with the exception of standard-Fw
which reaches a relative error of 104 for the smaller instances ala—a4a but obtains a
relative error higher than 107 for the larger instances aSa-a9a. The poor performance
of FW-Standard on the largest instances is due to the monotonically decreasing
step sizes and the fact that it requires very small step size in order to keep the iter-
ates in the domain in the first few iterations. This highlights the drawbacks of using

nd

My max {llG@, yi, )1/ 1 < i < nf.
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306 P. Dvurechensky

FW-Standard in the GSC setting: while it has a simple step size rule, the number
of calls to the domain oracle required to find the step-size for which we stay in the
domain may be very large, resulting in poor performance in practice. From the other
methods, MBTFWGSC and FWGSC perform the best, with MBTFWGSC having a slight
advantage for lower accuracy due to the use of a smaller My values. Again, we see
how important the adaptive nature of MBTFWGSC is to improving FWGSC, especially
in the early iterations, resulting in iteration complexity closer to FW-Line Search
with lower per-iteration computational cost.

6.4 Inverse covariance estimation

Undirected graphical models offer a way to describe and explain the relationships
among a set of variables, a central element of multivariate data analysis. The prin-
ciple of parsimony dictates that we should select the simplest graphical model that
adequately explains the data. The typical approach to tackle this problem [52] is
the following: Given a data set, we solve a maximum likelihood problem with an
added low-rank penalty to make the resulting graph as sparse as possible. We con-
sider learning a Gaussian graphical random field of p nodes/variables from a data
set {¢1, ..., ¢n}. Each random vector ¢; is an iid realization from a p-dimensional
Gaussian distribution with mean 1 and covariance matrix X. Let ® = X ~! be the pre-
cision matrix. To satisfy conditional dependencies between the random variables, ®
must have zero in ©;; if i and j are not connected in the underlying graphical model.
To learn the graphical model via an £;-regularization framework in its constrained
formulation, we minimize the loss function

f(x) = —logdet(mat(x)) + tr(ﬁ mat(x)) 59)

over set of symmetric matrices with £1-ball restriction, that is X = {x € R”"| ||x]; <
R,mat(x) € S"} where R = [,/p]. The decision variables are vectors x € R”"
for n = p?, so that mat(x) represents the p x p matrix constructed from the p’-
dimensional vector x. It can be seen that f is standard self-concordant with domain
S}, .Hence, My = 2and v = 3. One can see that the gradient V f (x) = ¥ —mat(x) !
and Hessian sz(x) = matt(x)’1 ® mat(x) L. Since mat(x) is positive definite, we
can compute the inverse via a Cholesky decomposition, which in the worst case needs
O(p?) arithmetic steps. To compute the search direction, we have to solve the LP

s(x) e argminsex(fl — mat(x)_l, mat(s)),

where (A, B) = tr(AB) for A, B € S". This Linear Minimization Oracle requires
to identify the minimal elements of the matrix o mat(x)~!. Moreover, for the
backtracking procedures as well as line search, we also need to construct a domain
oracle. This requires to find the maximal step size r > 0 for which x +7(s(x) —x) > 0,
which is equivalent to finding the maximal ¢ € (0, 1] such that %mat(x) > mat(x) —
mat(s(x)) or % > Amax(I — mat(x)’l/2 mat(s(x))mat(x)’l/z). Note that this step
oracle is not needed when using the theoretical step size in FWGSC and ASFWGSC.
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Fig.5 Performance Profile for Covariance estimation problem (59) averaged on 10 data sets

We test our method on synthetically generated data sets. We generated the data by first
creating the matrix ¥ randomly, by generating a random orthonormal basis or R”,
B = {v1,..., v}, and then set

p
Y= E aivl-v;r,

i=1

where o; are independently and uniformly distributed between 0.5 and 1. We generated
10 such data sets, for p ranging between 50 and 300. For each data set, the methods
were ran for 10 randomly generated starting points. Each starting point has been chosen
as a diagonal matrix where the diagonal was randomly chosen from the R-simplex.
Figure 5 collects results on the average performance of our methods and Table 5
shows the results obtained for each individual data set. We observe that ASFWGSC
has the lowest time of obtaining any relative error below 10~3. Moreover, though PG
has a lower iteration complexity in some instances, the higher computational cost of
projection vs. linear oracle computations, makes it significantly inferior to ASFWGSC.
These results highlight the need for alinearly convergent projection free method such as
ASFWGSC in the GSC setting in high dimension. Specifically, ASFWGSC outperforms
FW based methods both theoretically and practically, while obtaining similar iteration
complexity to PG with significantly lower per-iteration computational cost.

7 Conclusion

Motivated by the recent interest in computational statistics and machine learning in
functions displaying generalized self-concordant properties, this paper develops a
set of projection-free algorithms for minimizing generalized self-concordant func-
tions as defined in [50]. This function class covers several well-known examples,
including logistic, power, reciprocal and, of course, standard self-concordant func-
tions. In particular, members of this function class are potentially ill-conditioned:
they may neither have a Lipschitz continuous gradient nor be strongly convex on
their domain. Hence, no provably convergent Frank—Wolfe method has been avail-
able so far for minimizing generalized self-concordant functions. This paper fills this
important gap by developing a set of new provably convergent FW algorithms with

@ Springer
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sublinear convergence rates. The key innovation of this paper is the design of new adap-
tive step-size policies and backtracking formulations, exploiting the specific problem
structure of GSC-minimization problems. This paper also derives new linearly con-
vergent projection-free methods for the minimization of GSC functions. Specifically,
we show how to adapt the local linear minimization ideas of [24] to the current, poten-
tially ill-conditioned, setup. Together with the concurrent paper [10], which appeared
on arXive after this work has been submitted for publication, we also derive a new
linearly convergent variant of the FW method featuring linear global convergence rates
for GSC functions. With the help of extensive numerical experiments, we demonstrate
the practical efficiency of our approach.

We conclude by mentioning some interesting potential extensions. First, our the-
ory could be used to derive distributed versions of the algorithms presented in this
paper in order to develop a generalized and projection-free variants of the DISCO
algorithm [56] or distributed cubic-regularized Newton’s methods [1,14]. These are
Newton methods capable to minimize a self-concordant function using distributed
computations. Projection-free methods which are able to handle the same problem,
but now including generalized self-concordant functions, have the potential to be
serious competitors in practice. Second, it will be interesting to incorporate gradient
sliding techniques [31], and stochastic versions of our algorithms. Recently, a Newton
Frank—Wolfe method has been introduced in [34]. It seems natural to us that their algo-
rithm can be extended to GSC functions. All these are important extensions, which
we are planning to pursue in the near future.
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A Additional facts about GSC functions

In order to make this paper self-contained we are collecting in this appendix finer
estimates provided by generalized self-concordance. For a complete treatise the reader
should consult the seminal paper [50]. An important feature of GSC functions is their
invariance under affine transformations. This is made precise in the following Lemma.

Lemma9 ([S0], Prop. 2) Let f € Fuy, v and A(x) = Ax +b : R" — RP? a linear

operator. Then

(@) Ifv € [2,3], then f(x) & f(A(x)) is (M 7, v)-GSC with M= Mf||A||3_".

(0) If v > 3 and hmin(ATA) > 0, then f(x) = f(AW)) is (M, v)-GSC with
Mf = M f Amin (ATA)%, where Amin (A" A) is the smallest eigenvalue of AT A.

When we apply FW to the minimization of a function f* € F)y, the search direction
at position x is determined by the target state s(x) = s definedin (1). If A : X — X
is a surjective linear re-parametrization of the domain X, then the new optimization
problem min ; f(x) = f(AX) is still within the frame of problem (P). Further-
more, the updates produced by FW are not affected by this re-parametrization since
(Vf(X),$) =(Vf(AX), AS) = (Vf(x),s)forx = Ax € X,s = As € X.

Beside affine invariance, we will use some stability properties of GSC functions.
Proposition 5 ([50], Prop. 1) Let f; € ]:Mfi"’ where My > 0 and v > 2 for
i=1,...,N. Then, given scalars w; > 0,1 < i < N, the function f = ZlN:l w; fi
is well defined on dom f £ ﬂlN:l dom f; and belongs to Fy .., where My =

1—v

maxj<i<y w; - My,

As corollary of this Proposition and invariance under linear transformations, we obtain
the next characterization theorem, which is of particular importance in machine learn-
ing applications.

Given N functions ¢; € wa,v. For (a;,b;) e R" xR,qg € R" and Q € R"™*" a
positive definite and symmetric matrix, consider the finite-sum model

N
f(X)A;w((mw)+b;)+<q7X>+%(Qx,X) (60)

Proposition 6 ([50], Prop. 5) If ¢; € wai,vfor v € (0, 3], then f : R" — (—00, 00]
defined in (60) belongs to Fu, 3, where My L dmin(Q)VI/2 max<j<n My,
lai 137

B Proof of Theorem 1

B.1 Preparations

The proof of Proposition 1 is an application of the technical Lemma below.
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Lemma 10 Consider the function
Yo() £ 1 = Ew,(18)1°, (61)

where £,§ > 0 are parameters and v € [2,3). For all v € [2,3], the function
t +— Y (t) is concave and differentiable. The unique maximum of this function is
achieved at

bin(1+2) ifv=2,
_v=2
MR 1_(1+§‘$%”) 4”} ifve®3), 62)
5TE =2

Proof We will organize the proof of Lemma 10 according to the generalized self-
concordance parameter v € [2, 3].

The casev = 2:  For this parameter we have w; (1) = [lz[e’ —t — 1], and thus

Uo(t) =1 — S'g—z[e“S —15—1].

This is a strictly concave function with unique maximum at

.1 5

2(3—v)
Thecasev e (2,3): Sincew,() = (422) 1 [54=2: (1 =05 = 1) = 1], some

simple algebra shows that

Ev—2 £ (v—2)? 250
54 —v

‘Wu(l‘):t<l+— _ﬁm[(l—lﬁ)i—l]

Setting ¥/ (¢) = 0, yields the value

v=2
1 §4—v\ =

It is easy to check that ]/ (1) = —&(1 — tcS)ZTZv < 0, so that ¢* is the global maximum
of ¥, (2).

The casev = 3: For this case, we have w3(t) = % It is easy to see that

Us(t) =1+ j—z[ta +1In(1 —18)] 1€ (0,1/8).
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Therefore, for t € (0, 1/§), we see that

w<r>—1+’5(a

The uniqué maximum d§ attained at 18

) , and Y5 (1) = —%(1 —18)72

1

t .
3T 5+

*

B.2 Proof of Theorem 1

Identifying the parameters involved in (61) as § = M8, (x), and & = Gea(g() ) gives us

Nx,My v (1) = Gap(x) ¥, (1).

Hence, the following explicit expressions for the step-size parameters are immediate
consequences of Lemma 10.

v =2: Since M 8(x) = MypB(x) we get the relation

_ 1 MyB(x)
th,2(x) = m In <1 + W Gap(x)> .

2
Ve (2,3): Setd= M8, (x) = FZMB(x)Ve(x)'>and & = % we get

2 1 v—3 2—v
By () = 5 3B o)

2—v
) [1 ) (1 ! 4%Mfﬁ(x)3’“e(x)“*4 Gap(X)>4v] .

v = 3: Since Myd3(x) = —e(x) we get

Gap(x)
Ye(x)(Ze(x) + Gap(x))

th,3(x) =

This completes the proof of Theorem 1. O

C Auxiliary results needed in the proof of Theorem 1
C.1 Proof of Lemma 4

Set x = x*. Since tyy sv(x) > 1, the decrease of the objective function is

e()c)2
Gap(x)

Nx.M (1) = Gap(x) <1 - wu(Mf5u(X))> :
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If v > 2 we know that M 5, (x) < t,(x)Ms8,(x) < 1, and the expression above is
well-defined. If v = 2, the domain of the function w» is full, and again the expression

above is well-defined. Set £, (1) £ w, (1M 78, (x)r and £(x) £ E2 5o that

nx,Mj-,v(t) .

Gap(x) — & (0§ (),

where 1 € (0,00) if v = 2 and 1 € (0, y5y) for v € (2,3]. By definition,
tm, v(x) is the unconstrained maximizer of the right-hand-side above. Therefore,
1-— E(x);v(th v(x)) = 0. Since t — ¢, (¢) is convex, its derivative is a non-
decreasing functlon Thus, since we assume that 1 < tp, ,(x), it follows &(x) =

1
—Cu(tM, NeI) 7 (1) Moreover, ¢, (1) > 0, so that

Mx.Myv(1) &(D) ¢u(l)
Gap(x) s =1 o - T L
1 @y (M58, (x))
2wy (M £8,(x)) + M 6, (x)w), (M58, (x))
_—
-2
where we used that /() > 0 for ¢t > 0. O

C.2 Proof of Lemma 5
We first prove a general lower estimate on the per-iteration progress.

Lemma 11 Suppose that t,(x*) < 1. Then, the per-iteration progress in the objective
function value is lower bounded by

2In2)—1 . [ e(x) Gap(x¥) Gap(x¥)? o
exh) mm{ MBGF) * elh) ffv=2,
- Gap(x¥) —1 Gap(x)* | .
Ak = Yy min { U%2A,[I('B(Xk)3—ue(xk)v—Z > b e(xk)z lf\) € (2’ 3)’ (64)

Mg Gap(x’()2

20=@) o {Gap(x")’ )

M ye(xk) ifv=3.

2(3—v)/(4— A 2—
where 7, £ 1 + 2(3 U) (1—2% v/ ") and b = -

We demonstrate this result as a corollary of the technical lemma below.
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Lemma 12 Consider function t — 1, (t) defined in eq. (61) with unique maximum t.}
as described in eq. (62). It holds that

%((1+%)ln<l+g>—1) ifv=2
mm:50—$+¥0ﬁgw)wawx (65)
%(1—%ln 1+§)) ifv=3.

where a £ 2= and b £ fﬁ < 0. Moreover; the following lower bound holds

22l min(1, é} ifv=2,

Yo (tF) > ?“““P ‘1 ifve@3), (66)

=02 min(1, g} ifv=23.

where 4
S -V 2(3-v)/(d-v)
214+ ———(1-2 } 67
7o +26—w< ) (67)

Proof We organize the proof according to the value of v € [2, 3].
Thecasev = 2: Since Y (t) =t — g > e 1 _ 15 — 1], once we plug in ¢} from eq.

(63) we arrive, after some computatlons at

wwy——<a+%la+§) )

A

We next establish the lower bound formulated in (66). Denote ¢(r) = (1 +
t) ln(l —) — 1. Then ¥ (#3) = ¢( )/§. At the same time,

dg(t) t 1 1

Thus, ¢ (¢) is decreasing and ¢ () > ¢(1) =21In2 — 1 when ¢ € (0, 1].

Let us now consider the function ¢ — %

d (o) _ o N
E(l—/t>_¢(z)+t¢>(z)—(2t+1)ln(1+ t) 2>0.

Hence, % >¢(1) =2In2 — 1 when ¢ € (1, +00). Combining these two cases, we

see that

1
Vo (t3) = 5¢¢/8) = 2In(2) — 1)min{l/5. 1/¢}. (68)
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Thecasev € (2,3): A computation shows that
2—v
w(t*)—l { 4—v 1+84—v 4=
VAT 23 —v) Ev—2
2—v
& (v ) 54 —v\4+v
1—1(1 .
+322(3_){ <+sv—) }

< 0. Then, setting u = 1 — %g we see that

& _4— & 2-
Seta = 2(37"1}) >0andb = 7=

b
1— gi —aub+ab§ub
) )

b+1
[1_ﬁ+a_b$<1_l§> }
) p) bé&

To verify the lower bound, we rewrite ¥, () as follows:

=<

*_1 _ b a _ b
Wv(tv)—(S(l au +u_1(1 u))

1 1+ a auPt!
TS u—1 u—1

1

where y (1) 214+ u%l — a,:’il . Our next goal is to show that, for u € [2, +00),
y (1) is below bounded by some positive constant and, for u € (1, 2], y (u) is below
bounded by some positive constant multiplied by u — 1.

1. u € [2, +00). We will show that y'(u) > 0, whence y(#) > y(2). Thus, we
need to show that

0<y'(u) = —ﬁ (1 — (b+ u® —i—bub“) .

=h(u)

Since a > 1, to show that y'(u) > 0 it is enough to show that 2 (u) < 0. Since
be(—1,0)and t > 2,

W) =bb+ Du® —bo+ D' =bbm+ P w—-1) <o.

Whence, h(u) < h(2) for all u € [2, 400). It remains to show that 2(2) < 0. Let us
consider 2(2) = ¢(b) := 1 — (b + 1)2° + b2P*! = 1 4+ b2P — 2P as a function of
b € (—1,0). Clearly, p(—1) = ¢(0) = 0, and it is easy to check via the intermediate
value theorem that ¢ (b) < O for all b € (—1, 0). We conclude that for u > 2 we get

¥ (1) = 57(2).
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2.t € (1,2]. We will show that % (y(m)/(u—1)) <0, whence y(u) > (u —
1)y (2). Thus, we need to show that

0~ d 1 N a auPtl
“dt\u—-1 @—-0D2 (@—-1)72

(—u +1-2a+ab+ DHuP —ab®d- l)ub'H) =

h(u).

T -1y u— 1)

Therefore, our next step is to show that 2(u) < 0. We have

W) =—-14a®m+ Db —ad—)bd+ DHuP,
h'(u) = abb+ D — DuP™? —a®d — Db + P!
ab(® + )b — DuP2(1 — u).

By definition, a(b + 1) = 1. Hence, since u > 1 and b € (—1, 0), we observe that
h'(u) < 0. Thus, A'(u) < h’(1) = 0, and consequently, 2(x) < h(1) = 0, for all
u € (1,2]. This proves the claim y (u)/(u — 1) > y(2) foru € (1, 2].

Combining both cases, we obtain that y(#) > min{y(2), (u — 1)y (2)}, where
y(2) =1 — a + a2!/2, using the fact that b + 1 = 1/a. Unraveling this expression
by using the definition of the constant a, we see that y (2) depends only on the self-
concordance parameter v € (2, 3). In light of this, let us introduce the constant

n 4—v
23 —v)

~ AI

7, & (1 _ 22(3—1})/(4—1))) ) (69)

Observe that > = 0 and, by a simple application of 1'Hopital’s rule, lim,43 7, =
1 —log(2) € (0, 1). Hence y(2) = y, € (0, 1) for all v € (2, 3). We conclude,

o B [y =18
Yo(t)) > 5 mm{l, 5 E} (70)

Thecasev = 3: A direct substitution for ¥3(¢) gives us

U = 2+ S in (L) 1)
375 T s2 s+¢&)°

Denote u = &/8. Then t5 = ﬁ, so that

*_1 | | u
¢3(l3)—§|: tu n<u+1>]
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Consider the function ¢ : (0, 00) — (0, c0), given by ¢(¢) :== 1 + ¢ln (1+t>
Then, ¥3(13) = %qﬁ(s/&). Fort € (0, 1), one sees

50 =1 t +t1+t 1 t (1 1 n 1 0
=In — =In - — — < 0.
1+1 t 1+t (1412 1+1 1+t

Consequently, ¢ (¢) is decreasing for # € (0, 1). Hence, ¢(t) > ¢(1) = 1 — In2, for
all r € (0, 1). On the other hand, if r > 1,

d (¢(t) _d . t o
E(l_/l‘)_ (tp (1)) = 1+2tln<l+t)+l+t>0

Hence, t — ‘7;(/? is an increasing function for ¢+ > 1, and thus ¢ (¢) >

t > 1. Summarizing these two cases we see

1n2

, for all

V3 (13) = %min{l, §/6}(1 —In(2)) = (1 — In(2)) minf1/8, 1/} (72)

Proofof Lemma 11 Recall that 1y ;v (1) = Gap(x)¥ (7). By identifying the param-
eters appropriately, we can give the proof of Lemma 11 as a straightforward exercise
derived from Lemma 12. We provide the explicit derivation for each GSC parameter
v below.

e(x)

v = 2: Substitute in (63) the parameter values & = Gap(o and 6 = Myor(x) =
M ¢ B(x), the lower bound turns into

(73)

2In(2) -1 . { e(x) Gap(x)}
min .

Vo(tm,2(x) = o) M BE) o)

Hence,

A > Gap(xb)

2In(2) —1 . { e(x) Gap(x) }
min R
e(x) M¢B(x) e(x)
2In(2) —1 . {e(xk)Gap(xk) Gap(xk)2}
= ——— Mmin B
e(x) M B (x*) e(xk)

v € (2,3): Substitute in (70) the parameter values § = M5, (x) = ”T_szﬂ(x)3_”

e()' 2§ = S35 so that

1 —1 Gap(x) }

I/fv(th,v()C)) Z Yy min { UT—ZMf’B(x)S*”e(X)UiZ’ b e(x)?

(74)

Gap(xb) —1 Gap(x¥)? }

Hence, Ak > Yy min { ,jz;szﬂ(ka_ve(xk)\,_Q "D e(h)?
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v = 3: Substitute in (72) the parameter values § = §3(x) = #e(x),g = Gea(g()j),
to get
2(1 —In(2)) . My Gap(x)
t > — 1, ———1. 75
Y3(t3(x)) > Mye(x) mm{ o) (75)

Hence, A, > 20=In@) 1pip {Gap(xk),

M ; Gap(x*)?
= Mye(x¥) :

e(xk)

Proofof Lemma 5 Use the estimates f(x) < diam(&X) and e(x) < /LvsB(x) <
V/ Lv s diam(X) in the expressions provided in Lemma 64.
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