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Abstract
Dynamic user equilibrium (DUE) is a Nash-like solution concept describing an equi-
librium in dynamic traffic systems over a fixed planning period. DUE is a challenging
class of equilibrium problems, connecting network loading models and notions of
system equilibrium in one concise mathematical framework. Recently, Friesz and
Han introduced an integrated framework for DUE computation on large-scale net-
works, featuring a basic fixed-point algorithm for the effective computation of DUE.
In the same work, they present an open-source MATLAB toolbox which allows
researchers to test and validate new numerical solvers. This paper builds on this sem-
inal contribution, and extends it in several important ways. At a conceptual level,
we provide new strongly convergent algorithms designed to compute a DUE directly
in the infinite-dimensional space of path flows. An important feature of our algo-
rithms is that they give provable convergence guarantees without knowledge of global
parameters. In fact, the algorithms we propose are adaptive, in the sense that they do
not need a priori knowledge of global parameters of the delay operator, and which are
provable convergent even for delay operators which are non-monotone. We imple-
ment our numerical schemes on standard test instances, and compare them with the
numerical solution strategy employed by Friesz and Han.
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1 Introduction

This paper is concerned with a class of models known as Dynamic User Equilibrium
(DUE). DUE problems have been studied within the broader context of Dynamic
Traffic Assignment (DTA), which is concerned with modeling time-varying traf-
fic flows consistent with established traffic flow theory. DTA models are greatly
influenced by Wardrop’s equilibrium principle (Wardrop 1952), which is seen as a
Nash-like equilibrium condition in an aggregative game:

(a) Wardrop’s first principle, also known as the user optimality principle, states
that road segments used in an equilibrium should display the same travel costs
(i.e. delay);

(b) Wardrop’s second principle, known as the system’s optimality principle,
assumes that drivers behave cooperatively, in making travel decisions so that
the over system costs (aggregate delays) are minimized.

Logically, the behavioral maxims (a) and (b) are disconnected, and a substantive
literature in transportation research is concerned with the design of computational
architectures aligning these potentially conflicting principles. Since the seminal
work of Merchant and Nemhauser (1978a) and Merchant and Nemhauser (1978b),
dynamic extensions of Wardrop’s principles have paved the way to the introduction
of notions like DUE and Dynamic System Optimal (DSO) models. For comprehen-
sive reviews of DTA models, we refer to Peeta and Ziliaskopoulos (2001), Jeihani
(2007), and Wang et al. (2018).

In the last two decades there have been many efforts to develop a theoretically and
sound formulation of DUE, acceptable to modelers and practitioners alike. Analytical
DUE models tend to be of two varieties: (1) Route Choice (RC) DUE (Friesz et al.
1989; Merchant and Nemhauser 1978a; 1978b; Zhu and Marcotte 2000), and (2)
Simultaneous Route and Departure Choice (SRDC) DUE (Friesz et al. 1993; Friesz
et al. 2001; Friesz et al. 2011; Ran et al. 1996). Both types of DUE rest on two pillars:

1. A mathematical notion of equilibrium;
2. A model of network performance, based on some physical laws describing traffic

flows.

The second pillar is known in the literature as Dynamic Network Loading (DNL).
Equilibrium is usually expressed in terms of Wardrop’s first principle. Mathemati-
cal approaches to describe equilibrium contain variational inequalities (VI) (Friesz
et al. 1993; Zhu and Marcotte 2000), nonlinear complementarity problems (Pang
et al. 2012; Han et al. 2011), differential variational inequalities (Pang and Stewart
2008; Friesz and Mookherjee 2006) and fixed point problems (Friesz et al. 2011). In
this paper we choose the VI formulation of DUE, and our aim is to advance com-
putational techniques for the practical solution of DUE. Our research builds on, and
extends, recent advances in computational approaches to DUE reported in Han et al.
(2019). As is well known computing user equilibrium is a challenging task; Its main
complication arises since it constitutes an interconnected computational procedure,
coupling equilibrium computation with DNL. The DNL, which could be understood
as the first layer of the problem, aims at describing the spatial and temporal evolution
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of traffic flows on a network that is consistent with established route and departure
choices of travelers. This is done by formulating appropriate dynamics to flow prop-
agation, flow conservation, link delay, and path delay on a network level. In general,
DNL models have the following components:

1. Some form of link and/or path dynamics;
2. An computationally-friendly relationship between flow/speed/density and link

traversal time;
3. Flow propagation constraints;
4. A model of junction dynamics (Riemann Solvers) and delays;
5. A model of path traversal times, and
6. Appropriate initial conditions.

DNL generates the path delay operator, which is the key input when comput-
ing an equilibrium given the delays on user routes (travel costs). This is the second
layer of the problem, and of main interest in this paper. At this layer one has to use
some equilibrium solver, whose performance depends significantly on the informa-
tion we have about the structural properties of the delay operator. However, since the
delay operator is itself the result of a computational procedure, it is not available in
closed form, and thus one is confronted essentially with a black-box upon which we
can assume whatever we find useful, but the empirical validation of these assump-
tions is very hard. It is thus of utmost importance to have at our disposal efficiently
implementable algorithms which are:

(i) Adaptive to arrival of new information about unknown global parameters;
(ii) Provably convergent under mild monotonicity assumptions.

We argue that, up to now, none of the perceived DUE solvers meet both of these
criteria. To support this claim, we present Table 1, where the current state-of-the-art
in DUE computation is summarized.1

We infer from Table 1 that known algorithmic strategies for solving the DUE
problem require knowledge about the global Lipschitz constant and some sort of
monotonicity of the path delay operator. Since the delay operator is not given to us in
closed form, both assumptions are practically not verifiable. Algorithmic strategies
which are provably convergent without explicit knowledge of these global properties,
are thus to be seen as a very valuable contribution.

1.1 Our Contributions

This paper makes a significant step-ahead relative to the perceived compu-
tational literature on DUE, by describing two numerical algorithms acting

1In this table we focus on algorithms acting directly on the infinite-dimensional Hilbert space formulation
of DUE. A much larger literature on this topic exists which is concerned with finite-dimensional approx-
imations. In the parlance of numerical mathematics, the latter would correspond to a first discretize, then
optimize strategy. As the two approaches are quite different, it would not provide fair comparisons.
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Table 1 Computational algorithms for DUE (adapted from Han et al. (2019))

Algorithm DUE Model Assumptions Convergence References

Projected Gradient SRDT Lipschitz cont. strong Friesz et al. (2011)

strongly monotone

descent algorithm SRDT Co-coercive weak Szeto and Lo (2004)

Route-swapping RC DUE monotone weak Szeto and Lo (2006)

Route-swapping SRDT DUE Continuous weak Huang and Lam (2002)

monotone

Route-swapping SRDT DUE monotone weak Tian et al. (2012)

monotone

Extragradient RC DUE Lipschitz cont. weak Long et al. (2013)

pseudo monotone

Self-adaptive SRDT DUE D-property weak Han et al. (2015b)

Proximal point SRDT DUE Dual solvable weak Han et al. (2015a)

FBF SRDT DUE Lipschitz cont. strong Duvocelle et al. (2019)

pseudo monotone

Inertial-FBF SRDT DUE Lipschitz cont. strong This paper

pseudo monotone

The algorithms are arranged in an increasing order of generality of the monotonicity

directly in infinite-dimensional Hilbert spaces. Our algorithms share the following
features:

(i) Strong convergence to a single user equilibrium;
(ii) Adaptive step-size choices without the need to know global Lipschitz parame-

ters of the delay operator;
(iii) Provably convergent under a plain pseudo-monotonicity assumption on the

path delay operator.
(iv) Include inertial and relaxation effects to potentially speed up the convergence.

While items (ii) and (iii) don’t need much motivation, our emphasis on strongly con-
vergent methods seems to be somewhat pedantic at first sight, so it deserves some
words of explanation.

In infinite-dimensional settings strongly convergent iterative schemes are much
more desirable than weakly convergent ones since strong convergence translates the
physically tangible property that the energy ‖hn − h∗‖2 of the error between the
iterate hn and a solution h∗ eventually becomes arbitrarily small. Of course, any
numerical solution technique designed for solving a problem in infinite dimensions
must be applied to a finite-dimensional approximation of the problem. Exactly in
such situations strongly convergent methods are extremely powerful, because they
guarantee stability with respect to numerical discretization. In fact, Güler (1991)
demonstrated that strongly convergent schemes might even exhibit faster conver-
gence rates as compared to their weakly convergent counterparts. It seems therefore
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fair to say that strong convergence is an extremely desirable property of solution
schemes, with clearly observable physical consequences on the performance and sta-
bility of algorithms. As a matter of fact, Friesz et al. (2011) employs a projected
gradient iteration of Halpern type (Halpern 1967; Bauschke and Combettes 2016),
which forces trajectories to converge strongly to some DUE.

Adaptivity in the step-size policy frees us from any unavailable information about
the global Lipschitz constant of the delay operator. It allows us to tune the step size
on-the-fly and guarantees convergence for general pseudo-monotone operators with
good performance properties.

Operator splitting methods with inertia and relaxation have received quite some
attention in recent years, see e.g. Lorenz and Pock (2015), Iutzeler and Hendrickx
(2019), and Attouch and Cabot (2019). These schemes are motivated by Nesterov’s
accelerated method (Nesterov 2004), and therefore the main motivation for inertial
methods is to speed up the convergence rate. To the best of our knowledge this is the
first time that inertial and relaxation effects are investigated in the context of DUE
computation and under weak pseudo-monotonicity assumptions.

Remark 1 In previous work (Duvocelle et al. 2019) investigated the DUE with a
strongly convergent FBF variant. This paper replaces and significantly extends our
previous work by the explicit consideration of inertial effects.

1.2 Organization of the Paper

Sections 2 and 3 describe user equilibrium and the DNL procedure we use in
our numerical experiments. In setting up these two layers we follow closely Han
et al. (2019). Section 4 describes the algorithms we construct and investigate in this
paper. Building on the MATLAB toolbox publicly available at https://github.com/
DrKeHan/DTA and documented in Han et al. (2019). We report the outcomes of our
experiments in Section 5. Technical facts and proofs are organized in Sections 6.1
and 6.2.

2 Dynamic User Equilibrium

We introduce a few notations and terminologies for the ease of presentation below.

– P: set of paths in the network.
– W: set of origin-destination (O-D) pairs in the network.
– Qw: fixed O-D demand between w ∈ W .
– Pw: subset of paths that connect O-D pair w.
– t : continuous time parameter in the fixed time horizon [t0, t1].
– hp(t): departure rate along path p at time t .
– h(t): complete profile of departure rates h(t) = {hp(t); p ∈ P}.
– Ap(t, h): effective travel cost along path p with departure time t under the path

profile h.
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– νw(h): minimum travel cost between O-D pair w ∈ W for all paths and all
departure times.

2.1 Formulation of DUE as a Variational Inequality

Let [t0, t1] be a fixed planning horizon. We are given a connected directed graph
G = (V, E) with finite set of vertices V , representing traffic intersections (junctions)
and arc set E , representing road segments. A path p in the graph G is identified with
a non-repeating finite sequence of links it traverses, i.e. p = {I1, I2, . . . , Im(p)},
where m(p) is the number of links in this path. We denote the set of all paths by P ,
and set H := R

|P |. We are interested in paths which connect a set of distinguished
vertices acting as the origin-destination (O-D) pairs in our graph. We are given N

distinct O-D pairs denoted as w1, . . . , wN , where each wi = (oi, di) ∈ V . Call
W := {w1, . . . , wN } the collection of all O-D pairs, and let us denote the set of paths
connecting the O-D pair w by Pw ⊆ P . For each O-D pair w ∈ W we are given
an exogenous demand Qw > 0; This represents the number of drivers who have to
travel from the origin to the destination described by w. The list Q = (Qw)w∈W is
often called the trip table. In DUE modeling, the single most crucial ingredient is
the path delay operator, which maps a given vector of departure rates (path flows)
h to a vector of path travel times. We stipulate that path flows are square integrable
functions over the planning horizon, so that hp ∈ L2([t0, t1];R+) and h = (hp; p ∈
P) ∈ H := L2([t0, t1]; H). To measure the delay of drivers on paths, we introduce the
operator D : H → H, h �→ D(h), with the interpretation that Dp(t, h) is the path
travel time of a driver departing at time t from the origin of path p, and following
this path throughout. This operator is the result of some DNL procedure, which is an
integrated subroutine in the dynamic traffic assignment problem. See Section 3 for a
description of the DNL used in our computational experiments.

On top of path delays, we consider penalty terms of the form φ(t +Dp(t, h)− τ),

penalizing all arrival times different from the target time τ > 0 (i.e. the usual time
of a trip on the O-D pair w). The function φ : [−∞, ∞) → [0, ∞] should be
monotonically increasing with φ(a) > 0 for a > 0 and φ(a) = 0 for a ≤ 0. Define
the effective delay operator as

Ap(t, h) := Dp(t, h) + φ(t + Dp(t, h) − τ). (1)

We thus obtain an operator A : H → H, mapping each profile of path departure rates
h to effective delays A(h) = {Ap(t, h); t ∈ [t0, t1]} ∈ H.

We follow the perceived DUE literature, and stipulate that Wardrop’s first prin-
ciple holds: Users of the network aim to minimize their own travel time, given
the departure rates in the system. Thus, a user equilibrium is envisaged, where
the delays (interpreted as costs) of all travelers in the same O-D pair are equal,
and no traveler can lower his/her costs by unilaterally switching to a differ-
ent route. To put this behavioral axiom into a mathematical framework, we first
formulate the meaning of “minimal costs” in the present Hilbert space setting.
Recall the essential infimum of a measurable function g : [t0, t1] → R as
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ess inf{g(t) : t ∈ [t0, t1]} = sup {x ∈ R : Leb({s ∈ [t0, t1] : g(s) < x}) = 0} , where
Leb(·) denoted the Lebesgue measure on the real line. Given a profile h ∈ H, define

νp(h) := ess inf{Ap(t, h) : t ∈ [t0, t1]} ∀p ∈ P, and (2)

νw(h) := min
p∈Pw

νp(h) ∀w ∈ W . (3)

On top of minimal costs, we have to restrict the set of departure rates to functions
satisfying a basic flow conservation property. Specifically, insisting that all trips are
realized, we naturally define the set of feasible flows as

X :=
⎧
⎨

⎩
f ∈ H :

∑

p∈Pw

∫ t1

t0

fp(t) dt = Qw ∀w ∈ W

⎫
⎬

⎭
. (4)

The set of feasible flows X is sequentially closed and convex, but not sequentially
compact (i.e. path departure rates are note a-priori assumed to be bounded as the
above definition involves Lebesgue-integrable functions). We are now ready to give
our first definition of user equilibrium.

Definition 1 A profile of departure rates h∗ ∈ H is a DUE if

(a) h∗ ∈ X , and
(b) h∗

p(t) > 0, p ∈ Pw ⇒ Ap(t, h∗) = νw(h∗).

We denote by Ω ⊂ X the (possibly empty) set of DUE.

In Friesz et al. (1993) it is observed that the definition of DUE can be formulated
equivalently as a variational inequality VI(A,X ): A flow h∗ ∈ X is a DUE if

〈A(h∗), h − h∗〉 ≥ 0 ∀h ∈ X (5)

This notion of equilibrium is very useful, since it allows us to apply a large variety
of algorithms to solve VI(A,X ), and in fact it can be seen as the basis of most
of the computational approaches to DUE. We now spell out sufficient conditions
guaranteeing existence of DUE.

Assumption 1 – The penalty function φ : [t0, t1] → R+ is continuous and there
exists Δ > −1 such that

φ(a) − φ(b) ≥ Δ(a − b) for all t0 ≤ a < b ≤ t1. (6)

– The DNL satisfies the FIFO principle and each link has finite capacity.
– The effective delay operator is weak-to-weak continuous on bounded subsets of

X .

Theorem 1 Under Assumption 1 the DUE problem Eq. 5 has a solution, i.e. Ω �= ∅.

Proof See Han et al. (2013).
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The construction of the delay operator requires a specification of a DNL (i.e.
traffic flow generation). We focus in this work on a macroscopic model of net-
work loading based on fluid dynamic approximations of traffic flow on networks,
known as the Lighthill-Whitham-Richards (LWR) model (Lighthill and Whitham
1955; Richards 1956). The LWR model is able to describe the physics of kinematic
waves (e.g. shock waves, rarefaction waves), and allows network extension that cap-
ture the formation and propagation of vehicle queues as well as vehicle spill-back.
We will formulate the LWR-based DNL as a system of partial differential algebraic
equations (PDAE), which uses vehicle density and queues as the unknown variables,
and computes link dynamics, flow propagation, and path delay for any given vector
of path departure rates.

2.2 The Differential Variational Inequality Formulation

It has been observed in Friesz et al. (2001) that DUE can be equivalently formulated
as a differential variational inequality (Pang and Stewart 2008). From an algorithmic
point-of-view this relation is interesting as it allows us to use time-stepping methods
to compute approximate user equilibria Friesz et al. (2011) and Friesz and Mookher-
jee (2006). Independent of algorithmic considerations, we regard this identification
as an important conceptual insight, and thus deserves some remarks here. The precise
connection between DVI and DUE goes as follows:

Define the vector-valued function x : [t0, t1] → R
|W |, t �→ x(t) = {xw(t); w ∈

W} as the state trajectory of a controlled dynamical system with the interpretation
that xw(t) is the cumulative traffic up to time t on paths connecting the origin-
destination pair w ∈ W . The definition of this state-variable requires that its dynamic
evolution is described by the linear differential equation

d

dt
xw(t) =

∑

p∈Pw

hp(t) a.e. t ∈ [t0, t1]. (7)

Additionally, it must satisfy the natural initial and boundary-value conditions

(xw(t0), xw(t1)) = (0, dw) ∀w ∈ W . (8)

The differential variational inequality describing DUE reads then as follows: Find
h ∈ H such that Eq. 7, Eq. 8 and the instantaneous optimality condition

h(t) ∈ SOL(R
|P |
+ , A(t, ·)) a.e. t ∈ [t0, t1] (9)

holds. Note that this defines a time-dependent complementarity system

0 ≤ h(t)⊥A(t, h(t)) ≥ 0 a.e. t ∈ [t0, t1],

which has been used in a DUE model with a simplified bottleneck structure in Pang
et al. (2012). See Friesz et al. (2011) for a formal proof on the correctness of this
interpretation.
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3 Dynamic Network Loading

The purpose of this section is to explain the dynamic network loading model used in
our numerical investigation. We are considering the LWR model on networks, adopt-
ing the description in terms of a system of Differential Algebraic Equations (DAE).
This formulation of the DNL procedure has the advantage over its mathematically
equivalent description in terms of a system of partial differential algebraic equations
that it avoids the use of partial differential operators, and thus is much more amenable
to numerical discretization strategies.

3.1 The Lighthill-Whitham-Richards LinkModel

Network loading acts on the same oriented graph G = (V, E) as in Section 2, where
links Ii ∈ E have a certain length measured by the interval [ai, bi]. The within-link
dynamics are captured by the scalar conservation law

∂tρi(t, x) + ∂x [ρi(t, x)vi(ρi(t, x))] = 0 (t, x) ∈ [t0, t1] × [ai, bi]. (10)

The fundamental diagram fi(ρ) = ρ ·vi(ρ) is assumed to be continuous, concave and
vanishes at ρ ∈ {0, ρ

jam
i }, where ρ

jam
i is the jam density on link Ii . Moreover, there

exists a unique global maximum of fi at the value ρc
i . We focus on the triangular

fundamental diagram

fi(ρ) =
{

viρ if ρ ∈ [0, ρc
i ],

−wi(ρ − ρjam) if ρ ∈ (ρc
i , ρ

jam
i ] (11)

where vi, wi > 0 denote the forward and backward kinematic wave speeds,
respectively.

At junctions we need to make sure that relevant boundary conditions are satis-
fied to respect basic physical principles. Consider a junction with m incoming and n

outgoing links. At each such junction, the following conservation property must hold:

m∑

i=1

fi(ρi(t, bi)) =
n∑

j=1

fj (ρj (t, aj )) ∀t ∈ [t0, t1]. (12)

This condition simply means that inflow into the junction equals outflow. How-
ever, this condition alone does not guarantee a unique flow profile at these m + n

links. Additional conditions, usually formulated in terms of Riemann solvers and
demand/supply conditions must be imposed. We refer to Bressan et al. (2014) and
Garavallo et al. (2016) for reviews.

3.2 The Variational Representation of Link Dynamics

While Eq. 10 captures within-link dynamics, the inter-link propagation of conges-
tion requires a careful treatment of junction dynamics. The overall system of PDEs
leads to a complex system of junction dynamics and conservation laws which is very
hard to handle computationally. We follow a different approach here, which is more
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amenable to numerical computations. We briefly introduce a variational represen-
tation of the link dynamics, based on the generalized Lax-Hopf formula, originally
developed in Aubin et al. (2008), Claudel and Bayen (2010a), and Claudel and
Bayen (2010b), which leads to a DNL procedure in terms of a system of differen-
tial algebraic equations (DAE). Compared to the flow-based approach described in
Section 3.1, the DAE based formulation has the following main advantages: (1) the
primary variable is flow instead of density); (2) no partial differential operators are
involved; (3) it introduces simplified boundary conditions. We only give a high-level
description of this approach, detailed enough so that the reader is able to under-
stand the mechanics of the numerical solver. A rigorous description can be found in
Garavallo et al. (2016).

Consider the Moskowitz function Ni(t, x) which measures the cumulative num-
ber of vehicles that have passed location x along link Ii by time t . The following
identities hold:

∂tNi(t, x) = fi(ρi(t, x)), ∂xNi(t, x) = −ρi(t, x). (13)

It follows immediately that Ni(t, x) satisfies the Hamilton-Jacobi equation

∂tNi(t, x) − fi(−∂xNi(t, x)) = 0 x ∈ [ai, bi], t ∈ [t0, t1]. (14)

Denote by f in
i (t) and f out

i (t) the link Ii inflow and outflow. The cumulative link
entering and exiting vehicle counts are defined as

d

dt
N

up
i (t) = f in

i (t),
d

dt
Ndown

i (t) = f out
i (t),

where “up” and “down” represent the upstream and downstream boundaries of the
link, respectively. Han et al. (2016b) derive explicit formulae for the link demand and
supply based on a variational formulation known as the Lax-Hopf formula (Aubin
et al. 2008, Claudel and Bayen 2010a, 2010b), as follows:

Di(t) =
{ −f in

i (t − Li/vi) if N
up
i (t − Li/vi) = Ndn

i (t)

Ci if N
up
i (t − Li/v) > Ndn

i (t)

and

Si(t) =
{

f out
i (t − Li/wi) if N

up
i (t) = Ndn

i (t − Li/wi) + ρ
jam
i Li

Ci if N
up
i (t) < Ndn

i (t − Li/wi) + ρ
jam
i Li .

where Li = bi − ai is the length of the link Ii , vi = f ′
i (0+) and wi = f ′

i

(
ρ

jam
i −

)
.

These two relations express the link demand and supply, which are inputs of the
junction model, in terms of Nup and Ndown. This means that one no longer has to
compute the dynamics within the link, but focus instead on the cumulative counts
at the two boundaries of the link. Note that, when discretizing the DNL in time, we
immediately obtain the link transmission model Yperman et al. (2005). In general,
the approach just described gives rise to the link-based formulation of DNL Han et al.
(2016b).

JunctionDynamics In a path-based DNL procedure one must incorporate established
routing information into the junction model. Such information is usually formulated
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by some behavioral assumption on drivers’ preferences. In the numerical scheme
we consider, such information is provided in terms of an endogenously given flow
distribution matrix W(t) = [wij (t)], where wij (t) is the proportion of flow incoming
into link i and continuing by following link j at a given junction. Abstractly, if Θ

represents some junction model, we have the functional relationship

(f out (t), f in(t)) = Θ(D(t), S(t), W(t)),

where f out (t) = (f out
i (t))i=1,...,m and f in(t) = (f in

j (t))j=1,...,n, are the computed
incoming and outgoing flows.

Dynamics at the origin nodes At the origin nodes, we employ a simple point-queue
model, in the spirit of Vickrey (1969). Let o be a given origin node, and denote by
qo(t) the volume of the point queue. Let link j be connected to the origin. We assume
that

d

dt
qo(t) =

∑

p∈Po

hp(t) − min{D0(t), Sj (t)},

where Po denotes the set of paths originating from o. The first term on the right
represents the inflow into the queue, while the second term represents flow leaving
the queue, modeling the demand at the origin as

Do(t) =
{

M if qo(t) > 0,∑
p∈Po

hp(t) else

taking M to be a sufficiently large number, bigger than the flow capacity at link j .

Calculating path travel times The DNL procedure calculates the path travel times
with given path departure rates. The path travel time is defined as link travel time plus
possible queuing at the origin. We define the link exit time function λ(t) implicitly as

Nup(t) = Ndown(λ(t)). (15)

For a path enumerated as p = {1, 2, . . . , m}, the path travel time Dp(t, h) is
calculated as

Dp(t, h) = λs ◦ λ1 ◦ . . . ◦ λm(t).

where (f ◦ g)(t) = f (g(t)) denotes the composition of two functions. λo(t) is the
exit time function for the potential queuing at the origin o.
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4 Strongly Convergent Fixed-Point Algorithms

4.1 Fixed Point Formulation of DUE

Once a DNL procedure has been fixed, the effective delay operator A(h) can be eval-
uated. The definition of DUE allows us to construct a suitable fixed-point problem
which is the basis for the design of iterative numerical schemes for computing DUE.
In fact, it is easy to see that h∗ ∈ H is a path-departure rate profile corresponding to
a DUE if and only if the residual

rτ (h) = ‖h − PX (h − τA(h))‖
is zero, i.e. rτ (h

∗) = 0, τ > 0. Here, we call PX (x) the orthogonal projection in
L2 onto the set X ⊂ H. A classical iterative scheme to find the roots of a nonlin-
ear function is the Picard fixed-point iteration to localize a fixed point of the map
h �→ PX (h−τA(h)). Under strong a-priori continuity and monotonicity assumptions
on the effective delay operator A, the projected gradient (a.k.a. forward-backward)
method, Algorithm 1, generates a sequence {hn}n∈N which will weakly converge to
some DUE.

This iterative solver is used in the software package developed in Han et al. (2019),
and has also been employed in many studies before. Weak convergence (see Defini-
tion 2 in Section 6.1) of the thus constructed sequence {hn}n∈N is known when the
operator A is inverse strongly monotone (co-coercive) with modulus μ > 0

〈A(x) − A(y), x − y〉 ≥ μ‖A(x) − A(y)‖2 ∀x, y ∈ H,

provided that the step sizes τ ∈ (0, 2μ). Note that co-coercivity is equivalent to
Lipschitz continuity with Lipschitz constant 1

μ
. Thus, for making method (16) a prov-

ably convergent algorithm, we need to know the Lipschitz constant to pin down an
upper bound on the step sizes. Strong convergence of {hn}n∈N requires even stronger
uniform monotonicity assumption of the operator A over the set X (Theorem 25.8
Bauschke and Combettes (2016)),2 or other modifications of the basic template (16)
are needed. Friesz et al. (2011) present a strongly convergent variant of Eq. 16 using
a Halpern-type modification of the basic scheme above. Both assumptions, Lipschitz
continuity and uniform monotonicity, are very restrictive in the context of comput-
ing DUE. While continuity of the effective delay operator has been established in the
context of the LWR network loading procedure Han et al. (2016a), monotonicity esti-
mates are hardly available for realistic DNL procedures and not very likely to hold in
practice. Therefore, strongly convergent algorithm which are provably convergent to
a solution under mild monotonicity assumptions are highly desirable for modeling,
optimization and simulation of traffic networks.

2An operator A : H → H is called uniformly monotone if there exists an increasing function ω :
(0,∞) → [0,∞), vanishing at zero, such that

〈A(h) − A(h′), h − h′〉 ≥ ω(‖h − h′‖) ∀h, h′ ∈ domA.
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4.2 Computing DUE UnderWeak Assumptions

Our aim is to design and study alternative numerical schemes for computing DUE,
which require significantly less stringent a-priori assumptions on the delay operator,
but still come with rigorous convergence guarantees. We summarize our working
assumptions below, while Section 6.1 gathers precise mathematical definitions for
the readers’ convenience.

Assumption 2 The delay operator A : H → H is sequentially weakly continuous
and L-Lipschitz continuous on X . However, we do not need to know L.

To cope with the unavailable information about the Lipschitz constant, we con-
struct adaptive algorithms, and thus do not need information of this hardly available
global parameter. Instead a simple and efficient update procedure of the step size
parameters is proposed which depends on pointwise variations of the delay operator
rather than global variations. This is a major advantage of the methods we propose
here, both from a conceptual and practical point of view, as it allows us to decide
step-sizes “online”.

The next assumption is concerned with the structural properties with impose on
the delay operator.

Assumption 3 The delay operator A is pseudo-monotone on H: For all h1, h2 ∈ H,
we have

〈A(h1), h2 − h1〉 ≥ 0 ⇒ 〈A(h2), h2 − h1〉 ≥ 0 (17)

Pseudo-monotonicity is a significant weakening of the (strict) monotonicity
required when applying the fixed point iteration scheme (16). Some intuition for this
concept can be given by considering the simpler case when the operator is integrable.
Any smooth real-valued function f : H → R induces an operator A : H → H
via its gradient A(h) = ∇f (h) (unique thanks to the Riesz representation theorem).
Note that f is (strictly) convex if and only if the gradient map is a (strictly) mono-
tone operator. If f is merely quasi-convex, the gradient operator is pseudo-monotone
and vice versa. Assumptions 1-3 are the standing hypothesis for the rest of this paper.
Building on them, we now describe the numerical schemes we analyze.

Our basic algorithmic design principle follows the forward-backward-forward
(FBF) splitting scheme, originally due to Tseng (2000). In its original form, it ensures
that path flows will weakly converge to a DUE, provided that the delay operator
is monotone and Lipschitz continuous in the L2 norm. In the special case of vari-
ational inequalities, it has been shown that pseudo-monotonicity suffices for weak
convergence Bot and Mertikopoulos (2021). Actually, one can easily see that weak
convergence holds for a large class of non-monotone VIs satisfying an angle property
at the solution set Dang and Lan (2015), and this is the main reason why FBF is an
attractive numerical solution scheme for DUE. FBF updates a current path departure
rate profile h by first applying (16), in order to produce the extrapolated search point
y = PX (h− τA(h)) (first forward-backward step). It then performs another forward
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step in path space, by calling the DNL procedure at the just constructed extrapo-
lation point y, and shifts density into directions where the difference in the “travel
costs” between the current path flow h and the new search point y is large. Alge-
braically, this leads to the correction step h+ = y + τ(A(h) − A(y)). We would like
to emphasize that this correction step does not involve an additional projection onto
the feasible set X . This reduces the computational complexity of FBF relative to its
close cousin the extragradient algorithm due to Korpelevich (1976), and speeds up the
computations in practice whenever projections are expensive to implement (see Bot
and Mertikopoulos (2021) for extensive numerical evidence supporting this claim).

In order to force strong convergence of the sequence of path departure rates
{hn}n∈N, we augment the scheme by an Halpern-type relaxation procedure. The
pseudo-code of the resulting DUE solver is displayed in Algorithm 2.

Algorithm 2 has been analyzed in Duvocelle et al. (2019) in detail. In particular,
we demonstrated strong convergence of the numerical scheme by proving Theorem
2 below.

Theorem 2 (Theorem 2, Duvocelle et al. (2019)) Suppose that Assumptions 1–3
are satisfied. Let {αn}n∈N and {βn}n∈N be two real sequences in (0, 1), satisfying
conditions

{βn}n∈N ⊆ (b, 1 − αn) for some b > 0, (19)

and

lim
n→∞αn = 0 and

∞∑

n=1

αn = ∞. (20)

Then the sequence {hn} generated by Algorithm 2 converges strongly to h∗ =
arg min{‖z‖ : z ∈ Ω}.
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Departing from here, our aim in this paper is to significantly extend our previous
work by designing a new FBF-based inertial algorithm, which meets all the desiderata
spelled out in the introduction: i) Adaptive step-sizes, ii) Weak monotonicity, and iii)
strong convergence.

To achieve a possible convergence acceleration and to meet conditions i)-iii),
we include relaxation and inertial effects into our algorithm. To the best of our
knowledge, this is the first available, provably convergent, relaxed-inertial splitting
algorithm for computing DUE.

The basic idea behind inertial algorithms is to use information accumulated from
past iterations in order to introduce momentum. This is achieved by computing the
extrapolated point z = h + α(h − h′) in the first step of each iteration. The introduc-
tion of momentum is classical, and can be traced back to the heavy-ball method of
Polyak Polyak (1964). We adapt momentum by injecting relaxations steps in a disci-
plined way to force the trajectory to converge strongly to a DUE. The so-constructed
new strongly convergent method, to be called the inertial forward-backward-forward
(IFBF) algorithm, is displayed in Algorithm 3.

In the convergence analysis of Algorithm 3 it turns out that any positive sequences
{εn}n∈N, {βn}n∈N ⊂ (0, 1), satisfying

lim
n→∞βn = 0,

∞∑

n=1

βn = ∞ and lim
n→∞

εn

βn

= 0 (23)
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Table 2 Key attributes of the
test networks Nguyen Network Sioux Falls

No. of links 19 76

No. of nodes 13 24

No. of O-D pairs 4 528

No. of paths 24 6,180

are admissible for strong convergence of the sequence of path flows {hn}n∈N gener-
ated by this Algorithm. The sequence {τn}n∈N has the same role as the step size λ

in the basic fixed point iteration (16). Hence, we have to choose it small enough to
ensure convergence (theoretically smaller than the reciprocal of the Lipschitz con-
stant of the delay operator). Nevertheless we can realize IFBF without any a-priori
knowledge of the Lipschitz constant by implementing the adaptive step-size policy
(21). As we will see in Lemma 5, the step size sequence {τn}n∈N has a limit and

lim
n→∞τn = τ ≥ τ̄ := min

{μ

L
, τ0

}
.

The parameter α can be any constant in (0, 1). The main theoretical result of this
paper reads as follows.

Theorem 3 Let Assumptions 1-3 be in place. Then the sequence {hn}n≥0 generated
by Algorithm 3 converges strongly to the minimum norm solution h∗ = arg min{‖z‖ :
z ∈ Ω}.

5 Numerical Experiments

We present preliminary computational examples of the simultaneous route-and-
departure-time dynamic user equilibrium on the Nguyen network (Nguyen 1984) and
the Sioux falls network. Detailed network parameters, including coordinates of nodes
and link attributes, are sourced and adapted from Han et al. (2019). Given that our
DUE and DNL formulations are path-based, enumeration of paths was applied to
generate the path set using the Frank-Wolfe algorithm (Table 2).

We apply Algorithm 2 and Algorithm 3 with the embedded DNL procedure based
on a time-stepping scheme discretizing the PDAE formulation described in Section 3.
We compare our method with the projected gradient algorithm (16), as implemented
in the MATLAB toolbox documented in Han et al. (2019).3

As remarked in Han et al. (2019), projected gradient requires strong monotonicity
to ensure norm convergence, whereas all our methods are provably strongly conver-
gent by means of Theorems 2 and 3. All computations reported in this section were
performed using MATLAB (R2018a) on a Lenovo x64 Laptop with Intel Core i5
processor with 1.6 GHz and 8GB of RAM (Fig 1).

3The Matlab code is retrieved from https://github.com/DrKeHan/DTA.
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Fig. 1 The Nguyen and Sioux Falls network

5.1 Performance of the Algorithms

We run all three methods for fixed number of iterations and report the last iterate
of the algorithm (hFinal), the corresponding effective delay operator (A(hFinal)), a
numerical merit function (GAP), as well as a measure for the speed of convergence.
The construction of our numerical merit function follows Han et al. (2019). It is
designed to measures the distance to equilibrium via the following version of a gap
function

GAPw = max{Ap(t, hF inal) : t ∈ [t0, t1], p ∈ Pw s.t. hFinal
p (t) > 0}

− min{Ap(t, hF inal) : t ∈ [t0, t1], p ∈ Pw s.t. hFinal
p (t) > 0}, (24)

for all w ∈ W . Hence, GAPw represents the range of travel costs experienced by all
drivers in the given O-D pair w ∈ W . In fact, it is clear that GAPw ≥ 0, and in an
exact DUE, the gap should be zero for all O-D pairs, justifying the interpretation of
GAP as a numerical merit function.

Table 3 contains a list of the global parameters employed in our numerical experi-
ments. Here dt is regulating the mesh-size of the time grid in the numerical solution

Table 3 Global parameters for
Algorithms 1, 2 and 3 Nguyen Sioux Fall

dt 70 100

max. Iterations 200 100

α 0.7 0.7

μ 0.5 0.5

λ 0.5 0.2
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Table 4 List of method-specific parameters. N.N. stands for “not needed”

FBF IFBF

Nguyen Siuox Falls Nguyen Sioux Falls

αn (1 + n)−0.9 (1 + n)−0.9 N.N. N.N.

βn 0.7 − 0.7(1 + n)−0.7 0.5 − 0.5 ∗ (1 + n)−0.4 (10 + n)−2 10
10n+1

εn N.N. N.N.
(

2
1+n

)5
(0.1 + n)−1.1

of the DNL. max. Iterations is the total number of iterations we let all three algo-
rithms run on each test instance, and λ is the relaxation parameter in Algorithm 3.
The construction of local parameters has been done in a simple way, without involv-
ing extensive search over the parameter space which would very likely improve the
reported results. The FB Algorithm 1 has been implemented as in Han et al. (2019),
using the constant step size τ = 10 on the Nguyen, and τ = 2 on the Sioux falls
test network. FBF and IFBF (Algorithms 2 and 3) are implemented with the adaptive
step-size (18) and (21), respectively. The relaxation and inertial sequences employed
in FBF and IFBF are reported in Table 4.

Figure 2 shows the distribution of the values of our merit function (24) on the
Nguyen network, and Fig. 3 displays the same statistic for the Sioux falls network.

We see that in all our experiments the distribution of the O-D gaps is concentrated
around 0.2 across all networks for FB and IFBF. This suggests that these algorithms
preform similarly in terms of producing approximate equilibrium solutions. The deci-
sive advantage of IFBF is however that it is guaranteed to converge strongly to the
minimum norm solution, without requiring strict monotonicity of the delay operator.
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Fig. 2 Distributions of O-D gaps to the DUE solutions in the Nguyen network, calculated according to
Eq. 24
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Fig. 3 Distributions of O-D gaps to the DUE solutions in the Sioux falls network, calculated according to
Eq. 24

Figure 4 displays the path departure rates as well as the corresponding effective
path delays on randomly selected paths in the considered test networks. We see from
these plots that the path departure rates peak out around the minima of the effective
delay, which reflects equilibrium behavior on the routes.

We finally display a figure which gives some indication on the relative speed
of convergence of each of the tested algorithms. We compute for each method the
“relative energy” sequence

en = ‖hn+1 − hn‖
‖hn‖ (25)

which measures the decay of energy of the path departure rates generated by the
algorithms. Han et al. (2019) call this the relative gap, and we follow this terminology
in the labeling of the figures. For all our methods this sequence must converge to 0,
and we can consider one method faster than the other if the rate of convergence of
the energy sequence dominates the other. Figure 5 shows the evolution of the relative
energy sequences for each method.

We see that already non-optimized step size parameters lead to some acceleration
in the IFBF scheme when compared to other solvers.

6 Convergence Analysis

6.1 Preliminaries

The purpose of this section is to collect some standard concepts from real Hilbert
spaces. Throughout this section we let H be a real Hilbert space with scalar product
〈·, ·〉 and associated norm ‖·‖.
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Fig. 4 Path departure rates and corresponding effective path delays for selected paths in the DUE solutions
on the Nguyen network
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Fig. 5 The relative energy (25) on semi-log scale for both test networks

Definition 2 (Convergence in Hilbert spaces) A sequence of points {xn}n∈N in a
Hilbert space H converges weakly to a point x ∈ H, denoted by xn ⇀ x, if

lim
n→∞〈xn, y〉 = 〈x, y〉

for all test vectors y ∈ H. The sequence {xn} converges strongly to x if

lim
n→∞‖xn − x‖ = 0.

In order to prove our main convergence results, we need the following standard
facts. For all x, y ∈ H and α ∈ R, we have

‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉. (26)

Lemma 1 Let C be a nonempty closed convex set inH and x ∈ H arbitrary. Then

(i)
langlePC(x) − x, y − PC(x)〉 ≥ 0 for all y ∈ C;

(ii) ‖PC(x) − y‖2 ≤ ‖x − y‖2 − ‖x − PC(x)‖2 for all y ∈ C.

Definition 3 Let A : H → H be an operator. The operator A is called

1. L-Lipschitz continuous with L > 0 on X ⊆ H if

‖A(x) − A(y)‖ ≤ L‖x − y‖ ∀x, y ∈ X .

2. pseudo-monotone on X ⊆ H if

〈A(x), y − x〉 ≥ 0 ⇒ 〈A(y), y − x〉 ≥ 0 ∀x, y ∈ X . (27)

3. sequentially weakly continuous if xn ⇀ x then A(xn) ⇀ A(x).

The next classical fact shows that solutions of VI(X , A) defined in terms of
pseudo-monotone operators can be determined via “weak formulation”.
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Lemma 2 (Cottle and Yao 1992) If A : H → H is pseudo-monotone and
continuous, then x∗ is a solution of V I (X , A) if and only if

〈A(x), x − x∗〉 ≥ 0 ∀x ∈ X .

The next technical results are basic convergence guarantees for real-valued
sequences.

Lemma 3 (Xu 2002) Let {an}n∈N be a sequence of nonnegative real numbers, and
{βn}n∈N be a sequence in (0, 1) such that

∑
n βn = ∞. Suppose that {bn}n∈N is a

sequence with lim supn bn ≤ 0. If

an+1 ≤ (1 − βn)an + βnbn ∀n ∈ N

then limn→∞ an = 0.

Lemma 4 (Saejung and Yotkaew 2012) Let {an}n∈N be a sequence of nonnegative
real numbers, {βn}n∈N be a sequence of real numbers in (0, 1) with

∑
n βn = ∞ and

{bn}n∈N be a sequence of real numbers. Assume that

an+1 ≤ (1 − βn)an + βnbn for all n ≥ 1.

If lim supk→∞ bnk
≤ 0 for every subsequence {ank

}∞k=1 of {an}∞n=1 satisfying
lim infk→∞(ank+1 − ank

) ≥ 0 then limn→∞ an = 0.

Lemma 5 Let τ0 > 0 and μ ∈ (0, 1). Let A : H → H be a L-Lipschitz continuous
operator. The sequence {τn}n≥0 generated by Eq. 21 is non-increasing and satisfies

lim
n→∞τn = τ ≥ τ̄ := min

{μ

L
, τ0

}
. (28)

Furthermore,

‖A(wn) − A(yn)‖ ≤ μ

τn+1
‖wn − yn‖ ∀n ≥ 1. (29)

Proof Since τn+1 = min
{

μ‖wn−yn‖
‖A(wn)−A(yn)‖ , τn

}
, it is clear that τn+1 ≤ τn for all n ≥ 0.

Moreover, using the L-Lipschitz continuity of the operator A gives

μ‖wn − yn‖
‖A(wn) − A(yn)‖ ≥ μ

L
if A(wn) �= A(yn).

Hence, τn+1 ≥ min{μ
L
, τn} for all n. By induction, it follows that {τn}n is bounded

from below by min{μ
L
, τ0}. Therefore, limn→∞ τn = τ ≥ τ̄ := min

{
μ
L
, τ0

}
.

6.2 Proof of Theorem 3

We start with an auxiliary technical result, which guarantees that weak cluster points
of the algorithm produce solutions of DUE. It is based on techniques from Vuong
(2018).
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Lemma 6 Let {wn} be a sequence generated by Algorithm 3. If there exists a sub-
sequence {wnk

} convergent weakly to z ∈ H and limk→∞ ‖wnk
− ynk

‖ = 0, then,
having Assumptions 1-3 in place, we know z ∈ Ω .

Proof Recall that yn = PX (wn − τnA(wn)). By Lemma 1(i), we have

〈wnk
− τnk

A(wnk
) − ynk

, x − ynk
〉 ≤ 0, ∀x ∈ X ,

or, equivalently,

1

τnk

〈wnk
− ynk

, x − ynk
〉 ≤ 〈A(wnk

), x − ynk
〉, ∀x ∈ X .

Consequently, we have

1

τnk

〈wnk
−ynk

, x−ynk
〉+〈A(wnk

), ynk
−wnk

〉 ≤ 〈A(wnk
), x−wnk

〉, ∀x ∈ X . (30)

Since {wnk
} is weakly convergent, it is bounded. Then, by the Lipschitz continuity

of A, {A(wnk
)} is bounded. As ‖wnk

− ynk
‖ → 0, {ynk

} is also bounded and τnk
≥

min{τ0,
μ
L
}. Passing (30) to the limit as k → ∞, we get

lim inf
k→∞ 〈A(wnk

), x − wnk
〉 ≥ 0, ∀x ∈ X . (31)

Moreover, we have

〈A(ynk
), x − ynk

〉 = 〈A(ynk
) − A(wnk

), x − wnk
〉 + 〈A(wnk

), x − wnk
〉

+〈A(ynk
), wnk

− ynk
〉

≥ −‖A(ynk
) − A(wnk

)‖ · ‖x − wnk
‖ + 〈A(wnk

), x − wnk
〉

−‖A(ynk
)‖ · ‖wnk

− ynk
‖.

Since limk→∞ ‖wnk
− ynk

‖ = 0 and A is L-Lipschitz continuous on H , we get from
the above

lim
k→∞ ‖A(wnk

) − A(ynk
)‖ = 0.

Together with Eq. 31, we obtain

lim inf
k→∞ 〈A(ynk

), x − ynk
〉 ≥ 0 ∀x ∈ X .

Next, we show that z ∈ Ω . We choose a sequence {εk} of positive numbers decreasing
and tending to 0. For each k ≥ 1, we denote by Nk the smallest positive integer such
that

〈A(ynj
), x − ynj

〉 + εk ≥ 0, ∀j ≥ Nk . (32)

Since {εk} is decreasing, it is easy to see that the sequence {Nk} is increasing. Fur-
thermore, for each k ≥ 1, since {yNk

} ⊂ X , we can suppose A(yNk
) �= 0 (otherwise,

yNk
is a solution) and, setting

vNk
= A(yNk

)

‖A(yNk
)‖2

,
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we have 〈A(yNk
), vNk

〉 = 1 for each k ≥ 1. Now, we can deduce from Eq. 32 that,
for each k ≥ 1,

〈A(yNk
), x + εkvNk

− yNk
〉 = 〈A(yNk

), x − ynk
〉 + εk ≥ 0.

Since A is pseudo-monotone (Assumption 3) on H, we get

〈A(x + εkvNk
), x + εkvNk

− yNk
〉 ≥ 0.

This implies that

〈A(x), x − yNk
〉 ≥ 〈A(x)−A(x + εkvNk

), x + εkvNk
− yNk

〉− εk〈A(x), vNk
〉. (33)

Now, we show that limk→∞ εkvNk
= 0. Indeed, since wnk

⇀ z and
limk→∞ ‖wnk

− ynk
‖ = 0, we obtain yNk

⇀ z as k → ∞. Since {yn} ⊂ X , we
clearly have z ∈ X as well. Since A is sequentially weakly continuous on X , {A(ynk

)}
converges weakly to A(z). We can suppose A(z) �= 0 (otherwise, z is a solution).
Since the norm mapping is sequentially weakly lower semi-continuous, we have

0 < ‖A(z)‖ ≤ lim inf
k→∞ ‖A(ynk

)‖.

Together with {yNk
} ⊂ {ynk

} and εk → 0 as k → ∞, we readily conclude

0 ≤ lim sup
k→∞

‖εkvNk
‖ = lim sup

k→∞

(
εk

‖A(ynk
)‖

)

≤ lim supk→∞ εk

lim infk→∞ ‖A(ynk
)‖ = 0.

Hence, limk→∞ εkvNk
= 0.

Now, letting k → ∞, then the right hand side of Eq. 33 tends to zero by A is
uniformly continuous, {wNk

}, {vNk
} are bounded and limk→∞ εkvNk

= 0. Thus, we
get

lim inf
k→∞ 〈A(x), x − yNk

〉 ≥ 0.

Hence, for all x ∈ X , we have

〈A(x), x − z〉 = lim
k→∞〈A(x), x − yNk

〉 = lim inf
k→∞ 〈A(x), x − yNk

〉 ≥ 0.

By Lemma 2, z ∈ Ω . This completes the proof.

The next result established the boundedness of the sequence of path flows.

Lemma 7 Let Assumptions 1-3 hold. The sequence of path flows {hn}∞n=1 generated
by Algorithm 3 is bounded. In addition,

‖hn+1 − h∗‖2 ≤ ‖wn − h∗‖2 − λ

(

1 − μ
τn

τn+1

) (

2 − λ + λμ
τn

τn+1

)

‖yn − wn‖2.

(34)
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Proof We have

‖hn+1 − h∗‖2 = ‖(1 − λ)wn + λ(yn − τn(A(yn) − A(wn))) − h∗‖2

= ‖(1 − λ)(wn − h∗) + λ(yn − h∗) + λτn(A(wn) − A(yn)))‖2

= (1 − λ)2‖wn − h∗‖2 + λ2‖yn − h∗‖2 + λ2τ 2
n‖A(wn) − A(yn)‖2

+2(1 − λ)λ〈wn − h∗, yn − h∗〉 + 2(1 − λ)λτn〈wn − h∗, A(wn)

−A(yn)〉 + 2λ2τn〈yn − h∗, A(wn) − A(yn)〉. (35)

Combining

2〈wn − h∗, yn − h∗〉 = ‖wn − h∗‖2 + ‖yn − h∗‖2 − ‖wn − yn‖2, (36)

with the definition of {τn}, it is easy to see that

‖A(wn) − A(yn)‖ ≤ μ

τn+1
‖wn − yn‖, ∀n ≥ 0. (37)

Substituting (36) and (37) into (35), we get

‖hn+1 − h∗‖2 ≤ (1 − λ)‖wn − h∗‖2 + λ‖yn − h∗‖2 + λ2 τ 2
n

τ 2
n+1

μ2‖wn − yn‖2

−(1 − λ)λ‖wn − yn‖2 + 2(1 − λ)λτn〈wn − h∗, A(wn) − A(yn)〉
+2λ2τn〈yn − h∗, A(wn) − A(yn)〉. (38)

Lemma 1(i) yields the estimate

‖yn − h∗‖2 = 〈yn − h∗, yn − h∗〉
= 〈PX (wn − τnA(wn)) − PX (h∗), PX (wn − τnA(wn)) − PX (h∗)〉
= 〈yn − h∗, wn − τnA(wn) − h∗〉 + 〈PX (wn − τnA(wn) −

PX (h∗), PX (wn − τnA(wn)) − wn + τnA(wn)〉
≤ 〈yn − h∗, wn − τnA(wn) − h∗〉
= 1

2
‖yn − h∗‖2 + 1

2
‖wn − τnA(wn) − h∗‖2 − 1

2
‖(wn − h∗)

−(wn − τnA(wn))‖2

= 1

2
‖yn − h∗‖2+ 1

2
‖wn − h∗‖2 − 1

2
‖yn−wn‖2 − 〈yn − h∗, τnA(wn)〉,

or equivalently

‖yn − h∗‖2 ≤ ‖wn − h∗‖2 − ‖yn − wn‖2 − 2〈yn − h∗, τnA(wn)〉. (39)

Since h∗ ∈ Ω , we have 〈A(h∗), yn − h∗〉 ≥ 0. It follows from the pseudo-
monotonicity of A that

2〈τnA(yn), yn − h∗〉 ≥ 0. (40)

Adding (39) and (40), we obtain

‖yn − h∗‖2 ≤ ‖wn − h∗‖2 − ‖yn − wn‖2 − 2τn〈yn − h∗, A(wn) − A(yn)〉. (41)
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Substituting (41) into (38), we get

‖hn+1 − h∗‖2 ≤ (1 − λ)‖wn − h∗‖2 + λ‖wn − h∗‖2 − λ‖yn − wn‖2

−2λτn〈yn − h∗, A(wn) − A(yn)〉
+λ2 τ 2

n

τ 2
n+1

μ2‖wn − yn‖2 − (1 − λ)λ‖wn − yn‖2

+2(1 − λ)λτn〈wn − h∗, A(wn) − A(yn)〉
+2λ2τn〈yn − h∗, A(wn) − A(yn)〉

= (1 − λ)‖wn − h∗‖2 + λ‖wn − h∗‖2 − λ‖yn − wn‖2

−2λτn〈yn − h∗, A(wn) − A(yn)〉
+λ2 τ 2

n

τ 2
n+1

μ2‖wn − yn‖2 − (1 − λ)λτn‖wn − yn‖2

+2(1 − λ)λτn〈yn − h∗, A(wn) − A(yn)〉
+2(1 − λ)λτn〈wn − yn, A(wn) − A(yn)〉
+2λ2τn〈yn − h∗, A(wn) − A(yn)〉

= ‖wn − h∗‖2

+λ2 τ 2
n

τ 2
n+1

μ2‖wn − yn‖2 − (2 − λ)λ‖wn − yn‖2

+2(1 − λ)λτn〈wn − yn, A(wn) − A(yn)〉
≤ ‖wn − h∗‖2

+λ2 τ 2
n

τ 2
n+1

μ2‖wn − yn‖2 − (2 − λ)λ‖wn − yn‖2

+2(1 − λ)λ
τn

τn+1
μ‖wn − yn‖2

= ‖wn−h∗‖2−λ

[

2−λ−λ
τ 2
n

τ 2
n+1

μ2 − 2(1 − λ)
τn

τn+1
μ

]

‖wn−yn‖2

= ‖wn − h∗‖2 − λ

(

1 − μ
τn

τn+1

)(

2 − λ + λμ
τn

τn+1

)

‖yn − wn‖2

. (42)

Since

lim
n→∞

(

1 − μ
τn

τn+1

)(

2 − λ + λμ
τn

τn+1

)

= (1 − μ)(2 − λ + λμ) > 0

there exists n0 ∈ N such that
(

1 − μ
τn

τn+1

)(

2 − λ + λμ
τn

τn+1

)

> 0 ∀n ≥ n0.

Hence

‖hn+1 − h∗‖ ≤ ‖wn − h∗‖ ∀n ≥ n0. (43)
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On the one hand, using the definition of wn, we obtain

‖wn − h∗‖ = ‖(1 − βn)(hn + αn(hn − hn−1)) − h∗‖
= ‖(1 − βn)(hn − h∗) + (1 − βn)αn(hn − hn−1) − βnh

∗‖
≤ (1 − βn)‖hn − h∗‖ + (1 − βn)αn‖hn − hn−1‖ + βn‖h∗‖
= (1 − βn)‖hn − h∗‖ + βn[(1 − βn)

αn

βn

‖hn − hn−1‖ + ‖h∗‖]. (44)

From Eqs. 22 and 23, we have
αn

βn

‖hn − hn−1‖ ≤ εn

βn

→ 0.

Hence,

lim
n→∞

[

(1 − βn)
αn

βn

‖hn − hn−1‖ + ‖h∗‖
]

= ‖h∗‖,
Therefore, there exists M > 0 such that

(1 − βn)
αn

βn

‖hn − hn−1‖ + ‖h∗‖ ≤ M . (45)

Combining (44) and (45) we obtain

‖wn − h∗‖ ≤ (1 − βn)‖hn − h∗‖ + βnM . (46)

Hence, from Eqs. 43 and 46, we have

‖hn+1 − h∗‖ ≤ (1 − βn)‖hn − h∗‖ + βnM

= max{‖hn − h∗‖, M} ≤ . . . ≤ max{‖hn0 − h∗‖, M}.
Therefore, the sequence {hn}∞n=1 is bounded.

Lemma 8 It holds that

λ

(

1−μ
τn

τn+1

) (

2−λ + λμ
τn

τn+1

)

‖wn−yn‖2 ≤ ‖hn−h∗‖2−‖hn+1−h∗‖2+βnM1.

Proof Equation 46 yields

‖wn − h∗‖2 ≤ (1 − βn)
2‖hn − h∗‖2 + 2βn(1 − βn)M‖hn − h∗‖ + β2

nM2

≤ ‖hn − h∗‖2 + βn[2(1 − βn)M‖hn − h∗‖ + βnM
2]

≤ ‖hn − h∗‖2 + βnM1, (47)

where M1 := max{2(1 − βn)M‖hn − h∗‖ + βnM
2 : n ∈ N}. Substituting (47) into

(42) we get

‖hn+1−h∗‖2 ≤‖hn−h∗‖2+βnM1−λ

(

1 − μ
τn

τn+1

)(

2 − λ + λμ
τn

τn+1

)

‖wn−yn‖2,

or equivalently

λ

(

1−μ
τn

τn+1

) (

2−λ + λμ
τn

τn+1

)

‖wn−yn‖2 ≤ ‖hn−h∗‖2−‖hn+1−h∗‖2+βnM1.
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Lemma 9 It holds that

‖hn+1 − h∗‖2 ≤ (1 − βn)‖hn − h∗‖2 + βn

[

2(1 − βn)‖hn − h∗‖αn

βn

‖hn − hn−1‖

+ α2
n

βn

‖hn−hn−1‖2+2‖h∗‖ · ‖wn−hn+1‖+2〈−h∗, hn+1 − h∗〉
]

.

Proof Using the inequalities (43) and then (26) as well as βn ∈ (0, 1), we get

‖hn+1 − h∗‖2 ≤ ‖wn − h∗‖2

= ‖(1 − βn)(hn − h∗) + (1 − βn)αn(hn − hn−1) − βnh
∗‖2

≤ ‖(1 − βn)(hn − h∗) + (1 − βn)αn(hn − hn−1)‖2

+2βn〈−h∗, wn − h∗〉
= (1 − β2

n‖hn − h∗‖2 + α2
n(1 − βn)

2‖hn − hn−1‖2

+2αn(1 − βn)
2〈hn − h∗, hn − hn−1〉

+2βn〈−h∗, wn − h∗〉
≤ (1 − βn)‖hn − h∗‖2 + 2(1 − βn)αn‖hn − h∗‖‖hn − hn−1‖

+α2
n‖hn − hn−1‖2

+2βn〈−h∗, wn − hn+1〉 + 2βn〈−h∗, hn+1 − h∗〉
≤ (1 − βn)‖hn − h∗‖2 + βn

[

2(1 − βn)‖hn − h∗‖αn

βn

‖hn − hn−1‖

+α2
n

βn

‖hn − hn−1‖2 + 2‖h∗‖ · ‖wn − hn+1‖

+2〈−h∗, hn+1 − h∗〉
]

.

Equipped with these preliminary result, we are now ready to proof the main
result of this paper, Theorem 3. We restate the theorem below again, for the readers’
convenience.

Theorem 4 Let Assumptions 1-3 hold. The sequence of path flows {hn}∞n=1 gen-
erated by Algorithm 3 converges strongly to an element h∗ ∈ Ω , where h∗ =
argmin{‖z‖ : z ∈ Ω}.

Proof We split the proof in two cases. Let us call an := ‖hn − h∗‖2 and

bn := 2(1 − βn)‖hn − h∗‖αn

βn

‖hn − hn−1‖

+α2
n

βn

‖hn − hn−1‖2 + 2‖h∗‖ · ‖wn − hn+1‖ + 2〈−h∗, hn+1 − h∗〉,
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so that Lemma 9 boils down to the recursion

an+1 ≤ (1 − βn)an + βnbn.

We split the proof in two case.

Case 1 There exists N0 ∈ N such that an+1 ≤ an for all n ≥ N0. Then,
lim infn→∞(an+1 − an) = 0, and it follows lim supn bn ≤ 0. The conclusion follows
from Lemma 3.

Case 2 By Lemma 4, it suffices to show that

lim sup
k→∞

〈−h∗, hnk+1 − h∗〉 ≤ 0

for every subsequence {‖hnk
− h∗‖}∞k=1 of {‖hn − h∗‖}∞n=1 satisfying

lim inf
k→∞ (‖hnk+1 − h∗‖ − ‖hnk

− h∗‖) ≥ 0.

For this, suppose that {‖hnk
− h∗‖}∞k=1 is a subsequence of {‖hn − h∗‖}∞n=1 such

that lim infk→∞(‖hnk+1 − h∗‖ − ‖hnk
− h∗‖) ≥ 0. Then

lim inf
k→∞ (‖hnk+1 − h∗‖2 − ‖hnk

− h∗‖2)

= lim inf
k→∞ [(‖hnk+1 − h∗‖ − ‖hnk

− h∗‖)(‖hnk+1 − h∗‖ + ‖hnk
− h∗‖)] ≥ 0.

By Lemma 8 we obtain

lim sup
k→∞

[

λ

(

1 − μ
τnk

τnk+1

) (

2 − λ + λμ
τnk

τnk+1

)

‖wnk
− ynk

‖2
]

≤ lim sup
k→∞

[
‖hnk

− h∗‖2 − ‖hnk+1 − h∗‖2 + βnk
M1

]

≤ lim sup
k→∞

[
‖hnk

− h∗‖2 − ‖hnk+1 − h∗‖2
]

+ lim sup
k→∞

βnk
M1

= −lim inf
k→∞

[
‖hnk+1 − h∗‖2 − ‖hnk

− h∗‖2
]

≤ 0.

This implies that

lim
k→∞ ‖ynk

− wnk
‖ = 0. (48)

On the other hand, we have

‖hn+1 − yn‖ = ‖(1 − λ)(wn − yn) + λτn(Ayn − Awn)‖
≤ (1 − λ)‖wn − yn‖ + λτn‖Ayn − Awn‖
≤ (1 − λ)‖wn − yn‖ + λ

τn

τn+1
‖wn − yn‖

=
(

1 − λ + λμ
τn

τn+1

)

‖wn − yn‖. (49)
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Combining (48) and (49) we get

lim
k→∞ ‖hnk+1 − ynk

‖ = 0. (50)

Also from Eqs. 48 and 50, it holds

lim
k→∞ ‖hnk+1 − wnk

‖ = 0. (51)

Now, we show that
‖hnk+1 − hnk

‖ → 0 as n → ∞. (52)

Indeed, we have

‖hnk
− wnk

‖ = αnk
‖hnk

− hnk−1‖ = βnk
· αnk

βnk

‖hnk
− hnk−1‖ → 0. (53)

From Eqs. 51 and 53, we get

‖hnk+1 − hnk
‖ ≤ ‖hnk+1 − wnk

‖ + ‖wnk
− hnk

‖ → 0.

Since the sequence {hnk
}∞k=1 is bounded, it follows that there exists a subsequence

{hnkj
}∞j=1 of {hnk

}∞k=1, which converges weakly to some z∗ ∈ H , such that

lim sup
k→∞

〈−h∗, hnk
− h∗〉 = lim

j→∞〈−h∗, hnkj
− h∗〉 = 〈−h∗, z∗ − h∗〉. (54)

From Eq. 53, we obtain
wnk

⇀ z∗ as k → ∞.

Using Lemma 6, we conclude z∗ ∈ Ω . Next, since (54) and the definition of h∗ =
PΩ(0), we have

lim sup
k→∞

〈−h∗, hnk
− h∗〉 = 〈−h∗, z∗ − h∗〉 ≤ 0. (55)

Combining (52) and (55), we have

lim sup
k→∞

〈−h∗, hnk+1 − h∗〉 ≤ lim sup
k→∞

〈−h∗, hnk
− h∗〉

= 〈−h∗, z∗ − h∗〉 ≤ 0. (56)

Hence, by Eq. 56, limn→∞ αn

βn
‖hn −hn−1‖ = 0, limn→∞ ‖hn+1 −wn‖ = 0, Lemmas

9 and 4, we obtain the desired result, limn→∞ ‖hn − h∗‖ = 0.

7 Conclusion

This paper builds on recent advances in the computational theory of dynamic user
equilibrium. Building on the network extension of the LWR model and its formula-
tion in terms of a system of differential algebraic equations. Our aim is to advocate
the use of strongly convergent fixed point iterations for computing dynamic user
equilibrium which are provably convergent under mild a-priori monotonicity assump-
tions on the path delay operator, and which are adaptive in the sense that no global
bound on the Lipschitz constant needs to be known. We focussed on the construction
of new strongly convergent forward-backward-forward algorithms, augmented by
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relaxation and inertial modifications. We tested the performance of our algorithms in
the Nguyen and the Sioux falls network, and provide thereby evidence that our meth-
ods improve upon pre-implemented solvers. In future research we aim to improve the
fixed point iteration by reducing its complexity in terms of calls of the DNL subrou-
tine. Indeed, the price to pay for provable convergence under weaker assumptions is
that under FBF splitting we have to evaluate the delay operator twice per iterations,
which is computationally costly. The FB iteration needs only a single call of the
DNL, but converges only under strong monotonicity assumptions. In a future publi-
cation we will describe a single-call variant of the FBF, which still guarantees strong
convergence under the same monotonicity assumptions as used in this paper.

Another very interesting direction of research we plan to pursue is to replace the
costly DNL procedure by alternative approximation schemes motivated by machine
learning approaches as commenced in Song et al. (2017).
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